
 Eindhoven University of Technology

MASTER

A performance measurement framework for executable care pathways implemented in BPMS

Gita Gustaman, G.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/57bbf7dc-22d6-4e83-8e28-a9eb178d2822

Eindhoven University of Technology
Department of Industrial Engineering and Innovation Sciences

 Department of Mathematics and Computer Science

A Performance Measurement
Framework for Executable

Care Pathways Implemented in BPMS

by
Goppy Gita Gustaman
Student ID: 0827042

In partial fulfilment of the requirements for the degree of
Master of Science in Business Information Systems

Eindhoven, October 2014

Supervisor 1: Prof. Dr. Ir. Uzay Kaymak (TU/e, IE&IS)
Supervisor 2: Dr. P.M.E. Van Gorp (TU/e, IE&IS)

ii

Acknowledgement
This master thesis is the result of my graduation project fulfilled in order to obtain the degree of
Master of Science in Business Information Systems. The research was carried out at the
Information Systems group, Department of Industrial Engineering and Innovation Sciences,
Eindhoven University of Technology.

I would like to thank to a few people who have contributed to this research. First of all, I would
like to thank my first supervisor, Uzay Kaymak for his guidance and his brain teasing feedback
to improve my research. I would also like to thank Pieter Van Gorp as my second supervisor for
his valuable input. I also thank Hui Yan for our discussion about weaning process and the model.
I thank Irene Vanderfeesten for her feedback about weaning process. I also thank Alexander
Serebrenik for his input about domain specific language. Many thanks go to JBoss Community
for your active forum; I can solve some technical difficulties.

Second, I would like to thank my friends. Special thank goes to Juby Joseph Ninan for our
intensive discussion during the research. Many thanks go out to my fellow students: Kostas,
Igor, Ekaterina, Yi, Pavel and Kritika for your supports and these wonderful two years.

Third, I would like to thank PT Petrokimia Gresik who supports me morally and financially. Last,
but not least, I would like to express my gratitude to my family: my parents, my wife Tatya and
my daughter Hasna for always being there for me.

Goppy Gita Gustaman
October 2014

iii

Abstract
Care pathways are developed to standardize care processes for a well-defined group of patients
during a well-defined period. It is implemented in various forms, such as paper based version
and electronic version in the form of information systems. Several works propose the
implementation of a care pathway as a workflow application executed in a business process
management system (BPMS) due to its strength in work routing and the opportunity for process
improvement.

Like any other business processes, continuous performance monitoring of care pathway is
important to assess how far the organization’s goals are achieved while promoting the patient
safety principle and improving the quality of care. However, care pathway performance
measurement activity has several practical issues, such as unavailability of performance
measurement system, distribution of data in multiple locations and performance indicators that
are expressed in non-executable natural language. Consequently, performance monitoring is
difficult to achieve and time consuming.

Motivated by the promising implementation of care pathway in BPMS and the necessity to
continuously monitor pathway implementation, this master project proposes a framework to
measure the performance of care pathways that are implemented in BPMS. A pathway-specific,
structured notation is introduced to formalize the performance indicators of care pathways. The
notation is designed to be executable against BPMS’s execution log that represents patient
record in order to calculate indicator values. In this project, a BPMS is selected to implement the
pathway, i.e. jBPM. The performance indicator is formalized on top of identified performance
measures as the result of analysis of jBPM logs and a care pathway performance measurement
guideline, i.e. the Leuven Clinical Pathway Compass. To prove the concept of indicator
formalization, a performance measurement system is developed, thus automating the
measurement. To assess the quality of the proposed approach, the formalization and the
measurement system are evaluated using a healthcare case, i.e. weaning process. The evaluation
concludes that the formalization can support performance monitoring of the case and is open
for further extension. This master project demonstrates that continuous performance
monitoring of care pathway is feasible using proposed framework.

Keywords: care pathway, performance measurement, performance indicator, domain specific
language, jBPM

iv

Contents

Acknowledgement .. ii
Abstract ... iii
Contents .. iv

List of Figures ... vii
List of Tables ... ix

List of Scenarios ... x

Chapter 1 Introduction ... 1

1.1 Problem Definition ... 2

1.2 Research Objective ... 2

1.3 Research Question .. 3

1.4 Research Methodology .. 3

1.5 Research Scope... 4

1.6 Document Structure ... 4

Chapter 2 Preliminaries ... 6

2.1 Healthcare Sector Challenges and Opportunity ... 6

2.2 Care Pathway as a Solution ... 6

2.3 Care Pathway Development .. 8

2.4 CP Performance Measurement Guideline: The Leuven Clinical Pathway Compass 9

2.5 Business Process Management System ..11

2.5.1 jBPM Components ...12

2.5.2 jBPM History Logs ...13

2.6 Structured Query Language (SQL) ...14

2.7 Related Works ..15

Chapter 3 Requirements Analysis .. 17

3.1 Analysis of the Leuven Clinical Pathway Compass ..17

3.1.1 Clinical Indicators ..17

3.1.2 Process Indicators ...18

3.1.3 Financial Indicators ..19

3.1.4 Service Indicators ..19

3.1.5 Team Indicators ...20

3.2 Analysis of jBPM ..21

3.2.1 jBPM Setup ...21

3.2.2 Scope of Analysis ...21

3.2.3 Analysis of jBPM History Logs and BPMN Elements ...22

v

3.2.4 Data Types ..28

3.3 Monitoring Variances ..29

3.4 Identifying Care Pathway Performance Measures ..29

Chapter 4 Design and Implementation ... 34

4.1 Proposed Formalization Design ..34

4.1.1 Decision ...36

4.1.2 Analysis ..36

4.1.3 Design ...37

4.1.4 Implementation ..46

4.1.5 Deployment ..48

4.2 Implementation of Measurement System ...48

4.2.1 Architecture and Environment ..48

4.2.2 Functionalities ..49

Chapter 5 Evaluation ... 50

5.1 Functional Correctness ...51

5.1.1 Case Description ..51

5.1.2 Test Setup ...53

5.1.3 Result Validation ..54

5.2 Functional Appropriateness ...56

5.3 Other Metrics ..58

5.4 Evaluation of Formalization Criteria ...59

Chapter 6 Conclusion ... 60

6.1 Research Conclusion and Contribution ..60

6.2 Limitations ...61

6.3 Future Research ...62

6.4 Related Software Technology ..62

Bibliography ... 64

APPENDIX A List of BPMN elements supported by jBPM 6 .. 68

APPENDIX B Persisting jBPM 6.1.0.CR1 historical data in PostgreSQL 9.3 72

APPENDIX C Description of jBPM history logs ... 76

C.1. ProcessInstanceLog (jBPM Persistence and Transactions, 2014) ..76

C.2. NodeInstanceLog (jBPM Persistence and Transactions, 2014) ...76

C.3. VariableInstanceLog (jBPM Persistence and Transactions, 2014) ..77

APPENDIX D jBPM Experiment .. 78

D.1. Test Model 1 ...78

D.2. Test model 2 ...78

D.3. Test model 3 ...78

D.4. Execution Result ...79

APPENDIX E Exception handling patterns ... 80

vi

APPENDIX F Formulation of Unstable Angina Pathway KPI ... 83

APPENDIX G Performance Measurement System Features .. 88

APPENDIX H Weaning Protocol ... 90

APPENDIX I Test Data.. 91

APPENDIX J Weaning Process KPI Expression ... 93

vii

List of Figures
Figure 1 Context of the research .. 3
Figure 2 jBPM release dates ... 4
Figure 3 Thesis structure and research methodology .. 5
Figure 4 Seven phase method of pathway development (Vanhaecht, et al., 2012) 8
Figure 5 Leuven Clinical Pathway Compass (Vanhaecht, K., & Sermeus, W., 2003)10
Figure 6 jBPM 6 project components (adapted from (jBPM Overview, 2014))12
Figure 7 jBPM history log tables ..14
Figure 8 jBPM task-related tables..14
Figure 9 Typical SQL query format ...15
Figure 10 Log tables relationship ..23
Figure 11 WS-HumanTask lifecycle ..26
Figure 12 Example entries in table VariableInstanceLog for custom data type28
Figure 13 Domain-specific language development phases ...36
Figure 14 Care pathway performance indicator metamodel ...37
Figure 15 Syntax for expression ...39
Figure 16 Format for declaring a function ...39
Figure 17 Function with single input string parameter ...39
Figure 18 Format for declaring pathway conditions ...42
Figure 19 Format for declaring data element conditions ..42
Figure 20 Format for declaring intervention conditions ...42
Figure 21 Format for declaring event conditions ...42
Figure 22 Example expression ..44
Figure 23 Implementation class diagram ...47
Figure 24 Architecture of the performance measurement system ..48
Figure 25 ISO/IEC 25010:2011 Software product quality metrics ...50
Figure 26 Weaning process in BPMN ...53
Figure 27 Create jBPM management user ..74
Figure 28 PostgreSQL pg_hba.conf ..74
Figure 29 Setting listen_addresses in postgresql.conf ..75
Figure 30 Test model 1...78
Figure 31 Test model 2...78
Figure 32 Test model 3...78
Figure 33 Execution result of scenario 1 ..79
Figure 34 Execution result of scenario 2 ..79
Figure 35 Execution result of scenario 3 ..79
Figure 36 Execution result of scenario 4 ..79
Figure 37 Immediate fixing pattern ..81
Figure 38 Retry pattern ...81
Figure 39 Deferred fixing pattern ..81
Figure 40 Reject pattern ..81
Figure 41 Compensate pattern ...82

viii

Figure 42 Feature query performance indicator ...88
Figure 43 Feature create, view, edit and delete indicator ...88
Figure 44 Feature Create, view, edit and delete cost ...88
Figure 45 Feature build measure ...89
Figure 46 Original weaning protocol (Boere, 2013) ..90

ix

List of Tables
Table 1 Process instance states ..24
Table 2 Parameters for pathway condition ...30
Table 3 Parameters for data element condition ...30
Table 4 Parameters for intervention condition ..31
Table 5 Parameters for event condition ...31
Table 6 Related table(s) for each measure and condition ...34
Table 7 Functions applied to returned records ...38
Table 8 Syntax for query parameters for pathway measures ..40
Table 9 Query templates for measures and conditions ..45
Table 10 Data elements in weaning process ...52
Table 11 List of weaning process KPI ..54
Table 12 Test result ...55
Table 13 Query complexity of performance measures ...57
Table 14 BPMN elements supported by jBPM 6 ..68
Table 15 ProcessInstanceLog table fields definition ...76
Table 16 NodeInstanceLog table fields definition ..76
Table 17 VariableInstanceLog table fields definition ..77
Table 18 Exception handling patterns ...80
Table 19 Formulation of Unstable Angina Pathway KPI ..83
Table 20 Data elements for test ..91

x

List of Scenarios
Scenario 1 Obtaining tables relationship ..22
Scenario 2 Checking the impact of variable value change to table VariableInstanceLog..................24
Scenario 3 Observing the impact of releasing a task to the log ...26
Scenario 4 Observing the impact of implementing reusable subprocess to execution log..............27
Scenario 5 Observing the impact of using custom data types to table VariableInstanceLog28

Chapter 1

Introduction

Healthcare sector is facing challenges to improve its quality while reducing the cost at the same
time. This is due to the dynamicity in the patient situation such as aging population and chronic
illness (Deloitte, 2014). Healthcare business is also pressured where the rise in medical
expenses is the matter while maintaining its service quality. Moreover, there is a force from
policymakers and third party such as insurance company to hospitals to deliver their care
services in most effective and efficient way.

There are already several researches conducted to tackle effectiveness and efficiency issues
where process orientation approach is at the utmost attention. Care pathway (CP) is an example
of such approach applied to standardize care process (Vanhaecht, K.; De Witte, K.; Sermeus, W.,
2007). The European Pathway Association defines a care pathway, also known as clinical
pathway, as “a complex intervention for the mutual decision making and organisation of care
processes for a well-defined group of patients during a well-defined period (European Pathway
Association, 2014).

Care pathway implementation evolves from paper version in the mid-1980s, electronic version
of paper based and linear sequential model in the early 1990s, and state-transition model in the
late 1990s. Since 2000, there have been many researches on structural design of clinical
pathway (Wakamiya & Yamauchi, 2009). At the same time, the evolution of information
technology and science is also on the way. Several proposals were made to facilitate care
pathway design and implementation using information technology and science concept. Ye et al
proposed ontology-based approach to model care pathways workflows to facilitate
computerized implementation of it (Ye, Jiang, Diao, Yang, & Du, 2009). Business process
management (BPM) approach, which is a buzzword in recent years, was also adopted to design
a care pathway as a process model. Du et al proposes a framework to implement CP based on
workflow in Petri net (Du, G., Jiang, Z., & Diao, X., 2008). Vermeulen proposes a methodology to
model a care pathway as a process model (Vermeulen, 2013). In the same year, Renswouw also
proposes a methodology to convert paper-based care pathway into executable workflow
process model (van Renswouw, 2013). Both Vermeulen and Renswouw use BPMN 2.0 as the
process modeling language.

Continuous business performance monitoring is important to see how far a business achieving
its goals and hence a correct and quick action can be taken by decision makers in case deviation
occurs. In care pathway case, continuous performance monitoring and follow up are crucial to
ensure quality of care while promoting patient safety. In addition, the hospitals can benefit from
measurement result to see if they comply with law, standard, and regulation. Unfortunately,

Chapter 1 Introduction

2

despite many proposals on care pathway structural design, there is a lack of further researches
on the performance measurement technique given specific structure of care pathway.

1.1 Problem Definition
The promising adoption of BPM in healthcare sector is the driver to implement care pathway as
a process model and bring it into an executable system, as shown by several works (Du, G., Jiang,
Z., & Diao, X., 2008) (Vermeulen, 2013) (van Renswouw, 2013). In BPM lifecycle, the next step of
business process implementation is business process monitoring (Dumas, La Rosa, Mendling, &
Reijers, 2013). The essence of monitoring is basically measuring performance which employs
several (key) performance indicators (KPI). Those indicators can be derived from guidelines,
either from generic business performance monitoring guidelines such as Balanced Scorecard or
from domain specific guidelines, such as The Leuven Clinical Pathway Compass for care
pathway.

The problem lies in bringing the guideline into the practice. The availability and distribution of
data, availability of automatic measurement system and performance indicators which are
expressed in natural language are sort of examples. Thus a bridge is required between care
pathway performance measurement guideline and its implementation in a BPM system. This is
important to make sure that the BPM system is able to facilitate performance measurement for
care pathway.

In many organizations including healthcare sector, performance indicators are expressed in
natural language which is unstructured. This has several drawbacks. Besides not machine
executable, natural language can lead to ambiguity. Consequently, it is resource consuming to
perform measurement and will result in high error rate. Moreover, performance indicators are
object that are communicated across functions within organization. For healthcare
environment, it is communicated for example among business owner, medical team and IT team
as the medical data manager. The problem above leads to the necessity to develop an approach
to formalize care pathway performance indicator that is easily understood by multiple
functions. In addition, it is also necessary to develop a system to facilitate easy, automatic, and
high quality measurement.

There is an increasing interest in open source software in general and BPM system(BPMS) in
particular (Wohed, Russel, ter Hofstede, Andersson, & van der Aalst, 2008). jBPM, a BPMN-
based BPM system developed by JBoss; a division of Red Hat, is one of widely used open source
BPM systems (Harmon, 2007). This thesis tries to explore the capability of jBPM to facilitate
performance measurement of care pathway implemented in it.

1.2 Research Objective
Based on the problem definition above, the objective of this research is:

Develop an approach to formalize performance indicators of care pathway that is executable on a
BPMS

The approach in formalizing performance indicators must be:

 Comprehensive, i.e. it covers The Leuven Clinical Pathway Compass as much as possible.

Chapter 1 Introduction

3

 Expressive, i.e. it gives the users high level of freedom to define indicator formula.
 Generic, i.e. it covers as many types of care pathways as possible.
 Intuitive, i.e. it is easy for users to understand and implement.
 Executable against BPMS execution data.

The context of this research is illustrated in Figure 1.

Figure 1 Context of the research

1.3 Research Question
The research objective above drives the following main research question:

Given a care pathway executable in a BPMS, i.e. jBPM, how can its performance indicators be
formalized and calculated if The Leuven Clinical Pathway Compass is used as the guideline?

The main research question above can be divided into the following sub questions:

1. What is care pathway?
2. What is The Leuven Clinical Pathway Compass?
3. What is BPMS? What is jBPM?
4. What are the requirements to implement the formalization of care pathway performance

indicators in jBPM?
5. How to design the formalization of care pathway performance indicators?
6. How to make the formalization executable?
7. How to evaluate the formalization?

1.4 Research Methodology
To satisfy the research objective and to answer the research question, the following research
methodology is formulated:

1. Literature study on care pathway. It is important to understand the concept of CP as the
problem domain of measurement and to understand how it is developed.

2. Literature study on CP performance measurement guideline, i.e. The Leuven Clinical
Pathway Compass. The guideline will be the starting point to determine which dimensions
or aspects are involved in measurement. To assess whether initiatives on formalization of
care pathway performance indicator and on automatic performance measurement already
exist, several related works are analyzed. Lessons learned from previous research can be
taken into account in designing indicator formalization.

Chapter 1 Introduction

4

3. Exploration on jBPM. This step is necessary to understand its role in care pathway
development and its capability in answering care pathway performance measurement
needs, such as the availability of logs as the data source of measurement.

4. Analyze the requirements to formalize care pathways performance indicators. The analysis
is solely based on literature study and does not involve domain expert. This is performed
by analyzing the Leuven compass in detail and aligns it with the JBPM capabilities.
Monitoring variances as a specific type of process monitoring in care pathway is also
analyzed. From this analysis, a list of care pathway performance measures is produced.
Note that the identified measures are generic for all care pathways implemented in jBPM.

5. Design indicator formalization.
6. Implement the formalization into programming code. A web interface representing

performance measurement system will be developed to display the measurement scenario.
7. Evaluate the quality of formalization approach using selected software product quality

metrics. To evaluate the functionality of the approach, a healthcare process representing
care pathway, i.e. weaning process, is used. A list of KPIs of weaning protocol is gathered
from a domain expert and is used for testing. The fulfillment of the criteria defined in the
research objective and non-functional aspect of the approach are also evaluated.

1.5 Research Scope
A BPMN-based BPMS will be chosen to prove the concept. In this master project jBPM 6.1.0.CR
will be used where jBPM web-based workbench is used to implement and execute the pathway.
Initially, this project uses jBPM version 6.0.1 Final. In the middle of the research, JBoss releases
a newer version of jBPM, 6.1.0.CR1, which accommodates better historical data logging and is
considered useful for care pathway performance measurement purpose. Analysis of historical
data logs is based on version 6.1.0.CR1 and the rest will be based on version 6.0.1 Final. The
timeline of this change is shown in Figure 2.

Figure 2 jBPM release dates

A performance measurement guideline, i.e. the Leuven clinical pathway compass, for care
pathway will also be chosen as the basis to determine the scope of measurement. Consequently,
the applicability of KPI formalization is limited to the chosen BPMS and guideline. To prove the
concept, it is assumed that a care pathway modeled in BPMN, along with the definition of data
elements and roles exists. The data elements covered in this project are of standard data types
such as string, numeric, and Boolean.

1.6 Document Structure
The remainder of this thesis is structured as follows (corresponding research methodology for
each chapter is illustrated in Figure 3).

Chapter 1 Introduction

5

 Chapter 2 presents the result of literature study on care pathway, the Leuven compass, and
exploration result of jBPM. The concepts in this literature study will be used throughout the
thesis. Chapter 3 is dedicated to the analysis of the requirements to conduct performance
measurement in CP implemented in jBPM. It will cover deeper analysis on the Leuven compass
and jBPM. In addition, it will discuss variance monitoring as a special case of process monitoring
in CP. The list of care pathway performance measures as the summary of requirement is also
produced in this chapter. The design of the indicator formalization and the details of
implementation of measurement system are presented in Chapter 4.

In Chapter 5, the result of system evaluation is discussed. Finally, Chapter 6 will conclude the
research; discuss the limitations, directions for future works and discussion about related
software technologies.

Figure 3 Thesis structure and research
methodology

Chapter 2

Preliminaries

In this chapter, the result of literature study is presented. It will cover the discussion about
challenges and opportunity in healthcare sector, care pathway as a solution, how care pathway
is developed, and what guidelines in care pathway performance measurement exist. jBPM as an
implementation environment of care pathway is also briefly discussed. A brief discussion about
Structured Query Language (SQL) is also presented. Finally, this chapter is concluded by
discussing several related works in care pathway performance measurement.

2.1 Healthcare Sector Challenges and Opportunity
Recent report shows that worldwide healthcare sector today is facing harder challenges than
any time before. At the same time, it becomes opportunity for this sector to come up with new
breakthroughs to tackle this issue. Deloitte reports that there are four factors leading to the
challenges, which are aging population and chronic disease, cost and quality, access to care, and
technology (Deloitte, 2014).

Considering cost and quality issue, healthcare providers are pressured to provide high quality of
care while cutting the medical cost at the same time. Patients and policymakers, i.e. government,
demand the increase to the access to care services and treatment advancements. On the other
hand, the payers, e.g. insurers expect hospitals to lower the medical cost and promote evidence-
based treatment. Unfortunately, a higher cost does not always correlate to higher quality of care.
Sometimes, the problem does not lie in the disease of patients but at the hospital that treats
them. Over prescribing of drug is one of such contradictory situation (Deloitte, 2014). In short,
the problem might lie in the care process of hospitals.

The problems above push healthcare providers to perform their business process in more
effective and efficient way without ignoring patient safety aspect. To achieve this goal, a lot of
practical guidelines were developed in the past half century to assist physicians in making
effective decision (Walker, Howard, Lambert, & Suchinsky, 1994). Another approach is by
organizing care process, in which care pathway is one of methodologies (Vanhaecht, K.; De
Witte, K.; Sermeus, W., 2007).

2.2 Care Pathway as a Solution
European Pathway Association (EPA) describes a care pathway (CP) as “a complex intervention
for the mutual decision making and organisation of care processes for a well-defined group of
patients during a well-defined period”. The mutual decision implies that care pathways involve
multiple professional groups (doctors, nurses, etc.) to interact in making decision (Vanhaecht,
Panella, van Zelm, & Sermeus, 2010). In their website, EPA mentions several terminologies
which are synonym to care pathways, i.e. clinical pathways, critical pathways, care paths,

Chapter 2 Preliminaries

7

integrated care pathways, case management plans, clinical care pathways or care maps
(European Pathway Association, 2014). In the rest of this document, the term care pathway will
be used.

