
 Eindhoven University of Technology

MASTER

Analysis of starsense wireless components and their interaction using formal methods

de Vreeze, P.D.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/dde4f480-327e-4229-998f-f3ee0523befc


Analysis of Starsense Wireless
Components and their Interaction Using

Formal Methods

Masters Thesis

P.D. de Vreeze
student#: 0766966

p.d.d.vreeze@student.tue.nl

Graduation supervisor Philips supervisor
prof.dr.ir. J.F. Groote ir.ing. L.W.A. van der Wijst

j.f.groote@tue.nl berry.van.der.wijst@philips.com

July 4, 2014

Philips Lighting, Eindhoven
and

Department of Computer Science
Eindhoven University of Technology, Eindhoven



Contents

1 Introduction 5
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 mCRL2 7
2.1 mCRL2 Formal Specification Language . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Processes and actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 mCRL2 Toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Introduction to the Starsense Wireless System 10
3.1 Outdoor Luminance Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Segment Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 CityTouch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Software Upgrade Components 11
4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Outdoor Luminance Controller Software Upgrade component . . . . . 11
4.1.2 Segment Controller Software Upgrade component . . . . . . . . . . . . 13

4.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2 The OLC SWU model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.3 The SC SWU model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.4 The model of the interacting SC and OLC components . . . . . . . . . 22

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 OLCs not upgraded after message drop . . . . . . . . . . . . . . . . . 24
4.3.3 Odd behaviour and recommendations . . . . . . . . . . . . . . . . . . 27

5 Commissioning Components 30
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 Segment Controller Database . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 Segment Controller CommissioningStore component . . . . . . . . . . 32
5.1.3 Segment Controller Commissioning component . . . . . . . . . . . . . 32
5.1.4 Outdoor Luminance Controller Commissioning component . . . . . . . 36

5.2 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 The OLC Commissioning model . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 The SC Commissioning model . . . . . . . . . . . . . . . . . . . . . . 40
5.2.4 The model of the interacting SC and OLC components . . . . . . . . . 42

5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.1 Requirements on the OLC commissioning component . . . . . . . . . . 43
5.3.2 Requirements on the interacting commissioning components . . . . . . 44

6 System and Toolkit 49

7 Conclusion 50



8 Appendix 52
A Verify process flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B Software Upgrade process mCRL2 specification . . . . . . . . . . . . . . . . . 54
C Rename file for requirement: A started SWU process must always finish . . . 70
D Combined OLC commissioning component mCRL2 specification . . . . . . . 72
E Interacting commissioning components mCRL2 specification . . . . . . . . . . 74
F Commissioning Shared mCRL2 specification . . . . . . . . . . . . . . . . . . . 77
G Commissioning SC component mCRL2 specification . . . . . . . . . . . . . . 80
H Commissioning OLC component mCRL2 specification . . . . . . . . . . . . . 93
I Rename file for requirement: An OLC may never be in an illegal state . . . . 99
J Rename file for requirement: An OLC cannot arrive in a state from which it

cannot be commissioned or decommissioned again. . . . . . . . . . . . . . . . 101



Abstract

The Starsense Wireless system consists of luminaire-based Outdoor Luminaire Controllers
(OLCs) which all control a single outdoor lighting node, and a Segment Controller (SC)
that controls the OLCs. The SC and OLCs are situated in a mesh network, where mes-
sages are routed through the network in a hopping fashion. Communication over this
network is unreliable and can cause packets to be lost.
Certain components of the SC software are in charge of configuring the OLCs, two of
these components are Software Upgrade (SWU) and Commissioning.

In this report, abstract models of these two components and their counterparts in the OLC
software are specified in the formal specification language mCRL2. Using the mCRL2
Toolset, these components and the interaction between the SC and the OLCs of these
components is analysed and certain properties are verified. During the analysis of the
interacting SWU components, rare situations have been found where a single dropped
message can cause OLCs not to be upgraded without external interference and rare situ-
ations have been found where unnecessary traffic is generated on the network.
The interacting SC and OLC Commissioning components proved not to behave entirely
as designed, rare situations have been found where an instruction to commission or de-
commission an OLC could not always be fulfilled. Further analysis revealed the cause of
the problems and the solutions appeared to be straightforward.

4



1 INTRODUCTION 5

1 Introduction

Software in embedded systems is becoming increasingly more complex, the main cause of this
complexity is due to the fact that current embedded systems consist of many communicating
parallel components. For software architects it is hard to predict the complete behaviour of
these systems and for software testers it is almost impossible to write all possible test cases
to guarantee the system will always behave according to the specifications.

Philips developed a telemanagement system called Starsense [1] for monitoring, control-
ling, metering and diagnosing outdoor lighting. The Starsense Wireless system consists of
luminaire-based Outdoor Luminaire Controllers (OLCs) which all control a single outdoor
lighting node, and a Segment Controller (SC) that controls the OLCs. The SC and OLCs
are situated in a mesh network, where messages are routed through the network in a hopping
fashion. A network can consist of thousands of OLCs and communication over this network
is unreliable and can cause packets to get lost.

The software of the SC and the OLC consists of multiple (parallel) components, where some
SC and OLC components communicate with each other. Two of these components are Soft-
ware Upgrade (SWU) and Commissioning.

The SWU component of the SC has the task to upgrade the software of the OLCs (all or a
subset) in the network segment controlled by the SC. An update consists of a large number
of packets (typically more than a thousand), where each packet needs to be sent to all OLCs.
Since the network is unreliable, causing packets to get lost, some packets need to be sent
multiple times. Each packet is sent with some seconds in between, therefore the whole SWU
process can take several hours.
The Commissioning component of the SC has the task to contact and configure an uncom-
missioned OLC that needs to become part of the segment that is under control of the SC.
Only a Philips manufactured and pre-configured OLC is allowed to join the segment.

This report describes the analysis of these components and the interaction between the SC
and OLC. For each component the source code is studied of both the SC and OLC implemen-
tations. The components are written in the C programming language and consist of several
thousand lines of code. Abstract models of these components are created in the process
specification language mCRL2. Using the mCRL2 toolset requirements on the components
are verified and analysis is performed, with the following questions in mind: Can the SWU
process duration be reduced? Do situations exist where the software of an OLC cannot be
upgraded? Do situations exist where an OLC cannot be commissioned?

In chapter 2 the mCRL2 language and toolset is introduced, chapter 3 introduces the Starsense
Wireless system. In chapter 4 the implementation, model and analysis of the SWU com-
ponents is discussed. Chapter 5 discusses the implementation, model and analysis of the
Commissioning components. Finally, chapter 7 concludes this report.



1.1 Related work 6

1.1 Related work

The primary goal of this report is to create an abstract model out an already implemented
distributed software system and analyse and verify the behavior, to determine whether the
system contains errors. A great amount of case studies on the verification of distributed sys-
tems have been published. The general conclusion that can be derived from these case studies
is that the use of formal methods improves the quality of the software. A small selection of
these case studies are discussed below.

In [3] a wireless fire alarm system under design has been verified using Uppaal and Spin. Eu-
ropean certification tests have been formalised to serve as requirements. This study revealed
previously undiscovered errors that caused the design of the system to be revised. The result
of using formal methods during the design phase was that the first prototype already passed
all tests, which substantially shortened the test phase. In [4] the use of formal methods during
the development of an software bus is described, where mCRL2 is used for modeling and sim-
ulation and tested with the model test-tool JTorX. The authors claim that the use of formal
methods took 17% of the total development time and that errors have been discovered during
the model based testing, which would have been hard to find with conventional methods.

In [5] software development process of the Mars Rover Curiosity is described, specifically,
how the risk of errors in the software is reduced to a minimum. The software consists of
350 MLOCs, which is more than all software of the previous mars rovers combined. The
model checker Spin has been used to verify critical software subsystems. For the Chinese
Lunar Rover, formal verification has been successful in discovering undesired behavior in the
multitasking system of the control software [6], where the RTOS, the application tasks and
the physical environment are modeled as timed automata and model checked using Uppaal.
The usage of formal methods for the Descent Guidance Control program of a Lunar Lander
is described in [7], where techniques as simulation, bounded model checking and theorem
proving are used.

Formal methods have been extensively used in railway systems. The B formal method has
been used for the development of SACEM [8], a fault-tolerant railway signaling system for
emergency break activation, speed control and driver signaling, which is used in the Subway
of Paris and other cities. The report on the verification of the Paris automatic metro line
14 [9], shows that the B method has been effective in finding errors during specification and
no further errors have been found after automatic code generation during the testing phase.
A similar case study has been presented in [10], for the automatic shuttle line at the Roissy
Charles de Gaulle Airport. No unit tests were performed for the Paris metro line or the
Roissy shuttle line projects [11], only global tests were performed which were all successful.
The absence of unit tests can result in a significant cost reduction.

In [2] a study has been conducted to determine the quality of software development where
formal techniques have been used, measured by the number of errors per KLOC. This shows
that, when formal methods are used in the design phase of the software development, then
formal techniques could deliver higher quality code, reduction in number of errors and an
increase in development productivity.



2 MCRL2 7

2 mCRL2

mCRL2 is a formal specification language and using the mCRL2 toolset concurrent systems
and protocols can be modelled, validated and verified. For a detailed and extensive book
regarding modeling and analysis of concurrent and distributed systems using the mCRL2
specification language refer to [15]. For more information about the mCRL2 language and
toolset refer to [13, 14, 16].

2.1 mCRL2 Formal Specification Language

In this section a brief summary of the mCRL2 formal specification language is given, for a
more extensive overview of the language refer to [13, 15, 16].

2.1.1 Processes and actions

The most important notions of the language are processes and actions. A process describes
the behaviour of a system and is constructed using actions, where an action describes an
elementary operation of the system. The following process P describes a system which can
perform a single action, namely the action light on.

P = light on;

An action is declared in the following way:
act a,b;

c:Bool;
d:Nat # Bool;

Here action a and b are parameterless and action c and d contain parameters, where action c
contains a single boolean parameter and action b contains two parameters, a natural number
and a boolean.
Basic operators on process expressions are the following:

• Sequential composition: for example; P = a . b;
Which states that process P performs an a action followed by an b action.

• Alternative composition: for example; P = a + b;
This operator is also called the choice operator. The expression states that process P
non-deterministically chooses to perform either action a or b.

• Multi-action: for example; P = a | b
A multi-action specifies that multiple actions should occur at the same time, where a
sequence of actions is separated by bars.

• Parallel composition: for example; P = a || b; Which is equivalent to P = (a . b) + (a
. b) + a | b;
Stating, process P can perform either a followed by b or b followed by a or action a and
b can happen at the same time, indicated by the multiaction operator |.
The . operator binds stronger than the + operator, so instead of writing P = (a . b) +
(a . b) + a | b; we can write P = a . b + a . b + a | b;



2.1 mCRL2 Formal Specification Language 8

• Recursion: for example; P = a . P;
This specifies a process that performs a actions endlessly.

• Process with parameters: for example; P(i :Nat)= output(i). P(i+1);
Process P initialised with some natural number will ‘output’ the number indicated by
action output and add one to parameter i. For example, P(3) will present the following
behaviour: output(3). output(4). output(5). output(6)...

• Conditional operator: for example; P(b:Bool)= (b) → c � d;
Here the process P has the boolean parameter b. This process will perform action c if
b validates to true or action d if b validates to false.

• Sum operator: for example; P= sum b:Bool . a(b);
The sum operator instantiates the binding variable with all possible values of the data
type. In this example the binding variable b of data type Bool is instantiated with
values true and false. The sum operator is a generalisation of the choice operator. If
the data type is finite then the sum can be unfolded using the choice operator. So this
example can be rewritten to P= a(false) + a(true);

The initial state of a process is defined using the init keyword. The above explained process
P(i :Nat) with parameter i can be initialised in the following way: init P(3);

2.1.2 Data types

mCRL2 contains a number of built-in data types, such as Bool, Pos, Nat, Int, Real rep-
resenting the Booleans, positive numbers, natural numbers, integers and the real numbers,
respectively. Other data types are structured types, with structured types the elements of a
datatype can be explicitly characterized.

sort State = struct Initializing(step:Pos)?IsInitializing | Idle?IsIdle | Busy?IsBusy ;

In the above example a structured type State has been defined, which contains three elements,
Initializing, Idle and Busy. The elements are separated by the | character and each element
contains the optional recognizer functions indicated by ?, e.g.: IsIdle and IsBusy. These
functions map the elements to the Boolean type and yields true if and only if the recognizer
function belongs to the element, e.g.: IsIdle(Idle) = true and IsIdle(Busy) = false. Each
element can hold multiple data types, e.g.: element Initializing contains the variable step to
indicate the progress of the initialisation. The variable can be retrieved in the following way:
step(Initializing(n))=n.

The language also contains List type constructors, from which a list of a certain data type can
be constructed. The List(State) defines a list of State elements. The empty list is represented
as []. With the head operator the first element of the list can be retrieved and the tail
operator yields the list excluding the first element. Operator # yields the length of the list
and with the ++ operator two lists can be concatenated. Next to the List type constructors
the language also contains Set and Bag type constructors.



2.2 mCRL2 Toolset 9

2.2 mCRL2 Toolset

In this section a brief summary of the mCRL2 toolset is given, for a more extensive overview
of the toolset refer to [14, 16]. The mCRL2 toolset is developed at the department of Mathe-
matics and Computer Science of the Technische Universiteit Eindhoven, in collaboration with
LaQuSo (Laboratory for Quality Software), CWI (Center for Mathematics and Computer
Science) and the University of Twente.

In figure 1 an overview of the mCRL2 toolset is given1. The left column shows the main
input for the toolset, the mCRL2 specification and modal µ-calculus formula. The mCRL2
specification can be created using the concepts discussed in 2.1 and modal µ-calculus formula
is used to verify properties on a model, known as model checking. Both can be described in
a plain-text file and can be created using any text editor. The rectangles show the manip-
ulators/tools of the toolset and the ellipses show the input and output objects/files of the
tools.

Figure 1: Overview of the mCRL2 toolset

The mCRL2 specification is first linearised before it can be used by other tools, this yields a
Linear Process Specification (LPS) and is done by the tool mcrl22lps. The LPS is an mCRL2
specification from which the parallelism has been removed. An LPS can be simulated with
the tool lpsxsim, starting from the initial state lpsxsim shows all possible actions that can be
performed. The user can select the action to perform after which the process is brought in
the next state and lists all possible actions that can be performed from here.
The LPS can be used to generate the state space or Labeled Transition System (LTS) of the
mCRL2 specification, this is done by the tool lps2lts. Once the state space is generated it can
be viewed using ltsgraph
To verify if a certain property holds on the model via model checking, the LPS is combined
with the modal µ-calculus formula and is converted in to a Parameterised Boolean Equation
System (PBES) using the tool lps2pbes. The PBES can subsequently be solved using the tool

1Figure taken from http://www.mcrl2.org/



pbes2bool which yields either true or false indicating if the property holds on the model.

The previously discussed tools are the main tools, but the toolset contains many more tools.
The mCRL2 toolset is available for Windows, Linux, Apple Mac OS X and FreeBSD. All
tools can be executed via a command-line interface and all main tools are accessible via a
graphical user interface.

3 Introduction to the Starsense Wireless System

The Starsense Wireless system [12] consists of luminaire-based Outdoor Luminaire Controllers
(OLCs) which all control a single outdoor lighting node, a Segment Controller (SC) that
controls the OLCs and a managing and monitoring system called CityTouch (figure 2). Com-
munication between the SC and the OLCs is over the 868 MHz frequency band. The SC
and OLCs are situated in a mesh network, where messages are routed through the network
in a hopping fashion. Communication between the SC and CityTouch is over an Internet
connection.

WAN

SC

- Segment Controller
- Modem / Router
- SCnode

Street lights with OLCs

Managing and 
Monitoring

CityTouch

SCnode

Figure 2: Schematic diagram of Starsense Wireless

3.1 Outdoor Luminance Controller

The OLC can control, log and detect the following functionalities:

• Registration of burning hours, switch-on count.

• Real energy consumption.

• Lamp failure detection.

• System failure detection.

• Switch power on/off.

• Multi-level dim schedules.

• Line voltage registration.

• Stand-alone operation.

• Delayed switching (avoid high inrush current).

10



As with the SC the OLC also runs multiple applications which all have their own functionality.
One of these applications is the software upgrade application.

3.2 Segment Controller

The SC system consists of the SC, which is an embedded Linux board and a SCnode. The
SCnode is in essence equal to an OLC node. The SC uses the SCnode to send messages into
the network. A SC can handle up to 4000 OLC nodes. Communication between the SC and
the OLC is secure.

3.3 CityTouch

With the CityTouch managment system the Starsense Wireless system can be managed and
monitored. In the GUI of CityTouch application, every OLC is situated on a street map,
which represents the actual location of the OLC. Within this application the real time lighting
status is reported, failures are automatically reported and a multi-level dim schedule can be
configured.

4 Software Upgrade Components

The Software Upgrade Process is the process in which an SC attempts to upgrade OLCs (all
or a subset) in its segment to a new software version.
The SWU process is controlled by four SWU messages, namely: Reboot, Init, Data and Ver-
ify. These messages are sent by the SC SWU component, following a state machine which
controls which message needs to be sent next and how the response needs to be handled. The
OLCs that receive the message will handle the message and send a response if asked for.

First the SWU component of the OLC is explained by discussing the function of each message
and how the OLC handles these messages. In section 4.1.2 the SWU component of the SC is
explained by exhibiting the state machine of the component.

4.1 Implementation

4.1.1 Outdoor Luminance Controller Software Upgrade component

The Outdoor Luminance Controller SWU component is a passive component, in the sense
that the component only sends messages as a response to received messages from the SC.
When the OLC receives a message that is meant for the SWU component, it will be passed
on and handled by SWU component. Depending on the message command it will be handled
by a specific function. The messages commands that can be handled by the SWU component
are Reboot, Init, Data and Verify.

An OLC contains two images, the normal image and the fallback image. Each image can
modify the other image but not itself. In order to upgrade an image the OLC must first be
booted into the other image. This is executed by the SC by sending a Reboot message.

11



4.1 Implementation 12

Handling SWU messages
The messages that the SWU component can receive are specified in table 1 and will be further
explained below.

Table 1: SWU Messages

Message Type Parameters Short Description

Reboot TimeDelay, OldVersion, ForceImage, Reboot into specified image.
12NCnumber

Init OldVersion, NewVersion, NewSize, Initialise for SWU.
NewChecksum, StartAddress, 12NCnumber

Data Address, Data Data chunk for specified address.
Verify none Verify if all chunks are received.

and checksum matches

Reboot
The reboot message commands the OLC to reboot after TimeDelay seconds into the image
specified by ForceImage if the version number of that image matches OldVersion, where Old-
Version can be a wildcard. Each OLC contains a 12NC number to identify the hardware
of the OLC, the 12NC number must be equal to the 12NCnumber parameter specified in
message for the command to be executed.

Init
With this message the OLC is initialised to receive the data chunks of the SWU. Upon
receiving this message, the assumption is that the OLC already booted into the opposite
image. To initialize the OLC the following conditions must be met:

• The opposite image version must be equal to OldVersion (can be a wildcard) and
unequal to NewVersion.

• StartAddress and NewSize indicate the address space where the chunks will be written
in the flash memory. This must specify an allowed area (e.g.: address does not fall
within address space of current running image).

• The 12NC hardware identification number of the OLC must be equal to the 12NCnumber
specified in message.

If all conditions are met, then the global flags isSessionOpened and isMy12NC are set, the
flash memory is erased and the parameters NewChecksum, NewVersion, StartAddress and
NewSize of the SWU are stored for later usage. The parameter NewChecksum is used during
the verify phase, to verify whether the received image is correct.

Data
This message contains a data chunk to be written at the specified address. The data chunk
will only be written if the global flags isSessionOpened and isMy12NC are true and the spec-
ified address indicates an allowed area to write in.

Verify
This message triggers the OLC to verify if there are chunks missing. It does this by using



4.1 Implementation 13

the StartAddress and NewSize stored during the execution of the Init command and the pre-
defined chunk size, by checking for each chunk location in the flash if it contains data or is
erased. Every chunk location that is still erased will be listed and together sent as a response
to this message to the SC to inform the SC which chunks need to be resent. When all chunks
are received, the image is validated against the previously received checksum. This command
will only be executed if the global flags isSessionOpened and isMy12NC are true.

Response messages
The SC can send the messages of table 1 either as unicast, broadcast with acknowledge or
broadcast without acknowledge. When an OLC receives a unicast or broadcast with acknowl-
edge message then a response message is required.

A response message on a received Reboot or Init message contains as variable the status of
the OLC, see table 2 for a list of these statuses. A response message on a received Verify
message contains, next to the status of the OLC, also a list of chunks that the OLC is miss-
ing, the length of this list is limited to 30 chunk IDs. When an OLC is missing more than
30 chunks then these remaining missing chunks will only be reported to SC upon receiving
another Verify message. Furthermore, the command to which the message is a response is
also included.

Table 2: OLC statuses

Status Description

S OlcAppStatus Ok OLC status is OK.
S OlcAppStatus SessionClosed Session is closed, a session is opened after a successful

Init message and closed after a handle reboot command
error occurs or verify command is successful.

S OlcAppStatus NewVersionMatch The version of the image matches the version of the
SWU in the Init message.

S OlcAppStatus InvalidAddress The Init message instructed the OLC to erase the
memory of the image that is currently active.

A Data message is always sent as broadcast without acknowledge, therefore no response to
this message is given.

4.1.2 Segment Controller Software Upgrade component

Multiple components are running on the SC, one of these components is the SWU component.
The SC SWU component controls the SWU interaction between the SC and OLC. The SWU
component on the SC consists of a state machine for maintaining the states in the update
process.
In figure 3 a high level view of the state machine is given. The complete and more detailed
state diagram is given in the paragraph Main state machine below. The states Reboot,
Init, Distribute and Verify depicted in figure 3 are the states where the four different types
of messages are sent. A short description of the states is given in table 3.



4.1 Implementation 14

1. Idle

2. Reboot

6. Reboot 5. Verify

4. Distribute

3. Init

Figure 3: High level SWU state diagram

Table 3: High-level SWU process state machine

State Activity

1. Idle Waiting to be instructed to start the SWU process.
2. Reboot Reboot the OLCs into the image other than the image to be updated.
3. Init Prepare upgrade, OLCs store version info and erase flash memory of image

to be updated.
4. Distribute Distribute all chunks, OLCs write chunk data into flash.
5. Verify Instruct the OLCs to verify the received chunks.
6. Reboot Reboot the OLCs into the newly upgraded image.

The SC SWU component is initiated with a list of OLCs that it needs to upgrade.

Main state machine
The main state machine of the SC SWU component is displayed in figure 4. The six states
of figure 3 are now partitioned into sub states for more detail. A main state is shown in
bold and a sub state is shown in italic. The next state of the state machine is determined
by the amount of OLCs that need to be upgraded and the status of these OLCs. Each state
is explained below. The verify state is more involved, therefore, explained in more detail the
paragraph Verify state machine.

1. Idle
Idle

Initially the SWU component resides in the idle state, waiting for an external
trigger to start the SWU process.

Prepare

In this state the variables needed for the SWU process are initialised and the
number of chunks that need to be distributed is calculated. The next state is
determined depending on the number of OLCs that need to be upgraded. If the
number of OLCs is small (less than 1% of the OLCs in the segment) then the next
main state and sub state are Reboot and Ucast, respectively. Else the next main



4.1 Implementation 15

2. Reboot

Wait 
Reboot

Bcast 
without 

Ack

Ucast

Prepare

6. Reboot

Ucast

Bcast 
without 

Ack

Bcast with 
Ack

Ucast

Waiting 
for ack

Bcast 
without 

Ack

3. Init

#OLCs large

#OLCs small

#failed OLCs
small

Send next

#OLCs large

#OLCs small

1. Idle

5. Verify 4. Distribute

Send next

Send 2 times

Distribute next chunk

Send next

Send 2 times

No failed
OLCs

#failed OLCs large

Idle

See verify state 
diagram

Figure 4: SWU state diagram

state and sub state are Reboot and Bcast without ack, respectively.

2. Reboot
Ucast

A unicast reboot message is prepared and sent to each OLC in the list consecu-
tively. This reboot message is sent to the OLC to make sure that the OLC is not
running the image that needs to be upgraded. After each sent unicast message
the SC waits for a response from the OLC. If the OLC does not respond before
a timeout occurs, then the OLC is flagged with a timeout error. When a unicast
message is sent to all OLCs, then the state machine proceeds to the main state
and sub state: Init and Ucast, respectively.

Bcast without ack

A reboot message is prepared after which two reboot broadcast messages are sent,
with some time in between. In this message it is specified that no response message
should be sent back. Subsequently the state machine moves to the main state and
sub state: Init and Bcast with ack, respectively.

3. Init
Bcast with ack



4.1 Implementation 16

An initialisation broadcast message is sent and the SC moves to the state Wait-
ing for ack. This initialisation message contains information about the version,
the size, checksum and the address of where the update will be written in flash
memory.

Waiting for ack

After waiting for the responses on the Init broadcast all responses are examined,
when:

Not all OLCs responded
If the number of OLCs that did not respond is large the next sub state will be
Bcast without ack else the next sub state will be Ucast.

All OLCs responded
When there are OLCs that have the status OK the next main state will be Dis-
tribute, otherwise all OLCs either have an error status or the image of the OLC
is equal to the upgrade version, in that case the next main state will be Verify.

Ucast

An initialisation message is sent to each OLC in the list consecutively. The SC
waits for a response after sending the message, if a response indicates that the
image of the OLC is equal to the upgrade version then the missing chunks counter
for this OLC is set to zero and the OLC is flagged as received.
When there are OLCs that have the status OK the next state will be Distribute,
otherwise all OLCs either have an error status or the image of the OLC is equal
to the upgrade version, in that case the next state will be Verify.

Bcast without ack

After a broadcast Init, a large number of OLCs did not respond. In this state
another attempt to initialize these OLCs is done by sending another Init broadcast
message, this time the OLCs are instructed not to send an acknowledge back.

4. Distribute

In this state each chunk that is flagged as missing (initially all chunks are flagged
missing) is broadcast to the OLCs and subsequently flagged as not missing. After
the verification stage, chunks can be flagged as missing again and the state machine
will return to the Distribute state. In this message is specified that no response
message should be send back. When all chunks are distributed, the next state is
set to Verify.

5. Verify

The verification process is handled by a different state machine, this state machine
is explained in the section below.

6. Reboot
Ucast



4.1 Implementation 17

A reboot unicast message is sent to each OLC in the list, to reboot the OLC into
the new image.

Bcast without ack

As in main state 2. Reboot and sub state Bcast without ack, a reboot message is
prepared after which two reboot broadcast messages are sent, with some time in
between. In this message it is specified that no response message should be sent
back. Subsequently the state machine moves to the state Wait Reboot.

Wait Reboot

The the external system is informed about the result of the SWU process and the
state machine proceeds again to the Idle state.

Verify state machine

After the chunks are distributed, verification must be done to check if an OLC is still missing
chunks. This process is shown as the verify state diagram shown in figure 5. The verify state
diagram is a sub state of the the main SWU state diagram shown in figure 4. All states are
explained below.

6. Reboot

Ucast

Bcast 
without 

Ack #OLCs large

#OLCs small

5. Verify

4. Distribute

Distribute next chunk

Send next

Send 2 times

Bcast with 
ack

Ucast

Waiting 
for ack

#Bcast tries <2

#Bcast tries >=2

No missing chunks
and not all responded
and #Bcast tries >=2

Missing chunks

Missing chunks and 
 #Retries <9

#Retries >=9 or 
All OLCs passed

All OLCs passed

No missing chunks
and not all responded

and #Bcast tries <2

Figure 5: Verify state diagram

Bcast with ack

All OLCs are instructed to verify which chunks they are missing and report back
to the SC. A verify broadcast with acknowledge message is sent for this purpose.



4.2 Modeling 18

Wait for ack

Each OLC in the list is checked whether it responded to the verify message. If it
responded, its status will be checked:

• Status OK and no missing chunks, then OLC is successfully upgraded.

• Status OK and missing chunks, then next state will be distribute and the
missing chunks will be distributed.

• Error status, OLC is in error status and cannot not be upgraded.

If all OLCs responded and no chunks are missing then the next state is either
Reboot Ucast or Reboot Bcast without ack, depending on the number OLCs in
the list.
If not all OLCs responded a second verify broadcast message will be sent. If
after this message still not all OLCs responded then the next state is Ucast and
a verify unicast message will be sent to each non responding OLC.

Ucast

Each OLC that is not yet successfully verified will be addressed with a verify
unicast message, if the OLC does not respond after two consecutive times it will
be put in an error state and the SC will move to the next OLC. When an OLC
does respond it will be checked for its status, as described in the Wait for ack
state.
Each time an OLC indicates it still has chunks missing the SC will redistribute
the chunks, with a maximum of nine times. If after the ninth time the OLC still
misses chunks then the SWU for that OLC is considered unsuccessful and the SC
will move to the next OLC.

For a detailed flowchart of the verify process appendix A can be consulted.

4.2 Modeling

The SWU process is modeled using the mCRL2 modeling language [13, 14]. In the following
section it is explained how the model relates to the implemented SC and OLC SWU compo-
nents.

4.2.1 Simplifications

In order to be able to automatically analyse the model some complexity is abstracted away.
The aim is to include those variables of the C implementation that have influence on the
behaviour of the the state machine and which messages will be sent. In this way unwanted
behaviour such as unnecessary sent messages can still be observed.
In the implementation for instance three different protocols can be active in the same network
at the same time, each message that is sent into the network needs be to sent individually
for each active protocol. This does not have influence on the main behaviour of the SWU
process and therefore is not included.
Also the underlying network layer is simplified. The fact that a message travels through a



4.2 Modeling 19

mesh network via different paths is not included. The unreliable network is modeled such
that a sent message is either communicated successfully or is dropped.
In the implementation two types of reboot messages can be sent. One reboot message in-
structs an OLC to do a hard reboot and the other to do a soft reboot. With a soft reboot
the OLC is not reset completely, to prevent flickering of the light. In the model only the soft
reboot message is considered.
Moreover an SWU in the implementation consists of around 1500 chunks whereas in the model
a SWU only consists of two chunks.

