
 Eindhoven University of Technology

MASTER

Data source synchronization in cloud-based triple stores

Owusu, E.B.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e64ab1b6-bf28-4519-8b80-5c5e8aececfa

Data source
synchronization in

cloud-based triple stores

Master’s Thesis

Evans Boateng Owusu

EINDHOVEN UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Supervisor:

dr. G. H. L. Fletcher

Assessment Committee:

dr. G. H. L. Fletcher
dr. ir. Joaquin Vanschoren

dr. Dirk Fahland

Eindhoven, August 2014

Abstract

Data integration and warehousing have many advantages for enterprises such as: allowing a
central view of data across all branches, providing a means to draw meaningful relations among
data, providing consistency in all data and allowing a single standard model for all data. As
organizations grow and expand, large quantities of data are produced and if not properly
managed, an organization may miss out on the benefits of data integration and management.
Apart from the extra cost of data integration, warehousing and management, an organization
may not wish to take on such extra responsibility, which requires expertise often different
from the primary focus of the organization. It is in this light that Semaku B.V. is building
a platform to provide a means for organizations to unleash their data into repositories and
enjoy the benefits that come with data integration and warehousing. The platform will also
provide a means to synchronize an organizations’ source data with the repository to allow easy
propagation of updates. This thesis focuses on selected challenges in realizing the platform:
data transformation, change detection and update execution. We study existing data format
transformation, and change detection approaches and propose new and improved algorithms.
We propose generic means to transform data, which is completely automated and preserves
structure of data to allow round tripping. To allow organizations to customize and restructure
their data, we propose a semi-automated semantic transformation process. We also propose
a means to execute updates between synchronized data. Furthermore, we implement a data
transformation platform which allows both generic and semantic transformations of selected
popular data formats (XML, JSON, CSV) to the W3C’s Resource Description Framework
(RDF) format. We also propose a simple vocabulary for describing changes in data and
based on this vocabulary, an update engine for executing updates, between synchronized
data sources, was implemented.

Data source synchronization in cloud-based triple stores 3

Preface

This thesis is the result of my final graduation project for the master program in Embedded
Systems at Eindhoven University of Technology. This project was conducted in the Web
Engineering group, Department of Mathematics and Computer Science, in cooperation with
Semaku B.V.

I would like to express my greatest gratitude, first and foremost, to George Fletcher for
his supervision, advice and critical feedback.

Secondly, I would like to express my gratitude to my supervisors at Semaku B.V, John
Walker, Tim Nelissen and Evgeny Knutov for their feedback. I would also like to thank the
assessment committee members, Joaquin Vanschoren and Dirk Fahland, for reviewing my
thesis and attending my presentation and, for their critical feedback.

Finally, I would like to thank my family and friends, especially Kadian Davis, for their
help and support.

Data source synchronization in cloud-based triple stores 5

Contents

Contents 7

1 Introduction 9

1.1 Motivation and Problem Statement . 9

1.2 Contributions . 10

1.3 Outline of Thesis . 10

2 Background and Related Work 13

2.1 Introduction . 13

2.2 RDF . 13

2.3 SPARQL . 14

2.4 XML . 15

2.5 XQUERY . 15

2.6 JSON . 16

2.7 CSV . 16

2.8 Related Work . 17

2.8.1 XML to RDF . 17

2.8.2 JSON to RDF . 18

2.8.3 Change detection . 19

2.9 Summary . 20

3 Data Transformation 21

3.1 Introduction . 21

3.2 Generic transformation . 22

3.2.1 XML to RDF . 22

3.2.2 JSON to RDF . 24

3.2.3 CSV to RDF . 26

3.3 Semantic or model specific transformation . 28

3.4 Summary . 28

4 Change detection and Update execution 29

4.1 Introduction . 29

4.2 XML change detection . 29

4.3 RDF change detection . 34

4.4 Delta representation and Update execution 37

4.5 Summary . 43

Data source synchronization in cloud-based triple stores 7

CONTENTS

5 Software Development and Implementation 45
5.1 Introduction . 45
5.2 Data transformer . 45

5.2.1 Purpose . 45
5.2.2 Definitions . 45
5.2.3 System overview . 46
5.2.4 Specific requirements . 46
5.2.5 Other requirements . 47
5.2.6 System Structure . 47
5.2.7 Software System Attributes . 48
5.2.8 Implementation . 48

