
 Eindhoven University of Technology

MASTER

Robustness analysis for distributed high-end servo control

Vaiyapuri, S.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d670306f-e0a3-468f-b8c8-8524ea80eb52


Robustness analysis for
distributed high-end servo

control

Santhosh Vaiyapuri
0825851

5T746 Master thesis ES -E

Tutor: ir. Shreya Adyanthaya1

Supervisor(s): dr.ir. Jeroen Voeten1,2

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems Group

Eindhoven, 29th August 2014

1Eindhoven University of Technology
2TNO-ESI, The Netherlands



2



Acknowledgement

I would like to express my deepest gratitude to my advisor, Dr. Jeroen Voeten, for his
support and guidance throughout the research. His mere presence in the team has inspired
me to perform this project effectively.

My profound thanks to my tutor, ir. Shreya Adyanthaya for her invaluable advice during
my research. In addition, I would like to express my sincere appreciation to Dr. Ramon
Schiffelers and Dr. Arno Moonen for their support and help with the CARM 2G tools and
planning of my thesis. Also, this project would not have been possible without the gener-
ous assistance of my colleagues at ASML.

I would like to dedicate this project to my father and mother. Without their encouragement,
I would not have had a chance to study abroad. I would also like to thank my best friends,
Vikram and Vignesh for their continued emotional support during the project.

3



4



Abstract

ASML is the world’s leading provider of complex lithography systems for the semicon-
ductor industry. Such systems consist of numerous servo control sub-systems. To design
such control systems, a multi-disciplinary model-based development environment has been
developed. It is based on a set of domain specific languages (DSLs) describing the servo
application, the execution platform and the mapping of the application on the platform.
These models are used to automatically schedule the servo tasks of a control application
on a multi-processor, multi-core execution platform. Currently schedules are computed
under the assumption that communication between servo tasks is timeless. In reality, this
is not true since tasks communicate via a packet-switched communication network based
on RapidIO technology. Due to communication contention, the communication times may
vary significantly. This implies that deadlines that are met according to the scheduler, may
be violated in reality when the schedules are executed on an ASML Twin-Scanner. To
improve predictability, ASML is working towards robust scheduling, implying that sched-
ules are able to tolerate communication-time variations, without affecting the variation in
end-to-end latencies and thereby minimizing the probability of deadline misses.

A computation combined with simulation based approach has previously been developed
at ASML assuming that communication is instantaneous. In this project, this approach
is extended with the ability to predict the impact of communication time variations. To
this end, the simulation part of the combined approach that transforms DSLs into an ex-
ecutable model in POOSL is extended such that the model incorporates the behavior of
the packet-switched RapidIO network. This model allows the stochastic communication
behavior to be simulated. The existing computational part of the combined approach com-
putes completion time bounds assuming instantaneous communication. In order to take
communication into account, we adopt another previously developed contention analysis
algorithm. This algorithm computes the additional waiting time owing to communication
contention on shared communication resources. However, this algorithm assumes infinite
buffers in the RapidIO network and does not compute the waiting time due to a system
wide phenomenon known as back-pressure that occurs in a RapidIO communication net-
work. In this project, this algorithm is extended with a conservative way of estimating
back-pressure. A combination of these two adaptations on the simulation part and compu-
tation part allows us to perform communication aware robustness analysis. This analysis
technique is applied to various ASML stacks of motion control applications and validated
against measurement data.
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Chapter 1

Introduction

ASML is the world’s leading provider of wafer scanners for the semiconductor industry.
Wafer scanners carry out a crucial processing step in the manufacturing of Integrated Cir-
cuits (IC) manufacturing. A scanner is an optical machine that shines a light onto a mask
(containing the pattern to be printed), reduces the image by a factor of four after which it
is exposed to a silicon wafer. After the pattern is exposed to a photo-sensitive layer (resist)
that is deposited on the wafer, the wafer is processed through various steps (ion implant-
ation, etching, polishing, deposition) after which the lithographic step is repeated. There
are about 20-90 lithographic steps depending on the dimensions and the type of the IC
to be manufactured. The name scanner is a short version of step and scan system as there
are stepping movements (to expose the mask multiple times) and scanning movements (to
expose different portion of the masks).

Recent requirements by customers have put forward the need for unprecedented precision
in those machines. In order to improve precision at higher speeds, the industry has turned
towards active imperfection correction of components and (sub) systems. Active imperfec-
tion correction is realized in the form of real-time embedded servo control systems.

1.1 Servo Control

Control theory is an interdisciplinary branch of engineering and mathematics that deals
with the behavior of dynamical systems with inputs and outputs. Feedback controls are
widely used in modern automated systems. A feedback control system consists of five basic
components: (1) input, (2) process being controlled, (3) output, (4) sensing elements, and
(5) controller and actuating devices. These five components are illustrated in Figure 1.1.
A typical example of a servo control system is an automated heating system. The input
(also called reference) is the desired temperature setting for a room given by the user. The
process being controlled is the heater. The output is the variable of the process that is
being measured and compared to the input; in the heating system, it is room temperature.
The sensing elements are the measuring devices used in the feedback loop to monitor the
value of the output variable. The purpose of the controller and actuating devices in the
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Figure 1.1: Servo Control

feedback system is to compare the measured output value with the reference input value
and to reduce the difference between them. In general, the controller and actuator of the
system are the mechanisms by which changes in the process are accomplished to influence
the output variable. When the output (room temperature) is below the set point, the switch
turns on the heater. When the temperature exceeds the set point, the heat is turned off.
The term closed-loop feedback control or servo control is often used to describe this kind
of control system.

1.2 Wafer Stage

In this project, the servo control of the wafer stage component inside AMSL’s wafer scanners
(see Figure 1.2) is analyzed. The wafer stage positions the wafer underneath the lens, such
that areas on the wafer can be printed with the feature pattern present in the mask. The
wafer stage consists of a fine positioning unit ("short stroke") and a coarse positioning unit
("long stroke"), plus various additional control units to support the positioning. Two wafer
stages exist in the system. The first one measures the entire wafer. The second one positions
the calibrated wafer for the actual exposure. In total, the control system for these two wafer
stages comprises over 250 sensors and actuators, and over 4000 control tasks for tens of
control networks. It forms a hard real-time system with computation latencies required to
be in the microseconds range at most [1].

These servo control systems consist of control applications that are mapped onto an execu-
tion platform. Control applications read values from sensors, perform a particular compu-
tational task and send the results to the actuators. This is repeated in a periodic fashion. In
reality, the ASML wafer scanners have hundreds of such applications, each with hundreds
of control tasks, sensors and actuators. This complexity grows with each new generation
of the scanners. To obtain the required performance needed by customers, control tasks
have to run at high rates and have to satisfy stringent latency requirements. These require-
ments are increasingly tightened from one generation of machines to the next. Also, the
number of dependencies between control applications have increased significantly due to
an increased number of physical subsystem interactions. They often have late changes in
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Figure 1.2: ASML TWINSCAN NXT wafer stages control

control requirements. These late changes and increase in complexity can result in timing
performance problems that show up only during the integration phase, which threatens the
time-to-market and time-to-quality constraints and also results in design iterations which
are costly. To support late changes in the development process, execution platforms are
desired to be reusable and reconfigurable. This leads to a need for a platform based design
process that clearly separates the concerns between application and platform.

1.3 Model based design space exploration

Model-driven design-space exploration is an approach with which design engineers can
predict the past and explore the future of an embedded system. This approach constructs
executable models that separate the embedded system application from the execution plat-
form on which it is mapped. The models can be calibrated with available measurements or
approximations to validate and improve the model’s predictive power.

The approach can be split into two steps,

1. Predict the past :

• Model the system by decomposing it in an application, a platform and a mapping
view.

• Calibrate the model with available measurements and validate its predictive
power.

2. Explore the future :

• Explore different alternatives of application and platform.

• Optimize application functionality, platform and mapping.

15
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Figure 1.3: Y-Chart approach to design space exploration

Design space exploration often follows the Y-Chart approach [2]. The approach for Model-
driven design-space exploration is shown in Figure 1.3. The concerns on functionality,
platform, and mapping are separated. Models of applications and platforms are made and
an explicit mapping step binds tasks and schedules in an application model to execution
platforms in a platform model. The mapping can be evaluated in terms of performance,
area, and power consumption. Results from the evaluation may trigger further iterations
of the mapping. The design engineer has the choice to modify the application and the
selection of platform building blocks, or the mapping strategy. After a series of iterations
and modifications, the optimized application mapped on platform is found.

1.4 CARM framework

CARM (Controller Architecture Reference Model) framework [3] is a framework that is
being used at ASML to design the servo control systems for the wafer stage and other sub-
systems. To support model based design space exploration, domain formalization, detailed
analysis and code generation a second generation of CARM is being actively developed.
CARM based design-space exploration approach allows rapid exploration of alternatives
for optimization of timing performances by separating the embedded control application
from the execution platform on which it is deployed.

The core of CARM 2G relies on a set of domain-specific languages (DSLs) that formalize in a
coherent and consistent unambiguous way the domain concepts governed by the different
CARM layers. This framework is developed to accommodate the ability to design with
multi-core processor boards and increasing sampling frequencies of the controllers. The
design process using CARM framework relies on three phases:

1. Specification By means of a multi-disciplinary integrated development environment
(IDE), formal models are developed that describe:
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(a) Control Logic : The control logic in terms of servo networks and transducers
(sensors and actuators).

(b) Computation Platform : Single/multi-core processors and FPGAs.

(c) Mapping : Deployment and scheduling of the control logic on the computational
platform.

Incorporating different levels of abstraction into the DSL framework reduces the com-
plexity of the (parallel) design process. The IDE provides the design engineers with
feedback on the models early in the design process improving the quality of the
designs.

