
 Eindhoven University of Technology

MASTER

Motion controller acceleration by FPGA co-processing

van Broekhoven, M.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2a9774b6-762f-44ba-ac2e-629b867c2c78

Publication Date: September 29, 2014

2IM91

Motion Controller Acceleration by FPGA
Co-Processing

M. van Broekhoven
(0653605)

m.v.broekhoven@student.tue.nl

University Supervisor

dr. R.H. Mak
r.h.mak@tue.nl

Prodrive Supervisor

E. van Uden
eric.van.uden@prodrive-technologies.nl

September 5, 2014

Version: 1.1

Contents

1 Introduction 4

1.1 Photolithography Machines . 4

1.2 Challenges for Future Servo Applications . 5

1.3 Problem Statement . 6

1.4 Solution Direction . 7

1.5 Document Structure . 7

2 Background Information 9

2.1 CARM Software Architecture . 9

2.1.1 Terminology Overview . 11

2.1.2 Implementation . 12

2.1.3 Execution Scenarios . 17

2.2 CARM Hardware Architecture . 20

2.2.1 ATCA Racks . 20

2.2.2 HPPC . 20

2.2.3 RapidIO Interconnect . 22

2.3 Benchmark Application . 23

2.3.1 State Space Calculation . 23

2.4 Previous Work . 24

2.4.1 Data�ow-based Multi-ASIP Platform Approach for Digital Control Ap-
plications . 24

2.4.2 A Design-Space Exploration for High-Performance Motion Control . . . 26

3 Analysis and Approach 27

3.1 Block Calculation . 27

3.2 Slack Estimation . 28

3.3 Control Mode Switches . 29

3.4 State Control . 33

3.5 Hardware Architecture . 33

3.5.1 Solution Options . 34

3.6 Sample Frequency Feasibility Analysis . 34

3.7 Functional Overview . 37

2

CONTENTS

4 MCCP Proof of Concept Interface 40

4.1 Programming the ASIP Platform . 40

4.2 MCCP Con�guration . 41

4.3 Task Input . 41

4.4 Task Output . 42

4.5 Parameter Set Loading . 43

5 MCCP Proof of Concept Design 45

6 Experimental Evaluation 50

6.1 Test Setup . 50

6.2 Software . 50

6.3 Benchmarks and Metrics . 51

6.3.1 Delays . 53

6.4 Internal Benchmarks Approach . 53

6.4.1 Task Input-to-Output Delay . 53

6.4.2 PSU Parameter Load Delay . 54

6.4.3 FPGA Resource Utilisation . 55

6.4.4 External Benchmarks Approach . 55

6.5 HPPC Simulator Benchmarks Approach . 55

6.5.1 Correctness . 56

6.5.2 Delay . 56

6.6 Results and Analysis . 57

6.6.1 Resource Utilisation . 57

6.6.2 MCCP Timing Metrics . 58

6.6.3 HPPC Simulator Timing Metrics . 60

6.7 Experimental Evaluation Conclusion . 62

7 Conclusion and Future Work 64

A List of Abbreviations 66

B Resource Utilisation 67

3

1 | Introduction

Prodrive Technologies serves a wide market in making technology solutions. ASML, one of
the world's leading designers and manufacturers of lithography machines (Section 1.1), is one
of its customers. Over the years, several ASML projects have been outsourced to Prodrive
Technologies. This graduation project is part of one of those outsourced projects: the CARM
motion controller project. The CARM motion controller project is the project which develops
the framework for motion controllers based on [1]. It is explained in Section 1.1.

1.1 Photolithography Machines

LIght Source

Fixed exposure slit

Reticle

Projection lens

Wafer stage 1

Wafer

Reticle stage
Measurement unit

Measurement Exposure

Wafer stage 2

Figure 1.1: Dual-Stage Waferscanner

Lithography machines like the Dual-Stage Waferscanner (Figure 1.1) are used to manufac-
ture integrated circuits (ICs). ICs are created from discs of silicon called wafers. Wafers are
treated with photo-resist material before being fed into the Waferscanner. The Waferscanner
then exposes the wafers to patterns of light. During exposure, the Wafer stage and Reticle
stage move independently of (but not unrelated to) each other. The accuracy of these move-
ments has to be very high in order to avoid creating errors on the ICs. The necessary accuracy

4

CHAPTER 1. INTRODUCTION

is dependent on the minimum feature size (smallest used element) of the integrated circuit;
the minimum feature size is inversely proportional to the necessary accuracy. At the same
time, the machine has to work very fast (i.e. be able to process a high amount of Wafers per
hour) in order to maintain a competitive advantage in the photolithography machine market.
As described in [2], one technique used in the Dual-Stage Waferscanner, is to use two Wafer
stages in one photolithography machine. One wafer stage is used to measure one wafer's sur-
face while at the same time another wafer is exposed. When both exposure and measurement
is �nished, the two stages switch position, or the wafers are moved out of the machine.

A motion controller controls the motion of a physical object, such as the wafer stage in
the Waferscanner. This motion controller periodically receives sensor inputs. With the sensor
inputs, it computes outputs used to actuate the controlled object. For example, a position
sensor input could be used to calculate the position error and compensate for this calculated
error with its actuator outputs. The software that implements a motion controller is called a
Servo application (Figure 1.2). Important metrics of a Servo application are

� Sample frequency: the frequency at which both sensor inputs are sampled and servo
outputs are computed

� IO-latency: the time it takes from the moment sensor inputs are consumed to the
moment the servo outputs have been computed and appear on the outputs

Position Sensor Values Actuator Outputs
Coordinates
conversion

Error
calculation

Actuator
conversion

Destination
calculation

Position
vector

Compensation
vector

Position
vector

Destination
vector

Figure 1.2: Example of a servo application.

A CARM servo application can execute in di�erent modes. For example, during measure-
ment, the wafer stage need not move as accurate as during exposure. As a result, the servo
application of the wafer stage has more slack in the accuracy of its actuator outputs and can
therefore move faster during measurement than during exposure. These di�erent modes of
execution are set by supervisory control.

1.2 Challenges for Future Servo Applications

Engineers aim to maintain Moore's law: the amount of transistors on a chip has to be roughly
doubled every two years. To achieve this, the minimum feature size of the transistors on chips
is decreased. Because of smaller feature sizes, future generations of photolithography machines
have to take into account much smaller vibrations and disturbances than currently play a role.

5

CHAPTER 1. INTRODUCTION

An example of these small vibrations are non-rigid body vibrations. Non-rigid body vibrations
typically have a high frequency, hence in order to compensate for them, measurement samples
have to be taken at an even higher frequency. In addition, compensating for these small
vibrations is more computationally intensive. The increase in both sample frequency and
intensity of computation greatly increases the computational load on motion controllers. To
be able to implement servo groups with non-rigid body vibration compensation, there is a
long term goal of a sample frequency of 100kHz with an IO latency of 10µs for future servo
groups.

Currently, ASML uses a general purpose multi-core multi-processor platform (further ex-
plained in Chapter 2) to run all of the servo applications inside the photolithography machine.
ASML has estimated and found by experience that this platform will not be able to cope with
the amount of computation necessary to achieve a sample frequency of 100kHz with rigid
body vibration compensation. In an e�ort to overcome this problem, research has been done
to utilise Field Programmable Gate Arrays (FPGAs). Previous work (Section 2.4.1) has shown
this approach has great potential, as sample frequencies of up to 154kHz have been achieved for
a single servo application with non-rigid body vibration compensation deployed on an FPGA
whereas it would only run at a sample frequency of at most 27kHz on a highly optimised
general purpose platform (Section 2.4.2).

A big challenge that has not been addressed in the previous work is adding supervisory
control that exists for the motion controller applications of ASML. This supervisory control
comes from a computational unit at another network location in the computation platform.
Processing of inbound supervisory control requires features normally implemented by an OS
on a general purpose platform.

Implementation of the OS-like supervisory control interface on an FPGA would require a
large implementation e�ort. Therefore, taking the big step of moving from the current general
purpose processing unit to an FPGA-only processing unit is risky from a business point of
view. To spread the risk, multiple steps may be done in between. In this graduation project,
one of these steps will be taken: an FPGA is deployed as a Motion Controller Co-Processor
(MCCP) to o�oad and accelerate a motion controller.

1.3 Problem Statement

The goal of this project is to get one step closer to the long term goal sample frequency of
100kHz for a future CARM motion controller, taking into account supervisory control. The
research questions of the entire project are formulated as follows:

1. What parts of the servo applications should be deployed on the FPGA?

2. What kind of latency and throughput would have to be satis�ed for the communication
network in order to increase the sample frequency?

3. What kind of hardware/software architectures are feasible?

4. How are the best architectures implemented in the CARM framework?

6

CHAPTER 1. INTRODUCTION

Question 1 covers what parts of a servo application in general should be o�oaded to the
FPGA to realistically increase performance of a motion controller application. This depends
on the gain in execution time when a part is executed on the FPGA, but also on the amount
of data that has to be transferred from and to the FPGA.

Question 2 is more concerned with how fast the network should be in order to get to our
desired performance with the options found in the �rst question.

Question 3 then places these ideas into an actual hardware/software architecture which
will be experimentally evaluated.

Question 4 concerns the way to implement the most successful architectures into CARM.
This does not include actually implementing these changes, but rather motivating them, de-
scribing the impact and proposing them for future work.

Because of the scale of the project, it is split up in two parts: a software part which
is concerned with the implementation of o�oading parts of a servo application on the GPP
platform, while the hardware part is concerned with the design and implementation of the
MCCP FPGA design and the interface it should o�er to the motion controller. These two
parts are carried out by two di�erent students. This report covers the hardware part, and
therefore question 4 is not covered in this document.

1.4 Solution Direction

In this project, an FPGA is deployed in conjunction with a GPP running a servo application.
The GPP o�oads computationally intensive parts to the FPGA in order to speed up the servo
application. With this method, we expect to achieve a sample frequency of 40kHz with an IO
latency of less than 10µs for a future CARM motion controller. A proof of concept of the
MCCP is designed, implemented, and experimentally evaluated.

The problem of optimisation of an application on a heterogeneous platform is a well studied
problem. In [3], a heuristic to �nd a division between hardware and software under architec-
tural and performance constraints for an application is presented. However, the end-goal is to
minimise hardware area, whereas in this project the focus is on maximisation of the sample
frequency under latency constraints.

Another approach is to deploy graphics processing units (GPUs) to accelerate compute-
intensive software applications. As shown in [4], GPU solutions are typically easier to imple-
ment, but are less �exible than FPGA solutions. Moreover, GPU solutions work particularly
well to increase throughput when a single transformation can be applied to many input values
at the same time. In servo applications, the amount of variables that undergo a single trans-
formation during one sample period are typically small, and IO latency is more important
than throughput. Hence, an FPGA solution is more suitable for this problem domain.

1.5 Document Structure

The structure of this document is as follows:

7

CHAPTER 1. INTRODUCTION

� Chapter 2: background information of the problem domain.

� Chapter 3: analysis of di�erent aspects of the problem, resulting in an approach for
motion controller o�oading.

� Chapter 4: interface speci�cation of the MCCP proof of concept

� Chapter 5: explanation of the design that implements this interface

� Chapter 6: a description of the experimental evaluation method, the results, and corre-
sponding analysis.

� Chapter 7: conclusion and future work.

8

2 | Background Information

Figure 2.1 shows an example of a motion controller control loop. In this example, the forces Fx
and Fy to be sent to the Wafer Stage actuator are calculated from the current sensed position
(xsensor, ysensor) and the goal position (xgoal, ygoal). In the example, the two forces have to be
decoupled because they will be applied to the same physical object.

xgoal

ygoal

Fx0

Fy0

Fx1

Fy1

xsensor

ysensor

Servo Application

Controlx

Controly

Force
Decoupling

Wafer
Stage

Figure 2.1: Example Wafer Stage control loop

The servo application corresponding to this control loop contains three distinct blocks of
computation:

� Controlx

� Controly

� Force Decoupling

The structure of the remainder of this chapter is as follows: the control loop example in
Figure 2.1 is used to explain the current software architecture in Section 2.1. In Section 2.2, the
current hardware architecture is explained. The benchmark application used for experimental
evaluation is introduced in Section 2.3. Previous work done is explained in Section 2.4.

2.1 CARM Software Architecture

Control Architecture Reference Model (CARM) is a reference model devised by ASML aimed
to create a well de�ned layered model of a system in which each layer has responsibilities at a
speci�c abstraction level. CARM ([1]) is meant to be used in a multidisciplinary environment
covering the software, electrical and mechanical disciplines.

The CARM Facilities motion controller platform is an implementation of CARM, but since
it is the only implementation, it is called just CARM as well.

9

CHAPTER 2. BACKGROUND INFORMATION

Servo applications such as the one shown in Figure 2.1 are implemented in CARM as
Synchronous Data Flow (SDF) graphs ([5]). Synchronous data �ow is a special case of data
�ow where the number of data samples which are produced or consumed is known a priori.
Because of this property, a static schedule for the blocks in the servo application can be created
at compile time. The nodes in the SDF graph of a CARM servo application are called worker
blocks.

Worker Block FD

Worker Block Cy

Worker Block Cx

xgoal

ygoal

Fx0

Fy0

Fx1

Fy1

xsensor

ysensor

Controlx

Controly

Force
Decoupling

Supervisory Control

Param sets

Param sets
Param sets

Figure 2.2: CARM version of the servo application from the control loop in Figure 2.1

Figure 2.2 shows the CARM servo application of the example control loop of Figure 2.1.
Each worker block has its own parameter sets. A parameter set de�nes the values of certain
variables in a block's computation function, thereby tuning the behaviour of its worker block.
Only one of these parameter sets can be assigned to a block at a time, but they can be switched
at run-time. E.g. a state space block, shown in Figure 2.7 is de�ned as follows:[

~xk+1

~ok

]
=

[
A B
C D

] [
~xk
~ik

]
Where A, B, C, and D are matrices, ~ik is the input vector, ~xk is the state vector, and ~ok is
the output vector of sample k. For this block a parameter set consists of, values for the A, B,
C, and D matrices.

In addition to the regular block inputs and outputs ports, worker blocks have an interface
for supervisory control. The supervisory control interface is used out of sync with the sample
frequency of the servo application. It can be used to switch the active parameter set of the
block or turn the block of completely. Switching the active parameter sets of all worker blocks
of the servo application within the same sample period is called a control mode switch. Turning
one or multiple blocks (a block group) on or o� is called state control.