5.3 Semantic transformation API . 49
5.4 Change Update Engine . 50

5.4.1 Purpose . 50
5.4.2 Assumptions . 51
5.4.3 System Structure . 51
5.4.4 Implementation . 51

5.5 Summary . 51

6 Performance Testing 53
6.1 Testing of generic transformer . 53
6.2 Testing update Engine . 55
6.3 Summary . 55

7 Conclusions 57
7.1 Contributions . 57
7.2 Limitations . 57
7.3 Future work . 58

References 59

8 Data source synchronization in cloud-based triple stores

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Enterprises produce data in diverse formats and in different locations. Systems that generate
data are usually not the same ones that consume it. Getting all of an enterprise’s data
together and managing a single data silo or repository is important in providing users a
unified view of the data. Semaku B.V is developing a corporate semantic platform that will
enable enterprises to transform, load and manage their data in a flexible way. The semantic
platform will provide a means for enterprises to integrate and store their data in a repository
in the cloud to provide the combined advantages of data integration and warehousing. Some
of the advantages are:

1. it enables a central view of data across all branches of enterprise.

2. gathering data from multiple sources into a single repository allows a single query engine
to be used to present data.

3. It provides consistency in the way an organization’s data is presented.

4. It provides a single standard data model for all data irrespective of the data source and

5. it allows data to be restructured to fit the needs of users.

The semantic platform will also provide a means to synchronize source data with the reposi-
tory, monitor changes and propagate changes when they occur. Consider an application that
queries and presents data in a repository; when the source data, which was transformed and
stored in the repository, changes, the change is detected and propagated to the repository
in order to provide data that is up to date to users. In the same way, if the application
makes changes to the data in the repository, the changes are detected and propagated back
to the source data so that the source and the target are consistent. Data synchronization
provides consistency and freshness among connected data sources. It also provides a way to
monitor the evolution of data. Realization of this platform requires knowledge areas as data
extraction and transformation, data propagation and synchronization, change detection and
update execution.

In this work, we deal with two main aspects of the platform. The first is data transforma-
tion, which consists of applying a series of rules to a source data to convert it into the format
of a target storage system. For the central repository, all source data will be transformed into

Data source synchronization in cloud-based triple stores 9

CHAPTER 1. INTRODUCTION

one standard format, Resource Description Framework (RDF). This choice of data format was
not random as RDF in recent times has become a popular standard for data representation
and exchange. RDF is supported by its own query language called SPARQL. In this work, we
consider a subset of the most popular enterprise data formats: XML, JSON and CSV and how
they can be efficiently transformed to RDF. We analyze and propose solutions for efficient
data transformation in relation to automation of the transformation process, round-tripping
of data, semantic relevance and flexibility. With respect to automation, little or no human
intervention in the transformation process is necessary for an autonomous systems. Also we
investigate how semantically relevant the transformation could be and how data structure
and content could be preserved in the process. The platform within which the transformation
takes place should be flexible enough to integrate with existing data systems.

The second aspect of the semantic platform considered is change detection and update
execution. Change detection is the process of detecting, calculating and representing differ-
ences (delta) between two documents or data mostly of the same format. Data extracted
and loaded into the repository may be used to feed applications such as corporate websites,
etc. and these applications need to stay up to date all the time. A change in the source
data should therefore be efficiently detected and propagated to the repository in order to
ensure freshness of data used by the applications. An important part of the change detection
and update execution is the format in which data is represented. In this work, we examine
existing algorithms for change detection in XML and propose a modified version of X-diff,
an algorithm for detecting changes in XML documents Wang et al. (2003). We also examine
change detection in RDF knowledge bases and propose applicable algorithms. We further
propose a language for representing changes and then develop a prototype tool for executing
updates assuming changes have been successfully detected.

1.2 Contributions

This project presents a data transformation process that incorporates generic and semantic
transformations of XML, JSON and CSV to RDF. The transformation process presents two
two novel things: the property of the generic transformation to preserve structure of data
and to allow round-tripping and the use of a list of functions for semantic transformations of
RDF triples generated from the generic transformation process. Also, we present a design and
implementation of the data transformation platform. This project also discusses algorithms
for change detection and proposes a language for describing the changes. An implementation
of an update engine based on the vocabulary is demonstrated.