2. Analysis Analysis models are used for making key decisions for which it has to be
proven that a design will work. Verification of the designs reduces the risk on er-
rors during integration, or eliminates the integration effort at all. In CARM, formal
specification models are used to analyze worst-case and best-case timing. The formal
specification models can also be transformed into executable models1 which can be
simulated to verify upfront whether the timing requirements are met and to predict
the effect of control loop changes and/or platform changes. This thesis project con-
tributes the analysis phase of the design trajectory.

3. Construction The formal specification models that were developed at specification
phase and analyzed at the analysis phase are used for;

(a) Code Generation : The formal specification models are used during the build by
code generators to generate the actual software that is executed on the lithoscan-
ners

(b) During Startup : During start-up of the lithoscanners, the formal specification
models are used to initialize the servo controllers and computation platforms,
and to schedule control blocks on the processors.

The Y-Chart approach is used to perform design space exploration in the CARM frame-
work. The definition of the applications, the platforms on which they are deployed and
their mappings are contained in DSLs. A transformation step is performed to generate
executable models. The Software/Hardware Engineering method and accompanying tools
with the underlying formal modeling language POOSL [4] was employed as basis of the
executable model architecture. The POOSL language and underlying simulation engine
allow for rapid analysis of timing performance through simulation of these models.

The results of the quantitative performance analysis yields valuable feedback on the ad-
equacy of the platform, the performance of the application, or the effectiveness of the map-
ping strategy [1]. Based on the insights gained, the procedure can be repeated in an iterative
way until a feasible platform for the complete set of applications is found.

1An executable model allows stochastic behavior of an embedded system to be analyzed by simulation.
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1.5 CARM Layers

CARM enables specification of the control logic and the execution platform at different
levels of abstraction by using DSLs. Figure 1.4 shows DSLs employed in CARM 2G by
classifying them into application, platform and mapping layers.

Figure 1.4: CARM Layers and their DSLs

1.5.1 Application layer

The application layer contains the description of the control application. It consists of
the control logic described by means of the PGAPP, PGSG, and PGWB languages, and
the description of the transducers in the transducer language. Networks of servo and
transducer groups are defined in the PGAPP language, servogroups in the PGSG language,
control blocks in the PGWB language and transducers in the Transducer language. By
means of the transducer language, electrical and mechanical transducers can be defined.
Transducers can be composed of multiple blocks, resulting in transducer groups.

1.5.2 Platform layer

In the platform layer, the execution platform of the lithoscanners is described. It consists of
3 domain-specific languages.
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Physical Platform Language

The physical platform language contains a description of (a subset of) the hardware and
their physical connections as present in the lithoscanners. They are;

• single and multi-core High Performance Process Controllers (HPPCs);

• input-output boards (IOBoards);

• electrical and mechanical transducers;

• network switches and connectivity;

A model in the physical platform language represents an instance of a platform. This
language also contains the configuration data of the physical platform at hand. An example
of configuration data for the physical platform is the information at which rate the IOBoards
are triggered to send (sensor) data. This configuration data depends on the application that
has to be executed as well as the physical limitations of the hardware. One example of a
physical hardware limitation is the maximum frequency at which an IOBoard can acquire
sensor data. This is also contained in this language.

Logical Platform

The logical platform language abstracts from the physical properties of the hardware such
as location, IOboard types, HPPC processor types, network connections etc. Concepts
contained in this language are;

• Worker : entity that can perform computations, abstracting from the real computing
hardware (HPPC). A worker contains one or more processingUnits.

• ProcessingUnit : entity abstracting from a processor/core

• IOWorker : entity abstracting from IOBoard type, and the location of Transducers

• Connection : entity abstracting from network type and topology. It is used for data
communication between workers and between workers and IOWorkers.

Platform Mapping

The platform mapping language contains the mapping from logical platform elements to
physical platform elements by defining directed associations between them. Typical ex-
amples of platform mapping are,

• Worker(s) to HPPC;

• IOWorker to IOBoard(s);

• Connection to Network Elements.
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1.5.3 Mapping layer

The mapping level describes the mapping of elements from the application language to
elements from the logical platform language (shown in Figure 1.5). The Deployment language
contains associations to the control application and the logical platform language. Typical
mappings are;

• ServoGroup to Worker;

• ControlBlock to ProcessingUnit;

• Channel to Connection;

Figure 1.5: Mapping of elements from the application language to elements from the
logical language

After scheduling, all controlblocks should be mapped to ProcessingUnits. Furthermore,
the controlBlocks should be ordered in their calculation order that is constrained by the
data dependencies present in the servo group model. This information is captured in the
Schedule language. More information regarding scheduling is given in Section 1.6.

1.6 Scheduling

The computation of a schedule is based on the information in the models from the CARM
framework. As a first step, essential scheduling information is extracted from the applica-
tion and mapping DSLs. This is done by a model-to-model transformation that constructs
a block dependency graph. The dependency graph specifies control blocks and their de-
pendencies. Latency requirements of the application are transformed into corresponding
deadlines of blocks. In addition, a control block is aware of the processor it is deployed on.
It also aware of its execution time.

In the second step, the essential information in the dependency graph is used to com-
pute schedules for each multi-core processor in the platform. The two steps are shown

20



in Figure 1.6. After computing a schedule, all controlBlocks should be mapped to Pro-
cessingUnits. Furthermore, the control blocks should be statically ordered in their calcula-
tion order that is respecting the data dependencies present in the servogroup model. The
scheduling is done using list Scheduling with Earliest Due-date First Heuristic [5].

Figure 1.6: Scheduling

1.7 Preliminaries

For a set X, we use X∗ to represent the collection of lists with elements from X.

• Application : An application is a directed acyclic graph (DAG) G = (T, D) with a set
of tasks T and a set of task dependencies D ⊆ T × T.

• Resources : The multiprocessor platform that the application is bound to consists of
processors called resources. R represents the set of resources of the platform.

• Dependency : (a, b) ∈ D denotes that task b is allowed to start its execution only after
the completion of task a. D is the collection of task dependencies.

• Task : A task t ∈ T is defined by a tuple t = (et, rt, dt) where et denotes the execution
time of t, rt denotes the resource that t is bound to and dt denotes the deadline of t.

• Schedule : A (static-order) schedule S is a mapping S : R → T∗ from the set R of
resources to ordered lists of tasks from T. S is a schedule for application G = (T, D)

iff a) every task in T appears once in the ordered list of exactly one of the resources
in S, b) S respects the task bindings and, c) dependencies.

• Execution Time : The execution Time is defined as the time that a task requires to com-
plete its execution on the execution platform that it is mapped upon. For a platform
with general purpose multi-core processors (such as the platform that exists in ASML
machines), the execution times fluctuate. Typically the execution time of a task t can
be characterized as a random variable (et) of a continuous probability distribution.
The bounds within which the execution time of a task fluctuate can be expressed in
terms of an interval. E(t) = [a, b] denotes that the execution of task t requires at least
a and at most b time units. bc(E(t)), wc(E(t)) represent the best-case execution time
and the worst-case execution time of task t respectively.
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• Completion Time : The completion Time is defined as the time at which a task will
complete its execution. Typically the completion time of a task t can be characterized
as a random variable (ct) of a continuous probability distribution. The completion
time of a task can also be represented as an interval (C(t)) similar to the execution
time of a task. The best-case completion time and the worst-case completion time of
the task t are represented as bc(C(t)), wc(C(t)) respectively.

• Feasible schedule : A feasible schedule is defined as a schedule in which all the tasks
meet their respective deadlines (∀t ∈ T : C(t) ≤ dlt)

1.8 Towards robust scheduling

The current scheduler assumes constant execution times for control tasks and also instant-
aneous communication times. High performance special purpose platforms such as FPGAs
and GPUs have architectures that are designed to be specific to the applications running on
them and have the advantage of high predictability. As such, there is little variation in the
execution times of the applications running on them. In ASML, the high cost of adapting
legacy software to application specific platforms have led to a trend of designing complex
embedded applications on general purpose platforms. With the advent of multi-core gen-
eral purpose platforms, the timing demands of complex embedded system can be satisfied.
However, these general purpose platforms suffer from low predictability and exhibit fluc-
tuations in execution timings. Also, the contention in accessing the shared communication
resource has led to fluctuations in communication delay. Hence, there is a need to cope
with these fluctuations and to be robust in nature.

Scheduling and analysis of applications in classical real time approaches mostly take the
worst case execution timings into account. If a static order schedule of an application meets
its latency requirements in the worst case, it is highly robust. However in the ASML wafer
scanner applications, it has been proven that execution timings vary in such a way that most
likely (nominal) execution times show a huge difference with the worst case and are lying
close to the best case execution times [6]. Scheduling of applications for the worst case
always requires excessive resources to meet latency requirements. If scheduling is done
for the nominal case, tasks can violate their latency requirements due to execution time
variations. This raises the concern that schedules running on general purpose platforms
must be robust to be able to cope with these execution time fluctuations with low probability
of resulting in failures. To produce schedules that are maximally robust against execution
time fluctuations, we need to design robust schedulers. This requires three steps,

1. Defining a robustness metric for schedules.

2. Developing a method for analyzing the robustness of schedules.

3. Extend the current scheduler to use robustness analysis to steer scheduling decisions.

The first step has already been finished. This thesis project contributes to step two. The
third step is a work in progress.
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1.9 Outline

This report is organized as follows,

• Chapter 2 - Problem Definition: This chapter describes the challenges in the project
and also about the prior work that was performed in order to tackle the challenges.

• Chapter 3 and Chapter 4 - Approach: This chapter presents the models and methods
used to solve the problem. It also describes the motivation behind choosing those
methods.

• Chapter 5 - Results: This chapter presents the results of the approach experimented
on an ASML wafer stage stack. It also describes the insights gained regarding the
robustness of a schedule.

• Chapter 6 - Calibration: This chapter describes about the calibration process. It
describes how predicted results have been compared with measurements to perform
the calibration process. It also describes other challenges that were triggered during
this project.