EPA defines the characteristic of care pathway as follows:

“(i) An explicit statement of the goals and key elements of care based on evidence, best practice,
and patients’ expectations and their characteristics;
(ii) the facilitation of the communication among the team members and with patients and
families;
(iii) the coordination of the care process by coordinating the roles and sequencing the activities of
the multidisciplinary care team, patients and their relatives;
(iv) the documentation, monitoring, and evaluation of variances and outcomes; and
(v) the identification of the appropriate resources.”

And the goal of care pathway is:
“… to enhance the quality of care across the continuum by improving risk-adjusted patient
outcomes, promoting patient safety, increasing patient satisfaction, and optimizing the use of
resources.” (European Pathway Association, 2014)

Variance can be defined as any deviations from standardized pathway (Du, Jiang, Diao, Ye, &
Yao, 2009) which is unexpected that can be positive or negative for patient outcomes (Hyett,
Podosky, Santamaria, & Ham, 2007). It can occur for four reasons: patient condition, healthcare
worker condition, hospital condition and society condition (Vanhaecht, K., & Sermeus, W.,
2003). The variations are common in a high-risk type of business like healthcare.

The concept of care pathway was derived from industrial process in 1950s (Schrijvers, van
Hoorn, & Huiskes, 2012) and was first introduced in the healthcare domain between 1985 and
1987 at the New England Medical Center in Boston (USA). It was introduced in Europe, i.e. UK in
early 1990s and later disseminated worldwide in the late 1990s (Vanhaecht, Panella, van Zelm,
& Sermeus, 2010).

In its early stage, the management of care pathways was implemented in a paper based system,
i.e. by filling predefined forms (Du, G., Jiang, Z., & Diao, X., 2008). As the information technology
advances, the electronic versions of paper-based care pathways have been also developed. In
the early 1990, the linear sequential model of CP was designed. However, due to limitations of
the linear model, the state-transition model was designed in the late 1990s. Finally, since the
early of 21st century, there have been numerous proposals about structural design of the
electronic care pathway (Wakamiya & Yamauchi, 2009). Nevertheless, the paper-based CP is
still preferable by many healthcare providers due to high investment cost (Wakamiya &
Yamauchi, 2006) despite its drawbacks such as limited capacity of data recording and collection,
inability of forms in representing complex logical and timing relationship of different activities,
and lack of support for monitoring and handling variations of CP based on knowledge (Du, G.,
Jiang, Z., & Diao, X., 2008).

The way care pathways being represented and developed is unclear (European Pathway
Association, 2014). Several researches are conducted to propose the structural design and
computerized implementation of care pathway. Ontology approaches are proposed to model
information flowing in care pathways workflow (Ye, Jiang, Diao, Yang, & Du, 2009) (Daniyal,

Chapter 2 Preliminaries

8

Abidi, & Abidi, 2009) (Hu, et al., 2009). BPM approach is also proposed in several reports to
model and implement care pathways as workflow applications. Du et al proposes
implementation of CPs based on workflow in Petri net and a framework of CP adaptive
workflow management system based on Extended Workflow-nets (Du, G., Jiang, Z., & Diao, X.,
2008). Vermeulen in her master’s thesis (Vermeulen, 2013) proposes a methodology to define
care pathway as a process model with purpose primarily for communication tool between
medical professional, technicians, and researchers. Renswouw in his master’s thesis (van
Renswouw, 2013) provides a guideline to translate a paper based care pathway into an
executable workflow process model. He outlines several researches on care pathway
implemented in workflow system and concludes that it is advantageous to transform existing
paper based pathways into workflow applications. These works show that there is an increasing
interest in adopting BPM discipline in care pathway domain and bring it into executable system.

2.3 Care Pathway Development
The development of care pathway can be seen as a continuous process of quality improvement.
A 7-phase method was developed to design, implement and evaluate care pathways. It consists
of screening phase, project management phase, diagnostic & objectification phase, development

phase, implementation phase, evaluation
phase, and continuous follow-up phase. This
method is based on quality improvement
method called Deming cycle, also known as
“Plan-Do-Study-Act” cycle. Each phase in 7-
phases method will pass a Deming cycle
(Vanhaecht, et al., 2012). The 7-phase method
is illustrated in Figure 4.

Screening phase can be initiated when there
is a demand for a new pathway or there is a
need to adapt or improve the existing one. It
is performed by gathering and analyzing all
information regarding the existing pathway
or actual healthcare process.

After the decision to develop a pathway is
clear, project management phase can be

started. In this phase, the project related entities are defined, i.e. project team, goal, timeline,
resources, and project charter. The care process where the pathway will be developed is also
defined, including the patient group and the start and end point of the pathway.

In the third phase, the evaluation of as-is situation is conducted from four different
perspectives: organization, patient, evidence and legislation, and external partners. This phase
is considered very important as the objective information about current care process is resulted
and will be the basis for evaluation phase.

Based on objective information collected in the previous step, the care pathway is developed in
the fourth stage. The team may redefine the patient group, the start, and end time. The key

Figure 4 Seven phase method of pathway development
(Vanhaecht, et al., 2012)

Chapter 2 Preliminaries

9

interventions are checked if they meet the process objectives, the sequence of activities and the
corresponding actors are coordinated, and the required resources are identified.

After the pathway is developed, the implementation phase starts by drawing up an
implementation plan and conducting an implementation test. The feedback from the test can be
used to adjust the pathway before it is ready for daily practice.

In the evaluation phase, usability testing and examination of process and outcome indicators are
performed. Continuous follow up aims to keep the pathway alive by monitoring evaluation
results and making adjustment when necessary.

2.4 CP Performance Measurement Guideline: The Leuven
Clinical Pathway Compass

The term performance is defined differently in many literatures. Lebas defines performance as
“the potential for future successful implementation of actions in order to reach the objectives and
targets” (Lebas, 1995). March and Sutton use the term performance and effectiveness
interchangeably (March & Sutton, 1997). In this thesis, we stick to the definition of performance
as “something accomplished” (Merriam Webster Dictionary, 2014). Thus care pathway
performance measurement is defined as “the process of measuring what accomplished by care
pathway implementation”. This activity, which is the focus of this research, is basically related
to the phase 6 and 7 in the seven-phase method of pathway development (Figure 4).

The definition of indicator is strictly linked to the concept of representation-target, which is the
operation aimed to make a context (e.g. manufacturing process) or parts of it “tangible” in order
to perform evaluations, make comparisons, formulate predictions, etc. (Franceschini, Galetto, &
Maisano, 2007). Mainz outlines three definitions of (clinical) indicator as follows (Mainz, 2003):

1. As measures that assess a particular health care process or outcome.

2. As quantitative measures that can be used to monitor and evaluate the quality of important
governance, management, clinical, and support functions that affect patient outcomes.

3. As measurement tools, screens, or tags that are used as guides to monitor, evaluate, and
improve the quality of patient care, clinical support services, and organizational function
that affect patient outcomes.

The essence of care pathways evaluation and continuous follow up is basically measuring
indicators to assess the pathway performance. Based on literature, there are several conceptual
tools exist for performance measurement in any business or in healthcare sector in particular,
namely Balanced Scorecard, Clinical Value Compass and DataMap. However these tools are not
fit for CP purpose. Balanced Scorecard and DataMap are suitable for strategic hospital level, but
not suitable for operational level of CP. Clinical value compass is suitable for operational level,
but it was initially developed for patient level, not group of patient level as required by care
pathway (Vanhaecht, K., & Sermeus, W., 2003).

A tool called The Leuven Clinical Pathway Compass (see Figure 5) was designed as the guideline
to evaluate and monitor the impact of care pathways implementation (Vanhaecht, K., &
Sermeus, W., 2003). Instead of use at patient level, this conceptual tool is used at operational

Chapter 2 Preliminaries

10

level for a specific patients group. It contains five domains as the basis for the evaluation, i.e.
clinical, services, team, process, and financial domain.

Indicators belong to clinical domain are directly linked to the disease and their impact. The
specificity of disease implies that it is related to only specific group of patient as defined by the
pathway. For Unstable Angina pathway, an example for this indicator is percentage of patients
with Unstable Angina who are prescribed Aspirin at discharge (Meenakshy, 2013).

The service domain consists of indicators which measure the quality of service of the hospital or
the team to the patient of particular pathway. Sample indicators belong to this domain are
patient satisfaction, patient experiences and patient attitudes. The data for this indicator can be
collected for example from questionnaire about the quality of care.

The third domain, team, comprises indicators that measure effectiveness of multidisciplinary
team focusing on shared goals, clear role definition, clear procedures and good team
relationship. Job satisfaction and coordination are also indicators belong to this domain.

The process domain covers indicators related to the “efficiency” goal of care pathways which
monitors activities performed to give care. By measuring this type of indicators, it is expected
that the bottleneck in the pathways is discovered and hence can be solved. Typical indicators
belong to this domain are lead time, waiting times and time between two interventions. More
specific clinical-time-related indicators can also be considered as process indicator. For
example, percentage of patients with Unstable Angina who are handled within 15 minutes upon
arrival is an indicator in Unstable Angina pathway. The monitoring or tracking of variances is
also part of this domain (Vanhaecht, K., & Sermeus, W., 2003).

The cost related indicators are covered in financial domain. The measurement of this indicator
is important to control the cost incurred in pathway while maintaining quality of care at the
same time. This type of indicators can be derived, e.g. by creating the Bill of Services (BOS) for a
pathway that lists all services like activities, intervention, goods, and assign the corresponding
cost for each of them.

Figure 5 Leuven Clinical Pathway Compass
(Vanhaecht, K., & Sermeus, W., 2003)

Chapter 2 Preliminaries

11

In this thesis, The Leuven Clinical Pathway Compass will be used as the basis for care pathway
performance measurement.

2.5 Business Process Management System
There are many definitions of Business Process Management (BPM) in literature. In this thesis,
we use one definition by Dumas et al which define BPM as “a body of methods, techniques and
tools to discover, analyze, redesign, execute and monitor business processes”. It can be seen as the
art and science of controlling how work is performed in an organization with the goal to ensure
consistent outcomes and to benefit from improvement opportunities. Thus a BPM system
(BPMS) is defined as a software system which extends the functionality of traditional Workflow
Management System, not only limited to work routing, but also on all activities of BPM. (Dumas,
La Rosa, Mendling, & Reijers, 2013)

jBPM is an open source BPMS built on top of Java (distributed under Apache license). JBoss, a
division of Red Hat, is responsible in developing the framework with support from community
of developers (jBPM - JBoss Community, 2014) (jBPM Overview, 2014). We decide to use this
BPMS in the project since it is one of widely used open source BPM systems (Harmon, 2007)
and is continuously improved.

Until this master project was started, the stable final version released is 6.0.1. In the middle of
this research, JBoss releases a newer non-final version of jBPM, 6.1.0.CR1, which accommodates
better historical data logging capability. Observation over jBPM 6.0.1 shows that it does not
implement human task audit capability that enables us to track when a human task is actually
started and finished. In the latter version, it is implemented in package
org.jbpm.services.task.audit.impl.model.AuditTaskImpl and a new table called AuditTaskImpl is
added to the database. Version 6.0.1 also misses registration of the listener for task service
which makes table BAMTaskSummary and table TaskEvent empty (JBoss Developer Forum,
2014). These tables are useful to analyze events related to task, e.g. when they are started and
finished. It is fixed in version 6.1.0.CR1. Due to this change, the analysis of logs is based on the
newer version. The analysis of the rest is based on the older version since it is already
performed and there is no significant change in the jBPM core engine.

jBPM allows the users to model business process in BPMN 2.0. This process modeling language
is widely adopted today as it provides a standardized graphical notation which is easy to use for
business analysts to communicate with their partners (Volzer, 2010). Object Management
Group (OMG), the organization that defines the standard for BPMN, reports that there are 74
vendors that implement BPMN 2.0 in their tools (Object Management Group, 2014). This
version of BPMN added a standardized execution semantics which allows vendors to implement
interoperable execution engines (Volzer, 2010). However, jBPM only supports (significant)
subset of BPMN 2.0 elements and attributes, i.e. it only focuses on (almost) all executable parts
(jBPM Processes, 2014). A complete subset of BPMN 2.0 that is supported by jBPM can be found
in APPENDIX A.

Chapter 2 Preliminaries

12

2.5.1 jBPM Components
The components of jBPM project are explained as follows (jBPM Overview, 2014) (see Figure 6):

Execution module
The core engine is the most important part of the project that manages the execution of
business process. Human task service is optional core that will handle human task life cycle if
the process involves human actors. Persistence module is also optional if the users want to
persist the state of process instances and log historical information of process execution in a
database instead of keeping it in the system memory. By default, jBPM installation uses H2
database, which is an in-memory database that relies on the availability of main memory. H2 is
still under testing and hence the reliability is questionable. Some users report that after a power
failure, the database cannot be opened (H2 Database, 2014). Thus it is better to use disk-
storage-based database system such as MySQL, PostgreSQL or Oracle. Persisting historical data
is useful if the users want to perform further analysis on history information, for example
performance measurement.

Figure 6 jBPM 6 project components (adapted from (jBPM Overview, 2014))

Modeling & Deployment module
Modeling and deployment of process can be done in a web-based environment. Process
designer is responsible in providing the users with interface to graphically model processes in
BPMN 2.0. This graphical model is stored as an XML file which is compliant to BPMN 2.0
specifications. Data modeler is used to view, modify, and create (non-standard, custom) data
model that is used in the processes. Rules authoring module enables the users to define
business rules that are used along with the business process. Form modeler allows the users to
create, generate or modify forms related to process. The artifacts produced in modeling and
deployment part is stored in a repository called Knowledge Repository.

Chapter 2 Preliminaries

13

Runtime management module
jBPM also provides the users with a web-based console to manage the process like start new
process or abort existing process instance, and to manage the task list.

Reporting module
Reporting module, called Dashboard builder or simply Dashbuilder, provides Business Activity
Monitoring (BAM) capability to jBPM. There are two types of dashboard provided by
Dashbuilder: business dashboard and process dashboard.

Business dashboard module allows users to develop dashboard in which the data can be
retrieved from both relational databases using SQL query and CSV files. The data for this
dashboard are not necessarily from the database being used by jBPM (i.e. if persistence option is
enabled) but can be from any relational databases. Process dashboard is a specific version of
business dashboard, where the data source being used is jBPM database, i.e. from table
ProcessInstanceLog and BAMTaskSummary (see Figure 7 and Figure 8).

Eclipse developer tools
Eclipse developer tools are a set of plugin to the Eclipse IDE which enable developers to
integrate business process in the development environment.

All components above (except Eclipse developer tool) are combined into a web-based
application called KIE workbench. KIE refers to the project in which jBPM belongs to. The
workbench facilitates complete cycle of process, from modeling, implementation, execution and
monitoring. The user can also perform simulation from workbench. However the history
information will not be logged by automatic simulation.

2.5.2 jBPM History Logs
As explained before, jBPM allows its users to persist data related to process execution in a
relational database management system such as MySQL, PostgreSQL, Oracle DB and Microsoft
SQL Server through its persistence module. The log is called history log, also known as audit log,
and consists of three tables: ProcessInstanceLog, NodeInstanceLog, and VariableInstanceLog (see
Figure 7). This master project uses PostgreSQL to store the history log. The steps performed to
make jBPM be able to persist data in PostgreSQL are explained in APPENDIX B.

Table ProcessInstanceLog stores basic information about process instance, for example the start
date and the end date. Table NodeInstanceLog stores information about which nodes in the
process model, for example tasks, were truly executed in a process instance. Table
VariableInstanceLog stores data about the changes in process variable instances of a process
instance. Process variables can be defined as data elements that are specified for a process and
can be modified by user (or task) when executing process tasks. The complete explanation of
the definition for each column of tables above can be found in APPENDIX C.

Chapter 2 Preliminaries

14

Figure 7 jBPM history log tables

In addition to the tables above, jBPM also stores information about task in three other tables,
namely BAMTaskSummary, AuditTaskImpl, and TaskEvent (see Figure 8).

Table BAMTaskSummary contains summarized information about tasks for all process instances
which basically stores creation date, start date and end date of the tasks. It only stores the last
state of tasks. This table is summarized from table AuditTaskImpl and TaskEvent. Table
AuditTaskImpl contains unique records of tasks created. The detailed task status changes are
described in table TaskEvent.

Figure 8 jBPM task-related tables

2.6 Structured Query Language (SQL)
Since jBPM can store its history logs in relational database system, it is necessary to understand
SQL as the language to access them. SQL is a set-oriented programming language that is used to
interact with relational database systems. Relational database stores information in tables
which is divided into rows and column. SQL allows the users to create tables, insert rows into

Chapter 2 Preliminaries

15

tables, update data, delete rows and query the rows in tables (IBM, 2014). A typical of SQL query
has the form as shown in Figure 9 (Silberschatz, Korth, & Sudarshan, 2011).

select A1, A2, …, An
from r1,r2, …, rm
where P;

Figure 9 Typical SQL query format

Each Ai represents an attribute (for example a column) and each ri a relation (for example a
table). P is a predicate. If the where clause is omitted, the predicate P is true. (Silberschatz,
Korth, & Sudarshan, 2011). Predicate can be considered as filter or constraint that should be
satisfied by returned records.

The calculation of performance indicators is basically passing SELECT query to the data source,
by specifying relation(s) and predicate and applying post query tasks to the returned record, e.g.
applying aggregate function.

In spite of its strength in data retrieval, SQL has some weaknesses. It can facilitate the users to
retrieve information hidden somewhere in a single-table or multitable database without the
need to know the order of the table’s rows or column. SQL can also extract the data we want
regardless the number of rows in the table by single SELECT statement. On the other hand, SQL
cannot easily operate on one row at a time. Sometimes we want to perform specific operation
for each row individually (Taylor, 2010) or we want to perform complex operation involving
multiple query results.

In the case above, we can make use of the capability of procedural languages, which is designed
for one-row-at-a-time operations and is able to accommodate complex operations. However,
data type compatibility must be considered if we want to combine SQL with procedural
language (Taylor, 2010).

2.7 Related Works
As stated in chapter 2.2, the way care pathways being developed is unclear; hence many
attempts are performed to implement it. Consequently, the way performance being measured is
different for different enactment approach. A research revealed that there is a lack of
continuous follow-up after the care pathway implementation. Information and communication
technology (ICT) support is also one of main challenges in care pathway implementation (van
Gerven, Vanhaecht, Deneckere, Vleugels, & Sermeus, 2010). To see whether initiatives on
formalization of performance indicator; especially in care pathway and its implementation
using ICT support exist, several works are investigated.

Several studies try to evaluate and monitor pathway implementation. Aledo et al report the
result of evaluation and monitoring of a clinical pathway for thyroidectomy one year after the
implementation and after four years’ follow up in a hospital in Spain (Aledo, et al., 2008). Similar
research was also performed for colorectal cancer in 2011 which evaluate the pathway
implementation over a 5-year period (Aledo, et al., 2011). Regardless the result of the
evaluation, by looking at the period of monitoring from those two researches, it is concluded
that continuous follow up is rarely performed and ad-hoc performance measurement is
performed due to the unavailability of automatic performance measurement system.

Chapter 2 Preliminaries

16

A research tries to measure care pathway performance using semantic web technology
approach (Meenakshy, 2013). In her master’s thesis, Meenakshy uses ontology to formalize
indicator and translates it into SPARQL query to retrieve the data from RDF database. The RDF
database itself is derived from extraction of electronic patient record (EPR), which is a
relational database. However, the way the data is retrieved, i.e. the selection of tables as data
source, from EPR is not clearly explained. Moreover, different pathway might have different
definition of ontology which makes extensive work must be performed to construct the
ontology.

An approach in a more generic business setting was proposed by Caputo et al with the aim to
define, formalize and model KPI according to Model Driven Architecture vision and to integrate
the definition of KPI into the business model. It suggests the use of Balanced Scorecard and the
Goal Question Metric to identify KPIs and realize process model through BPMN. In the approach,
KPIs are expressed as formula and formalized in XML format. The formula combines
performance measures to produce performance indicator. It is outlined in the work that
measure is distinguished from indicator. “A ‘Performance Measure’ is a description of something
that can be directly measured (e.g. number of reworks per day). A ‘Performance Indicator’ is a
description of something that is calculated from performance measures (e.g. percentage reworks
per day per direct employee).” (Caputo, Corallo, Damiani, & Passiante, 2010). However, the
approach does not explain how to link the formalization with process model and more
importantly, to make it executable.

The related works above show that the proposed techniques in care pathway performance
measurement, especially in performance indicator formalization are subject to improvement.
Based on the gathered knowledge about care pathway and implementation environment of care
pathway (i.e. jBPM), a new technique in care pathway performance measurement is proposed.
The requirement to develop this technique is discussed in the following chapter, Requirements
Analysis.

Chapter 3

Requirements Analysis

In this chapter, the requirements to perform performance measurement for care pathways are
analyzed. The purpose of this analysis is to match the measurement scenarios as described by
CP compass with the capability of jBPM in providing required information. The analysis is
concluded by identifying care pathways performance measures. This analysis will be the basis
for the design of KPI formalization in the next chapter. The aspects covered in this chapter are:
analysis of The Leuven Clinical Pathway Compass, analysis of jBPM, monitoring variances, and
concluded with identifying CP performance measures.

3.1 Analysis of the Leuven Clinical Pathway Compass
The Leuven Clinical Pathway Compass defines five domains for CP performance measurement.
However, in practice, not all indicators in all domains should be measured for each pathway
(Vanhaecht, K., & Sermeus, W., 2003). It depends on the requirements of the team in charge of
the pathway to define the indicators. Nevertheless, this project will analyze all domains to
understand the requirement for each of them for performance measurement purpose.

3.1.1 Clinical Indicators
This type of indicator is based on standards of care which can be evidence-based or derived
from the academic literatures. If scientific evidence is not sufficient, an expert panel of health
professionals will determine it in a consensus process based on their experiences (Mainz,
2003). Regarding quality improvement purpose, clinical indicators can be classified into three
categories, i.e. structural indicators, process indicators, and outcome indicators. Structure refers
to the attributes of the settings in which the care is provided, i.e. material resources, human
resources, and organizational structure. Process refers to what is actually performed in giving
and receiving care. Outcome denotes the impact of care on the health status of patients or
population (Donabedian, 1988), e.g. blood pressure results for hypertensive patients and
mortality rate (Mainz, 2003).

Although Donabedian’s classification above is widely used today (Aboriginal Health & Medical
Research Council, 2013), in order to avoid confusion with clinical indicators defined in CP
compass, structural indicators and process indicators above are mapped as process indicators
in CP compass. Thus outcome indicators are considered as the only clinical indicators.

There are two types of (clinical) indicators (Decker, 1991):

1. Rate-based indicator. This type of indicator is expressed as proportion or rates, ratio, or
mean values for sample population (Mainz, 2003). The evaluation of this type should define

Chapter 3 Requirements Analysis

18

the time interval of surveillance, collecting the number of occurrence of events of interest
during that interval (i.e. the numerator), and appropriate denominator. Denominator is
usually the total number of events where patients are at risk of appearing at the numerator
in the same interval. For example, percentage of patients who got infection during hospital
stay from February 2014 to May 2014 is a rate-based indicator with the total number of
patients who got infection in that period is the numerator and the total number of patients
in that period is the denominator (Meenakshy, 2013).