1.3 Outline of Thesis

The remainder of the thesis is organized as follows. Chapter 2 explains some major concepts
and terms that will be used throughout the thesis. Related works are examined in the same
chapter. Chapter 3 elaborates the theories and algorithms for the transformation of XML,
JSON and CSV to RDF. In Chapter 4, we discuss change detection in XML and RDF and
give elaborate algorithms. Also a language for representing data difference (delta) and how
updates are executed are discussed in Chapter 4. Chapter 5 explains the development and
implementation of a prototype data transformer and an update engine. In Chapter 6, we

10 Data source synchronization in cloud-based triple stores

CHAPTER 1. INTRODUCTION

test and measure the performance of the software tools developed in Chapter 5. Chapter 7
summarizes the work done and gives conclusions.

Data source synchronization in cloud-based triple stores 11

Chapter 2

Background and Related Work

2.1 Introduction

In this chapter, we present brief explanations of concepts and terms used throughout this
thesis. Where necessary, examples and diagrams are given to illustrate concepts to avoid
in-depth explanations of broad terms. We also discuss related work.

2.2 RDF

Resource Description Framework (RDF), is a standard model for data exchange on World
Wide Web and a W3C recommendation w3c (2014b). This data model is based on the
representation of resources by uniform resource identifiers (URIs) and the description of the
relations betweeen resources using a set of RDF statements referred to as triples. A triple
consists of a subject, predicate and an object. A subject could either be a URI or a blank
node, a predicate could only be a URI and an object could be a URI, a blank node or a
literal. A blank node is used to represent a resource, which does not have a URI. Basically,
the predicate of a triple shows a relation between the subject and the object. A set of triples
represents a labelled directed graph where subjects and objects are nodes and predicates are
edges. A statement such as “Nelson is a driver who drives buses” can be represented by two
triples as shown in Listing 2.1

<ex : Nelson rd f : type ex : Driver> .
<ex : Nelson ex : d r i v e s ex : Buses> .

Listing 2.1: Example of triples

where ex and rdf are prefixes for the URIs http://example.org/ and http://www.w3.org/1999/02/22-
rdf-syntax-ns# respectively. A simple directed graph representing these triples is shown in
figure 2.1.

Data source synchronization in cloud-based triple stores 13

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: Sample rdf graph

Commonly used serialization formats for RDF are: Turtle, N-Triples, RDF/XML and
JSON-LD. The RDF/XML and Turtle representation of the example are shown in Listing 2.2
and Listing 2.3.

<rd f :RDF xmlns : rd f=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns/#”
xmlns : ex=”http :// example . org /” >

<rd f : De s c r ip t i on rd f : about=”http :// example . org /Nelson” >
<rd f : type rd f : r e s ou r c e=”http :// example . org /Driver ” />
<ex : d r i v e s rd f : r e s ou r c e=”http :// example . org /Buses” />

</rd f : Descr ipt ion>
</rd f :RDF>

Listing 2.2: RDF data in RDF/XML format.

@pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns/#> .
@pref ix ex : <http :// example . org/> .

ex : Nelson rd f : type ex : Dr iver .
ex : Nelson ex : d r i v e s ex : Buses .

Listing 2.3: RDF data in Turtle format.

2.3 SPARQL

SPARQL is a language for querying data stored in RDF format. It is a W3C recommedation
for querying RDF endpoints w3c (2008). SPARQL has a close resemblance to SQL. There are
five query forms which use pattern matching to form result sets or RDF graphs. The query
forms are:

1. SELECT: returns variables bound in a pattern match.

2. CONSTRUCT: creates new RDF triples or graphs.

3. ASK : tests whether a query pattern has a solution or not.

4. UPDATE: provides operations to update, create and remove triples from an RDF end-
point.

5. DESCRIBE: returns a description and other potentially relevant details of RDF triples.

Listing 2.4 shows a sample SPARQL query.