10

CHAPTER 2. BACKGROUND INFORMATION

Control modes are used for di�erent modes of execution. For example, consider the move-
ments of the wafer stage during two di�erent modes in the dual stage machine: expose mode
is active during exposure of a wafer to the light, meas mode is active during measurement of a
wafer's surface. In expose, movements have to be very precise, because a small error may be
critical for the production process. In meas, making an error is less critical, so the movement
speed can be increased compared to the expose mode. These two di�erent modes are de�ned
in a control mode. A control mode selects exactly one parameter set for each worker block in
the servo application.

More formally, a parameter set is a tuple of parameter values. The type of this tuple is
prede�ned for each worker block. Each parameter set within a block must have a distinct
name for identi�cation.

To de�ne the relation between parameters, parameter sets, and control modes, let B be
the set of blocks in a servo group, and PT be the set of all possible parameter sets for all
blocks. Each block b ∈ B has parameter sets PS b ⊆ PT . A control mode C : B 7→ PT is an
injective function such that

∀b ∈ B : C(b) ∈ PS b

The number of parameter sets for each block is constant, but the values of the parameters
in each parameter set can be changed at runtime. The feature of changing the values of
parameters at run-time is, however, only used during calibration of the machine and is therefore
left out of scope for this work.

2.1.1 Terminology Overview

Figure 2.3: The relations of relevant high-level terms used in CARM.

Some of the more relevant high-level CARM terms are shown with their relations in Figure
2.3. The entities shown in this �gure are:

11

CHAPTER 2. BACKGROUND INFORMATION

� Servo Application: A set of blocks and the connections between them, forming an SDFG.
Implements a big part of a motion controller. E.g. the long stroke/short stroke controller:
Figure 2.17 and Figure 2.18.

� Worker Block : Also called just Block. A Worker Block can be a sensor interface, mea-
surement system, servo controller, etc. In Figure 2.17 and Figure 2.18, examples of
worker blocks are CO_SPG_FF and SS_220.

� Parameter Set : A set of parameter valuations that can be tuned to in�uence the be-
haviour of a block.

� Control Mode: Describes exactly one Parameter Set for each worker block in a servo
group. Control Modes can be switched synchronously with respect to the sample period
for all blocks within the Servo Group.

� Block Group: A subset of blocks of a Servo Group. Block Groups can overlap. They are
used for synchronously (with relation to the sample period) controlling state behaviour
(on/o�) of multiple blocks at the same time.

2.1.2 Implementation

In the software implementation of the CARM motion controller platform, the supervisory
control is deployed on a software platform called the Host, while the worker blocks run within
a software platform called a Worker. A Host may instantiate and provide supervisory control
for multiple (closely related) servo applications, using multiple Workers. An example of an
instantiation of one servo application with n worker blocks and m control modes is depicted
in Figure 2.4. In this �gure, the arrows represent creation dependencies.

� "Application" represents an out-of-scope entity which gives the trigger to start the sys-
tem.

� Host contains a Process Control Manager which instantiates a Process Control Worker
on a Worker, and a Servo Application Proxy for each servo application it is supervising.

� Worker is a computation platform which runs a process control worker which can be
used to run worker blocks. It has a block factory responsible for instantiating the local
blocks, and a sequencer to schedule the blocks in a prede�ned order.

Servo application instantiation starts at the host. The host makes remote procedure calls
to the block factory to create each of the servo application's blocks on a worker, and sends
the schedule to the sequencer. After that, its own abstraction of the servo application, the
Servo Application Proxy, is created. This abstraction contains proxies to communicate with
the actual worker blocks, and the control modes of the servo group. See Section 2.1.3.1 for an
MSC of this process.

The proxies are used to send the initial values of the parameter sets to the blocks, and to
send new values at runtime. This communication dependency is visualised in Figure 2.5 and
the order is explained in Section 2.1.3.2.

The block factory on the worker is present to instantiate blocks and connect them via a
shared memory location. The sequencer enforces a schedule on the blocks by directly calling

12

CHAPTER 2. BACKGROUND INFORMATION

Worker 2

Host Process Control Manager

Deployment Manager

Servo Application
Proxy

Servo Group Manager

Servo Group Queue Proxy

Control Modes

Control Mode 1

Control Mode 2

Control Mode m

Worker 1

Process Control Worker

Se
q

ue
nc

er

B
lo

ck
 F

ac
to

ry

wBn

wB1

Worker Block Proxies

B1 B2

Bn

Servo Group Queue

Application

wB2

PS(wB2)

CMSBlock

PS(wB1)

PS(wBn)

Figure 2.4: A servo group instantiation deployment diagram with arrows representing creation
dependencies. PS(wBx) are all parameter sets for worker block x

13

CHAPTER 2. BACKGROUND INFORMATION

Worker 2

Host Process Control Manager

Deployment Manager

Servo Application
Proxy

Servo Group Manager

Servo Group Queue Proxy

Control Modes

Control Mode 1

Control Mode 2

Control Mode m

Worker 1

Process Control Worker

Se
q

ue
nc

er

B
lo

ck
 F

ac
to

ry

wBn

wB1

Worker Block Proxies

B1 B2

Bn

Servo Group Queue

Application

wB2

PS(wB2)

CMSBlock

PS(wB1)

PS(wBn)

Figure 2.5: A servo group instantiation deployment diagram with arrows representing com-
munication within and from the Host

14

CHAPTER 2. BACKGROUND INFORMATION

the calculation functions (described in the next paragraph) on their instantiations. This
communication is visualised in Figure 2.6. Note that in this �gure, the communication between
the blocks has been left out for clarity of the �gure.

Worker 1

Process Control Worker

Se
q

u
en

ce
r

B
lo

ck
 F

ac
to

ry

wBn

wB1

Servo Group Queue

wB2

PS(wB2)

CMSBlock

PS(wB1)

PS(wBn)

Figure 2.6: A servo group instantiation deployment diagram with arrows representing com-
munication within an worker

A block can have three calculation functions that form the interface accessible by the
sequencer. These functions are:

� full_calc() (full in short)

� pre_calc() (pre in short)

� post_calc() (post in short)

full_calc() is present for all blocks. This function does a full calculation to generate a (set
of) output(s). To minimise the IO-delay, some blocks have full_calc() split up in pre_calc()
and post_calc(). The composition of pre_calc() and post_calc() will yield the same result
as full_calc(). E.g. a State-Space block shown in Figure 2.7, has a pre that is de�ned by

~xk = A~xk−1 +B~ik−1

~tk−1 = C~xk

and a post that is de�ned by

~ok = ~tk−1 +D~ik

Since pre only uses the inputs of the previous sample, the big matrix calculations in pre
can be calculated after the outputs for the previous sample have been calculated. Whenever
a new input arrives, ~ok can be calculated with just a small matrix-vector multiplication and a
vector addition. In this way, the latency of the full calculation is hidden, while the IO delay
is decreased.

15

CHAPTER 2. BACKGROUND INFORMATION

Figure 2.7: Block diagram of a State Space block

post_calc() should in general be as small as possible to decrease the IO delay. The
division between pre and post is dependent on where in the block calculation the inputs for
the next sample are used.

The sequencer's (static) schedule for each sample period is divided into two sections:
time-critical and non-time-critical. For each block, a boolean can be set to de�ne whether it
is time-critical or not. The �owchart in Figure 2.8 shows how to decide in which section each
function should be called. Figure 2.9 shows an example of a schedule to illustrate the the two
sections. In this Figure, in addition to the sequencer's two sections, a section reserved for
background operations is shown. This is used for executing supervisory control operations.

Figure 2.8: Flowchart of decision when calculation functions are called

16

CHAPTER 2. BACKGROUND INFORMATION

Block A
(time-

critical)

Block B
(time-

critical)

Block C
(non-time-

critical)

Block D
(time-

critical)

pre

full

full

post

pre post

time

Sample Period

Non-Time-Critical Section Sample k-1 Time-Critical Section
Sample k

Reserved for
Background

Figure 2.9: An example of a schedule of 4 di�erent blocks. Block B is time-critical, but does
not have the pre and post functions, so full is called in the time-critical section

2.1.3 Execution Scenarios

This section explains the following scenarios of the CARM software architecture:

� Section 2.1.3.1 explains the initialisation procedure

� Section 2.1.3.2 explains communication between the Host and Worker before and during
execution of the servo application

� Section 2.1.3.3 explains how synchronous actions such as control mode switches are done

2.1.3.1 Initialisation

In Figure 2.10, the creation of a servo group is shown as a message sequence chart. The
chart shows a call from the overall application to the Deployment Manager on the host. The
deployment manager takes care of calling the Block Factories to create the blocks at di�erent
workers, and making the execution order of the blocks known to the Sequencer. After this is
done, the Host part of the Servo Group Manager can be created. The Servo Group Manager
then creates the proxies used for communication with the actual blocks.

2.1.3.2 Communication

During the initialisation phase, the proxies are used to directly communicate with the blocks
via remote procedure calls. In Figure 2.11 a message sequence chart of the initialisation of the
parameter sets is shown. Each parameter set is sent through the proxies directly to the block.

During execution of the servo application, the communication to the blocks happens
through a di�erent entity that acts as an operating system. This entity ensures that no
race conditions occur on the main memory (for example, new parameter values are stored at
the same time as it is being loaded into the cache). An example of this communication is

17

CHAPTER 2. BACKGROUND INFORMATION

Application Deployment Manager Block Factory 1 Sequencer 1

create_servo_group(definition)

create_blocks(types, connections)

Block Factory 2

create_blocks(types, connections)

add_blocks(block)

Sequencer 2

add_blocks(block)

create_proxies()

Host Worker 1 Worker 2

Servo Group Manager

block addresses

create(sg_definition, block_addresses)

Figure 2.10: Servo group creation

Servo Group Manager Block X Proxy Block X

create_parameter_sets(parameter_sets)

Block YBlock Y Proxy

create_parameter_sets(parameter_sets)

create_parameter_sets(parameter_sets)

create_parameter_sets(parameter_sets)

Host Worker 1

Figure 2.11: Initialisation of the parameter sets

18

CHAPTER 2. BACKGROUND INFORMATION

shown in Figure 2.12. In this chart, the proxies send their messages to OS, with a destina-
tion address. The OS saves the messages for some time, and then passes them to the worker
blocks when they are ready to receive messages. This happens during the section reserved for
background operations of the schedule.

Host Worker 1

Servo Group Manager Block X Proxy Block X

change_param_values(index, values)

Block YBlock Y Proxy

change_param_values(index, values)

change_param_values(index, values, Block_X_addr)

change_param_values(index, values, Block_Y_addr)

OS

change_param_values(index, values)

change_param_values(index, values)

Figure 2.12: Asynchronous calls during execution of the controller

2.1.3.3 Synchronisation and Control Mode Switches

A control mode switch is the synchronous switch from one control mode to another, meaning
that all worker blocks have to switch from their current parameter set to a new one at the same
time before the calculation for the next sample starts. Since the parameter sets are stored
in the main memory and the current parameter set is read from cache, the new parameter
sets have to be preloaded into the cache for all blocks before this synchronous switch can be
triggered.

To solve this synchronisation problem, a control-mode-switch block and a queue are used
(Figure 2.13). The queue block is used to queue actions that take at most a prede�ned amount
of time, such that these actions are executed in order. In case of a control mode switch, the
queue passes the action to the control-mode-switch block, which in turn gives each of the
targeted blocks a signal to start loading the parameter set which the block should switch to
from the main memory to the local cache. Only after all blocks have loaded their parameter
set, the signal is given to switch. Note that this preloading process may take up to 50 sample
periods, and is done during the background operations section, so the regular data �ow is not
interrupted during this process.

19

CHAPTER 2. BACKGROUND INFORMATION

Host Worker 1

Servo Group Manager Block X Block Y

change_control_mode(control_mode)

Queue Proxy Queue

change_control_mode(control_mode)

set_active_param_set(index)

set_active_param_set(index)

Ctrl Mode Switch Block

Within the same
sample period

change_control_mode(control_mode)

load_param_set_from_memory(index)

load_param_set_from_memory(index)

Several sample
periods

Figure 2.13: MSC of a control mode switch

2.2 CARM Hardware Architecture

In the current CARM hardware architecture, the host and each of the workers are deployed
on their own computation platform called an HPPC (Section 2.2.2). The HPPCs are placed
in ATCA racks (Section 2.2.1). The ATCA rack contains multiple RapidIO switches (Section
2.2.3).

2.2.1 ATCA Racks

An ATCA rack is shown in Figure 2.14. On an ATCA rack, ATCA blades are plugged, which
has connectors for AMC cards. All AMC cards on a blade (which can also be the sensors
inputs and actuators outputs) are connected to two RapidIO switches with a quad-lane 2.5
GBaud link (1GB/s data-rate) (Figure 2.15a). Both switches together are connected to all
four of the other ATCA blades on the rack with a quad-lane 3.125 GBaud link (1.25GB/s
data-rate), forming a the network as shown in Figure 2.15b. Hence, AMC cards on the same
blade can be reached in one hop, and AMC cards on other blades can be reached in at least
three and at most �ve hops, dependent in the routing scheme.

2.2.2 HPPC

High Performance Process Controllers (HPPCs) in the CARM hardware architecture are AMC
cards with a (general purpose) processor on it. It can be either a PPA8548 with a Freescale
MPC8548 processor, or QOR4080 with a Freescale P4080 processor.

20

CHAPTER 2. BACKGROUND INFORMATION

ATCA Blade

AMC Cards

Figure 2.14: An ATCA rack showing the ATCA blades and AMC cards

ATCA Carrier Blade

AMC
Bay

AMC
Bay

AMC
Bay

AMC
Bay

SRIO
Switch

SRIO
Switch

(a) Physical topology of ATCA blades.
The links between the AMCs and the
SRIO switches are 2.5 GBaud quad-lane
SRIO

ATCA Carrier
Blade

(b) The network formed by all ATCA
blades on an ATCA rack. The links be-
tween the blades are 3.125 GBaud quad-
lane SRIO

21

CHAPTER 2. BACKGROUND INFORMATION

2.2.3 RapidIO Interconnect

RapidIO is a packet switched interconnect targeted for use in environments where multiple
devices must work in a tightly coupled architecture ([6]). It is speci�ed in a 3-layer architectural
hierarchy:

� Logical Speci�cation: information necessary for the end point to process the transaction

� Transport Speci�cation: information to transport packet from end to end in the system

� Physical Speci�cation: information necessary to move packet between two physical de-
vices

RapidIO has two distinct logical layer IO types:

� Message passing: packets with (a MESSAGE) or without (a DOORBELL) data are sent.
For each message packet, a corresponding response packet has to be sent back to the
message sender.