• Chapter 7 - Conclusions: This chapter describes the validation of the approach under
ASML industrial context and identifies the possible improvements to this project.

• Bibliography: Contains the references to relevant literature in this report.

• Appendix: This part contains the related work, terminology and software fragments
that are relevant for the report.
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Chapter 2

Problem Definition

2.1 Robustness Metric

2.1.1 Task completion time variability probability approximation

As nominal execution times of tasks are mostly closer to the best case execution time than
the worst case execution time, the probablility density function of the task execution time is
mostly not normally distributed but right skewed in nature. Apart from being skewed, we
have information on the bounds of the distributions in the form of best-case and worst-case
task execution times. The combination of the skewness and the boundedness requirements
is met by the PERT distributions. A PERT distribution (Figure 2.1) is derived from the beta
distribution and is defined by three parameters, namely the minimum (min), the mostly
likely value (mode) and the maximum (max). A variant of the PERT distribution (Modified
PERT) allows producing shapes with varying degrees of uncertainty by means of a third
parameter, gamma (γ), that scales the variance of the distribution.

Figure 2.1: An example pert distribution showing completion time distribution of a task
and its deadline
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2.1.2 Deadline miss probability

The deadline miss probability of a task t is defined as the probability of the task missing
its deadline. Given a completion time distribution for a task A, the probability of the task
missing its deadline dlA is given below,

c =
∫ ∞

dlA

pc
A(t)dt (2.1)

where, pc
A is the probability density function for the completion time of task A. sThis is the

the red portion of the example distribution shown in Figure 2.1.

2.1.3 Robustness of a task

The robustness of a task in a schedule can be derived from the deadline miss probability.
The higher the probability of a deadline miss, the lower is the robustness of the task. The
robustness of a task is complementary to the deadline miss probability as given below,

RA = P[cA < dlA] =
∫ dlA

0
pc

A(t)dt (2.2)

This is the green portion of the example distribution shown in Figure 2.1.

2.1.4 Expected number of task deadline misses

Given the probabilities of deadline misses per task, we define a random variable X to
express the number of tasks that miss their deadline in a schedule. The probability distri-
bution of this random variable is a discrete distribution with probability values for any x
tasks missing their deadlines.

p(X = x) : Probability that x tasks miss their deadlines (2.3)

The expected value of this random variable gives the expected value of the number of tasks
that miss their deadlines in a schedule S. It can be derived by taking the sum of the deadline
miss probabilities of its constituent tasks. This is given in Equation 2.4. This Equation holds
even if the tasks are dependent on each other.

EX = ∑
AεT

P[cA > dlA] = 1− ∑
AεT

(1− RA) (2.4)

2.1.5 Robustness of a Schedule

The robustness of a schedule is a measure of tolerance of a schedule to variations in the
execution times of tasks. A measure of the robustness of a schedule RS is the normalized

26



expected number of tasks meeting their deadline in the schedule given in Equation 2.5.

RS = 1− EX
|T| (2.5)

Note that this metric generalizes task robustness. Hence, this measure can be applied to
any subset of a schedule to find its robustness.

2.2 Robustness Analysis Overview

To compute the robustness of a schedule, we need to obtain the completion time distribu-
tions of all tasks. To this end, we require task execution time distributions. These typically
need to be approximated using limited measurements. A curve fitting approach is used
to fit a PERT distribution on histograms obtained from measurements. Once we have the
execution time distributions, we need to compute the completion time distributions. Due
to the computational complexity to perform max and plus operations on distributions [7],
this cannot be done entirely analytically. On the other hand, simulation (using the PERT
execution time distributions) produces insufficient mass in the tails to approximate the
completion time distributions accurately.

Following [8] we use a combined analytical and simulation based approach to approximate
the completion time distributions of tasks with the same curve fitting approach as used
for task execution times, as shown in Figure 2.3. The histogram and bounds that results
from the simulations and analytical computations respectively (Figure 2.2a) are used to fit
a a PERT distribution by using a curve fitting approach (Figure 2.2b). Once the completion
time distributions are obtained, task deadline miss probabilities are computed using Equa-
tion 2.1. Consequently, task robustness can be computed using Equation 2.2. Robustness of
a task is the green shaded portion under the curve shown in Figure 2.2c. The schedule ro-
bustness metric is then found by computing the expected number of task deadline missing
tasks of the schedule using Equation 2.5. Extending the current scheduler to use robustness
analysis is a work in progress and is out of scope for this project. This work focuses on
extending the combined analytical and simulation based approach with communication.

(a) Min, mode and max
parameters along with

histogram (b) Curve fitting (c) Finding robustness

Figure 2.2: Robustness Analysis approach
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Figure 2.3: The complete Approach

2.3 Problem Statement

The statement of the problem being dealt with in this project is:

“Given static-order schedule S, its communication platform and execution platform, what are the
completion time distributions of its constituent tasks?”

The focus of this work is to get the completion distribution of every tasks in a schedule
taking communication time variability into account. Specifically, the communication tim-
ing obtained must include the waiting time due to contention of shared communication
resources and the waiting time due to a system wide phenomenon called back-pressure
that occurs on shared communication resources.

2.4 Prior Work

Prior work has been done inside ASML to develop the combined analytical and simulation
based approach [8] to derive the completion time distributions of the constituent tasks of a
schedule. However, this work assumes that communication is instantaneous. This section
explains the prior work briefly,

2.4.1 Simulation

Running simulations with samples from individual task execution time distributions pro-
duce individual task completion time sample values, with which a histogram can be con-
structed. A histogram is a graphical representation of the distribution of data. It is an
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approximation of the probability distribution of a continuous variable. For simulation pur-
pose, a model is built for the servo schedule with all the necessary information. The DSL
models in CARM are transformed to schedule languages represented by ds_graph and
ds_schedule file extensions as explained in Section 1.5. This schedule model is transformed
using a transformation algorithm to a executable POOSL model. Two types of POOSL
models can be obtained using the algorithm. A brief explanation of them is given below.

Model with non-synchronized workers

Figure 2.4 shows the architecture of a POOSL schedule model with non-synchronized work-
ers. Each block is a process. The connections between processes are the channels on which
they communicate by sending messages. Tasks in the schedule are represented as Task
processes in POOSL. Their dependencies in the schedule are transformed to channels with
messages passing through. For each Worker, a Trigger process, a Queue process and a
WorkerFinisher process are added. A Trigger process is positioned at the beginning of a
Worker-schedule. Following the Trigger process is a Queue process. The Queue process
connects to the first Task process of every sequence in the worker on the same Worker-
schedule. A Schedule Finisher process is positioned at the end of a Worker-schedule, to
receive output messages from the last task of every sequence on the Worker-schedule.

Figure 2.4: Architecture with non-synchronized workers

The working of a POOSL schedule model with non-synchronized workers for one sample
period can be understood from Figure 2.4. The series of steps is explained below:

1. A Trigger process produces tokens periodically (the time period is specified in the
transformation algorithm), to trigger the start of the sample round.

2. A Queue process receives a token from the Trigger process and stores the token in a
queue.

3. A Task process receives one input token from each of its predecessors. Consequently
a sample value is drawn from a PERT random generator. Then, it delays for an
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execution time specified by the sample value. After the delay, the process produces
one output token to each of its successor(s). The completion time is reported to the
dataCollector class.

4. When a WorkerFinisher process has received a token from the last task of each se-
quence on this worker, it sends a message indicating to start the next sample round
to the Queue process.

Figure 2.5: Architecture with synchronized workers

Model with synchronized workers

This model is similar to the previous model except that at the end of a servo schedule, a
Finisher process is added. To be able to compute task deadline miss probabilities of each
task, in this type of POOSL model all the worker sequences are made to start only when
the previous sample run of all the worker sequences have been completed. However, in
reality, the workers are triggered independently. If the last task of a worker over-run the
triggering period in a sample run, the worker can start its next round only after the task
completes its execution. This over-run time for the different workers is not the same under
all circumstances. In such a situation, the best case and worst case completion times for
a task computed without any over-runs may become invalid. As a result, task deadline
miss probabilities can not be computed using this approach. Hence, the model with syn-
chronized workers is used for analysis of robustness. The POOSL schedule model with
non-synchronized workers is useful for visualizing the effect of deadline misses of a task in
a sample period on its next period using a Gantt chart.

The working of a POOSL schedule model with synchronized workers for one sample period
can be understood from Figure 2.5. The series of steps is explained below:

1. A Trigger process produces tokens periodically (the time period is specified in the
transformation algorithm), to trigger the start of the sample round.
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2. A Queue process receives a token from the Trigger process and stores the token in
a queue. For the initial sample round, the Queue process checks if the token queue
is not empty and if this is true, it sends a token to the first task of the sequence.
Otherwise, the Queue process waits for a token from a Trigger process. For the other
sample rounds, even if the Queue is not empty, the Queue process sends out tokens
only when it receives the message from the finisher process indicating that the previ-
ous sample round is finished.

3. A Task process receives one input token from each of its predecessors. Consequently
a sample value is drawn from a PERT random generator. Then, it delays for an
execution time specified by the sample value. After the delay, the process produces
one output token to each of its successor(s). The completion time is reported to the
dataCollector class.

4. When a WorkerFinisher process has received a token from the last task of each se-
quence on this worker, it sends the token to the Finisher process.

5. After the Finisher process has received a token, it sends a message to every Queue
process, indicating that one sample round has been finished.

Execution time distributions of tasks

As described earlier, for each sample run a execution time sample value for every task is
drawn from a PERT random generator. However the three parameters (min, mode, max)
needed to construct a pert distribution is found from execution time histograms. Execution
time histograms are constructed by performing limited measurements on a actual ASML
wafer stage component. These parameters are stored in a database and the model trans-
formation algorithm reads from this database and feeds the information to the POOSL
models. Currently, the database do not contain the execution time histogram mass. Hence,
we cannot perform a curve fit to obtain the execution time distributions. But the three para-
meters (min, mode, max) are present in the database. We approximate the task execution
time distribution by considering the gamma parameter to be four. This is the default value
for a standard PERT distribution.