4.2.2 The OLC SWU model

The model of the OLC SWU component, abbreviated to the OLC component, can perform
the external actions shown in table 4. The only interactions with the OLC is via messages.
The OLC can receive a message from the SC and, if asked for, it can send a response to this
message. It does not send any messages on its own initiative.

olcError(Status)

olcRebootInto(ID,Img,ImgType)

olcChunksReceived(ID,Bool)

olcHandleOK(ID,Command)

comS2O(Msg)

comO2S(Msg)
Normal Image

Fallback Image

(Active)ImgType:

Chunk1: Bool
Chunk2: Bool

Version:VersImg:

Chunk1: Bool
Chunk2: Bool

Version:Vers

ImgType:
Img:

Imgs:

Figure 6: The model of the OLC process with external actions and internal variables

In figure 6 the external actions and the internal Imgs variable can be seen. The Imgs variable
shows information about the two images of the OLC, the normal image and the fallback im-
age, and shows which image is active. Both images contain a version number indicated with
Version and whether or not the chunks for the image are received. In this model an image
consists of two chunks.

Table 4: External actions of the OLC

External Action Description

comS2O(Msg) Receive a Msg from the SC.
comO2S(Msg) Send a Msg to the SC as a response on a received message.
olcRebootInto(ID,Img,ImgType) OLC with ID reboots into normal or fallback image (ImgType)

and details of that image are specified in Img.
olcChunksReceived(ID,Bool) OLC with ID reports whether or not it has received all chunks

happens after a verify command.
olcHandleOK(ID,Command) OLC with ID reports that it handled command Command

successfully, where Command is either a Reboot, Init, Data
or Verify command.

olcError(ID,Status) OLC with ID reports an error status.



4.2 Modeling 20

The SC sends a message to the OLC via the external action comS2O(Msg). The message
is passed on to the process APP SwUpgrade HandleSwUpgradeCommand, which checks the
MsgType of the message and determines which process needs to handle the command. The
command is either Reboot, Init, Data or Verify and is handled by the process HandleRe-
bootCmd, HandleInitCommand, HandleDataCmd or HandleVerifyCmd, respectively.

A message is handled as described in section 4.1.1. When a Reboot command is successfully
handled then the action olcRebootInto(ID,Img,ImgType) is performed, indicating to which
image the OLC reboots into and what the current status is of that image.
When a Verify command is successfully handled then the action olcChunksReceived(ID,Bool)
is performed, indicating whether or not all SWU chunks are received for this OLC. For each
command that is handled successfully an olcHandleOK(ID,Command) action is performed,
showing which command is handled. When a command is not handled successfully the action
olcError(ID,Status) is performed, showing the status of the OLC.

Table 5: Msg structure

Msg Description Direction

MSG(MsgDes, MsgType) Send message to MsgDes which is either an SC→OLC
unicast, broadcast with acknowledge or
broadcast without acknowledge.

MSG UcastResp(ID, MsgType) A response to a MsgType unicast message. OLC→SC
MSG BcastResp(ID, MsgType) A response to a MsgType broadcast message. OLC→SC

The messages communicated using the comS2O(Msg) and the comO2S(Msg) actions are ex-
plained in table 5. Every Msg contains a MsgType. A message type specifies which command
is sent and what their variables are (table 6).

A message sent from the SC to an OLC contains a MsgDes, which specifies whether the mes-
sage is sent as a unicast, a broadcast with acknowledge or a broadcast without acknowledge.
A message sent from an OLC to the SC contains the identifier of the OLC and the response
message type, where the response message type is either a verify response or a general response
(table 6).

4.2.3 The SC SWU model

The model of the SC SWU component, abbreviated to SC component, is defined by the ex-
ternal actions shown in table 7. An overview of the SC process together with the external
actions is depicted in figure 7.

The software upgrade is initiated by the action startSWU(List(OlcInfo), Image), which sup-
plies the list of OLCs that need to be upgraded to the specified image. Once initiated, the
SC process follows the state machine as discussed in section 4.1.2. A message is sent to the
OLCs using the action comS2O(Msg). When a response is expected then either the response
is received via action comO2S(Msg) or a timeout action is performed.
When a broadcast with acknowledge is sent, then from each OLC a response is expected, the
process waits for the response of each OLC, or when the message is dropped a timeout is
generated.



4.2 Modeling 21

Table 6: MsgType structure

MsgType Description

Msg REBOOT(ImgType) Reboot message to instruct the OLC to boot into
normal or fallback image (ImgType)

Msg INIT(Vers,ImgType) Init message to instruct the OLC to erase the flash of
the normal or fallback image (ImgType) and save new
version number (Vers).

Msg DATA(addrFlash, Data) Data message contains the data chunk for address
location 0 or 1.

Msg VFY Verify message instructs OLC to check which chunks
are missing.

Msg VFY RESP(Status, missingChunks) Respond on a verify request with a list of missing
chunks.

Msg GEN RESP(Status, Command) When a response other then verify is requested a
general response is sent, stating the Status of the OLC
and on which command it is a response on (Command)

Table 7: External actions of the OLC

External Action Description

startSWU(List(OlcInfo), Image) Start the software upgrade process, update all OLCs in
List(OlcInfo) to the specified Image.

verifiedOlcOK(ID, Bool) Shows if OLC with ID is verified successfully.
finished The SWU has finished.
upgradeNotOK One or more OLCs failed to upgrade.
waitForResponse Wait for responses from the OLCs.
timeout A timeout has occurred on waiting for a response message

from an OLC.
comS2O(Msg) Send a Msg to the OLCs.
comO2S(Msg) Receive a Msg response message from an OLC.



4.3 Analysis 22

SC
Process Receive

comO2S(Msg)

comS2O(Msg)startSWU(List(OlcInfo), Image)

verifiedOlcOK(ID)

upgradeNotOK

Wait for 
response

Timeoutfinished

Figure 7: The model of the SC process with external actions

When the state machine is in the verify phase each OLC is verified, to show the result of the
verification the action verifiedOlcOK(ID, Bool) is performed for each OLC.
After the state machine enters the Idle state again, the action finished is performed and the
SC process is ready to start a new software upgrade.

4.2.4 The model of the interacting SC and OLC components

The model of the interacting SC and OLC SWU components is created by connecting the
model of the SC SWU component with one or more model instances of the model of the OLC
SWU component.
The SC and the OLC SWU models communicate with each other via the Net process. The
Net process creates the synchronous communication between the SC and OLC processes.

The Net process can be configured to drop a specified number of packages in each direction.
The communication actions of the SC and the OLCs including the actions that cause the
messages to be dropped are explained in table 8.

Table 8: Communication actions of the SWU process

External Action Description

comS2O(Msg) Forwarding messages from the SC to the OLCs
comS2Odrop(Msg) A message from the SC to the OLCs is dropped before it arrived at any OLC
comO2S(Msg) Forwarding messages from an OLC to the SC
comO2Sdrop(Msg) A message from an OLC to the SC is dropped before it arrived to the SC

The model of the SWU process is depicted in figure 8 here the external actions comS2O(Msg)
and comO2S(Msg) of the SC and the OLCs are connected. When a message is dropped, it
will not arrive at any of the specified receivers.

4.3 Analysis

Analysis on the model is divided in three parts. First requirements are specified and verified.
The minimal message drop that can cause an OLC or a segment of OLCs not to be upgraded
is investigated and finally odd behaviour that was discovered during analysis is discussed.
Analysis on the model is done using the system and toolkit as described in chapter 6.



4.3 Analysis 23

SC
Process

OLC
Process

OLC
Process

Net

comS2O(Msg)

comO2S(Msg)

comO2Sdrop(Msg)

comO2S(Msg)

comS2O(Msg)

comS2Odrop(Msg)

Figure 8: The model of the SWU process

4.3.1 Requirements

The model of the SWU process must comply with the following requirements:

• A started SWU process must always finish, and only after the SWU process is finished
it must be able to start again.

• All OLCs must always be successfully upgraded when the communication is reliable.

Verification of these requirements is discussed below.

A started SWU process must always finish
A started SWU process must always finish, and only after the SWU process is finished it
must be able to start again. The SWU state machine is started with the action startSWU
and finished after the finished action.

To check this property, the system can be observed by considering startSWU and finished as
the external behaviour and all other actions as internal behaviour. This is done by gener-
ating the state space of the model (appendix B) with all actions other than startSWU and
finished renamed to τ actions. Because all internal actions are renamed to the same action
name, namely τ , the state space can be reduced. If the stated requirement holds then no
internal behaviour will prevent the system from doing a finished action always and only after
a startSWU action, as is shown in figure 9. If the requirement does not hold, then there is a
path caused by a τ action that prevents the system from doing the required behaviour.

0 1

startSWU

finished

Figure 9: A started SWU process can always finish and be started again



4.3 Analysis 24

This property has been checked by executing the commands in table 9, which results in the
state space shown in figure 9 and thus the requirement holds.

Table 9: The commands used to verify the requirement

Tool Arguments

(1) mcrl22lps model.mcrl2 model.lps

(2) lpsrename model.lps model hidden.lps --renamefile=rename/list of actions to hide.rename

(3) lps2lts model hidden.lps model hidden.aut

(4) ltsconvert model hidden.aut model red.aut --equivalence=branching-bisim

(5) ltsgraph model red.aut

Using (1) the model (appendix B) is linearized. In (2) all actions other than startSWU and
finished are hidden, by supplying a rename file (list of actions to hide.rename, included in ap-
pendix C) that contains a list all actions other than startSWU and finished that need to be
renamed to τ actions. Followed by (3) the state space generation and (4) reducing the state
space (modulo branching bisimilarity). Finally (5) the state space is visualised.

All OLCs must always be successfully upgraded when the communication is reli-
able
When the communication between the SC and OLCs is reliable then all OLCs must always
be correctly upgraded. This property is checked by hiding all actions apart from startSWU
and finished and olcRebootInto, using the method explained in the previous section.
The action olcRebootInto(...) is renamed to rebootOK (Vers,ImgType) only if the image con-
tains all chunks.
The model is configured as follows:

• All OLCs are initialised with software version V1.

• The SWU is an Normal Image with software version V2.

• A communication timeout does not occur before all expected messages are received.

The expected behaviour is that after the startSWU action all OLCs reboot into the other
image (Fallback Image in this case) and after the upgrade is done all OLCs reboot into the
Normal Image which now contains the new software version V2.

Figure 10 shows that the behaviour of the model follows the expectation. The figure shows
the state space of a model containing a single OLC after reduction. Here, it can be seen that
along each path the OLC is upgraded correctly, because a path always ends with the OLC
rebooting into the normal image where the image contains both data chunks and has version
V2, indicated by action rebootOK (V2, NORMAL IMAGE ).

4.3.2 OLCs not upgraded after message drop

Minimal message drop can cause an OLC to not get upgraded
An OLC is upgraded by receiving the messages discussed in section 4.1.1, since the commu-
nication between the SC and the OLCs is unreliable, messages can get lost. What is the



4.3 Analysis 25

0

1 23

4 5

67

8

9

10

11

12
startSWU

rebootOK(V2,NORMAL IMAGE)

rebootOK(V2,NORMAL IMAGE)

finished

startSWU

τ

τ

τ τ

rebootOK(V1,FALLBACK IMAGE)
τ

τ

rebootOK(V2,NORMAL IMAGE)

rebootOK(V2,NORMAL IMAGE)

rebootOK(V2,NORMAL IMAGE)

rebootOK(V2,NORMAL IMAGE)

rebootOK(V2,NORMAL IMAGE)

rebootOK(V1,FALLBACK IMAGE)

finished

Figure 10: OLCs are always correctly upgraded when the communication is reliable

minimum amount of message drops that can cause an OLC not to get upgraded?

A single message drop can cause an OLC not to be upgraded. In the case that the number
of OLCs in the segment is small (less than 1% of the OLCs in the segment) then the Re-
boot and the Init messages will be sent via unicast messaging, only once. The following cases
describe the situations when dropping a single message will cause an OLC not to be upgraded.

How the problem was discovered
The problem was discovered by configuring the model to be allowed to drop a certain amount
of messages. Starting with one, and subsequently configuring the tool lps2lts to detect and
report the action upgradeNotOK the during state space generation. Configuring the model to
drop a singled dropped message already yielded multiple traces to the action upgradeNotOK.
The analysis of a trace was done by examining first only the communication actions, hiding all
other actions in the trace. This yields a trace similar to table 10. With this trace it can easily
be observed which message has been dropped. The result of the dropped message can be inves-
tigated by adding previously hidden actions to the trace, which leads to the conclusions below.

Message drop in the first reboot phase
When a Reboot unicast message from the first reboot phase is dropped and the OLC
is currently executing the image that needs to be upgraded, then the OLC will not
be rebooted into the other image and cannot be initialised for the software upgrade.
When the OLC now receives an Init message it will respond with the OLC status
S OlcAppStatus InvalidAddress.

Message drop in the init phase
When the Init unicast message is dropped, then the OLC will not be upgraded because
the OLC is not correctly initialised, the SWU session is not opened and all distributed
chunks will be ignored.



4.3 Analysis 26

Message drop in the second reboot phase
When the Reboot unicast message from the second reboot phase is dropped then the
OLC image is upgraded correctly, but the SWU process is not completed correctly
because the OLC will not reboot into the newly upgraded image.

Minimal message drop can cause segment to not get upgraded
What is the minimum amount of message drops that can cause a whole segment not to get
upgraded?
Two dropped messages can cause a whole segment of OLCs not to be upgraded. When the
number of OLCs that need to be upgraded is large then in the first and second reboot phase
two Reboot broadcast messages without acknowledge will be sent. When in either reboot
phase both messages are dropped, then the whole segment will not be upgraded. The follow-
ing cases describe the situations in more detail.

How the problem was discovered
Same method as described in the paragraph ‘Minimal message drop can cause an OLC
to not get upgraded’ above has been applied, but this time examining traces where broad-
cast messages have been dropped.

Two dropped messages in the first reboot phase
The model contains two OLCs both running the normal image. Table 10 shows all
communication between the SC and the OLCs, where the messages of the first reboot
phase are dropped (denoted by the action comS2Odrop). The OLCs in the segment are
now not rebooted into the fallback image. As a consequence, the initialisation will not
succeed and the segment cannot be upgraded.

After the failed first reboot phase, the SC continues the SWU process generating a lot of
pointless traffic on the network. Both the Init and the Verify message require all OLCs to
respond, on which all OLCs respond with the OLC status S OlcAppStatus InvalidAddress
on the Init message and S OlcAppStatus SessionClosed on the Verify message.

Table 10: Trace of communication actions: Segment not upgraded when two Reboot messages are dropped.

comS2Odrop(MSG(BcastWithoutAck, Msg REBOOT(FALLBACK IMAGE)))
comS2Odrop(MSG(BcastWithoutAck, Msg REBOOT(FALLBACK IMAGE)))
comS2O(MSG(BcastWithAck, Msg INIT(V2, NORMAL IMAGE)))
comO2S(MSG BcastResp(OLC1, Msg GEN RESP(S OlcAppStatus InvalidAddress, INIT)))
comO2S(MSG BcastResp(OLC2, Msg GEN RESP(S OlcAppStatus InvalidAddress, INIT)))
comS2O(MSG(BcastWithAck, Msg VFY))
comO2S(MSG BcastResp(OLC1, Msg GEN RESP(S OlcAppStatus SessionClosed, VFY)))
comO2S(MSG BcastResp(OLC2, Msg GEN RESP(S OlcAppStatus SessionClosed, VFY)))
comS2O(MSG(BcastWithoutAck, Msg REBOOT(NORMAL IMAGE)))
comS2O(MSG(BcastWithoutAck, Msg REBOOT(NORMAL IMAGE)))

Two dropped messages in the second reboot phase
When in the second reboot phase both reboot messages are dropped, then all OLCs will



4.3 Analysis 27

be successfully upgraded. But they will not be rebooted into the new image and thus
the SWU process is not completed correctly.

4.3.3 Odd behaviour and recommendations

This section discusses cases where unnecessary traffic is generated on the network. For each
case the observed behaviour is explained, followed by how the case can be found and finally
recommendations are discussed.

Case 1: No response but SC SWU state machine continues
Observed behaviour
In case that no OLC reacts to any messages sent from the first Reboot state and the Init
state in the SC SWU state machine discussed in section 4.1.2, then the state machine still
sends the messages from Verify and second Reboot state.

How the problem was discovered
The model is configured to have reliable communication from the SC to the OLCs and un-
reliable communication from the OLCs to the SC. All actions apart from startSWU, finished
and olcChunksReceived are hidden. By following the same commands as in section 4.3.1 an
action olcChunksReceived(OLC1,false) can be found. This action was unexpected, because
the communication from the SC to the OLC is reliable and still in the verify step OLC1
claims that it did not receive all chunks.
To investigate what execution of actions causes this behaviour, a trace to the action olc-
ChunksReceived(OLC1,false) must be found. This is done by specifying in a rename file that
this action with exactly those arguments needs to be renamed to a new action, for instance
olcChunksReceived false. A trace to this new action can now found during the state space
generation using the following commands:

mcrl22lps model.mcrl2 model.lps --verbose

lpsrename model.lps model hidden.lps --renamefile=rename/rename olcChunksReceived.rename -v

lps2lts --action=olcChunksReceived false model hidden.lps --verbose

The last command generates all traces to this action, the trace can be inspected by loading it
in the simulator tool LpsXsim. During inspection of the trace it became apparent that OLC1
did not react to any messages from the SC, upon which the SC skipped the distribution of
the chunks but continued the state machine, sending Verify and Reboot messages.

Recommendations
Traffic on the network can be reduced by stopping the SWU process if none of the OLCs
respond to any Init messages.

Case 2: Unnecessary chunks distribution broadcast
Observed behaviour
All chunks are distributed while no OLC responded to earlier messages, possibly sending
around 1500 chunks for no reason.

How the problem was discovered
In case 1, the state machine continues even though nobody responds, but skipping the dis-



4.3 Analysis 28

tribution state. Interesting question is, whether there is a trace where nobody responds and
still all chunks are distributed? This property is checked by configuring the model to drop
all messages that are sent from the OLCs to the SC. Then, the tool lps2lts is configured to
detect and report the action distributeChunk the during state space generation. This yields
a trace that shows that there exists a path where packets are distributed while non of the
OLCs responded, see table 11 for this trace where all actions are hidden apart from startSWU,
distributeChunk, finished and the communication actions.

Table 11: Trace of actions: Distribute chunks while no OLC responds

startSWU
comS2O(MSG(BcastWithoutAck, Msg REBOOT(FALLBACK IMAGE)))
comS2O(MSG(BcastWithoutAck, Msg REBOOT(FALLBACK IMAGE)))
comS2O(MSG(BcastWithAck, Msg INIT(V2, NORMAL IMAGE)))
comS2O(MSG(BcastWithoutAck, Msg INIT(V2, NORMAL IMAGE)))
distributeChunk
comS2O(MSG(BcastWithoutAck, Msg DATA(0, D1)))
distributeChunk
comS2O(MSG(BcastWithoutAck, Msg DATA(1, D1)))
comS2O(MSG(BcastWithAck, Msg VFY))
comS2O(MSG(BcastWithAck, Msg VFY))
comS2O(MSG(BcastWithoutAck, Msg REBOOT(NORMAL IMAGE)))
comS2O(MSG(BcastWithoutAck, Msg REBOOT(NORMAL IMAGE)))
finished

Recommendations
This shows a case where no OLC responds and so possibly a lot of traffic is generated for no
reason. Sending all chunks takes well over an hour and no other actions can be performed
by the SC during this time. There is still the possibility that some or all OLC received the
messages from the SC and are successfully upgraded, in the case that communication from the
SC to the OLC is successful and all communication from the OLCs to the SC is unsuccessful.
A possible improvement would be to end the SWU process in the Init state when non of the
OLCs responded to an Init message.

Case 3: Verify broadcast with acknowledge for a single OLC
Observed behaviour
When after the first verify broadcast is sent, all OLCs responded apart from one, a second
verify broadcast is sent out, causing all OLCs to respond again. The OLCs that already
responded before will respond with the OLC status S OlcAppStatus SessionClosed.

How the problem was discovered
The model was configured as follows: SC process contains a list with two OLCs, where in the
model only one OLC exists, communication is reliable. By now stepping through the state
space, manually creating a trace from action startSWU to action finished, it was observed
that a broadcast verify was sent out twice, and the single OLC responded with the status
S OlcAppStatus SessionClosed. In table 12 a fraction of the trace is displayed, where this
behaviour can be seen.



4.3 Analysis 29

Table 12: Fraction of the trace showing two verify broadcast messages and responses

comS2O(MSG(BcastWithAck, Msg VFY))
olcChunksReceived(OLC1, true)
comO2S(MSG Resp(OLC1, Msg VFY RESP(S OlcAppStatus Ok, [])))
timeout
verifiedOlcOk(OLC1,true)
comS2O(MSG(BcastWithAck, Msg VFY))
olcErr(OLC1,S OlcAppStatus SessionClosed)
comO2S(MSG Resp(OLC1, Msg GEN RESP(S OlcAppStatus SessionClosed, VFY)))

Recommendations
Before sending a verify broadcast no check is done as to how many OLCs need to be ad-
dressed, whereas this is done in other parts. This means that there can be situations where a
large part already responded and only a small number of OLCs did not yet respond. When
now a verify broadcast message is sent all OLCs will respond, most of them with the OLC
status S OlcAppStatus SessionClosed, causing a lot of unnecessary traffic on the network. An
improvement would be to send unicasts instead of a broadcast when the OLCs that need to
be addressed is small, as is done in other parts of the state machine.

Case 4: Reboot message is sent instead of Init message
Observed behaviour
Multiple network protocols can be active in the network at the same time. When three
different protocols are active in the network, then messages need to be sent once for each pro-
tocol. The message handler for the third protocol sends the wrong message in the function
HandleBcastInitwithoutAck. This results in the behaviour that the when the segment is large
and three protocols are active, then the OLCs running the third protocol will not be upgraded.

How the problem was discovered
Code inspection. In file A SWUpgrade.c and function HandleBcastInitwithoutAck, the message
sent for the first two protocols is S OLCPARM SWUCOMMAND SWU INIT while the message for the
third protocol is S OLCPARM SWUCOMMAND SWU REBOOT.

Recommendations
This error can be corrected by replacing the Reboot message for an Init message.



5 Commissioning Components

Commissioning is the process in which the SC contacts and configures an uncommissioned
OLC that needs to become part of the segment which is under control of the SC. An OLC
is only allowed to join the segment if it is manufactured and pre-configured by Philips. To
authenticate an OLC, security information needs to be present in the SC and the OLC.

An uncommissioned OLC is addressed via its IEEE address and a commissioned OLC is
addressed via its short address. An uncommissioned OLC has a factory configured IEEE ad-
dress and no short address, this short address is assigned during the commissioning process.
Apart from the short address, a PAN ID and network security information is sent to the OLC
during commissioning. The PAN ID is used to identify to which segment the OLC belongs,
and the network security information is used to provide secure communication after the OLC
is commissioned.

Apart from authenticating and adding an OLC to the segment, the SC also configures settings
on the OLC for the lamp driver, sends the lighting dim schedules and initiates SWU for the
OLCs when the software version of the OLC is lower than the software version of the SCnode.

5.1 Implementation

In figure 11 a schematic overview is given of the main elements in the commissioning inter-
action.

Database

Commissioning
component

Commissioning
component

CommissioningStore
component

4

2

5

6

3

CityTouch

1

8
7

SC OLC

Figure 11: Commissioning components interaction overview

A request to (de)commission an OLC is sent from the CityTouch management system to the
SC. This request is parsed and sent to the CommissioningStore component, see arrow (1).
This component stores the request from CityTouch into the database (2) and triggers the
Commissioning component to handle the pending request by placing a message in the thread
queue of the Commissioning component, indicating that the database needs to be checked for
OLCs with pending actions (3). Upon handling this message and inspecting the database (4),
a single OLC with a pending request will be processed, depending on the request, a message
will be sent to the OLC to request the current state of the OLC, followed by messages changing
the state of the OLC if necessary (5 and 6). The database and CityTouch are updated with

30



5.1 Implementation 31

the success or failure of the request (7 and 8). In case of failure the request will be put into
an error state and at a later moment all requests in the error state will be retried.
In the following sections the SC and OLC Commissioning components will be explained in
more detail.

5.1.1 Segment Controller Database

For each OLC that has an action a record is stored in the local database of the SC. Such a
record contains known information about the OLC such as the OLC type, the IEEE address,
a short address, a PAN ID, the ActionType and the CommissioningState. These last two
variables indicate the pending action and the state of the pending action / OLC, see table 13
and table 14, which lists the value space of the ActionType and the CommissioningState
variables.

Table 13: ActionType members

ActionType Description

ActionCommissioning OLC needs to be commissioned.
ActionUpdate A calender update, lamp replacement or lamp type

update needs to be done.
ActionDecommissioning OLC needs to be decommissioned.
OLCReplacement The OLC is replaced, needs to be configured and commissioned.
NoAction No action needs to be done.

Table 14: CommissioningState members, stored in the local database of the SC

CommissioningState Description

Update Operational state depends on ActionType.
Decommissioning Decommissioning process is started.
Decommissioned Decommissioning process is finished.
ReadyForDeletion Decommissioning process is finished and the OLC can be

removed from the database.
CommissioningError Commissioning started and failed.
Error sw incompatible OLC software version is newer than SCnode software version.
WaitForReboot OLC had a reboot command, after a timer the next

state is set to Ready.
WaitForRebootAndSWU OLC had a reboot command and needs an SWU, after

a timer the next state is set to ReadyForSWU.
ReadyForSWU At least one of the images of the OLC needs an SWU.
ReadyForSWUIncomplete See ReadyForSWU, only now for a whole segment update.
ReadyForSWUIncompleteReady The main image is upgraded, fallback image still needs

to be upgraded. OLC is now operational (only for a whole
segment update).

IncompleteSWU Error during SWU.
Error Multiple reasons can create this error.
Ready No action needs to be done.



5.1 Implementation 32

5.1.2 Segment Controller CommissioningStore component

When an OLC needs to be commissioned or decommissioned, or some other action must be
performed, such as OLC replacement, lamp replacement or a calender update then the man-
agement system CityTouch is used to communicate this to the SC. The CommissioningStore
application processes these requests. When an OLC needs to be commissioned for instance,
then the CommissioningStore sets the ActionType of that OLC in the local database to Ac-
tionCommissioning and the CommissioningState to Update. Subsequently the Commission-
ingStore executes an external interface function of the Commissioning component to schedule
a Msg ScanAgain in the thread message queue.

5.1.3 Segment Controller Commissioning component

The Commissioning component has its own thread, which executes its tasks based on the
messages in the thread queue. When a task is finished, the next message is taken from the
thread queue. In table 15 the different messages that can be scheduled in the queue are listed.
For reasons of clarity, only the messages that are related to the interaction between the SC
and OLC are shown.

Scheduling thread messages
A thread message can be scheduled by a call to the external interface of the Commissioning
component or as a result of an earlier executed thread message. A thread message can be
scheduled with a delay, e.g.: the message will be scheduled into the queue after the delay.
When a thread message is scheduled then a check is done to see if there is already an instance
of this message in the queue, when there is not yet an instance, then it will be scheduled.
When there exists an instance then it will only be scheduled if the message contains data
(such as the Msg Continue Decommissioning message), or if the delay of the new message is
shorter than the delay of the existing message, then the delay of the existing message will be
replaced by the new delay. This means that only one instance of each message can exist in
the queue, except for the Msg Continue Decommissioning message.
In the following paragraph it will be explained how each thread message is handled.

Table 15: Thread queue messages

Thread message Description

Msg ScanAgain Scan the database for an OLC with a pending action.
Msg Start SWU Execute an SWU on the segment.
Msg Continue Decommissioning(olc id) Continue with decommissioning of OLC with

database ID olc id.
Msg Finish Decommissioning Remove all OLCs from the database that are in state

ReadyForDeletion.
Msg Retry failed OLCs Get an OLC from the database where the

CommissioningState is an error state.



5.1 Implementation 33

Thread Messages

Msg ScanAgain

The local database of the SC is queried to return the first OLC where the
CommissioningState is equal to Update or CommissioningError. When no OLC
is found, then the thread message Msg Start SWU will be scheduled.
When an OLC is found then the ActionType is examined, see figure 12. If
the ActionType is equal to NoAction then the CommissioningState is set to
Ready, so the OLC will not have a pending action on the next Msg ScanAgain
execution. If the ActionType is equal to CalenderUpdate, then the ActionType
and CommissioningState is set to NoAction and Ready, respectively. When the
ActionType is either OLCReplacement, ActionUpdate or ActionCommissioning
then the procedure to commission the OLC will be started, and finally if the
ActionType is ActionDecommissioning then the procedure to decommission the
OLC will be started. A new thread message Msg ScanAgain will be scheduled to
check if the current OLC still has a pending action or else, if another OLC has a
pending action.

Commission OLC 
procedure

ActionCommissioning, or
ActionUpdate, or
OlcReplacement

ActionDecommissioning

CalenderUpdate

NoAction

SetCommissioningState(Ready)
Decommission OLC 

procedure

StoreActionType(NoAction)

ScheduleCommissioningMsg(Msg_ScanAgain)

ActionType

Figure 12: Process OLC with pending action

Commission OLC procedure
Figure 13 shows the commission OLC procedure. For clarity purposes some de-
tails have been left out.
A GetInfo message is sent to the OLC to determine the software version, short
address, PAN ID and CommState of the OLC. With the response message of the
OLC it is determined whether the software of the OLC should be upgraded and by
using the CommState it is determined whether the OLC is already commissioned.
When the OLC is already commissioned and the software of the OLC needs to be
upgraded then CommissioningState is set to ReadyForSWU and the ActionType
remains the same. When the software of the OLC is up to date then the commis-
sioning procedure is finished and the ActionType is set to NoAction.
When the OLC is not commissioned, then messages to configure settings on the



5.1 Implementation 34

OLC and messages to commission the OLC are sent followed by a message that
instructs the OLC to reboot.

Commission OLC 
procedure

Set CommissioningState 
Ready

Set ActionType 
NoAction

Send GetInfo

Is Commissioned

Send settings 
messages

Send Commissioning 
messages

Send Reboot 
message

ActionCommissioning

Action
Type

Needs SWU

Set CommissioningState 
ReadyForSWU

Other

False

True False

True

Figure 13: Commission OLC procedure

Decommission OLC procedure
The decommission OLC procedure is shown in figure 14, for clarity purposes some
details have been left out.
A GetInfo message is sent to the OLC to determine if the OLC is commissioned.
When the OLC is commissioned, the CommissioningState is set to Decommission-
ing and a separate thread is called to complete the log of the OLC. If after the log
completion the CommissioningState is still equal to Decommissioning then thread
message Msg Continue Decommissioning(oldId) will be scheduled.
When the OLC is not commissioned the CommissioningState is set to Decom-
missioned and a separate thread is called to report the log of the OLC. Conse-
quently the CommissioningState is set to ReadyForDeletion and the thread mes-
sage Msg Finish Decommissioning will be scheduled.