� Memory mapped: a piece of virtual memory is mapped to a remote device as shown in
Figure 2.16.

However, it is possible to use both IO types in the same system.

Due to the unpredictability caused by the interrupts generated for arriving messages and
responses, message passing is not used in the CARM motion controller platform.

PU1

Application X

Address Space

PU2

Application Y

Address Space

Local Memory

PU2 Virtual
Memory

...

Local Memory

...

Figure 2.16: Memory Mapped Concept

Virtual memory mapped to a remote device via RapidIO is connected to a special hardware
component on the HPPCs called Address Translation and Mapping Unit (ATMU). Reads and
writes from the application to the virtual memory are translated to the following memory
mapped RapidIO operations speci�ed in [7]:

22

CHAPTER 2. BACKGROUND INFORMATION

� NWRITE: a write to the remote memory

� NWRITE_R: a write to the remote memory with a response from the remote device on
completion of the write

� SWRITE: a streaming write to the remote memory with less overhead compared to
NWRITEs

� NREAD: a read on the remote memory

2.3 Benchmark Application

The benchmark application is shown in Figure 2.17 and Figure 2.18. It was created to represent
a future servo application, while still being manageable for benchmarking purposes. Together,
the long stroke and short stroke applications control the motion of the wafer stage or the reticle
stage. The high accuracy actuator (Lorentz actuator) used for the short stroke only has a
range of about 1 mm. The long stroke has a much larger range, but with only micrometer-
range accuracy. The long stroke controller can move the wafer close enough such that the
short stroke controller can move the wafer to the exact location.

For this graduation project, the focus lies on the SS_220 block, which is shown in Figure
2.7 and explained in more detail in section Section 2.3.1.

Figure 2.17: Long stroke servo group of the benchmark application. Numbers on edges repre-
sent amount of 32 bits values being consumed

2.3.1 State Space Calculation

A state space block is a MIMO representation of a linear system. A state space block with nx
internal states, input size ni and output size no has matrix dimensions A:(nx, nx); B: (nx, ni);
C: (no, nx); D: (no, ni). E.g. the SS_220 block FF in Figure 2.18 has nx = 220, ni = no = 11.

For state vector ~xk, the next state (~xk+1) and the output ~ok can be calculated as[
~xk+1

~ok

]
=

[
A B
C D

] [
~xk
~ik

]
where ~ik is the k

th input vector. From these equations, we can deduce that the output vector
of the kth sample is not only dependent on the input, but also on the current state vector ~xk.

23

CHAPTER 2. BACKGROUND INFORMATION

Figure 2.18: Short stroke servo group of the benchmark application. Numbers on edges
represent amount of 32 bits values being consumed

2.4 Previous Work

In this section, previous work done speci�cally as preparation for the step to be taken in this
project is explained.

2.4.1 Data�ow-based Multi-ASIP Platform Approach for Digital Control

Applications

In [8], a whole servo application's SDFG has been deployed on an FPGA. Two methods
have been explored, namely a direct spatial implementation of the SDF graph (see Figure
2.19), and a multi-ASIP-on-FPGA (see Figure 2.20) approach. In the multi-ASIP approach, a
multi-ASIP platform is designed for the servo application. This multi-ASIP platform is then
mapped onto an FPGA. This allows for high resource sharing, especially compared to the
spatial approach, where each worker block gets his own resources on the FPGA (depending
on the synthesis parameters). Note that the multi-ASIP platform could also be designed for
a larger range of applications.

The big advantage of the multi-ASIP approach becomes apparent when, instead of deploy-
ing it onto an FPGA, it is made into an integrated circuit. It would then still be possible
to change the servo application by making changes to the tasks and/or adding more tasks.
Clearly, if the spatial mapping would be made into an integrated circuit, it would not be
possible to maintain this �exibility.

The results of the simulations are compared to the performance of a general purpose
multi-core multi-processor platform (GPP) and are shown in table 2.1. Even though the
direct spatial implementation is clearly faster than the multi-ASIP-on-FPGA approach, the
resource usage is signi�cantly higher and the �exibility of this approach is much lower. This
leads to the conclusion that the multi-ASIP-on-FPGA approach is a good trade-o� between
performance and �exibility.

24

CHAPTER 2. BACKGROUND INFORMATION

Figure 2.19: Example of a partial motion controller DFG directly mapped to a part of an
FPGA.

(a) Step 1 of the ASIP-on-FPGA approach. The
nodes of a DFG are mapped as tasks onto ASIPs.

(b) Step 2 of the ASIP-on-FPGA approach.
ASIPs are mapped onto the FPGA. Some of the
resources within the ASIP are shared between
the tasks mapped onto it.

Figure 2.20: Illustrations of the multi-ASIP-on-FPGA approach.

Performance GPP Multi-ASIP FPGA Spatial FPGA

I/O-delay [µs] 16 10 8.7

Sample-freq. [kHz] 27 133 154

Resource Utilisation

Logic - 28% 86%

Memory - 26% 23%

DSP - 9% 55%

Table 2.1: Results of the previous work ([8])

25

CHAPTER 2. BACKGROUND INFORMATION

2.4.2 A Design-Space Exploration for High-Performance Motion Control

In [9], design-space exploration is done in order to maximise the performance of a motion
controller. As a case study, a special benchmark application of the long stroke controller (LS)
and short stroke controller (SS) used to represent the future generations of controllers is �rst
benchmarked and then optimised using the Y-chart paradigm.

Table 2.2 shows the mean execution times obtained by running the application 1000 times.
The most important conclusion to be drawn from this is that the state-space (SS_220) block
induces most of the load by far, as it takes up 91.87% of the execution time. Hence, optimising
this block would yield a signi�cant speedup for the whole application. It is benchmarked and
optimised separately on a GPP. The �nal optimised execution times, along with the execution
times on a Vector ASIP on FPGA are shown in Table 2.3.

Job Function Mean Time (µs) Load (%)

SS CTRL SS_220 321.25 91.87

LS PreG FLT_N 1.875 3.21

LS PreG AS_GS_6x6 15 1.07

SS Gain Mat_13X11 15 1.07

Other 40 2.87

Table 2.2: Initial benchmark results of the previous work in ([9])

Pre Execution Time (µs) Post Execution Time (µs)

GPP 51.7 0.403

ASIP-on-FPGA 7 0.8

Table 2.3: Benchmark results of the optimised SS_220 block on GPP and ASIP-on-FPGA

In the rest of the report, design-space exploration on the hardware architecture is done
using these values while focussing on the state-space block. Results show that adding four
vector-ASIPs to the processor to execute the SS_220 blocks does increase the performance of
the motion controller dramatically to a sample frequency of 53kHz. However, the scenario is
unrealistic in general, but also for our purposes, as the processor is modelled to have the vector-
ASIPs on-chip. The communication overhead for block input and output, and synchronisation
to an o�-chip co-processor is not taken into account.

26

3 | Analysis and Approach

In this chapter, the CARM hardware/software architecture is analysed with respect to the
following aspects:

� Block Calculation (Section 3.1)

� Block O�oading (Section 3.2)

� Control Mode Switches (Section 3.3)

� State Control (Section 3.4)

� Hardware Architecture (Section 3.5)

The analysis results in the required functionality for the Motion Controller Co-Processor
(MCCP) in the existing motion controller framework. The sample frequency of the solution
is predicted in Section 3.6. In Section 3.7, the expected usage of the MCCP is explained.

3.1 Block Calculation

The basic functionality of the MCCP is that it has to be able to execute calculation functions
of worker blocks.

[8] proposed an approach with a multi-ASIP platform for its high �exibility compared to
a direct FPGA implementation of the servo application (see Section 2.4.1): a single static
multi-ASIP platform can be programmed to execute a range of di�erent servo applications.

Using the same type of multi-ASIP platform in the MCCP has the following advantages:

� The MCCP is decoupled from the exact (parts of) blocks it will calculate.

� The multi-ASIP platform has been tested extensively, and is known to perform well for
worker block calculations. This saves time in the implementation and design of the proof
of concept.

Therefore, the same type of multi-ASIP platform will be used as calculating core of the
MCCP. In order to be able to execute the state-space blocks with the highest amount of
parallelism, the ASIP platform in the MCCP will contain one Vector ASIP (VPE) for each
SS_220 block in the servo application. To connect these VPEs to the rest of the design, one
External Interface, and a Switch to connect them all together will be used. The resulting
platform is shown in Figure 3.1.

27

CHAPTER 3. ANALYSIS AND APPROACH

ASIP Platform

Switchext_int

VPE1 VPE2 VPE3 VPE4

block input
block input

block input
block input

block input
block input

block input
block input

block input

block output

Configuration Interface

block output

block input

Figure 3.1: ASIP platform con�gured for computing four SS_220 blocks in parallel

3.2 Slack Estimation

As described in section 2.4.2, the SS_220 block takes up over 90% of the execution time
of the benchmark application. Using a vector ASIP, a speedup of over 10 for the complete
application can be achieved. A more detailed look shows that this gain comes mainly from the
pre part of the execution, whereas the post part takes 2 times (0.4µs) longer. In this section,
the gain in calculation time when o�oading a certain part of the SS_220 block to the MCCP
is compared to the communication overhead it introduces.

There are two viable options to improve performance of the motion controller: o�oad pre
only and o�oad both pre and post. Note that o�oading only post is not viable, since it would
take longer on FPGA, so no speedup could be achieved. Calculations can be done to assess
the pro�t that will be achieved by both options. Recall from section 2.4.2 that the execution
time of pre of the optimised SS_220 block is τpre_GPP = 51.8µs on the GPP, whereas the
execution time on a vector ASIP was τpre_ASIP = 7µs. tslack_pre is the time freed up in the
non-time-critical section of a sample period and can be calculated by

tslack_pre = τpre_GPP − τpre_ASIP = 51.8− 7 = 44.7µs

The freed up time for the time-critical section, in case post is o�oaded as well is

tslack_post = τpost_GPP − τpost_ASIP = 0.4− 0.8 = −0.4µs

This means that there is 0.4µs less time in the time-critical section.

If only pre is o�oaded, then this means that the 44.7µs freed up in the non-time-critical
section can be used to communicate the inputs and outputs of the pre function. If both pre
and post are o�oaded, then no new inputs have to be sent to the FPGA in the non-time-
critical section, since it uses the input vector of the previous post calculation. However, in the
time-critical section, both the input and output of the post function have to be communicated.

28

CHAPTER 3. ANALYSIS AND APPROACH

This would directly increase the IO latency of the system, whereas it would not be increased
if the communication overhead is hidden in the non-time-critical section.

To get an estimate of how much data can be sent in the non-time-critical section to break
even, assume, for a link between two AMC cards, a latency of 2µs and an available bandwidth
of 300MB/s = 300B/µs. Then

(tslack_pre − 2 ∗ 2µs) ∗ 300B/µs = (44.7µs− 2 ∗ 2µs) ∗ 300B/µs ≥ data input + dataoutput

So the maximum amount of data that can be transferred within this time in the non-time-
critical section is 12210B or 3052 32-bit values.

It is important to keep in mind that the size of the output from the pre function could be
signi�cantly higher than that of the post function, possibly cancelling out any pro�t obtained
by executing on the FPGA. Inspection of the pre and post yields that the only result necessary
from pre to compute the post is one vector of the size of the output. The biggest input size
present in the benchmark application is 12, and the biggest output size is 11. The time saved
during the non-time-critical section when o�oading only pre can be estimated as:

(3052− data input − dataoutput) ∗ 4B
300B/µs

=
(3052− 11− 12) ∗ 4B

300B/µs
= 40.3µs

When o�oading both pre and post, in the non-time-critical section, the amount of time
that can be saved can be calculated as:

3052 ∗ 4B
300B/µs

=
3052 ∗ 4B
300B/µs

= 40.7µs

But in the time-critical section:

|tslack_post |+ 2 ∗ 2µs+ data input + dataoutput

300B/µs
= 0.4 + 2 ∗ 2µs+ (12 + 11 ∗ 4)

300B/µs
= 4.7µs

is lost, which directly in�uences the IO latency.

Under these assumptions, we can conclude that when o�oading only pre, each sample
40.3µs can be saved. Conversely, o�oading post as well, 40.7µs can be saved during the non-
time-critical portion, but during the time-critical portion, 4.7µs of overhead time would be
added. The latter overhead directly a�ects the IO latency of the servo group by a signi�cant
amount.

Another advantage of o�oading only pre of blocks is that inputs of all blocks are known
after the time-critical section has �nished, since it only uses inputs of the previous sample.
The parallelism of the FPGA can be fully exploited by sending inputs for all o�oaded tasks
at the same time.

3.3 Control Mode Switches

In order to facilitate control mode switch functionality, the MCCP has to be able to switch
parameter sets for o�oaded blocks synchronously with the other blocks in the servo applica-
tion. The �rst issue is that before the switch, the new parameter sets of all blocks have to be

29

CHAPTER 3. ANALYSIS AND APPROACH

present in the MCCP. A double bu�ering approach similar to the one on the HPPC-Worker
is used. Figure 3.2a shows the architecture of the VPE with the double-bu�ered parameter
sets.

Parameter sets for the SS_220 pre are the matrices A, B, and C. In the benchmark
application, the SS_220 block O has the largest parameter set, namely:

220 ∗ 220 + 12 ∗ 220 + 11 ∗ 220 = 53460 32-bit values

The other three blocks have parameter set size

220 ∗ 220 + 11 ∗ 220 + 11 ∗ 220 = 53240 32-bit values

Storing all parameter sets for all o�oaded blocks in the FPGA RAM would yield bad
scalability properties, since the RAM resources on FPGAs are very limited. Two options
remain to be explored:

� Sending new parameter sets at run-time.

� Storing all parameter sets on an external memory.

The amount of data to be transferred for a control mode switch is

53460 + 53240 ∗ 3 = 266420 32-bit values = 0.85MB

The number of samples available to do parameter set pre-loading is 50, so at the goal sample
frequency of 40 kHz, a bandwidth of

0.85MB ∗ 40000
50

= 682 MB/s

is used. Since the datarate in the ATCA blades is at most 1GB/s (Section 2.2.1), loading
the parameter sets in this manner would use over 68% of the available bandwidth during 50
sample periods. Therefore, it would interfere with the other tra�c, and scalability issues arise
when increasing the sample frequency beyond 40 kHz. Hence, the only viable option left is
to store all parameter sets in an external memory of the MCCP at initialisation. This means
that:

� When pre-loading the parameter sets for the control mode switch on the Worker, the
HPPC has to send a message to the MCCP to load the parameter sets from the external
memory into the FPGA RAM.