2.4.2 Analytical computation

The analytical method is responsible for computing the best case(minimum) and worst
case(maximum) completion times of a task. For the first task of each worker sequence, the
best case and worst case completion times is equal to its best case and worst case execution
times respectively if the task starts at time 0. If the worker sequence is delayed by an offset,
then the the best case and worst case completion times is equal to its best case and worst
case execution times added with the offset value respectively.

bc(C(t)) = Max(bc(C(t′))) + bc(E(t)) (2.6)

wc(C(t)) = Max(wc(C(t′))) + wc(E(t)) (2.7)
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Equations 2.6 and 2.7 are used to compute the best case and worst case completion times
for every task except the first task of a worker sequence. The operators Max(bc(C(t′)))
and Max(wc(C(t′))) refer to maximum of best case and worst case completion times of all
predecessor tasks of task t obtained using max-plus algebra.

2.4.3 Problem

We can see from Section 2.4.1 that in the architecture of the POOSL model, the communica-
tion delay is not taken into account. Also from Section 2.4.2 we can see that the equations to
compute the bounds do not take the delay due to communication into account. Due to the
assumption of instantaneous communication, the completion time intervals obtained from
this approach are not conservative. Hence, the goal of this project is to obtain a conservative
combined analytical and simulation based approach that is communication aware to predict the
deadline miss probabilities such that they are closer to reality.

2.5 Communication Tasks

The communication interconnect used in ASML scanners consists of several connected
packet switches. On extending the prior work, the goal of this project is to extend the

T1 T2 T3

T4 T5 T6

T7 T8 T9

T1 T2 T3

T4 T5 T6

T7 T8 T9

CT 1

CT 2

worker 1

worker 2

worker 3

communication network

MAPPING

Figure 2.6: Adding Communication Tasks

current robustness analysis approach to be communication aware. This process is started by
adding communication tasks (CT) for each worker-to-worker dependencies and worker-to-
IOworker dependencies as shown in Figure 2.6. The different colors in the figure show
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tasks mapped on different resources. The red colored tasks represent the communication
tasks.

2.5.1 Challenges

The communication tasks are not statically ordered like the normal control tasks. They are
mapped on a communication network that is an interconnect of several packet switches.
The communication network is explained in detail in Section 2.6. These packet switches
are switching systems that are shared and they provide on-demand communications tech-
nology. In particular, they work with non-monotonic arbitration policies like First-Come-
First-Served (FCFS) scheduling. If we perform limited measurements of communication
delay, the execution time distributions of communication tasks will not be valid because
the measurements cannot represent all possible enabling instances of the communication
task. An extension of the current robustness analysis approach is needed to accommodate
these communication latencies.

Simulation Approach

As mentioned earlier, the measured execution time distribution of communication tasks are
not valid. Hence, we cannot feed the communication tasks in the POOSL model with PERT
random samples as it has been done in the prior work explained in Section 2.4.1. How-
ever, in POOSL models we can find the completion time of communication tasks directly
by mapping the task to the appropriate communication resource and simulating the commu-
nication behavior. For this a complete communication network model must be built for the
appropriate ASML wafer stage stack when analyzing robustness. To build a accurate model
the communication resource must be studied in detail. This is presented in Section 2.6.

Analytical Approach

Analysis methods that conservatively analyze FCFS based communication systems are of-
ten based on state-space exploration, which is not scalable due to its inherent susceptibility
to combinatorial explosion. For industrial applications a scalable timing analysis method is
needed. Prior work (presented in Section 2.7) has been done to develop a scalable timing
analysis method on periodically restarted directed acyclic graphs (DAG), that can provide
conservative bounds on task timing properties when shared resources with FCFS schedul-
ing are used. They work by expressing task enabling and completion times in intervals,
denoting best-case and worst-case timing properties. Contention on the shared resources
can be estimated using conservative approximations. But if we study the communication
interconnect in detail (presented in Section 2.6), we can see that a communication task does
not use a single shared resource, Instead the detailed communication path reveals a inter-
connection between switches. The interconnection between switches leads to a system wide
phenomenon called as back pressure (presented in Section 2.6.4). Hence, this scalable con-
tention analysis approach has to be extended to adapt to multiple shared FCFS resources
such that back pressure is taken into account by the algorithm.
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2.6 The communication resource

Communication switches are based on Serial RapidIO Specification [9]. RapidIO is a high
performance, low latency packet-switched interconnect technology for embedded systems.

2.6.1 Overview of Internal Switching Fabric

The Internal Switching Fabric (ISF) is a crossbar-switching matrix at the core of the RapidIO
switch. It transfers packets from ingress ports to egress ports and prioritizes traffic based
on the RapidIO priority associated with packet and port congestion.

The ISF has the following features [10]:

• full-duplex, 16-port, line rate, non-blocking, crossbar-based switching fabric;

• 10 Gbit/s fabric ports;

• it manages head-of-line blocking on each port;

• buffers hold eight packets per ingress RapidIO port;

• buffers hold eight packets per egress RapidIO port;

• cut-through and store-and-forward switching of variable-length packets is supported
with a maximum packet size of 256 bytes;

2.6.2 Functional behavior

When RapidIO packets arrive at the ingress ports, the switch performs several tests to
ensure the packet is valid. If a packet passes these tests, the ingress port consults its
Destination ID Lookup Table to determine the egress port for the packet. The ISF transfers
entire packets without interruption.

The ISF is a crossbar switch, which means that an ingress port can only send one packet
at a time to the ISF, and an egress port can only receive one packet at a time from the ISF.
However, the ISF can simultaneously transport packets from multiple disjoint ingress, egress port
pairs. Since many ingress ports can attempt to send a packet to the same egress port,
queuing is required at the ingress ports. Special arbitration algorithms at both the ingress
and egress sides of the fabric ensure that head-of-line blocking is avoided in these queues
by packet overtaking. Queuing is also required at the egress ports. Packets can accumulate
when an egress port has to retransmit a packet due to an error.

Since many ingress ports can attempt to send a packet to the same egress port, queuing
is required at ingress ports. Arbitration algorithms are present at both ingress and egress
port sides to ensure that head-of-line blocking is avoided. Queuing is also present in egress
ports. Packets can accumulate when an egress port has to retransmit a packet due to a CRC
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error for example. It is also needed when a higher-bandwidth ingress port sends traffic to
lower-bandwidth egress port.

Figure 2.7 shows a conceptual diagram of a ISF. It shows the arbiters at each port, the
connected mesh and the relationship between them.

Figure 2.7: ISF conceptual diagram

2.6.3 Contention

Each switch has eight ingress port and eight egress port, as shown in Figure 2.7. Buffers
hold eight packets per ingress and egress RapidIO port. When there is contention, the
packets are queued in the ingress port. Congestion and contention can be understood by
examples.

1. Contention example 1,

• Ingress Port 1 is currently sending Packet-1 to Egress port 2

• Ingress Port 4 wants to send Packet-6 to Egress port 2

2. Contention example 2,

• Ingress Port 1 wants to send Packet-1 to Egress port 6

• Ingress Port 4 wants to send Packet-5 to Egress port 6
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• Ingress Port 7 wants to send Packet-3 to Egress port 6

In example 1, Packet-6 must wait for the Packet-1 transfer to finish before it has access to
Egress port 2. In this case, Packet-6 must be queued inside the buffer of Ingress port 4.
In example 2, since three ingress ports wants to send their respective packets to one port,
only one packet can be sent and the other two have to be buffered. This packet selection is
performed through a fair arbitration decision based on priorities.

The RIO switch handles four priority level. The arbitration based on priorities can stall
transmission of lower priority packets due to the presence of higher priority packets. Cur-
rently, the ASML data packets are not assigned with priorities. Hence, contention analysis
under priority based arbitration is out of scope for this project. Currently, all packets are
sent with same priority and a round robin based selection is made. It should be noted
that the abstraction of priorities make this a conservative approach even when priorities
are used in the ASML applications. However, due to this abstraction, the predictions for
data packets assigned with priorities will be over-conservative.

2.6.4 Back-pressure

The usage of buffers with finite capacities leads to system-wide queuing phenomenon
called back-pressure. This happens when a buffer cannot queue any new packet, and hence
the packet has to be buffered along the communication path. This queuing can ripple all
the way back to the original input. This phenomenon is beneficial in the sense that it does
not overwrite data packets and keeps the communication to be reliable (loss-less). But this
creates dependencies and makes the timing analysis complex.

The existing contention analysis algorithm (Section 2.7) computes timing intervals in the
presence of communication without taking back-pressure into account. In the subsequent
chapters an extension to this algorithm including back-pressure is presented.

2.6.5 Odds of communication contention in ASML scanners

A typical ASML wafer stage platform includes,

• Eight RIO switches.

• Eight multi-core processors.

• About 250 sensors.

• Approximately 4000 control tasks.

Figure 2.8 shows a very simple example of contention that can happen in an servo applic-
ation. Since the data packets from processor 1 and processor 2 have to reach the same
egress port of switch-2, contention can occur. If more data packets from other processors
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Figure 2.8: Contention in ASML wafer stages platform

also share the same egress port, the queue can get filled up and back-pressure will occur as
explained in Section 2.6.4.

The transfer between sensors and workers take place at the start of a sample run. Hence
the enabling times for their communication tasks are at the same time. Under such circum-
stances, the odds of communication contention in the platform is indeed considerably high.
Appendix C shows a detailed conceptual view of a typical ASML wafer stage platform.

2.7 Prior Work - Contention analysis for shared FCFS resources

In this Section, the scalable contention analysis method [11] on periodically restarted direc-
ted acyclic graphs (DAG) that was previously done at ASML is described.