14 Data source synchronization in cloud-based triple stores

CHAPTER 2. BACKGROUND AND RELATED WORK

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns/#>
PREFIX ex : <http :// example . org/>

s e l e c t ?x
where { ?x rd f : type ex : Dr iver . ?x ex : d r i v e s ex : Buses }

Listing 2.4: SPARQL query expression

2.4 XML

XML, Extensible Markup Language, defines a simple set of rules for encoding data that is
both human and machine readable w3c (2003). It specifies neither semantics nor tags and
as such, users are free to define custom tags and the structural relationships between them.
The success of XML as a model for data exchange on the web is largely attributed to its
flexibility. The structure of an XML document can however be predefined in a Document
Type definition (DTD) or an XML Schema. An example xml document is shown in Listing
2.5

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<Demoboard i d e n t i f i e r=”OM7622”>
<DemoboardInformation>
<Path>Development k i t s /Small s i g n a l RF/LNA</Path>
<Ranking/>
<Descript iveSummaries>
<DescriptiveSummary>
<Header>Evaluat ion board content</Header>

</DescriptiveSummary>
</DescriptiveSummaries>

</DemoboardInformation>
</Demoboard>

Listing 2.5: Sample XML document

2.5 XQUERY

XQUERY is a query and functional programming language designed to query data stored in
XML format w3c (2010). It consists mainly of FLWOR expressions where F stands for the
For clause, which can be used to declare variables that iterate over XML sequences. The L
stands for let and allows to bind values to variables. A condition for filtering variable bindings
can be specified using the where (W) clause. Order by (O) orders the result set according
to a given condition and return always come last in an XQUERY expression and defines the
items that are included in the result. With a large number of built-in functions, XQUERY
is a powerful language for arbitrary XML transformations. A simple XQUERY expression is
shown in Listing 2.6.

for $x in doc (”movies . xml”) / genre / superhero
where $x/ p r i c e > 10
order by $x/ t i t l e
return $x/ t i t l e

Listing 2.6: XQUERY expression

Data source synchronization in cloud-based triple stores 15

CHAPTER 2. BACKGROUND AND RELATED WORK

2.6 JSON

JSON, JavaScript Object notation, is a lightweight data format that uses human-readable
text to transmit data consisting of key-value pairs or an array ECMA (2013). A key is a
string in double quotes and a value can be a string, number, true, false, null, array or a
nested object. The structure is as shown in figure 2.2. It is easy for humans to read and
write. It is used as an alternative to XML. It is comparatively much easier for machines to
parse and generate because the format is already available in many programming languages.
A sample JSON data is shown in Listing 2.7.

Figure 2.2: JSON structure

{
” person ” :
{

”age” : ”40” ,
”name” : ”John Smith”

}
}

Listing 2.7: Sample JSON data

2.7 CSV

Comma-separated values or character-separated values (CSV) files store tabular data in plain-
text form Shafranovich (2005). The file format is used in Microsoft excel and is popular even
among non-Microsoft platforms. CSV has an advantage over XML specification in terms of
overhead. CSV has much lower overhead, thereby using much less bandwidth and storage
than XML. An example of CSV file is shown in listing 2.8.

16 Data source synchronization in cloud-based triple stores

CHAPTER 2. BACKGROUND AND RELATED WORK

Year ,Make , Model , Descr ipt ion , Pr i ce
1997 ,Ford , E350 , ac abs moon , 3000 . 00
1999 ,Chevy , Venture Extended Edit ion , ”” ,4900 .00

Listing 2.8: CSV file

2.8 Related Work

2.8.1 XML to RDF

Several approaches for transforming XML to RDF have been proposed. Most of these ap-
proaches require human intervention and require different mapping rules for each XML trans-
formation. Very few approaches have tried to completely automate the transformation pro-
cess.

Melnik (1999) proposed a simplistic approach for transforming XML to RDF by a direct
mapping of XML elements to RDF. In Melnik’s approach, every XML element is transformed
to RDF with child nodes as properties of parent nodes using a simplified RDF syntax. The
approach applies the subject-predicate-object model of RDF preserving the XML structure in
the final RDF model. The almost one-to-one mapping from XML to RDF helps preserve data
and this makes transforming the generated RDF model back to XML much easier. Moreover,
the approach requires no human intervention. However, it draws little semantic information
from the XML files.