� To ensure that the parameter sets have been loaded into the FPGA RAM before doing
the synchronous switch, a �ag has to be sent back to the HPPC after a load has �nished.

The second issue is that the MCCP, and thus the ASIP platform, should do the switch
synchronously. Assume that the new parameter sets are already pre-loaded into the FPGA
RAM. The active parameter sets have to be switched from the old ones to the new ones. For
this, four approaches illustrated in Figure 3.2 are explored:

30

CHAPTER 3. ANALYSIS AND APPROACH

1. Every o�oaded block has a mirrored task, which uses the same state, but a di�erent
parameter set (Figure 3.2a): to switch, the HPPC has to target the other task after the
parameter set has been loaded into its parameter memory.

2. Change the memory address in the task instructions: to switch, all instructions in the
instruction memory with a reference to the active parameter set have to be overwritten.

3. Use relative addressing in the instructions with a reference to the active parameter set
and an o�set register which points to the address of the active parameter set (Figure
3.2c): to switch, the o�set register has to be overwritten.

4. Highest bit address space �ip (Figure 3.2d). The memory is divided into two halves: to
switch, one single highest bit should be �ipped.

The following table shows the pros and cons of each of the approaches

Pro Con

1 No additional communication overhead for a switch More ASIP instruction memory required

No changes to the ASIP platform required If blocks have input/output dependencies to other blocks
in the ASIP platform, these other blocks must use the
parameter set corresponding to the new control mode
after the switch as well 1

2 ASIP instruction memory size unchanged Adds communication overhead

No changes in the ASIP platform required

3 Task instruction memory size unchanged Need one extra clock cycle for computing address for ev-
ery computation with a parameter set reference 2

Fast switching; only one word has to be sent per task Requires implementation e�ort; the ASIP platform does
not currently support it

Needs synchronisation; o�set register has to be changed
before new task inputs for the new control mode can be
received

4 Fast Switching; only one word has to be sent per task Not currently implemented in the ASIP platform

Needs synchronisation; address space �ip has to be reg-
istered before task inputs for the new control mode can
be received

Sub-optimal use of parameter memory; constant values
would have to be duplicated in both parts of the memory

Recall that pre_calc by de�nition has no output dependencies to other blocks. In Section
3.2, o�oading pre_calc was found to be the best option for gaining performance when using
an FPGA co-processor. Therefore, approach 1 only has one con, namely the extra ASIP
memory required. Since the size of instruction memory is insigni�cant compared to the size
of the parameter memory for the state-space block, approach 1 is found to have the least
downsides.

1This could be solved by either performing a parameter switch for all blocks in an internally dependent set,

or implementing a con�gurable destination for task outputs.
2This latency could be hidden during the actual execution, but it changes the timing model of the ASIP,

which means that the program code has to be changed.

31

CHAPTER 3. ANALYSIS AND APPROACH

VPE

ALU and I/O
logic

Task
Input

Task
Output

Configuration
Interface

State Memory

SS_220 pre_calc FF State

Parameter Memory

Parameter Set Buffer 0

Parameter Set Buffer 1

data

addr

data

addr

Program Memory

data out

addr

data in

SS_220 pre_calc FF task

(a) VPE with double bu�ered parameter sets

VPE

ALU and I/O
logic

State Memory

SS_220 pre_calc FF State

Parameter Memory

Parameter Set Buffer 0

Parameter Set Buffer 1

data

addr

data

addr

Program Memory

data out

addr

data in

SS_220 pre_calc FF task 0

SS_220 pre_calc FF task 1

Configuration
Interface

Task
Input

Task
Output

(b) Approach 1: VPE with shared state (colours
show task to parameter set correspondence)

VPE

ALU and I/O
logic

State Memory

SS_220 pre_calc FF State

Parameter Memory

Parameter Set Buffer 0

Parameter Set Buffer 1

data

addr

data

addr

Program Memory

SS_220 pre_calc FF task

data out

addr

data in

Param Offset Register

+

Task
Input

Task
Output

Configuration
Interface

(c) Approach 3: VPE with parameter o�set regis-
ter (colour shows current o�set value)

VPE

ALU and I/O
logic

State Memory

SS_220 pre_calc FF State

Parameter Memory

Parameter Set Buffer 0

Parameter Set Buffer 1

0x10000

data

addr[15:0]

bit

addr[16]

data

addr

Program Memory

SS_220 pre_calc FF task

data out

addr

data in

Configuration
Interface

Task
Input

Task
Output

(d) Approach 4: VPE with highest address bit �ip
mechanism (colour shows current bit = 0)

Figure 3.2: VPE architecture with di�erent parameter switch approaches

32

CHAPTER 3. ANALYSIS AND APPROACH

3.4 State Control

When a block is turned o� by state control, it can either behave as a pass-through, or output
a constant value irrespective of the input. Consider the case where a subgraph of the servo
application shown in Figure 3.3 would be o�oaded to the MCCP. Now inputs are only sent
from the HPPC to block A, and outputs from block C are received. When block B is turned
o�, the new behaviour of the block has to be registered in the MCCP. I.e. it has to switch to
a task that does not do the calculate but instead passes input to output, or constant values
on the output. This switch also has to be processed synchronously with the sample frequency
of the motion controller: it has to be guaranteed that the task has switched before any new
inputs can be handled.

Figure 3.3: Servo application subgraph example

This issue only occurs when a dependency is present between the blocks o�oaded to the
MCCP. Following the same reasoning as in Section 3.3, when o�oading only pre_calc of
blocks, no dependencies to other blocks are present. post_calc which is still executed on the
HPPC-Worker calculates the actual output of the block. Hence, state control need not be
considered for the MCCP, since it can be solved at the HPPC-Worker.

3.5 Hardware Architecture

The choice of the hardware architecture of the solution and the corresponding test setup for
the experimental evaluation of this project is based on several factors:

� Size of the FPGA (amount of logical units, BRAMs, etc)

� Test setup implementation e�ort

� CARM implementation feasibility

� Communication latency and bandwidth

The size of the FPGA covers the amount of resources (logic and memory) present on the
FPGA. For the test setup, this should be more than enough, such that development of the
proof of concept will not be blocked on this. In an actual real-life deployment, the size of the
FPGA could be custom selected based on resource usage values obtained during development
of the proof of concept.

The test setup implementation e�ort is the e�ort to get the test setup up and running.
This should be as low as possible, so that the chance of obtaining useful results is increased.

CARM implementation feasibility is the degree of which the solution architecture can be
implemented in the current hardware architecture. It is not desirable for the solution to

33

CHAPTER 3. ANALYSIS AND APPROACH

demand a complete restructuring of the current architecture, unless it is absolutely necessary
in order to achieve the target sample frequency.

Communication latency between the GPP and FPGA should be low enough, while the
bandwidth should be high enough such that the gain in execution time of o�oaded blocks
outweighs the communication penalty for o�oading blocks.

3.5.1 Solution Options

To increase the feasibility of implementation in CARM, and since Section 3.2 has shown that
the bandwidth is high enough, only architectures resulting from placing an AMC board with
an FPGA on it in one of the ATCA blades are considered. Two options for the card are
possible:

1. pure FPGA board

2. SoC with some GP processor and FPGA on it

(a) Worker on the SoC GP processor

(b) Worker on HPPC, SoC GP processor is part of the co-processor

The main advantage of option 2 and the reason it is considered for this project is the short
latency between the GPP and the FPGA due to direct, private, communication through a
shared cache.

There are roughly two ways to deploy the second option: (a) use the GP processor as a
full worker, or (b) use it to take over some general purpose computation from the FPGA (like
loading the parameter sets to the shared cache) and keep the actual worker on the HPPC. For
both of these ways, a large amount of optimisations and trade-o�s could be made in order to
utilise the SoC features fully. No relevant previous work is done on the topic of optimising
a CARM motion controller on such an FPGA+GPP SoC. To perform this complete design-
space exploration in this project would be too big a task to take on. Additionally, Section
3.2 has shown that the latency caused by a RapidIO switch is small enough to get a speedup
when o�oading pre of blocks.

In conclusion, the second option introduces too many variables to consider, so to reduce
the risk of not getting any signi�cant results from this work, option 1 is chosen. It is expected
that this work will give a better insight in whether the FPGA+GPP SoC will indeed further
increase the performance of a motion controller, so that is left for future work.

3.6 Sample Frequency Feasibility Analysis

In this section, an analysis is done to estimate how many blocks can be o�oaded to the
MCCP before the network becomes the bottleneck. To perform this analysis, the following
assumptions are made:

� HPPC computation time is ignored, and the sample has no background period.

34

CHAPTER 3. ANALYSIS AND APPROACH

� The MCCP is able to compute all of the o�oaded blocks in parallel.

� The HPPC and MCCP can utilise a complete 2.5GBaud SRIO link, either quad-lane
(dr4 = 1.00GB/s) or single-lane (dr1 = 0.25GB/s) with a latency of l = 1.5µs.

� Loading of parameter sets for all o�oaded block from the external memory into the
ASIP platform can be done within the prescribed HPPC parameter set pre-loading time
(50 sample periods), so it does not block the sample frequency.

The communication overhead is dependent on the amount of data that has to be communi-
cated, the latency, and the bandwidth of the channel. A general formula for the communication
overhead for n blocks with #in bytes of input and #out bytes of output when values are sent
back to back is:

IO =
#in +#out

dr
∗ n+ 2 ∗ l =

#in +#out

dr
∗ n+ 2 ∗ 1.5µs

The maximum achieved sample frequency f , when not taking control mode switching
overhead into account can then be calculated as

f =
1

IO + cblock

where cblock is the execution time of the blocks.

The information that is needed for a parameter set load command when the MCCP has
no knowledge of the size of parameter sets for each block is

� Address in the external memory where the parameter set is stored.

� Address in the ASIP platform con�guration memory space where the parameter should
be loaded to.

� Number of values to load

Assume that 4 bytes are used for each of these values. A complete parameter set load command
(plc) then consists of 12 bytes. A simple synchronisation mechanism of parameter set load
commands could be sending a �ag from the MCCP to the HPPC whenever a load has been
done. These �ags are sent uniformly spread over the parameter set pre-loading time (50
sample periods) and have a size of less than 4 bytes. When a �ag arrives at the HPPC, it
is written into its inbound RIO memory, which can be checked right before executing the
switch to the new control mode. This feedback mechanism of only one 32-bit value does not
cause any notable overhead, and is therefore ignored in the rest of the calculations. Hence,
the communication overhead for n blocks for a sample with a parameter set load instruction
IOCMS can be calculated as

IOCMS =
#in +#plc +#out

dr
∗ n+ 2 ∗ l

and corresponding sample frequency fCMS

fCMS =
1

IOCMS + cblock

35

CHAPTER 3. ANALYSIS AND APPROACH

For an SS_220 pre_calc block, the maximum number of inputs and outputs found in
the benchmark application is 11 ∗ 4 + 12 ∗ 4 = 92B, and execution time cblock = 7µs + 3µs
(computation time from Section 2.4.2 with some additional internal MCCP latency). Figure
3.4 shows for 0 < n ≤ 12 when o�oaded blocks are SS_220 pre_calc computations:

� f1: single-lane SRIO communication channel, no control mode switch overhead

� f4: quad-lane SRIO communication channel, no control mode switch overhead

� fCMS1 : single-lane SRIO communication channel, added control mode switch overhead
for every sample

� fCMS4 : quad-lane SRIO communication channel, added control mode switch overhead
for every sample

It shows that if all four blocks are o�oaded, a maximum sample frequency of 68kHz could be
achieved for a single-lane link. The bandwidth di�erence for single-lane compared to quad-
lane has a bigger impact as the number of blocks increases. At the same time, the impact of
the parameter load messages is very minimal, even for larger numbers of o�oaded blocks.

40

45

50

55

60

65

70

75

80

1 2 3 4 5 6 7 8 9 10 11 12

SA
M

P
LE

 F
R

EQ
U

EN
C

Y
(K

H
Z)

OFFLOADED SS_220 PRE_CALC BLOCKS

f_1 f_4 f_CMS1 f_CMS4

Figure 3.4: Sample frequency for 0 < n ≤ 12, cblock = 10µs, and #in +#out = 92B

This analysis shows that the MCCP will be able to run in a motion controller running at
at most 68kHz for a single-lane SRIO communication channel or even 75kHz for a quad-lane
SRIO communication channel when o�oading four SS_220 blocks.

Realistically, whether all blocks could be computed in parallel on the MCCP and whether
all parameter sets could be loaded within 50 samples heavily depends on the FPGA resources
and peripherals, but also the design itself. Furthermore, reaching this sample frequency would
require a sample schedule on the HPPC in which all non-o�oaded blocks can be computed

36

CHAPTER 3. ANALYSIS AND APPROACH

and supervisory control from the Host handled during the time that the MCCP is computing
the o�oaded blocks, and no execution time in the time-critical section.

In previous work [9], explained in Section 2.4.2, a sample frequency of 53kHz was obtained
for a multi-core processor with 4 vector ASIPs on-chip by optimising the sample schedule,
essentially the inverse of the analysis presented above. The minimum requirement to be able
to reach the goal of 40kHz is that the added overhead for o�oading has to be less than

1

40kHz
− 1

53kHz
= 6µs

This seems feasible indeed, since communication overhead on a quad-lane 2.5 GBaud SRIO
link

IOCMS4 =
92B+ 3B

1.00GB/s
∗ 4 + 2 ∗ 1.5µs = 4.7µs

Leaving 6µs− 4.7µs = 1.3µs for o�oading-related calculations on the HPPC. Hence, consid-
ering both of these results, a sample frequency of 40kHz when o�oading all SS_220 pre_calc
blocks in the benchmark application is feasible.

3.7 Functional Overview

Following from the analysis, the functionality and expected usage of the MCCP can be de-
duced.

� During initialisation, following from Section 3.1 and Section 3.3, the ASIP platform
con�guration (o�oaded blocks program code) and parameter sets of all o�oaded blocks
have to be sent to the MCCP.

� Only the pre_calc function of blocks are o�oaded, and each o�oaded pre_calc has two
tasks on the MCCP: an active task to which the inputs are currently being sent, and an
additional task to which the next parameter set can be loaded.

� At each sample at the start of the non-time-critical period, according to Section 3.1,
Section 3.2, and Section 3.3, block inputs for all o�oaded pre_calc blocks have to be
sent to the currently active task of each pre_calc.

� The non-time-critical period ends when all block outputs have been received from the
MCCP and all non-o�oaded blocks with calculation functions in the non-time-critical
period have been done.

� When parameter sets have to be preloaded, following from Section 3.3, parameter load
commands have to be sent for each o�oaded pre_calc block to the task that is currently
not active.