2. Sentinel indicator. This indicator monitors occurrence that should happen all the time or
should never occur. It identifies individual events instead of ratio, and hence further
investigation is conducted in case such events occur. For example, the number of patients
who die during surgery.

3.1.2 Process Indicators
As stated in clinical indicators section above, process and structure indicators in Donabedian’s
classification are mapped as process indicators in CP compass. Hornix, in his master’s thesis,
outlines several process-related KPIs as follows (Hornix, 2007):

1. Throughput time (also known as lead time), the total time that the case spends in the
process. It is formulated as time difference between the end event and the start event. In
pathway context, it can be considered as the length of hospital stay and can be formulated
as time difference between hospital discharge and patient arrival.

2. Arrival rate of cases, is the number of cases that arrive to the process per time unit. In
pathway context, it is equal to the arrival rate of patients.

3. Number of cases, equals to the number of patient (in a specific time interval).

4. Number of fitting cases, is the number of cases that fit to the process model. Since the
execution of pathway is based on the process model, the log will always conform the model.
Thus this KPI can be omitted in the analysis.

Hornix also mentions several activity-related KPIs as follows:

1. Waiting time of an activity, is defined as the time between the schedule and the start
event of that activity.

2. Execution time of an activity, is defined as the time between the start and the complete
event of an activity without suspend time.

3. Sojourn time, is defined as the time between the schedule and the complete event of an
activity.

4. Arrival rate of activity, is defined as the number of times an activity is scheduled per time
unit.

Not all logs will store information about schedule, start, complete, resume, suspend time
(Hornix, 2007). Some logs might only store start and end time. Consequently, not all activity
related KPI above can be calculated.

Chapter 3 Requirements Analysis

19

Another important metrics in care pathway is time between two interventions, in this case two
activities in the pathway workflow. It is defined as time difference between the starting time of
two activities.

From the list of KPI above, it is concluded that:

1. The execution of pathway should store information about the time of interventions in its
history log. Depend on the availability of time information in the logs, some KPI will be
chosen.

2. Conditions are also specified to filter the collection of objects of interest, for instance time
interval.

3. Arrival rate is a composite indicator in the form of proportion, where the numerator is the
number of arriving case and the denominator is the time interval.

3.1.3 Financial Indicators
This indicator can be derived by developing Bill-of-Services of a pathway. It lists the cost for
each intervention and price of resource required in a pathway. The measurement of this
indicator should consider the following aspects:

1. The number of execution of particular intervention. This is important to consider it
since some interventions might be performed multiple times, for example blood test.
Multiple actions mean more cost. In workflow context, an intervention is implemented as a
task, thus it is important to measure the number of execution of a task. This number will be
the multiplier for the cost of intervention. An example indicator related to the number of
execution is the total number of x-ray test for each patient in carcinoma pathway in the last
three month.

2. The quantity of resource being used. Resource can be human resource, i.e. medical
persons, or consumable resource, e.g. medicine or syringe. In workflow context, resource
can be implemented in some ways. Human resources can directly act as actors of tasks.
Other type of resource such as consumables can be implemented as a data element of
process. In this thesis, we focus only on consumables medical resources.

3. The cost for each intervention and resource. In order to be able to calculate the real cost
of pathway execution, it is necessary to store the information about cost for each
intervention and resource.

3.1.4 Service Indicators
This indicator can be measured using an instrument called the Patient Perceived Quality of Care
Questionnaire. Belgian-Dutch CP Network translated and remodeled it into 20-questions survey.
(Vanhaecht, K., & Sermeus, W., 2003). This indicator is relevant to implement in the context of
process model since a pathway process instance corresponds to a patient. Thus an activity in
pathway model can be used to collect the data. For example, the collection of the data can be
done during patient discharge. However, using multiple questions survey, a further analysis is
required to understand the result. To simplify the measurement of this domain, a single
question survey to rate the care service with response categories ranging from 1(worst) to

Chapter 3 Requirements Analysis

20

10(best) can also be used. In workflow context, it is implemented as a data element
representing the rating.

3.1.5 Team Indicators
According to Vanhaecht in (Vanhaecht, K., & Sermeus, W., 2003), team indicator can be
measured by means of survey for the medical team. He and his network developed the Leuven
Team Effectiveness Scale for this purpose (Haspeslagh, et al., 2002). This instrument is basically
a questionnaire consisting 22 questions. First 15 questions are about goals, roles, procedures
and interpersonal relationships (GRPI model) with response categories ranging from almost
never to almost always. The remaining 7 questions ask the same model with response
categories ranging from one team to the entire team.

However, since it requires a deep analysis method for the questionnaire and is less relevant in
the context of care pathway process model, we exclude this indicator from further
implementation. The irrelevance exists since the flowing object in pathway process is the
patients and the survey is not conducted for each pathway case but after some period of
implementation.

From the analysis of the Leuven compass above, we argue that the classification of indicators by
Decker is oversimplified, which covers only number of occurrence of event of interest. It cannot
classify a measure, for example aggregate value such as minimum or maximum value. Hence we
classify performance indicator (not only in clinical domain) as follows.

Value. This type of indicator considers the value of an attribute of single event of interest or a
property of a measurement. Attribute value represents outcome of a care treatment and can be
expressed as a value of a data element in workflow context. An example for an attribute value is
the blood pressure of a patient in a collection of Unstable Angina patient record. An example for
property of a measurement is time interval of measurement, e.g. one year from 1 January 2014
until 31 December 2014.

Aggregate. This type of indicator considers value of an attribute from multiple events of
interest by applying an aggregation function to produce single scalar value, such as summation,
means, median, mode, counting the number of elements, getting the minimum value, getting the
maximum value, standard deviation, and variance. An example indicator belongs to this type is
the average body temperature of Unstable Angina patient.

Composite. This type of indicator contains one or more elements, i.e. any combinations of value
and aggregate indicators. The combination uses arithmetic operation such as division,
multiplication, addition, etc. Rate and proportion/ratio/percentage are some kinds of indicator
belong to this type. For instance, arrival rate of patient is the combination of number of patient
(aggregate of patient) and time unit (value indicator). It is formulated as number of patient per
time unit, i.e. using division operation. Another example is percentage of patient who is
prescribed aspirin during hospital stay. It combines the number of patient who is prescribed
aspirin (aggregate), divided by total number of patient (aggregate).

In relation with the differentiation between measure and indicator (see Chapter 2.7), value and
aggregate indicators can be considered as measure and composite indicators can be considered
as indicator. In this thesis, the term “indicator” refers to composite indicator. Therefore, it is

Chapter 3 Requirements Analysis

21

necessary to identify what elements that compose the (composite) indicators with respect to
four domains in the Leuven compass, i.e. what measures in which their collection of values are
aggregated.

In addition, there are conditions that should be met when collecting the event of interest. For
example, time interval of data collection. In a more specific case, for example, only return
patient with temperature 37’C. Condition is defined as the requirements that should be satisfied
by event of interest.

To conclude this section, the proposed solution will only support the measurement of clinical,
process, financial, and limited support for service indicators.

3.2 Analysis of jBPM
This analysis is performed to see the availability and the structure of information provided by
jBPM to support care pathway performance measurement scenarios as implied in the analysis
of the Leuven compass. It will cover the setup for jBPM, the scope of the analysis, the analysis of
jBPM history logs and BPMN elements, and the analysis of supported data types. In workflow
context, a care pathway can be associated with a workflow, in which the start event and the end
event are defined.

3.2.1 jBPM Setup
jBPM version 6.1.0.CR is used as the implementation environment of care pathway. Before
performing the analysis of jBPM, the following settings are applied:

1. KIE workbench is used as the implementation environment of care pathway. Although we
can develop our own pathway application and embed jBPM core into it, this project will use
existing application, i.e. KIE workbench, with its default implementation setting (except
persistence) to run the pathway.

2. Persistence feature is activated to log execution data. It is important to persist the
execution data since it will be used as the data source for performance measurement. The
log data will be stored in PostgreSQL.

3.2.2 Scope of Analysis
jBPM implements a lot of BPMN elements in its process modeling module. However, due to time
limitation, this master project only analyzes some elements that are considered influencing or
related to the history logs. Analysis of the logs is important to be able to formulate indicator
queries correctly. The analysis will cover the following aspects:

1. Relationship among history logs.
This analysis is important to see how the log tables are related each other and hence join
operation can be correctly formulated.

2. ProcessInstanceLog table.
Analysis of this table is required to see what process instance’s properties can be used for
performance measurement purpose, for example, process instance state, start time, and
end time.

Chapter 3 Requirements Analysis

22

3. VariableInstanceLog table
This table stores data elements/process variables that are manipulated during process
executions. The analysis is necessary to understand how the variables are stored and
structured and how can it be used to measure performance.

4. NodeInstanceLog table
This table stores information about which nodes in the process model are actually
executed. The analysis is performed to see how the nodes are stored and identify what
information can be derived from the log.

5. BAMTaskSummary, AuditTaskImpl, and TaskEvent table
These tables contain information about task performed in the process instances execution.
The analysis is important to identify what information can be used for performance
measurement purpose.

6. BPMN elements
Some BPMN elements are chosen and analyzed to see its effect on the history log. The
selection considers elements that appear in the resulting BPMN model in (Vermeulen,
2013) and (van Renswouw, 2013).

7. Temporal perspective
This perspective is used in many indicators as shown in the analysis in chapter 3.1. Thus it
is important to understand which time information is stored by jBPM.

3.2.3 Analysis of jBPM History Logs and BPMN Elements
The structure of jBPM logs is not explained in detail in the documentation. For information that
is not explicitly explained in the documentation, experiments and observations are conducted in
the KIE workbench and PostgreSQL administration consol. It is also possible to browse through
all the source codes to see how jBPM works. However, due to time limitation, the code browsing
is limited. For each aspect mentioned in chapter 3.2.2, the analysis is explained as follows.

Tables Relationship

The logs of jBPM are stored in a relational database. However, the relationship (e.g. foreign
keys) among log tables is not explicitly defined in the database. Even though the field names
might imply the relationship (e.g. column processinstanceid), a test using Scenario 1 is
performed to prove this pre-assumption.

Scenario 1 Obtaining tables relationship

A model with single user task called task1 and a variable called var1 is used in the test (see
Figure 30 in Appendix D.1). In task1, the user can modify variable var1. The resulting log data
from a complete execution of the process for each table is given in Figure 33 in Appendix D.4.

By observing the log data and the definition of log tables, it is concluded that the relationship
among log tables is depicted in Figure 10. Note that this is not the definition of foreign key since
column processinstanceid and taskid are not primary key in table ProcessInstanceLog and
AuditTaskImpl respectively. Several experiments show that the value of those columns is unique
and always equal to the value of column id in both tables. Thus it is concluded that referencing
using column processinstanceid is not a problem.

Chapter 3 Requirements Analysis

23

ProcessInstanceLog table

Some fields in this table require additional information and are explained as follows.

1. Processinstanceid can be associated with patient id. Thus single process instance represents
a patient.

2. Column duration stores actual duration of process instance since its start date in
millisecond. The formula is end_date – start_date. For uncompleted process instance, the
value is NULL since end_date is not known yet. The value represents length of hospital stay.

3. Column externalId stores external identifier (optional) e.g. deployment id of a process
business. In jBPM it is possible to assign a version number for a process business
deployment. Consequently, similar process (with similar processid) might have different
externalId and processversion. In this project, processid is considered as the identifier of the
process. In KIE workbench, information about processid of a process can be found in menu
Process Management → Process Definitions → Double click on a process name to see its
details → Definition id is the processid.

Figure 10 Log tables relationship

Chapter 3 Requirements Analysis

24

4. Column outcome will store the outcome of the process instance, e.g. error code. This error
code can be specified in property ErrorRef of Error End Event.

5. The instances of reusable subprocess are treated as a separate process instance, and hence
column parentProcessInstanceId will store processinstanceid of main process which uses
that subprocess.

6. Column status stores information about status of a process instance. jBPM defines 5 states
for process instance represented as integer value as described in Table 1 (Constant Field
Values, 2014) (Interface ProcessInstance, 2014). Every time the status of process instance
is changed, the value of field status in table ProcessInstanceLog for corresponding process
instance will be updated.
Table 1 Process instance states

State Value
STATE_PENDING 0
STATE_ACTIVE 1
STATE_COMPLETED 2
STATE_ABORTED 3
STATE_SUSPENDED 4

From the observation of KIE workbench, it does not provide any means to change the state
of process instances to STATE_PENDING and STATE_SUSPENDED. Therefore, the analysis is
limited to the three other states. STATE_ACTIVE means that the process instance is created
but it has not reached the End Event (in pathway context: a patient is registered in the
pathway and is in the middle of treatment). STATE_COMPLETED means that process
instance has reached the End Event for any reasons, such as completion through happy path
or completion through other end event types like error event (in pathway context: a patient
has already discharged from pathway for any reasons, e.g. finished treatment or
transferred to other protocol). STATE_ABORTED means that the process instance is
aborted when it is in state STATE_ACTIVE (in pathway context: the treatment process is
discontinued in the middle of process, for example: the patient decides to leave the hospital
before the treatment process complete).

VariableInstanceLog table

By observing the execution result (Figure 33, Appendix D.4) in table VariableInstanceLog of
Scenario 1, it is concluded that each row stores a variable and its corresponding value.
Regardless the variable data type, the value is stored in string data type in the database. An
important thing to consider is to observe the impact of variable value change to the record,
whether a new record with new variable value is inserted or the same record is preserved with
value replacement approach is used. To perform this we use Scenario 2.

Scenario 2 Checking the impact of variable value change to table VariableInstanceLog

A test is performed using a process model containing two tasks in a sequence (see Figure 31 in
Appendix D.2). In task1 and task2, the user can modify a process variable var1. The result is
shown in Figure 34 in Appendix D.4.

Chapter 3 Requirements Analysis

25

In conclusion, all variable changes are stored. Hence the possible variable values derived from
variable changes are: the latest value, the number of value changes and the initial value. In case
the data type is numeric, we can derive the minimum value, the maximum value, the sum of
values and the average value.

NodeInstanceLog table

This table logs which nodes were actually executed during process instance runtime. The log is
inserted whenever a node instance is entered from one of its incoming connection (type=0) or is
exited through one of its outgoing connections (type=1).

By observing execution result in table NodeInstanceLog of Scenario 1(Figure 33, Appendix D.4),
it is concluded that:

1. The identifier of node is column nodeid. This information is not directly visible from
graphical representation of process model and can be obtained from the XML file of the
corresponding BPMN process model (property id of elements under <bpmn2:process>).

2. jBPM does not store the time when a task is actually executed in this table. However, it
stores the time when a task is ready to be executed which is the scheduled time of the task.
It is derived from the log_date of the task where type=0.

3. Sojourn time of a task can be derived from the difference between log_date of entering
record and exiting record of the task.

BAMTaskSummary, AuditTaskImpl, and TaskEvent table

These tables store information related to human tasks performed during process instance
execution. In table BAMTaskSummary we can see when a task is created (i.e. activated, which
implies scheduled time), start time and end time. This table is summarized from table
AuditTaskImpl and TaskEvent which store task-related information in more detail, recording all
states a task has passed.

An experiment is performed to see what effects are produced in table BAMTaskSummary if a
task does not follow normal lifecycle, i.e. created → started → completed, for example if a task is
suspended. First, we will see what states a task might have. jBPM implements WS-HumanTask
specification for its task lifecycle (jBPM Human Tasks, 2014). It is illustrated in Figure 11.

A normal flow is explained as follow. When a task is newly created, it is in Created state and then
immediately becomes Ready. In this Ready state, the task will appear in the actors’ task list page
until an actor claims it. After the task is claimed, it will change to Reserved. If a task was created
in which only one actor is potential to do the task, it will immediately change from Created to
Reserved. The status changes to InProgress when the actor starts executing it. Once the actor has
performed and completed the task, it will change to Completed. All status changes are recorded
in table TaskEvent.

Sometimes a task is released by the actor in the middle of task execution that makes a task is
suspended. To see its impact to the log, the Scenario 3 is tested.

Chapter 3 Requirements Analysis

26

Scenario 3 Observing the impact of releasing a task to the log

A process model (Figure 30, Appendix D.1) is used where the user can modify a process variable
var1. The following task execution scenario is applied: start task → release task → claim task →
start task → complete task. The result in the log is shown in Figure 35 in Appendix D.4.

By observing the test result, it is concluded that:

1. State ADDED is the state where a task is activated. The time when it is logged implies the
schedule time of the task.

2. State STARTED is the state where the user actually starts the task. The time when it is
logged is the starting time of task.

3. In case task is interrupted in the middle of execution (e.g. released), a new record with
status STARTED is added after the task is re-started. Hence the actual execution time is
derived from time difference between task completion (status COMPLETED) and the last
start time.

4. Sojourn time is defined as time difference between status ADDED and status COMPLETED.

5. Waiting time is defined as time difference between status ADDED and the last status
STARTED.

Figure 11 WS-HumanTask lifecycle

Chapter 3 Requirements Analysis

27

BPMN elements

The analysis is necessary to see what impacts can be concluded from implementing BPMN
elements to the history logs. In this analysis, only elements that are found in pathway models
(van Renswouw, 2013) (Vermeulen, 2013) and need additional explanation are covered. The
analysis of exception handling will be discussed in chapter 3.3 about monitoring variances.

 1 Task

jBPM supports many types of task: User, Send, Receive, Manual, Service, Business Rule and
Script. Although they have different implementation in the background, as long as the task
modifies process variables, it will be recorded in the table variableinstancelog with no
differentiation in term of structure. Execution of any task will also be logged in
nodeinstancelog. In conclusion, regarding log records, there is no specific behavior can be
deducted from tasks.

 2 Subprocess

The analysis is limited only to Reusable Subprocess. This type of subprocess will invoke
another process (called child process) to be used within the main process. The important
properties to be set are:

Called element, the id of the process to be invoked.

Wait for completion. If it is set to true, the parent process will continue only after the child
process completes its execution, either aborted or completed. Otherwise, the parent process
will immediately continue. By default it is set to true.

Independent. If it is set to true, the child process will not be terminated if the parent process
is completed. It can only be set to false only when Wait for completion is set to true. (jBPM
Processes, 2014).

To see the impact of implementing Reusable Subprocess to history logs, the Scenario 4 is
tested.

Scenario 4 Observing the impact of implementing reusable subprocess to execution log

A process model containing subprocess is used (Figure 32, Appendix D.3). In Subprocess sub1,
the property Called element is set to process model as shown in Figure 30 in Appendix D.1.
Both Wait for completion and Independent are set to true. The result of the execution, i.e. table
ProcessInstanceLog is shown in Figure 36 in Appendix D.4.

By observing the log, it is concluded that an instance of sub process of type Reusable
subprocess is logged as a separate process instance. This will impact the calculation of
performance indicator related to that child process. The reference to the parent process
instance is stored in column parentprocessinstanceid.

 3 Swimlane

In jBPM 6.0.1, swimlane has no execution semantics, but rather only act as a visualization
means to group tasks based on the actor. Thus further implementation does not consider
swimlane.

Chapter 3 Requirements Analysis

28

Temporal perspective

For information about time, table ProcessInstanceLog stores the start time (column start_date),
the end time (column end_date) and the duration (column duration) of process instance.
Duration is basically the difference between the start time and the end time, stated in
milliseconds. This information can be used to calculate throughput time of process. Observation
shows that aborted process instance will also have end time, thus selection based on process
instance status must be made possible.

Table NodeInstanceLog has log_date for time-related field which is the time when a node is
entered (type=0) or a node is exited (type=1). This time-related information can be used to
calculate the sojourn time of a task. However, we can make use of table BAMTaskSummary and
TaskEvent to calculate task-related and time-related indicators since it provides more complete
time information regarding human task.

Table VariableInstanceLog has column log_date to store the time when a variable value is
changed.

3.2.4 Data Types
When defining data elements, the users can specify the data type for them, either standard data
type or custom data type. KIE workbench provides the following standard data types for
variable declaration: Integer, Boolean, String and Float. Custom data type is a user-defined data
type which contains one or more attributes and can be considered as an object. This custom
data type is declared in Data Modeler module. For example, a data type Student may contain
attribute id, name, dateOfBirth, nationality. For custom data type, jBPM allows the following data
type declaration for each attribute: BigDecimal, BigInteger, Boolean, Byte, Date, Double, Float,
Integer, Long, Short and String.

To see how custom data type instance is stored in table VariableInstanceLog, the following
scenario is tested.

Scenario 5 Observing the impact of using custom data types to table VariableInstanceLog

A process model is used (see Figure 30, in Appendix D.1) where in task1, a variable called student
with type Student is modified by user. This data type contains attributes as follows:

id: Integer
name: String

The observation of execution result in table VariableInstanceLog concludes that jBPM (by
default settings of KIE workbench) does not store the actual value of variable instance in the
database. Instead, it refers to a record in another repository (not in the database) by specifying
the identifier. Figure 12 shows the example of log entries for this case.

Figure 12 Example entries in table VariableInstanceLog for custom data type

Chapter 3 Requirements Analysis

29

Further investigation shows that additional settings are required to store and extract this
variable value (planet.jboss.org, 2014). In this master project, we limit the data elements type to
be used in the care pathway workflow are the standard ones, i.e. Integer, Boolean, String,
Datetime and Float.

3.3 Monitoring Variances
Variances are common in a high-risk sector like healthcare. Vanhaecht outlines that it is part of
process indicator and the monitoring is suggested only in the key interventions of the pathway
(Vanhaecht, K., & Sermeus, W., 2003). We distinguish this monitoring since it is a special case of
pathway process monitoring and is important for care pathway evaluation and follow up.
Several possible scenarios causing variances are:

1. Patient does not exit from normal happy path of care pathway due to referred to another
protocol or die in the middle of treatment.

2. Early hospital discharge due to improvement on patient condition, and hence not all
activities in pathway are performed.

3. Unusual treatment activities, in which normal pathway is not followed, due to emergency
and unpredictable patient situation.

The analysis is performed to see what can be measured from implementing exception handling
in pathway model. Exception handling is considered as a way to model predicted scenarios that
can cause variance to occur in the pathway. In the implementation of model in BPMN, it involves
the use of various types of events. To see how events can be implemented, we observe some
model fragments that use events, i.e. as shown in several exception handling patterns (Lerner,
et al., 2010). These patterns are described in Table 18 in APPENDIX E.