5.1 Implementation 35

Decommission OLC 
procedure

Complete log

Send GetInfo

Is Commissioned

Set CommissioningState 
Decommissioned

Set CommissioningState 
Decommissioning

True False

Set CommissioningState 
ReadyForDeletion

LogCompleter LogReporter

Report log

Schedule thread message
Msg_Continue_Decommissioning(olcId)

CommissioningState == Decommissioning

Schedule thread message
Msg_Finish_Decommissioning

Trigger LogCompleter Trigger LogReporter

Figure 14: Decommission OLC procedure

Msg Start SWU

An OLC has two software images where it can boot from. The following
procedure is executed to see if any of the OLCs available in the local database
need to perform an SWU, which is subsequently executed when necessary.
The local database of the SC is queried for all OLCs with the Commission-
ingState equal to ReadyForSWUIncomplete, which indicates a software upgrade
for the whole segment. If the database does not contain any OLC with the
specified CommissioningState, then the database is queried for all OLCs with the
CommissioningState equal to ReadyForSWU.

First a check is done whether the segment is located in a switched grid configura-
tion (i.e., the OLCs are powerless during the day), if so, then the procedure will
wait until after sunset before continuing, because then the grid is powered.

Each OLC in the retrieved database list is prepared for the main image to be
updated and a GetInfo message is sent to update the information about the OLC
in the SC and to see if any of the OLCs in the list are reachable. The SWU
component will now be triggered to upgrade all the OLCs in the list, and the
procedure will wait until the SWU is finished. The SWU component will be
triggered again to update the fallback image of all the OLCs in the list and again
the procedure will wait until the SWU is finished. When the main image of the
OLC was not correctly upgraded, then again an SWU will be started for the main
image. After waiting on the SWU component to finish, each OLC is checked if
both image upgrades were successful, when both upgrades were successful, then a
schedule distribution is triggered to supply the OLC with the lighting schedules
else the ActionType of the OLC is set to ActionCommissioning, to retry the
OLC for SWU.



5.1 Implementation 36

Msg Continue Decommissioning(olcId)

When during handling a Msg ScanAgain an OLC needs to be decommis-
sioned, then first the component LogCompleter is triggered to make the log-
ging history of the OLC complete. When the LogCompleter component fin-
ishes, it triggers the interface of the Commissioning component to schedule the
Msg Continue Decommissioning.

Here the actual decommissioning of the OLC is done, using the supplied olcId
the OLC information is retrieved from the database, messages to decommis-
sion and reboot the OLC are sent. Consequently the CommissioningState is
set to Decommissioned and the LogReporter thread is triggered, after which
the CommissioningState is set to ReadyForDeletion and the thread message
Msg Finish Decommissioning is scheduled.

Msg Finish Decommissioning

Remove all OLCs from the database that are in state ReadyForDeletion.

Msg Retry failed OLCs

Set the CommissioningState to Update of all OLCs that currently have a
CommissioningState that is considered to be an error state, i.e., the members
Error, WaitForReboot, WaitForRebootAndSWU, ReadyForSWUIncompleteReady,
ReadyForSWU, IncompleteSWU or CommissioningError.

5.1.4 Outdoor Luminance Controller Commissioning component

State variables
The OLC Commissioning component has the following three state variables which denote the
state of the Commissioning component: CommState, RFNwk CommissionFlag (Commission-
Flag) and CommissionEngineState (SEC NCE).

The CommState indicates in which commissioning state the OLC is currently in. The Comm-
State structure is present in the OLC and the SC software. The SC can request the Comm-
State of an OLC by sending a GetInfo message to that OLC. In table 16 the different Comm-
State states are explained.

Table 16: CommState

State Description

Comm State Uncommissioned OLC is not commissioned.
Comm State Commissioned Needs Reboot OLC has been commissioned but needs

to be rebooted to finish the process.
Comm State Commissioned OLC is commissioned.
Comm State Decommissioning OLC needs to be rebooted to finish

decommissioning.

The CommissionFlag state is the only commissioning state that is saved in non-volatile mem-
ory. This state indicates if the OLC contains valid commissioning information (short address,
PAN ID and network security information). After the OLC is successfully commissioned the



5.1 Implementation 37

CommissionFlag is set to Commission Valid and after decommissioning the Commission-
Flag is set to Commission Invalid. During reboot it is again validated whether the necessary
variables are valid. When the OLC has been rebooted while it was busy decommissioning
then the state is equal to Commission Busy Decom (see table 17).

Table 17: CommissionFlag

State Description

Commission Valid All necessary variables to be commissioned are valid.
Commission Busy Decom Busy with decommissioning.
Commission Invalid Not all necessary variables to be commissioned are valid.

The SEC NCE states shown in table 18 are used to indicate the state of the secure com-
missioning process. The secure commissioning process consists of two messages, when the
SEC NCE state is Ce State Not Commissioned then the OLC can receive the first secure
commissioning message. When the first message has been received, the SEC NCE state is
set to Ce State Handshake Done. After the second message has been received and the
payload has been sent to be decrypted, the state is set to Ce State Decrypt Pending.
Finally after the decryption is done and the commissioning information is stored, then the
SEC NCE state is set to Ce State Commissioned.

Table 18: SEC NCE

State Description

Ce State Not Commissioned OLC is not commissioned.
Ce State Handshake Done Secure commissioning message 0 has been received.
Ce State Decrypt Pending Secure commissioning message 1 has been received,

waiting for decryption of the payload.
Ce State Commissioned OLC is commissioned.

Initialisation
The CommState and the SEC NCE variables are stored in the volatile memory and thus need
to be determined during boot-up. The CommissionFlag is stored in non-volatile memory and
is used together with the commissioning information to determine the state of the CommState
and the SEC NCE state variables.

If the commissioning information is incomplete or the CommissionFlag is not equal to Com-
mission Valid, then the OLC is considered uncommissioned, the commissioning information
is invalidated and the CommState and SEC NCE are set to Comm State Uncommissioned
and Ce State Not Commissioned, respectively. In case the commissioning information is
valid and the CommissionFlag is equal to Commission Valid then the CommState and
SEC NCE are set to Comm State Commissioned and Ce State Commissioned respec-
tively. In case CommissionFlag is equal to Commission Busy Decom then the OLC was
rebooted during decommissioning and decommissioning will continue after initialisation.

Message handling
In table 19 the messages that are handled by the the Commissioning component are shown.



5.1 Implementation 38

Next to these messages also GetInfo and GetMac messages are used in the (de)commissioning
procedure, these messages are handled by a different software component and are used to
query information from the OLC.

Table 19: Commissioning messages

Msg Description

CommissioningMsg0 First secure commissioning message.
CommissioningMsg1 Second secure commissioning message.
DecommissioningMsg Decommissioning message.
SecureReboot Message to reboot the OLC.

CommissioningMsg0
With this message the first step of the commissioning process is executed, the result will be
sent back to the SC. When the message is successfully handled, then the SEC NCE will be
set to Ce State Handshake Done. The message will only be handled if the OLC is not
commissioned.

CommissioningMsg1
This message contains the commissioning information. The payload of the message is en-
crypted and the OLC will request a separate component to decrypt the message, the SEC NCE
is set to Ce State Decrypt Pending. Decrypting is done asynchronously and no re-
sponse to the SC will yet be sent. Once the decryption is finished, the Commissioning
component will be signaled. When decryption was successful then the message contents
are retrieved and stored in the non-volatile memory, SEC NCE and CommState are set to
Ce State Commissioned and the Comm State Commissioned Needs Reboot respec-
tively. The OLC needs to reboot to apply the newly received settings. The Commission-
ingMsg1 message is only handled if the OLC is not commissioned and the SEC NCE is equal
to Ce State Handshake Done.

DecommissioningMsg
This message is used to decommission the OLC. Upon handling the message, the states Com-
missionFlag and CommState are set to Commission Invalid and Comm State Decom-
missioning respectively. The OLC can still receive messages to its short address as the
volatile memory is not reset, therefore a reboot is necessary to finish the decommissioning.
The DecommissioningMsg message is only handled if the OLC is commissioned.

SecureReboot
This message is used to reboot the OLC after a (de)commissioning procedure, to load the
newly stored or erased settings from the non-volatile into the volatile memory. See previous
paragraph about initialisation, how commissioning info and state variables are determined.

GetMac
This message is used to query the IEEE address from the OLC. If the OLC is commissioned,
then it will only respond if the message is addressed to its short address, and if the OLC is
not commissioned then the OLC will only respond if the message is addressed to its IEEE
address. This message is therefore also used by the SC to determine whether or not the OLC



5.2 Modeling 39

is commissioned.

GetInfo
The GetInfo message is used to query information about the software version, short address,
PAN ID and CommState of the OLC. When an OLC receives a GetInfo message, it will
always reply, independently of whether the message is addressed to its IEEE address or short
address and the OLC is commissioned or not.

5.2 Modeling

The SC and OLC Commissioning components are modeled using the mCRL2 modeling lan-
guage [13, 14]. In the following section it is explained how the model relates to the imple-
mented Commissioning components.

5.2.1 Simplifications

In order to be able to automatically analyse the model some complexity is abstracted away.
The aim is to include those variables of the C implementation that have influence on messages
sent by the SC and the commissioning state of the OLC. All state variables and messages
discussed in section 5.1 are included in the model. In this way it can be investigated whether
or not situations can occur such that an OLC cannot be (de)commissioned (see section 5.3).

The underlying network layer is simplified. The fact that a message travels through a mesh
network via different paths is not included. The unreliable network is modeled in such a way
that a sent message is either communicated successfully or dropped.
The older software versions of the OLC use a different protocol for commissioning, this is not
included in the model.

5.2.2 The OLC Commissioning model

The OLC Commissioning model can perform the external actions shown in figure 15 and
table 20.

comO2S(Msg)

comS2O(Msg)
infoOlc(IeeeAddr,ShortAddr,PanId,CommState)
olcState(CommState,CommissionFlag, SEC_NCE,IeeeAddr,ShortAddr,PanId)
requestDecryptFailedOLC

Commissioning

component

Figure 15: The OLC commissioning model with external actions

The only interactions with the OLC is via messages. The OLC does not send any messages
on its own initiative. When it receives a message from the SC it will send a response message
after processing the command. When the OLC is not processing a message the action olcState
can be performed. This is used to verify the requirement stated in section 5.3.1. After boot-up
and upon receiving a GetInfo message, the action infoOlc is performed. When the decryption



5.2 Modeling 40

Table 20: External actions of the OLC commissioning model

Action Description

infoOlc(ieee,short,pan,commState) Shows information about the IeeeAddr, ShortAddr, PanId
and CommState of the OLC, and is executed on boot-up
and upon receiving a GetInfo message.

olcState(commState,commissionFlag, Shows the state information of the OLC and can be
SEC NCE,ieee,short,pan) executed when the OLC is not processing a message.

requestDecryptFailed CommissioningMsg1 has been received, decrypting failed.

of CommissioningMsg1 fails, action requestDecryptFailed is performed. These actions are
used to verify the requirements stated in section 5.3.2.

5.2.3 The SC Commissioning model

In figure 16 the SC Commissioning model is shown, including the CommissioningStore,
Database and Commissioning component. The external actions of these components are
explained in tables 21, 22 and 23.

Commissioning

component
comO2S(Msg)

comS2O(Msg)

scheduleCommissioningMsg(ThreadMsg)
commissionOlc(ID,IeeeAddr,ShortAddr,PanId)
decommissionOlc(IeeeAddr,ShortAddr,PanId)
alreadyCommissioned(IeeeAddr)
queue_empty
timeout

Database
component

removedOlcsFromDB(List(IeeeAddr))
noOlcWithPendingAction
foundOlcWithPendingAction(ID)

Commissioning
Store

component

storeActionType(ID,ActionType)
setCommissioningState(ID,CommissioningState)

getOlcWithPendingAction
setCommissioningState(ID,CommissioningState)
storeActionType(ID,ActionType)
removeOlcFromDBWithStateReadyForDeletion

scStarttriggerCommissioning(ID,IeeeAddr,ShortAddr,PanId)
triggerDecommissioning(IeeeAddr,ShortAddr,PanId)

Figure 16: The SC commissioning model with external actions

Table 21: External actions of the SC CommissioningStore component

Action Description

triggerCommissioning(id,ieee,short,pan) Instruct the SC to commission the OLC with ID id and
IeeeAddr ieee to ShortAddr short and PanId pan.

triggerDecommissioning(ieee,short,pan) Instruct the SC to decommission the OLC with IeeeAddr
ieee, ShortAddr short and PanId pan.

A request from CityTouch to commission or decommission an OLC is simulated by per-
forming the CommissioningStore actions triggerCommissioning and triggerDecommissioning,
respectively. This will trigger the Database component actions storeActionType and setCom-
missioningState to set the appropriate database values for that OLC. Subsequently it will



5.2 Modeling 41

perform the action scStart of the Commissioning component, to schedule the Msg ScanAgain
ThreadMsg.

Table 22: External actions of the SC Database component

Action Description

setCommissioningState(id,commState) Set the CommissionState of the OLC with database
identifier id to commState.

storeActionType(id,actionType) Set the ActionType of the OLC with database identifier
id to actionType.

removeOlcWStateReadyForDeletion Instruct the database to remove all OLCs that have the
CommissionState ReadyForDeletion.

removedOlcsFromDB(ieees) All OLCs with IeeeAddr ∈ ieees have been removed from
the database.

getOlcWithPendingAction Request the database for the next OLC that has a
pending action.

noOlcWithPendingAction The database does not contain any OLCs with a pending
action.

foundOlcWithPendingAction(id) Found OLC, with database identifier id, that has a
pending action.

When the Commissioning component starts processing the request it will query for an OLC
with a pending request by performing action getOlcWithPendingAction. Followed by the ac-
tions commissionOlc or decommissionOlc to indicate that the (de)commissioning has started.
During this process the ActionType and CommissioningState of the OLC can be updated.
When an OLC needs to be commissioned, but the OLC already is commissioned, then action
alreadyCommissioned will be performed.

Table 23: External actions of the SC Commissioning component

Action Description

scStart Starts the SC commissioning component by scheduling a
Msg ScanAgain ThreadMsg.

scheduleCommissioningMsg(msg) Indicates that ThreadMsg msg has been scheduled in the
thread queue.

commissionOlc(id,ieee,short,pan) Indicates that the commissioning of OLC with database
identifier id and IeeeAddr ieee has started, the OLC will be
commissioned to ShortAddr short and PanId pan.

decommissionOlc(ieee,short,pan) Indicates that the decommissioning of OLC with IeeeAddr
ieee, ShortAddr short and PanId pan has started.

alreadyCommissioned(ieee) OLC with IeeeAddr ieee is already commissioned.
queue empty Indicates that the thread message queue is empty.
timeout Indicates that a communication timeout has occurred.

After successful decommissioning an OLC, the OLC will be removed from the database, indi-
cated by actions removeOlcFromDBWithStateReadyForDeletion and removedOlcsFromDB.
When the Commissioning component does not have any ThreadMsg to process, it will perform
the action queue empty. When the Commissioning component does not receive an expected
response message from an OLC then action timeout will be performed.



5.2 Modeling 42

5.2.4 The model of the interacting SC and OLC components

The model of the interacting SC and OLC components is created by connecting the commu-
nication actions comS2O and comO2S of the SC and OLC commissioning models with a Net
process, see figure 17. The SC and the OLC commissioning models communicate with each
other via the Net process, where the Net process creates the synchronous communication
between the SC and OLC processes.

The Net process can either drop a received message or send it to the other party. When a
message is dropped then the action timeout is performed in the SC Commissioning model.
The communication actions of the SC and the OLCs including the actions that cause the
messages to be dropped are explained in table 24. The external actions of the SC and OLC
commissioning models are explained in the previous sections.

Table 24: Communication actions of the interacting commissioning components

External Action Description

comS2O(Msg) Forwarding messages from the SC to the OLC.
comS2Odrop(Msg) A message from the SC to the OLC is dropped before it arrived the OLC.
comO2S(Msg) Forwarding messages from the OLC to the SC.
comO2Sdrop(Msg) A message from the OLC to the SC is dropped before it arrived to the SC.

SC
Commissioning 

model

OLC 
Commissioning 

model

Net

comS2O(Msg)

comO2S(Msg)

comO2Sdrop(Msg)

comO2S(Msg)

comS2O(Msg)

comS2Odrop(Msg)

Figure 17: The model of the interacting SC and OLC commissioning components



5.3 Analysis 43

5.3 Analysis

In this section the requirements that the model OLC commissioning component and the model
of the interacting SC and OLC components must comply with are stated in section 5.3.1
and section 5.3.2, respectively. First the requirement is stated, followed by the method of
verification and the result.

5.3.1 Requirements on the OLC commissioning component

R01 An OLC should not be able to arrive in a state in which one of the three commissioning
states variables indicate that the OLC is commissioned while the ShortAddr or PanId is
invalid:

(CommState = Comm State Commissioned

∨ CommissionFlag = Commission Valid

∨ SEC NCE = Ce State Commissioned

) ∧ (ShortAddr = ShortNull ∨ PanId = PanNull)

This is verified by renaming the action olcState(...) to illegal when the proposition above
holds, using a rename file (rename illegal state.rename, included in appendix I), see below for
the rename statement.

rename

((ocs == Comm State Commissioned

∨ cf == Commission Valid

∨ ces == Ce State Commissioned

) ∧ (short == ShortNull ∨ pan == PanNull))

−>olcState(ocs, ces, cf, ieee, short, pan) => illegal;

Followed by a search for the existence of the action illegal in the state space. If the action
does not exist in the state space then the requirement holds.
The commands in table 25 are executed to verify this requirement. In (1) the OLC Commis-
sioning component model (appendix D) is linearized. In (2) the action olcState(CommState,
CommissionFlag, SEC NCE, IeeeAddr, ShortAddr, PanId) is renamed to action illegal when
the proposition above holds on the state variables of the action olcState(...), by supplying a
rename file. Followed by (3) which searches the state space for all occurrences of the action
illegal. No occurrences of action illegal have been found upon executing the commands.

Table 25: The commands used to verify requirement R01

Tool Arguments

(1) mcrl22lps model.mcrl2 model.lps

(2) lpsrename model.lps model renamed.lps --renamefile=rename/rename illegal state.rename

(3) lps2lts model renamed.lps --action=illegal --trace

R02 An OLC cannot arrive in a state from which it cannot be commissioned or decommis-
sioned again.

The action IsCommissioned(Bool) will indicate whether the OLC is commissioned. To check



5.3 Analysis 44

this property, the system can be observed by considering IsCommissioned(Bool) as the ex-
ternal behaviour and all other actions as internal behaviour. This is done by generating
the state space of the model (appendix D) with all actions other than olcIsCommissioned(...)
renamed to τ actions and olcIsCommissioned(ieee, short, pan, b) renamed to the simplified ac-
tion IsCommissioned(b). Because all internal actions are renamed to the same action name,
namely τ , the state space can be reduced. If the stated requirement holds then no internal be-
haviour will prevent the system from doing a IsCommissioned(true) or IsCommissioned(false)
action, as is shown in figure 18. If the requirement does not hold, then there is a path caused
by a τ action that prevents the system from doing the required behaviour.

This property has been checked by executing the commands in table 26, which results in the
state space shown in figure 18 and thus the requirement holds.

Table 26: The commands used to verify the requirement

Tool Arguments

(1) mcrl22lps model.mcrl2 model.lps

(2) lpsrename model.lps model hidden.lps --renamefile=rename/hide actions for R02.rename

(3) lps2lts model hidden.lps model hidden.aut

(4) ltsconvert model hidden.aut model red.aut --equivalence=branching-bisim

(5) ltsgraph model red.aut

Using (1) the model (appendix D) is linearized. In (2) all actions other than olcIsCommissioned(...)
are hidden and olcIsCommissioned(ieee, short, pan, b) is renamed to the simplified action
IsCommissioned(b), by supplying a rename file (list of actions to hide.rename, included in ap-
pendix J) that contains a list all actions other than startSWU and finished that need to be
renamed to τ actions. Followed by (3) the state space generation and (4) reducing the state
space (modulo branching bisimilarity). Finally (5) the state space is visualised.

0 12

τ

τ IsCommissioned(true)

IsCommissioned(false)

Figure 18: An OLC cannot arrive in a state from which it cannot be (de)commissioned

5.3.2 Requirements on the interacting commissioning components

The requirements which the interacting commissioning components must comply with are
stated below. Each requirement is first stated in a way such that a software engineer can
easily relate the requirement to the implementation (1), in (2) the requirement is stated in
terms of actions and finally the modal formula, which is used to verify the requirement is
stated in (3).



5.3 Analysis 45

R03 An OLC with a pending action should eventually be processed.

(1) Each time the thread message Msg ScanAgain is handled, the database is checked for
the first OLC that has a pending action. After processing the OLC, the thread message
Msg ScanAgain is scheduled again. If the OLC still has a pending action it will be
processed again upon handling the next thread message Msg ScanAgain. It should not
be the case that always the same OLC is served, never processing the other OLCs with
pending actions.

(2) When a thread message Msg ScanAgain is scheduled by
scheduleCommissioningMsg(Msg ScanAgain) then eventually no OLCs should be present
in the database, indicated by action noOlcWithPendingAction.

(3) [true? · scheduleCommissioningMsg(Msg ScanAgain)]
(µX.[¬noOlcWithPendingAction]X ∧<true>true)

The commands in table 27 are executed for each modal formula of the requirements. Using
(1) the mCRL2 specification (appendix E) is linearized. In (2) the linearized mCRL2 spec-
ification together with the modal formula is converted to a parameterised boolean equation
system (PBES), by supplying the formula as a .mcf file. Finally (3) the PBES is solved.
When the formula holds, (3) will yield true. When the formula does not hold, then a counter
example (a tree of instantiated variables) can be outputted using argument --counter, from
which the invalidating trace can be constructed.

Table 27: The commands used to verify the requirements

Tool Arguments

(1) mcrl22lps model.mcrl2 model.lps

(2) lps2pbes model.lps model formula.pbes --formula=formula.mcf --verbose

(3) pbes2bool model formula.pbes --counter --verbose

Requirement R03 does not hold on the model. A trace was found which shows that the same
OLC can be processed infinitely often, causing starvation of all other OLCs with pending
actions. This can occur when an OLC has ActionType ActionCommissioning and Com-
missioningState Update, when the OLC is picked up during processing of the ThreadMsg
Msg ScanAgain then commissioning of the OLC will be started. If commissioning fails, then
the CommissioningState will be set to CommissioningError and a Msg ScanAgain is sched-
uled. Upon processing the Msg ScanAgain message, the same OLC is picked up, because ac-
tion getOlcWithPendingAction will return the first OLC that has either CommissioningState
Update or CommissioningError. When the OLC for some reason always fails to be commis-
sioned then the process will be infinitely repeated, the error would be detected eventually in
the CityTouch management system.
Solution: getOlcWithPendingAction should only return the first OLC that has Commission-
ingState Update and neglect OLCs with CommissioningState CommissioningError.



5.3 Analysis 46

R04 An OLC with a pending commissioning action should eventually be commissioned.

(1) Each OLC record DBr in the database where DBr.ActionType is equal to Action-
Commissioning, ActionUpdate or OLCReplacement must eventually have the following
variable values, where DBr.IeeeAddress = OLC.IeeeAddress.

OLC.CommState = Comm State Commissioned

OLC.ShortAddress = DBr.ShortAddress (where DBr.ShortAddress 6= ShortNull)

OLC.PanID = DBr.PanID (where DBr.PanID 6= PanNull)

DBr.ActionType = NoAction

DBr.CommissioningState = Ready

When commissioning fails because of an error, such as a communication timeout or
decryption error, then the OLC must be retried for commissioning.

(2) When the CommissioningStore is triggered to commission an OLC indicated by action
triggerCommissioning(id, ieee, short, pan), and the commissioning is not canceled by
triggerDecommissioning(ieee, short, pan) before commissioning is started, indicated by
action commissionOlc(id, ieee, short, pan), then, if the OLC is not yet commissioned,
the actions setCommissioningState(id,Ready), storeActionType(id, NoAction) and in-
foOlc(ieee,short,pan,Comm State Commissioned) must eventually follow, in any or-
der. If the OLC is already commissioned, then the action alreadyCommissioned(ieee)
must follow eventually. If and only if an error occurs, such as requestDecryptFailed or
timeout, then the OLC must be retried for commissioning, i.e., commissionOlc(id,ieee,
short,pan) must take place. Infinitely many queue empty actions are allowed to happen
in between. The variables b1 to b7 record whether a particular action has taken place,
see table 28.

(3) [true?]

∀id:ID , ieee:IeeeAddr, short:ShortAddr, pan:PanId.

[triggerCommissioning(id, ieee, short, pan).

¬triggerDecommissioning(ieee, short, pan)?.

commissionOlc(id, ieee, short, pan)]

µX(b1:B=false, b2:B=false, b3:B=false, b4:B=false,

b5:B=false, b6:B=false, b7:B=false).νY.

(

((b1 ∧ b2 ∧ b3)

∨ b4
∨ ((b5 ∨ b6) ∧ b7)) ∨
([setCommissioningState(id,Ready)]X(true, b2, b3, b4, b5, b6, b7)

∧ [storeActionType(id,NoAction)]X(b1, true, b3, b4, b5, b6, b7)

∧ [infoOlc(ieee, short, pan,Comm State Commissioned)]X(b1, b2, true, b4, b5, b6, b7)

∧ [alreadyCommissioned(ieee)]X(b1, b2, b3, true, b5, b6, b7)

∧ [requestDecryptFailed]X(b1, b2, b3, b4, true, b6, b7)

∧ [timeout]X(b1, b2, b3, b4, b5, true, b7)

∧ [commissionOlc(id, ieee, short, pan)]X(b1, b2, b3, b4, b5, b6, true)

∧ [¬setCommissioningState(id,Ready)

∩ ¬storeActionType(id,NoAction)

∩ ¬infoOlc(ieee, short, pan,Comm State Commissioned)



5.3 Analysis 47

∩ ¬alreadyCommissioned(ieee)

∩ ¬requestDecryptFailed

∩ ¬timeout

∩ ¬commissionOlc(id, ieee, short, pan)

∩ ¬triggerCommissioning(id, ieee, short, pan)

∩ ¬triggerDecommissioning(ieee, short, pan)

∩ ¬queue empty]X(b1, b2, b3, b4, b5, b6, b7)

∧ [queue empty]Y

∧<¬queue empty>true

)

)

Table 28: Boolean variables record observed actions of R04

Variable Action

b1 setCommissioningState(id,Ready)
b2 storeActionType(id,NoAction)
b3 infoOlc(ieee, short, pan,Comm State Commissioned)
b4 alreadyCommissioned(ieee)
b5 requestDecryptFailed
b6 timeout
b7 commissionOlc(id, ieee, short, pan)

Requirement R04 does hold on the model.

R05 An OLC with a pending decommissioning action should eventually be decommissioned.

(1) Each OLC record DBr in the database where DBr.ActionType is equal to ActionDe-
commissioning must eventually be removed from the database and the OLC variables
must be equal to:

OLC.CommState = Comm State Decommissioned

OLC.ShortAddress = ShortNull

OLC.PanID = PanNull

Unless the OLC is commissioned with an OLC.ShortAddress or OLC.PanID different
from the database record DBr.ShortAddress and DBr.PanID.

(2) When the CommissioningStore is triggered to decommission an OLC indicated by
action triggerDecommissioning(ieee, short, pan), and the decommissioning is not can-
celed by triggerCommissioning(id, ieee, short, pan) before decommissioning is started,
indicated by action decommissionOlc(ieee,short,pan). Then, if the OLC is commis-
sioned with ShortAddr = short ∧ PanId = pan or the OLC is not commissioned, re-
movedOlcsFromDB(ieees) and infoOlc(ieee,ShortNull,PanNull,Comm State Uncom-
missioned) should eventually follow, in any order. If the OLC is commissioned with
ShortAddr 6= short ∨ PanId 6= pan, then action infoOlc(ieee,s,p,Comm State Com-
missioned) should eventually follow, where s 6= short and p 6= pan. Infinitely many



5.3 Analysis 48

queue empty actions are allowed to happen in between. The variables b1 to b5 record
whether a particular action has taken place, see table 29.

(3) [true?]

∀ieee:IeeeAddr, short:ShortAddr, pan:PanId.

[triggerDecommissioning(ieee, short, pan).

¬∃id:ID .triggerCommissioning(id, ieee, short, pan)?

decommissionOlc(ieee, short, pan)]

µX(b1:B = false, b2:B = false, b3:B = false, b4:B = false, b5:B = false).νY.

(

((b1 ∧ b2)

∨ b3
∨ (b4 ∧ b5)) ∨
([∃ieees:List(IeeeAddr).(removedOlcsFromDB(ieees) ∧ ieee ∈ ieees)]X(true, b2, b3, b4, b5)

∧ [infoOlc(ieee,ShortNull,PanNull,Comm State Uncommissioned)]X(b1, true, b3, b4, b5)

∧ [∃s:ShortAddr, p:PanId.(short 6= s ∨ pan 6= p)

∧ infoOlc(ieee, s, p,Comm State Commissioned)]X(b1, b2, true, b4, b5)

∧ [timeout]X(b1, b2, b3, true, b5)

∧ [decommissionOlc(ieee, short, pan)]X(b1, b2, b3, b4, true)

∧ [¬(∃ieees:List(IeeeAddr).removedOlcsFromDB(ieees) ∧ ieee ∈ ieees)
∩ ¬infoOlc(ieee,ShortNull,PanNull,Comm State Uncommissioned)

∩ ¬(∃s:ShortAddr, p:PanId.(short 6= s ∨ pan 6= p)

∧ infoOlc(ieee, s, p,Comm State Commissioned))

∩ ¬timeout

∩ ¬decommissionOlc(ieee, short, pan)

∩ ¬triggerDecommissioning(ieee, short, pan)

∩ ¬∃id:ID .triggerCommissioning(id, ieee, short, pan)

∩ ¬(queue empty]X(b1, b2, b3, b4, b5)

∧ [queue empty]Y

∧<¬queue empty>true

)

)

Table 29: Boolean variables record observed actions of R05

Variable Action

b1 removedOlcsFromDB(ieees) ∧ ieee ∈ ieees
b2 infoOlc(ieee,ShortNull,PanNull,Comm State Uncommissioned)
b3 infoOlc(ieee, s, p,Comm State Commissioned) ∧ (short 6= s ∨ pan 6= p)
b4 timeout
b5 decommissionOlc(ieee, short1, pan1)

Requirement R05 does not hold on the model. Table 30 shows the trace which invalidates
the formula, where the last action can be done infinitely (indicated by ?). In this trace a
communication timeout occurred, causing the OLC not to be decommissioned and the thread
message queue is empty and thus decommissioning of the OLC is not retried. Retry of de-
commissioning will be done only after an external interface of the commissioning component



6 SYSTEM AND TOOLKIT 49

schedules a new thread message.
Solution: Reschedule ThreadMsg Msg Continue Decommissioning when decommissioning
failed, so that decommissioning will be retried.