Thuy et al. (2008) exploits XML schema to transform XML documents to RDF. In their
approach, element definitions stored in an XML Schema are mapped to RDF Schema ontology.
The mapping is then used to transform XML files that conform to the XML Schema. The
authors’ claim of capturing implicit semantics in an XML document is not entirely true since
an XML Schema is used to specify the structure prescriptions for XML documents and does
not provide meaning to XML tags. Data type information is however relevant knowledge that
may be captured in an XML Schema. The result of this approach is therefore not so different
from Melnik’s approach with the exception of the extra data type information.

Klein (2002) introduces a procedure for transforming XML to RDF by annotating the
XML documents via an RDF-Schema specification. In his approach, an ontology is used to
specify which elements and attributes in an XML document are interesting and what role they
have, i.e., whether they specify a property or class. Not every syntactic structure is therefore
converted into a statement in the RDF model. The tranformation of an XML document to
RDF is based on the generated ontology, which did not follow a structured procedure but was
more reliant on intuition, which requires human intervention. Though the approach draws
meaningful information from XML documents, data is not preserved as many XML elements
are absent in the final RDF model. The approach is not completely automated and hardly
round-trippable.

To make the XML-RDF-XML transformation process completely automated, error-free
and round-trippable, we propose a hybrid approach which uses a simplistic mappings to
preserve data, and the use of XML schema, if available, to preserve meaningful information
such as datatypes and namespaces. If necessary, more meaning will be added to the triples
using a set of semantic mappings.

Data source synchronization in cloud-based triple stores 17

CHAPTER 2. BACKGROUND AND RELATED WORK

2.8.2 JSON to RDF

Despite JSON’s popularity for exchanging data on the web and its serialization for RDF, not
so much has been work done to transform an arbitrary JSON data to RDF and vice versa.

Izquierdo & Cabot (2013) undertook a project to discover the implicit schema of an
arbitary JSON data. They proposed a model-based process composed of three phases:
(1) pre-discovery phase extracting low-level JSON models out of JSON documents, (2) single-
service discovery phase aimed at obtaining the schema information for a concrete service
(inferred from a set of low-level JSON models output of different consecutive calls to the
service), and (3) multi-service discovery phase in charge of composing the schema information
obtained in the previous phase in order to get an overall view of the application domain. The
resulting JSON schema is represented by the Ecore model. The Ecore metamodel can be
mapped to the RDF schema making is easy to transform the discovered JSON to RDF. Their
work however focused only on discovering the implicit JSON schema and nothing more.

In October 2011, John Boyer (2011) from IBM made a submission to W3C workshop in
data and services integration. Their presentation highlighted their experience with transfor-
mations between XML and JSON. The authors grouped JSON into two categories: friendly
JSON and unfriendly JSON and how to transform them to XML. A friendly JSON is charac-
terized by: 1. Friendly JSON does not include repeating variable names. 2. Data types are
directly associated with each variable. 3. Friendliness provides easy data structure consump-
tion by JavaScript programmers, authors.

Listing 2.9 shows an example of a friendly JSON.

{
” person ” :
{

”age” : ”40” ,
”name” : ”John Smith”

}
}

Listing 2.9: CSV file

Listing 2.9 shows an example of an unfriendly JSON.

{
”book” : { ” ch i l d r en :
[{ ” t i t l e ” : { ” a t t r i b u t e s ” :
{ ” i sbn ” : ”15115115” } ,
” ch i l d r en ” :
[”This book i s ” , { ”emph” : ” bold ” }] }
}] }

}

Listing 2.10: CSV file

The JSON-LD project provides a JSON serialization for RDF data and also facilitates easy
transformation of existing JSON into JSON-LD w3c (2014a). JSON-LD is a format for
transporting RDF data as JSON. The transformation of an arbitrary well-formed JSON to
JSON-LD revolves around the concept of context. A context specification provides mappings
from JSON to RDF model by linking keys and values in JSON to concepts in the RDF

18 Data source synchronization in cloud-based triple stores

CHAPTER 2. BACKGROUND AND RELATED WORK

ontology. In simple terms, a context is used to map terms in the JSON to IRIs. Listing 2.11
shows an example of JSON-LD with a context.