By observing the sample process model fragments, it is concluded that:

One way to monitor variance is by observing the occurrence of events that are implemented in
pathway model. Interesting measure that can be derived from implementing event in pathway
model is the number of occurrence of an event for a patient. This measurement is possible to be
performed in jBPM since it stores all nodes (including events) that are actually executed during
pathway runtime, i.e. in table NodeInstanceLog.

3.4 Identifying Care Pathway Performance Measures
As concluded from analysis of the Leuven compass, it is necessary to identify possible measures
that compose an indicator with respect to the compass and the information available in the
jBPM log. Note that we do not identify indicators but rather on measures that can be combined
to create indicator formula (see the definition of composite indicator in Chapter 3.1 and the
difference between measure and indicator in Chapter 2.7). The identified measures are
described as follows.

1. Number of patient
This measure can be associated with the number of instance, since an instance of pathway
represents a patient. Number of patient is used in many indicators with different
requirements. The requirements are specified as constraints to select patient records based

Chapter 3 Requirements Analysis

30

on condition on pathway, data element, intervention, and event. For each type of condition,
it is described as follows.

a. Pathway condition

This condition specifies what constraint must be met in pathway level. This condition is
defined based on the information available in table ProcessInstanceLog. The parameters
for this condition are specified in Table 2.
Table 2 Parameters for pathway condition

Parameter Operation Type Description
pathway_start _date =, >, >=, <, <= Datetime Date of patient arrival
pathway_end_date =, >, >=, <, <= Datetime Date of patient discharge
pathway_duration =, >, >=, <, <= Integer Length of hospital stay

Each parameter can be declared multiple times to accommodate for example time
interval. In jBPM log, duration is stored in millisecond.

b. Data element condition

This condition specifies what requirements must be met on data elements. jBPM only
stores data elements (which are unique) that are defined globally for the process model
(or global variable in jBPM terminology) in its execution log. The locally defined data
elements, i.e. defined in the tasks, are not stored in the log if they are not mapped to
global data elements. To define this condition, we assume that the users understand the
declaration of global variables OR are facilitated with the documentation of the
mapping between global and local variables and their corresponding tasks. This
condition is defined based on the information available in table VariableInstanceLog For
each declaration of this condition; the parameters are specified in Table 3.

Table 3 Parameters for data element condition

This condition can be declared multiple times. However, each declaration involves all
parameters above.

c. Intervention condition

This condition specifies what condition must be met regarding interventions/tasks
being performed in the pathway. This condition is defined based on the information
available in table BAMTaskSummary. The parameters are specified in Table 4.

Parameter Description
data_element_name Name of the data element
operator Operation that is used to compare data_element_name and

data_element_value. The possible value for this parameter are
=, >, >=, <, <=

data_element_value A value to be compared
data_type Data type of the data_element_name_. The possible values are

STRING, NUMERIC and DATETIME

Chapter 3 Requirements Analysis

31

Table 4 Parameters for intervention condition

Parameter Operation Type Description
schedule_date =, >, >=, <, <= Datetime The date when the

intervention is scheduled
start_date =, >, >=, <, <= Datetime The date when the

intervention actually takes
place

end_date =, >, >=, <, <= Datetime The date when the
intervention ends

duration =, >, >=, <, <= Integer The duration of the
intervention, from start date
until end date.

An intervention might be performed multiple times. However, in this thesis we ignore
aggregate calculation e.g. average value or execution position, e.g. the first one executed
or the last one executed. Any occurrence of an intervention will be evaluated.

d. Event condition

This condition specifies the requirement for any events that might occur in the pathway
and are specified in process model. This condition is defined based on the information
available in table NodeInstanceLog. The parameters for this condition are described in
Table 5.
Table 5 Parameters for event condition

Parameters Operation Type Description
number_of_occurrence

=, >, >=, <, <= Integer This filter specifies how
many times an event occurs

It is possible to declare multiple conditions for single event_id to accommodate interval.
The information about event_id can be found in the XML file of the process model.

2. Number of execution of an intervention
This measure is required as the multiplier in financial domain in pathway compass and in
monitoring of variance. It is defined as how many times a particular intervention is
performed for each patient. The parameter for this measure is intervention name. This
parameter equals to property “Name” of a task in the process model. In addition to that
parameter, the users can specify the conditions as described in measure #1, number of
patient. Interesting values that can be derived from this measure are average, minimum,
maximum and summation of values.

3. Number of event occurrence
This measure is required in monitoring variance since events are found mainly in pathway
exception handling. It is defined as how many times particular event is triggered for each
patient. The parameter for this measure is event id, i.e. the identifier of event. In jBPM, event
id can be found in the XML file of the process. In addition to that parameter, the users can
specify the conditions as described in measure #1. Interesting values that can be derived
from this measure are average, minimum, maximum and summation of values.

Chapter 3 Requirements Analysis

32

4. Data element value
This measure represents the value of a data element. Since data elements value can be
changed in multiple tasks or in repeated task, there are several possible values that can be
derived from single instance, i.e.: the latest value and the initial value, the minimum value,
and the maximum value. In addition, if the data elements type is numeric, more values can
be derived from single instance, i.e. summation and average value. The users can specify the
conditions as described in measure #1, number of patient. Interesting values that can be
derived from this measure are average (numeric), summation of values (numeric),
minimum and maximum.

5. Time difference between two interventions
This measure requires two identifiers of intervention with respective start times as input
parameter. It is formulated as

∆t(intervention 1, intervention 2) = |starttimeintervention 1 − starttimeintervention 2|

The users can also specify the conditions as described in measure #1, number of patient.
Interesting values that can be derived from this measure are average, minimum and
maximum.

6. Throughput time of pathway
This measure can be associated with the length of hospital stay. It is defined as the time
difference between the start event of pathway and the end event of pathway. The users can
also specify the conditions as described in measure #1, number of patient. Interesting
values that can be derived from this measure are average, minimum and maximum value.

7. Waiting time of an intervention
This indicator is important to see for example, how long a patient waits for an intervention.
It is defined as the time difference between scheduled time of an intervention and its actual
start time. The users can specify the conditions as described in measure #1, number of
patient. Interesting values that can be derived from this measure are average, minimum
and maximum value.

8. Execution time of an intervention
This indicator is important to see how long an intervention takes place. It is defined as the
time difference between actual start time and end time of an intervention. The users can
specify the conditions as described in measure #1, number of patient. Interesting values
that can be derived from this measure are average, minimum and maximum value.

An intervention might be performed multiple times in a pathway instance, for example in
arbitrary loop pattern. In this project, the design and implementation of measure time difference
between two intervention, waiting time and execution time of an intervention consider only the
first occurrence of the intervention.

To test whether classification of measures above can support various types of care pathway
indicator, the list of KPI of Unstable Angina pathway identified in (Vermeulen, 2013) is used.
Note that the formulation highly depends on the modeling style i.e. how artifacts in the process
specification are implemented, whether as data elements, activities or events.

Chapter 3 Requirements Analysis

33

The first indicator is patients admitted to the CCU or EHH which is described as percentage of
patients that are admitted to the CCU or EHH. It is a composite indicator formulated as number
of patients (measure #1) who are admitted to the CCU or EHH divided by number of patients
(measure #1) who come for admission process.

The formulation of other Unstable Angina KPIs is explained in detail in APPENDIX F. In
conclusion, the classification of measure above can formulate all UA KPIs except for one process
indicator (due to insufficient information provided) and team indicator. The identified
performance measures will be the basis for the design of formalization in the next chapter.

Chapter 4

Design and Implementation

Based on the requirement analysis in Chapter 3, especially on the identified pathway measures,
the formalization of performance indicator is designed and the measurement system is
implemented. This chapter covers the proposed design of indicator formalization and
implementation details of the performance measurement system.

4.1 Proposed Formalization Design
In many business settings, performance indicators are expressed in natural language.
Consequently they are not machine executable since the grammar is ambiguous. To make the
machine, i.e. the performance measurement system, understand what instructions must be
performed, a formalized definition and processor of performance indicator is necessary. Hence
the grammar is defined and no longer ambiguous.

Measuring performance indicator is basically passing queries to data source and retrieving the
query result. jBPM stores its history logs in a relational database and can be browsed using SQL
queries. Thus performance indicators principally can be formalized as SQL queries. However, as
explained in chapter 2.6, SQL has a limited capability in processing rows. On the other hand,
performance indicators might combine multiple measures, i.e. multiple query results with
arithmetic operations (e.g. division in ratio-based indicators) to produce an indicator value. This
leads to an idea to use mathematical expression to formalize performance indicators. The
expression combines arithmetic operations and query formulation.

However, combining query formulation leads to another problem. The users still have to face
query complexities, e.g. determining which tables to join, which column to select and what
function should be applied and how to apply the function. Thus a complexity reduction is
necessary i.e. by introducing a higher abstraction of SQL. The related table(s) for each measure
in combination with four types of conditions is given in Table 6.

Table 6 Related table(s) for each measure and condition

Measure Related table(s)
Number of patient ProcessInstanceLog
Number of execution of an
intervention

ProcessInstanceLog, BAMTaskSummary

Number of event occurence ProcessInstanceLog, NodeInstanceLog
Data elements value ProcessInstanceLog, VariableInstanceLog
Time difference between two
interventions

ProcessInstanceLog, BAMTaskSummary

Throughput time of pathway ProcessInstanceLog

Chapter 4 Formalization: Design and Implementation

35

Waiting time of an intervention ProcessInstanceLog, BAMTaskSummary
Execution time of an intervention ProcessInstanceLog, BAMTaskSummary

Condition Related table(s)
Pathway condition ProcessInstanceLog
Data element condition VariableInstanceLog
Intervention condition BAMTaskSummary
Event condition NodeInstanceLog

There are several higher level abstraction techniques of SQL available, for instance Java
Persistence Query Language (JPQL) as part of Java Persistence API, Java Object Oriented
Querying (JOOQ), and Language Integrated Query (LINQ) in .NET framework. Those techniques
are integrated with particular programming language and hence can benefit from the capability
of the language, i.e. Java for JPQL and JOOQ and various .NET programming languages for .NET
framework. Consequently, the syntax for specifying queries resembles the programming
languages in combination with SQL.

Defining performance indicators in which relational database is used as data source in SQL or
programming-language-like techniques above might be difficult to understand for non-
programmer persons. On the other hand, care pathway performance indicators are
communicated across multiple functions, not only among IT persons as the query formulator
and executor but also among medical teams. Moreover, the abstraction method above does not
solve complexity issue of the indicator queries. Hence a notation that is easily learnable by
different discipline in healthcare sector with limited or no programming expertise, especially in
care pathway domain, is required. In this thesis, an expression model is proposed to formalize
care pathway performance indicator. The idea is to develop a limited set of SQL query template
representing eight measures as identified in chapter 3.4 and to provide a means for the users to
specify the parameters for the queries in a defined format.

The structure of jBPM logs is considered static, i.e. no special treatment for different business
processes, and the scope of measurement is limited to the Leuven compass domains (implied by
eight measures identified). Given these facts, it is advantageous to define a care-pathway-
specific notation to define queries for performance measurement purpose. The advantages of
this scoping are explained as follows.

Concise. Since the expression contains limited and small number of symbols, i.e. only the
necessary ones, it is brief but covers all requirements for care pathway performance
measurement.

Minimizing error. The queries for eight measures are predefined (not necessarily simple). The
users only need to specify the parameter of predicate for the query and does not need to
consider what relations or columns are involved. Thus the error can be minimized.

Learnable. The expression can be designed to use domain-related terminologies, in this case
care pathway. As such, the users are expected to learn and interpret the grammar of the
expression easily.

The development of the proposed expression model follows the development phase of domain-
specific language (DSL) as shown in Figure 13. (Mernik, Heering, & Sloane, 2005)

Chapter 4 Formalization: Design and Implementation

36

Figure 13 Domain-specific language development phases

Note that some steps in the development phases above overlap with the research methodology
of this master project. For example, the analysis of problem domain is already covered
in Chapter 3. For analysis phase, the discussion will conclude the analysis of care pathway by
providing the metamodel for performance indicator. The implementation phase can be
considered as implementation of KPI formalization module which is only one part of the
performance measurement system. Each stage is explained as follows.

4.1.1 Decision
In this phase, the motivation to develop a domain specific language is formulated. Based on the
decision patterns outlined in (Mernik, Heering, & Sloane, 2005), the decision to formalize care
pathway performance indicator is to enable the development of indicators by users with less
domain and programming expertise or users with some domain but no programming expertise.
In more specific, the decision is driven by unavailability of care pathway performance indicator
notation, thus it is necessary to add user-friendly notation to an existing API or convert an API
into DSL (Mernik, Heering, & Sloane, 2005). In the context of this project, a user-friendly
notation to an existing API, i.e. SQL is proposed.

4.1.2 Analysis
In the analysis phase, the problem domain is identified and the domain knowledge is gathered.
The inputs for this phase are various explicit and implicit domain knowledge, such as technical
document and knowledge given by domain experts. The output of this step can be in various
forms, but basically consists of domain-specific terminology and semantics in more or less
abstract form. This phase is related to knowledge engineering topic, such as knowledge
capturing, knowledge representation and ontology development (Mernik, Heering, & Sloane,
2005).

As mentioned earlier, this phase is already discussed in Chapter 3 which results in eight
performance measures and their definitions. From those performance measures, the metamodel
of care pathway performance indicator is created to represent domain model (see Figure 14).

The metamodel is explained as follows. A performance indicator combines numbers, arithmetic
operators, and performance measures. For each performance measure, it has an aggregate
function and a measure parameter. A measure parameter specifies which measure is observed
(i.e. measure type) which pathway is involved (i.e. pathway identifier), for what status (i.e.
pathway status), and additional parameters used by particular measure (i.e. specific parameter,
if any). In addition, a measure parameter also defines what conditions must be met, specified in
four types of conditions. For each condition type, it contains one or more condition item(s). Note
that for the sake of readability, the metamodel above does not include various types of
aggregate function and different types of condition item for each condition type.

Decision Analysis Design Implementation Deployment

Chapter 4 Formalization: Design and Implementation

37

Figure 14 Care pathway performance indicator metamodel

4.1.3 Design
In the design phase, the abstract formalization model is brought into concrete syntax design.
There are two dimensions being considered in the design phase, i.e. the relationship between
the developed DSL and existing languages, and formal nature of the design description (Mernik,
Heering, & Sloane, 2005).

Regarding first dimension, the language exploitation pattern is adopted, where existing
language(s) is used as the source of adoption. The performance indicator expression is inspired
by arithmetic expression which is usually written in the infix style, i.e. the operator is written
between the operands, for example a + b. The formalization of measure is inspired by SQL
abstraction that specifies parameters for the query template. In this project, Java’s .properties
file, a file that is used to store configuration parameters for Java application, is used as
inspiration to specify parameter. For each line in the file, it defines a parameter name and a
parameter value. The value is assigned to the parameter using equality sign (=). However, in this
project, the parameter specification is not defined per line, but separated using a separator
character.

Chapter 4 Formalization: Design and Implementation

38

Considering the formal nature of the design description, the semi-formal design specification is
applied in the project. In informal design, the specification can be formulated in natural
language and may include illustrative DSL programs. In formal design, the specification is
written in formal method, e.g. regular expression and grammar for syntax definition, and
attribute grammar, rewrite systems, and abstract state machine for semantic definition (Mernik,
Heering, & Sloane, 2005). In this thesis, grammar for expression is used as syntax specification
and the semantics will be explained in informal way, i.e. in natural language. Some semantic
definition might be given in the explanation of the syntax. The design specification of the
proposed expression is explained as follows.

DEFINITION

Expression is defined as “Any mathematical calculation or formula combining numbers and/or
variables using sums, differences, products, quotients (including fractions), exponents, roots,
logarithms, trig functions, parentheses, brackets, functions, or other mathematical operations.
Expressions may not contain the equal sign (=) or any type of inequality.” (Mathwords, 2014).

An example of expression is (a * b) / (c + d) where a, b, c and d are variables and involves
multiplication, summation, and division operation. Using arithmetic expression ensures high
level of freedom for users to define performance indicators.

As defined by indicator metamodel (Figure 14) the proposed expression limits the definition of
expression above only to accommodate the following components:

1. Number, can be integer or real number
2. Function, is defined as named instruction that has particular arity (number of input

parameters) and returns a particular type of output. However this project will only
implement six functions: AVERAGE, SUM, MIN, MAX, COUNT, and COST. The first five
functions are used to process returned records of measure query and are explained in
Table 7. The format of the input string, which is also an expression, is defined differently
from this definition and will be described later in this chapter. Function COST is used to get
the cost of an intervention or a medical resource.

3. Arithmetic operations: addition (+), subtraction (-), multiplication (*), division (/).

Table 7 Functions applied to returned records

Function name Description
COUNT Return the number of record. For a record collection

𝑅 = {𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑛}, 𝐶𝑂𝑈𝑁𝑇(𝑅) = 𝑛
SUM Return the total value of a column, if the column data type is numeric.

For a record collection 𝑅 = {𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑛},

𝑆𝑈𝑀(𝑅,𝑎𝑛_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) = �𝑎𝑛_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒(𝑟𝑖)
𝑛

𝑖=1

AVERAGE Return the average value of a column, if the column data type is
numeric.
For a record collection 𝑅 = {𝑟1, 𝑟2, 𝑟3, … , 𝑟𝑛},

𝑓𝑜𝑟 𝐶𝑂𝑈𝑁𝑇(𝑅) > 0,𝐴𝑉𝐸𝑅𝐴𝐺𝐸(𝑅, 𝑎𝑛_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) =
𝑆𝑈𝑀(𝑅, 𝑎𝑛_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)

𝐶𝑂𝑈𝑁𝑇(𝑅)

http://www.mathwords.com/i/inequality.htm

Chapter 4 Formalization: Design and Implementation

39

𝑓𝑜𝑟 𝐶𝑂𝑈𝑁𝑇(𝑅) = 0,𝐴𝑉𝐸𝑅𝐴𝐺𝐸(𝑅, 𝑎𝑛_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) = 0
MIN Return the maximum value of an attribute in the record collection, if

the attribute data type is numeric or date time.
MAX Return the minimum value of an attribute in the record collection, if the

attribute data type is numeric or date time.

SYNTAX OF THE EXPRESSION

The format of the expression follows the format of infix-style arithmetic expression in which the
operator is put between two operands. The syntax of the expression is depicted in Figure 15

<number_or_function1> <operator1> <number_or_function2> <operator2> …

Figure 15 Syntax for expression

Note that using braces “(” and “)” is allowed to define the order of calculation.

Creating an expression is performed by human as the actor. The input for this task is a
performance indicator given in natural language. To create an expression from indicators given
in natural language, the steps below are followed:

Step 1:
Break the indicator into parts which represent either a measure as mentioned in Chapter 3.4 or
a number. A sample scenario of this step is in ratio-based indicator, where it is broken down
into numerator and denominator.

Step 2:
Identify operations involved and its relation with the parts. In ratio-based indicator, division
operation is involved. If it involves more complex operation, use braces to define the order of
calculation when necessary.

Step 3:
For each part in step 1, if it is not a number, specify what function is used and what conditions
must be satisfied (along with its parameter). Construct it using the syntax given in Figure 16.
Note that open and closed braces are used to specify function parameters.

<FUNCTION_NAME>(<FUNCTION_PARAMETER1>,<FUNCTION_PARAMETER2>,...)
Figure 16 Format for declaring a function

Since this project only implements five functions as described in Table 7 and function COST and
those functions take only one string parameter, the format of the function specification can be
refined as shown in Figure 17. The input string parameter is put inside double quote characters.

<FUNCTION_NAME>(“<FUNCTION_PARAMETER1>”)
Figure 17 Function with single input string parameter

Function COST has one input parameter (String data type) and the format is specified as:
COST(“<intervention_name_or_medical_resource_id>”). The returned value is a real
number representing the cost of intervention or medical resource per unit. For example, to
retrieve the cost of an x-ray test, we declare COST(“x-ray test”).

Chapter 4 Formalization: Design and Implementation

40

Step 4:
Finally, construct the expression by combining all parts, along with the operators and braces
when necessary.

The input parameter for all functions in Table 7 is a string representing parameters to pre-
defined query templates to pathway logs for each measure, in a defined format. For all
measures, the format is given in Table 8.

The guideline to read the format throughout the document is given below:

a. The declarations inside “[” and “]” are optional and the rest are compulsory. Note that to
define those optional elements, the “[” and “]” signs are not required.

b. “<abc>” means that it is a variable called “abc” and the value can be changed, without “<”
and “>” signs.

c. “//” is the comment in the format and must not be declared in the real expression.
d. “…” means that the declaration can be continued.
e. Semicolon “;” is used to separate parameter declaration.
f. Curly braces “{” and “}” are used to group conditions.
g. “|” character is used to separate parameter in a condition.
h. “&&” is used to separate condition items within a condition type.

Table 8 Syntax for query parameters for pathway measures

No Measure Syntax Functions
1. Number of patient measure=’num_of_patient’;

pathway_name=’<pathway_name>’;
pathway_status=’<pathway_status>’;
[<conditions>]

COUNT

2. Number of
execution of an
intervention

measure=’num_of_intervention’;
pathway_name=’<pathway_name>’;
pathway_status=’<pathway_status>’;
intervention_name=’<intervention_name>’;
[<conditions>]

AVERAGE, MIN,
MAX, SUM

3. Number of event
occurrence

measure=’event_occurence’;
pathway_name=’<pathway_name>’;
pathway_status=’<pathway_status>’;
event_id=’<event_id>’;
[<conditions>]

AVERAGE, MIN,
MAX, SUM

4. Data elements
value

measure=’data_element_value’;
pathway_name=’<pathway_name>’;
pathway_status=’<pathway_status>’;
data_element_name=’<data_element_name>’;
data_type=’<data_type>’;
value_type=’<value_type>’;
[<conditions>]

MIN, MAX, SUM and
AVERAGE
(SUM and AVERAGE
are only applicable for
numeric data type)

5. Time difference
between two
interventions

measure=’time_between_interventions’;
pathway_name=’<pathway_name>’;
pathway_status=’<pathway_status>’;
intervention1_name=’<intervention1_name>’;
intervention2_name=’<intervention2_name>’;
[<conditions>]

AVERAGE, MIN,
MAX

6. Throughput time
of pathway

measure=’pathway_throughput_time’;
pathway_name=’<pathway_name>’;
pathway_status=’<pathway_status>’;

AVERAGE, MIN,
MAX

Chapter 4 Formalization: Design and Implementation

41

No Measure Syntax Functions
[<conditions>]

7. Waiting time of an
intervention

measure=’intervention_waiting_time’;
pathway_name=’<pathway_name>’;
pathway_status=’<pathway_status>’;
intervention_name=’<intervention_name>’;
[<conditions>]

AVERAGE, MIN,
MAX

8. Execution time of
an intervention

measure=’intervention_execution_time’;
pathway_name=’<pathway_name>’;
pathway_status=’<pathway_status>’;
intervention_name=’<intervention_name>’;
[<conditions>]

AVERAGE, MIN,
MAX

In workflow context, <pathway_name> can be associated with the name of business proces.
<pathway_status> refers to the status of the process instance as described in Table 1.
Intervention name refers to the task name. The information about task name can be found in
property “Name” of a task in the process model.