Table 30: Trace not complying to R05

Action

infoOlc(Ieee1, Short1, Pan1, Comm State Commissioned)
scheduleCommissioningMsg(Msg ScanAgain)
getOlcWithPendingAction
foundOlcWithPendingAction(OLC1 )
decommissionOlc(Ieee1, Short1, Pan1 )
infoOlc(Ieee1, Short1, Pan1, Comm State Commissioned)
setCommissioningState(OLC1, Decommissioning)
scheduleCommissioningMsg(Msg ScanAgain)
getOlcWithPendingAction
noOlcWithPendingAction
scheduleCommissioningMsg(Msg Start SWU )
scheduleCommissioningMsg(Msg Continue Decommissioning(OLC1))
infoOlc(Ieee1, Short1, Pan1, Comm State Commissioned)
timeout
infoOlc(Ieee1, Short1, Pan1, Comm State Commissioned)
queue empty?

The requirements have been verified on a model with a single OLC and where the Commis-
sionStore is only allowed to do two triggerCommissioning/triggerDecommissioning actions.
The CommissionStore can set all possible combinations of the variables ActionType and
CommissioningState in the OLC database record.
Verification of the requirements is done using the system and toolkit as described in chapter 6.

6 System and Toolkit

The system and toolkit used is described below:

System:
CPU : 56x Intel(R) Xeon(R) CPU E5520 2.27GHz
RAM : 935GB RAM (aggregated)
Operating System : Fedora release 12 (Constantine)
Linux kernel : Linux version 2.6.27.44-6.vSMP

Toolkit:
mCRL2 toolset : 201310.0.12197M (Release)



7 CONCLUSION 50

7 Conclusion

In this report the implementation, modeling and analysis of two interacting SC and OLC com-
ponents have been discussed. The SWU components, where the SC is in charge of upgrading
the software of the OLCs which are part of its segment. And the Commissioning components,
where the SC needs to contact and configure an uncommissioned OLC that needs to become
part of the network segment. The C implementation of the components have been studied and
abstract models have been created of that implementation. With these models, the questions
posed in the introduction have been answered.

During the analysis of the SWU models it has been verified that when the communication
is reliable then all OLCs will always be successfully upgraded. In case communication is
unreliable, then situations can occur in which a single dropped message can cause the whole
segment of OLCs fail to be upgraded. Also situations have been found in which the SC causes
a great deal of unnecessary traffic to be generated. For instance, there exists a situation where
the SC receives no response from any OLC during the initialisation phase and still continues
the SWU process, sending all 1500 SWU packages into the network. This is interesting be-
cause the SWU process takes a long time, so reducing the amount of messages generated is
an improvement for the system.

During the analysis of the Commissioning models it has been discovered that a starvation
situation can occur, where continuously the same (failing) OLC is being served causing other
OLCs not to be (de)commissioned. Also a situation has been found in which an OLC that
fails to decommission is not automatically retried for decommissioning. Further analysis re-
vealed that the cause of these problems and their solutions appeared to be straightforward.

Although the process creating abstract models out of existing software systems is a slow and
tedious process, it does provide a better understanding of the system and with it we have been
successful in gaining better insights and finding possible improvements in the implemented
software components which were not discovered using conventional testing methods. When
formal methods are used in the design phase of the software development instead, then formal
techniques could deliver higher quality code, reduction in number of errors and an increase
in development productivity [2].

References

[1] Starsense. (n.d.). Philips Lighting. Retrieved June 16, 2014, from http://www.lighting.
philips.com/main/products/controls/outdoor/starsense/

[2] Osaiweran, A.A.H., Groote, J.F., Schuts, M.T.W., Hooman, J.J.M. & Rijnsoever, B.J. van
(2012). Evaluating the effect of formal techniques in industry. (External Report, Computer
Science Report, No. 12-13). Eindhoven: Technische Universiteit Eindhoven, 21 pp.

[3] Feo-Arenis, S., Westphal, B., Dietsch, D., Muiz, M., Andisha, S. The Wireless Fire Alarm
System: Ensuring Conformance to Industrial Standards through Formal Verification. FM
2014.



REFERENCES 51

[4] Sijtema, Marten and Stoelinga, Marille and Belinfante, Axel and Marinelli, Lawrence
(2011) Experiences with formal engineering: model-based specification, implementation
and testing of a software bus at Neopost. In: 16th International Workshop on Formal
Methods for Industrial Critical Systems, FMICS 2011, 29-30 August 2011, Trento, Italy
(pp. pp. 117-133).

[5] G.J. Holzmann (2014). Mars Code. Communications of the ACM, Vol. 57, No. 2, Feb.
2014, pp. 64-73.

[6] L. Shan, Y. Wang, N. Fu, X. Zhou, L. Zhao, L. Wan, L. Qiao, J. Chen (2014). Formal
Verification of Lunar Rover Control Software Using UPPAAL. FM 2014, pages 718-732.

[7] H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou, Y. Chen (2014). Formal Verification of a
Descent Guidance Control Program of a Lunar Lander. FM 2014, pages 733-748.

[8] C. DaSilva, B. Dehbonei, F. Mejia. Formal specification in the development of indus-
trial applications: subway speed control system. In: Proceedings 5th IFIP Conference
on Formal Description Techniques for Distributed Systems and Communication Protocols
(FORTE92), Perros-Guirec, North-Holland, pp. 199213 (1993)

[9] P. Behm, P. Benoit, A. Faivre, J.-M. Meynadier (1999). METEOR: a successful application
of B in a large project. FM 1999. LNCS, vol. 1708, pp. 369387. Springer, Heidelberg (1999)

[10] F. Badeau. Using B as a high level programming language in an industrial project: Roissy
val. In Proceedings of ZB05, 2005

[11] J. R. Abrial. Formal methods in industry: achievements, problems, future. ICSE ’06:
Proceeding of the 28th international conference on Software engineering, page 761-768.
New York, NY, USA, ACM Press, (2006)

[12] Wijst, Berry (2011). Starsense Wireless. Internal document. Starsense Wireless For Ex-
ternal.PPT

[13] J.F. Groote, A. Mathijssen, M.A. Reniers, Y.S. Usenko, M.J. van Weerdenburg. Analysis
of distributed systems with mCRL2. In M. Alexander, W. Gardner (Eds.), Process Algebra
for Parallel and Distributed Processing, pages 99-128. Chapman and Hall, 2008.

[14] S. Cranen, J.F. Groote, J.J.A. Keiren, F.P.M. Stappers, E.P. de Vink, J. W. Wesselink,
T.A.C. Willemse. An Overview of the mCRL2 Toolset and Its Recent Advances. TACAS
2013, pages 199-213.

[15] J.F. Groote, M.R. Mousavi. Modeling and Analysis of Communicating Systems. MIT-
press. 2014.

[16] mCRL2 Homepage. Retrieved June 26, 2014, from http://www.mcrl2.org/



8 Appendix

52



A Verify process flowchart

PHILIPS LIGHTING  Redesign of OLC Firmware update process  

SS RF Pro CONFIDENTIAL version 0.01 status draft 

 Page 14/24 

2.4 Verify Process  

 

53



B Software Upgrade process mCRL2 specification

Filename: A SWUpgrade.mcrl2

Description: This file contains the mCRL2 specification of the Software Upgrade
components, both the Segment Controller Software Upgrade Component and the Outdoor
Luminair Controller. These models are combined by a network model, which can lose
messages.

54



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Model of the Software Upgrade Components                                                                  %

% Model includes comments taken from the C implemen tation                                                   %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The Distribution Info struct DstrInfo has 2 eleme nts, getChunkId and chunks

% getChunkId is pointing to the last checked chunk that is missing.

% The chunks  element is a list of ChunkInfo struct s

% a ChunkInfo consists of a data element and a bool ean missing, indicating if it needs to be distribut ed.

% Edit elements of DstrInfo struct

map getNextMissingChunkId : DstrInfo -> Nat;

getNextMissingChunk : DstrInfo -> Data ;

curChunkDistributed : DstrInfo -> DstrInfo ;

setMissingChunks : List(Nat) # DstrInfo -> DstrInfo ;

setMissingChunk : Nat # DstrInfo -> DstrInfo ;

setAllChunksMissing : DstrInfo -> DstrInfo ;

setAllChunksMissing' : Nat # DstrInfo -> DstrInfo ;

editDstrInfo_getChunkId : Nat # DstrInfo -> DstrInfo ;

var di :DstrInfo ,i :Nat,l :List(Nat);

eqn % Get check all chunks in the list until there is o ne missing, return that id

(getChunkId (di ) >= #chunks (di )) -> getNextMissingChunkId (di ) = #chunks (di );

! (getChunkId (di ) >= #chunks (di )) -> getNextMissingChunkId (di )

= if(missing (chunks (di ).getChunkId (di )), getChunkId (di ),

getNextMissingChunkId (Dstr_Info (getChunkId (di )+1, chunks (di ))));

% Get check all chunks in the list until there is o ne missing, return the data of that chunk

(getChunkId (di ) >= #chunks (di )) -> getNextMissingChunk (di ) = D1;

! (getChunkId (di ) >= #chunks (di )) -> getNextMissingChunk (di )

= if(missing (chunks (di ).getChunkId (di )),

data (chunks (di ).getChunkId (di )),

getNextMissingChunk (Dstr_Info (getChunkId (di )+1, chunks (di ))));

% Flag the current chunk as NON missing (CHUNK_OK =  false)

curChunkDistributed (di ) = Dstr_Info (getChunkId (di )+1,setMissingInList (false, getChunkId (di ),chunks (di )));

% Set chunk with id = i as missing (CHUNK_MISSING =  true)

(l ==[] ) -> setMissingChunks (l , di ) = di ;

! (l ==[] ) -> setMissingChunks (l , di ) = setMissingChunks (tail (l ), setMissingChunk (head (l ), di ));

setMissingChunk (i , di ) = Dstr_Info (getChunkId (di ), setMissingInList (true, i , chunks (di )));

% All chunks missing (CHUNK_MISSING = true)

setAllChunksMissing (di ) = setAllChunksMissing' (0,di );

(i >= #chunks (di )) -> setAllChunksMissing' (i ,di ) = di ;

! (i >= #chunks (di )) -> setAllChunksMissing' (i ,di )

= setAllChunksMissing' (i +1,Dstr_Info (getChunkId (di ),

setMissingInList (true, i ,chunks (di ))));

% Edit the getChunkId element

editDstrInfo_getChunkId (i ,di ) = Dstr_Info (i , chunks (di ));

% Flag missing in ChunkInfo list

map setMissingInList : Bool#Nat#List(ChunkInfo ) -> List(ChunkInfo );

var lci :List(ChunkInfo ),ci :ChunkInfo ,b:Bool,i :Nat;

eqn i == 0 -> setMissingInList (b,i ,lci ) = Chunk_Info (data (head (lci )),b) |> tail (lci );

i > 0 -> setMissingInList (b,i ,ci |>lci ) = ci |> setMissingInList (b,Int2Nat (i -1),lci );

% Edit elements of VfyInfo struct

map editVfyInfo_timesVfyBcast : Nat # VfyInfo -> VfyInfo ;

editVfyInfo_olcIndex : Nat # VfyInfo -> VfyInfo ;

editVfyInfo_noResponse : Nat # VfyInfo -> VfyInfo ;

editVfyInfo_iterationUcast : Nat # VfyInfo -> VfyInfo ;

var vi :VfyInfo , i :Nat;

eqn editVfyInfo_timesVfyBcast (i ,vi ) = Vfy_Info (i , iterationUcast (vi ), noResponse (vi ), olcIndex (vi ));

editVfyInfo_iterationUcast (i ,vi ) = Vfy_Info (timesVfyBcast (vi ), i , noResponse (vi ), olcIndex (vi ));

editVfyInfo_noResponse (i ,vi ) = Vfy_Info (timesVfyBcast (vi ), iterationUcast (vi ), i , olcIndex (vi ));

editVfyInfo_olcIndex (i ,vi ) = Vfy_Info (timesVfyBcast (vi ), iterationUcast (vi ), noResponse (vi ), i );

% Edit elements of ReqInfo struct

map editReqInfo_rebootDelay : BcastRebootDelay # ReqInfo -> ReqInfo ;



editReqInfo_bulkOutTimeOut : Bool # ReqInfo -> ReqInfo ;

editReqInfo_nrchunks : Nat # ReqInfo -> ReqInfo ;

editReqInfo_nrchunks' : Nat # Nat # ReqInfo -> ReqInfo ;

editReqInfo_UpdateOLC_RSI_Status : Status # ID # ReqInfo -> ReqInfo ;

editReqInfo_UpdateOLC_LOO_Status : Status # ID # ReqInfo -> ReqInfo ;

editReqInfo_UpdateOLCreceived : Bool # ID # ReqInfo -> ReqInfo ;

editReqInfo_UpdateOLCnrchunks : Nat # ID # ReqInfo -> ReqInfo ;

allNewStatus : ReqInfo -> Bool; % listOfOlcs[j].status 

S_OlcAppStatus_OkExists : ReqInfo -> Bool; % listOfOlcs[j].status

getIndexOfOLC : ID # ReqInfo -> Nat;

resetReceivedFlag : Bool # ReqInfo -> ReqInfo ;

var brd :BcastRebootDelay , ri :ReqInfo , b:Bool, c,i :Nat, s:Status ,id :ID ; % listOfOlcs[j].status 

eqn editReqInfo_rebootDelay (brd ,ri ) = Req_Info (brd , forceUpgrade (ri ), oldVer (ri ), newVer (ri ),

isAutomatic (ri ), OLCs(ri ), bulkOutTimeOut (ri ),

bulkOutResponsedNumOLC (ri ));

editReqInfo_bulkOutTimeOut (b,ri ) = Req_Info (rebootDelay (ri ), forceUpgrade (ri ), oldVer (ri ),

newVer (ri ), isAutomatic (ri ), OLCs(ri ), b,

bulkOutResponsedNumOLC (ri ));

% This functions sets in the ReqInfo struct for eve ry OLC in the OLCs list the number of chunks

editReqInfo_nrchunks (c,ri ) = editReqInfo_nrchunks' (c,0,ri );

(i >= #OLCs(ri )) -> editReqInfo_nrchunks' (c,i ,ri ) = ri ;

! (i >= #OLCs(ri )) -> editReqInfo_nrchunks' (c,i ,ri )

= editReqInfo_nrchunks' (c,i +1,Req_Info (rebootDelay (ri ), forceUpgrade (ri ),

oldVer (ri ), newVer (ri ), isAutomatic (ri ),

insert_nrchunks (i ,c,OLCs(ri )), bulkOutTimeOut (ri ),

bulkOutResponsedNumOLC (ri )));

editReqInfo_UpdateOLC_RSI_Status (s,id ,ri )

= Req_Info (rebootDelay (ri ), forceUpgrade (ri ), oldVer (ri ), newVer (ri ),

isAutomatic (ri ), updateOLC_RSI_Status (s,id ,OLCs(ri )), bulkOutTimeOut (ri ),

bulkOutResponsedNumOLC (ri ));

editReqInfo_UpdateOLC_LOO_Status (s,id ,ri )

= Req_Info (rebootDelay (ri ), forceUpgrade (ri ), oldVer (ri ), newVer (ri ),

isAutomatic (ri ), updateOLC_LOO_Status (s,id ,OLCs(ri )), bulkOutTimeOut (ri ),

bulkOutResponsedNumOLC (ri ));

editReqInfo_UpdateOLCreceived (b,id ,ri )

= Req_Info (rebootDelay (ri ), forceUpgrade (ri ), oldVer (ri ), newVer (ri ),

isAutomatic (ri ), updateOLCreceived (b,id ,OLCs(ri )), bulkOutTimeOut (ri ),

bulkOutResponsedNumOLC (ri ));

editReqInfo_UpdateOLCnrchunks (c,id ,ri )

= Req_Info (rebootDelay (ri ), forceUpgrade (ri ), oldVer (ri ), newVer (ri ),

isAutomatic (ri ), updateOLCnrchunks (c,id ,OLCs(ri )), bulkOutTimeOut (ri ),

bulkOutResponsedNumOLC (ri ));

% Is there an OLC that responded, and has status S_ OlcAppStatus_Ok? Then allNewStatus == false

allNewStatus (ri ) = allNewStatusOI (OLCs(ri ),true);

S_OlcAppStatus_OkExists (ri ) = S_OlcAppStatus_OkExistsOI (OLCs(ri ),false);

getIndexOfOLC (id ,ri ) = getIndexOfOLCOI (id ,OLCs(ri ),0);

resetReceivedFlag (b,ri ) = Req_Info (rebootDelay (ri ), forceUpgrade (ri ), oldVer (ri ), newVer (ri ),

isAutomatic (ri ), resetReceivedFlagOI (#OLCs(ri ),b,OLCs(ri )), bulkOutTimeOut (ri ),

bulkOutResponsedNumOLC (ri ));

% set all nrchunks (missing) in OlcInfo list

map insert_nrchunks : Nat#Nat#List(OlcInfo ) -> List(OlcInfo );

updateOLC_LOO_Status : Status #ID #List(OlcInfo ) -> List(OlcInfo );

updateOLC_RSI_Status : Status #ID #List(OlcInfo ) -> List(OlcInfo );

updateOLCreceived : Bool#ID #List(OlcInfo ) -> List(OlcInfo );

updateOLCnrchunks : Nat#ID #List(OlcInfo ) -> List(OlcInfo );

allNewStatusOI : List(OlcInfo ) # Bool -> Bool;

S_OlcAppStatus_OkExistsOI : List(OlcInfo ) # Bool -> Bool;

getIndexOfOLCOI : ID # List(OlcInfo ) # Nat -> Nat;

resetReceivedFlagOI : Nat # Bool # List(OlcInfo ) -> List(OlcInfo );

var loi :List(OlcInfo ),oi :OlcInfo ,i :Nat,nrchunks :Nat,s:Status ,id :ID , received :Bool, b:Bool;

eqn (i ==0)-> insert_nrchunks (i ,nrchunks ,loi )

= Olc_Info (id (head (loi )), LOOstatus (head (loi )), received (head (loi )), nrchunks ,

RSIstatus (head (loi ))) |> tail (loi );

(i >0) -> insert_nrchunks (i ,nrchunks ,oi |>loi ) = oi |> insert_nrchunks (Int2Nat (i -1),nrchunks ,loi );



updateOLC_LOO_Status (s,id ,oi |>loi )

= if(id (oi )==id , Olc_Info (id (oi ), s, received (oi ), nrchunks (oi ), RSIstatus (oi )) |> loi ,

oi |>updateOLC_LOO_Status (s,id ,loi ));

updateOLC_RSI_Status (s,id ,oi |>loi )

= if(id (oi )==id , Olc_Info (id (oi ), LOOstatus (oi ), received (oi ), nrchunks (oi ), s) |> loi ,

oi |>updateOLC_RSI_Status (s,id ,loi ));

updateOLCreceived (received ,id ,oi |>loi )

= if(id (oi )==id , Olc_Info (id (oi ), LOOstatus (oi ), received , nrchunks (oi ), RSIstatus (oi )) |> loi ,

oi |>updateOLCreceived (received ,id ,loi ));

updateOLCnrchunks (nrchunks ,id ,oi |>loi )

= if(id (oi )==id , Olc_Info (id (oi ), LOOstatus (oi ), received (oi ), nrchunks , RSIstatus (oi )) |> loi ,

oi |>updateOLCnrchunks (nrchunks ,id ,loi ));

(loi ==[] )-> allNewStatusOI (loi ,b) = b;

! (loi ==[] )-> allNewStatusOI (loi ,b) = if((received (head (loi )) && LOOstatus (head (loi ))==S_OlcAppStatus_Ok ),

false, allNewStatusOI (tail (loi ),b));

(loi ==[] )-> S_OlcAppStatus_OkExistsOI (loi ,b) = b;

! (loi ==[] )-> S_OlcAppStatus_OkExistsOI (loi ,b) = if((LOOstatus (head (loi ))==S_OlcAppStatus_Ok ),

true, S_OlcAppStatus_OkExistsOI (tail (loi ),b));

(id (loi .i )==id ) -> getIndexOfOLCOI (id ,loi ,i ) = i ;

! (id (loi .i )==id ) -> getIndexOfOLCOI (id ,loi ,i ) = getIndexOfOLCOI (id ,loi ,i +1);

(i ==0)-> resetReceivedFlagOI (i ,b,loi ) = [] ;

(i >0)-> resetReceivedFlagOI (i ,b,oi |>loi ) = Olc_Info (id (oi ), LOOstatus (oi ), b, nrchunks (oi ),

RSIstatus (oi )) |> resetReceivedFlagOI (Int2Nat (i -1),b,loi );

% Get the oposite image type

map otherImg : ImgType -> ImgType ;

var i :ImgType ;

eqn otherImg (i ) = if(IsNORMAL_IMAGE(i ), FALLBACK_IMAGE, NORMAL_IMAGE);

sort

State =

struct SWU_IDLE ?IsSWU_IDLE

| SWU_PREPARE ?IsSWU_PREPARE

| SWU_BCAST_REBOOT_WITHOUT_ACK ?IsSWU_BCAST_REBOOT_WITHOUT_ACK

| SWU_BCAST_REBOOT_WITHOUT_ACK_VERIFICATION_DONE?IsSWU_BCAST_REBOOT_WITHOUT_ACK_VERIFICATION_DONE

| SWU_UNICAST_REBOOT ?IsSWU_UNICAST_REBOOT

| SWU_UNICAST_REBOOT_VERIFICATION_DONE ?IsSWU_UNICAST_REBOOT_VERIFICATION_DONE

| SWU_BCAST_INIT_WITH_ACK ?IsSWU_BCAST_INIT_WITH_ACK

| SWU_WAITING_FOR_INIT_ACK ?IsSWU_WAITING_FOR_INIT_ACK

| SWU_BCAST_INIT_WITHOUT_ACK ?IsSWU_BCAST_INIT_WITHOUT_ACK

| SWU_UNICAST_INIT ?IsSWU_UNICAST_INIT

| SWU_DISTRIBUTE ?IsSWU_DISTRIBUTE

| SWU_VERIFY ?IsSWU_VERIFY

| SWU_WAIT_REBOOT ?IsSWU_WAIT_REBOOT;

VerifyState = struct VERIFY_BROADCAST ?IsVERIFY_BROADCAST

| VERIFY_WAITFORBULKOUT ?IsVERIFY_WAITFORBULKOUT

| VERIFY_UNICAST ?IsVERIFY_UNICAST ;

% Different types of messages

MsgType = struct Msg_REBOOT(forceImg :ImgType , code12NC:Hw12Nc)?IsMsg_REBOOT

| Msg_INIT (newVers :Vers , code12NC:Hw12Nc, startAddr :ImgType )?IsMsg_INIT

| Msg_DATA(addrFlash :Nat, data :Data )?IsMsg_DATA

| Msg_VFY?IsMsg_VFY

| Msg_VFY_RESP(status :Status , missingChunks :List(Nat))?IsMsg_VFY_RESP

| Msg_GEN_RESP(status :Status , cmd:Command)?IsMsg_GEN_RESP; %general response

Command = struct REBOOT?IsREBOOT | INIT?IsINIT | DATA?IsDATA | VFY?IsVFY ;

% Broadcast and Unicast messages

Msg = struct MSG(des :MsgDes, msg:MsgType)?IsMSG

| MSG_UcastResp(src :ID , msg:MsgType)?IsMSG_UcastResp

| MSG_BcastResp(src :ID , msg:MsgType)?IsMSG_BcastResp ;

MsgDes = struct Ucast (id : ID )?IsUcast



| BcastWithAck ?IsBcastWithAck

| BcastWithoutAck ?IsBcastWithoutAck ;

ID = struct OLC1 | OLC2 | OLC3;

% Images, a node has 2 images, a NORMAL and FALLBAC K

ImgType = struct NORMAL_IMAGE?IsNORMAL_IMAGE

| FALLBACK_IMAGE?IsFALLBACK_IMAGE;

Hw12Nc = struct hw12nc1 ;

Vers = struct V1 | V2 | V3;

Data = struct D1; % | D2;

Status = struct S_OlcAppStatus_Ok

| S_OlcAppStatus_InvalidAddress

| S_OlcAppStatus_12NcMismatch

| S_OlcAppStatus_SessionClosed

| ERR_MSG_TIMEOUT

| S_OlcAppStatus_NewVersionMatch ;

ChunkInfo = struct Chunk_Info (data :Data , missing :Bool);

% Note, nrchunks is added in here from the implemen tation struct listOfOlcs[]

OlcInfo = struct Olc_Info (id :ID , LOOstatus :Status , received :Bool, nrchunks :Nat, RSIstatus :Status );

% requestedSWUInfo struct

ReqInfo = struct Req_Info_Null

| Req_Info (rebootDelay :BcastRebootDelay , forceUpgrade :ImgType , oldVer :Vers ,

newVer :Vers , isAutomatic :Bool, OLCs:List(OlcInfo ), bulkOutTimeOut :Bool,

bulkOutResponsedNumOLC :Nat);

% VerifyInfo struct

VfyInfo = struct Vfy_Info (timesVfyBcast :Nat, iterationUcast :Nat, noResponse :Nat, olcIndex :Nat);

% Distribute struct, actual chunks are also added t o this struct. If a chunk is missing is added to th is 

% struct. RequestedSWUInfo.DistributeInfo.totalChun ks same as #chunks

DstrInfo = struct Dstr_Info (getChunkId :Nat, chunks :List(ChunkInfo ));

% VerifyResponse, missing chunks is included in Chu nkInfo, in DstrInfo struct

VfyRsp = struct Vfy_Rsp (nrofchunkids :Nat);

% Update Image struct, this is the image we update to

UpdImg = struct Upd_Img_Null | Upd_Img(imgType :ImgType , hw12nc:Hw12Nc);

% The two reboot delays, first=5min second=1min, th en responding OLCs should reboot around same time

BcastRebootDelay = struct Delay_First | Delay_Second ;

act

receiveResp : Msg;

st :State ;

stv : VerifyState ;

handlePrepareState , handleBcastRebootwithoutAck , handleUnicastReboot , handleBcastInitwithAck ;

handleBcastInitwithoutAck , handleUnicastInit , distributeChunk , handleVerifySubStateMachine ;

reportStatus : List(OlcInfo );

waitingForInitAck , verifyFinished , numOlcIsSmall , numOlcIsLarge , chunksMissing ;

sendingUcastDone , stopBulkOutForInit , chunksDistributed ;

ucastRebootVfyDone , stopBulkOutForVfy , nowVerifyUcast , againVerifyBcast , nextOLC ;

verifyOlcOK : ID # Bool;

timeout , timeout_sc , olcReceivedAndStatusOKexists , olcReceivedAndStatusOKdoesNotExists ,olcStatusOKexists ,

olcStatusOKdoesNotExists , finished , upgradeNotOK , case4 , startThread , idle , startSWU ;

scUpgradeOK ,upgradeOK : ID # Bool;

proc

% Init, create SWUpgrade thread

A_SWUpgrade_Init

= startThread .

P(SWU_IDLE,VERIFY_BROADCAST,Req_Info_Null ,Upd_Img_Null ,Vfy_Info (0,0,0,0),0,Dstr_Info (0,[] ),Vfy_Rsp (0));

A_SWUpgrade_StartSoftwareUpgrade

= startSWU .

P(SWU_PREPARE,

VERIFY_BROADCAST,

Req_Info (Delay_First ,NORMAL_IMAGE, V1, V2, true,



%NOTE: LOO status and RSI status for an OLC have to  be the same, 

% this is done in the prepare state in the implemen tation

[Olc_Info (OLC1,S_OlcAppStatus_Ok ,false,0,S_OlcAppStatus_Ok ),

Olc_Info (OLC2,S_OlcAppStatus_Ok ,false,0,S_OlcAppStatus_Ok )] ,false,0),

Upd_Img(NORMAL_IMAGE, hw12nc1 ),

Vfy_Info (0,0,0,0),

0,

% This contains the update (chunks) and initially m issing

Dstr_Info (0,[Chunk_Info (D1,true),Chunk_Info (D1,true)] ),

Vfy_Rsp (0)

)

;

P(s:State , vs :VerifyState , info :ReqInfo , upd_img :UpdImg, vfy_info :VfyInfo ,

ucastIterator :Nat, dstr :DstrInfo , vfy_rsp :VfyRsp )

=

( st (s). P()

+ IsSWU_IDLE(s)

-> ( idle . P()

+ A_SWUpgrade_StartSoftwareUpgrade

)

% 1. Prepare

+ IsSWU_PREPARE(s)

-> handlePrepareState .

% Initially set to true all chunks are missing.

% Init all OLCs with all chunks missing: editReqInf o_nrchunks

( numOlcIsLarge .

P(s=SWU_BCAST_REBOOT_WITHOUT_ACK,vs =VERIFY_BROADCAST,info =editReqInfo_nrchunks (#chunks (dstr ),info ),

vfy_info =editVfyInfo_timesVfyBcast (0,vfy_info ), dstr =setAllChunksMissing (dstr ),

vfy_rsp =Vfy_Rsp (#chunks (dstr )))

+ numOlcIsSmall .

P(s=SWU_UNICAST_REBOOT,vs =VERIFY_BROADCAST,

info =editReqInfo_rebootDelay (Delay_First ,editReqInfo_nrchunks (#chunks (dstr ),info )),

vfy_info =editVfyInfo_timesVfyBcast (0,vfy_info ), dstr =setAllChunksMissing (dstr ),

vfy_rsp =Vfy_Rsp (#chunks (dstr )))

)

% 2. reboot OLCs BROADCAST 

+ IsSWU_BCAST_REBOOT_WITHOUT_ACK(s)

-> % Get reboot parameters

% Broadcast reboot

handleBcastRebootwithoutAck .