� When the control mode has to be switched, the non-active task is made the active task
and vice-versa.

Figure 3.5 shows the initialisation where the HPPC worker sends the initialisation data,
which need not be the case in the real platform. In the scenario, all four of the SS_220
pre_calc blocks FF, R, FB, and O are o�oaded to the MCCP. Each block X has two tasks

37

CHAPTER 3. ANALYSIS AND APPROACH

X0 and X1. The scenario shows that after initialisation of the MCCP, an initial parameter
preload command arrives from the host to switch to a control mode before the servo application
starts executing. The initial parameter sets are loaded for tasks 0.

Figure 3.6 shows the run-time scenario where a pre-load command arrives. Parameter
load commands for the o�oaded blocks are sent for blocks FF1, R1, and FB1. Block O uses
the same parameter set after the control mode switch in this scenario, so no load has to be
sent. During the 50 sample periods after the preload has started, load done messages can be
sent from the MCCP. Before the control mode switch occurs, a check is done to verify that
all parameter load commands have been responded to with load done messages. After the
control mode switch, the inputs for the blocks are sent to the tasks where the parameter sets
have just been loaded, which is the same for block O.

HPPC
Worker

MCCP

MCCP Configuration

Parameter Sets FF

Parameter Sets R

Parameter Sets FB

Parameter Sets O

pre-load parameter sets

Parameter Load CMDs FF0, R0, FB0, O0

Figure 3.5: MSC of initialisation of a worker with MCCP

38

CHAPTER 3. ANALYSIS AND APPROACH

HPPC
Worker

MCCP

pre-load parameter sets

Parameter Load CMDs FF1, R1, FB1

loop

≤ 50 samples

Block Inputs FF0, R0, FB0, O0

local non-time-critical section

time-critical section

Block Outputs FF, R, FB, O

loop

Block Inputs FF1, R1, FB1, O0

local non-time-critical section

time-critical section

Block Outputs FF, R, FB, O

control mode switch

opt
Load block FF1/R1/FB1 done

check all load done

Figure 3.6: MSC of a run-time scenario of a worker with MCCP showing a control mode
switch

39

4 | MCCP Proof of Concept Interface

This chapter describes the proof of concept interface of the MCCP. The MCCP interface has
to support all necessary functionality found in Chapter 3 via memory mapped RapidIO. For
implementation simplicity, the proof of concept only supports regular NWRITE operations
for inbound data. Outbound data is sent by NWRITE operations as well, as shown in Figure
4.1. The address of the NWRITE encodes the type of its data as depicted by Communication
Address Space.

MCCP

Communication Address Space

NWRITEs NWRITEs

ASIP_CONFIG

TASK_IN

MCCP_CONFIG

EXT_MEM

PARAM_LOAD_INSTR

Block Calculation
Logic

Parameter Set
Loading Logic

Figure 4.1: MCCP Conceptual Interface

The following functionality is supported:

� Con�guring the ASIP Platform (Section 4.1)

� Con�guring the MCCP (Section 4.2)

� Perform task calculations for speci�c inputs to generate task outputs (Section 4.3 and
Section 4.4)

� Loading of parameter sets from the external memory to ASIP memory (Section 4.5)

4.1 Programming the ASIP Platform

A code generator described in [10] reads �les describing the ASIP platform and the tasks
mapped onto it to generate a set of con�guration memory values with corresponding ad-
dresses for the ASIP platform. The generated �le contains program instructions, variables,
and constants for each task. The addresses are de�ned in the con�guration address space of
the ASIP platform.

40

CHAPTER 4. MCCP PROOF OF CONCEPT INTERFACE

For the proof of concept, these tasks are two SS_220 pre_calc blocks with a shared state
variable (~xk) for each SS_220 block in the benchmark application. E.g. the SS_220 pre_calc
block FF is instantiated as:

block ss_220_FF_pre0 ss_pre_shared_state(11,11,220,sFF)
block ss_220_FF_pre1 ss_pre_shared_state(11,11,220,sFF)

Where sFF is the name of the shared state variable. Each block's tasks are mapped to a
separate VPE for increased parallelism.

To program the ASIPs, the values generated by the code generator have to be written
to the corresponding addresses on the con�guration interface of the ASIP platform. The
con�guration interface of the ASIP platform is mapped to ASIP_CONFIG of the inbound
memory space of the MCCP, hence the ASIP platform can be con�gured by NWRITEs of the
values to their speci�ed addresses with an o�set of the ASIP_CONFIG base address.

4.2 MCCP Con�guration

In addition to the ASIP platform con�guration, the MCCP has some registers that need to
be con�gured before task outputs can be sent back, and parameter sets can be loaded from
the external memory to a task.

� TARGET_RIO_ID: RapidIO id of the intended receiver of MCCP output.

� T_O_ADDR: Base address of a writeable 32-bit memory space for task output values
on the target with RapidIO id TARGET_RIO_ID.

� TO_FLAG_ADDR: Base address of a writeable 32-bit memory space for task output
�ags on the target with RapidIO id TARGET_RIO_ID.

� PLOAD_FLAG_ADDR: Base address of a writeable 32-bit memory space for parameter
load done �ags on the target with RapidIO id TARGET_RIO_ID.

Furthermore, a lookup table PARAM_LOAD_LUT with an ASIP platform con�guration
addresses for each task has to be �lled. Each task has an entry which should contain the base
address of its parameter set in the ASIP platform con�guration memory space, hence these
values should be generated by the code generator. For this proof of concept, they are gathered
manually.

4.3 Task Input

Task inputs are written to the TASK_IN memory space by NWRITE operations. Task input
parameters have a static external address uniquely identifying the input which is known by
the worker. E.g. SS_220 pre_calc block FF has external input addresses [0..10] for the �rst
task, and [64..74] for the second task.

For writing task inputs to the MCCP, the following conditions apply:

41

CHAPTER 4. MCCP PROOF OF CONCEPT INTERFACE

� Task inputs are written to their external 32-bit word address as o�set of TASK_IN

� Input values are in big-endian IEEE 754 �oating point format ([11])

Since the addresses used in RapidIO are byte addresses, and input values are 32-bit, the
external addresses of the inputs have to be multiplied by 4. E.g. to send the input vector
[0.1, 0.2, ..., 1.1] to the �rst task of FF, thereby triggering its calculation, the data should be
written as shown in Table 4.1.

Address Value Decimal Representation

TASK_IN+0 ∗ 4 0x3dcccccd 0.1

TASK_IN+1 ∗ 4 0x3e4ccccd 0.2

TASK_IN+2 ∗ 4 0x3e99999a 0.3

TASK_IN+3 ∗ 4 0x3ecccccd 0.4

TASK_IN+4 ∗ 4 0x3f000000 0.5

TASK_IN+5 ∗ 4 0x3f19999a 0.6

TASK_IN+6 ∗ 4 0x3f333333 0.7

TASK_IN+7 ∗ 4 0x3f4ccccd 0.8

TASK_IN+8 ∗ 4 0x3f666666 0.9

TASK_IN+9 ∗ 4 0x3f800000 1.0

TASK_IN+10 ∗ 4 0x3f8ccccd 1.1

Table 4.1: Task Input Example for FF (32-bit big-endian words)

Note that this can be done in a single NWRITE with a payload of �ve double-word values
and one single-word value to TASK_IN_BUF+0∗4, because the external addresses are chosen
such that they are successive numbers.

4.4 Task Output

Task outputs are written from the MCCP to the RapidIO id given by the TARGET_RIO_ID
register. Similar to task inputs, task outputs have a static external address uniquely identifying
the output.

Output values are written by NWRITEs operations to the address in T_O_ADDR with
a 32-bit word o�set of the value's external address. After an output value has been written, a
value of 1 is written to the address in T_O_FLAG_ADDR with a 32-bit word o�set of the
value's external address.

For receiving task outputs from the MCCP, the following conditions apply:

� TARGET_RIO_ID contains the RIO id of the target (HPPC)

� T_O_ADDR contains a base address of a writeable 32-bit memory space on the target
with a size of at least max_ext_addr ∗ 4 bytes, where max_ext_addr is the maximum
external address of an output

� T_O_FLAG_ADDR contains a base address of a writeable 32-bit memory space on
the target with a size of at least max_ext_addr ∗ 4 bytes, where max_ext_addr is the
maximum external address of an output

42

CHAPTER 4. MCCP PROOF OF CONCEPT INTERFACE

� Each o�set from T_O_FLAG_ADDR that corresponds to an external output address
for which an output is expected, is set to 0

For example, for

� output value o with external address id

� value of TARGET_RIO_ID rio_id

� value of T_O_ADDR addr

� value of T_O_FLAG_ADDR flag_addr

o is written by an NWRITE to RapidIO id rio_id at address addr + (id ∗ 4). After the
value has been written, a value of 0x00000001 is written by an NWRITE to RIO id rio_id at
address flag_addr + (id ∗ 4).

Note that packing multiple output values together is expected to decrease overall task
output delays and also the amount of computation necessary for synchronisation of outputs
at the GPP. However, this would require some programmable component in order to be able
to handle the general case of which values should be packed together. This is left for future
work.

4.5 Parameter Set Loading

To load parameter sets from the external memory, mapped to EXT_MEM, to a task's param-
eter memory, Parameter Set Load instructions can be issued. Parameter Set Load instructions
are written to PARAM_LOAD_INSTR by NWRITE operations. Similar to task input and
output values, the task itself has a static external address uniquely identifying it.

For writing Parameter Set Load instructions to the MCCP, the following conditions apply:

� TARGET_RIO_ID contains the RIO id of the target (HPPC)

� Data written to PARAM_LOAD_INSTR holds one or multiple consecutive instructions
frames of PARAM_LOAD_frame (Table 4.2)

� A valid ASIP platform con�guration address is stored in PARAM_LOAD_LUT for
each external task address (EXT_ADDR) in a PARAM_LOAD_frame.

� Writing of data has to start at the PARAM_LOAD_INSTR base address

� PLOAD_FLAG_ADDR contains a base address of a writeable 32-bit memory space on
the target with a size of at least max_ext_task_addr∗4 bytes, where max_ext_task_addr
is the maximum external task address

� Each o�set from PLOAD_FLAG_ADDR that corresponds to an external task address
for which a PARAM_LOAD instruction is sent, is set to 0

For each PARAM_LOAD_frame, a �ag is written back to the target with RapidIO id
TARGET_RIO_ID by an NWRITE operation to verify that the instruction has �nished
executing on the MCCP. The �ag has a value of 0x00000001 and is written to the address in
PLOAD_FLAG_ADDR with the task's external address as 32-bit word o�set.

43

CHAPTER 4. MCCP PROOF OF CONCEPT INTERFACE

Relative word addr. Bit �eld Mnemonic Description

0 PARAM_LOAD_HEADER Parameter load instruction header

[31:4] nr_values number of values to load

[3:0] PARAM_LOAD_OP PSU load instruction op-code. Value: 0x2)

1 [31:0] FROM_ADDRESS Start external memory address (relative to the
EXT_MEM base address) of values to load

2 [31:0] EXT_ADDR Address of the destination task

Table 4.2: PARAM_LOAD_frame

44

5 | MCCP Proof of Concept Design

In this chapter, the FPGA design that implements the interface as speci�ed in Chapter 4 is
given. The top-level design is shown in Figure 5.1.

FPGA

SRIO
Communication

DDR3 Memory

srio_gen2_core

ddr3_core

srio_gen2_int_
unit

ddr_int_unit

data_distr

param_switch_
unit

ASIP Platform

Axim2Avm

Legend

External entity Existing/generated component Custom designed component

125 MHz

200 MHz

31.25 MHz

Figure 5.1: MCCP Design

The design is made for, and implemented on, a Xilinx Virtex-7 FPGA VC707 Evaluation
Kit ([12]). The VC707 kit has DDR3 memory which is used as the external memory of the
MCCP. It is connected to the SRIO network via its SFP+ transceivers with a single-lane 2.5
GBaud link. The main clock domain has a frequency of 125 MHz to avoid having to solve
time-consuming timing problems during implementation. The design contains

� srio_gen2_core: a LogiCORE IP Serial RapidIO Gen2 Endpoint v3.1 core ([13]) for
translating the transceiver signals from and to RapidIO packets

45

CHAPTER 5. MCCP PROOF OF CONCEPT DESIGN

� ddr3_core: a LogiCORE IP DDR3 core ([14]) for storing data to and loading data
from the DDR3 memory. Generated with a 32-bit interface width to match the ASIP
Platform's con�guration interface data width.

� srio_gen2_int_unit and ddr_int_unit: convert from respectively the srio_gen2_core
interface and ddr3_core interface to an interface that is used internally in the main clock
domain in order to keep the design modular

� data_distr: distributes the inbound data to the other components, and gathers outbound
data from the other components

� param_switch_unit: handles Parameter Set Load instructions

� Axim2Avm: converts the internally used interface to an interface compatible with the
ASIP Platform con�guration interface. An arbiter arbitrates between param_switch_unit
and data_distr.

� ASIP Platform: the ASIP platform as speci�ed in Section 3.1

Inbound NWRITEs are always passed from srio_gen2_core to srio_gen2_int_unit. srio-
_gen2_int_unit converts the NWRITEs to internally used write interfaces and passes them
to data_distr. data_distr then decodes the destination of the message from the address:

� NWRITEs to ASIP_CONFIG are written to the ASIP platform's con�guration interface
via Axim2Avm as shown in Figure 5.2.

� NWRITEs to MCCP_CONFIG are handled as shown in Figure 5.3. If the address is
equal to one of the MCCP con�guration registers, the data is stored in data_distr . If the
address is in PARAM_LOAD_LUT, it is written to psu_lut in param_switch_unit.

� NWRITEs to TASK_IN are passed to the ASIP Platform's external interface as shown
in Figure 5.4. The ASIP platform starts a tasks computation once all inputs for that
task have arrived. data_distr creates two outbound NWRITEs for each output value
from ASIP Platform's external interface.

� NWRITEs to PARAM_LOAD_INSTR are passed to param_switch_unit, where they
are decoded and carried out as shown in Figure 5.5.
param_switch_unit retrieves the DDR address from the instruction, and retrieves the
ASIP platform con�guration address from psu_lut using the external task address in
the instruction. Multiple reads from the DDR memory could be carried out before the
Parameter Set Load instruction has been completed (Figure 5.6).

� NWRITEs to EXT_MEM are written to the DDR memory through ddr_int_unit as
shown in Figure 5.7.