For measure Data element value, <data_type> can be replaced with NUMERIC or DATETIME. It
specifies the data type of the data element. Remember that data element value can be changed
multiple times in the execution of process instance. Depend on the <data_type>, the
<value_type> can be replaced with one of the following options.

FIRST. This option means that the returned data element value is the first value entered. It is
valid for both NUMERIC and DATETIME.

LAST. This option means that the returned data element value is the latest value. It is valid for
both NUMERIC and DATETIME.

MIN. This option means that the returned data element value is the minimum value among data
element changes. It is valid for both NUMERIC and DATETIME.

MAX. This option means that the returned data element value is the maximum value among
data element changes. It is valid for both NUMERIC and DATETIME.

AVERAGE. This option means that the returned data element value is the average value of all
data element changes. It is valid for NUMERIC only.

SUM. This option means that the returned data element value is the summation of all data
element changes. It is valid for NUMERIC only.

[<conditions>] can be replaced with four types of conditions mentioned in measure
Number of patient in chapter 3.4. For each type of condition, the format and the explanation are
given in Figure 18, Figure 19, Figure 20, and Figure 21 respectively. Date time data type is
written in the YYYY-MM-DD hh:mm:ss format.

Chapter 4 Formalization: Design and Implementation

42

pathway_condition=
{
 //format
 param=’<parameter_name>’|op='<operation>'|value='<a_value>' &&
 //<parameter_name> can be replaced with a parameter in Table 2
 //the <operation> for each <parameter_name> can be seen in Table 2.
 //example: pathway start date between 1 Jan 2014 00.01 – 31 Des 2014 23.59
 param='pathway_start_date'|op='>='|value='2014-01-01 00:01:00' &&
 param='pathway_start_date'|op='<='|value='2014-12-31 23:59:00' &&
 ...
};

Figure 18 Format for declaring pathway conditions

data_element_condition=
{
 //format
 data_element_name='<a_data_element>'|op='<operation>'|value='<a_value>'|
 type='<data_type>' &&
 //possible value for <operation> and <data_type> can be seen in Table 3.
 //example: Integer-type data element blood_pressure value is between 130
 //and 180
 data_element_name='blood_pressure'|op='>='|value='130'|type='NUMERIC' &&
 data_element_name='blood_pressure'|op='<='|value='180'|type='NUMERIC' &&
 ...
};

Figure 19 Format for declaring data element conditions

intervention_condition
{
 //format
 intervention_name=’<an_intervention>'|param='<a_parameter>'|
 op='<operation>'|value='<a_value>' &&
 //in workflow context, pathway intervention is associated with task
 //possible value for <a_parameter> and <operation> can be seen in Table 4.
 //example: x-ray is performed in less than 15 minutes (or 900 seconds)
 intervention_name=’x-ray'|param='duration'|op='<'|value='900' &&
 ...
};

Figure 20 Format for declaring intervention conditions

event_condition=
{
 //format
 event_id='<an_event_id>'|param='number_of_occurrence'|op='<operation>'|
 value='<a_value>' &&
 //possible value for <operation> can be seen in Table 5.
 //example: error event with id 12345 occurs at least once
 event_id='12345'|param='number_of_occurrence'|op='>='|value='1' &&
 ...
};

Figure 21 Format for declaring event conditions

Chapter 4 Formalization: Design and Implementation

43

EXAMPLE
To Ilustrate how to create performance indicator expression, the following performance
indicator for Unstable Angina pathway is used (Vermeulen, 2013).

Performance indicator: “Angiographic success (successful PCI <20% stenosis) (%)”

It is defined as percentage of PCI patients with < 20% rest stenosis in all lesions.

In addition to that definition, a pathway condition is added, i.e. for patients arriving between 1
January 2014 and 31 July 2014. It is assumed that PCI patient is a type of patient in Unstable
Angina pathway and is implemented as a Boolean-type data element called is_pci. If it is set to
true, the patient is a PCI patient. Otherwise, it is set to false. It is also assumed that the quantity
of stenosis is implemented as a Numeric-type data element called stenosis_percentage.

Step 1: Break into parts
Part 1 is the numerator and described as PCI patients with < 20% rest stenosis in all lesions
where PCI is attempted, for patients arriving between 1 January 2014 and 31 July 2014. Part 2 is
the denominator and described as total number of PCI procedures in this hospital for patients
arriving between 1 January 2014 and 31 July 2014. Both part 1 and part 2 represent measure
number of patient.

Step 2: Identify operations
The operation involved is division, i.e. numerator/denominator

Step 3: Specify functions and conditions
For part 1 (numerator), the used function is COUNT since it counts the number of patients. The
conditions involved are pathway condition and data element condition. For pathway condition,
the parameter is pathway_start_date representing patient arrival date. For data element
condition, the condition to be satisfied are is_pci = true and stenosis_percentage<20.

For part 2(denominator), the used function is also COUNT. The involved conditions is pathway
condition and data element condition. For pathway condition, the parameter is
pathway_start_date representing patient arrival date. For data element condition, the condition
to be satisfied is is_pci=true.

Step 4: Construct expression
The constructed expression is given in Figure 22.

Chapter 4 Formalization: Design and Implementation

44

Figure 22 Example expression

SEMANCTICS OF THE EXPRESSION

The semantics of the expression is explained declaratively by the following rules.

1. Indicator expression is evaluated based on arithmetic expression evaluation which
considers the order of calculation. For indicator involving multiple operands, all operands
(including return value of function) must be numeric in order to be able to be evaluated.
For indicator involving single operand (i.e. without any operator), the operand (e.g.
function return value) can be numeric or date time.

2. Function COUNT, MIN, MAX can handle numeric and date time data types. Function
AVERAGE and SUM can only handle numeric data type.

3. Defining particular measure type should declare measure-specific parameter(s) in addition
to obligatory parameters (i.e. pathway_status and pathway_name) as defined in Table 8.
Defining unnecessary parameter will be ignored.

4. All conditions are translated into AND conjunction which means that all defined conditions
must be satisfied by returned collection of data. It is not always necessary to declare all four
conditions, since an indicator might require only for example one or two conditions type.

5. Each measure along with its parameter and conditions are translated into SQL template as
shown in Table 9. Note that the variables mentioned in the table refer to the variables used
in the syntax declaration in Table 8 for measures and Figure 18, Figure 19, Figure 20, and
Figure 21 for conditions.

Chapter 4 Formalization: Design and Implementation

45

Table 9 Query templates for measures and conditions

MEASURES

Number of patient:
SELECT p.*
FROM processinstancelog p
WHERE p.processid = <pathway_name> AND p.status = <pathway_status>
//add conditions here

Number of execution of an intervention
SELECT p.*, getnumberofintervention(p.processinstanceid,<intervention_name>)
FROM processinstancelog
WHERE p.processid = <pathway_name> AND p.status = <pathway_status>
//add conditions here

function getnumberofintervention returns how many <intervention_name> is executed for a processinstanceid

Number of event occurrence
SELECT p.*, getnumberofevent(p.processinstanceid,<event_id>)
FROM processinstancelog
WHERE p.processid = <pathway_name> AND p.status = <pathway_status>
//add conditions here

function getnumberofevent returns how many <event_id> occurs for a processinstanceid

Data elements value

if <data_type> = NUMERIC :
SELECT p.*, getvariablevaluenumeric(p.processinstanceid, <data_element_name>
<value_type>) val
FROM processinstancelog p
WHERE p.processid = <pathway_name> AND p.status=<pathway_status>
//add conditions here

function getvariablevaluenumeric return the numeric value of <data_element_name> for selected <value_type> for a
processinstanceid
if <data_type> = DATETIME, the query template is similar to the template for NUMERIC but the function being used is
getvariablevaluedatetime which returns the date time value.

Time difference between two interventions
SELECT p.*, gettimedifference(p.processinstanceid, <intervention1name> ,
<intervention2name>) val
FROM processinstancelog p
WHERE p.processid = <pathway_name> AND p.status=<pathway_status> AND
gettimedifference(p.processinstanceid,<intervention1name>,<intervention2name>) >= 0
//add conditions here

function gettimedifference returns time difference between two interventions. If one or both interventions in the
parameter are not completed in the pathway, the function will return a negative value, thus omitted from the returned
records.

Throughput time of pathway
SELECT p.duration
FROM processinstancelog p
WHERE p.processid = <pathway_name> AND p.status = <pathway_status>
//add conditions here

Waiting time of an intervention
SELECT p.*,getwaitingtime(p.processinstanceid, <intervention_name>)

Chapter 4 Formalization: Design and Implementation

46

FROM processinstancelog p
WHERE p.processid = <pathway_name> AND p.status=<pathway_status> AND
getwaitingtime(p.processinstanceid, <intervention_name>) >= 0
//add conditions here

function getwaitingtime returns waiting time of <intervention_name> for a processinstanceid. If the intervention is not
executed in the pathway, the function will return a negative number thus omitted from the returned records.

Execution time of an intervention
SELECT p.*,getexecutiontime(p.processinstanceid, <intervention_name>)
FROM processinstancelog p
WHERE p.processid = <pathway_name> AND p.status=<pathway_status> AND getexecutiontime
(p.processinstanceid, <intervention_name>) >= 0
//add conditions here

function getwaitingtime returns waiting time of <intervention_name> for a processinstanceid. If the intervention is not
executed in the pathway, the function will return a negative number thus omitted from the returned records.

CONDITION

Pathway condition
AND <parameter_name> <operation> <a_value>

Event condition
AND getnumberofevent(p.processinstanceid, <an_event_id>) <operation> <a_value>

function getnumberofevent return the number occurrence of <an_event_id>
p.processinstanceid refers to processinstanceid of relation processinstancelog in the main query (i.e. measures)

Data element condition
AND EXISTS (SELECT * FROM variableinstancelog WHERE variableid=<a_data_element> AND
value <operation> <a_value>)

<data_type> is used to distinguish between numeric and date time datatypes and does not appear directly in the query
but processed in the code.

Intervention condition
AND EXISTS (
SELECT * FROM bamtasksummary b
WHERE b.processinstanceid=p.processinstanceid AND b.taskname= <an_intervention> AND
b.<a_parameter> <operarion> <a_value>)

p.processinstanceid refers to processinstanceid of relation processinstancelog in the main query (i.e. measures)

4.1.4 Implementation
In this phase, the implementation strategy for designed DSL is chosen. In this project,
preprocessing pattern is selected, in which the DSL constructs are translated to constructs in an
existing language (the base language) (Mernik, Heering, & Sloane, 2005). The indicator
expression is translated into SQL expression in order to be executable against care pathway log.
There are two steps involved in the translation process: parsing arithmetic expression and
parsing function parameter.

Parsing arithmetic expression will result three types of elements: number, operator and
functions. In order for the expression to be able to be evaluated, the function must be first
evaluated that will return a number. The parsing handlers and other concepts designed in the

Chapter 4 Formalization: Design and Implementation

47

design phase are implemented in Java classes and are depicted in a class diagram as shown in
Figure 23.

Figure 23 Implementation class diagram

Chapter 4 Formalization: Design and Implementation

48

4.1.5 Deployment
The deployment stage is not discussed in detail in (Mernik, Heering, & Sloane, 2005). This
activity installs the software, in this case KPI formalization module, in the target machine to be
able to run. In this project, the module is implemented as Java classes being part of web
application of performance measurement system, i.e. not implemented as a library (.JAR file).
Hence the deployment of the module is dependent to the deployment of the web application.

4.2 Implementation of Measurement System
Based on the formalization design, the performance measurement system is implemented. This
chapter discuss about the architecture of the system, implementation environment and the
functionalities of the system.

4.2.1 Architecture and Environment
The architecture of the system is shown in Figure 24. The performance measurement system is
a web application hosted in a web server. It contains three main parts: the user interface where
the user can interact with the system, KPI formalization module as the handler for performance
measurement processing, and web module that controls the system scenarios. In supporting
performance measurement, the web module calls required functions in KPI formalization
module and passes produced query to BPMS execution logs stored in a relational database. In
this thesis, a BPMS, i.e. jBPM 6.1.0.CR1 is used to implement care pathway. The formalization
module also stores indicators created by the users in the indicator database in order to be re-
used later.

Figure 24 Architecture of the performance measurement system

The system is built under Windows 7 environment. The web application is built using Java
Enterprise Edition using Netbeans IDE 8.0. Java Server Faces framework is used to develop the
web pages. The web application runs on JBoss Application Server 7.1.1, similar to the one being
used by jBPM 6.1.0.CR1. Jeval 0.9.4, an open source java-based library, is used to handle

Chapter 4 Formalization: Design and Implementation

49

arithmetic expression parsing and evaluation. The query constructor and function parameter
parser is developed using Java. This project uses PostgreSQL 9.3 to manage jBPM database and
indicator database.

The decision for the architecture is based on the following.

The measurement system is implemented as a web application to facilitate easy user access
since it is accessible by intra/internet using a web browser without specific client tools and
installation.

Web module is the heart of the system that acts as the controller of all system functionalities. It
is separated from user interface to distinguish between logic and presentation. KPI
formalization is a separate module focuses on modeling the formalization of KPI. By grouping
KPI formalization module in a package, it opens possibility to distribute it as a library to be used
in different application.

jBPM database is separated from indicator database, since update frequency of jBPM database is
higher than indicator database due to operational use. By this separation, it is expected that the
performance of jBPM database is not influenced by the measurement system. However, for the
sake of simplicity to prove the proposed formalization, the implementation uses single database
instance for jBPM and indicator database.

jBPM, especially its database, is considered as external system and the measurement system can
only read it. In case the database is opted to be private, i.e. not directly readable by external
applications except jBPM, a service oriented architecture can be adopted by developing the
interface. Again, for the sake of simplicity to prove the proposed formalization, direct database
access is chosen.

4.2.2 Functionalities
The implemented performance measurement system has four functionalities:

Query performance indicator
This feature enables the user to enter indicator expression and execute the constructed query to
get the result. The interface is shown in Figure 42 in APPENDIX G.

Create, view, edit, delete, and update indicator value
This feature enables the user to store and manage indicator expression to be used later. In
addition it also enables the user to re-calculate indicator value from the stored expression. The
interface is shown in Figure 43 in APPENDIX G.

Build Measure
This feature enables the user to build expression of a measure by filling forms. It helps the user
to minimize error in creating expression. The interface is shown in Figure 45 in APPENDIX G.

Create, view, edit and delete cost
This feature enables the user to store and manage cost of interventions and resources. The
interface is shown in Figure 44 in APPENDIX G.

Chapter 5

Evaluation

In this chapter the evaluation of the proposed formalization and the performance measurement
system is presented. The goal is to assess the quality of the developed system and to assess the
degree of fulfillment of five criteria defined in the research objective. In this evaluation, some
metrics are chosen from a model to evaluate the quality of software, i.e. the ISO/IEC 25010:2011
- Software Product Quality Model (see Figure 25) (ISO, 2011) (iso25000.com, 2014). The
metrics written in red-bold are the ones considered in this evaluation. The selection of metrics
takes into account that the developed measurement system is the proof of concept of
performance indicator formalization. Therefore, the functionality is at the utmost attention. In
addition, the selected metrics are related to the design choice of the architecture (see Figure 24)
that needs to be evaluated.

Figure 25 ISO/IEC 25010:2011 Software product quality metrics

Functional suitability determines the degree to which the product provides functions that meet
the needs when used under specified conditions. Portability refers to the degree of effectiveness
and efficiency with which a product can be transferred from one environment to another.

Chapter 5 Test and Validation

51

Maintainability measures the degree of effectiveness and efficiency with which a product can be
modified by the intended maintainers. (ISO, 2011)

Chapter 5.1 discusses about the correctness of the system, chapter 5.2 discusses about
functional appropriateness aspect, chapter 0 will discuss about the evaluation of other metrics,
namely functional completeness, adaptability and modularity. Finally chapter 0 discusses about
the degree of fulfillment of the criteria required in the research objective.

5.1 Functional Correctness
Functional correctness refers to the degree to which a product provides the correct results with
the needed degree of precision (ISO, 2011). To evaluate this metrics, a case study in healthcare
sector is used, i.e. weaning protocol. The overview of the evaluation is explained as follows.

The protocol is modeled in BPMN and is implemented in jBPM. Using the model, manual
simulation is performed for 50 process instances with pre-defined test data (APPENDIX I).
Several KPIs of the protocol are used to test the formalization by supplying it to the
measurement system. The measurement system will return the results of the calculation of KPIs
based on the execution log of the manual simulation. The correctness of the results is validated
by doing direct queries to the execution log database and observation on test data.

5.1.1 Case Description
The definition of weaning protocol is obtained from master thesis by Boere which was
conducted in Intensive Care Unit (ICU), Maastricht University Medical Centre+ (MUMC+). This
process is said to apply to nearly all patients of the ICU department. There are two versions of
weaning protocol, the < 72 hours ventilation and >72 hours ventilation, which are distinguished
based on the nature of trial and error (Boere, 2013). In this thesis, the original, <72 hours
version is used as a case study.

Even though weaning protocol might not a care pathway, it has many common characteristics
with care pathway. There is a clear point in time where a patient starts and ends the protocol.
The start time is when the patient arrives at ICU. The end time is when the patient is decoupled
with the machine. Although the patients are not grouped based on similar disease, the grouping
is clear, i.e. it is specialized to almost all patients who come to ICU. Finally, the protocol also
documents, monitor, and evaluate variances and outcomes.

The flow of weaning protocol is described as follows (Boere, 2013):

“The mechanical ventilation process is initiated when a patient is not able to provide enough
oxygen for the body. The process of oxygen supply is taken over by a mechanical ventilator. This
machine provides the oxygen support and CO2 values during periods in which the patient is not
self-sufficient. The Weaning process starts when the patient is connected to the ventilation
machine and breathes with a tube. The name of this overall oxygen support is BIPAP (Bi-level
Positive Airway Pressure). This means that the patient is fully supported by the mechanical
ventilator and 100% dependable on the ventilator. When a patient arrives at the ICU, a target of
the department is to discontinue the mechanical ventilating as soon as possible.

Of course the mechanical ventilator cannot be simply decoupled. Therefore the Weaning protocol
has been developed to make sure that the decoupling is done under the right circumstances for the

Chapter 5 Test and Validation

52

patient. The main task of the nurses is to check for a specific set of pre-determined values (Note A),
for example GCS (Glasgow Coma Scale) and a stable blood pressure. When a patient is brought to
the ICU it is very unlikely that a patient is able to meet all threshold values. During the stay of the
patient in the ICU with or without the use of specific medicines the right values can be met. When
the values are met by the patient and a breathing trigger is given by the patient, the patient can go
to the next state which is a different form of mechanical ventilating which depends more on the
patient doing the work instead of the machine.

This breathing method is called ASB (Assisted Spontaneous Breathing). In this ventilation method
the patient delivers a breathing pressure and the ventilator machine responds with oxygen and
extra pressure to unload the ventilator attempt of the patient. Again, after some time specific
values need to be checked by the nurses and met by a patient to have their breathing tube removed
(Note C). Before the actual remove, the patient must remain stable (Note B) for a period of 30
minutes to make sure that the patient has the capability to breathe on his own again. When this
uncoupling is performed, the process is finished and the patient breathes without support. During
the process it can happen that patient needs to go back from the ASB ventilation to the BIPAP
ventilation. This is the reason for the loops back that can be seen in the protocol.”

The flow of weaning protocol can be seen in APPENDIX H. The corresponding BPMN model is
given in Figure 26. The start event represents patient arrival in ICU.

Data Elements

The data elements defined in the model are obtained from Note A, Note B and Note C and are
described in Table 10. Not all data elements are implemented in the process model due the
limitation of the reference.

Table 10 Data elements in weaning process

Data Element Name Data Type Use
GCS_A Double precision GCS for Note A
PEEP_A Double precision PEEP for Note A
FIO2_A Integer (0-100), % FiO2 for Note A
TACHYPNOEISCH_B Integer Tachypnoeisch forNote B
TACHYCARD_B Integer Tachycard for Note B
SPO2_B Integer (0-100), % SpO2 for Note B
PO2_C Double precision PO2 for Note C
PCO2_C Double precision PCO2 for Note C
PH_C Double precision pH for Note C
FIO2_C Integer (0-100), % FiO2 for Note C
PEEP_C Double precision PEEP for Note C
GCS_C Double precision GCS for Note C
deviation_num Integer Number of deviations

observed in task 30 min
deviation check

The data for Note A is entered in task Check BIPAP, for Note B in task 30 min deviation check
finished and Note C in task Extubation criteria. Basically, in order to continue the process, it is
mandatory that all threshold values in all notes are satisfied in the corresponding decision point
(gateway). However, since healthcare sector requires high level of flexibility, the decision to

Chapter 5 Test and Validation

53

continue the process is not implemented as a strict rule in the gateway by checking all threshold
values. Rather, the decision to continue is made by human and is implemented using a Boolean
data element representing the decision.

Roles. All tasks are performed by nurse, thus there is only one roles defined, i.e. nurse.

Figure 26 Weaning process in BPMN

5.1.2 Test Setup
Goal. The goal of the test is to prove that the proposed formalization can formalize and calculate
KPI, and give the correct result.

Strategy and Data. The test is performed by running manual simulation of weaning process in
KIE workbench for 50 instances. We consider that number is enough to perform validation. As a

Chapter 5 Test and Validation

54

comparison, Boere uses records from 617 patients arriving between 2009 and June
2012(approximately 3.5 years) (Boere, 2013). Automatic simulation in KIE workbench is not
performed since the execution data is not stored in the database. The values of data elements
for the test are generated randomly using spreadsheet. Even so, the value range still refers to
the values found in the literature (Boere, 2013). The generated data elements values are given
in Table 20 in APPENDIX I. Note that calculation of KPI related to temporal aspect does not
represent real world, since all tasks are executed immediately. After the execution of weaning
process, the validation is performed using some KPI of the process.

Test cases. From 50 cases, 5 cases will intentionally repeat Decrease P-ASB 3 times, i.e. in the
decision point after task Check breathing frequency. 5 cases will repeat Decrease P-ASB for 4
times and 5 cases will repeat it for 5 times. The rest 35 will follow happy path of the model.
There is no particular reason in choosing number of cases that repeat the task and number of
repetition. They are arbitrary numbers that will be used to validate a KPI involving number of
execution of an intervention.

User. A user called “nurse” with role “Nurse” is added to jBPM user list. This user will execute all
tasks in the process model.