%requestedSWUInfo.bulkOutTimeOut = false;

ScSend(MSG(BcastWithoutAck ,Msg_REBOOT(otherImg (imgType (upd_img )), hw12nc(upd_img )))).

( (rebootDelay (info ) == Delay_First )

-> P(info =editReqInfo_rebootDelay (Delay_Second ,editReqInfo_bulkOutTimeOut (false,info )))

<> P(s=SWU_BCAST_INIT_WITH_ACK, info =editReqInfo_bulkOutTimeOut (false,info ))

)

% TimerThread Wait %d sec for all reboot

% 2. reboot OLCs UNICAST

+ IsSWU_UNICAST_REBOOT(s)

->(% send to all OLCs, when done, go to next state

(ucastIterator ==#(OLCs(info )))

-> sendingUcastDone .

% TimerThread Wait %d sec for unicast reboots + NBt able fill

P(s=SWU_UNICAST_INIT,ucastIterator =0, info =editReqInfo_bulkOutTimeOut (false,info ))

<> handleUnicastReboot .

ScSend(MSG(Ucast (id (OLCs(info ).ucastIterator )),

Msg_REBOOT(otherImg (imgType (upd_img )), hw12nc(upd_img )))).

( timeout_sc .

P(ucastIterator =ucastIterator +1,

info =editReqInfo_UpdateOLC_RSI_Status (ERR_MSG_TIMEOUT,id (OLCs(info ).ucastIterator ),info ))

+ % We are waiting for a general response from the OL C that we send the unicast message to

sum m:Msg. (IsMSG_UcastResp (m) && src (m)==id (OLCs(info ).ucastIterator )

&& IsMsg_GEN_RESP(msg(m)) && IsREBOOT(cmd(msg(m))))

-> receiveResp (m).

(status (msg(m)) ! = S_OlcAppStatus_Ok )



-> P(ucastIterator =ucastIterator +1,

info =editReqInfo_UpdateOLC_RSI_Status (status (msg(m)),id (OLCs(info ).ucastIterator ),

info ))

<> P(ucastIterator =ucastIterator +1)

)

)

% 3. init OLCs

+ IsSWU_BCAST_INIT_WITH_ACK(s)

-> handleBcastInitwithAck .

% start bulkout

% Get Init Parameters

ScSend(MSG(BcastWithAck ,Msg_INIT (newVer (info ), hw12nc(upd_img ), imgType (upd_img )))).

% An acknowlegde must be send back (and the respons e handled) done in WAITFORBULKOUT

% timeOutInfo.bulkOutTimeOut = TRUE;

% Start timer to set a max time to wait for callbac ks

% then wait for either:

% 1. callback from service layer on bcast ack

% 2. callback from timer thread indicating timeout

% wait for response (Timer thread) Wait %d sec for broadcast init acks

P(s=SWU_WAITING_FOR_INIT_ACK, info =editReqInfo_bulkOutTimeOut (true,resetReceivedFlag (false,info )))

% 3. wait for the response

+ IsSWU_WAITING_FOR_INIT_ACK(s)

% Start loop of unicast to un-ack'ed OLCs to init

% Determine callback of ack or timeout timer expire d and act on it)

->( waitingForInitAck .

% Stop the bulkout

(bulkOutTimeOut (info ))

-> stopBulkOutForInit .

% Bulkout is really stopped in callback func A_SWUp grade_OlcMsgCallBack

% Different process for the bulkout handling

WAITFORBULKOUT(s,vs ,editReqInfo_bulkOutTimeOut (false,info ),upd_img ,vfy_info ,ucastIterator ,dstr ,

vfy_rsp ,INIT,0)

<> ( %Not all OLCs responded

(#(OLCs(info )) ! = bulkOutResponsedNumOLC (info ))

-> ( % calculate number of failed OLCs, (NOTE: No depenc e on amount of OLCs)

numOlcIsLarge .

P(s=SWU_BCAST_INIT_WITHOUT_ACK)

+ numOlcIsSmall .

P(s=SWU_UNICAST_INIT)

)

<> ( % All the olcs that responded, if 

% requestedSWUInfo.DistributeInfo.getChunkId = 0;

% Real question is, is there an OLC that responded,  and has status S_OlcAppStatus_Ok

% otherwise there is no point in distributing packa ges, the OLC either has current 

% version or is in error state

(allNewStatus (info ) == false)

-> olcReceivedAndStatusOKexists .

P(s=SWU_DISTRIBUTE, dstr =editDstrInfo_getChunkId (0,dstr ))

<> % Of the ones that responded..

olcReceivedAndStatusOKdoesNotExists .

P(s=SWU_VERIFY)

)

)

)

% 3. init OLCs BROADCAST, Do once more broadcast IN IT, but without ack

+ IsSWU_BCAST_INIT_WITHOUT_ACK(s)

-> handleBcastInitwithoutAck .

% get init parameters and send broadcast

ScSend(MSG(BcastWithoutAck ,Msg_INIT (newVer (info ), hw12nc(upd_img ), imgType (upd_img )))).

% NO acknowlegde is expected to be send back

% requestedSWUInfo.DistributeInfo.getChunkId = 0;

% wait for response (timer thread)

P(s=SWU_DISTRIBUTE, dstr =editDstrInfo_getChunkId (0,dstr ))

% 3. init OLCs UNICAST

+ IsSWU_UNICAST_INIT (s)

-> (ucastIterator ==#(OLCs(info )))



-> ( % If OLC exists with an S_OlcAppStatus_OK (received =true is not checked here?)

(S_OlcAppStatus_OkExists (info ))

-> olcStatusOKexists .

P(s=SWU_DISTRIBUTE, ucastIterator =0, dstr =editDstrInfo_getChunkId (0,dstr ))

<> olcStatusOKdoesNotExists .

P(s=SWU_VERIFY, ucastIterator =0)

)

<> ( handleUnicastInit .

% Get init parameters

(received (OLCs(info ).ucastIterator ) == false)

-> ScSend(MSG(Ucast (id (OLCs(info ).ucastIterator )),Msg_INIT (newVer (info ), hw12nc(upd_img ),

imgType (upd_img )))).

% either a timeout comes, or a message arrives

( timeout_sc .

P(ucastIterator =ucastIterator +1,

info =editReqInfo_UpdateOLC_RSI_Status (ERR_MSG_TIMEOUT,id (OLCs(info ).ucastIterator ),

editReqInfo_UpdateOLC_LOO_Status (S_OlcAppStatus_SessionClosed ,

id (OLCs(info ).ucastIterator ),info )))

+ % We are waiting for a general response from the OL C that we send the unicast message to

% Here also the S_OlcAppStatus_NewVersionMatch resp onse is handled

(sum m:Msg. (IsMSG_UcastResp (m) && src (m)==id (OLCs(info ).ucastIterator )

&& IsMsg_GEN_RESP(msg(m)) && IsINIT (cmd(msg(m))))

-> receiveResp (m).

(status (msg(m)) ! = S_OlcAppStatus_Ok )

-> (status (msg(m)) == S_OlcAppStatus_NewVersionMatch )

% Received assigned TRUE and nrchunks assigned Zero  to avoid SWU verification

-> P(ucastIterator =ucastIterator +1,

info =editReqInfo_UpdateOLCreceived (true,id (OLCs(info ).ucastIterator ),

editReqInfo_UpdateOLCnrchunks (0,id (OLCs(info ).ucastIterator ),

editReqInfo_UpdateOLC_LOO_Status (status (msg(m)),

id (OLCs(info ).ucastIterator ),info ))))

% Else just update OLC status

<> P(ucastIterator =ucastIterator +1,

info =editReqInfo_UpdateOLC_RSI_Status (status (msg(m)),

id (OLCs(info ).ucastIterator ),info ))

<> P(ucastIterator =ucastIterator +1) )

)

<> P(ucastIterator =ucastIterator +1)

)

% 4. distribute image

+ IsSWU_DISTRIBUTE(s)

-> % Get the next missing chunk id from VerifyResponse .chunkids[]

% if we still have missing chunk ids

(getNextMissingChunkId (dstr ) < #(chunks (dstr )))

-> distributeChunk .

ScSend(MSG(BcastWithoutAck ,Msg_DATA(getNextMissingChunkId (dstr ),getNextMissingChunk (dstr )))).

% wait 3 seconds before distributing the next chunk  (timer thread)

P(dstr =curChunkDistributed (dstr ),info =editReqInfo_bulkOutTimeOut (false,info ))

<> chunksDistributed .

P(s=SWU_VERIFY,info =editReqInfo_bulkOutTimeOut (false,info ))

% 5. verify

% HandleVerifySubStateMachine

+ IsSWU_VERIFY(s)

-> handleVerifySubStateMachine .

VERIFY(s, vs , info , upd_img , vfy_info , ucastIterator , dstr , vfy_rsp , false)

% 6. Reboot to new image UNICAST

+ IsSWU_UNICAST_REBOOT_VERIFICATION_DONE(s)

-> ((ucastIterator ==#(OLCs(info )))

-> ucastRebootVfyDone .

% Timer thread Wait %d sec for unicast reboots + NB table fill

P(s=SWU_WAIT_REBOOT,ucastIterator =0,info =editReqInfo_bulkOutTimeOut (false,info ))

<> handleUnicastReboot .

% Get init parameters

ScSend(MSG(Ucast (id (OLCs(info ).ucastIterator )),Msg_REBOOT(imgType (upd_img ), hw12nc(upd_img )))).

% either a timeout comes, or a message arrives

( timeout_sc .

P(ucastIterator =ucastIterator +1,



info =editReqInfo_UpdateOLC_RSI_Status (ERR_MSG_TIMEOUT,id (OLCs(info ).ucastIterator ),info ))

+ % We are waiting for an general response from the O LC that we send the unicast message to

sum m:Msg. (IsMSG_UcastResp (m) && src (m)==id (OLCs(info ).ucastIterator )

&& IsMsg_GEN_RESP(msg(m)) && IsREBOOT(cmd(msg(m))))

-> receiveResp (m).

(status (msg(m)) ! = S_OlcAppStatus_Ok )

-> P(ucastIterator =ucastIterator +1,

info =editReqInfo_UpdateOLC_RSI_Status (status (msg(m)),id (OLCs(info ).ucastIterator ),

info ))

<> P(ucastIterator =ucastIterator +1)

)

)

% 6. Reboot to new image BROADCAST

+ IsSWU_BCAST_REBOOT_WITHOUT_ACK_VERIFICATION_DONE(s)

-> handleBcastRebootwithoutAck .

ScSend(MSG(BcastWithoutAck ,Msg_REBOOT(imgType (upd_img ), hw12nc(upd_img )))).

% requestedSWUInfo.bulkOutTimeOut = false;

( (rebootDelay (info ) == Delay_First )

-> % wait for reboot (Timer thread)

P(info =editReqInfo_rebootDelay (Delay_Second ,editReqInfo_bulkOutTimeOut (false,info )))

<> % wait for reboot (Timer thread)

P(s=SWU_WAIT_REBOOT,info =editReqInfo_bulkOutTimeOut (false,info ))

)

% 7. Wait for reboot to finish and report status

+ IsSWU_WAIT_REBOOT(s)

-> %Do info dist immediately to set the clock in the r ebooted OLC's

reportStatus (OLCs(info )).

finished .

sum b:Bool. scUpgradeOK (OLC1,b).

(b==false)

-> upgradeNotOK .

F

<> F

);

F = a. F;

% 5. verify

% HandleVerifySubStateMachine

VERIFY(s:State , vs :VerifyState , info :ReqInfo , upd_img :UpdImg, vfy_info :VfyInfo ,

ucastIterator :Nat, dstr :DstrInfo , vfy_rsp :VfyRsp , notAllOlcsResponded :Bool)

=

( stv (vs ). VERIFY()

+ IsVERIFY_BROADCAST(vs )

-> % upgradeOp.type = S_OlcParm_SwUpgradeOperationType _Start;

% verifyResponse.nrofchunkids = 0;

ScSend(MSG(BcastWithAck ,Msg_VFY)).

% An acknowlegde must be send back and response is handled in WAITFORBULKOUT

P(s,VERIFY_WAITFORBULKOUT,

editReqInfo_bulkOutTimeOut (true,resetReceivedFlag (false,info )),upd_img ,vfy_info ,ucastIterator ,dstr ,

Vfy_Rsp (0))

+ IsVERIFY_WAITFORBULKOUT(vs )

-> (bulkOutTimeOut (info ))

-> stopBulkOutForVfy .

% Bulkout is really stopped in callback func A_SWUp grade_OlcMsgCallBack

% Different process for the bulkout handling, (if n ot used can be removed all together)

WAITFORBULKOUT(s,vs ,editReqInfo_bulkOutTimeOut (false,info ),upd_img ,vfy_info ,ucastIterator ,dstr ,

vfy_rsp ,VFY,0)

%P(s,vs,editReqInfo_bulkOutTimeOut(false,info),upd_ img,vfy_info,ucastIterator,dstr,vfy_rsp)

<> ((olcIndex (vfy_info ) < #OLCs(info ))

-> ( % notAllOlcsResponded = FALSE;

% Step 2 : Verify the OLC response from Bulk out li st

% if OLC received, 

(received (OLCs(info ).olcIndex (vfy_info )))

% Step 9 & Step 10 : Check OLC's AppStatus is S_Olc AppStatus_NewVersionMatch

% or S_OlcAppStatus_Ok & missing chunks is zero for  Successfull Upgraded OLC

-> (LOOstatus (OLCs(info ).olcIndex (vfy_info )) == S_OlcAppStatus_NewVersionMatch



|| ((LOOstatus (OLCs(info ).olcIndex (vfy_info )) == S_OlcAppStatus_Ok )

&& nrchunks (OLCs(info ).olcIndex (vfy_info )) == 0))

-> % Successful Upgraded OLC

verifyOlcOK (id (OLCs(info ).olcIndex (vfy_info )), true).

nextOLC .

VERIFY(vfy_info =editVfyInfo_olcIndex (olcIndex (vfy_info )+1,vfy_info ),

info =editReqInfo_UpdateOLC_RSI_Status (LOOstatus (OLCs(info ).

olcIndex (vfy_info )),

id (OLCs(info ).olcIndex (vfy_info )),

info ))

<> ((LOOstatus (OLCs(info ).olcIndex (vfy_info )) == S_OlcAppStatus_Ok )

&& nrchunks (OLCs(info ).olcIndex (vfy_info )) > 0)

-> % Status OK but missing chunks, distribute

% Step 3 : Distribute the missing chunks

% TODO: Add more info? which OLC, which chunks

chunksMissing .

nextOLC .

VERIFY(s=SWU_DISTRIBUTE, dstr =editDstrInfo_getChunkId (0,dstr ),

vfy_info =editVfyInfo_olcIndex (olcIndex (vfy_info )+1,vfy_info ))

<> % Step 11: Not successful in upgrading OLCs

% TODO: add S_OlcAppStatus_* status `s?

% NOTE: order of if else clauses is different

verifyOlcOK (id (OLCs(info ).olcIndex (vfy_info )), false).

nextOLC .

VERIFY(vfy_info =editVfyInfo_olcIndex (olcIndex (vfy_info )+1,vfy_info ),

info =editReqInfo_UpdateOLC_RSI_Status (LOOstatus (OLCs(info ).

olcIndex (vfy_info )),

id (OLCs(info ).olcIndex (vfy_info )),

info ))

<> % notAllOlcsResponded = TRUE;

nextOLC .

VERIFY(vfy_info =editVfyInfo_olcIndex (olcIndex (vfy_info )+1,vfy_info ),

notAllOlcsResponded =true)

)

% Step 2 : Verify the OLC response from Bulk out li st

% If All the OLC have responsed and Missing chunk i s zero

% Successfully Upgraded.

<> ((nrofchunkids (vfy_rsp ) == 0 && notAllOlcsResponded == false)

-> verifyFinished .

( numOlcIsSmall .

P(SWU_UNICAST_REBOOT_VERIFICATION_DONE,vs ,editReqInfo_bulkOutTimeOut (false,info ),upd_img ,

vfy_info ,ucastIterator ,dstr ,vfy_rsp )

+ numOlcIsLarge .

P(SWU_BCAST_REBOOT_WITHOUT_ACK_VERIFICATION_DONE,vs ,

editReqInfo_rebootDelay (Delay_First ,editReqInfo_bulkOutTimeOut (false,info )),upd_img ,

vfy_info ,ucastIterator ,dstr ,vfy_rsp )

)

<> % Step 4 : Is First time sent broadcast verify?

((timesVfyBcast (vfy_info )+1)>=2)

-> % prepare Unicast verify

% requestedSWUInfo.VerifyInfo.olcIndex = 0;

% requestedSWUInfo.VerifyInfo.noResponse = 0;

% requestedSWUInfo.VerifyInfo.iterationUnicast = 0;

nowVerifyUcast .

P(s,VERIFY_UNICAST,info ,upd_img ,

editVfyInfo_iterationUcast (0,editVfyInfo_noResponse (0,

editVfyInfo_timesVfyBcast (timesVfyBcast (vfy_info )+1,

editVfyInfo_olcIndex (0,vfy_info )))),

ucastIterator ,dstr ,vfy_rsp )

<> againVerifyBcast .

P(s,VERIFY_BROADCAST,info ,upd_img ,

editVfyInfo_timesVfyBcast (timesVfyBcast (vfy_info )+1,vfy_info ),

ucastIterator ,dstr ,vfy_rsp )

)

)

+ IsVERIFY_UNICAST (vs )

-> (olcIndex (vfy_info ) < #OLCs(info ))

-> % Unicast verify only for OLC which didnt respond t o Broadcast verify 

% and OLCs which responded to Broadcast verify with  more missing chunks



(((LOOstatus (OLCs(info ).olcIndex (vfy_info )) == S_OlcAppStatus_Ok )

&& nrchunks (OLCs(info ).olcIndex (vfy_info )) > 0)

|| (received (OLCs(info ).olcIndex (vfy_info )) == false))

-> % Step 7 : check number of Iteration per OLC

(iterationUcast (vfy_info ) < 10) % 10 = MAX_VERIFY_RETRIES

-> % TODO: verifyResponse.nrofchunkids = 0; is updated  after the response is received...

% Step 5 : Send unicast verify command

ScSend(MSG(Ucast (id (OLCs(info ).olcIndex (vfy_info ))),Msg_VFY)).

% Step 6a: Verify Response

( % Step 6b : If Olc has not responsed for 2 times, o lc upgrade is Not successful

timeout_sc .

(noResponse (vfy_info ) < 1)

-> % Step 5 : Send unicast verify command with ack

P(SWU_VERIFY,vs ,

editReqInfo_bulkOutTimeOut (false,

editReqInfo_UpdateOLC_RSI_Status (LOOstatus (OLCs(info ).olcIndex (vfy_info )),

id (OLCs(info ).olcIndex (vfy_info )),info )),

upd_img ,editVfyInfo_noResponse (noResponse (vfy_info )+1,vfy_info ),ucastIterator ,

dstr ,Vfy_Rsp (0))

<> % Step 11 : no response for 2 times for unicast ver ify, so move olc to ERROR

% Not successful

verifyOlcOK (id (OLCs(info ).olcIndex (vfy_info )),false).

P(SWU_VERIFY,vs ,

editReqInfo_bulkOutTimeOut (false,

editReqInfo_UpdateOLC_RSI_Status (ERR_MSG_TIMEOUT,id (OLCs(info ).

olcIndex (vfy_info )),info )),

upd_img ,

editVfyInfo_olcIndex (olcIndex (vfy_info )+1,

editVfyInfo_iterationUcast (0,

editVfyInfo_noResponse (0,vfy_info ))),ucastIterator ,dstr ,Vfy_Rsp (0))

+ % There was a response, reset counter (noResponse)

% We are waiting for a vfy response message from th e OLC that we send the unicast to

sum m:Msg. (IsMSG_UcastResp (m) && src (m)==id (OLCs(info ).olcIndex (vfy_info ))

&& (IsMsg_VFY_RESP(msg(m)) || (IsMsg_GEN_RESP(msg(m)) && IsVFY (cmd(msg(m))))))

-> receiveResp (m).

(status (msg(m)) == S_OlcAppStatus_Ok )

-> % Step 9: Check OLC's AppStatus is S_OlcAppStatus_O k 

(#missingChunks (msg(m)) == 0)

-> % Step 12 Check OLC's AppStatus is S_OlcAppStatus_O k & missing chunks is 

% zero for Successfull Upgraded OLC 

% successfull

verifyOlcOK (id (OLCs(info ).olcIndex (vfy_info )), true).

P(SWU_VERIFY,vs ,

editReqInfo_bulkOutTimeOut (false,

editReqInfo_UpdateOLC_RSI_Status (S_OlcAppStatus_Ok ,src (m),info )),

upd_img ,

editVfyInfo_olcIndex (olcIndex (vfy_info )+1,

editVfyInfo_iterationUcast (0,

editVfyInfo_noResponse (0,vfy_info ))),ucastIterator ,dstr ,Vfy_Rsp (0))

<> % Step 8 : If OLC is responsed with S_OlcAppStatus_ Ok and missing chunks,

% Distribute the missing chunks

P(SWU_DISTRIBUTE,vs ,

editReqInfo_bulkOutTimeOut (false,

editReqInfo_UpdateOLC_RSI_Status (S_OlcAppStatus_Ok ,src (m),info )),upd_img ,

editVfyInfo_iterationUcast (iterationUcast (vfy_info )+1,

editVfyInfo_noResponse (0,vfy_info )),ucastIterator ,

editDstrInfo_getChunkId (0,setMissingChunks (missingChunks (msg(m)),dstr )),

Vfy_Rsp (#missingChunks (msg(m))))

<> % Step 10 Check OLC's AppStatus is not S_OlcAppStat us_Ok, then set error as 

% S_OlcAppStatus_SessionClosed.

P(SWU_VERIFY,vs ,

editReqInfo_UpdateOLC_RSI_Status (S_OlcAppStatus_SessionClosed ,src (m),info ),

upd_img ,editVfyInfo_olcIndex (olcIndex (vfy_info )+1,

editVfyInfo_iterationUcast (0,

editVfyInfo_noResponse (0,vfy_info ))),ucastIterator ,dstr ,Vfy_Rsp (0))

)

<> % Step 11 : Ten Iteration is not enough to upgrade a OLC, so move to ERR_MSG_TIMEOUT

% requestedSWUInfo.OLCs[requestedSWUInfo.VerifyInfo .olcIndex].status = ERR_MSG_TIMEOUT; 

% requestedSWUInfo.VerifyInfo.noResponse       = 0;

% requestedSWUInfo.VerifyInfo.iterationUnicast = 0;



% requestedSWUInfo.VerifyInfo.olcIndex++;

verifyOlcOK (id (OLCs(info ).olcIndex (vfy_info )),false).

P(SWU_VERIFY,vs ,

editReqInfo_UpdateOLC_RSI_Status (ERR_MSG_TIMEOUT,id (OLCs(info ).

olcIndex (vfy_info )),info ),upd_img ,

editVfyInfo_olcIndex (olcIndex (vfy_info )+1,

editVfyInfo_iterationUcast (0,editVfyInfo_noResponse (0,vfy_info ))),ucastIterator ,dstr ,

Vfy_Rsp (0))

<> % Move to next OLC if status is not S_OlcAppStatus_ Ok or Received status is false

% requestedSWUInfo.VerifyInfo.noResponse       = 0;

% requestedSWUInfo.VerifyInfo.iterationUnicast = 0;

% requestedSWUInfo.VerifyInfo.olcIndex++; 

P(SWU_VERIFY,vs ,

editReqInfo_UpdateOLC_RSI_Status (LOOstatus (OLCs(info ).olcIndex (vfy_info )),

id (OLCs(info ).olcIndex (vfy_info )),info ),upd_img ,

editVfyInfo_olcIndex (olcIndex (vfy_info )+1,

editVfyInfo_iterationUcast (0,

editVfyInfo_noResponse (0,vfy_info ))),ucastIterator ,dstr ,Vfy_Rsp (0))

<> verifyFinished .

( numOlcIsSmall .

P(SWU_UNICAST_REBOOT_VERIFICATION_DONE,vs ,

editReqInfo_bulkOutTimeOut (false,info ),upd_img ,vfy_info ,ucastIterator ,dstr ,vfy_rsp )

+ numOlcIsLarge .

P(SWU_BCAST_REBOOT_WITHOUT_ACK_VERIFICATION_DONE,vs ,

editReqInfo_rebootDelay (Delay_First ,

editReqInfo_bulkOutTimeOut (false,info )),upd_img ,vfy_info ,ucastIterator ,dstr ,vfy_rsp )

)

);

act scSend , scSend_drop :Msg;

proc

ScSend(m:Msg) = scSend (m) + scSend_drop (m);

act bulktimeout ,timeout_sc_all ,timeout_all ;

proc

WAITFORBULKOUT(s:State , vs :VerifyState , info :ReqInfo , upd_img :UpdImg, vfy_info :VfyInfo ,

ucastIterator :Nat, dstr :DstrInfo , vfy_rsp :VfyRsp , cmd:Command, NrOfRecRsp :Nat)

% In S_OlcMessage_SwUpgrade_ReceiveResponse a disti nction is made between a Ucast response 

% and a Bcast response, thats why here seperate cha nnels are made for Bcast and Ucast response

% Update: received = true, nrofchunkids (that are m issing), OLC status, set the chunks as missing

= sum m:Msg. (IsMSG_BcastResp (m) && IsMsg_VFY_RESP(msg(m)))

% Is verify response   

-> receiveResp (m).

WAITFORBULKOUT(info =editReqInfo_UpdateOLCreceived (true,src (m),

editReqInfo_UpdateOLCnrchunks (#missingChunks (msg(m)),src (m),

editReqInfo_UpdateOLC_LOO_Status (status (msg(m)),src (m),info ))),

dstr =setMissingChunks (missingChunks (msg(m)),dstr ),

vfy_rsp =Vfy_Rsp (nrofchunkids (vfy_rsp )+#missingChunks (msg(m))),NrOfRecRsp =NrOfRecRsp +

1)

% Else is general response

+ sum m:Msg. (IsMSG_BcastResp (m) && IsMsg_GEN_RESP(msg(m)) && cmd(msg(m))==cmd)

-> receiveResp (m).

(

(cmd(msg(m))! =VFY)

-> WAITFORBULKOUT(info =editReqInfo_UpdateOLCreceived (true,src (m),

editReqInfo_UpdateOLCnrchunks (0,src (m),

editReqInfo_UpdateOLC_LOO_Status (status (msg(m)),src (m),info ))),

NrOfRecRsp =NrOfRecRsp +1)

+ ((cmd(msg(m))==VFY

&& LOOstatus (OLCs(info ).getIndexOfOLC (src (m),info )) ! = S_OlcAppStatus_12NcMismatch

&& LOOstatus (OLCs(info ).getIndexOfOLC (src (m),info )) ! = S_OlcAppStatus_NewVersionMatch

&& LOOstatus (OLCs(info ).getIndexOfOLC (src (m),info )) ! = S_OlcAppStatus_InvalidAddress ))

-> % This case cannot occur, because of the special me ssage type VFY which is handled above

WAITFORBULKOUT(info =editReqInfo_UpdateOLCreceived (true,src (m),

editReqInfo_UpdateOLCnrchunks (0,src (m),

editReqInfo_UpdateOLC_LOO_Status (status (msg(m)),src (m),info ))),

NrOfRecRsp =NrOfRecRsp +1)

<> % Retain the unicast/broadcast init command respons e for verify

WAITFORBULKOUT(info =editReqInfo_UpdateOLCreceived (true,src (m),

editReqInfo_UpdateOLCnrchunks (0,src (m),info )), NrOfRecRsp =NrOfRecRsp +1)



)

+ (#OLCsInModel == NrOfRecRsp )

-> bulktimeout .

P(s,vs ,info ,upd_img ,vfy_info ,ucastIterator ,dstr ,vfy_rsp )

+ timeout_sc . WAITFORBULKOUT(NrOfRecRsp =NrOfRecRsp +1)

+ timeout_sc_all . WAITFORBULKOUT(NrOfRecRsp =#OLCsInModel );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%                                     Network                                     %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

act netR_scSend ,netR_scSend_drop ,netS_scSend :Msg;

netR_olcSendResp ,netR_olcSendResp_drop ,netS_olcSendResp :Msg;

%communication actions

comO2S,comS2O,comS2Odrop,comO2Sdrop:Msg;

timeout_net ,timeout_net_all ;

sort DroppedMsg = struct Dropped_Msg (mgs:Msg, messageCount :Nat);

proc

% to find multiple traces to failed OLC upgrades

NET(dropS2O :Nat,dropO2S :Nat,droppedMessages :List(DroppedMsg ),messageCount :Nat)

= sum m:Msg. netR_scSend (m)|netS_scSend (m).

(IsUcast (des (m)) && !ForceWaitForOLCUcastResp (id (des (m))))

-> timeout_net .

NET(messageCount =messageCount +1)

<> NET(messageCount =messageCount +1)

+ (dropS2O >0)

-> sum m:Msg. netR_scSend_drop (m).

% Only messages that need a response need a timeout _net when message is dropped

IsBcastWithoutAck (des (m))

-> NET(dropS2O =Int2Nat (dropS2O -1), droppedMessages =Dropped_Msg (m,messageCount )|>droppedMessages ,

messageCount =messageCount +1)

<> (IsBcastWithAck (des (m)))

-> timeout_net_all .

% Tell the WAITFORBULKOUT that non of the responses  will arrive

NET(dropS2O =Int2Nat (dropS2O -1),droppedMessages =Dropped_Msg (m,messageCount )|>droppedMessages ,

messageCount =messageCount +1)

<> timeout_net .

NET(dropS2O =Int2Nat (dropS2O -1),droppedMessages =Dropped_Msg (m,messageCount )|>droppedMessages

,

messageCount =messageCount +1)

+ sum m:Msg. netR_olcSendResp (m)|netS_olcSendResp (m). NET(messageCount =messageCount +1)

+ (dropO2S >0)

-> sum m:Msg. netR_olcSendResp_drop (m).

timeout_net .