{
”@context” :
{

”name” : ” http :// schema . org /name” ,
” image” : {

”@id” : ” http :// schema . org / image” ,
”@type” : ”@id”

} ,
”homepage” : {

”@id” : ” http :// schema . org / u r l ” ,
”@type” : ”@id”

}
} ,
”name” : ”Manu Sporny” ,
”homepage” : ” http ://manu . sporny . org /” ,
” image” : ” http ://manu . sporny . org / images /manu . png”

}

Listing 2.11: JSON-LD context

The project provides a set of tools for transforming from different RDF serializations to
JSON-LD and back.

2.8.3 Change detection

A plethora of studies have explored the possibility of calculating the difference between XML
documents and RDF knowledge bases. We present a brief literature study of the works and
tools developed in this regard.

Wang et al. (2003) proposed an algorithm for detecting changes between unordered XML
models. Two XML documents are parsed as Xtrees and hash values are generated for the
Xtrees. The detection process is then applied on the trees rather than on the document itself.
The algorithm then generates a minimum-cost matching edit script. S. K. Lee & Kim (2006)
also employ Xtree and hash value generation to detect changes between XML documents
where order of data is taken into account. The approaches examined require the XML trees
to reside in main memory therefore making them unscalable when applied to large data files.
Chen et al. (2004) and Sundaram & Madria (2012) proposed algorithms for detecting changes
in XML data sets stored in relational databases. The former assumes ordered XML data
while the latter study assumes unordered XML data.

Volkel et al. (2005) proposed two algorithms. (1) A structure based algorithm, which
compares the explicit set of triples of two RDF graphs and return the difference and (2) a se-
mantic aware algorithm, which additionally considers inferred triples in the RDF graphs. Noy
& Musen (2002) proposed a differential algorithm based on heuristic matching RDF concepts.
Klein et al. (2002) allows users to specify conceptual relations that exist between ontology
concepts to aid in an efficient recognition of the difference between two onotology versions.
Zeginis et al. (2011) give a theoretical analysis of the various difference algorithms(RDFs
differential functions). They give a detailed study of the deltas produced by comparing their
size, semantic identity, redundancy, reversibility and composability. They then propose a
more efficient algorithm for calculating RDFs deltas. Papavasileiou et al. (2013) proposed a

Data source synchronization in cloud-based triple stores 19

CHAPTER 2. BACKGROUND AND RELATED WORK

change language capable of concisely and unambigously describing any possible change that
could be encountered in an RDF. D.-H. Lee et al. (n.d.) suggested a more efficient approach in
finding delta by partitioning triples based on their predicate. Triples with common predicates
were grouped together and compared making it more efficient than a naive comparison of all
triples.

2.9 Summary

We have explained some basic concepts that are used throughout this thesis. Extensive
explanations are given where necessary in the subsequent sections. We have also discussed
related work in data transformation and change detection.

20 Data source synchronization in cloud-based triple stores

Chapter 3

Data Transformation

3.1 Introduction

Data transformation is the process of converting data from one format (XML, JSON, CSV,
RDF, etc) to another. Enterprises produce data in different formats and at different locations.
Getting all the data together and managing a single data repository is important in providing
users a unified overview of the data. The different source data are collected, transformed into
a single standard format before being loaded into a repository. Data transformation involves
mapping a source data to a target data and converting the source data based on this mapping.
Data mapping defines the relationship between elements of the source and target data. In
other words, data mapping defines the rules for data transformation.

In this project, we consider the transformation of XML, JSON and CSV to RDF and back.
Most of the data produced today are in XML, JSON or CSV formats. These data sources
feed many enterprise applications and websites. It is essential to transform data from their
different formats to a chosen standard format so that applications that use these data can
operate on a common data format to enhance application interoperability. Also, merging of
data becomes much easier when data are in a common format. The chosen standard format
is W3C’s RDF data format.

In this section we describe a transformation process that will transform source data in
XML, JSON or CSV to RDF and back. The transformation consists of two processes: a
completely automated generic transformation and a semi-automated semantic transformation.
Figure 3.1 gives an illustration.

Figure 3.1: Data transformer

A source file in XML, JSON or CSV format is initially transformed into a generic RDF

Data source synchronization in cloud-based triple stores 21

CHAPTER 3. DATA TRANSFORMATION

format and then specific semantic mappings are defined to further transform the triples.