5.1.3 Result Validation
Validation is performed by specifying a list of weaning process KPIs, create KPI expressions
using proposed formalization, and execute them in the measurement system. The results then
compared with the data test (Table 20 in APPENDIX I) and direct query to database.

Key Performance Indicators

The list of KPIs in Table 11 is summarized from master thesis by Boere (Boere, 2013). In
addition, the list has been confirmed to a researcher working on weaning process.
Unfortunately, the list was not confirmed to process owner in hospital due to time constraint.

Table 11 List of weaning process KPI

Domain Performance Indicator Description
Process Throughput time The time a patient spends in ICU, from patient

arrival until extubation.
Process BIPAP time The duration of BIPAP phase for a patient
Process ASB time The duration of ASB phase for a patient
Clinical Time to reach 36° C The time a patient needs to reach temperature 36’

since his/her arrival.
Clinical BIPAP threshold values fulfillment

(NOTE A) (%)
Percentage of patients who meet BIPAP threshold
values before continuing to ASB.
Numerator: Number of patients who meet BIPAP
threshold values. It refers to values in NOTE A in
Figure 46 in APPENDIX H, i.e. GCS > 8, PEEP ≤ 8,
FiO2 < 50%
Denominator: Number of patients

Clinical Number of steps to decrease ASB The number of steps performed to decrease P-ASB
for a patient

Clinical Extubation threshold values
fulfillment (NOTE C) (%)

Percentage of patients who meet extubation
threshold values before extubation.

Chapter 5 Test and Validation

55

Numerator: Number of patients who meet
extubation threshold values. It refers to values in
NOTE C in Figure 46 in APPENDIX H,i.e. PO2 ≥ 9,
PCO2 ≤ 6.0, pH 7.3-7.5, FiO2 ≤ 40%, PEEP ≤ 8 and
GCS > 8.
Denominator: Number of patients

Clinical Number of observed deviations
within 30 minutes

The number of deviations identified in 30 minutes
deviation check for a patient

From the list of indicators above, the corresponding indicator expressions are created as shown
in APPENDIX J. One indicator expression cannot be built, i.e. time to reach 36°C. If the time to
reach 36°C is implemented as a data element that store the duration, we can build the indicator.
However this data element is not defined in the list of data element. Moreover, it is not
reasonable to store the duration since the measurement of temperature is performed multiple
times. A reasonable scenario is by storing the temperature data and the timestamp of
measurement. This is the behavior of jBPM where all data elements value changes are stored.
However, from the list of available measures, we still cannot build the indicator, since there is
no measure to determine time difference between two change timestamps of a data element.

Result

During the test, some test cases do not follow planned cases. Only 4 cases that repeat task
“Decrease P-ASB” 5 times, 6 cases repeat the task 4 times, and 5 cases repeat the task 3 times.
However we consider this is still acceptable and does not influence the analysis of result. Using
pre-defined test data, the result of the execution of the KPIs in performance measurement
system is given in Table 12.

Table 12 Test result

Indicator Result Note
Throughput time This value does not represent real life scenario since

pathway is executed immediately. Manual query in
PostgreSQL shows exactly similar result

Average 28467.1 seconds
Min 24919.0 seconds
Max 32080.0 seconds

BIPAP time Manual query in PostgreSQL shows exactly similar result
Average 65.2 seconds
Min 11.25 seconds
Max 242.68 seconds

ASB time Manual query in PostgreSQL shows exactly similar result
Average 31.87 seconds
Min 4.49 seconds
Max 94.05 seconds

BIPAP threshold
values fulfillment
(NOTE A) (%)

10% Manual check on the test data shows valid result, i.e. there
are 5 records satisfy the constraint.

Number of steps to
decrease ASB

 Since there are 35 cases execute task Decrease P-ASB 1x, 4
cases 5x, 6 cases 3 times, the average is 1.88 times per
patient. Average 1.88 times/patient

Min 1 time/patient
Max 5 times/patiet

Chapter 5 Test and Validation

56

Indicator Result Note
Extubation
threshold values
fulfillment (NOTE C)
(%)

14% Manual check on the test data shows valid result, i.e. there
are 7 records satisfy the constraint.

Number of observed
deviations within 30
minutes

 Manual check on the test data shows valid result

Average 2.8
Min 0
Max 5

In general, the tested KPIs can be formulated using proposed formalization, except one indicator
involving time difference between two data element value changes. In conclusion, the
measurement system is able to calculate the KPIs and gives the expected results, i.e. 100%
correct.

5.2 Functional Appropriateness
This metric refers to the degree to which the functions of the product facilitate the
accomplishment of specified tasks and objectives (ISO, 2011). We are interested in evaluating
the degree of complexities that are perceived by the users by creating the queries for indicators
manually and using proposed formalization. We argue that the less complex the task to form the
queries, the higher the degree of accomplishment of measuring performance.

To evaluate this quality metric, four measures related to the complexity of SQL query structure
are used (Brink, Leek, & Visser, 2007) and are explained as follows.

1. Number of tables used. This measure specifies how many tables are involved in a query.
The complexity level rises along with the number of tables involved. In this thesis, we
calculate the number of tables used not only from the FROM statement, but also from the
nested queriues and function used (if any). A table might be used multiple times in a query,
i.e. there are multiple relations specified that refers to single table. In this thesis, the
number of tables used refers to the number of relations used.

2. Number of nested queries. A nested query is an SQL SELECT statement that is put in the
predicate of any other SQL statement. Using nested query implies that the query complexity
increases significantly for each deeper level. In this thesis, we ignore the level of the nested
query to calculate this measure, but rater calculating the number of SELECT statement
inside the main SELECT statement. We also treat function(s) used in a query as a nested
query.

3. Number of union queries. This measure counts the number of UNION operation used in a
query. The more it is used, the higher the complexity of a query.

4. The number of joins used. This measure counts the number of join operation in a query.
The number of relations used in the FROM statement of a query implies the number of joins
used. However, a relation might not appear in the FROM statement, e.g. when a function
that uses tables is called or nested queries that use other relations. Therefore, we estimate
the value of this measure as the value of measure number of tables used.

Chapter 5 Test and Validation

57

To execute the evaluation, each query of the performance measures in Table 9 will be observed
to determine the value of four measures above. The calculated values also considers if the
performance measures use condition in their specification. The result of this observation is
given in Table 13.

Table 13 Query complexity of performance measures

Perforance
Measure

Number of
tables used

Number of
nested queries

Number of
union queries

The number of
joins used

Number of patient 1+p+d+e+i d+e+i 0 1+p+d+e+i
Number of
execution of an
intervention

2+ p+d+e+i 1+d+e+i 0 2+ p+d+e+i

Number of event
occurrence

2+ p+d+e+i 1+d+e+i 0 2+ p+d+e+i

Data elements
value

2+ p+d+e+i 1+d+e+i 0 2+ p+d+e+i

Time difference
between two
interventions

2+ p+d+e+i 1+d+e+i 0 2+ p+d+e+i

Throughput time of
pathway

1+ p+d+e+i d+e+i 0 1+ p+d+e+i

Waiting time of an
intervention

2+ p+d+e+i 1+d+e+i 0 2+ p+d+e+i

Execution time of
an intervention

2+ p+d+e+i 1+d+e+i 0 2+ p+d+e+i

Note for Table 13:

p : number of condition item specified in Pathway condition
d : number of condition item specified in Data element condition
e : number of condition item specified in Event condition
i : number of condition item specified in Intervention condition

From the table above we can conclude that the complexity of the queries of all performance
measures increases linearly along with the number of conditions specified in the measure
(except for number of union queries). Note that the values above are the values for single
measure. If a performance indicator involves multiple measures, we can easily estimate the
complexity of the indicator by adding up the complexity values of each measure involved.

The developed formalization does not eliminate the complexities of the queries in the context of
the system. However, from the user perspective, the complexities are not perceived since they
are handled by the system in the background, i.e. zero complexity with respect to four query
complexity measures above. In conclusion, the formalization increases the degree of
accomplishment of measuring performance, thus increase the level of functional
appropriateness.

Chapter 5 Test and Validation

58

5.3 Other Metrics
In this section, the evaluation of the other selected metrics is discussed.

Functional completeness

This metric determines the degree to which the set of functions of the product covers all the
specified tasks and user objectives. The analysis of the Leuven compass concludes that the
formalization supports the measurement of all domains with the exception for team indicators
and limitation for service indicator. Based on the definition of team indicator, measuring
indicators belong to this type is not relevant in the context of care pathway process model. The
pathway process model focuses on the patients’ journey and does not focus on the relationship
among team members. For service indicator, the formalization has a limited support, i.e. it only
supports a simple single-question survey to rate the care services that can be implemented as a
data element.

Adaptability

This metric determines the degree to which a system can effectively and efficiently be adapted
for different or evolving hardware, software or other operational or usage environments. Here
we discuss about the degree of adaptability with respect to the selected development
environments, i.e. programming language, database, and jBPM. By using Java as the
development language of the system, it is expected that the level of adaptability is increased;
since it can be installed in any environments with Java Virtual Machine is installed. jBPM allows
the users to store the execution log in any major relational DBMS. However, since each DBMS
has their specification for data type, the developed system is dependent to the selected
database, i.e. PostgreSQL. A change in the database preference will need to modify the code and
small part of the queries, even though jBPM uses similar schema for its execution log for all
DBMS. Regarding jBPM, the BPMS is continuously developed and improved. If the newer
versions uses similar schema for its execution log, we can say that the system is quite adaptable.

Modularity

This metric determines the degree to which a system is composed of discrete components such
that a change to one component has minimal impact on other components. From the class
diagram of the formalization module (Figure 23), we observe two classes that are extendable,
i.e. class Function and class ConditionItem. With this structure, we can extend the formalization
by adding new functions without influencing the existing ones, thus increasing the level of
modularity. The class ConditionItem is not necessarily extended with new classes since the
number of condition is fixed. Adding new measures will need to modify class Measure, i.e. by
adding some code segments in the class definition, since measures are defined statically in the
code (i.e. not a sub-class per measure). However, we consider that it does not have significant
impact on the modularity of the system.

Chapter 5 Test and Validation

59

5.4 Evaluation of Formalization Criteria
The answer to the expected criteria of formalization in the research objective is explained as
follows.

Comprehensive

The analysis shows that the formalization can facilitate all domains in the Leuven compass
except one dimension, i.e. Team dimension. This is due to the definition of team dimension
given by the guideline that measures the effectiveness of multidisciplinary team in doing their
job. Since the care pathway workflow represents patient journey, the data for this indicator is
not relevant to be collected in every pathway instance. Testing the formulation on KPI for
Unstable Angina also shows potential use with respect to the Leuven compass.

Expressive

The adoption of arithmetic expression ensures high level of freedom for users to define
indicator formula. Regarding expressiveness of the formalization in depicting the problem
domain, eight measures identified are able to formulate most of tested indicators.

Generic

This criterion needs further test, since the evaluation involves only one process. However, by
seeing the ability of the proposed formalization in describing indicator for weaning process and
unstable angina, it is expected that the formalization can also support other pathways.

Intuitive

This criterion is related to the usability aspect of formalization and needs further test on the
persons who will actually use the formalization. Due to time limitation, the test is not
performed.

Executable

By developing a processor for the formalization, i.e. parser, query constructor and evaluator, it
is executable against jBPM execution log and can be shown in the performance measurement
system.

Chapter 6

Conclusion

This chapter discusses the conclusion drawn from the execution of research methodology. First
sub chapter will provide the answer to the research objective and the research question, and
discuss the contribution of this thesis. Second, it will discuss about the limitation of the
proposed solution. Third, it will provide the direction for further research. This chapter closes
by brief discussion about software technologies related to the solution.

6.1 Research Conclusion and Contribution
The answer to the formulated research question is explained as follows.

Research question: Given a care pathway executable in a BPMS, i.e. jBPM, how can its
performance indicators be formalized and calculated if The Leuven Clinical Pathway Compass is
used as the guideline?

The formalization is achieved by introducing a new notation representing care pathway
performance indicator. It is inspired by the expressiveness of arithmetic expression in defining
formula. The indicator expression combines eight types of performance measures, i.e. number
of patient, number of execution of an intervention, number of event occurrence, data elements
value, time difference between two interventions, throughput time of pathway, waiting time of
an intervention, and execution time of an intervention. In addition to those measures, the
constraints to the measures are also identified, i.e. four types of conditions: pathway condition,
data element condition, intervention condition, and event condition. Both performance
measures and conditions are identified based on the analysis of jBPM and The Leuven Clinical
Pathway Compass. jBPM is the BPMS being used to test the implementation of care pathway.

To be able to calculate performance indicator, the formalization is brought into executable
program module that can perform query to jBPM execution log. It contains parsers, query
formulator and arithmetic evaluator. This formalization module is then used in the developed
performance measurement system.

To evaluate the quality of the proposed formalization, a process model representing care
pathway is used, i.e. weaning protocol. The evaluation result of functional correctness shows
that the formalization can support performance measurement of weaning protocol and gives
the expected results, even though one indicator cannot be modeled. This is due to the
subjectivity in process modeling in term of style, strategy, and goal. For example, an artifact in
the textual process description may be interpreted in many ways and is modeled in different
ways e.g. as a data element or a condition in the gateways.

Chapter 6 Conclusion

61

The evaluation of functional appropriateness concludes that the formalization can reduce the
complexity of task perceived by the users in measuring performance. It is also concluded the
clinical, process and financial domain in the Leuven compass are supported by the formalization
while service domain is limitedly supported and team domain is not supported. From five
criteria defined in the research objective, a criterion, i.e. Intuitive, needs further evaluation since
it is related to the learnability aspect of the notation and requires user’s interaction.

In general, the research objective is achieved. The contribution of this thesis is summarized as
follows.

This project provides a new approach to formalize performance indicator and provides a
performance measurement system for care pathway that is implemented in a BPMS, i.e. jBPM.
Previously, it is difficult and time consuming to measure pathway performance due to difficulty
in formulating performance indicator, complexity issues in the data source, and the availability
of measurement system. Using the proposed formalization, the complexity is reduced, i.e. the
users with limited programming or database knowledge are expected to be able to measure care
pathway performance. This project demonstrates that continuous follow up on care pathway
implementation is feasible in practice using the proposed framework.

6.2 Limitations
This research project has several limitations.

1. The identified measures cannot formulate relationship between two or more data elements
of a pathway instance. This limitation is observed when the project is in the evaluation
phase. For example, in weaning process P/F ratio of a patient can calculated by PO2/FiO2
(Boere, 2013), i.e. it is derived from two data elements. A new measure that enables
calculation between data elements in one instance is open for development.

2. The identified measures cannot formulate time difference between two value changes of a
data element. This is found in indicator time until patient reach 36° C in weaning process.
Seeing jBPM log structure, especially in table variableinstancelog, a new measure for
handling this issue is also open for development.

3. The requirement analysis is based only on literature review and does not involve future
users. The test also uses data generated by manual simulation in jBPM. A further
collaboration with medical parties is required to test the usability aspect of the proposed
formalization.

4. The formalization translates conditions into AND conjunction which means that all query
constraints must be satisfied. It is possible that some indicators use OR operation.

5. This project assumes that the users understand the declaration of global variables in the
pathway model. A documentation explaining the mapping between local and global
variables and their corresponding tasks can be created to assist the users in selecting data
elements; to declare data element condition or data element value measure.

Chapter 6 Conclusion

62

6.3 Future Research
Based on the research conclusion and limitation, the directions for future research are
presented.

1. The limitations imply that the formalization is open for further extension, i.e. identification
of additional performance measures and their implementation. Future research can also
test the formalization in different BPMS environment, to see whether the classification of
measures and conditions are applicable in different BPM systems. A better (computer)
language processor library such as ANTLR can be used to process the grammar.

2. The formalization is possible to be implemented as a module in Dashbuilder, since it
provides good visual reporting capability.

3. The formalization of sample indicators being used in the test (KPI for unstable angina and
weaning process) assumes that some information in the description are implemented e.g.
as data elements (due to process modeling subjectivity). Future research can investigate
the process modeling guideline for care pathway with the goal to measure KPI.

4. The future research can investigate the possibility to integrate the proposed formalization
of KPI with executable process model, from creating indicator expression until the
presentation of the result.

6.4 Related Software Technology
Several software technologies are discussed to see the relationship with the proposed
formalization and to identify the opportunity for improvement.

Dashbuilder

This web based tool provides performance monitoring and reporting capability to jBPM starting
from version 6.0. The users are allowed to define their own KPI in the form of SQL query to
jBPM database or any databases they would like to use and the system will show the result
visually in the form of charts, tables, etc. In addition, it also accepts comma separated values
(CSV) files as the datasource. The tool package that comes with jBPM is equipped with basic
queries to table ProcessInstanceLog and BAMTaskSummary.

However, this tool only provides means, but does not solve complexity issues of the queries. The
dashboard developers still have to learn the structure of the jBPM logs and how to formulate the
queries. The proposed formalization has a potential to be implemented as a module in
Dashbuilder to enable care pathway performance measurement. By combining them, it is
expected that the users will have minimum efforts in defining KPI and benefit from the
visualization power of Dashbuilder.

Drools Rule Language (DRL)

DRL is a language to define rule in Drools, a Business Rule Management System under the same
project umbrella with jBPM. We are interested in discussing this language since there are some
constructs in DRL that are able to filter a collection of objects and perform operations on it. This
has similar scenario with the proposed formalization in which the collection of objects is the
collection of pathway instance and the operations are implemented in some aggregation

Chapter 6 Conclusion

63

functions. For more details about Drools, please refer to Drools Documentation (The JBoss
Drools team, 2013).

A sample rule representing this issue is given below1.

rule "Number of process instances above threshold"
when
 Number(nbProcesses : intValue > 1000)
 from accumulate(
 e:ProcessStartedEvent(processInstance.processId ==

 "com.sample.order.OrderProcess")
 over window:size(1h),
 count(e))
then
 System.err.println("WARNING: Number of order processes in the last
hour above 1000: " + nbProcesses);
end

The rule above can be interpreted as: When the number of started process for processId =
"com.sample.order.OrderProcess" within last one hour is greater than 1000, print a warning
message. In this case, the collection of object is of type ProcessStartedEvent (the started
processes) and the filter is the processId. “accumulate” enables the rule to iterate over a
collection of objects, executing custom actions, and return a result object at the end. Function
“count” is one of several built-in functions for accumulate that enumerates the number of items
in the collection. This declaration resembles (incomplete) declaration of indicator:
COUNT(“measures=’num_of_patient’;pathway_name=’pathway name’;”)

in the proposed notation.

Regardless the difference in the purpose of language between DRL and the proposed notation,
some discussions can still be made about those two.

Drools works under object orientation paradigm, i.e. the facts that are stored in Drools’ working
memory are objects with attribute(s). It is possible that the collection of objects is of many
classes (or type in DRL terminology) and a class has attribute(s) of other class. In this project,
the items processed are records in multiple related tables in a database. At a glance, we can
associate class with tables, class’ attributes with table’s columns. However, further
investigation is required to see how class relationship is implemented in Drools. This
investigation is important to assess whether it is possible (and if possible, easy) to formulate
constraints in the query to the collection of object involving multiple classes (i.e. join operation
in SQL) in DRL as required by formulation of KPI. In comparison to the proposed notation, the
constraints are explicitly specified in four types of conditions.

For persons with limited programming knowledge, DRL might be difficult to understand.
However, it has an “expanders” that allows the language to morph to user’s problem domain,
either in natural or domain specific language (The JBoss Drools team, 2013). The proposed
notation is already in the form that represents care pathway domain.

1 Taken from http://docs.jboss.org/jbpm/v5.1/userguide/ch16.html

64

Bibliography
Aboriginal Health & Medical Research Council. (2013). A literature review about indicators and

their uses. Aboriginal Health & Medical Research Council. Sydney, Australia.

Aledo, V., Ballester, M., Franco, E., Alcaraz, A., Baldo, M., Prats, M., . . . Albasini, J. (2011).
Evaluation of Clinical Pathway to Improve Colorectal Cancer Outcomes. American
Journal of Medical Quality, 396-404.

Aledo, V., Pastor, B., Arenas, M., Alcaraz, A., Soto, A., Perello, J., . . . Albasini, J. (2008). Evaluation
and Monitoring of The Clinical Pathway for Thyroidectomy. The American Surgeon, 29-
36.

Boere, J.-J. (2013). An analysis and redesign of the ICU weaning process using data analysis and
process mining (Master's Thesis). Eindhoven: Eindhoven University of Technology.

Brink, H. v., Leek, R. v., & Visser, J. (2007). Quality Assessment for Embedded SQL. Seventh IEEE
International Working Conference on Source Code Analysis and Manipulation (pp. 163 -
170). Paris: IEEE.

Caputo, E., Corallo, A., Damiani, A., & Passiante, G. (2010). KPI Modeling in MDA Perspective.
International conference on On the move to meaningful internet systems (pp. 384-393).
Berlin: Springer.

Constant Field Values. (2014, July). Retrieved from KIE API 6.0.1.Final:
http://docs.jboss.org/jbpm/v6.0.1/javadocs/constant-values.html

Daniyal, A., Abidi, S., & Abidi, S. (2009). Computerizing Clinical Pathways: Ontology-Based
Modeling and Execution. 22nd International Congress of the European-Federation-for-
Medical-Informatics on Medical Informatics Europe (MIE). Sarajevo, BOSNIA & HERCEG.

Decker, M. (1991). The Development of Indicators. Infection Control and Hospital Epidemiology,
490-492.

Deloitte. (2014). 2014 Global health care outlook. Shared challenges, shared opportunities.
Deloitte Touche Tohmatsu Limited.

Donabedian, A. (1988). The quality of care: How can it be assessed? Journal of the American
Medical Association, 1743-1748.

Du, G., Jiang, Z., & Diao, X. (2008). The integrated modeling and framework of Clinical Pathway
Adaptive Workflow Management System based on Extended Workflow-nets (EWF-nets).
IEEE International Conference on Service Operations and Logistics and Informatics, 1&2
(pp. 914-918). Beijing: IEEE.

Du, G., Jiang, Z., Diao, X., Ye, Y., & Yao, Y. (2009). Modelling, Variation Monitoring, Analyzing,
Reasoning for Intelligently Reconfigurable Clinical Pathway. IEEE International
Conference on Service Operation, Logistics and Informatics (pp. 85-90). Chicago: IEEE.

Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. A. (2013). Fundamentals of Business Process
Management. Springer.

65

European Pathway Association. (2014, June). Retrieved from http://www.e-p-a.org/

Franceschini, F., Galetto, M., & Maisano, D. (2007). Management by Measurement: Designing Key
Indicators and Performance Measurement Systems. Berlin: Springer.