NET(dropO2S =Int2Nat (dropO2S -1), droppedMessages =Dropped_Msg (m,messageCount )|>droppedMessages ,

messageCount =messageCount +1)

;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%                                       OLC                                       %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort

BBuf = List(Bool);

map store : Nat#BBuf -> BBuf ;

chunksRec : BBuf ->Bool;

oldVersIsforceImVers : Vers #Imgs ->Bool;

nonActiveVer : Imgs ->Vers ;

activeVer : Imgs ->Vers ;

nonActiveChunks : Imgs ->BBuf ;

getMissingChunkIds : BBuf ->List(Nat);

getMissingChunkIds' : BBuf #Nat->List(Nat);

setVersInNonActive : Vers #Imgs ->Imgs ;

eraseNonActive : Imgs ->Imgs ;

storeInNonActive : Nat#Imgs ->Imgs ;

getImageInfo : ImgType #Imgs ->Img;

var i : Nat; c,c' :Bool; b:BBuf ;

v:Vers ; im:Imgs , imt :ImgType ;

eqn i == 0 -> store (i ,b) = true |> tail (b);

i > 0 -> store (i ,c' |>b) = c' |> store (Int2Nat (i -1),b);

chunksRec (b) = ! (false in b);



oldVersIsforceImVers (v,im) =if(IsNORMAL_IMAGE(active (im)), vers (norm_img (im))==v, vers (fallb_img (im))==v);

nonActiveVer (im) = if(IsNORMAL_IMAGE(active (im)),vers (fallb_img (im)), vers (norm_img (im)));

activeVer (im) = if(IsNORMAL_IMAGE(active (im)), vers (norm_img (im)),vers (fallb_img (im)));

nonActiveChunks (im) = if(IsNORMAL_IMAGE(active (im)),chunks (fallb_img (im)),chunks (norm_img (im)));

getMissingChunkIds (b) = getMissingChunkIds' (b,0);

setVersInNonActive (v,im) = if(IsNORMAL_IMAGE(active (im)),

IMGs(norm_img (im), IMG(v,chunks (fallb_img (im))), active (im)),

IMGs(IMG(v, chunks (norm_img (im))), fallb_img (im), active (im)));

eraseNonActive (im) = if(IsNORMAL_IMAGE(active (im)),

IMGs(norm_img (im), IMG(vers (fallb_img (im)), [false ,false] ), active (im)),

IMGs(IMG(vers (norm_img (im)), [false ,false] ), fallb_img (im), active (im)));

storeInNonActive (i ,im)

= if(IsNORMAL_IMAGE(active (im)),

IMGs(norm_img (im),IMG(vers (fallb_img (im)), store (i ,chunks (fallb_img (im)))),active (im)),

IMGs(IMG(vers (norm_img (im)), store (i ,chunks (norm_img (im)))),fallb_img (im),active (im)));

getImageInfo (imt ,im) = if(IsNORMAL_IMAGE(imt ), norm_img (im), fallb_img (im));

(i <#b) ->getMissingChunkIds' (b,i ) = if(b.i ==false,

i |>getMissingChunkIds' (b,i +1),

getMissingChunkIds' (b,i +1));

! (i <#b)->getMissingChunkIds' (b,i ) = [] ;

sort

Imgs = struct IMGs(norm_img :Img, fallb_img :Img, active :ImgType );

Img = struct IMG(vers :Vers , chunks :BBuf );

act

a;

olcReceive :Msg;

comS,comResp:Msg;

olcChunksReceived : ID # Bool;

olcHandleOK : ID # Command;

olcRebootInto : ID # Img # ImgType ;

olcErr : ID # Status ;

olcUpgradeOK : ID # Bool;

proc

APP_SwUpgrade(id :ID , isSessionOpenend :Bool, isMy12NC :Bool, my12NC:Hw12Nc, imgs :Imgs )

= sum m:Msg.

(IsBcastWithAck (des (m)) || (IsBcastWithoutAck (des (m)) || IsUcast (des (m)) && id (des (m)) == id ))

-> olcReceive (m).

APP_SwUpgrade_HandleSwUpgradeCommand (msg(m), des (m), id , isSessionOpenend ,isMy12NC ,my12NC,imgs )

%else consume message

<> olcReceive (m).

APP_SwUpgrade(id ,isSessionOpenend ,isMy12NC ,my12NC,imgs )

+ olcUpgradeOK (id , (active (imgs ) == NORMAL_IMAGE

&& activeVer (imgs ) == V2

&& #getMissingChunkIds (chunks (norm_img (imgs ))) == 0 ))

;

APP_SwUpgrade_HandleSwUpgradeCommand (m:MsgType, msg_des:MsgDes, id :ID , isSessionOpenend :Bool,

isMy12NC :Bool, my12NC:Hw12Nc, imgs :Imgs )

= IsMsg_REBOOT(m)

-> HandleRebootCmd (forceImg (m),code12NC(m),msg_des,id ,isSessionOpenend ,isMy12NC ,my12NC,imgs )

+ IsMsg_INIT (m)

-> HandleInitCommand (newVers (m),code12NC(m),startAddr (m),msg_des,id ,isSessionOpenend ,isMy12NC ,my12NC,

imgs )

+ IsMsg_DATA(m)

-> HandleDataCmd (addrFlash (m),data (m),msg_des,id ,isSessionOpenend ,isMy12NC ,my12NC,imgs )

+ IsMsg_VFY (m)

-> HandleVerifyCmd (msg_des,id ,isSessionOpenend ,isMy12NC ,my12NC,imgs )

;

HandleInitCommand (newVers :Vers ,code12NC:Hw12Nc,startAddr :ImgType , msg_des:MsgDes, id :ID ,

isSessionOpenend :Bool, isMy12NC :Bool, my12NC:Hw12Nc, imgs :Imgs )

% if isMy12NC (check if this update is destined for  this hardware type)

%  if theImageToUpgrade has the expected old versio n (theImageToUpgrade is always the non-active versi on)

%    if new version is not equal to current version  (of theImageToUpgrade)

%      if location to write is ok (not in model)

%        open session, erase flash, write {size, ch ecksum, version, start (address)}

= (my12NC==code12NC)



-> (activeVer (imgs )! =newVers )

-> (startAddr ! = active (imgs ))

-> olcHandleOK (id ,INIT).

SendGenResponse (S_OlcAppStatus_Ok ,msg_des,id ,INIT).

APP_SwUpgrade(id ,true,true,my12NC,setVersInNonActive (newVers ,eraseNonActive (imgs )))

<> olcErr (id ,S_OlcAppStatus_InvalidAddress ).

SendGenResponse (S_OlcAppStatus_InvalidAddress ,msg_des,id ,INIT).

APP_SwUpgrade(id ,false,isMy12NC ,my12NC,imgs )

<> olcErr (id ,S_OlcAppStatus_NewVersionMatch ).

SendGenResponse (S_OlcAppStatus_NewVersionMatch ,msg_des,id ,INIT).

APP_SwUpgrade(id ,false,isMy12NC ,my12NC,imgs )

<> olcErr (id ,S_OlcAppStatus_12NcMismatch ).

SendGenResponse (S_OlcAppStatus_12NcMismatch ,msg_des,id ,INIT).

APP_SwUpgrade(id ,false,isMy12NC ,my12NC,imgs );

HandleDataCmd (addrFlash :Nat, data :Data , msg_des:MsgDes, id :ID , isSessionOpenend :Bool, isMy12NC :Bool,

my12NC:Hw12Nc, imgs :Imgs )

% if isSessionOpened and isMy12NC and address to fl ash is in range (not in model)

%   write data packet into flash, set time out for 12h (not in model)

= (isSessionOpenend )

-> (isMy12NC )

-> olcHandleOK (id ,DATA).

%SendGenResponse(S_OlcAppStatus_Ok,msg_des,id,DATA) .

APP_SwUpgrade(id ,isSessionOpenend ,isMy12NC , my12NC,storeInNonActive (addrFlash ,imgs ))

<> olcErr (id ,S_OlcAppStatus_12NcMismatch ).

%SendGenResponse(S_OlcAppStatus_12NcMismatch,msg_de s,id,DATA). 

APP_SwUpgrade(id ,isSessionOpenend ,isMy12NC ,my12NC,imgs )

<> olcErr (id ,S_OlcAppStatus_SessionClosed ).

%SendGenResponse(S_OlcAppStatus_SessionClosed,msg_d es,id,DATA). 

APP_SwUpgrade(id ,isSessionOpenend ,isMy12NC ,my12NC,imgs );

HandleVerifyCmd (msg_des:MsgDes, id :ID , isSessionOpenend :Bool, isMy12NC :Bool, my12NC:Hw12Nc, imgs :Imgs )

%check for all chunks if it is received and written  to flash (by checking that non of the memory 

positions 

% are erased)

% when a chunk is missing, add to rpyBuf (replyBuff er?)

= (isSessionOpenend )

-> ((isMy12NC )

-> olcHandleOK (id ,VFY).

olcChunksReceived (id ,chunksRec (nonActiveChunks (imgs ))).

SendVFYResponse (S_OlcAppStatus_Ok ,getMissingChunkIds (nonActiveChunks (imgs )),msg_des,id ).

(chunksRec (nonActiveChunks (imgs )))

-> APP_SwUpgrade(id ,false,isMy12NC ,my12NC,imgs )

<> APP_SwUpgrade(id ,isSessionOpenend ,isMy12NC ,my12NC,imgs )

<> olcErr (id ,S_OlcAppStatus_12NcMismatch ).

SendGenResponse (S_OlcAppStatus_12NcMismatch ,msg_des,id ,VFY).

APP_SwUpgrade(id ,isSessionOpenend ,isMy12NC ,my12NC,imgs ))

<> olcErr (id ,S_OlcAppStatus_SessionClosed ).

SendGenResponse (S_OlcAppStatus_SessionClosed ,msg_des,id ,VFY).

APP_SwUpgrade(id ,isSessionOpenend ,isMy12NC ,my12NC,imgs );

HandleRebootCmd (forceImg :ImgType , code12NC:Hw12Nc, msg_des:MsgDes, id :ID , isSessionOpenend :Bool,

isMy12NC :Bool, my12NC:Hw12Nc, imgs :Imgs )

% if check12NC is (check if this command is destine d for this hardware type)

%   if oldVers matches forceIm version

%    set reboot delay           (not in model)

%    set active image = forceIm

% else isSessionOpened=false

= (code12NC==my12NC)

-> olcHandleOK (id ,REBOOT).

olcRebootInto (id ,getImageInfo (forceImg ,imgs ),forceImg ).

SendGenResponse (S_OlcAppStatus_Ok ,msg_des,id ,REBOOT).

APP_SwUpgrade(id ,isSessionOpenend ,isMy12NC ,my12NC,IMGs(norm_img (imgs ),fallb_img (imgs ),forceImg ))

<> olcErr (id ,S_OlcAppStatus_12NcMismatch ).

SendGenResponse (S_OlcAppStatus_12NcMismatch ,msg_des,id ,REBOOT).

APP_SwUpgrade(id ,false,isMy12NC ,my12NC,imgs );

act olcSendResp ,olcSendResp_drop :Msg;

noRespNeeded ;

proc



SendGenResponse (status :Status , msg_des:MsgDes, id :ID , cmd:Command)

= (IsUcast (msg_des))

-> ( olcSendResp (MSG_UcastResp(id ,Msg_GEN_RESP(status ,cmd)))

+ olcSendResp_drop (MSG_UcastResp(id ,Msg_GEN_RESP(status ,cmd))) )

+ (IsBcastWithAck (msg_des))

-> ( olcSendResp (MSG_BcastResp(id ,Msg_GEN_RESP(status ,cmd)))

+ olcSendResp_drop (MSG_BcastResp(id ,Msg_GEN_RESP(status ,cmd))) )

+ (IsBcastWithoutAck (msg_des))-> noRespNeeded ;

SendVFYResponse (status :Status , missingChunks :List(Nat), msg_des:MsgDes, id :ID )

= (IsUcast (msg_des))

-> ( olcSendResp (MSG_UcastResp(id ,Msg_VFY_RESP(status ,missingChunks )))

+ olcSendResp_drop (MSG_UcastResp(id ,Msg_VFY_RESP(status ,missingChunks ))) )

+ (IsBcastWithAck (msg_des))

-> ( olcSendResp (MSG_BcastResp(id ,Msg_VFY_RESP(status ,missingChunks )))

+ olcSendResp_drop (MSG_BcastResp(id ,Msg_VFY_RESP(status ,missingChunks ))) )

+ (IsBcastWithoutAck (msg_des))-> noRespNeeded ;

% needed test model with reliable connection

map OLCsInModel : List(ID );

%eqn OLCsInModel = [OLC1]; % 1 OLC

eqn OLCsInModel = [OLC1,OLC2]; % 2 OLCs

map ForceWaitForOLCUcastResp : ID -> Bool;

var id :ID ;

eqn ForceWaitForOLCUcastResp (id ) = (id in OLCsInModel );

init

allow({

% SC

st , stv , startThread , idle ,startSWU ,

handlePrepareState , handleBcastRebootwithoutAck , handleUnicastReboot , handleBcastInitwithAck ,

handleBcastInitwithoutAck , handleUnicastInit , distributeChunk , handleVerifySubStateMachine ,

reportStatus , waitingForInitAck , verifyFinished , numOlcIsSmall , numOlcIsLarge , chunksMissing ,

sendingUcastDone , stopBulkOutForInit , chunksDistributed ,

ucastRebootVfyDone , stopBulkOutForVfy , nowVerifyUcast , againVerifyBcast , nextOLC ,

verifyOlcOK , timeout , olcStatusOKexists , olcStatusOKdoesNotExists ,

olcReceivedAndStatusOKexists , olcReceivedAndStatusOKdoesNotExists ,

finished ,

%Bulkout

bulktimeout ,

%Net

comO2S,comS2O,comS2Odrop,comO2Sdrop,

%OLC

a, olcChunksReceived , olcHandleOK , noRespNeeded ,olcRebootInto , olcErr ,

upgradeNotOK , upgradeOK , timeout_all , case4

},

comm({

timeout_sc |timeout_net ->timeout ,

timeout_sc_all |timeout_net_all ->timeout_all ,

olcUpgradeOK |scUpgradeOK ->upgradeOK ,

%scSend|netR_scSend|netS_scSend|olcReceive->comS2O,               % 1 OLC, also change OLCsInModel 

scSend |netR_scSend |netS_scSend |olcReceive |olcReceive ->comS2O, % 2 OLCs, also OLCsInModel 

scSend_drop |netR_scSend_drop ->comS2Odrop,

olcSendResp |netR_olcSendResp |netS_olcSendResp |receiveResp ->comO2S,

olcSendResp_drop |netR_olcSendResp_drop ->comO2Sdrop

},

A_SWUpgrade_Init

|| NET(43,15,[] ,0) % 43,15 max that has influence

|| APP_SwUpgrade(OLC1,false,false,hw12nc1 ,IMGs(IMG(V1,[true ,true] ), IMG(V1,[true ,true] ), NORMAL_IMAGE))

|| APP_SwUpgrade(OLC2,false,false,hw12nc1 ,IMGs(IMG(V1,[true ,true] ), IMG(V1,[true ,true] ), NORMAL_IMAGE))

)

)

;



C Rename file for requirement: A started SWU process must always finish

Filename: hide all excluding some.rename

Description: This file is used to rename all actions apart from startSWU and finish, to τ
actions, to verify the requirement: A started SWU process must always finish.

70



var

b:Bool;

s:State;

m:Msg;

vs:VerifyState;

id:ID;

loi:List(OlcInfo);

im:Img;

imt:ImgType;

status: Status;

cmd:Command;

rename

% SC

st(s) => tau;

stv(vs) => tau;

startThread=> tau;

idle=> tau;

%startSWU => tau;

handlePrepareState => tau;

handleBcastRebootwithoutAck => tau;

handleUnicastReboot => tau;

handleBcastInitwithAck => tau;

handleBcastInitwithoutAck => tau;

handleUnicastInit => tau;

distributeChunk => tau;

handleVerifySubStateMachine => tau;

reportStatus(loi) => tau;

%finished => tau;

waitingForInitAck => tau;

verifyFinished => tau;

numOlcIsSmall => tau;

numOlcIsLarge => tau;

chunksMissing => tau;

sendingUcastDone => tau;

stopBulkOutForInit => tau;

chunksDistributed => tau;

ucastRebootVfyDone => tau;

stopBulkOutForVfy => tau;

nowVerifyUcast => tau;

againVerifyBcast => tau;

nextOLC => tau;

verifyOlcOK(id,b) => tau;

timeout => tau;

bulktimeout => tau;

olcReceivedAndStatusOKexists => tau;

olcReceivedAndStatusOKdoesNotExists => tau;

olcStatusOKexists => tau;

olcStatusOKdoesNotExists => tau;

a => tau;

% Communicatie

comO2S(m) => tau;

comS2O(m) => tau;

comS2Odrop(m) => tau;

comO2Sdrop(m) => tau;

% OLC

olcErr(id,status) => tau;

olcChunksReceived(id,b) => tau;

olcHandleOK(id,cmd) => tau;

noRespNeeded => tau;

olcRebootInto(id,im,imt) => tau;

upgradeOK(id,b) => tau;

71



D Combined OLC commissioning component mCRL2 specification

Filename: Combine Commissioning OLC App.mcrl2

Description: This file combines the model of the OLC commissioning component with a
process that sends commissioning messages to the OLC commissioning model. The
initialisation of the combined model is also specified in this file.
This file includes the files:Commissioning Shared.mcrl2 and
Commissioning OLC App.mcrl2, included in appendices F and H, respectively.

72



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% OLC commissioning component combined with shared structures                                               %

% Model of the OLC Commissioning component combined with shared structures                                  %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#INCLUDE(Commissioning_Shared.mcrl2)

#INCLUDE(Commissioning_OLC_App.mcrl2)

act

send,com:Msg#Bool;

proc

% Process to send the messages to the OLC

Sender

= sum m:Msg. ((!(short(des(m))==ShortNull && ieee(des(m))==IeeeNull))

&& (short(des(m))==ShortNull || ieee(des(m))==IeeeNull)

&& IsMSG(m))

-> ((IsMsg_COMM_MSG1(msg(m)) && short(msg(m)) != ShortNull && panId(msg(m)) != PanNull)

|| (!IsMsg_COMM_MSG1(msg(m))))

-> send(m,true). Sender

;

init

allow({

olcHandleMessage, olcHandleRebootMessage, olcDoDecrypt, olcAppInit, olcHandleCommissionMsg0,

olcHandleCommissionMsg1,olcHandleDecryptDone, olcCommEngInit, olcHandleDeCommissionMessage, com,

olcSendResp,olcHandled, s_no_response_olc, armForReboot, olcReboot,olcCmdInvalid, msgNotFor,

olcCommissionMsg1Handled,olcStateNotOK, requestDecryptFailed,requestDecryptOK,olcDecryptError,

setConfig,olcState,skip, c_registerAddresses, c_unregisterShortAddress, c_addressIsActive, infoOlc,

olcIsCommissioned

},

comm({send|olcReceive->com,

% Active Addresses

s_registerAddresses|r_registerAddresses->c_registerAddresses,

s_unregisterShortAddress|r_unregisterShortAddress->c_unregisterShortAddress,

s_addressIsActive|r_addressIsActive->c_addressIsActive},

InitOLCModel ||

Sender ||

ActiveAddresses({},{})

)

)

;



E Interacting commissioning components mCRL2 specification

Filename: Combine CommissioningProcess.mcrl2

Description: This file combines the model of the SC commissioning component with the
OLC commissioning component. The initialisation of the combined model is also specified
in this file.
This file includes the files:Commissioning Shared.mcrl2, Commissioning SC App.mcrl2

and Commissioning OLC App.mcrl2, included in appendices F, G and H, respectively.

74



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Interacting commissioning components                                                                      %

% Model of the OLC application combined with the model of the SC application                                %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#INCLUDE(Commissioning_Shared.mcrl2)

#INCLUDE(Commissioning_SC_App.mcrl2)

#INCLUDE(Commissioning_OLC_App.mcrl2)

InitDatabase

= P_DB([DB_vars(OLC1,NoAction,Ready,Ieee1,Short1,Pan1)])

;

init

allow({

c_scheduleCommissioningMsg,c_clearCommissioningMsg,c_queue_pop, process,

foundOlcWithErroneousStatus, noOlcWithErroneousStatus, executeOlcAction, noOlcWithPendingAction,

foundOlcWithPendingAction, hasActionType, noOLCsInDeletionState, OLCsInDeletionState,

comS2O,comO2S,comS2Odrop,comO2Sdrop,c_timeout,c_no_response_olc,

fastRebootOlc, sendAddressingInfo, configOlc, resetRxCounters,

commOlcStateIEEEMisMatch,commOlcStateNotCommissioned,commOlcStateCommissioned,commissioningDone,

c_removeOlcFromDBWithStateReadyForDeletion,c_getOLClist_in_State,c_getOlcWithPendingAction,

c_getOLCidWithErroneousStatus,c_setCommissioningState,c_storeActionType, commOlcStateShortMisMatch,

commOlcStateUnreachable,olcNeedsSWU,tmp,

c_registerAddresses,c_unregisterShortAddress,c_addressIsActive,

c_setErrorOlcsToUpdate, secureCommissioningFailed,

c_setLogReporter, c_setLogCompleter,c_getOlcByID,c_queue_empty,c_getOLClist_ReadyForUpgrade,

% Acties van APP_CommissioningEngine.mclr2

olcHandleMessage, olcHandleRebootMessage, olcDoDecrypt, olcAppInit,

olcHandleCommissionMsg0,olcHandleCommissionMsg1,olcHandleDecryptDone,

olcCommEngInit, olcHandleDeCommissionMessage,

olcHandled, armForReboot,

olcReboot,olcCmdInvalid, msgNotFor, olcCommissionMsg1Handled,olcStateNotOK,

requestDecryptFailed,requestDecryptOK,olcDecryptError,setConfig,skip,findError,

%olcState,

olcIsCommissioned,decommissionOlc,removedOlcsFromDB,infoOlc,commissionOlc,alreadyCommissioned,

scStart,triggerDecommissioning,triggerCommissioning,triggerLampTypeUpdate_LampReplacement,

event_OlcDecommissionResolved,

processingSWU, bothImgsUpgraded, atleastOneImgUpgradeFailed,processingSWUdone

},

comm({

% Database

r_removeOlcFromDBWithStateReadyForDeletion|s_removeOlcFromDBWithStateReadyForDeletion

->c_removeOlcFromDBWithStateReadyForDeletion,

r_getOLClist_in_State|s_getOLClist_in_State->c_getOLClist_in_State,

r_getOlcWithPendingAction|s_getOlcWithPendingAction->c_getOlcWithPendingAction,

r_getOLCidWithErroneousStatus|s_getOLCidWithErroneousStatus->c_getOLCidWithErroneousStatus,

r_setCommissioningState|s_setCommissioningState->c_setCommissioningState,

r_storeActionType|s_storeActionType->c_storeActionType,

r_setErrorOlcsToUpdate|s_setErrorOlcsToUpdate->c_setErrorOlcsToUpdate,

r_getOLClist_ReadyForUpgrade|s_getOLClist_ReadyForUpgrade->c_getOLClist_ReadyForUpgrade,

% Thread Msg Queue

s_scheduleCommissioningMsg|r_scheduleCommissioningMsg->c_scheduleCommissioningMsg,

s_clearCommissioningMsg|r_clearCommissioningMsg->c_clearCommissioningMsg,

s_queue_pop|r_queue_pop->c_queue_pop,

s_queue_empty|r_queue_empty->c_queue_empty,

% Msg communication

scSend|netR_scSend|s_addressIsActive|r_addressIsActive|netS_scSend|olcReceive->comS2O,

scSend_drop|netR_scSend_drop->comS2Odrop,

olcSendResp|netR_olcSendResp|netS_olcSendResp|receiveResp->comO2S,

olcSendResp_drop|netR_olcSendResp_drop->comO2Sdrop,

s_no_response_olc|r_no_response_olc->c_no_response_olc,

timeout_sc|timeout_net->c_timeout,

% Active Addresses

s_registerAddresses|r_registerAddresses->c_registerAddresses,

s_unregisterShortAddress|r_unregisterShortAddress->c_unregisterShortAddress,

% Callback

s_setLogReporter|r_setLogReporter->c_setLogReporter,

s_setLogCompleter|r_setLogCompleter->c_setLogCompleter,

s_getOlcByID|r_getOlcByID->c_getOlcByID



},

% Every OLC in the database is assigned an short address and a pan number.

CommStore(0,false,false) ||

InitDatabase ||

ThreadMsgQueue([],true) ||

CommThread(Sc_Node(V2)) ||

NET(1,1) ||

InitOLCModel ||

ActiveAddresses({},{}) ||

Callback([],[])

)

)

;



F Commissioning Shared mCRL2 specification

Filename: Commissioning Shared.mcrl2

Description: This file contains the shared structures of the SC commissioning model and the
OLC commissioning model.

77



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SHARED                                                                                                    %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sort

% Original struct name: commStateGetInfo_t

OLCCommState

= struct COMM_STATE_UNCOMMISSIONED ?IsCOMM_STATE_UNCOMMISSIONED

| COMM_STATE_COMMISSIONED_NEEDS_REBOOT ?IsCOMM_STATE_COMMISSIONED_NEEDS_REBOOT

| COMM_STATE_COMMISSIONED ?IsCOMM_STATE_COMMISSIONED

| COMM_STATE_DECOMMISSIONING ?IsCOMM_STATE_DECOMMISSIONING

;

ID = struct OLC1;

IeeeAddr = struct IeeeNull | Ieee1; % IeeeNull is the uninitialized ieee address

ShortAddr = struct ShortNull | Short1; % ShortNull is the uninitialized short address

PanId = struct PanNull | Pan1; % PanNull is the uninitialized PAN number

Vers = struct V1 | V2 | V3;

Imgs = struct IMGs(norm_img:Img, fallb_img:Img, active:ImgType);

Img = struct IMG(vers:Vers);

% Images, a node has 2 images, a NORMAL and FALLBACK

ImgType = struct NORMAL_IMAGE?IsNORMAL_IMAGE

| FALLBACK_IMAGE?IsFALLBACK_IMAGE;

% Different types of messages

MsgTypeS

= struct Msg_GET_INFO ?IsMsg_GET_INFO

| Msg_GET_MAC ?IsMsg_GET_MAC

| Msg_COMM_MSG0 ?IsMsg_COMM_MSG0

| Msg_COMM_MSG1(short:ShortAddr, panId:PanId) ?IsMsg_COMM_MSG1

| Msg_DECOMM ?IsMsg_DECOMM

| Msg_SEC_REBOOT ?IsMsg_SEC_REBOOT

;

MsgTypeR

= struct Msg_GET_INFO_RESP(olcInfo:OlcInfo) ?IsMsg_GET_INFO_RESP

| Msg_GET_MAC_RESP(ieee:IeeeAddr) ?IsMsg_GET_MAC_RESP

| Msg_CMD_INVALID(msg:MsgTypeS) ?IsMsg_CMD_INVALID

| Msg_ERR_OK(msg:MsgTypeS) ?IsMsg_ERR_OK

;

Msg

= struct MSG(des:MsgDes, msg:MsgTypeS)?IsMSG

| MSG_UcastResp(msgr:MsgTypeR)?IsMSG_UcastResp

;

MsgDes

= struct Ucast(ieee:IeeeAddr, short:ShortAddr)?IsUcast

;

OlcInfo

= struct Olc_Info(imgNormVers:Vers, imgFallVers:Vers, activeImg:ImgType, ieee:IeeeAddr,

short:ShortAddr,panId:PanId, commState:OLCCommState, isExtended:Bool);

map versToNat: Vers -> Nat;

var v:Vers;

eqn (v == V1)-> versToNat(v) = 1;

(v == V2)-> versToNat(v) = 2;

(v == V3)-> versToNat(v) = 3;

map isAddressActive: Msg # Set(ShortAddr) # Set(IeeeAddr)-> Bool;

var m:Msg, shorts:Set(ShortAddr), ieees:Set(IeeeAddr);

eqn isAddressActive(m,shorts,ieees)

= ((ieee(des(m)) != IeeeNull && (ieee(des(m)) in ieees))

|| (short(des(m)) != ShortNull && (short(des(m)) in shorts)));

% This process keeps track of the addresses that are active in the network

% When ever an OLC is commissioned or decommissioned, addresses are removed or added.



% This is only used for modeling, to force reliable communication. Such that an OLC does not

% respond ONLY when the message is dropped.

act s_registerAddresses,r_registerAddresses,c_registerAddresses: IeeeAddr # ShortAddr;

s_unregisterShortAddress,r_unregisterShortAddress,c_unregisterShortAddress: ShortAddr;

s_addressIsActive,r_addressIsActive,c_addressIsActive: Msg # Bool;

proc

ActiveAddresses(ieees:Set(IeeeAddr),shorts:Set(ShortAddr))

= sum ieee:IeeeAddr,short:ShortAddr. r_registerAddresses(ieee,short).

ActiveAddresses(ieees=ieees+{ieee},shorts=shorts+{short})

+ sum short:ShortAddr. r_unregisterShortAddress(short). ActiveAddresses(shorts=shorts-{short})

+ sum m:Msg. r_addressIsActive(m,isAddressActive(m,shorts,ieees)). ActiveAddresses()

;

act infoOlc: IeeeAddr # ShortAddr # PanId # OLCCommState;

% END SHARED



G Commissioning SC component mCRL2 specification

Filename: Commissioning SC App.mcrl2

Description: This file contains the mCRL2 specification of the SC commissioning
component.

80



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SC Commissioning component                                                                                %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% NOTE:

% - The model is an abstraction from the latest ver sion of the implementation (as of april 2014)

% - From 2.0 and onwards the response data is exten ded with panid, short address and commstate.

% - From 2.0 and onwards AssignShortAddr has become  obsolete, this is done via secure commissioning.

% - Only commissioning and SWU of OLCs is considere d, not of the SCnode itself.