46

CHAPTER 5. MCCP PROOF OF CONCEPT DESIGN

srio_gen2
_core

srio_gen2
_int_unit

data_distr
ASIP

Platform

NWRITE(addr, data)

Write(addr, data)

Axim2Avm

Write(addr, data)

Config_write(addr, data)

alt

addr in ASIP_CONFIG

Figure 5.2: MSC for NWRITEs to ASIP_CONFIG

srio_gen2
_core

srio_gen2
_int_unit

data_distr

NWRITE(addr, data)

Write(addr, data)

alt

addr => TARGET_RIO_ID

TARGET_RIO_ID = data

param_switch
_unit

addr => TO_FLAG_ADDR

addr => T_O_ADDR

addr => PLOAD_FLAG_ADDR

addr in PARAM_LOAD_LUT

T_O_ADDR = data

TO_FLAG_ADDR = data

PLOAD_FLAG_ADDR = data

psu_lut_write(addr, data)

Figure 5.3: MSC for NWRITEs to MCCP_CONFIG

47

CHAPTER 5. MCCP PROOF OF CONCEPT DESIGN

srio_gen2
_core

srio_gen2
_int_unit

data_distr

NWRITE(addr, data)

Write(addr, data)

input(addr, data)alt

addr in TASK_IN

ASIP
Platform

Write(addr+T_O_ADDR, data)

Write(addr+TO_FLAG_ADDR, data)

NWRITE(addr+T_O_ADDR, data)

NWRITE(addr+TO_FLAG_ADDR, 1)

output(addr, data)

Figure 5.4: MSC for NWRITEs to TASK_IN

srio_gen2
_core

srio_gen2
_int_unit

data_distr

NWRITE(addr, data)

Write(addr, data)

alt

addr in PARAM_LOAD_INSTR

param_switch
_unit

load_instr(data[0], data[1], data[2])

Done(extAddr)

Write(extAddr+PLOAD_FLAG_ADDR, 1)

NWRITE(extAddr+PLOAD_FLAG_ADDR, 1)

Figure 5.5: MSC for NWRITEs to PARAM_LOAD_INSTR (1 of 2)

48

CHAPTER 5. MCCP PROOF OF CONCEPT DESIGN

param_switch
_unit

load_instr(data[0], data[1], data[2])

ddr_int_
unit

ddr3_core Axim2Avm
ASIP

Platform

Read(extMemAddr)

loop

Read(extMemAdd)

Write(asipCfgAddr, data)

Config_write(data)

data

data

Done(extAddr)

decodeInstr(data[0],data[1],data[2])

Figure 5.6: MSC for NWRITEs to PARAM_LOAD_INSTR (2 of 2)

srio_gen2
_core

srio_gen2
_int_unit

NWRITE(addr, data)

Write(addr, data)

alt

addr in EXT_MEM

ddr_int_unit ddr3_core

Write(addr, data)

Figure 5.7: MSC for NWRITEs to EXT_MEM

49

6 | Experimental Evaluation

In this Chapter, the experimental evaluation of the MCCP is discussed.

� Section 6.1 describes the test setup used for evaluation

� Section 6.3 describes the metrics to be gathered

� Section 6.4 and Section 6.5 describe the benchmarking approach for the three types of
metrics

� Section 6.6 lists and analyses the results of the experiments

� Section 6.7 gives conclusions of the analysis and assesses performance of the MCCP with
some low-e�ort optimisations

6.1 Test Setup

The MCCP will be tested in a setup shown in Figure 6.1. The test setup consists of a PRIOC-
QA ATCA carrier blade with

� Two PPA8548 AMC cards

� PGEA for SRIO breakout

� Xilinx VC707 FPGA Evaluation Kit

� A Linux Server to program the PPA8548 cards and FPGA

� QSA (QSFP+ to SFP+ conversion)

� RapidIO Logic Analyzer

The HPPC-worker is deployed on a PPA8548 AMC card plugged in to a PRIOC-QA ATCA
carrier blade. The MCCP will be deployed on a Xilinx Virtex 7 (VC707) FPGA development
kit which is not an AMC card, hence a PGEA SRIO breakout AMC card with a QSA will be
used. The QSA converts the QSFP+ connector of the PGEA to an SFP+ connector which
is connected to the FPGA. Note that the SFP+ connector only connects a single SRIO lane,
hence the connection form the FPGA to the switch is single lane, while the connections from
the PPAs to the switch are quad-lane (four times as fast).

The Logic Analyzer is used to monitor RIO tra�c from and to the MCCP. It can be
connected between the switch and the MCCP or between a PPA and the switch.

6.2 Software

The Linux Server is used to program the FPGA. It runs Debian 3.2.54-2 x86_64. The Linux
server runs a service called Xilinx Hardware Server to which a machine running Xilinx Vivado

50

CHAPTER 6. EXPERIMENTAL EVALUATION

Ethernet

SRIO 1L

PRIOC-QA
(ATCA Carrier Blade
with SRIO switch)

HPPC- worker
(PPA8548)

SRIO 4L
Host

(PPA8548)

Platform Cable USB II

MCCP
(VC707)

Linux Server

Logic
Analyzer

OR

SRIO 1L

SRIO
Switch

SRIO breakout
(PGEA)

QSA

SRIO 4L

Figure 6.1: Test setup hardware

can connect. To measure the internal FPGA timings, Integrated Logic Analyzer (ILA) probes
are used ([15]).

The PPA8548 boards run Wind River Linux glibc_cgl (preempt_rt) 2.0.

6.3 Benchmarks and Metrics

The focus of the benchmarks will be on o�oading the state space block 220 pre-calculation
(SS_220_pre), since this is expected to give the most performance gain for the benchmark
application (Chapter 3). The benchmark application contains four SS_220 blocks, where two
types can be distinguished:

� 11 inputs, 11 outputs (SS_220_11_11: FF, R, FB)

� 12 inputs, 11 outputs (SS_220_12_11: O)

Three di�erent kinds of metrics will be measured:

� Delays of the MCCP (Section 6.3.1)

� Resource utilisation of the MCCP deployed on an FPGA (Section 6.4.3)

� Correctness of outputs (Section 6.5)

51

CHAPTER 6. EXPERIMENTAL EVALUATION

PPA

SRIO

SRIO

Logic Analyzer

SRIO

SRIO
Switch

PGEA

QSA

FPGA

srio_gen2_core

srio_gen2_int

AxiSrioCore

Transceiver Interface

data_distr
AximRio

PSU

ASIP Platform

AximCrossbar

AximCfg(1)

AximCfg

ext_int_inext_int_out

DDR_int AximPsuDdr

DDR3_core

AximDDRCore

DDR3 Memory

Physical Interface

AxiPSI

SFP+
Connector

Axim2Avm

AvCfg

RIO Driver

F2

F3

F4

F5

F6

F8

F7 F10

F11

F12

4

R0

AxisRioReq

F1

HPPC Simulator VMEM

0

1

Figure 6.2: Measuring points

52

CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.2 shows the measuring points in the test setup. Measuring points prepended with
an 'F' are probed using ILA cores in the FPGA design. Other measuring points are

� 〈0〉: Memory write probe. Used to measure the start of sending task inputs or PSU
instructions.

� 〈1〉: Memory read probe. Used to measure the end of receiving task outputs or PSU
done �ags and correctness of results.

� 〈4〉: Logic Analyzer probe. Used to measure MCCP input-to-output times.

� 〈R0〉: FPGA resource utilisation.

6.3.1 Delays

Input-to-output delays of two di�erent MCCP run-time functionalities should be measured in
order to be able to estimate the maximum sample frequency:

� Task input to output

� Parameter Set loading

Both of these can be measured at three points:

� Internally: input at 〈F2〉 to output at 〈F2〉 (Section 6.4)

� Externally: input at 〈4〉 to output at 〈4〉 (Section 6.4.4)

� Completely: input at 〈0〉 to output at 〈1〉 (Section 6.5)

6.4 Internal Benchmarks Approach

Internal delays are measured using ILA cores. ILA cores can be inserted after synthesis in
Vivado. They are inserted on each of the signal groups marked by a probe in Figure 6.2.

The total internal input at 〈F2〉 to output at 〈F2〉 can be decomposed in multiple smaller
delays. The decomposition di�ers depending on the type of input as explained in Sections
6.4.1 and 6.4.2.

6.4.1 Task Input-to-Output Delay

Internal task Input-to-Output delay is measured at 〈F2〉. It is composed of

� 〈F2〉 → 〈F3〉
� 〈F3〉 → 〈F5〉
� 〈F5〉 → 〈F4〉
� 〈F4〉 → 〈F1〉
� 〈F1〉 → 〈F2〉

53

CHAPTER 6. EXPERIMENTAL EVALUATION

The time it takes to execute the state space calculations SS_220_11_11_pre and SS-
_220_12_11_pre (〈F5〉 → 〈F4〉) can be calculated based on the code generated for the ASIP
Platform and its clock frequency (125 MHz). The ASIP Platform adds some additional delay
for routing the data from and to the external interface of the ASIP Platform.

The total internal task input-to-output delay is de�ned as the time it takes from the
moment the �rst packet of the inputs for one task arrives at 〈F2〉 to the time of the last
beat of the last output packet of that task is accepted by the srio_gen2_core at 〈F2〉. All
sub-delays are measured with a similar de�nition, i.e. beat of �rst at the input to beat of last
at output side.

6.4.2 PSU Parameter Load Delay

Once a parameter load instruction arrives at 〈F2〉, they go to the PSU which handles the
instruction:

� 〈F2〉 → 〈F3〉
� 〈F3〉 → 〈F6〉

Then, the load instruction is carried out. It is broken up into one or more DDR loads of 256
words that follow a path:

� 〈F7〉 → 〈F8〉
� 〈F8〉 → DDR3 Memory

� DDR3 Memory → 〈F8〉
� 〈F8〉 → 〈F7〉
� 〈F7〉 → 〈F10〉
� 〈F10〉 → 〈F11〉
� 〈F11〉 → 〈F12〉

When all loads have been carried out, an NWRITE request for the 'instruction done' �ag goes
back through:

� 〈F6〉 → 〈F1〉
� 〈F1〉 → 〈F2〉

The total internal PSU parameter load delay is de�ned as the time it takes from the
moment the �rst packet of a parameter load instruction for one task arrives at 〈F2〉 to the
time of the last beat of the load done packet is accepted by srio_gen2_core at 〈F2〉.

The DDR load delay (〈F7〉 → 〈F12〉) is de�ned as the time it takes from the moment the
read request of 256 32-bit words is presented at 〈F7〉 to the time of the last beat of the read
data is accepted at 〈F12〉.

54

CHAPTER 6. EXPERIMENTAL EVALUATION

6.4.3 FPGA Resource Utilisation

Resource utilisation 〈R0〉 is composed of the resource usage of all blocks. For each block, the
following metrics are gathered:

� Number of Slice LUTs

� Number of Slice Registers

� Number of Block Rams (BRAM)

� Number of DSPs

6.4.4 External Benchmarks Approach

With the Logic Analyzer, the tra�c on the RIO link between the switch and the PGEA can
be monitored. From the Logic Analyzer measuring point (〈4〉), inbound packets are subject
to several delays before arriving at the �rst internal measuring point 〈F2〉:

� RX PGEA delay

� RX QSA delay

� RX srio_gen2_core delay

Outbound RIO packets from 〈F2〉 are subject to other delays:

� TX srio_gen2_core delay

� TX QSA delay

� TX PGEA delay

Task input packets can be matched to corresponding task output packets, and parameter
load instruction packets can be matched to the corresponding packets with 'load done' �ags
using their addresses. The total time from task input to task output or parameter load
instructions can then be calculated using the timestamps provided by the Logic Analyzer.

The total external task input-to-output delay is de�ned by the time it takes from the
moment the �rst packet of the inputs for one task arrives at 〈4〉 to the time of the last beat
of the last output packet of that task arrives at 〈4〉.

The total external PSU parameter load delay is de�ned by the time it takes from the
moment the �rst packet of a parameter load instruction for one task arrives at 〈4〉 to the time
of the last beat of the load done packet arrives at 〈4〉.

6.5 HPPC Simulator Benchmarks Approach

An HPPC simulator application (Test Application in Figure 6.2) running on the PPA8548
maps outbound and inbound virtual memory to and from the MCCP (depicted by VMEM in
Figure 6.2). Data written to the outbound memory is sent to the MCCP by NWRITEs, and

55

CHAPTER 6. EXPERIMENTAL EVALUATION

NWRITEs arriving from the MCCP are written to the inbound memory. From the point of
view of the MCCP, it acts as a real HPPC running a servo application with o�oaded blocks
on the MCCP.

Using VMEM, the test application �rst initialises the MCCP by sending the ASIP Platform
con�guration data and setting the necessary MCCP speci�c registers (as speci�ed in Chapter
4).

To benchmark the MCCP, the test application sends inputs for a prede�ned scenario to
the MCCP at rates ranging from 20 kHz to 50 kHz with 10 kHz increments, or up until the
maximum achievable sample frequency if lower than 50 kHz. The scenarios contain regular
task inputs for each sample for all o�oaded blocks, and control mode switch (i.e. parameter
load instruction) sample numbers. The scenarios are de�ned in a �le which is parsed and
loaded into memory by the HPPC simulator before execution starts. Scenarios run for 106

samples.

The following events are logged with a timestamp in a �le that contains the VHDL and
test application version information:

� Writing of block inputs to VMEM

� Reading of block outputs from VMEM

� Writing of PSU load instructions to VMEM

� Reading of PSU load done �ags from the VMEM

The values are read from the memory as early as possible, that is, as soon as it is present
in the local memory.

Two di�erent o�oading scenarios are benchmarked:

� One SS_220_11_11_pre block

� All four SS_220_pre blocks of the benchmark application

For the maximum sample frequency reached for any application, it will be manually deter-
mined what component (e.g. the RapidIO link or the MCCP internally) causes the bottleneck.

6.5.1 Correctness

The benchmark scenarios are executed completely on the PPA �rst to obtain a baseline version
of the expected outputs. Correctness could be validated by comparing all block outputs of a
run to a baseline version. However, because of some unknown issue, the VPEs return faulty
output values for the SS_220_pre blocks, even in simulation. Therefore, the correctness is
not validated.

6.5.2 Delay

Input-to-output delays can be calculated from the log �les. For both the block input-to-output
and the parameter load delays, an average, maximum, and minimum are gathered.

56

CHAPTER 6. EXPERIMENTAL EVALUATION

Note that delays cannot be measured simultaneously. Consider for example task outputs
and corresponding �ags arriving shortly before a parameter load done �ag. All task output
�ags �rst have to be read to ensure that the all output values have arrived. After this, the
parameter load done �ag can be checked, but now a part of the measurement time for the
task output �ags is added to the measured delay for the parameter set load.