2.7.1 Preliminaries

• Interval Bounds : The lower bound L of an interval [a, b] is given by L([a, b]) = a , the
upper bound U is given by U([a, b]) = b.

• Execution interval : The execution interval of a communication task is the communic-
ation delay when there is no contention.

• Enabled interval : Enabled interval of a task provides min/max bounds of its prede-
cessor completion.

• Busy interval : Busy interval of a task reflects the delay between its enabling and its
completion time, including both waiting time to get access to its resource, and its
execution time.

2.7.2 Timing Analysis

The relation between the enabled interval of a task t ∈ T of G and its completion interval
is:
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En(t) =

{
[0, 0], if pred(t) = φ

maxt′∈pred(t)C(t′), otherwise
(2.8)

where pred(t) = {t′ ∈ T|(t′, t) ∈ D} denotes the set of predecessors of t.

The completion interval of any task t ∈ T in terms of its busy interval is given by:

C(t) = En(t) + B(t) (2.9)

• No Contention : when there is no contention, the timing of a DAG is calculated by
propagating the completion and enabled intervals of Equations 2.8 and 2.9 through
the nodes of the graph in topological order using min-max propagation as shown in
Section 2.4.2.

• With Contention : for DAGs with contention, the algorithm starts with a B assuming
no contention. The additional task delay in B due to contention can be estimated
by analyzing the relation between enabled intervals of different tasks on the same
resource. These enabled intervals in turn depend on B. This recursive dependency is
dealt with by using a fixed-point iteration on B. In each iteration more contention is
taken into account, until a fixed-point is reached.

2.7.3 Contention Model

Given an initial B, the enabled intervals of the tasks in the DAG can be calculated by
evaluating Equations 2.8 and 2.9 on tasks in the graph in topological order. If the enabled
intervals of all tasks are known, the completion interval of a task t is estimated by analyzing
the possible delay caused by tasks mapped to the same resource that can be queued in the
execution queue of t′s resource before the enabling of t. There can be no contention between
t and some other task t′ if t and t′ are dependent. Figure 2.9 shows two similar DAGs. In
the DAG of Figure 2.9a, t3 precedes t4 in any execution of the DAG, even if their enabled
intervals would overlap, since tasks in pred(t4) are dependent on all tasks in pred(t3). The
DAG of Figure 2.9b has no such precedence relation between t3 and t4. Tasks that are
enabled strictly earlier than t will precede t in any concrete execution. Thus the tasks that
are enabled strictly earlier than t will always be affecting t in both best-case and worst-case.
Tasks with an enabled interval that overlaps with that of t will precede t in only some
concrete executions.

Let ee(t) denote the set of tasks independent of t, which are mapped to the same resource
and which are enabled strictly earlier than t, either based on a strictly earlier enabled
interval, or because of the dependencies between predecessors of t and t′. Similarly, the set
oe(t) denotes all tasks independent of t, which are mapped to the same resource, whose
enabled interval overlaps with that of t and which are not in ee(t).

• Best Case : The earliest possible completion of t occurs when it is enabled as early as
possible, and the start of its execution is delayed as little as possible. This is the case
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(a) (b)

Figure 2.9: DAG examples

when t is enabled at L(En(t)), and all tasks in ee(t) complete as soon as possible, and
all tasks in oe(t) (except for t itself, which executes at its best-case execution time)
are enabled later then t. So, in the best-case, t can start executing after its best-case
enabling and the best-case completion of the last completing task in ee(t).

• Worst Case : The latest possible completion of t occurs when it is enabled as late
as possible, and the start of its execution is delayed as much as possible. Given t′s
worst-case enabling, t is delayed most if all tasks in ee(t) complete at the upper bound
of their completion interval, and all tasks in oe(t) execute at the upper bound of their
execution interval, while they are enabled just before the upper bound of the enabled
interval of t.

With this contention model, the completion interval of a task t given some B is given by:

C(B)(t) = max(γ, µ), where

γ = En(B)(t′) + B(t′) +

(
∑

t′′∈oe(t)\oe(t′)
E(t′′)

)
∪ E(t) (2.10)

with t′ the last completing task in ee(t)

µ = En(B)(t) +

(
∑

t′′∈oe(t)
E(t′′)

)
∪ E(t) (2.11)

The algorithm is started with a B assuming no contention. Using the contention model a
new B is found. An iteration on B is performed until a fixed-point is reached. It has been
proved that a fixed point will always be found in a finite number of steps [11] and that this
approach is conservatively.
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2.8 Other Related Work - Literature Survey

The Synchronous Dataflow (SDF) model of computation is commonly used in performance
analysis and synthesis of general purpose platforms. With SDF analysis, the impact of
mapping and scheduling on application timing and platform memory requirements can be
analyzed. SDF is a an expressive model of computation. In [12] they show how SDF models
can be used to model data-flow applications that contain shared resources with finite buffer
sizes. By using this approach, the communication dependencies can be abstracted and the
bounds can be found in the switch as given below,

Best-case delay at a switch:

• No contention at ingress port

• No contention at egress port

• No waiting time due to contention

• Switch execution time = DataSize
BandWidth + SwitchLatency

Worst-case delay at a switch:

• Maximum contention at ingress port: By modeling the case where 8 packets have
arrived before the concerned packet and the ingress port buffer is filled.

• Maximum contention at egress port: By modeling the case where 8 packets have
arrived before the concerned packet and the egress port buffer is filled.

• Waiting time due to contention: (8 + 8) ∗ DataSize
BandWidth

• Switch execution time: DataSize
BandWidth + SwitchLatency

For example, if we assume a datasize of 256 bytes, bandwidth of 8Gbps and switch latency
of 140ns. The best-case delay per switch becomes 0.396us1 and worst-case becomes 4.492us2.
In a Typical ASML platform, the number of switches in a RIO communication interconnect
path is between 1 and 4. Hence the worst-case delay for a typical communication task that
uses four switches becomes 17.968us3.

This communication delay is indeed conservative and handles back-pressure. The dis-
advantage is that the bound is over-conservative. For the use-case of ASML scanners,
the deadline of the tasks that send computational data to the actuators is approximately
between 15-25us for a machine that has sampling frequency of 20Khz; so the conservative
upper-bound of 17.968us is not sufficiently tight.

1 256bytes∗8bitsPerByte
8Gbps + 140nS

2 16∗256bytes∗8bitsPerByte
8Gbps +

256bytes∗8bitsPerByte
8Gbps + 140nS

34.492us ∗ 4
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In the case of contention analysis method shown in Section 2.7, the communication depend-
encies are not abstracted. This gives a sufficiently tight bound as proved in Section 5.2. Due
to this reason we did not opt for SDF techniques.

Timing analysis based on model checking [13] is also a widely used approach in timing
performance analysis. The timing properties are verified by analyzing a set of Timed Auto-
mata. These techniques however do not scale well due to their underlying state-space
explosion problems. This makes it unusable under the ASML industrial context.

2.9 Refined problem statements and deliverables

In order to study the impact of communication-time variations on ASML servo control
systems various incremental steps are to be made. This section describes the steps and the
problems prevalent in each of these steps.

Transformation from domain models to an executable model

The automated transformation from the formal domain models to executable POOSL model
must be extended such that it includes detailed communication behavior.
For this purpose, the executable POOSL model must include the communication platform
detail. Hence, the automated transformation must generate a POOSL model that includes
details of the communication platform for that particular instance of the domain model. In
addition, it must be ensured that the transformation algorithm scales with respect to the
size of the schedule.

Computing best/worst case timing along with communication contention

To compute the best case timing and worst case timing of all tasks in a schedule, the
best/worst case completion times of each of the control task and communication task must
be computed. However, to find the best/worst case timing bounds of the communication
tasks, the waiting times due to communication contention in shared resource must be computed.
For this purpose, the contention analysis algorithm presented in Section 2.7.2 must be
applied to the RIO communication network of the ASML scanners. However, this algorithm
does not compute the waiting time due to back-pressure. Hence, an extension must be
made to the algorithm to make it capable of computing the waiting time due to back-
pressure in the RapidIO interconnect.

Validation and calibration

It is desirable that the timing analysis resulting from the simulation of POOSL models are
closer to the timing values that are measured on an actual ASML scanner. In other words, a
high predictive power of the robustness analysis approach is desired. The predictive power
can be checked by validating the completion time distributions derived from the robustness
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analysis approach against the completion timing measurement distributions from an actual
ASML scanner. A crucial way to improve predictive power is by calibrating the execution
time disstributions used by the robustness analysis approach with available measurements
from an actual ASML scanner.
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Chapter 3

Analytical Approach

The analytical approach is responsible for computation of the best-case and worst-case
completion time bounds of all the tasks in the schedule. The prior work in Section 2.4.2
based on max-plus algebra does not take the delays due to communication into account. In
this chapter, the extensions made to the scalable contention analysis algorithm (presented
in Section 2.7) such that it is can be applied to a shared interconnect of serial RIO switches
is presented.

3.1 Requirements

The following points are the requirements of the completion time intervals of all tasks that
are computed in the analytical approach,

• The completion time intervals must be conservative

• The completion times must include the waiting time due to communication conten-
tion

• The completion times must include waiting time due to back-pressure

As shown in Section 2.6, in the RIO network of ASML wafer scanners, every worker-to-
worker or IOWorker-to-worker communication is performed by a data transfer between
switches and their constituent links.