% - ActionType Error is renamed to ActionError, to distinguish from CommissioningState Error

% - The CommissioningState variable of the database  is named DBCommState

% - The CommissioningState commStateGetInfo is name d OLCCommState

sort

ThreadMsg

= struct

% scan DB for uncommissioned OLC, nr=1                 no data            no delay/5min

Msg_ScanAgain (nr :Pos,wait :Bool) ?IsMsg_ScanAgain

% OLCs in error state shall try again, nr=2            no data            1hour

| Msg_Retry_failed_OLCs (nr :Pos,wait :Bool) ?IsMsg_Retry_failed_OLCs

% See if Commissioning-SWU is needed, nr=3             no data            3.5min

| Msg_Start_SWU (nr :Pos,wait :Bool) ?IsMsg_Start_SWU

% Decommissioning step, nr=4                           data OLC id        no delay 

| Msg_Continue_Decommissioning (nr :Pos,id :ID ,wait :Bool) ?IsMsg_Continue_Decommissioning

% Decommissioning step, nr=5                           no data            no delay/30sec

| Msg_Finish_Decommissioning (nr :Pos,wait :Bool) ?IsMsg_Finish_Decommissioning

;

ThreadMsgQ = List(ThreadMsg );

% ThreadMsgQueue: only add message if ThreadMsg doe s not yet exists in ThreadMsgQ

map schedCommMsg: ThreadMsg #ThreadMsgQ -> ThreadMsgQ;

thrdMsgExists : ThreadMsg #ThreadMsgQ -> Bool;

thrdMsgExists' : ThreadMsg #ThreadMsgQ#Bool -> Bool;

clearCommMsg : ThreadMsg #ThreadMsgQ -> ThreadMsgQ;

var tm:ThreadMsg ,tmq:ThreadMsgQ,b:Bool;

eqn % schedule a commissionig thread msg, only if not e xists

schedCommMsg(tm,tmq) = if(thrdMsgExists (tm,tmq),tmq, tmq<|tm);

% check if the commissionig thread msg exists

thrdMsgExists (tm,tmq) = thrdMsgExists' (tm,tmq,false);

(tmq==[] )-> thrdMsgExists' (tm,tmq,b) = b;

! (tmq==[] )-> thrdMsgExists' (tm,tmq,b) = if(nr (head (tmq))==nr (tm), true, thrdMsgExists' (tm,tail (tmq),b));

% clearCommissioningMsg

(tmq==[] )-> clearCommMsg (tm,tmq) = tmq;

! (tmq==[] )-> clearCommMsg (tm,tmq)

= if(nr (head (tmq))==nr (tm), clearCommMsg (tm,tail (tmq)), head (tmq) |> clearCommMsg (tm,tail (tmq)));

map eqnSetDBCommState : ID # DBCommState # DB -> DB;

eqnSetDBActionType : ID # ActionType # DB -> DB;

%"select olc_id from OlcConfig_Actual 

% where CommissioningState is 'update' or Commissio ningState is 'commissioningError'

% and shortAddress is not 1 

% limit 1;"

eqnGetOlcWithPendingAction : DB -> DBvars ;

% s_pS_DbWrapper->GetOLCidWithErroneousStatus(&olcI d); 

%"select olc_id from OlcConfig_actual 

% where CommissioningState in ('error', 'waitForReb oot', 'waitForReboot&SWU', readyForSWUIncompleteRea dy',

%                              'readyForSWU', 'inco mpleteSWU', 'commissioningError') 

% and shortAddress is not 1 

% limit 1;"

eqnGetOLCidWithErroneousStatus : DB -> DBvars ;

eqnGetOLClist_in_State : DB # DBCommState -> List(DBvars );

eqnDeleteOlcFromDBWithStateReadyForDeletion : DB -> DB;

eqnSetErrorOlcsToUpdate : DB -> DB;

eqnGetOlcByID : ID # DB -> DBvars ;

eqnGetIEEElistOfOLCsToBeDeleted : DB -> List(IeeeAddr );

var db:DB, dbv :DBvars , id :ID , dcs :DBCommState, at :ActionType ;

eqn

(db==[] )-> eqnSetDBCommState (id ,dcs ,db) = [] ;



(db! =[] )-> eqnSetDBCommState (id ,dcs ,db)

= if(id (head (db))==id ,

DB_vars (id (head (db)), actionType (head (db)), dcs , ieee (head (db)),

short (head (db)), panId (head (db))) |> tail (db),

head (db)|>eqnSetDBCommState (id ,dcs ,tail (db)));

(db==[] )-> eqnSetDBActionType (id ,at ,db) = [] ;

(db! =[] )-> eqnSetDBActionType (id ,at ,db)

= if(id (head (db))==id ,

DB_vars (id (head (db)), at , commState (head (db)), ieee (head (db)),

short (head (db)), panId (head (db))) |> tail (db),

head (db)|>eqnSetDBActionType (id ,at ,tail (db)));

% GetOlcWithPendingAction: finds the first OLC with  DBCommState Update or CommissioningError

% NOTE: Does not depend on the ActionType

(db==[] )-> eqnGetOlcWithPendingAction (db) = DBOlcNotFound ;

(db! =[] )-> eqnGetOlcWithPendingAction (db)

= if((IsUpdate (commState (head (db))) || IsCommissioningError (commState (head (db)))),

head (db), eqnGetOlcWithPendingAction (tail (db)));

(db==[] )-> eqnGetOLCidWithErroneousStatus (db) = DBOlcNotFound ;

(db! =[] )-> eqnGetOLCidWithErroneousStatus (db)

= if((IsError (commState (head (db))) || IsWaitForReboot (commState (head (db)))

|| IsWaitForRebootAndSWU (commState (head (db)))

|| IsReadyForSWUIncompleteReady (commState (head (db)))

|| IsReadyForSWU (commState (head (db)))

|| IsIncompleteSWU (commState (head (db)))

|| IsCommissioningError (commState (head (db)))),

head (db), eqnGetOLCidWithErroneousStatus (tail (db)));

(db==[] )-> eqnGetOLClist_in_State (db,dcs ) = [] ;

(db! =[] )-> eqnGetOLClist_in_State (db,dcs )

= if(commState (head (db)) == dcs ,

head (db)|>eqnGetOLClist_in_State (tail (db),dcs ),

eqnGetOLClist_in_State (tail (db),dcs ));

(db==[] )-> eqnGetIEEElistOfOLCsToBeDeleted (db) = [] ;

(db! =[] )-> eqnGetIEEElistOfOLCsToBeDeleted (db)

= if(commState (head (db)) == ReadyForDeletion ,

ieee (head (db))|>eqnGetIEEElistOfOLCsToBeDeleted (tail (db)),

eqnGetIEEElistOfOLCsToBeDeleted (tail (db)));

(db==[] )-> eqnDeleteOlcFromDBWithStateReadyForDeletion (db) = [] ;

(db! =[] )-> eqnDeleteOlcFromDBWithStateReadyForDeletion (db)

= if(commState (head (db)) ! = ReadyForDeletion ,

head (db)|>eqnDeleteOlcFromDBWithStateReadyForDeletion (tail (db)),

eqnDeleteOlcFromDBWithStateReadyForDeletion (tail (db)));

(db==[] )-> eqnSetErrorOlcsToUpdate (db) = [] ;

(db! =[] )-> eqnSetErrorOlcsToUpdate (db)

= if((IsError (commState (head (db))) || IsWaitForReboot (commState (head (db)))

|| IsWaitForRebootAndSWU (commState (head (db)))

|| IsReadyForSWUIncompleteReady (commState (head (db)))

|| IsReadyForSWU (commState (head (db)))

|| IsIncompleteSWU (commState (head (db)))

|| IsCommissioningError (commState (head (db)))),

DB_vars (id (head (db)),actionType (head (db)),Update ,ieee (head (db)),short (head (db)),

panId (head (db)))|>eqnSetErrorOlcsToUpdate (tail (db)),

head (db)|>eqnSetErrorOlcsToUpdate (tail (db)));

(db==[] )-> eqnGetOlcByID (id ,db) = DBOlcNotFound ;

(db! =[] )-> eqnGetOlcByID (id ,db)

= if(id (head (db)) == id , head (db), eqnGetOlcByID (id ,tail (db)));

map checkNeedsSWU: OlcInfo # ScNode -> Bool;

swuIncompatible : OlcInfo # ScNode -> Bool;

getActiveVerOI : OlcInfo -> Vers ;

var oi :OlcInfo , sn:ScNode;

eqn checkNeedsSWU(oi ,sn) = (versToNat (imgNormVers (oi )) < versToNat (imgVers (sn))

|| versToNat (imgFallVers (oi )) < versToNat (imgVers (sn)));



swuIncompatible (oi ,sn) = (versToNat (imgNormVers (oi )) > versToNat (imgVers (sn))

|| versToNat (imgFallVers (oi )) > versToNat (imgVers (sn)));

getActiveVerOI (oi )

= if(IsNORMAL_IMAGE(activeImg (oi )), imgNormVers (oi ), imgFallVers (oi ));

sort

ActionType

= struct ActionCommissioning ?IsActionCommissioning

| ActionUpdate ?IsActionUpdate

| ActionDecommissioning ?IsActionDecommissioning

| ActionError ?IsActionError % Used as uninitialised value of an ActionType

| NoAction ?IsNoAction

| UpdateCalendar ?IsUpdateCalendar

| OLCReplacement ?IsOLCReplacement

;

DBCommState

= struct

% Operational state depends on action type

Update ?IsUpdate

% Decommissioning process is started

| Decommissioning ?IsDecommissioning

% Decommissioning process is finished.

| Decommissioned ?IsDecommissioned

% Decommissioning process is finished and the OLC c an be removed from the database.

| ReadyForDeletion ?IsReadyForDeletion

% Commissioning started and failed.

| CommissioningError ?IsCommissioningError

% OLC software version is newer than Scnode softwar e version. 

| Error_sw_incompatible ?IsError_sw_incompatible

% OLC had a reboot commando, after a timer the next  state is set to Ready.

| WaitForReboot ?IsWaitForReboot

% OLC had a reboot commando and needs a SWU, after a timer the next state is set to ReadyForSWU.

| WaitForRebootAndSWU ?IsWaitForRebootAndSWU

% At least one of the images of the OLC needs a SWU .           

| ReadyForSWU ?IsReadyForSWU

% See ReadyForSWU, only now for a whole segment upd ate.       

| ReadyForSWUIncomplete ?IsReadyForSWUIncomplete

% The main image is upgraded, fallback image still needs to be upgraded. OLC is now 

% operational (only for a whole segment update).

| ReadyForSWUIncompleteReady ?IsReadyForSWUIncompleteReady

% Error during SWU. 

| IncompleteSWU ?IsIncompleteSWU

% Multiple reasons can create this error

| Error ?IsError

% No action needs to be done

| Ready ?IsReady

;

DBvars

= struct DB_vars (id :ID , actionType :ActionType , commState :DBCommState, ieee :IeeeAddr ,

short :ShortAddr , panId :PanId )

| DBOlcNotFound ?IsDBOlcNotFound

;

DB = List(DBvars );

ScNode

= struct Sc_Node(imgVers :Vers );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%                                       SC                                        %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

act

findError : Msg;

tmp: OlcInfo # ScNode;

c_no_response_olc ,c_timeout ;

act

scStart ;



triggerDecommissioning , triggerLampTypeUpdate_LampReplacement : IeeeAddr # ShortAddr # PanId ;

triggerCommissioning : ID # IeeeAddr # ShortAddr # PanId ;

proc

CommStore(i :Nat, com:Bool, decom:Bool)

= (i <2)

-> sum id :ID , dbv :DBvars .

s_getOlcByID (id ,dbv ).

(!IsDBOlcNotFound (dbv ))

-> (

(!com )

-> triggerCommissioning (id (dbv ),ieee (dbv ),short (dbv ),panId (dbv )).

(s_storeActionType (id ,ActionCommissioning ) + s_storeActionType (id ,OLCReplacement )).

s_setCommissioningState (id ,Update ).

scStart .

s_scheduleCommissioningMsg (Msg_ScanAgain (1,false)).

CommStore(i =i +1, com=true)

+ (!decom )

-> triggerDecommissioning (ieee (dbv ),short (dbv ),panId (dbv )).

s_storeActionType (id ,ActionDecommissioning ).

s_setCommissioningState (id ,Update ).

scStart .

s_scheduleCommissioningMsg (Msg_ScanAgain (1,false)).

CommStore(i =i +1, decom=true)

)

;

% Database

act r_removeOlcFromDBWithStateReadyForDeletion ,s_removeOlcFromDBWithStateReadyForDeletion ;

c_removeOlcFromDBWithStateReadyForDeletion ;

r_getOLClist_in_State ,s_getOLClist_in_State ,c_getOLClist_in_State : DBCommState # List(DBvars );

r_getOlcWithPendingAction ,s_getOlcWithPendingAction ,c_getOlcWithPendingAction : DBvars ;

r_getOLCidWithErroneousStatus ,s_getOLCidWithErroneousStatus ,c_getOLCidWithErroneousStatus : DBvars ;

r_setCommissioningState ,s_setCommissioningState ,c_setCommissioningState : ID # DBCommState;

r_storeActionType ,s_storeActionType ,c_storeActionType : ID # ActionType ;

r_setErrorOlcsToUpdate ,s_setErrorOlcsToUpdate ,c_setErrorOlcsToUpdate ;

r_getOlcByID ,s_getOlcByID ,c_getOlcByID : ID # DBvars ;

r_getOLClist_ReadyForUpgrade ,s_getOLClist_ReadyForUpgrade ,c_getOLClist_ReadyForUpgrade : List(DBvars );

removedOlcsFromDB : List(IeeeAddr );

proc

P_DB(db:DB)

= r_removeOlcFromDBWithStateReadyForDeletion .

removedOlcsFromDB (eqnGetIEEElistOfOLCsToBeDeleted (db)).

P_DB(eqnDeleteOlcFromDBWithStateReadyForDeletion (db))

+ sum dbcs :DBCommState. r_getOLClist_in_State (dbcs ,eqnGetOLClist_in_State (db,dbcs )).

P_DB()

+ r_getOlcWithPendingAction (eqnGetOlcWithPendingAction (db)).

P_DB()

+ r_getOLCidWithErroneousStatus (eqnGetOLCidWithErroneousStatus (db)).

P_DB()

+ sum dbcs :DBCommState,id :ID . r_setCommissioningState (id ,dbcs ).

P_DB(eqnSetDBCommState (id ,dbcs ,db))

+ sum at :ActionType ,id :ID . r_storeActionType (id ,at ).

P_DB(eqnSetDBActionType (id ,at ,db))

+ r_setErrorOlcsToUpdate .

P_DB(eqnSetErrorOlcsToUpdate (db))

+ sum id :ID . r_getOlcByID (id ,eqnGetOlcByID (id ,db)).

P_DB()

+ r_getOLClist_ReadyForUpgrade (eqnGetOLClist_in_State (db,ReadyForSWU)

++eqnGetOLClist_in_State (db,ReadyForSWUIncomplete )).

P_DB()

;

% Thread Msg Queue

act s_scheduleCommissioningMsg ,r_scheduleCommissioningMsg ,c_scheduleCommissioningMsg :ThreadMsg ;

s_clearCommissioningMsg ,r_clearCommissioningMsg ,c_clearCommissioningMsg :ThreadMsg ;

s_queue_pop ,r_queue_pop ,c_queue_pop :ThreadMsg ;

s_queue_empty ,r_queue_empty ,c_queue_empty ;

proc

ThreadMsgQueue (thrd_msgs :ThreadMsgQ, withDelay :Bool)



= (! (#thrd_msgs == 0))

-> (#thrd_msgs >1&&withDelay )

-> ( s_queue_pop (thrd_msgs .0).

ThreadMsgQueue (thrd_msgs =clearCommMsg (thrd_msgs .0,thrd_msgs ))

+ s_queue_pop (thrd_msgs .1).

ThreadMsgQueue (thrd_msgs =clearCommMsg (thrd_msgs .1,thrd_msgs ))

)

<> s_queue_pop (thrd_msgs .0).

ThreadMsgQueue (thrd_msgs =clearCommMsg (thrd_msgs .0,thrd_msgs ))

<> s_queue_empty . ThreadMsgQueue ()

+ (#thrd_msgs < 6)

-> sum tm:ThreadMsg . r_scheduleCommissioningMsg (tm).

ThreadMsgQueue (thrd_msgs =schedCommMsg(tm,thrd_msgs ))

+ sum tm:ThreadMsg . r_clearCommissioningMsg (tm). ThreadMsgQueue (thrd_msgs =clearCommMsg (tm,thrd_msgs ));

% Commissioning Thread

act process :ThreadMsg ;

foundOlcWithPendingAction , foundOlcWithErroneousStatus :ID ;

noOlcWithErroneousStatus , executeOlcAction , noOlcWithPendingAction , noOLCsInDeletionState ;

hasActionType : ActionType ;

OLCsInDeletionState : List(DBvars );

receiveResp :Msg;

commOlcStateCommissioned ,commOlcStateNotCommissioned ,commOlcStateIEEEMisMatch ,

commOlcStateShortMisMatch ,commOlcStateUnreachable ;

timeout_sc ;

decommissionOlc : IeeeAddr # ShortAddr # PanId ;

commissionOlc : ID # IeeeAddr # ShortAddr # PanId ;

alreadyCommissioned : IeeeAddr ;

event_OlcDecommissionResolved ;

processingSWU , bothImgsUpgraded , atleastOneImgUpgradeFailed ,processingSWUdone ;

proc

CommThread(sc_node :ScNode)

= sum tm:ThreadMsg . r_queue_pop (tm). Processrequest (tm,sc_node )

+ r_queue_empty . CommThread()

;

Processrequest (thrd_msg :ThreadMsg ,sc_node :ScNode)

= (IsMsg_Continue_Decommissioning (thrd_msg ))

-> sum dbv :DBvars . s_getOlcByID (id (thrd_msg ),dbv ).

(!IsDBOlcNotFound (dbv ))

-> ScSend(MSG(Ucast (ieee (dbv ),ShortNull ),Msg_GET_INFO)).

( % No Response

timeout_sc

+ sum m_gi :Msg. (IsMSG_UcastResp (m_gi ) && IsMsg_GET_INFO_RESP(msgr (m_gi )))

-> receiveResp (m_gi )

).

% still continue, even if request GetInfo failed

ScSend(MSG(Ucast (IeeeNull ,short (dbv )),Msg_DECOMM)).

( timeout_sc .

Commissioning_DecommissioningFailed (id (dbv )).

% also send reboot when decommissioning message was  not received

ScSend(MSG(Ucast (IeeeNull ,short (dbv )),Msg_SEC_REBOOT)).

( % No Response

timeout_sc

+ sum m:Msg. (IsMSG_UcastResp (m) && IsMsg_SEC_REBOOT(msg(msgr (m))))

-> receiveResp (m)

)

+ sum m:Msg. (IsMSG_UcastResp (m) && IsMsg_DECOMM(msg(msgr (m))))

-> receiveResp (m).

(IsMsg_ERR_OK(msgr (m)))

-> ScSend(MSG(Ucast (IeeeNull ,short (dbv )),Msg_SEC_REBOOT)).

( % No Response

timeout_sc .

Commissioning_DecommissioningFailed (id (dbv ))

+ sum m:Msg.

(IsMSG_UcastResp (m) && IsMsg_SEC_REBOOT(msg(msgr (m))))

-> receiveResp (m).

(IsMsg_ERR_OK(msgr (m)))

-> % A_Commissioning_DecommissioningDone, both decommi ssioning messages are OK

% 1. Set decommissioned olc state to decommissioned



s_setCommissioningState (id (dbv ),Decommissioned ).

% 2. Send the Pending Logs if any for the decommiss ioned olc and wait

% callback_SendLogReportForDecommissionedOLCs(olcIn fo->id);

s_setLogReporter (id (dbv ))

<> % function:A_Commissioning_DecommissioningFailed

% not sure what has happened to the OLC, let the CM S try again

s_setCommissioningState (id (dbv ),Error )

)

<> % also send reboot when decommissioning message cau sed an error

ScSend(MSG(Ucast (IeeeNull ,short (dbv )),Msg_SEC_REBOOT)).

( % No Response

timeout_sc

+ sum m:Msg. (IsMSG_UcastResp (m) && IsMsg_SEC_REBOOT(msg(msgr (m))))

-> receiveResp (m)

).

Commissioning_DecommissioningFailed (id (dbv ))

).

CommThread(sc_node )

<> % Failed to retrieve OLC %s from DB

% NOTE: In the implementation the 

CommThread(sc_node )

+ (IsMsg_Finish_Decommissioning (thrd_msg ))

-> sum lstReadyForDel :List(DBvars ). s_getOLClist_in_State (ReadyForDeletion ,lstReadyForDel ).

(lstReadyForDel ==[] )

-> noOLCsInDeletionState .

CommThread(sc_node )

<> OLCsInDeletionState (lstReadyForDel ).

s_scheduleCommissioningMsg (Msg_Finish_Decommissioning (5,true)).

event_OlcDecommissionResolved .

% NOTE: Remove OLCs from database only if they have  no pending events other 

% than decommissioning

s_removeOlcFromDBWithStateReadyForDeletion .

CommThread(sc_node )

+ (IsMsg_Retry_failed_OLCs (thrd_msg ))

-> % Msg_Retry_failed_OLCs, function: A_Commissioning_ SetErrorOlcsToUpdate()

s_setErrorOlcsToUpdate .

s_scheduleCommissioningMsg (Msg_ScanAgain (1,false)).

CommThread(sc_node )

+ (IsMsg_ScanAgain (thrd_msg ))

-> s_clearCommissioningMsg (Msg_Start_SWU (3,false)).

sum dbv :DBvars . s_getOlcWithPendingAction (dbv ).

% A_Commissioning_CommissioningOlcAllowed()

( (IsDBOlcNotFound (dbv ))

-> % no OLC found

noOlcWithPendingAction .

sum dbv :DBvars . s_getOLCidWithErroneousStatus (dbv ).

((IsDBOlcNotFound (dbv ))

-> noOlcWithErroneousStatus

<> foundOlcWithErroneousStatus (id (dbv )).

s_scheduleCommissioningMsg (Msg_Retry_failed_OLCs (2,true))

).

s_scheduleCommissioningMsg (Msg_Start_SWU (3,true))

<> % OLC found

foundOlcWithPendingAction (id (dbv )).

% A_Commissioning_ExecuteOlcAction

ExecuteOlcAction (sc_node ,dbv ).

% post a new signal for a next OLC

s_scheduleCommissioningMsg (Msg_ScanAgain (1,false))

).

CommThread(sc_node )

+ (IsMsg_Start_SWU (thrd_msg ))

-> % ListCleanupSuccessfulOLCs

processingSWU .

sum ldbv :List(DBvars ). s_getOLClist_ReadyForUpgrade (ldbv ).

(((ldbv ) ! = [] )

-> SWUResult (ldbv )

<> processingSWUdone .

CompleteDecommissioning

).



CommThread(sc_node )

;

SWUResult (ldbv :List(DBvars ))

= ( bothImgsUpgraded .

CommissioningDone (head (ldbv ))

+ atleastOneImgUpgradeFailed .

s_setCommissioningState (id (head (ldbv )),IncompleteSWU ).

s_scheduleCommissioningMsg (Msg_ScanAgain (1,false))

).

((tail (ldbv ) ! = [] )

-> SWUResult (tail (ldbv ))

<> processingSWUdone )

;

ResolveOlcsInStateDecommissioned

= sum lstDBvars :List(DBvars ). s_getOLClist_in_State (Decommissioned ,lstDBvars ).

ResolveOlcsInStateDecommissionedLoop (lstDBvars )

;

ResolveOlcsInStateDecommissionedLoop (lstDBvars :List(DBvars ))

= (lstDBvars! =[] )

-> s_setCommissioningState (id (head (lstDBvars )),Decommissioned ).

% 2. Send the Pending Logs if any for the decommiss ioned olc and wait

s_setLogReporter (id (head (lstDBvars ))).

ResolveOlcsInStateDecommissionedLoop (tail (lstDBvars ))

<> tau

;

ExecuteOlcAction (sc_node :ScNode, dbv :DBvars )

= executeOlcAction .

hasActionType (actionType (dbv )).

(

(IsActionError (actionType (dbv )) || IsNoAction (actionType (dbv )))

-> % ActionError or NoAction

% post a new signal for a next OLC

s_setCommissioningState (id (dbv ),Ready)

+ (IsUpdateCalendar (actionType (dbv )))

-> % Action UpdateCalender

s_setCommissioningState (id (dbv ),Ready).

s_storeActionType (id (dbv ),NoAction )

+ (IsActionCommissioning (actionType (dbv )) || IsActionUpdate (actionType (dbv ))

|| IsOLCReplacement (actionType (dbv )))

-> %ActionCommissioning or ActionUpdate or OLCReplacem ent 

commissionOlc (id (dbv ),ieee (dbv ),short (dbv ),panId (dbv )).

%NOTE: (OLCReplacement first does ResetRxCounters)

% GetVersionInfo

ScSend(MSG(Ucast (ieee (dbv ),ShortNull ),Msg_GET_INFO)).

( % No Response

timeout_sc .

% function: A_Commissioning_CommissioningFailed

s_setCommissioningState (id (dbv ),Error )

+ % Response on GetInfo message

sum m_gi :Msg. (IsMSG_UcastResp (m_gi ) && IsMsg_GET_INFO_RESP(msgr (m_gi )))

-> receiveResp (m_gi ).

((isExtended (olcInfo (msgr (m_gi ))))

-> ( (IsCOMM_STATE_UNCOMMISSIONED(commState (olcInfo (msgr (m_gi ))))

|| IsCOMM_STATE_COMMISSIONED_NEEDS_REBOOT(commState (olcInfo (msgr (m_gi )))))

-> CommOlcStateNotCommissioned (sc_node ,dbv ,olcInfo (msgr (m_gi )))

+ (IsCOMM_STATE_COMMISSIONED(commState (olcInfo (msgr (m_gi )))))

-> alreadyCommissioned (ieee (dbv )).

(short (dbv )==short (olcInfo (msgr (m_gi )))

&& panId (dbv )==panId (olcInfo (msgr (m_gi ))))

-> CommOlcStateCommissioned (sc_node ,olcInfo (msgr (m_gi )),dbv )

<> commOlcStateShortMisMatch .

% function: A_Commissioning_CommissioningFailed

((swuIncompatible (olcInfo (msgr (m_gi )), sc_node ))

-> s_setCommissioningState (id (dbv ),Error_sw_incompatible )



<> s_setCommissioningState (id (dbv ),Error ))

+ (IsCOMM_STATE_DECOMMISSIONING(commState (olcInfo (msgr (m_gi )))))

-> % NOTE: 3184    //shall never occur...: But it does . When 

% commOlcStateUnreachable is set in the function: 

% A_Commissioning_CheckCommissioningNeeded, then th ere is no case for it

commOlcStateUnreachable .

% function: A_Commissioning_CommissioningFailed

((swuIncompatible (olcInfo (msgr (m_gi )), sc_node ))

-> s_setCommissioningState (id (dbv ),Error_sw_incompatible )

<> s_setCommissioningState (id (dbv ),Error ))

)

<> ScSend(MSG(Ucast (ieee (dbv ),ShortNull ),Msg_GET_MAC)).

% either a timeout comes, or a message arrives

( % No response, either because the OLC is commmisssi oned, or message is 

% dropped

timeout_sc .

ScSend(MSG(Ucast (IeeeNull ,short (dbv )),Msg_GET_MAC)).

( % No Response

timeout_sc .

CommOlcStateNotCommissioned (sc_node ,dbv ,olcInfo (msgr (m_gi )))

+ % Response on Get MAC message addressed to short ad dress

sum m:Msg. (IsMsg_GET_MAC_RESP(msgr (m)))

-> receiveResp (m).

(ieee (dbv ) == ieee (msgr (m)))

-> CommOlcStateCommissioned (sc_node ,olcInfo (msgr (m_gi )),dbv )

<> commOlcStateIEEEMisMatch .

((swuIncompatible (olcInfo (msgr (m_gi )), sc_node ))

-> s_setCommissioningState (id (dbv ),Error_sw_incompatible )

<> s_setCommissioningState (id (dbv ),Error ))

)

+ % Response on Get MAC message addressed to ieee add ress

sum m:Msg. (IsMsg_GET_MAC_RESP(msgr (m)))

-> receiveResp (m).

CommOlcStateNotCommissioned (sc_node ,dbv ,olcInfo (msgr (m_gi )))

)

)

)

+ (IsActionDecommissioning (actionType (dbv )))

-> % Action Decommissioning

decommissionOlc (ieee (dbv ),short (dbv ),panId (dbv )).

ScSend(MSG(Ucast (ieee (dbv ),ShortNull ),Msg_GET_INFO)).

( % No Response

timeout_sc .

s_setCommissioningState (id (dbv ),Error )

+ % Response on GetInfo message

sum m_gi :Msg. (IsMSG_UcastResp (m_gi ) && IsMsg_GET_INFO_RESP(msgr (m_gi )))

-> receiveResp (m_gi ).

(isExtended (olcInfo (msgr (m_gi ))) && short (olcInfo (msgr (m_gi )))==ShortNull

&& panId (olcInfo (msgr (m_gi )))==PanNull )

-> commOlcStateNotCommissioned .

% If we think we need to decommission (entry in dat abase), but the OLC is not 

% commissioned, the decommission entry in the datab ase needs to go away ...

% function: A_Commissioning_DecommissioningDone

s_setCommissioningState (id (dbv ),Decommissioned ).

% 2. Send the Pending Logs if any for the decommiss ioned olc and wait

s_setLogReporter (id (dbv ))

<> % function: A_Commissioning_CheckDecommissioningNee ded

ScSend(MSG(Ucast (IeeeNull ,short (dbv )),Msg_GET_MAC)).

( % No Response

timeout_sc .

% function: A_Commissioning_CheckOlcIsInDecommissio nedState

ScSend(MSG(Ucast (ieee (dbv ),ShortNull ),Msg_GET_MAC)).

% either a timeout comes, or a message arrives

( % No response

timeout_sc .

commOlcStateUnreachable .

% function: A_Commissioning_DecommissioningFailed

s_setCommissioningState (id (dbv ),Error )



+ sum m:Msg. (IsMsg_GET_MAC_RESP(msgr (m)))

-> receiveResp (m).

commOlcStateNotCommissioned .

% function: A_Commissioning_DecommissioningDone

s_setCommissioningState (id (dbv ),Decommissioned ).

% 2. Send the Pending Logs if any for the decommiss ioned olc and wait

s_setLogReporter (id (dbv ))

)

+ % Response on Get MAC message, OLC is reached on it s short address.

sum m:Msg. (IsMsg_GET_MAC_RESP(msgr (m)))

-> receiveResp (m).

commOlcStateCommissioned .

s_setCommissioningState (id (dbv ),Decommissioning ).

% Complete the missing gaps if any for the olc via logcompleter

% Since we are going to decommission this olc, try only once

% s_pA_LogCompleter->Trigger(olcInfo.id, true);

% After LogCompleter finished, a callback is trigge red?

s_setLogCompleter (id (dbv ))

)

)

)

;

proc

Commissioning_DecommissioningFailed (id :ID )

= % function:A_Commissioning_DecommissioningFailed

s_setCommissioningState (id ,Error ).

%NOTE: This line below is added, to prevent a singl e dropped message from never decommissining 

%  the OLC, thus failing the requirement.

s_scheduleCommissioningMsg (Msg_Retry_failed_OLCs (2,false))

;

proc

CommOlcStateCommissioned (sc_node :ScNode, olc_info :OlcInfo , dbv :DBvars )

= commOlcStateCommissioned .

tmp(olc_info , sc_node ).