To avoid this, the scenarios are �rst executed in the most realistic manner:

� 50 samples before a control mode switch, the parameter set load instructions are sent

� Block IO is continued during the execution of the parameter set load and all block output
�ags are checked. Delays of the �rst block are logged.

� At the control mode switch sample, the parameter set load done �ags are synchronised

This ensures that the MCCP works as expected and is functionally correct. After this, the
scenario is executed again to measure parameter set load delays:

� At the time of a control mode switch, the parameter set load instructions are sent and
immediately synchronised by busy waiting so their actual delay can be logged.

� Block IO is only done in between and the output �ags are checked. Delays of the �rst
block are logged.

The delays of the �rst execution can be compared to the delays of the second one to see if the
parameter set loads have any signi�cant impact on the block IO delays. Finally, for the four
block o�oading case, the task input-to-output delays of the other blocks can be measured in
three more separate executions of the scenario by synchronising the block under test �rst.

6.6 Results and Analysis

In this section, the experimental evaluation results are listed and analysed. Section 6.6.1 lists
the resource utilisation of the MCCP design on the FPGA. Section 6.6.2 lists the internally and
externally measured detailed timing metrics both from simulation and deployment. Section
6.6.3 lists the metrics measured from the HPPC simulator application.

6.6.1 Resource Utilisation

Table 6.1 shows the resource utilisation metrics for the ASIP platform and total design. It has
one column for the metrics after synthesis, and one for the metrics after implementation of the
design. The complete resource utilisation table for all components can be found in Appendix
B.

The FPGA on the Xilinx VC707 development kit has a total of

� 303600 LUTs

� 607200 Flip-Flops/Registers

� 1030 36Kb BRAMs (each block can be utilised as two 18 Kb BRAMs)

� 2800 DSP48s

57

CHAPTER 6. EXPERIMENTAL EVALUATION

Block Synthesis Implementation

ASIP Platform

#Slice LUTs (%) 61398 (20.22%) 50761 (16.72%)

#Slice Registers (%) 76983 (12.68%) 67325 (11.09%)

#BRAMs (%) 709 (68.83%) 709 (68.83%)

#DSPs (%) 256 (0.00%) 256 (0.00%)

Total

#Slice LUTs (%) 87521 (28.8%) 75010 (24.71%)

#Slice Registers (%) 102573 (16.89%) 90924 (14.97%)

#BRAMs (%) 718 (69.71%) 718 (69.71%)

#DSPs (%) 256 (9.14%) 256 (9.14%)

Table 6.1: MCCP Resource Utilisation Table

The resource utilisation metrics are as expected: ASIP Platform uses most of the BRAMs
and all DSPs in the design. On this particular FPGA, Apart from the BRAMs, utilisation of
the other resources in the complete design is relatively low, which allows for more logic around
or inside the ASIP Platform. There are enough unused resources left to add more ASIPs to
the ASIP Platform, or increase the sizes of the current ASIPs, although only one VPE of the
same size could be added.

6.6.2 MCCP Timing Metrics

Table 6.2 shows the timing metrics of the input-to-output delays measured internally in the
FPGA and with the Logic Analyzer for just one o�oaded block. Due to limitations of the
test setup, these metrics are obtained with inbound NWRITEs containing at most one 32-bit
word. Therefore, task input arrives in 11 or 12 separate NWRITEs, and a parameter load
instruction arrives in 3 NWRITEs.

In the simulation column, the external Task Input-to-Output delay and PSU Parameter
Loading Delay are out of scope, and hence left empty. The srio_gen2_core and ddr3_core
are replaced by VHDL simulator programs, so the DDR read latency is not taken into account
during simulation.

In the Measured (Deployed) column, several rows are left empty because they crossed into
another clock domain. Although not impossible to measure these delays using ILA cores, it is
very time-consuming to set up and does not necessarily add to the big picture of the results.

Metric Simulation Measured (Deployed)

SS_220_11in_11out_pre Execution time 22.02 µs 22.02 µs

SS_220_12in_11out_pre Execution time 22.02 µs 22.02 µs

Task I/O: 〈F2〉 → 〈F3〉 1.03 µs -

Task I/O: 〈F3〉 → 〈F5〉 0.99 µs 1.48 µs

Task I/O: 〈F5〉 → 〈F4〉 23.58 µs 24.06 µs

Task I/O: 〈F4〉 → 〈F1〉 2.56 µs 2.02 µs

Task I/O: 〈F1〉 → 〈F2〉 2.74 µs -

Internal Task Input-to-Output Delay 25.76 µs 25.76

External Task Input-to-Output Delay - 28.75 µs

Parameter Load: 〈F2〉 → 〈F3〉 0.50 µs -

Parameter Load: 〈F3〉 → 〈F6〉 0.54 µs 0.42 µs

58

CHAPTER 6. EXPERIMENTAL EVALUATION

Parameter Load: 〈F6〉 → 〈F7〉 0.49 µs 0.39 µs

Parameter Load: 〈F7〉 → 〈F8〉 0.05 µs -

Parameter Load: 〈F8〉 → 〈F7〉 (256 words) 6.10 µs -

Parameter Load: 〈F7〉 → 〈F10〉 (256 words) 6.10 µs 6.10 µs

Parameter Load: 〈F10〉 → 〈F11〉 (256 words) 6.10 µs 6.10 µs

Parameter Load: 〈F11〉 → 〈F12〉 (256 words) 6.14 µs 6.14 µs

Parameter Load: 〈F6〉 → 〈F1〉 0 µs 0 µs

Parameter Load: 〈F1〉 → 〈F2〉 0.08 µs -

DDR read latency: 〈F8〉 → 〈F8〉 (read accepted to read data valid) - 0.16 µs

DDR read latency: 〈F7〉 → 〈F7〉 (read accepted to read data valid) - 0.27 µs

Internal PSU Parameter Loading Delay 1444.64 µs 1472.75 µs

External PSU Parameter Loading Delay - 1474.31 µs

Table 6.2: MCCP Timing Metrics

The �rst thing that stands out is the 0.5 µs longer Task I/O from 〈F3〉 → 〈F5〉 delay in
the actual deployed version compared to the simulation results. Inspection with the Logic
Analyzer between the switch and the MCCP yields that the arrival of one of the NWRITEs
for a task input is consistently delayed by 0.5µs. Between the PPA and the switch, the 0.5µs
added delay is not visible. No packet-retry control symbols are detected on both the link
between the PPA and the switch, and the link between the switch and the MCCP. Therefore,
this delay can be fully attributed to the internal switch behaviour when converting from the
quad-lane PPA link to the single-lane MCCP link.

In general, the delay on the path from 〈F2〉 → 〈F5〉 could be reduced signi�cantly if inputs
would arrive in a single NWRITE: each NWRITE requires a header which encodes the type
of packet and contains the address. Instead of having to process this header 11 or 12 times
for one task, it could be processed only once for all tasks that are o�oaded (as long as the
number of 32-bit input values is less than or equal to 64). Simulation yields a delay of 0.3µs
from 〈F2〉 → 〈F5〉 for one task if the inputs are packed into one NWRITE; less than a third
of, or 0.7µs less than the delay with single-word NWRITEs on that path.

The path from 〈F4〉 → 〈F2〉 has a shorter delay in the deployed version compared to the
simulation version. This is due to the srio_gen2_core having a higher packet acceptance rate
for these numbers of NWRITE requests than the simulated version. This causes the internal
task input-to-output delay to be exactly the same in simulation as in deployment, even though
the path from 〈F2〉 → 〈F5〉 is signi�cantly longer in deployment.

There is a di�erence of 3 µs between the internally and externally measured Task input-
to-output delays. This means that the components for which the delay was not measured
(the path from srio_gen2_core to the PGEA and QSA) adds an additional signi�cant delay.
srio_gen2_core has a latency of between 0.7 and 1.0 µs in single-lane mode, depending on
the direction and type of message. This delay is expected to be decreased by a factor of more
than 2 if srio_gen2_core runs in quad-lane mode.

The Parameter Load input path does not show the big di�erence between simulation and
deployment, because the input size is only 3 words. The total Internal Parameter Loading
delay is larger in deployment, which can be attributed fully to the real DDR3 read delay
compared to the read delay in the simulation program.

From these measurements, we can already clearly see the bottleneck: parameter loading for

59

CHAPTER 6. EXPERIMENTAL EVALUATION

a single block already takes signi�cantly longer than the allowed 1.25ms for a servo application
running at 40 kHz with 50 samples of preloading time. Due to the ASIP Platform accepting
at most one 32-bit value per 3 clock cycles on the con�guration interface, loading 256 values
from the DDR3 memory into the ASIP Platform takes over 6 µs.

6.6.3 HPPC Simulator Timing Metrics

Table 6.3 shows the results for single-block o�oading and Table 6.4 shows the results for
quad-block o�oading measured at the PPA running an HPPC simulator application.

As mentioned in Section 6.5.2, the MCCP is �rst functionally veri�ed by running the
scenarios as realistically as possible. Input-to-output times for one block could be compared
to a less realistic scenario where the parameter set loads are not executed simultaneously with
block IO. It was found to have no measurable e�ect on the block's input-to-output delay,
hence the following measurements are representative for a realistic scenario.

For the quad block o�oading case, blocks inputs and parameter loads are sent in sequence
FF, R, FB, O. Single block o�oading only uses block FF.

Metric Minimum Time (µs) (Average) Time (µs) Maximum Time (µs)

20 kHz

SS_220_11in_11out_pre input-to-output 31.6 32.2 36.5

Parameter load instruction input-to-output 1478.3 1482.2 1483.7

30 kHz

SS_220_11in_11out_pre input-to-output 31.5 32.2 36.8

Parameter load instruction input-to-output 1478.3 1481.5 1483.2

Maximum

SS_220_11in_11out_pre input-to-output 31.5 32.2 37.1

Parameter load instruction input-to-output 1478.3 1481.7 1483.6

Table 6.3: PPA Delay Metrics Single SS_220

For the single o�oaded block case, the metrics are consistent across di�erent sample fre-
quencies. The measurements show some small anomalies, but their count is minimal, as shown
in Figure 6.3. The small spike between 35 and 36 µs is most likely due to some bu�ering be-
haviour in the switch, as no retry control symbol is detected on the SRIO network during
execution of these benchmarks.

60

CHAPTER 6. EXPERIMENTAL EVALUATION

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Task Input-to-Output (µs)

FF%

I-O (µs) #occurrences cumm %

31 0 0.00%

32 104026 10.40%

33 895158 99.92%

34 178 99.94%

35 159 99.95%

36 428 99.99%

37 51 100.00%

38 0 100.00%

> 38 0 100.00%

Figure 6.3: Task IO delay histogram for single block o�oading

Metric Minimum Time (µs) (Average) Time (µs) Maximum Time (µs)

20 kHz

FF SS_220_11in_11out_pre input-to-output 32.0 33.3 39.5

FF Parameter load instruction input-to-output 1477.7 1478.6 1480.9

R SS_220_11in_11out_pre input-to-output 32.3 33.6 38.5

R Parameter load instruction input-to-output 2941.7 2948.8 2954.6

FB SS_220_11in_11out_pre input-to-output 33.5 36.0 41.6

FB Parameter load instruction input-to-output 4409.7 4419.5 4428.0

O SS_220_12in_11out_pre input-to-output 32.7 36.9 42.7

O Parameter load instruction input-to-output 5877.2 5890.4 5901.9

30 kHz

FF SS_220_11in_11out_pre input-to-output 32.0 33.3 40.3

FF Parameter load instruction input-to-output 1477.6 1478.6 1481.5

R SS_220_11in_11out_pre input-to-output 32.4 33.6 39.5

R Parameter load instruction input-to-output 2947.0 2947.6 2948.1

FB SS_220_11in_11out_pre input-to-output 33.4 35.8 41.0

FB Parameter load instruction input-to-output 4416.7 4417.6 4420.3

O SS_220_12in_11out_pre input-to-output 32.7 36.9 44.5

O Parameter load instruction input-to-output 5886.7 5887.6 5888.5

Maximum

FF SS_220_11in_11out_pre input-to-output 32.0 33.3 39.5

FF Parameter load instruction input-to-output 1478.1 1478.6 1481.2

R SS_220_11in_11out_pre input-to-output 32.4 33.6 39.7

R Parameter load instruction input-to-output 2947.0 2947.5 2948.1

FB SS_220_11in_11out_pre input-to-output 33.5 35.8 41.4

FB Parameter load instruction input-to-output 4416.9 4417.5 4418.5

O SS_220_12in_11out_pre input-to-output 32.4 36.9 42.5

O Parameter load instruction input-to-output 5886.9 5887.6 5888.7

Table 6.4: PPA Delay Metrics Quad SS_220

Again, the obtained input-to-output times are consistent throughout the di�erent sample
frequencies. The parameter load instruction input-to-output time is as expected: it grows
linearly with the index in the input sending sequence of the blocks.

61

CHAPTER 6. EXPERIMENTAL EVALUATION

The task input-to-output times show some more interesting behaviour as shown in Figure
6.4. The input-to-output time for the second block (R), is slightly higher than the �rst block
(FF), but the third block (FB) has an input-to-output time of on average 2 µs higher. Further
inspection with the Logic Analyzer yields that the switch sends multiple packet-retry symbols
to the PPA during the task input NWRITEs in this scenario. This explains the 2 µs additional
delay and the increased spread of measurement values for FB and O.

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

31 31,5 32 32,5 33 33,5 34 34,5 35 35,5 36 36,5 37 37,5 38 38,5 39 39,5 40 40,5 41 41,5 42 42,5

Task Input-to-Output (µs)

FF% R% FB% O%

Figure 6.4: Task IO delay histogram for quadruple block o�oading

I-O (µs) #occ. FF #occ. R #occ. FB #occ. O

32 11 0 0 0

33 15559 135 0 54

34 982913 998061 124 126

35 771 1014 38 101

36 204 203 811836 76

37 296 271 187419 614878

38 212 272 264 384252

39 25 37 198 119

40 8 7 106 138

41 1 0 14 207

42 0 0 1 42

> 42 0 0 0 7

Table 6.5: Task IO delay data table for quadruple block o�oading

6.7 Experimental Evaluation Conclusion

Results show that parameter load delays are by far the bottleneck of the MCCP. For quadruple
SS_220_pre block o�oading, if 50 samples are available for preloading parameter sets, the
maximum sample frequency would be upper bounded by

50

5887.6µs
= 8.5kHz

62

CHAPTER 6. EXPERIMENTAL EVALUATION

Assuming that parameter load delays can be reduced to load all parameter sets within 50
sample periods, results show that the maximum sample frequency of the MCCP for quadruple
block o�oading is bounded by the input-to-output delay of the last SS_220_pre block (O).
Hence, an upper bound for the sample frequency of a worker which uses the MCCP is

1

36.9µs
= 27.1kHz

However, this implementation uses an SS_220_pre calculation with a complete A matrix.
According to the description of the benchmark application, A can be assumed to be upper
triangular. This assumption could be used to optimise the code of the tasks. Additionally, the
main clock domain, and thus the ASIP platform has a frequency of 125 MHz. If this is increased
to 200 MHz, the computation time of the SS_220_pre blocks is expected to be 7µs as given
in Section 2.4. This saves 22.02− 7 = 15.02µs on the total delay. With these improvements,
the maximum sample frequency is bounded by

1

36.9− 15.02µs
= 45.7kHz

.