The contention analysis algorithm explained in Section 2.7 is a generic algorithm that can
be applied to any shared FCFS resource. This algorithm must be extended such that it is
able to to be applied to a shared interconnect of serial RIO switches. To this end, it has to
be extended such that it can take the waiting time due to back-pressure into account while
computing the worst-case timing bounds.
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3.2 Single resource mapping approach

The most simple way to use the algorithm shown in Section 2.7 is by considering that all
the communication tasks are mapped on to a single shared FCFS resource. Hence, in this
approach all the communication tasks are assumed to be dependent if their enabled times
overlap. In this way all the requirements mentioned in Section 3.1 are met. However, there
are several crucial disadvantages in this approach, which is mentioned below,

• It does not take the independent communication paths into account We have already
seen that the ISF of a RIO switch can simultaneously transfer packets from multiple
disjoint ingress, egress port pairs. Hence, if the communication tasks have overlap-
ping enabled intervals but use disjoint ingress-egress port pairs of the same switch or
if they use different switches altogether, they must be considered independent. How-
ever, in this approach this independence is ignored as all the communication tasks are
considered to be mapped on a single resource.

• Overly conservative Since all the communication tasks are mapped to the same
resource, this approach assumes that all tasks are dependent on each other. Hence,
some communication time intervals that is derived using this approach are expected
to be over-estimations. The validation of this expectation is a work to be done in the
future. Over estimations of this approach makes it unusable for our use-case scenario.

3.3 Communication task splitting

T1 T2 T3

T4 T5 T6

CT 1

Worker 1 Worker 2Switch 1

CT 2 CT 3

Figure 3.1: An approach to consider the detailed communication path
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To find the independence between communication tasks we have to consider the detailed
communication path for each communication task. One way to consider the detailed com-
munication path is to split the communication tasks such that for each communication
resource component (link/switch) in the detailed communication path a task is created.
This approach is explained in the next section.

An example for a communication involving a single switch is shown in Figure 3.1. We
can split every communication task into several tasks and map them on their appropriate
RIO resource and use the contention analysis algorithm shown in Section 2.7. Now when
the tasks are mapped on the same switch or link and have enabled times overlapping each
other, their waiting time due to contention will be added to the completion time bounds.

The characteristics of this approach are:

• It takes the independent communication paths into account Since each component
of a communication path is taken as a resource, when two worker-to-worker commu-
nication paths do not share any switch or link their tasks are mapped on independent
resources.

• It does not take the waiting time due to back-pressure into account As explained
in Section 2.6.4, back-pressure is a system wide phenomenon where queuing can
ripple all the way back to the original input. When communication tasks are split
and mapped to separate resources in the communication paths, even if the enabled
intervals of the tasks that are mapped on the links and switches don’t overlap, they
may be dependent on other tasks due to back-pressure. This approach adds waiting
time due to contention only on a single resource component (switch/link) and the
dependency due to back-pressure is not taken into account.

• Non-conservative: As the splitting approach does not take back-pressure into ac-
count, the communication time intervals that is derived are non-conservative estima-
tions. This property renders the splitting approach as an useless approach.

• Scalability: This approach may also not be scalable because it can lead to the creation
of many communication tasks, as the schedule size increases.

In the ASML industrial use-case scenario, we need a approach that is both scalable and
conservative. The approach does not satisfy both these conditions. We next present an
approach that does not split the communication tasks but considers their detailed commu-
nication path. This approach is explained in the next section.

3.4 Overlapping Switch Port based Resource Mapping (OSPRM)

In this approach, we use one communication task for each worker-to-worker communic-
ation but we also consider the detailed communication path for each of them. The main
steps of the algorithm are as follows:
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1. For each task, find all the switch ports that the communication path of the task uses.

2. Map all communication tasks which have shared switch ports on same resource.

3. Communication tasks which do not share any switch ports must be mapped to different re-
sources.

3.4.1 The algorithm

We can determine the switch ports that a communication task uses from the physical plat-
form model.

Definitions

• Communication tasks and resources : Let C denote a set of communication tasks and R
denote a set of possible resources for these tasks. The size of R is initially chosen
to be equal to the size of C. The OSPRM algorithm then informs us which of these
resources will be used.

• Ports : Let P denote a set of all switch ports in the communication network. It contains
both the ingress ports and egress ports.

• Mapping relations : MCR : C → R maps any communication task to a resource. MCP :
C → P maps any communication task to its set of ports. MCP can be derived from a
physical platform model. MRP : R→ P maps any resource to a set of ports.

Detail

Algorithm 1 shows the complete algorithm to find MCR. This can then be used with the ap-
proach presented in Section 2.7 to get the completion time bounds. The mapping relations
MRP and MCR are initialized to NULL in lines 3-8. In lines 9-15, for each communication
task it is checked whether it shares one or more switch ports with any resource in R. If yes,
the communication task is mapped onto this resource. In case there is no such resource,
the communication task is mapped onto a resource in R that has no communication task
previously mapped onto it. In line 19, MCR is updated with this resource mapping. In line
20, MRP is updated with all the switch ports of the communication task that are mapped to
it.

3.4.2 Predicting Back-pressure

Figure 3.2 shows four communication tasks and the switch ports that they use by showing
the communication task and their communication path in the same color. Each switch is
assumed to have four ingress and four egress ports. The ingress ports are named as A, B,
C and D. The egress ports are named as E, F, G and H. There are eight workers and four
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Algorithm 1 Find MCR

1: Input: MCP, R, P, C
2: Output: MCR
3: for all r ∈ R do
4: MRP(r) = NULL
5: end for
6: for all c ∈ C do
7: MCR(c) = NULL
8: end for
9: for all c ∈ C do

10: rChosen = NULL . The chosen resource r for task C
11: for all r ∈ R do
12: if MRP(r) ∩MCP(c) then
13: rChosen = r . Choose a existing resource
14: end if
15: end for
16: if rChosen == NULL then
17: rChosen := {r ∈ R|MRP(r) = φ} . Choose a new resource
18: end if
19: MCR = MCR ∪ {c, rChosen}
20: MRP(rChosen) = MRP(rChosen) ∪MCP(c)
21: end for
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Figure 3.2: An example of four communication tasks depicting back-pressure

switches. We can see from the communication path of CT1 and CT2 that they share the
ingress port B of switch 2. This means that these two communication tasks can contend
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with each other. Hence they must be mapped to the same resource in order to compute
the waiting time due to contention using the algorithm presented in Section 2.7. Consider
a situation when the buffer of ingress port B is full. This forces the packets of CT2 to stay
in the buffer of egress port H in switch 1 exhibiting back-pressure. However, CT3 also uses
the same switch port. Although CT3 does not share the ingress port B in switch 2, if CT1
and CT3 have overlapping enabling times then back pressure may affect CT3 as well due
to sharing the buffers of egress port H in switch 1. Hence, mapping CT1 and CT3 to the
same resource and using the algorithm presented in Section 2.7 allows to us to compute the
waiting time due to back-pressure. If we consider CT4 it does not share any other switch
port with either of the other three tasks and hence must be mapped to a new resource. This
is the essence of the OSPRM approach that adds the overlapping switch port based resource
mapping as a pre-processing step to the prior contention analysis algorithm presented in
Section 2.7.

3.4.3 Features

The features of this approach are:

• It accounts for the independent communication paths The communication tasks
that do not share the same switch ports are mapped onto different resources. This
means that this algorithm is able to find the independent communication paths.

• Transitive closure Consider an example of three communication tasks c1, c2 and c3. If
c1 is found to share a single switch port as c2, they are mapped to the same resource.
If c3 is found to share a single switch port as c2, they are mapped to the same resource.
Since they all are mapped to the same resource by this algorithm, this implies that,

((MCR(c1) == MCR(c2)) ∧ (MCR(c2) == MCR(c3)) =⇒ (MCR(c1) = MCR(c3))

• It takes waiting time due to back-pressure into account Since the communication
tasks that share any one switch port is mapped onto one resource, the dependencies
due to back pressure is taken into account.

• Conservative As both waiting time due to contention and waiting time due to back-
pressure is taken into account. This approach is a conservative approach.

• Scalable This approach does not need to split the communication tasks into several
tasks, this makes the approach scalable in terms of memory usage and computations
needed.

3.4.4 Possible Optimizations

The OSPRM approach does not compute back-pressure with the knowledge of buffer occu-
pancy. If buffer occupancy is known, then we can reduce several cases where back-pressure
will not occur due to sufficient capacity in the buffers. If this approach is optimized with
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the ability to compute back-pressure with the knowledge of buffer occupancy, it can lead to
computing tighter and more accurate worst case estimates that are closer to the true worst
case time.

In Figure 3.2 we can see that the links from the egress switch ports of switch 2 and switch 4
onwards are completely independent of each other. In this case an optimization of splitting
the communication tasks and mapping resources such that this independence can be found
will help in reducing overestimations.
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Chapter 4

Simulation Approach

In Section 2.5.1 it was mentioned that by using POOSL models we can find the completion
time of control tasks along with the waiting time due to communication by mapping the
communication task to the appropriate communication resource and simulating the com-
munication behavior. In this chapter, the architecture of the communication network model
that must be built for the appropriate ASML wafer stages stack to analyze their schedule
robustness is shown. Also, the architecture of the complete POOSL model that includes
RapidIO networks along with the control tasks is shown.

4.1 Communication resource POOSL model

Figure 4.1: A blade containing two RioSwitches view in poosl shesim GUI

The model transformation algorithm has been adapted to generate a RapidIO (RIO) model
according to a particular ASML machine stack by reading the network parameters and net-
work topology from a physical platform model. The model includes all the major compon-
ents within the interconnect (links and switches) and all internal components of a switch
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(input/output ports and associated queues). Some of the features have been abstracted.
For example, link level error control is not modeled, we assume that there is no packet loss.