H2 Database. (2014, July). Retrieved from H2 Database:
http://www.h2database.com/html/faq.html#reliable

Harmon, P. (2007). Exploring BPMS with Free or Open Source Products. Retrieved from
BPTrends: Business Process Trencds:
http://www.bptrends.com/publicationfiles/advisor200707311.pdf

Haspeslagh, M., Vanhaecht, K., De Witte, K., Sermeus, W., van de Waeter, W., & Serra, F. (2002).
Ontwikkelen en testen van een instrument voor het meten van teameffectiviteit in het
kader van klinische paden. Acta Hospitalia, 117-122.

Hornix, P. (2007). Performance Analysis of Business Processes through Process Mining (Master's
Thesis). Eindhoven: Eindhoven University of Technology.

Hu, Z., Li, J.-s., Yu, H.-y., Zhang, X.-g., Suzuki, M., & Araki, K. (2009). Modeling of Clinical Pathways
Based on Ontology. 2009 IEEE INTERNATIONAL SYMPOSIUM ON IT IN MEDICINE &
EDUCATION (pp. 1170-1174). Jinan, PEOPLES R CHINA: IEEE.

Hyett, K., Podosky, M., Santamaria, N., & Ham, J. (2007). Valuing variance: the importance of
variance analysis in clinical pathways utilisation. AUSTRALIAN HEALTH REVIEW vol 31
issue 4, 565-570.

IBM. (2014, July). IBM. Retrieved from SQL Guide:
http://publib.boulder.ibm.com/infocenter/soliddb/v6r3/index.jsp?topic=/com.ibm.swg
.im.soliddb.sql.doc/doc/tables.rows.and.columns.html

Interface ProcessInstance. (2014, July). Retrieved from KIE API 6.0.1.Final:
http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessInst
ance.html

ISO. (2011). ISO/IEC 25010:2011 Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) - System and software quality models.

iso25000.com. (2014, October). Retrieved from ISO 25000 Software Product Quality:
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

JBoss Developer Forum. (2014, July). Retrieved from JBoss Developer Forum:
https://community.jboss.org/thread/242050

jBPM - JBoss Community. (2014, March). Retrieved from jBPM - JBoss Community:
http://jbpm.jboss.org/

jBPM Human Tasks. (2014, March). Retrieved from jBPM 6.0.1 Documentation:
http://docs.jboss.org/jbpm/v6.0.1/userguide/jBPMTaskService.html

jBPM Installer. (2014, May). Retrieved from jBPM Documentation:
http://docs.jboss.org/jbpm/v6.1/userguide/jBPMInstaller.html

jBPM Overview. (2014, March). Retrieved from jBPM 6.0.1 Documentation:
http://docs.jboss.org/jbpm/v6.0.1/userguide/jBPMOverview.html

66

jBPM Persistence and Transactions. (2014, April). Retrieved from jBPM 6.0.1 Documentation:
http://docs.jboss.org/jbpm/v6.0.1/userguide/jBPMPersistence.html

jBPM Processes. (2014, March). Retrieved from jBPM 6.0.1 Documentation:
http://docs.jboss.org/jbpm/v6.0.1/userguide/jBPMBPMN2.html

Lebas, M. (1995). Performance measurement and performance management. International
Journal of Production Economics, 23-35.

Lerner, B., Christov, S., Osterweil, L., Bendraou, R., Kannengiesser, U., & Wise, A. (2010).
Exception Handling Patterns for Process Modeling. IEEE Transactions on Software
Engineering vol 36 issue 2, 162-183.

Mainz, J. (2003). Defining and classifying clinical indicators for quality improvement.
International Journal for Quality in Health Care, vol 15 no 6 pp 523-530.

March, J., & Sutton, R. (1997). Organizational Performance as a Dependent Variable.
ORGANIZATION SCIENCE vol 8 issue 6, 698-706.

Mathwords. (2014, August). Retrieved from Mathwords: Expression:
http://www.mathwords.com/e/expression.htm

Meenakshy, P. (2013). A Performance Measurement Framework for Clinical Pathways Monitoring
(Master's Thesis). Eindhoven: Eindhoven University of Technology.

Mernik, M., Heering, J., & Sloane, A. (2005). When and How to Develop Domain-Specific
Languages. ACM Computing Surveys, Vol. 37, No. 4, 316–344.

Merriam Webster Dictionary. (2014, June). Retrieved from Merriam Webster Dictionary:
http://www.merriam-webster.com/dictionary/performance

Object Management Group. (2011). Business Process Model and Notation (BPMN) Version2.0.
Object Management Group.

Object Management Group. (2014, 07). Retrieved from BPMN Specification:
http://www.bpmn.org

planet.jboss.org. (2014, July). Retrieved from jBPM 6 - store your process variables anywhere:
http://planet.jboss.org/post/jbpm_6_store_your_process_variables_anywhere

PostgreSQL Connections and Authentication. (2014, July). Retrieved from PostgreSQL:
http://www.postgresql.org/docs/9.3/static/runtime-config-connection.html#GUC-
LISTEN-ADDRESSES

PostgreSQL pg_hba.conf. (2014, July). Retrieved from PostgreSQL:
http://www.postgresql.org/docs/9.3/static/auth-pg-hba-conf.html

Schrijvers, G., van Hoorn, A., & Huiskes, N. (2012). The care pathway: concepts and theories: an
introduction. International Journal of Integrated Care, Vol 12.

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database System Concepts, Sixth Edition.
New York: McGraw-Hill.

Taylor, A. (2010). SQL for Dummies 7th edition. Indianapolis: Wiley Publishing.

The JBoss Drools team. (2013). Drools Documentation Version 6.0.1.Final.

67

van Gerven, E., Vanhaecht, K., Deneckere, S., Vleugels, A., & Sermeus, W. (2010). Management
challenges in care pathways: conclusions of a qualitative study within 57 health-care
organizations. International Journal of Care Pathways, 142-149.

van Renswouw, W. (2013). From paper-based care pathway to executable workflow process
model (Master's Thesis). Eindhoven: Eindhoven University of Technology.

Vanhaecht, K., & Sermeus, W. (2003). The Leuven Clinical Pathway Compass. Journal of
Integrated Care Pathways, 2-7.

Vanhaecht, K., Panella, M., van Zelm, R., & Sermeus, W. (2010). An overview on the history and
concept of care pathways as complex interventions. International Journal of Care
Pathways, 117-123.

Vanhaecht, K., van Gerven, E., Deneckere, S., Lodewijckx, C., Janssen, I., van Zelm, R., . . . Sermeus,
W. (2012). The 7-phase method to design, implement and evaluate care pathways. The
International Journal of Person Centered Medicine Vol 2 Issue 3, 341-351.

Vanhaecht, K.; De Witte, K.; Sermeus, W. (2007). The impact of clinical pathways on the
organisation of care processes. Leuven: ACCO.

Vermeulen, L. (2013). A Process Modeling Method for Care Pathways (Master's Thesis).
Eindhoven: Eindhoven University of Technology.

Volzer, H. (2010). An Overview of BPMN 2.0 and Its Potential Use. 2nd International Workshop
on Business Process Modeling Notation. Potsdam: Springer-Verlag Berlin, Germany.

Wakamiya, S., & Yamauchi, K. (2006). A new approach to systematization of the management of
paper-based clinical pathways. Computer Methods and Programs in Biomedicine, 169-
176.

Wakamiya, S., & Yamauchi, K. (2009). What are the standard functions of electronic clinical
pathways? International Journal of Medical Informatics, 543-550.

Walker, R. D., Howard, M. O., Lambert, M. D., & Suchinsky, R. (1994). Medical practice guidelines.
West J Med, 39-44.

Wohed, P., Russel, N., ter Hofstede, A., Andersson, B., & van der Aalst, W. (2008). Open Source
Workflow: A Viable Direction for BPM? Extended Abstract. 20th International Conference
on Advanced Information Systems Engineering (pp. 583-586). Montpellier: Springer-
Verlag Berlin.

Ye, Y., Jiang, Z., Diao, X., Yang, D., & Du, G. (2009). An ontology-based hierarchical semantic
modeling approach to clinical pathway workflows. Computers in Biology and Medicine,
722-732.

68

APPENDIX A List of BPMN elements

supported by jBPM 6

A list of BPMN elements supported by jBPM 6.0.1 and their description (Object Management
Group, 2011) can be seen in Table 14. The list and the symbols are obtained from KIE
Workbench’s process designer.

Table 14 BPMN elements supported by jBPM 6

Task

User
A User Task is a Task which is performed by human with the assistance of a software
application and is scheduled through a task list manager.

Service
A Service Task is a Task that uses some sort of service, which could be a Web service or an
automated application.

Send
A Send Task is a Task that is designed to send a Message to an external Participant
(relative to the Process). Once the Message has been sent, the Task is completed.

Business Rule
A Business Rule Task provides a mechanism for the Process to provide input to a Business
Rules Engine and to get the output of calculations that the Business Rules Engine might
provide.

Receive
A Receive Task is a simple Task that is designed to wait for a Message to arrive from an
external Participant (relative to the Process). Once the Message has been received, the
Task is completed.

Script
A Script Task is executed by a business process engine. The modeler or implementer
defines a script in a language that the engine can interpret. When the Task is ready to
start, the engine will execute the script. When the script is completed, the Task will also be
completed.

Manual
A Manual Task is a Task that is expected to be performed without the aid of any business
process execution engine or any application.

Subprocess

Reusable
This subprocess calls a pre-defined Process.

Multiple Instance
This subprocess allows for creation of a desired number of Activity instances. The
instances may execute in parallel or may be sequential.

Embedded
A nested (or embedded) Sub-Process is an activity that shares the same set of data as its parent
process

69

Ad-Hoc
An Ad-Hoc Sub-Process is a specialized type of Sub-Process that is a group of Activities
that have no REQUIRED sequence relationships.

Event
An Event Sub-Process is a specialized Sub-Process that is used within a Process (or Sub-
Process). An Event Sub-Process is not part of the normal flow of its parent Process—there
are no incoming or outgoing Sequence Flows.

Start Event

None
The None Start Event does not have a defined trigger.

Conditional
This type of event is triggered when a condition such as “S&P 500 changes by more than
10% since opening”, or “Temperature above 300C” become true.

Message
A Message arrives from a Participant and triggers the start of the Process.

Timer
A specific time-date or a specific cycle (e.g., every Monday at 9am) can be set that will
trigger the start of the Process.

Escalation
Escalation Event Sub-Processes implement measures to expedite the completion of a
business Activity, should it not satisfy a constraint specified on its execution (such as a
time-based deadline). The Escalation Start Event is only allowed for triggering an in-line
Event Sub- Process.

Error
The Error Start Event is only allowed for triggering an in-line Event Sub- Process.

Compensation
The Compensation Start Event is only allowed for triggering an in-line Compensation
Event Sub-Process. This type of Event is triggered when compensation occurs.

Signal
A Signal arrives that has been broadcast from another Process and triggers the start of
the Process.

End Event

None
The None End Event does not have a defined result.

Cancel
This type of End indicates that the Transaction should be cancelled and will trigger a
Cancel Intermediate Event attached to the Sub-Process boundary.

Message
This type of End indicates that a Message is sent to a Participant at the conclusion of the
Process.

Escalation
This type of End indicates that an Escalation should be triggered. Other active threads
are not affected by this and continue to be executed.

Error
This type of End indicates that a named Error should be generated. All currently active
threads in the particular Sub-Process are terminated as a result.

Compensation
This type of End indicates that compensation is necessary. If an Activity is identified, and
it was successfully completed, then that Activity will be compensated.

Signal
This type of End indicates that a Signal will be broadcasted when the End has been
reached.

70

Terminate
This type of End indicates that all Activities in the Process should be immediately ended.
This includes all instances of multi-instances. The Process is ended without compensation
or event handling.

Catching Intermediate Event

Message
This event is triggered when a Message is received.

Timer
In normal flow the Timer Intermediate Event acts as a delay mechanism based on a
specific time-date or a specific cycle (e.g., every Monday at 9am) can be set that will
trigger the Event.

Escalation
This event reacts on the escalation. It needs to be attached to the boundary of an
activity.

Conditional
This type of Event is triggered when a condition becomes true.

Error
A catch Intermediate Error Event can only be attached to the boundary of an Activity

Compensation
Compensation handling in case of partially failed operation.

Signal
This type of Event is used for receiving Signals

Throwing Intermediate Event

Message
This event will send a Message.

Escalation
This event will raise an Escalation.

Signal
This type of event is used for sending Signals

Gateway

Data-based Exclusive (XOR)
A diverging Exclusive Gateway (Decision) is used to create alternative paths within a
Process flow, only one of the paths can be taken.
A converging Exclusive Gateway is used to merge alternative paths

Event-based
The Event-Based Gateway represents a branching point in the Process where the
alternative paths that follow the Gateway are based on Events that occur, rather than the
evaluation of Expressions using Process data (as with an Exclusive or Inclusive Gateway).

Parallel
A Parallel Gateway is used to synchronize (combine) parallel flows and to create parallel
flows.

Inclusive
A diverging Inclusive Gateway (Inclusive Decision) can be used to create alternative but
also parallel paths within a Process flow. Unlike the Exclusive Gateway, all condition
Expressions are evaluated. The true evaluation of one condition Expression does not
exclude the evaluation of other condition Expressions.. However, it should be designed so
that at least one path is taken. A converging Inclusive Gateway is used to merge a
combination of alternative and parallel paths

71

Service Task

Log
A jBPM specific service task

Email
A jBPM specific service task

Data Object

Data Object
Data Objects provide information about what Activities require to be performed and/or
what they produce

Swimlane

Lane
Lanes are used to organize and categorize Activities.

Artifact

Group
A Group is a grouping of graphical elements that are within the same Category. This type
of grouping does not affect the Sequence Flows within the Group. Categories can be used
for documentation or analysis purposes. Groups are one way in which Categories of
objects can be visually displayed on the diagram.

Text Annotation
Text Annotations are a mechanism for a modeler to provide additional text information
for the reader of a BPMN Diagram

Connecting Object
 Sequence Flow

A Sequence Flow is used to show the order that Activities will be performed in a Process
and in a Choreography.

 Association (un-directed)
An Association is used to link information and Artifacts with BPMN graphical elements.
Text Annotations and other Artifacts can be Associated with the graphical elements.

 Association (uni-directional)
An arrowhead on the Association indicates a direction of flow, when appropriate.

72

APPENDIX B Persisting jBPM 6.1.0.CR1

historical data in PostgreSQL 9.3

To persist jBPM historical data in PostgreSQL, the steps below are followed. This instruction is
derived from jBPM documentation (jBPM Installer, 2014). Note that this instruction does not
cover all installation steps for jBPM, i.e. Java and Ant settings. Full instruction can be found in
the documentation (jBPM Installer, 2014).

1. Create a username and password in PostgreSQL, e.g. username=jbpm, password=jbpm.
Note that the username should be able to create database and create table.

2. Using username created in step #1, create a database, for example jbpm

3. In jBPM installation folder (will be called <jbpm_home> from now), open build.properties.
Comment the following lines to disable H2:
H2.version=1.3.170

db.name=h2

db.driver.jar.name=${db.name}.jar

db.driver.download.url=http://repo1.maven.org/maven2/com/

h2database/h2/${H2.version}/h2-${H2.version}.jar

And un-comment the following lines to enable PostgreSQL:
db.name=postgresql

db.driver.module.prefix=org/postgresql

db.driver.jar.name=${db.name}-jdbc.jar

db.driver.download.url=https://repository.jboss.org/nexus/content/repositories
/thirdparty-uploads/postgresql/postgresql/9.1-902.jdbc4/postgresql-9.1-
902.jdbc4.jar

The script above will install PostreSQL jdbc driver as JBoss module.

4. Open <jbpm_home>/db/jbpm-persistence-JPA2.xml. Change the value for property
hibernate.dialect to PostgreSQL dialect as follows.
<property name="hibernate.dialect"
value="org.hibernate.dialect.PostgreSQLDialect" />

5. Create a file and give it name postgresql-module.xml and put it in <jbpm_home>/db/. Write
the following in the file.

<module xmlns="urn:jboss:module:1.0" name="org.postgresql">
 <resources>
 <resource-root path="postgresql-jdbc.jar"/>

73

 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

6. In <jbpm_home> , open all standalone-*.xml files. Find <datasources> element. Replace the
entries inside <datasources> and </datasources> with the following.

<datasource jndi-name="java:jboss/datasources/jbpmDS" pool-
name="PostgreSQLDS" enabled="true" use-java-context="true">
 <connection-url>jdbc:postgresql://localhost:5432/jbpm</connection-url>
 <driver>postgresql</driver>
 <pool></pool>
 <security>
 <user-name>jbpm</user-name>
 <password>jbpm</password>
 </security>
</datasource>
<drivers>
 <driver name="postgresql" module="org.postgresql">
 <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-datasource-
class>
 </driver>
</drivers>

<connection-url> specifies the address of database being used. In the example above the
database name is jbpm and it is located in localhost:5432. If you want to use different
database url/name, username and password, change them in <connection-url>,<user-
name> and <password> respectively. This should be similar to what was created in step
#1 and #2.

7. If you already install jBPM (with the same <jbpm_home>) prior to modifying files above, it
is recommended that you reinstall jBPM with the following commands in the given order.

ant stop.demo (to stop jBPM, if it is running)

ant clean.demo (to uninstall jBPM)

ant install.demo.noeclipse (to install jBPM without Eclipse IDE extension

ant start.demo.noeclipse (to start jBPM demo without Eclipse IDE)

8. To check whether JDBC connection to database can be made successfully, open jBPM
administrator console in http://localhost:8080/console, It will be redirected to another page
(http://localhost:9990/console/App.html) and ask for username and password for
administrator. If you have not created administrator account, create one by executing
<jbpm-home>/jboss-as-7.1.1.Final/bin/add-user.bat. For example can be seen in Figure 27.

http://localhost:8080/console
http://localhost:9990/console/App.html

74

Figure 27 Create jBPM management user

In administrator console, go to Profile (top right) -> Connector -> Datasources. In the JDBC
Datasources page, click on the data source name we created using this instruction, i.e.
PostgreSQLDS with JNDI name java:jboss/datasources/jbpmDS(see #6). Click on tab
Connection. Click button Test Connection. See the message if JDBC connection is successful.

9. If the connection is successful, open the default address for jBPM demo:
http://localhost:8080/jbpm-console and login using default username & password, e.g.
username: krisv password: krisv. After you log in, the tables required will be created
automatically in the database. Check the created tables using PostgreSQL pgAdmin

10. Some possible errors that might occur are: not able to make JDBC connection or cannot
start jBPM (failed deployment, indicated by “.failed” file(s) is created in
<jbpm_home>/jboss-as-7.1.1.Final/standalone/deployments). To solve this problem, try
these steps.

a. Check standalone-*.xml files, whether the entries, especially in data source section are
correct. Single unnecessary character will cause error.

b. Check if your PostgreSQL service is running

c. Check whether you have created database as specified in standalone-*.xml files

d. Check whether PostgreSQL is set to allow TCP/IP remote connections. Default
installataion of PostgreSQL does not allow remote connection. To allow PostgreSQL for
remote connections, do the following.
Open pg_hba.conf (File -> Open pg_hba.conf), using PostgreSQL pgAdmin. The file is
located in <PostgreSQL install folder>/data. You can also modify the file directly using
text editor. Add the entries for example as shown in Figure 28.

Figure 28 PostgreSQL pg_hba.conf

http://localhost:8080/jbpm-console

75

The first line of the entries means that PostgreeSQL allows that the connection attempt
is made using TCP/IP, for all database, for all users, from client address 127.0.0.1 (also
known as localhost). 32 is the CIDR mask length for IP mask 255.255.255.255.
Complete options for this setting can be found in (PostgreSQL pg_hba.conf, 2014).

Remote TCP/IP connections are only possible with appropriate value for
listen_adresses configuration parameter. You can set it in postgresql.conf file (similar
step with pg_hba.conf). In this master thesis we set the value to * which means that the
server listens for connections from client applications in all available IP interfaces (see
Figure 29). Complete options for this parameter can be found in (PostgreSQL
Connections and Authentication, 2014). Restart your PostgreSQL service after doing all
modifications above.

Figure 29 Setting listen_addresses in postgresql.conf

76

APPENDIX C Description of jBPM

history logs
C.1. ProcessInstanceLog (jBPM Persistence and Transactions,

2014)
Table 15 ProcessInstanceLog table fields definition

Field Description Nullable
id The primary key and id of the log entity NOT NULL
duration Actual duration of this process instance since its

start date

end_date When applicable, the end date of the process
instance

externalId Optional external identifier used to correlate to
some elements - e.g. deployment id

user_identity Optional identifier of the user who started the
process instance

outcome The outcome of the process instance, for
instance error code in case of process instance
was finished with error event

parentProcessInstanceId The process instance id of the parent process
instance if any

processid The id of the process
processinstanceid The process instance id NOT NULL
processname The name of the process
processversion The version of the process
start_date The start date of the process instance
status The status of process instance that maps to

process instance state

C.2. NodeInstanceLog (jBPM Persistence and Transactions,
2014)

Table 16 NodeInstanceLog table fields definition

Field Description Nullable
id The primary key and id of the log entity NOT NULL
connection Actual identifier of the sequence flow that led to

this node instance

log_date The date of the event
externalId Optional external identifier used to correlate to

77

some elements - e.g. deployment id
nodeid The node id of the corresponding node in the

process definition

nodeinstanceid The node instance id
nodename The name of the node
nodetype The type of the node
processid

The id of the process that the process instance is
executing

processinstanceid The process instance id NOT NULL
type The type of the event (0 = enter, 1 = exit) NOT NULL
workItemId Optional - only for certain node types - The

identifier of work item

C.3. VariableInstanceLog (jBPM Persistence and Transactions,
2014)

Table 17 VariableInstanceLog table fields definition

Field Description Nullable
id The primary key and id of the log entity NOT NULL
externalId Optional external identifier used to correlate to

some elements - e.g. deployment id

log_date The date of the event
processid The id of the process that the process instance is

executing

processinstanceid The process instance id NOT NULL
oldvalue The previous value of the variable at the time

that the log is made

value The value of the variable at the time that the log
is made

variableid The variable id in the process definition
variableinstanceid The id of the variable instance

78

APPENDIX D jBPM Experiment
D.1. Test Model 1

Figure 30 Test model 1

D.2. Test model 2

Figure 31 Test model 2

D.3. Test model 3

Figure 32 Test model 3

79

D.4. Execution Result

Figure 33 Execution result of scenario 1

Figure 34 Execution result of scenario 2

Figure 35 Execution result of scenario 3

Figure 36 Execution result of scenario 4

80

APPENDIX E Exception handling

patterns

Table 18 Exception handling patterns

Pattern Description
Immediate
Fixing

When a nonnormative situation is noted, an action is taken to address the
problem that caused this situation before continuing with the remainder of the
process. This is done by representing the nonnormative situation as an
Intermediate (catch) Event attached to the boundary of a task. When an Event
with one of the specified triggers is detected, the flow will be redirected to the
Intermediate Event and continue with fixing activity(called Exception Flow)
before rejoining the normative path (Lerner, et al., 2010). The structure of this
pattern is shown in Figure 37.