NeedsSWU(sc_node , olc_info , dbv )

;

act olcNeedsSWU: OlcInfo # Bool;

proc

NeedsSWU(sc_node :ScNode, olc_info :OlcInfo , dbv :DBvars )

= (checkNeedsSWU(olc_info , sc_node ))

-> olcNeedsSWU(olc_info , true).

s_setCommissioningState (id (dbv ),ReadyForSWU)

<> olcNeedsSWU(olc_info , false).

CommissioningDone (dbv )

;

act commissioningDone ;

proc

CommissioningDone (dbv :DBvars )

= commissioningDone .

sum dbv' :DBvars . s_getOlcByID (id (dbv ),dbv' ).

(!IsDBOlcNotFound (dbv' ))

-> ( (IsActionCommissioning (actionType (dbv' )))

-> s_setCommissioningState (id (dbv' ),Ready).

s_storeActionType (id (dbv' ),NoAction )

+ (IsOLCReplacement (actionType (dbv' )))

-> s_storeActionType (id (dbv' ),NoAction )

+ (!IsActionCommissioning (actionType (dbv' ))

&& !IsOLCReplacement (actionType (dbv' )))

-> s_storeActionType (id (dbv' ),NoAction )

)

;

proc

LastPartFastReboot (sc_node :ScNode, olc_info :OlcInfo , dbv :DBvars )

= ((checkNeedsSWU(olc_info , sc_node ))



-> s_setCommissioningState (id (dbv ),WaitForRebootAndSWU )

<> s_setCommissioningState (id (dbv ),WaitForReboot )

).

NeedsSWU(sc_node , olc_info , dbv )

;

act fastRebootOlc , sendAddressingInfo , configOlc , resetRxCounters ;

secureCommissioningFailed : IeeeAddr ;

proc

CommOlcStateNotCommissioned (sc_node :ScNode, dbv :DBvars , olc_info :OlcInfo )

= commOlcStateNotCommissioned .

( ((isExtended (olc_info ) && (IsCOMM_STATE_UNCOMMISSIONED(commState (olc_info ))))

|| !isExtended (olc_info ))

-> configOlc .

sendAddressingInfo .

% When old version (<V2 then AssignShortAddress), e lse secure commissioning.

(versToNat (getActiveVerOI (olc_info )) >= versToNat (V2))

-> % Send first secure commissioning message

ScSend(MSG(Ucast (ieee (dbv ),ShortNull ),Msg_COMM_MSG0)).

( timeout_sc .

((swuIncompatible (olc_info , sc_node ))

-> s_setCommissioningState (id (dbv ),Error_sw_incompatible )

<> s_setCommissioningState (id (dbv ),CommissioningError )

).

secureCommissioningFailed (ieee (dbv ))

+ sum m:Msg. (IsMSG_UcastResp (m) && IsMsg_COMM_MSG0(msg(msgr (m))))

-> receiveResp (m).

(IsMsg_ERR_OK(msgr (m)))

-> % Send second secure commissioning message

ScSend(MSG(Ucast (ieee (dbv ),ShortNull ),Msg_COMM_MSG1(short (dbv ), panId (dbv )))).

( timeout_sc .

((swuIncompatible (olc_info , sc_node ))

-> s_setCommissioningState (id (dbv ),Error_sw_incompatible )

<> s_setCommissioningState (id (dbv ),CommissioningError )

).

secureCommissioningFailed (ieee (dbv ))

+ sum m:Msg. (IsMSG_UcastResp (m) && IsMsg_COMM_MSG1(msg(msgr (m))))

-> receiveResp (m).

(IsMsg_ERR_OK(msgr (m)))

-> fastRebootOlc .

ScSend(MSG(Ucast (ieee (dbv ),ShortNull ),Msg_SEC_REBOOT)).

( timeout_sc .

((swuIncompatible (olc_info , sc_node ))

-> s_setCommissioningState (id (dbv ),Error_sw_incompatible )

<> s_setCommissioningState (id (dbv ),CommissioningError )

).

secureCommissioningFailed (ieee (dbv ))

+ sum m:Msg. (IsMSG_UcastResp (m) && IsMsg_SEC_REBOOT(msg(msgr (m))))

-> receiveResp (m).

(IsMsg_ERR_OK(msgr (m)))

-> LastPartFastReboot (sc_node , olc_info , dbv ).

resetRxCounters

<> ((swuIncompatible (olc_info , sc_node ))

-> s_setCommissioningState (id (dbv ),Error_sw_incompatible )

<> s_setCommissioningState (id (dbv ),CommissioningError )

).

secureCommissioningFailed (ieee (dbv ))

)

<> ((swuIncompatible (olc_info , sc_node ))

-> s_setCommissioningState (id (dbv ),Error_sw_incompatible )

<> s_setCommissioningState (id (dbv ),CommissioningError )

).

secureCommissioningFailed (ieee (dbv ))

)

<> ((swuIncompatible (olc_info , sc_node ))

-> s_setCommissioningState (id (dbv ),Error_sw_incompatible )

<> s_setCommissioningState (id (dbv ),CommissioningError )

).

secureCommissioningFailed (ieee (dbv ))



)

+ (isExtended (olc_info ) && (IsCOMM_STATE_COMMISSIONED_NEEDS_REBOOT(commState (olc_info ))))

-> fastRebootOlc .

ScSend(MSG(Ucast (ieee (dbv ),ShortNull ),Msg_SEC_REBOOT)).

( timeout_sc

+ sum m:Msg. (IsMSG_UcastResp (m) && IsMsg_SEC_REBOOT(msg(msgr (m))))

-> receiveResp (m).

(IsMsg_ERR_OK(msgr (m)))

-> LastPartFastReboot (sc_node , olc_info , dbv ).

resetRxCounters

<> ((swuIncompatible (olc_info , sc_node ))

-> s_setCommissioningState (id (dbv ),Error_sw_incompatible )

<> s_setCommissioningState (id (dbv ),CommissioningError )

).

secureCommissioningFailed (ieee (dbv ))

).

resetRxCounters

)

;

act scSend :Msg # Bool;

scSend_drop :Msg;

proc

ScSend(m:Msg) = sum addrIsActive :Bool. scSend (m,addrIsActive )

+ scSend_drop (m)

;

act s_setLogReporter ,r_setLogReporter ,c_setLogReporter : ID ;

s_setLogCompleter ,r_setLogCompleter ,c_setLogCompleter : ID ;

proc Callback (logCompleter :List(ID ), logReporter :List(ID ))

= sum id :ID . r_setLogCompleter (id ). Callback (logCompleter =logCompleter <|id )

+ sum id :ID . r_setLogReporter (id ). Callback (logReporter =logReporter <|id )

+ (#logCompleter >0)

-> % This is called by logcompleter, and calls the fuc tion: continueDecommissioning

sum dbv :DBvars . s_getOlcByID (head (logCompleter ),dbv ).

(!IsDBOlcNotFound (dbv ) && IsDecommissioning (commState (dbv )))

-> s_scheduleCommissioningMsg (Msg_Continue_Decommissioning (4,head (logCompleter ),false)).

Callback (logCompleter =tail (logCompleter ))

<> Callback (logCompleter =tail (logCompleter ))

+ (#logReporter >0)

-> % This is called by A_Commissioning_Decommissioning Done

% setCommissioningState is set in LogReporter.c

s_setCommissioningState (head (logReporter ),ReadyForDeletion ).

% next is executed in Commissioning.c, function:Com pleteDecommissioning

CompleteDecommissioning .

Callback (logReporter =tail (logReporter ))

;

proc

CompleteDecommissioning

= % next is executed in Commissioning.c, function:Com pleteDecommissioning

sum lstReadyForDel :List(DBvars ). s_getOLClist_in_State (ReadyForDeletion ,lstReadyForDel ).

((lstReadyForDel ==[] )

-> noOLCsInDeletionState

<> s_scheduleCommissioningMsg (Msg_Finish_Decommissioning (5,false))

)

;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%                                     Network                                     %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   

act netR_scSend ,netS_scSend ,comS2O:Msg # Bool;

netR_olcSendResp ,netS_olcSendResp ,netR_scSend_drop ,netR_olcSendResp_drop :Msg;

comO2S,comS2Odrop,comO2Sdrop:Msg;

r_no_response_olc ,timeout_net ;

proc

NET(dropS2O :Nat,dropO2S :Nat)

= sum m:Msg,addrIsActive :Bool.

netR_scSend (m,addrIsActive )|netS_scSend (m,addrIsActive )|s_addressIsActive (m,addrIsActive ).



(!addrIsActive )

-> timeout_net . NET()

<> NET()

+ (dropS2O >0)

-> sum m:Msg. netR_scSend_drop (m).

timeout_net .

%NET(dropS2O=Int2Nat(dropS2O-1))

NET()

+ sum m:Msg. netR_olcSendResp (m)|netS_olcSendResp (m). NET()

+ (dropO2S >0)

-> sum m:Msg. netR_olcSendResp_drop (m).

timeout_net .

%NET(dropO2S=Int2Nat(dropO2S-1))

NET()

+ % OLC does not send a response because it is not al lowed to do

r_no_response_olc .

timeout_net .

NET()

;



H Commissioning OLC component mCRL2 specification

Filename: Commissioning OLC App.mcrl2

Description: This file contains the mCRL2 specification of the OLC commissioning
component.

93



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% OLC Commissioning component                                                                               %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% NOTE:

%  - The model is an abstraction from the latest ve rsion of the implementation (as of april 2014)

%  - cfgShort:ShortAddr and cfgPanId:PanId are the PanId and Short address that after a succesfull

%    commissioning is saved, to be loaded as the co nfigured PanId and Short address. This is 

%    this is in the implementation saved into the e emprom.

sort

% Original struct name: BootUpData_t, element RFNwk _CommissionFlag

RFNwk_CommissionFlag

= struct COMMISSION_VALID ?IsCOMMISSION_VALID

| COMMISSION_BUSY_DECOM ?IsCOMMISSION_BUSY_DECOM

| COMMISSION_INVALID ?IsCOMMISSION_INVALID

;

% Original struct name: commissionEngineState_t

CEState

= struct CE_STATE_NOT_COMMISSIONED ?IsCE_STATE_NOT_COMMISSIONED

| CE_STATE_HANDSHAKE_DONE ?IsCE_STATE_HANDSHAKE_DONE

| CE_STATE_DECRYPT_PENDING ?IsCE_STATE_DECRYPT_PENDING

| CE_STATE_COMMISSIONED ?IsCE_STATE_COMMISSIONED

;

DoDecrypt

= struct DecryptEmpty ?IsDecryptEmpty

| Do_Decrypt (cyphermsg :MsgTypeS) ?IsDo_Decrypt

;

OlcVars

= struct Olc_Vars (ieee :IeeeAddr , short :ShortAddr , panId :PanId , imgs :Imgs ,

commState :OLCCommState, cestate :CEState , comm_flag :RFNwk_CommissionFlag ,

isUncommissioned :Bool, armForReboot :Bool, doDecrypt :DoDecrypt ,

cfgShort :ShortAddr , cfgPanId :PanId );

% Msg is either addressed to short address or ieee address.

% When an OLC is commissioned, it will only listen to messages sent to its short address, unless

% the sent message is a GetInfo message.

map isSentToIeee : Msg -> Bool;

isSentToShort : Msg -> Bool;

% When the OLC is assigned an short address, it is considered to be commissioned.

isCommissioned : ShortAddr -> Bool;

setCfgShortAddr : ShortAddr # OlcVars -> OlcVars ;

setCfgPanId : PanId # OlcVars -> OlcVars ;

setCeState : CEState # OlcVars -> OlcVars ;

setCommState : OLCCommState # OlcVars -> OlcVars ;

setRFNwk_CommissionFlag : RFNwk_CommissionFlag # OlcVars -> OlcVars ;

setArmForReboot : Bool # OlcVars -> OlcVars ;

setDoDecrypt : DoDecrypt # OlcVars -> OlcVars ;

var m:Msg, b:Bool, sa:ShortAddr , pi :PanId , ov:OlcVars , cs :CEState , cf :RFNwk_CommissionFlag ,

ocs :OLCCommState, dd:DoDecrypt ;

eqn isSentToIeee (m) = (short (des (m)) == ShortNull && ieee (des (m)) ! = IeeeNull );

isSentToShort (m) = (short (des (m)) ! = ShortNull && ieee (des (m)) == IeeeNull );

isCommissioned (sa) = (sa ! = ShortNull );

setCfgShortAddr (sa, ov)

= Olc_Vars (ieee (ov), short (ov), panId (ov), imgs (ov), commState (ov), cestate (ov), comm_flag (ov),

isUncommissioned (ov), armForReboot (ov), doDecrypt (ov), sa, cfgPanId (ov));

setCfgPanId (pi , ov)

= Olc_Vars (ieee (ov), short (ov), panId (ov), imgs (ov), commState (ov), cestate (ov), comm_flag (ov),

isUncommissioned (ov), armForReboot (ov), doDecrypt (ov), cfgShort (ov), pi );

setCeState (cs , ov)

= Olc_Vars (ieee (ov), short (ov), panId (ov), imgs (ov), commState (ov), cs , comm_flag (ov),

isUncommissioned (ov), armForReboot (ov), doDecrypt (ov), cfgShort (ov), cfgPanId (ov));

setCommState (ocs , ov)

= Olc_Vars (ieee (ov), short (ov), panId (ov), imgs (ov), ocs , cestate (ov), comm_flag (ov),

isUncommissioned (ov), armForReboot (ov), doDecrypt (ov), cfgShort (ov), cfgPanId (ov));

setRFNwk_CommissionFlag (cf , ov)

= Olc_Vars (ieee (ov), short (ov), panId (ov), imgs (ov), commState (ov), cestate (ov), cf ,

isUncommissioned (ov), armForReboot (ov), doDecrypt (ov), cfgShort (ov), cfgPanId (ov));



setArmForReboot (b,ov)

= Olc_Vars (ieee (ov), short (ov), panId (ov), imgs (ov), commState (ov), cestate (ov), comm_flag (ov),

isUncommissioned (ov), b, doDecrypt (ov), cfgShort (ov), cfgPanId (ov));

setDoDecrypt (dd,ov)

= Olc_Vars (ieee (ov), short (ov), panId (ov), imgs (ov), commState (ov), cestate (ov), comm_flag (ov),

isUncommissioned (ov), armForReboot (ov), dd, cfgShort (ov), cfgPanId (ov));

act

olcHandleMessage , olcHandleRebootMessage , olcDoDecrypt , olcAppInit , olcHandleCommissionMsg0 ;

olcHandleCommissionMsg1 ,olcHandleDecryptDone , olcCommEngInit , olcHandleDeCommissionMessage ;

olcState : OLCCommState # CEState # RFNwk_CommissionFlag #IeeeAddr # ShortAddr # PanId ;

olcReceive :Msg # Bool;

olcIsCommissioned : IeeeAddr # ShortAddr # PanId # Bool;

s_no_response_olc ;

msgNotFor : IeeeAddr # ShortAddr ;

olcHandled , armForReboot ,olcReboot ,olcCmdInvalid ,olcCommissionMsg1Handled ,olcStateNotOK ;

requestDecryptFailed ,requestDecryptOK ,olcDecryptError ,setConfig ,skip ;

proc

% from file: APP_Init.c

% Original function name: APP_Init

APP_Init (ieee :IeeeAddr , short :ShortAddr , pan:PanId , imgs :Imgs , comm_flag :RFNwk_CommissionFlag )

= olcAppInit .

s_registerAddresses (ieee ,short ).

(short ==ShortNull || pan==PanNull || comm_flag ! = COMMISSION_VALID)

-> APP_CommissioningEngine_Init (ieee ,ShortNull ,PanNull ,imgs ,COMMISSION_INVALID,true)

<> APP_CommissioningEngine_Init (ieee ,short ,pan,imgs ,comm_flag ,false)

;

% from file: APP_CommissioningEngine.c

% Original function name: APP_CommissioningEngine_I nit

% Sets CEState, OLCCommState

APP_CommissioningEngine_Init (ieee :IeeeAddr , short :ShortAddr , panId :PanId , imgs :Imgs ,

comm_flag :RFNwk_CommissionFlag , isUncommissioned :Bool)

= olcCommEngInit .

olcIsCommissioned (ieee ,short ,panId ,!isUncommissioned ).

(isUncommissioned )

-> infoOlc (ieee ,short ,panId ,COMM_STATE_UNCOMMISSIONED).

(comm_flag == COMMISSION_BUSY_DECOM)

-> HandleDeCommissionMessage (Olc_Vars (ieee ,short ,panId ,imgs , COMM_STATE_UNCOMMISSIONED,

CE_STATE_NOT_COMMISSIONED, comm_flag , isUncommissioned ,false,DecryptEmpty ,

short ,panId ),[] )

<> OLC(Olc_Vars (ieee ,short ,panId ,imgs , COMM_STATE_UNCOMMISSIONED, CE_STATE_NOT_COMMISSIONED,

comm_flag , isUncommissioned ,false,DecryptEmpty ,short ,panId ))

<> infoOlc (ieee ,short ,panId ,COMM_STATE_COMMISSIONED).

OLC(Olc_Vars (ieee ,short ,panId ,imgs , COMM_STATE_COMMISSIONED, CE_STATE_COMMISSIONED,

comm_flag , isUncommissioned ,false,DecryptEmpty ,short ,panId ))

;

% The main process of the commissioning engine on t he OLC

OLC(vars :OlcVars )

= ( sum m:Msg,addrIsActive :Bool.

olcReceive (m,addrIsActive ).

% Is the messsage for us?

(IsUcast (des (m)) && (isSentToIeee (m) && ieee (des (m)) == ieee (vars )

|| isSentToShort (m) && short (des (m)) == short (vars )))

-> (

(IsMsg_GET_INFO (msg(m)))

-> infoOlc (ieee (vars ),short (vars ),panId (vars ),commState (vars )).

SendResponse (MSG_UcastResp(Msg_GET_INFO_RESP(

Olc_Info (vers (norm_img (imgs (vars ))), vers (fallb_img (imgs (vars ))),

active (imgs (vars )), ieee (vars ), short (vars ),

panId (vars ), commState (vars ), true)))).

OLC()

+ % Only respond to GET MAC if (sent to IEEE && !comm issioned OR sent to Short and 

% commissioned)

(IsMsg_GET_MAC(msg(m)))

-> ((isCommissioned (short (vars )) && isSentToShort (m))

|| (!isCommissioned (short (vars )) && isSentToIeee (m)))

-> SendResponse (MSG_UcastResp(Msg_GET_MAC_RESP(ieee (vars )))).

OLC()



<> s_no_response_olc .

OLC()

+ (IsMsg_COMM_MSG0(msg(m)) || IsMsg_COMM_MSG1(msg(m))

|| IsMsg_DECOMM(msg(m)) || IsMsg_SEC_REBOOT(msg(m)))

-> HandleMessage (vars , msg(m))

)

<> msgNotFor (ieee (vars ),short (vars )).

OLC()

+ (armForReboot (vars ))

-> olcReboot .

% if we are decommissioning, short address needs to  be cleared for the new reboot.

(IsCOMM_STATE_DECOMMISSIONING(commState (vars )))

-> s_unregisterShortAddress (short (vars )).

APP_Init (ieee (vars ),ShortNull ,PanNull ,

IMGs(IMG(vers (norm_img (imgs (vars )))), IMG(vers (fallb_img (imgs (vars )))),

active (imgs (vars ))),

comm_flag (vars ))

<> APP_Init (ieee (vars ),cfgShort (vars ),cfgPanId (vars ),

IMGs(IMG(vers (norm_img (imgs (vars )))), IMG(vers (fallb_img (imgs (vars )))),

active (imgs (vars ))),

comm_flag (vars ))

+ (IsDo_Decrypt (doDecrypt (vars )))

-> olcDoDecrypt .

HandleDecryptDone (vars ,true)

+ olcState (commState (vars ),cestate (vars ),comm_flag (vars ),ieee (vars ),short (vars ),panId (vars )).

OLC()

)

;

% By default if the message can not be handled, the  reply command invalid (CMD_INVALID) will be sent

% Original function name: APP_CommissioningEngine_H andleMessage

HandleMessage (vars :OlcVars , msg:MsgTypeS)

= olcHandleMessage .

(isUncommissioned (vars ))

-> ( (IsMsg_COMM_MSG0(msg))

-> HandleCommissionMsg0 (vars ,msg)

+ (IsMsg_COMM_MSG1(msg))

-> HandleCommissionMsg1 (vars ,msg)

+ (IsMsg_SEC_REBOOT(msg))

-> HandleRebootMessage (vars ,msg)

+ (!IsMsg_COMM_MSG0(msg) && !IsMsg_COMM_MSG1(msg) && !IsMsg_SEC_REBOOT(msg))

-> olcCmdInvalid .

SendResponse (MSG_UcastResp(Msg_CMD_INVALID(msg))).

OLC(vars )

)

<> ( (IsMsg_DECOMM(msg))

-> HandleDeCommissionMessage (vars ,[msg] )

+ (IsMsg_SEC_REBOOT(msg))

-> HandleRebootMessage (vars ,msg)

+ (!IsMsg_DECOMM(msg) && !IsMsg_SEC_REBOOT(msg))

-> olcCmdInvalid .

SendResponse (MSG_UcastResp(Msg_CMD_INVALID(msg))).

OLC(vars )

)

;

% Original function name: SEC_NCE_HandleCommissionM sg0

HandleCommissionMsg0 (vars :OlcVars , msg:MsgTypeS)

= olcHandleCommissionMsg0 .

(IsCE_STATE_COMMISSIONED(cestate (vars )))

-> olcStateNotOK .

SendResponse (MSG_UcastResp(Msg_CMD_INVALID(msg))).

OLC(vars )

<> olcHandled .

SendResponse (MSG_UcastResp(Msg_ERR_OK(msg))).

OLC(setCeState (CE_STATE_HANDSHAKE_DONE,vars ))

;

% Original function name: SEC_NCE_HandleCommissionM sg1

HandleCommissionMsg1 (vars :OlcVars , msg:MsgTypeS)



= olcHandleCommissionMsg1 .

(cestate (vars ) ! = CE_STATE_HANDSHAKE_DONE)

-> olcStateNotOK .

SendResponse (MSG_UcastResp(Msg_CMD_INVALID(msg))).

OLC(vars )

<> olcCommissionMsg1Handled .

% Decrypt

% a decrypt job is posted, and will.....

( requestDecryptOK .

% We do not want to send a reply NOW! Decrypting th e message is done asynchronously! 

% Send the reply later

OLC(vars =setCeState (CE_STATE_DECRYPT_PENDING, setDoDecrypt (Do_Decrypt (msg),vars )))

+ % Could not post a decrypt job

requestDecryptFailed .

SendResponse (MSG_UcastResp(Msg_CMD_INVALID(msg))).

OLC(vars =setCeState (CE_STATE_NOT_COMMISSIONED, vars ))

)

;

% Original function name: HandleRebootMessage

HandleRebootMessage (vars :OlcVars , msg:MsgTypeS)

= olcHandleRebootMessage .

SendResponse (MSG_UcastResp(Msg_ERR_OK(msg))).

OLC(vars =setArmForReboot (true,vars ))

;

% Original function name: SEC_NCE_HandleDeCommissio nMessage

% Upon decomissioning de eprom is reinitialised, an d short addres and keys are then cleared.

% But RAM is not cleared, only upon start up the 'n ew' empty short address is loaded.

HandleDeCommissionMessage (vars :OlcVars , msg:List(MsgTypeS))

= olcHandleDeCommissionMessage .

(cestate (vars ) ! = CE_STATE_COMMISSIONED)

-> olcStateNotOK .

((#msg>0)-> SendResponse (MSG_UcastResp(Msg_CMD_INVALID(msg.0))) <> skip ).

OLC(vars )

<> ( armForReboot .

((#msg>0)-> SendResponse (MSG_UcastResp(Msg_ERR_OK(msg.0))) <> skip ).

OLC(vars =setRFNwk_CommissionFlag (COMMISSION_INVALID,

setCommState (COMM_STATE_DECOMMISSIONING,vars )))

)

;

% Original function name: APP_CommissioningEngine_H andleDecryptDone

HandleDecryptDone (vars :OlcVars ,isOk :Bool)

= (IsCE_STATE_DECRYPT_PENDING(cestate (vars )))

-> (isOk )

-> (short (cyphermsg (doDecrypt (vars ))) ! = ShortNull

&& panId (cyphermsg (doDecrypt (vars ))) ! = PanNull )

-> olcHandleDecryptDone .

setConfig .

SendResponse (MSG_UcastResp(Msg_ERR_OK(cyphermsg (doDecrypt (vars ))))).

OLC(setCfgShortAddr (short (cyphermsg (doDecrypt (vars ))),

setCfgPanId (panId (cyphermsg (doDecrypt (vars ))),

setDoDecrypt (DecryptEmpty ,

setCeState (CE_STATE_COMMISSIONED,

setCommState (COMM_STATE_COMMISSIONED_NEEDS_REBOOT,

setRFNwk_CommissionFlag (COMMISSION_VALID,vars )))))))

<> olcDecryptError .

SendResponse (MSG_UcastResp(Msg_CMD_INVALID(cyphermsg (doDecrypt (vars ))))).

OLC(setCeState (CE_STATE_NOT_COMMISSIONED,setDoDecrypt (DecryptEmpty ,vars )))

<> olcDecryptError .

SendResponse (MSG_UcastResp(Msg_CMD_INVALID(cyphermsg (doDecrypt (vars ))))).

OLC(setCeState (CE_STATE_NOT_COMMISSIONED,setDoDecrypt (DecryptEmpty ,vars )))

<> olcStateNotOK .

SendResponse (MSG_UcastResp(Msg_CMD_INVALID(cyphermsg (doDecrypt (vars ))))).

OLC(setDoDecrypt (DecryptEmpty ,vars ))

;

act olcSendResp ,olcSendResp_drop :Msg;

proc



SendResponse (m:Msg)

= olcSendResp (m)

+ olcSendResp_drop (m)

;

%NOTE: V1 OLCs worden niet ondersteund

InitOLCModel

= sum cf :RFNwk_CommissionFlag , short :ShortAddr , pan:PanId , ieee :IeeeAddr .

(ieee ! = IeeeNull )

-> APP_Init (ieee ,short ,pan,IMGs(IMG(V2), IMG(V2), NORMAL_IMAGE),cf )

;



I Rename file for requirement: An OLC may never be in an illegal state

Filename: rename illegal state.rename

Description: This file is used to rename an illegal action to action illegal. Such that the state
space can be searched to prove the absence of the illegal situation.

99



act illegal;

var

ieee:IeeeAddr;

short:ShortAddr;

ocs:OLCCommState;

ces:CEState;

cf:RFNwk_CommissionFlag;

pan:PanId;

rename

((ocs==COMM_STATE_COMMISSIONED || cf==COMMISSION_VALID || ces==CE_STATE_COMMISSIONED)

&& (short==ShortNull || pan==PanNull))

-> olcState(ocs,ces,cf,ieee,short,pan) => illegal;

100



J Rename file for requirement: An OLC cannot arrive in a state from
which it cannot be commissioned or decommissioned again.

Filename: hide actions for R02.rename

Description: This file is used to rename all actions to τ , apart from the action olcIsCommis-
sioned(ieee,short,pan,b), which is renamed to the shorter variant IsCommissioned(b). With
this, the requirement: ‘An OLC cannot arrive in a state from which it cannot be commissioned
or decommissioned’ can be verified.

101



act IsCommissioned: Bool;

var

m:Msg;

ieee:IeeeAddr;

short:ShortAddr;

b:Bool;

ocs:OLCCommState;

ces:CEState;

cf:RFNwk_CommissionFlag;

pan:PanId;

oi:OlcInfo;

rename

armForReboot => tau;

olcDoDecrypt => tau;

olcAppInit => tau;

olcHandleMessage => tau;

olcHandleRebootMessage => tau;

olcHandleCommissionMsg0 => tau;

olcHandleCommissionMsg1 => tau;

olcHandleDeCommissionMessage => tau;

olcHandleDecryptDone => tau;

olcIsCommissioned(ieee,short,pan,b) => IsCommissioned(b);

olcCommEngInit => tau;

olcHandled => tau;

olcReboot => tau;

olcCmdInvalid => tau;

msgNotFor(ieee,short) => tau;

olcCommissionMsg1Handled => tau;

olcStateNotOK => tau;

requestDecryptOK => tau;

olcDecryptError => tau;

setConfig => tau;

olcState(ocs,ces,cf,ieee,short,pan) => tau;

skip => tau;

olcSendResp(m) => tau;

com(m,b) => tau;

c_registerAddresses(ieee,short) => tau;

s_no_response_olc => tau;

infoOlc(ieee,short,pan,ocs) => tau;

c_unregisterShortAddress(short) => tau;

requestDecryptFailed => tau;

102


	Introduction
	Related work

	mCRL2
	mCRL2 Formal Specification Language
	Processes and actions
	Data types

	mCRL2 Toolset

	Introduction to the Starsense Wireless System
	Outdoor Luminance Controller
	Segment Controller
	CityTouch

	Software Upgrade Components
	Implementation
	Outdoor Luminance Controller Software Upgrade component
	Segment Controller Software Upgrade component

	Modeling
	Simplifications
	The OLC SWU model
	The SC SWU model
	The model of the interacting SC and OLC components

	Analysis
	Requirements
	OLCs not upgraded after message drop
	Odd behaviour and recommendations


	Commissioning Components
	Implementation
	Segment Controller Database
	Segment Controller CommissioningStore component
	Segment Controller Commissioning component
	Outdoor Luminance Controller Commissioning component

	Modeling
	Simplifications
	The OLC Commissioning model
	The SC Commissioning model
	The model of the interacting SC and OLC components

	Analysis
	Requirements on the OLC commissioning component
	Requirements on the interacting commissioning components


	System and Toolkit
	Conclusion
	Appendix
	Verify process flowchart
	Software Upgrade process mCRL2 specification
	Rename file for requirement: A started SWU process must always finish
	Combined OLC commissioning component mCRL2 specification
	Interacting commissioning components mCRL2 specification
	Commissioning Shared mCRL2 specification
	Commissioning SC component mCRL2 specification
	Commissioning OLC component mCRL2 specification
	Rename file for requirement: An OLC may never be in an illegal state
	Rename file for requirement: An OLC cannot arrive in a state from which it cannot be commissioned or decommissioned again.