Figure 4.1 shows one blade of a ASML platform modeled in POOSL. A blade is one unit
of the execution platform in ASML wafer stage component on which processors, IOBoards
and RIOSwitches are placed(explained in Detail at Appendix C). A blade is modeled as a
cluster class in POOSL. There are currently five blades in one execution platform. Figure ??
shows the complete RIO interconnect modeled in terms of interconnected clusters1. Here,
each cluster is a blade. From the Figure 4.1 we can see that there are processes named as EP.
These represent end points of processors and IOBoards that connect to RIOSwitches. There
are eight EPs in one blade cluster. RIOSwitches are also modeled as a process. There are two
RIOSwitches in every blade cluster. The links between the endpoints and RapidIO switches
are constructed by reading the network topology from the physical platform model. The
links are modeled as channels with messages passing through them. The network paramet-
ers such as switch latency, bandwidth are also read from the physical platform model. The
switches model the functional behavior of a cross bar switch as mentioned in Section 2.6.2.
The switches contain buffers of depth eight in all their ports. Using conditional statements
from POOSL, the switch ports have been made to accept packets depending on the fill-level
of an input buffer (also depending on the priority of the packet). If a packet is not accepted,
it will stay in the buffer of the connected switch. In this way back-pressure is modeled in a
natural manner.

Figure 4.2: A complete communication resource POOSL model

1Clusters are instances of cluster classes and group a set of processes and clusters (of other cluster classes)
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4.2 Schedule POOSL model

The models with synchronized workers and non-synchronized workers described in Sec-
tion 2.4.1 are extended with the RIO network models described in the previous section.
Additionally another process called service is added. Figure 4.3 shows the architecture of
the extended model. Each block is a process. The connections between processes are the
channels on which they communicate by sending messages. Communication tasks in the
schedule are represented as communication task processes in POOSL. Their dependencies
in the schedule are transformed to the channels with messages passing through. The beha-
viour of the task process, worker finisher process, finisher process are the same as described
in Section 2.4.1.

The working of the communication task process in the POOSL model for one sample period
can be understood by the series of steps explained below:

1. A communication task process receives one input token from its predecessor. The
token contains the information about the data size to be communicated to the destin-
ation worker. Then, it sends the token to a service process.

2. The service process splits the data into packets by using the data size from the token.
Typically data size of one packet is 256 bytes. Consequently, it finds the endpoints
that the packet has to travel in the RIO network through the source and destination
information in the token. Then the packet is sent to the appropriate end point in the
RIO network model along with the destination endpoint address.

3. When the packets are received by EP process it sends the token to RIOswitch process
through a link. One of the ways to calculate link delay is by the formula delay =

datasize
bandwidth .

4. Then the switch process checks if the destination egress port is free and if so it sends
it to the port and switch delay is added. Else, it stays in the buffer and a buffer delay
is added. When the port is egress free to be accessed, it travels to the egress port and
switch delay is again added. This happens until the packet reaches the destination
endpoint. The destination endpoint returns the token to the service process.

5. The service process sends the token back to the communication task process instant-
aneously. The communication task process reports the completion time to the data-
collector.

4.2.1 Modular extension

This architecture is formed on the basis of modular programming2. The architecture separ-
ates different abstraction levels. It separates the application and platform and the process

2In the order of nano-seconds
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service provides the mapping between them. When a modeler wants to abstract communic-
ation in his design space exploration he can just make the communication time instantan-
eous by adding a execution time of 0 in the service process and directly sending the token
back to the communication task process. This type of architecture was beneficial to easily
extend the prior work in Section 2.4.1 with only minor changes to their process classes.
This type of architecture also facilitates to debug and maintain the complete POOSL model
transformation algorithm.

T1 T2 T3

T4 T5 T6

T7 T8 T9

CT 1

CT 2

Finisher

Worker
Finisher

Worker
Finisher

Worker
Finisher

Trigger Queue

Trigger Queue

Trigger Queue

Service Service

RIO Network -
Containing switches and their 

links

Figure 4.3: Architecture of a schedule POOSL model with RIO

2It is a software design technique that emphasizes separation of concerns. It is the act of designing and
writing programs as interactions among functions that each perform a single well-defined function, and which
have minimal side-effect interaction between them.
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Chapter 5

Results

In this chapter, the robustness analysis approach has been applied to one ASML wafer stage
stack and the results will be presented.

5.1 The Wafer Stage Stack

The wafer stage stack that is used to perform the experiments consists of,

• 7 multi-core processors;

• 4520 control tasks;

• 39 worker-to-worker dependencies;

• 10 RIO Switches.

However, the schedule does not contain information about sensors and actuators. Hence,
IOWorker to worker communication which represents the communication between the
sensors/actuators and control tasks cannot be analysed. On the other hand, worker-to-
worker communication can be analyzed. There are 39 worker-to-worker dependencies in
the application. Consequently, while starting the robustness analysis approach, 39 commu-
nication tasks were added. The deadline was tightened to 70% of the processor budget. The
results presented are from all the workers that have sampling frequency of 20 kHz. Worker
6 is a single core worker with sampling frequency of 1 kHz. For sampling frequency of 1
kHz is so high that the latency requirements are always met. Due to this reason, Worker
6 has been skipped has been skipped during analysis. A software tool (Appendix A) to
prototype the approach was made. This tool was used to perform these experiments with
the above mentioned stack to obtain the results presented below.
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5.2 Comparison of worst-case completion times

5.2.1 Instantaneous communication vs OSPRM

Figure 5.1: Comparison between instantaneous communication solution and OSPRM
solution

A comparison of computed worst case timings for the last task in every worker under two
approaches is made. The first approach was to use the prior work in which communication
is assumed to be instantaneous. The second approach is the OSPRM approach in which
communication is taken into account. The comparison results are shown in Figure 5.1.

We can see that extending the prior work with communication times have indeed increased
the worst case completion times. The average percentage increase of the worst-case com-
munication times is 6.82%. The individual percentage increase for each worker is shown in
Figure 5.2. The increase in completion time is owing to the fact that the approach proposed
in this project have taken the communication delays into account. It has to be checked in the
future whether this predicted worst case timing is closer to the real timing measurements
from the machine.

5.2.2 Single resource mapping vs OSPRM

A comparison of the computed worst case timings for the last task in every worker using
OSPRM and the single resource mapping approach was made. The results are shown in
Figure 5.3.

We can see that in worker 1, worker 2, worker 4 and worker 5 the worst case times predicted
using single resource mapping approach is higher than in case of the OSPRM approach.
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Figure 5.2: Percentage increase in worst case completion times between instantaneous
communication solution and OSPRM solution

Figure 5.3: Comparison between one resource mapping solution and OSPRM solution

The overestimation is reduced in OSPRM approach. The percentage decrease for all workers
is shown in Figure 5.4. The average percentage decrease of four workers was found to be
1.97%.
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Figure 5.4: Percentage increase in worst case completion times between one resource
mapping solution and OSPRM solution

5.3 Comparison of schedule robustness

We performed short simulations (1000 sample runs) on the schedule and combined the
statistical results with the computed bounds to perform the robustness analysis. We com-
puted the expected value of the number of tasks that miss their deadlines in the schedule
by using Equation 2.4. Figure 5.5 shows the results. As mentioned earlier, the deadline
was tightened to 70% of the processor budget. We see that after taking the communication
delay into account, the expected value of the number of tasks that miss their deadlines in
the schedule increases significantly. The expected value of the number of tasks increased
approximately 8 times more, which amounts to reduction in schedule robustness by 13.4%
(Equation 2.5).
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Figure 5.5: Comparing the excepted number of deadline misses

Figure 5.6: Comparing the schedule robustness
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Chapter 6

Calibration

6.1 Validation and calibration of the tool-chain

This project aims to develop a clearly defined validation method for the complete tool-
chain. This is because the predicted completion time distributions may vary significantly
from the actual completion time distributions derived from measurements performed on
the wafer scanner. The executable POOSL models are validated with available completion
time measurements from a particular ASML stack. If the prediction is very far off, this must
be investigated. For example, deviation in the execution time distributions could be due to
measurement errors; incorrect network parameters may be used in the POOSL model. If
this is found and the tool-chain is appropriately calibrated, then the predictive power of the
robustness analysis approach will be increased. Hence, validation and calibration is a very
important process to obtain a highly predictive robustness analysis approach.

6.2 Measurements and calibration

In order for the executable POOSL model to simulate the behavior of the wafer stage system
that exists in reality, it has to incorporate the proper execution timing information of the
tasks. Such information is retrieved by means of measurements in the real system which is
highly prone to errors. Because of the presence of errors, the performance properties that
exist in a model may be different than those that exist in reality. As shown in Section 1.3,
in phase 1 of the Y-chart approach Predict the past, the model has to be properly calibrated
with available measurements and its predictive power must be validated in order to closely
follow the real system performance. Calibration and validation of the model can be ob-
tained by considering an estimation of the error between the real system and the model
analysis.
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6.3 Validation and calibration of execution time distributions

6.3.1 The process

The calibration process is performed with a simple test on an ASML stack that contained
two single core workers. The motivation behind choosing this stack was the absence of
worker-to-worker communication tasks and no core-to-core synchronization. This helps in
validating the execution time distributions used by the tool chain. During every calibration
step we perform the robustness analysis approach and inspect the completion time distri-
butions. In each worker, the two tasks we inspect are CDR (critical data ready)1 and EOS
(end of sample)2. CDR task appears approximately halfway during the sample.

6.3.2 Before calibration

Figure 6.1: Single core results before calibration

Figure 6.1 shows a plot that represents the completion time distributions of the two tasks
per worker. The x-axis represents time and y-axis represents probability density. The lines
represents the min/max bounds. As mentioned earlier, there are two workers in this test
stack. From the figure we can understand that there is a significant offset between the
measured completion time distribution and predicted completion time distribution. The

1task responsible for sending computed data from control tasks to actuators
2last task in the schedule of a worker
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difference between the mode value of EOS distribution found for the first worker is about
4 uS and for the second worker it is about 11 uS.

6.3.3 Calibration steps

After careful evaluations of the database that contains execution time distributions, it was
found that the execution time of some certain tasks were set by default to a much higher
value compared to the measurements by the tool chain. The reasons causing this were
found and fixed by running the measurements again and updating the execution time
database. After this calibration, this test was run again. Figure 6.2 shows the results of that.
Even though there is significant improvement, we can see that the predicted completion
time distributions are marginally different from the measured execution time distributions.
The reason was due to the fact that instead of using the most likely value (mode) from the
execution time distribution in the POOSL models, the mean value was used. In the current
testing, we have fixed this. Also, instead of using a single gamma value of 4, finding gamma
value of each task using the curve fitting approach is also currently being tested.