Deferred
Fixing

When a nonnormative situation is noted, action must be taken to record the
situation and possibly address the situation either partially or temporarily
because full resolution is either not immediately possible or not necessary.
Similar to immediate fixing, this is implemented by representing the
nonnormative situation as an Intermediate (catch) Event attached to the
boundary of a task. The exception flow will execute temporary action and
record the problem. Later in the future of flow, after rejoining the normative
path, a gateway is used to check if full fixing is required (Lerner, et al., 2010).
The structure of this pattern is shown in Figure 39 .

Retry When a problem is detected immediately after the execution of the activity
causing the problem, an action is taken to address the problem (in the
exception flow) and then the activity that caused the problem is tried again.
This is done by representing the nonnormative situation as an Intermediate
(catch) Event attached to the boundary of a task. If the problem is not resolved,
the fixing action is repeated until the problem is resolved or retry is no longer
possible (Lerner, et al., 2010). The structure of this pattern is shown in Figure
38.

Reject This exception occurs when the process cannot continue and hence it should
end. This is done by representing the nonnormative situation as an
Intermediate (catch) Event attached to the boundary of a task. When an Event
with one of the specified triggers is detected, the flow will be redirected to the
Intermediate Event and continue with an End Event, for example a message
event (Lerner, et al., 2010). The structure of this pattern is shown in Figure 40.

Compensate This pattern is intended to address the need to determine what work must be
undone when cancelling an activity and determine what action should be
performed to compensate that undone work. In BPMN, it is done by using
Compensation construct which rolls back some of the effect of a Transaction. A

81

Transaction is based on a formal business relationship and unanimous
agreement among two or more participants and is modeled as a Sub-Process. A
Cancellation Event is attached to the Sub-Process. When this Cancellation
Event is triggered, all completed activity in the Sub-Process with Compensation
Event attached is rolled back by executing defined Cancellation Task (Lerner,
et al., 2010). The structure of this pattern is shown in Figure 41.

Figure 37 Immediate fixing pattern

Figure 38 Retry pattern

Figure 39 Deferred fixing pattern

Figure 40 Reject pattern

82

Figure 41 Compensate pattern

83

APPENDIX F Formulation of Unstable

Angina Pathway KPI
The formulation of UA KPI (Vermeulen, 2013) in conjunction with eight care pathway measures
identified is given in Table 19.

Table 19 Formulation of Unstable Angina Pathway KPI

Domain Performance
indicator

Description Formulation

Clinical Patients admitted to
the CCU or EHH

Percentage of UA
patients that are
admitted to the CCU or
EHH

Number of patient (#1) with data element
condition “admitted” = true divided by Number of
patient (#1).

Clinical Troponin measuring
(%)

Percentage of UA
patients, where
Troponin is measured

Number of patient (#1) with data element
condition “troponin_measured” = true divided by
Number of patient (#1)

Clinical Use of aspirin Percentage UA patients
where aspirin is
prescribed during
hospitalization

Number of patient (#1) with data element
condition “aspirin_prescribed” = true divided by
Number of patient (#1)

Clinical Use of tricagrelor or
clopidogrel

Percentage UA patients
where tricagrelor or
clopidogrel is
prescribed during
hospitalization

(Number of patient (#1) with data element
condition “tricagrelor_prescribed” = true +
Number of patient (#1) with data element
condition “clopodogrel_prescribed” = true)
divided by Number of patient (#1)

Clinical Use of fondaparinux or
enoxaparin

Percentage UA patients
where fondaparinux or
enoxaparin is
prescribed during
hospitalization

(Number of patient (#1) with data element
condition “fondaparinux_prescribed” = true +
Number of patient (#1) with data element
condition “enoxaparin_prescribed” = true) divided
by Number of patient (#1)

Clinical Use of enoxaparin in
patient with kidney
failure?

Percentage of UA
patients with kidney
failure where
enoxaparin is
prescribed

(Number of patient (#1) with data element
condition “kidney_failure” = true AND
“enoxaparin_prescribed” = true) divided by
Number of patient (#1)

Percentage of UA
patients with kidney
failure where
Fondaparinux is
prescribed

(Number of patient (#1) with data element
condition “kidney_failure” = true AND
“fondaparinux_prescribed” = true) divided by
Number of patient (#1)

Clinical Use of early invasive
procedures by
intermediate- to high-
risk patients

Percentage UA patients
with a GRACE > 108
and/or one or more
risk factors that get an
CAD within 120
minutes

Number of patient (#1) with data element
condition “GRACE” > 100 AND “risk_factor” >= 1
and time difference condition (CAD, pre-CAD) <=
120 minutes
divided by
Number of patient (#1) with data element
condition “GRACE” > 108 AND “risk_factor” >= 1

Clinical Complications (%) numerator: Number of
patients in which a re-
operation within the
same hospitalization is
necessary because of a
bleeding, with or

Number of patient (#1) with event condition “re-
operation” occurs 1x
divided by
Number of patient (#1) with data element
condition “only_first_operation” = true

84

Domain Performance
indicator

Description Formulation

without a tamponade,
graft occlusion or other
cardiac cause.
denominator: Number
of patients undergoing a
CABG surgery for the
first time.

Clinical Percentage of deep
sternal wound
infections

numerator: Number of
patients who develop a
deep sternal wound
infection related to
muscle, bone and/or
mediastinum within 30
days after the operation
denominator: Number
of patients undergoing a
CABG surgery for the
first time.

Number of patients (#1) with data element
condition “deep_sternal_wound” = true
divided by
Number of patients (#1) with data element
condition “only_first_operation” = true

Clinical Percentage CVA with
permanent injury

numerator: Number of
patients who develop a
postoperative stroke.
denominator: Number
of patients undergoing a
CABG surgery for the
first time.

Number of patients (#1) with data element
condition “postoperative_stroke” = true
divided by
Number of patients (#1) with data element
condition “only_first_operation” = true

Clinical Glycoprotein IIb/IIIa
inhibitor given for PCI?

 Number of patients (#1) with data element
condition “is_pci” = true AND
“given_glycoprotein_iib_iiia” = true
divided by
Number of patients (#1) with data element
condition “is_pci” = true

Clinical Angiographic success
(successful PCI <20%
stenosis) (%)

numerator: PCI patients
with <20% rest
stenosis in all lesions
where PCI is attempted
denominator: Total
number of PCI
procedures in this
hospital.

Number of patients (#1) with data element
condition “is_pci” = true AND “rest_stenosis” <
20%
divided by
Number of patients (#1) with data element
condition “is_pci” = true

Clinical Emergency CABG-
operation (%)

Numerator: PCI-
patients that
underwent an
emergency CABG
operation after a PCI,
during the
hospitalization of this
PCI procedure.
Denominator: Total
number of PCI
procedures in this
hospital.

Number of patients (#1) with data element
condition “is_pci” = true AND “CABG” = true
divided by
Number of patients (#1) with data element
condition “is_pci” = true

Clinical Advice on quitting
smoking

Percentage of patients
that is given advice to
stop smoking

Number of patients (#1) with data element
condition “given_advice” = true
divided by
Number of patients (#1)

Clinical Golden five medicine
prescribed at discharge

Percentage UA patients
where the five medicine

Number of patients (#1) with data element
condition “five_medicine_prescribed” = true

85

Domain Performance
indicator

Description Formulation

 ASA, thienopyridine,
statin, beta blocker and
ACE inhibitor (or ATII)
are prescribed at
discharge

divided by
Number of patients (#1)

Clinical Beta-blocker at
discharge by patients
with LV dysfunction

Percentage UA patients
with LV dysfunction
where the beta blocker
is prescribed at
discharge

Number of patients (#1) with data element
condition “LV dysfunction” = true AND “beta
blocker” = true
divided by
Number of patients(#1) with data element
condition “LV dysfunction” = true

Clinical Use of Statins Percentage UA patients
where statins is
prescribed at discharge

Number of patients (#1) with data element
condition “statins_prescribed” = true
divided by
Number of patients (#1)

Clinical Use of ACE-inhibitor of
ARB

Percentage UA patients
where Ace-inhibitor or
ARB is prescribed at
discharge

Number of patients (#1) with data element
condition “Ace-inhibitor or ARB” = true
divided by
Number of patients (#1)

Clinical Antacid prescribed for
patient with gastric
disorder

 Number of patients (#1) with data element
“gastric_disorder” = true AND
“antacid_prescribed” = true
divided by
Number of patients (#1) with data element
“gastric_disorder” = true

Clinical Sign up for Heart
rehabilitation

Percentage UA patients
that is signed up for
heart rehabilitation at
discharge

Number of patients (#1) with data element
“heart_rehabilitation” = true
divided by
Number of patients (#1)

Clinical Sign up for X-ergometry Percentage UA patients
that is signed up for an
X-ergometry at
discharge

Number of patients (#1) with data element “x-
ergometry” = true
divided by
Number of patients (#1)

Clinical Major bleeds Percentage UA patients
that have major
bleedings during
hospitalization

Number of patients (#1) with data element
“major_bleedings” = true
divided by
Number of patients (#1)

Service Patient satisfaction
about pathway

 The analysis depends on the form of the
questionnaire. If single question, i.e. 10 scale
rating is used, the indicator can be formulatied as:
Average of Data elements value (#4) for data
element name = “satisfaction_rate”

Team Trained HCK team Cannot be formulated in process model context.
However it can be calculated by counting the
number of HCK team members who come to
training.

Team Equal contribution
from HCK team
members

 Cannot be formulated using one of eight measures.
If it is defined as “fair job distribution” within role,
there is a possibility to calculate it, e.g. by
comparing total working time or number of
instance per actor or number of task executed.
However, many factors needs to be considered for
further analysis, e.g. the variation of skill and

86

Domain Performance
indicator

Description Formulation

competence, the policy in the hospital, scheduling,
etc.

Team Effectiveness of team The effectiveness of a
multidisciplinary team
based on Fry’s theory of
focusing on shared
goals, clear role
definitions, clear
procedures and, finally
good team
relationships, also
noted as the Leuven
Team effectiveness
Scale.

Cannot be formulated using one of eight measures.

Process ECG done within 10
minutes (%)

Percentage of UA
patients, where an ECG
is done within 10
minutes after arrival at
the hospital or in the
Ambulance to the
hospital

Number of patients (#1) with intervention
condition ECG duration <=10 minutes
divided by
Number of patients (#1)

Process GRACE-score
documented in EPR (%)

Percentage UA patients
where the GRACE-score
is documented in the
EPR

Number of patients (#1) with data element
condition “GRACE_documented” = true
divided by
Number of patients (#1)

Process Diagnosis and Risk
assessment on basis of
clinical history, physical
examination, ECG and
biomarkers? (%)

 Number of patients (#1) with data element
condition “diagnosis_based_on_history_etc” = true
divided by
Number of patients (#1)

Process Treatment decision on
basis of risk assessment
(i.e. GRACE-score)

 Number of patients (#1) with data element
condition “treatment_based_on_risk_assessment”
= true
divided by
Number of patients (#1)

Process CAG scheduled within
time frame of treatment
decision

 Not enough information to formulate indicator.

Process Door-to-needle time Time between arrival of
the patient at the
hospital and the
moment the PCI is
conducted.
Only for patients that
are treated with
emergency!

Average time difference between two
interventions (#5), i.e. arrival and PCI with data
element condition “emergency” = true

Process Discharge from 7 West Percentage of patient
that is discharge from 7
West and hasn’t had a
CABG

Number of patients (#1) with data element
condition “discharge from 7 west” = true AND
“CABG” = false
divided by
Number of patients (#1)

Percentage of patient
that is discharge from
CCU and hasn’t had a
CABG

Number of patients (#1) with data element
condition “discharge from CCU” = true AND
“CABG” = false
divided by
Number of patients (#1)

87

Domain Performance
indicator

Description Formulation

Process Throughput times Average Throughput time of pathway (#6)

Process Cardiologist seen on
day 1 (%)

Percentage of patients
that see a cardiologist
on the First day of their
hospitalization

It is assumed that the patient seeing a cardiologist
is documented as data element called
“see_cardiologist_on_first_day”. Thus the indicator
is formulated as
Number of patients (#1) with data element
condition “see_cardiologist_on_first_day” = true
divided by
Number of patients (#1)

Financi
al

DOT properly checked Number of patients (#1) with data element
condition “proper_DOT_check” = true
divided by
Number of patients (#1)

88

APPENDIX G Performance Measurement

System Features

Figure 42 Feature query performance indicator

Figure 43 Feature create, view, edit and delete indicator

Figure 44 Feature Create, view, edit and delete cost

89

Figure 45 Feature build measure

90

APPENDIX H Weaning Protocol
The flowchart of weaning protocol is shown in Figure 46.

Figure 46 Original weaning protocol (Boere, 2013)

91

APPENDIX I Test Data
Table 20 Data elements for test

N
o.

G
CS

_A

PE
EP

_A

FI
O

2_
A

TA
CH

YP
N

O
EI

SC
H

_B

TA
CH

YC
AR

D_
B

SP
O

2_
B

PO
2_

C

PC
O

2_
C

PH
_C

FI
O

2_
C

PE
EP

_C

G
CS

_C

de
vi

at
io

n_
nu

m

1. 14 10 81 38 186 83 11 4 7.4 97 6 9 3
2. 5 5 67 30 176 85 8 5 8 73 9 3 2
3. 9 6 61 13 198 83 11 4 7.4 43 4 9 4
4. 10 7 100 29 193 81 9 4 7.6 24 5 3 5
5. 7 7 40 37 144 84 11 7 7.2 59 7 15 1
6. 7 9 56 13 162 81 7 6 7.4 20 6 11 0
7. 6 7 24 13 193 95 9 6 7.4 39 6 12 3
8. 13 5 50 16 191 84 9 4 7.4 96 6 11 1
9. 11 8 23 31 170 98 10 4 7.2 92 9 8 4
10. 6 10 93 34 124 97 10 5 8 50 7 10 3
11. 14 4 32 22 199 81 9 7 7.1 63 4 15 5
12. 14 6 88 14 127 99 10 5 7.6 21 8 10 0
13. 13 10 35 36 177 89 8 7 7.6 27 9 7 0
14. 11 7 25 28 130 92 10 5 7.3 25 7 12 5
15. 11 5 51 34 179 97 10 4 7.5 33 6 10 5
16. 10 7 54 21 189 100 11 4 7.4 57 7 12 3
17. 15 6 77 26 135 99 8 5 7.1 54 7 3 4
18. 15 6 35 38 152 87 10 4 7.6 79 6 13 2
19. 7 5 46 34 158 93 11 6 7.3 39 4 7 0
20. 6 5 85 20 151 95 9 5 7.4 39 7 9 4
21. 9 5 74 23 137 96 11 5 7.4 35 6 10 2
22. 3 8 56 11 157 96 10 7 7.9 50 5 15 0
23. 3 5 26 36 117 99 10 4 7.9 74 4 8 5
24. 8 8 43 37 196 84 11 7 7.5 20 8 11 4
25. 5 10 35 31 179 100 8 4 7.2 27 10 10 2
26. 15 8 20 26 127 84 12 4 7.5 45 7 10 1
27. 3 5 51 18 177 97 10 4 7.2 60 6 10 4
28. 15 8 56 15 176 95 11 4 7.4 44 7 9 3
29. 3 9 28 28 179 84 7 6 8 83 8 15 5
30. 15 7 62 37 163 93 11 7 7.8 41 7 14 3
31. 7 9 84 22 129 87 8 4 7.6 97 9 3 1
32. 15 7 86 39 128 88 7 6 7.1 34 4 9 4
33. 3 5 94 35 193 81 7 6 7.2 22 6 6 4
34. 5 10 59 18 129 80 9 7 7.4 27 6 9 5
35. 3 6 37 32 123 93 11 6 7.5 28 8 4 5
36. 8 8 68 13 200 83 9 4 7.4 28 7 12 1
37. 10 4 81 33 173 99 11 5 7.2 49 8 15 4
38. 14 5 95 33 133 92 7 4 7 64 8 11 0

92

39. 8 6 49 17 191 87 8 6 7.6 76 4 3 3
40. 10 6 63 20 111 95 10 5 7.6 82 8 13 5
41. 7 9 34 28 187 90 10 5 7.5 36 5 8 4
42. 6 5 34 27 115 93 8 7 7.3 69 4 4 0
43. 6 4 90 14 168 96 11 5 7.5 50 7 11 0
44. 8 7 32 16 133 80 11 7 7.8 100 5 10 4
45. 6 7 70 12 140 99 11 4 7.9 54 7 6 2
46. 7 4 77 31 157 85 11 5 7.3 26 6 10 4
47. 8 8 23 33 108 98 8 4 7.7 80 8 7 4
48. 13 6 83 24 114 100 10 7 7.8 39 10 3 2
49. 14 6 80 10 127 84 8 5 7 93 9 3 2
50. 10 10 73 10 151 99 7 7 7.1 85 9 7 3

93

APPENDIX J Weaning Process KPI

Expression
1. Throughput time

<FUNCTION>("measure='pathway_throughput_time';
pathway_name='weaningprotocol.weaning';
pathway_status='STATE_COMPLETED';")

Observed values: Average, Min, Max

2. BIPAP time

<FUNCTION>("measure='intervention_execution_time';
pathway_name='weaningprotocol.weaning';
pathway_status='STATE_COMPLETED'; intervention_name='BIPAP
ventilation';")

Observed values: Average, Min, Max
3. ASB time

<FUNCTION>("measure='intervention_execution_time';
pathway_name='weaningprotocol.weaning';
pathway_status='STATE_COMPLETED'; intervention_name='ASB
ventilation';")

Observed values: Average, Min, Max

4. Time to reach 36° C

Cannot formulate indicator.

5. BIPAP threshold values fulfillment (NOTE A)

COUNT("measure='num_of_patient';
pathway_name='weaningprotocol.weaning';
pathway_status='STATE_COMPLETED';
data_element_condition={
data_element_name='GCS_A'|op='>'|value='8'| type='NUMERIC' &&
data_element_name='PEEP_A'|op='<='|value='8'| type='NUMERIC' &&
data_element_name='FIO2_A'|op='<'|value='50'| type='NUMERIC'
}")
/
COUNT("measure='num_of_patient';
pathway_name='weaningprotocol.weaning';
pathway_status='STATE_COMPLETED';
")

6. Number of steps to decrease ASB

<FUNCTION>(" measure='num_of_intervention';
pathway_name='weaningprotocol.weaning';

94

pathway_status='STATE_COMPLETED'; intervention_name='Decrease P-
ASB'>; ")

Observed values: Average, Min, Max

7. Extubation threshold values fulfillment (NOTE C)

COUNT("measure='num_of_patient';
pathway_name='weaningprotocol.weaning';
pathway_status='STATE_COMPLETED';
data_element_condition={
data_element_name='PO2_C'|op='>='|value='9'|type='NUMERIC' &&
data_element_name='PCO2_C'|op='<='|value='6.0'|type='NUMERIC' &&
data_element_name='PH_C'|op='>='|value='7.30'|type='NUMERIC' &&
data_element_name='PH_C'|op='<='|value='7.50'|type='NUMERIC' &&
data_element_name='FIO2_C'|op='<='|value='40'|type='NUMERIC' &&
data_element_name='PEEP_C'|op='<='|value='8'| type='NUMERIC' &&
data_element_name='GCS_C'|op='>'|value='8'| type='NUMERIC'
}")
/
COUNT("measure='num_of_patient';
pathway_name='weaningprotocol.weaning';
pathway_status='STATE_COMPLETED';
")

8. Number of observed deviations within 30 minutes

<FUNCTION>("measure='data_element_value';
pathway_name='weaningprotocol.weaning';
pathway_status='STATE_COMPLETED';
data_element_name='deviation_num';data_type='NUMERIC';value_type=
'LAST'")

Observed values: Average, Min, Max

	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Scenarios
	Chapter 1 Introduction
	1.1 Problem Definition
	1.2 Research Objective
	1.3 Research Question
	1.4 Research Methodology
	1.5 Research Scope
	1.6 Document Structure

	Chapter 2 Preliminaries
	2.1 Healthcare Sector Challenges and Opportunity
	2.2 Care Pathway as a Solution
	2.3 Care Pathway Development
	2.4 CP Performance Measurement Guideline: The Leuven Clinical Pathway Compass
	2.5 Business Process Management System
	2.5.1 jBPM Components
	2.5.2 jBPM History Logs

	2.6 Structured Query Language (SQL)
	2.7 Related Works

	Chapter 3 Requirements Analysis
	3.1 Analysis of the Leuven Clinical Pathway Compass
	3.1.1 Clinical Indicators
	3.1.2 Process Indicators
	3.1.3 Financial Indicators
	3.1.4 Service Indicators
	3.1.5 Team Indicators

	3.2 Analysis of jBPM
	3.2.1 jBPM Setup
	3.2.2 Scope of Analysis
	3.2.3 Analysis of jBPM History Logs and BPMN Elements
	3.2.4 Data Types

	3.3 Monitoring Variances
	3.4 Identifying Care Pathway Performance Measures

	Chapter 4 Design and Implementation
	4.1 Proposed Formalization Design
	4.1.1 Decision
	4.1.2 Analysis
	4.1.3 Design
	4.1.4 Implementation
	4.1.5 Deployment

	4.2 Implementation of Measurement System
	4.2.1 Architecture and Environment
	4.2.2 Functionalities

	Chapter 5 Evaluation
	5.1 Functional Correctness
	5.1.1 Case Description
	5.1.2 Test Setup
	5.1.3 Result Validation

	5.2 Functional Appropriateness
	5.3 Other Metrics
	5.4 Evaluation of Formalization Criteria

	Chapter 6 Conclusion
	6.1 Research Conclusion and Contribution
	6.2 Limitations
	6.3 Future Research
	6.4 Related Software Technology

	Bibliography
	APPENDIX A List of BPMN elements supported by jBPM 6
	APPENDIX B Persisting jBPM 6.1.0.CR1 historical data in PostgreSQL 9.3
	APPENDIX C Description of jBPM history logs
	C.1. ProcessInstanceLog (jBPM Persistence and Transactions, 2014)
	C.2. NodeInstanceLog (jBPM Persistence and Transactions, 2014)
	C.3. VariableInstanceLog (jBPM Persistence and Transactions, 2014)

	APPENDIX D jBPM Experiment
	D.1. Test Model 1
	D.2. Test model 2
	D.3. Test model 3
	D.4. Execution Result

	APPENDIX E Exception handling patterns
	APPENDIX F Formulation of Unstable Angina Pathway KPI
	APPENDIX G Performance Measurement System Features
	APPENDIX H Weaning Protocol
	APPENDIX I Test Data
	APPENDIX J Weaning Process KPI Expression