Furthermore, using a quad-lane SRIO link instead of a single-lane link between the MCCP
and the switch would signi�cantly improve not only the network communication overhead, but
is also expected to decrease the latency of srio_gen2_core through which all communication
is fed. Together with the possibility to send the input data in a single NWRITE, the input-
to-output delay can be easily decreased by more than 1µs. Additionally, the packet-retries
caused by the transition from quad-lane SRIO to single-lane are expected to be eliminated.
This reduces the total delay by an additional 2 µs. The maximum input-to-output delay is
brought down to

36.9− 15.02− 1− 2µs = 18.9µs

while the sample frequency bound is increased to

1

36.9− 15.02− 1− 2µs
= 53.0kHz

From the 2 µs of added delay caused by retries, the conclusion can be drawn that inter-
ference on the communication channel can have a signi�cant impact on the input-to-output
delay. Such retries could be caused by a spike in a link's utilisation and therefore decrease the
predictability of the system. Considering the hard real-time requirements in the lithography
machine, network communication should be regulated such that no retries are guaranteed for
the MCCP. Alternatively, a private channel could be added between each PPA-MCCP pair.

Finally, future MCCP designs could feature, as mentioned in Section 4.4, an output packer
which avoids having to check many �ags for each task. It would be possible to pack all four
of the task outputs in a single NWRITE, and consequently only one �ag has to be checked at
the GPP. This also has the advantage that instead of having to create two NWRITE requests
for each output value, thereby blocking new output values arriving from the ASIP platform,
only one NWRITE for the values and one for the output �ag has to be done.

63

7 | Conclusion and Future Work

Current GP architectures used for servo control in lithography machines will not be able to
cope with the future development in the �eld. In order to tackle this challenge, a design
for an FPGA motion controller co-processor (MCCP) has been proposed. As a proof of
concept, an MCCP which focusses on acceleration of four large State-Space computations in
a benchmarking application is implemented on an FPGA and experimentally evaluated. As
calculating core, the design uses the same kind of ASIP platform as used in previous work [8].

Experimental results (Section 6.7) show that the goal sample frequency of 40kHz could be
achieved, but work has to be done to support the complete case of ASML motion controllers.
I.e. the ASIP platform was not able to preload parameter sets from the DDR3 memory into
the blocks fast enough over its con�guration interface. If parameter sets cannot be preloaded
fast enough, then control mode switches need a signi�cantly longer preloading time, which
decreases the degree of direct control over the servo application. Therefore, the main recom-
mendation is to create a special parameter loading interface, or restructure the con�guration
interface of the ASIP platform such that it will be able to load data much faster and in a more
scalable manner than it is currently able to.

Other optimisation recommendations to improve the current implementation of the MCCP
are

� Maximisation of the main clock domain

� Using a quad-lane SRIO link instead of single-lane

� Extension of the code generator to feature creation of optimised program code for state
space blocks with an upper triangular A matrix

� Maximisation of DDR3 transfer bandwidth

In future work of the MCCP

� The changes to the design inferred by the new parameter loading interface of the ASIP
platform can be implemented. A more scalable parameter loading interface could mean
that the parameter sets have to be stored in and/or loaded from, the external memory
in a di�erent way.

� A programmable component which packs outputs together to decrease both o�oading
overhead on the GPP, and packet creation overhead on the MCCP, should be created.

� An optimised o�oading scheme could be researched. E.g. o�oad more pre_calc blocks
(not only state-space) of a servo application, or conversely maximise the use of large
state-space blocks in future servo applications to ensure good performance on a state-
space-calculation-optimised MCCP.

As a next step towards the 100 kHz goal, the advantages of using a GPP+FPGA SoC
architecture could be investigated. The low-latency communication channels between the

64

CHAPTER 7. CONCLUSION AND FUTURE WORK

GPP and FPGA with no interference from any other device in such a SoC could be exploited
to gain an even larger speedup. For example, a worker could be fully deployed on the SoC,
where the GPP handles all non-linear computations, while the FPGA does all of the linear
computations. With the higher predictability of the private communication channel, it might
be possible to place the FPGA in the critical IO path.

65

A | List of Abbreviations

AMC Advanced Mezzanine Card
ASIP Application Speci�c Instruction Processor
ATCA Advanced Telecommunications Computing Architecture
ATMU Address Translation and Mapping Unit
CARM Control Architecture Reference Model
DDR Double Data Rate
DFG Data Flow Graph
FPGA Field Programmable Gate Array
GPP General Purpose Platform
HPPC High Performance Process Controller
IC Integrated Circuit
ILA Integrated Logic Analyser
MCCP Motion Controller Co-Processor
MIMO Multi in - Multi out
MPSoC Multi-Processor System-on-Chip
OS Operating System
PGEA Prodrive Gigabit Ethernet AMC
PPA8548 Prodrive Processor AMC 8548
PRIOC QA Prodrive RapidIO Carrier - Quad AMC
QOR4080 QorIQ P4080 AMC
RAM Random Access Memory
RIO RapidIO
SDF Synchronous Data Flow
SDFG Synchronous DFG
SRIO Serial RIO

66

B | Resource Utilisation

The FPGA on the Xilinx VC707 development kit has a total of

� 303600 LUTs

� 607200 Flip-Flops/Registers

� 1030 36Kb BRAMs (each block can be utilised as two 18 Kb BRAMs)

� 2800 DSP48s

Block Synthesis Implementation

srio_gen2_core

#Slice LUTs (%) 6527 (2.15%) 6376 (2.10%)

#Slice Registers (%) 6963 (1.15%) 6761 (1.11%)

#BRAMs (%) 4.5 (0.44%) 4.5 (0.44%)

#DSPs (%) 0 (0.00%) 0 (0.00%)

srio_gen2_int

#Slice LUTs (%) 576 (0.19%) 529 (0.17%)

#Slice Registers (%) 851 (0.14%) 755 (0.12%)

#BRAMs (%) 0 (0.00%) 0 (0.00%)

#DSPs (%) 0 (0.00%) 0 (0.00%)

data_distr

#Slice LUTs (%) 1132 (0.37%) 918 (0.30%)

#Slice Registers (%) 2366 (0.39%) 1759 (0.29%)

#BRAMs (%) 1.5 (0.15%) 1.5 (0.15%)

#DSPs (%) 0 (0.00%) 0 (0.00%)

PSU

#Slice LUTs (%) 836 (0.28%) 596 (0.196%)

#Slice Registers (%) 587 (0.10%) 487 (0.08%)

#BRAMs (%) 1 (0.10%) 1 (0.10%)

#DSPs (%) 0 (0.00%) 0 (0.00%)

DDR_int

#Slice LUTs (%) 544 (0.18%) 449 (0.15%)

#Slice Registers (%) 1221 (0.20%) 939 (0.15%)

#BRAMs (%) 0.5 (0.05%) 0.5 (0.05%)

#DSPs (%) 0 (0.00%) 0 (0.00%)

DDR_core

#Slice LUTs (%) 16149 (5.32%) 15091 (4.97%)

#Slice Registers (%) 12959 (2.13%) 12472 (2.05%)

#BRAMs (%) 1.5 (0.15%) 1.5 (0.15%)

#DSPs (%) 0 (0.00%) 0 (0.00%)

AximCrossbar

#Slice LUTs (%) 248 (0.08%) 208 (0.07%)

#Slice Registers (%) 510 (0.08%) 293 (0.05%)

#BRAMs (%) 0 (0.00%) 0 (0.00%)

#DSPs (%) 0 (0.00%) 0 (0.00%)

Axim2Avm

#Slice LUTs (%) 79 (0.03%) 52 (0.02%)

67

APPENDIX B. RESOURCE UTILISATION

#Slice Registers (%) 100 (0.16%) 100 (0.02%)

#BRAMs (%) 0 (0.00%) 0 (0.00%)

#DSPs (%) 0 (0.00%) 0 (0.00%)

ASIP Platform

#Slice LUTs (%) 61398 (20.22%) 50761 (16.72%)

#Slice Registers (%) 76983 (12.68%) 67325 (11.09%)

#BRAMs (%) 709 (68.83%) 709 (68.83%)

#DSPs (%) 256 (0.00%) 256 (0.00%)

Additional Logic

#Slice LUTs (%) 32 (0.01%) 30 (0.01%)

#Slice Registers (%) 33 (0.01%) 33 (0.01%)

#BRAMs (%) 0 (0.00%) 0 (0.00%)

#DSPs (%) 0 (0.00%) 0 (0.00%)

Total

#Slice LUTs (%) 87521 (28.8%) 75010 (24.71%)

#Slice Registers (%) 102573 (16.89%) 90924 (14.97%)

#BRAMs (%) 718 (69.71%) 718 (69.71%)

#DSPs (%) 256 (9.14%) 256 (9.14%)

Table B.1: MCCP Resource Utilisation Table

68

References

[1] Ramon R. H. Schi�elers, Wilbert Alberts, and Jeroen P. M. Voeten. �Model-based Spec-
i�cation, Analysis and Synthesis of Servo Controllers for Lithoscanners�. In: Proceedings
of the 6th International Workshop on Multi-Paradigm Modeling. 2012, pp. 55�60. doi:
10.1145/2508443.2508453.

[2] H. Butler. �Position Control in Lithographic Equipment [Applications of Control]�. In:
Control Systems, IEEE 31.5 (Oct. 2011), pp. 28�47. doi: 10.1109/MCS.2011.941882.

[3] A Kalavade and E.A Lee. �The extended partitioning problem: hardware/software map-
ping and implementation-bin selection�. In: Rapid System Prototyping, 1995. Proceed-
ings., Sixth IEEE International Workshop on. June 1995, pp. 12�18. doi: 10.1109/
IWRSP.1995.518565.

[4] Shuai Che et al. �Accelerating Compute-Intensive Applications with GPUs and FP-
GAs�. In: Application Speci�c Processors, 2008. SASP 2008. Symposium on. June 2008,
pp. 101�107. doi: 10.1109/SASP.2008.4570793.

[5] E.A. Lee and D.G. Messerschmitt. �Synchronous data �ow�. In: Proceedings of the IEEE
75.9 (Sept. 1987), pp. 1235�1245. doi: 10.1109/PROC.1987.13876.

[6] RapidIO Trade Association. RapidIO: The Interconnect Architecture for High Perfor-
mance Embedded Systems. Rev. 2.2.

[7] RapidIO Trade Association. RapidIO Interconnect Speci�cation Part 1: Input/Output
Logical Speci�cation. Rev. 2.2. June 2011.

[8] R.M.W. Frijns et al. �Data�ow-Based Multi-ASIP Platform Approach for Digital Control
Applications�. In: Digital System Design (DSD), 2013 Euromicro Conference on. Sept.
2013, pp. 811�814. doi: 10.1109/DSD.2013.126.

[9] Dustin S. Pinedo Hernandez. �A Design-Space Exploration for High-Performance Motion
Control�. Master Thesis. Eindhoven University of Technology, Nov. 2012.

[10] M. Bontekoe (ASML).GID FPGA Based Motion Control Processing Platform. D000128477-
00-GID-001. June 2014.

[11] IEEE. �IEEE Standard for Floating-Point Arithmetic�. In: IEEE Std 754-2008 (Aug.
2008), pp. 1�70. doi: 10.1109/IEEESTD.2008.4610935.

[12] Xilinx. VC707 Evaluation Board for the Virtex-7 FPGA. UG885 (v1.3). Aug. 2013.

[13] Xilinx. LogiCORE IP Serial RapidIO Gen2 Endpoint v3.1. PG007. Nov. 2013.

[14] Xilinx. Zynq-7000 SoC and 7 Series Devices Memory Interface Solutions v2.1. UG586.
June 2014.

[15] Xilinx. LogiCORE IP Integrated Logic Analyzer v4.0. PG172. Apr. 2014.

69

http://dx.doi.org/10.1145/2508443.2508453
http://dx.doi.org/10.1109/MCS.2011.941882
http://dx.doi.org/10.1109/IWRSP.1995.518565
http://dx.doi.org/10.1109/IWRSP.1995.518565
http://dx.doi.org/10.1109/SASP.2008.4570793
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/DSD.2013.126
http://dx.doi.org/10.1109/IEEESTD.2008.4610935

	Introduction
	Photolithography Machines
	Challenges for Future Servo Applications
	Problem Statement
	Solution Direction
	Document Structure

	Background Information
	CARM Software Architecture
	Terminology Overview
	Implementation
	Execution Scenarios

	CARM Hardware Architecture
	ATCA Racks
	HPPC
	RapidIO Interconnect

	Benchmark Application
	State Space Calculation

	Previous Work
	Dataflow-based Multi-ASIP Platform Approach for Digital Control Applications
	A Design-Space Exploration for High-Performance Motion Control

	Analysis and Approach
	Block Calculation
	Slack Estimation
	Control Mode Switches
	State Control
	Hardware Architecture
	Solution Options

	Sample Frequency Feasibility Analysis
	Functional Overview

	MCCP Proof of Concept Interface
	Programming the ASIP Platform
	MCCP Configuration
	Task Input
	Task Output
	Parameter Set Loading

	MCCP Proof of Concept Design
	Experimental Evaluation
	Test Setup
	Software
	Benchmarks and Metrics
	Delays

	Internal Benchmarks Approach
	Task Input-to-Output Delay
	PSU Parameter Load Delay
	FPGA Resource Utilisation
	External Benchmarks Approach

	HPPC Simulator Benchmarks Approach
	Correctness
	Delay

	Results and Analysis
	Resource Utilisation
	MCCP Timing Metrics
	HPPC Simulator Timing Metrics

	Experimental Evaluation Conclusion

	Conclusion and Future Work
	List of Abbreviations
	Resource Utilisation