Figure 6.2: Single core results after calibration
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Chapter 7

Conclusions

In this report, we have shown an approach to perform communication aware robustness
analysis for high-end distributed servo control systems. We have shown how POOSL mod-
els are used to simulate control tasks that use shared packet-switched RapidIO communica-
tion interconnect. We have also shown how to compute best case and worst case completion
time of tasks under communication contention and back-pressure in RIO networks. We
have shown that this approach improves the predictability of deadline misses and hence
improves the overall robustness analysis approach.

The simulation of the POOSL executable model allows to derive completion time histo-
grams of the constituent tasks of a schedule. The analytical computation approach allows
to derive the best-case and worst-case completion times of constituent tasks of a schedule
under a shared communication resource by taking the waiting time due to both conten-
tion and back-pressure into account. This communication aware approach allows us to
approximate a continuous probability distribution of the completion time and to find the
robustness of all the tasks and the overall schedule.

In this project, the software tools needed to prototype the scientific assumption have been
developed. The results of the application of the communication aware robustness analysis
approach on one ASML wafer stage stack has been presented. Some of the results have
been validated with actual measurements from execution of control tasks on a test wafer
stage platform.

7.1 Future work

During the development of this thesis project some improvements to the communication
aware robustness analysis approach have been identified. The wafer stage platform uses
a number of multi-core processors, and tasks to model core-to-core synchronization have
been added in ASML. This involves addition of core-to-core synchronization tasks in the
schedule. The results of the simulation of schedules of many wafer stage stacks has shown
that the core-to-core synchronization tasks constitute at least 40% of the total number of
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tasks of the schedule of octo-core processors. But, currently the robustness analysis ap-
proach concentrates only on communication tasks. The resource contention due to core-
to-core synchronization process is not taken into account. The approach must be extended
such that it includes this feature.

The POOSL models have been constructed such that it can deal with priorities of com-
munication data packets. However, the current ASML data flow applications do not deal
with priorities for communication data packets and therefore the analytical computation
approach doesn’t deal with priorities of data packets yet. The analytical computation ap-
proach must be extended if the ASML data flow application supports the priorities of data
packets in the future. The POOSL model also supports buffer occupancy. The analytical
computation approach doesn’t take buffer occupancies into account. The algorithm can
be extended with buffer sizes at ports and can be made to compute communication time
delay. However, both these extensions may make the approach slower and the scalability
of the tool-chain may also be affected. Hence, prior to developing these extensions to the
approach it must be verified whether this makes it usable under industrial context.

The communication between transducers and processors constitute transfer of large data
packet transfer. This can influence the robustness of the schedule. Currently, the detailed
analysis approach only deals with worker-to-worker communication. This must be exten-
ded to support IOWorker-worker communication when the DSLs are updated accordingly.
Also, the POOSL language has been updated to a new version and it is currently in beta
testing phase. The model transformation algorithm must be changed to the new POOSL
language after investigating if the usability of the new language is needed for the organiz-
ation.

Currently, there is active research going on in the organization for using FPGA platforms as
an accelerator to a single-core CPU instead of using multi-core general purpose platforms.
It has also been proven that their usage can improve the sample frequency of the schedules
[14]. Using FPGAs as an accelerator platform requires transfer of large datasets through the
communication interconnect. This can severely increase the network load. The robustness
analysis approach must be investigated whether it needs to be adapted for such an applica-
tion specific platform and it can help in verifying whether using the platform improves the
sample frequency under network load.
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Appendix A

Software Prototyping

The complete software tool-chain that is developed to prototype the communication aware
robustness approach is shown as a flow chart in Figure A.1. The DSL models in CARM are
transformed to schedule languages represented by ds_graph and ds_schedule file extensions
as explained in Section 1.5. This schedule model is transformed using a transformation
algorithm implemented in the Java programming language to a POOSL model which in-
corporates detailed communication timing behavior as explained in Section 4.2. Two types
of POOSL models are produced. These POOSL models are simulated using the rotalumis
simulator and the time variations of all tasks in the application (∀t ∈ T) are obtained along
with Gantt chart visualization for an average case schedule sample run. In addition to that,
the task overruns due to deadline misses can also be visualized. The POOSL models rep-
resented by .p4r file extensions and are executed by using Rotalumis. Rotalumis is a high
speed execution engine for POOSL.

The worst case and the best case completion times are computed by taking the delays due
to communication into account as explained in Section 3.4. The analytical computation
algorithm is also implemented in the Java programming language. These completion time
variations (both from POOSL model simulation and computation) are then used to derive a
continuous distribution of the variation of completion times of all the tasks in the schedule
(∀t ∈ T : C(t)) by using a PERT curve fitting technique. The results from the analytical
computation algorithm are in the form of ∗.txt file extension. The curve fitting algorithm
is also implemented in the Java programming language. The results from the curve fitting
algorithm are the PERT parameters of all the tasks stored in a ∗.txt file extension. The
corresponding distributions are used to find the deadline miss probabilities of every task
in the schedule (∀t ∈ T : dlt). Using all the deadline miss probabilities, robustness of
the schedule is computed. The final results are stored in ∗.csv file extensions. This whole
process has been automated such that after a schedule DSL model is generated, without
any user input a designer can analyze the schedules in detail using this tool.
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Figure A.1: Complete Robustness Analysis Toolchain
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Appendix B

Visualization tools

The schedule DSL models can be visualized as a Gantt chart using the ESI trace viewer [15].
This is automated in the CARM tool IDE. In this project the capability of visualizing the
POOSL model simulation results of average case sample schedule runs as a Gantt chart has
been added. The visualization of a average case sample run help in validation of the POOSL
models at each update in POOSL model transformation algorithm. Also, the construction
of model with non-synchronized workers enables visualization of task over-run schedules.
This can give an insight on the effect of deadline misses of a task on consequent tasks in the
POOSL model with non-synchronized workers. Also, the ability to visualize the commu-
nication tasks has been added. Figure B.1 shows a screen-shot of an example Gantt chart
that was derived for an ASML stack from the communication-aware robustness analysis
approach. The rectangle boxes in yellow show the communication tasks. The rectangular
boxes of colors other than yellow represent the control tasks. The x-axis represents time
and the y-axis represents the resource on which the task is mapped. The arrows represent
the data dependencies between the tasks.

Also, a software tool to visualize the PERT completion time distributions (Figure B.3) has
been added as part of this project. Additionally it shows the deadline miss probability,
the robustness and the PERT distribution parameters of the task. Also, another software
tool that can visualize robustness of a worker is added. Figure B.2 shows an example
robustness curve. The x-axis represents completion time. Each data-point represents the
deadline miss probability of a task that completes at that time and tshe y-axis represents
the deadline miss probability. For example, we can see in this example that there are many
tasks missing their deadline close to the end of the sample. Both these tools were written
in Python programming language using Matplotlib[16] graphics library.
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Figure B.1: Gantt chart showing communication tasks

Figure B.2: Robustness Curve tool
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Figure B.3: PERT distribution visualization tool
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Appendix C

Typical ASML platform

Figure C.1 shows a conceptual view of a typical ASML execution platform. It has 5 AMCR1

blades. Each blade contains 4 slots. In a slot, a worker or an interface to an IOWorker is
placed. As we can see from the figure the slots have two RapidIO endpoints. Each blade
contains 2 SRIO switches. Currently, only one end point in each of the slots are used. The
other end point is reserved for future use. The numbers 0,2,4 to 14 refers to the 16 switch
ports (8 ingress and 8 egress). For example, the connection from port-0 to EP.1 shows that
EP.1 is connected to one ingress port and one egress port in the switch. Four ports of one
switch in a blade are connected to the four endpoints of the slots. Further there are two
connections between the two switches of a blade. Every blade is connected to every other 4
racks using one unique connection link.

1See Appendix D
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Figure C.1: Typical ASML platform
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Appendix D

Terminology

AMCR Advanced Motion Control Rack (instance of ATCA)

ATCA Advanced Telecom Computing Architecture (defines a rack, which is used by
CARM). It is an industry standard defining a set of electrical and mechanical
interfaces intended for creation of electronics racks for computing, control and
communications functions.

Block Part of a Servo Group that transforms values received via input terminals into
values that are put on its output terminals

Block-
Group

Subset of a Servo Group

CARM The Control Architecture Reference Model is a description to create a well defined
layered model of a system where each layer has responsibilities at a specific ab-
straction level. It is meant to be used in a multidisciplinary environment covering
the software, electrical and mechanical disciplines.

DAG Directed Acyclic Graph

DSL Domain Specific Language

FCFS First Come First Serve

FPGA Field-Programmable Gate Array

GPP General Purpose Processor
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HPPC The High Performance Process Controller is the hardware module onto which the
tasks are mapped.

IDE Integrated Development Environment

IOBoard Input-output board

IOW2W IOWorker to Worker

IOWorker It is an entity that abstracts from the type of IOBoard

ISF Internal Switching Fabric

OSPRM Overlapping switch port based resource mapping approach

PGAPP The Process Control Application is the DSL that defines the networks of servo and
transducer groups

PGSG The Process Control Servo Group is the DSL that defines the servo groups

PGWB The Process Control Worker Block is the DSL that defines the worker control blocks

PU Processing Unit : it is an entity abstracting from a processor/core

RIO Rapid IO

Servo-
Group

Mesh of interconnected blocks where each block performs a mathematical opera-
tion.

SW Switch

T1 Task 1

W2W Worker to Worker

Worker It is an entity that can perform computations (i.e abstracts from a HPPC)

Table D.1: Terminology
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