3.2 Generic transformation

A generic set of rules are applied to the data source to transform it to RDF. This transfor-
mation process requires no knowledge of the source schema. The same rules are applied to
all documents of the same format in the transformation.

3.2.1 XML to RDF

We assume every XML model has a default corresponding RDF model as proposed by Melnik
(1999). XML child elements and attribute names are treated as properties of parent elements
and consequently represented as predicates in a triple. Text elements and attribute values
are treated as RDF literals. To preserve the structure and ordering of XML data, we extend
the RDF/S vocabulary to include rdfx:pos, which identifies the positions of elements within
a document. The root element is identified by root. The Listing 3.1 displays a sample XML
document whose RDF model is shown in Figure 3.2.

<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<Demoboard i d e n t i f i e r=”OM7622”>
<DemoboardInformation>
<Path>Development k i t s /Small s i g n a l RF/LNA</Path>
<Ranking/>
<Descript iveSummaries>
<DescriptiveSummary>
<Header>Evaluat ion board content</Header>

</DescriptiveSummary>
<DescriptiveSummary>
<Header>Appl i cat ions</Header>

</DescriptiveSummary>
</DescriptiveSummaries>

</DemoboardInformation>
</Demoboard>

Listing 3.1: Sample XML document

22 Data source synchronization in cloud-based triple stores

CHAPTER 3. DATA TRANSFORMATION

Figure 3.2: XML-RDF graph

The transformation process adds a little semantic information for software by deducing basic
data types of the literals as shown in Figure 3.2. The generic transformation algorithm is
described in Algorithm 1.

Data source synchronization in cloud-based triple stores 23

CHAPTER 3. DATA TRANSFORMATION

Algorithm 1 XML to RDF

if element is a complex type then
if element is root then

create the first statement:
default namespace:root element name :id1

else
create statement:
:id1 default namespace:element name :id2

end if
if element is child and its parent has more than one child then

add position statement:
:id2 rdfx:pos position value

end if
if element has attributes then

create these statements:
:id1 default namespace:attribute name :id3
:id3 rdfx:isAttribute ”true”
:id3 rdfs:literal literal value
:id3 rdfs:datatype datatype

end if
end if
if element is a simple type then

create these statements:
:id1 default namespace:element name :id2
:id2 rdfs:literal literal value
:id2 rdfs:datatype datatype

end if
if element has siblings then

add position statement:
:id2 rdfx:pos position value

end if
Recursively apply algorithm on all child elements of the root element.

3.2.2 JSON to RDF

JSON has a key-value format and keys are treated as predicates in a triple. Since JSON is
an unordered set of elements the order of values are not relevant except elements within an
array. To preserve the order of elements within and array, rdfx:pos is used. Unlike JSON-LD,
which requires a context specification to map keys and values to IRIs, we map all keys to a
default IRI. The semantic transformation allows more meaningful mapping definitions. Data
type information is also captured in this transformation. Listing 3.2 and Figure 3.3 illustrates
the transformation process.

24 Data source synchronization in cloud-based triple stores

CHAPTER 3. DATA TRANSFORMATION

{
”Fi le ID ” : 12566 ,
”BasicTypeNumbers” : ”BUK754R0−55B;BUK764R0−55B” ,
”BasicTypes ” : [”BUK9Y12−55B” , ”BUK7Y12−55B”]
}

Listing 3.2: Sample JSON document

Figure 3.3: JSON-RDF graph

Algorithm 2 describes the algorithm

Data source synchronization in cloud-based triple stores 25

CHAPTER 3. DATA TRANSFORMATION

Algorithm 2 JSON to RDF

Represent parent JSON object or array by :root
Keys are predicates
Step 2:
On encountering a value create statement:
:root default namespace:key :id1
Step 3:
if value is a simple value (string, boolean, number) then

create statements:
:id1 rdfs:Literal literal value
:id1 rdfs:Datatype datatype

end if
if value is null then

create statement:
:id1 rdf:Type nill

end if
if value is an object then

go to step 2 (use the appropriate subject)
end if
if value is an array then

create statement:
:id1 rdf:Seq :id2
for all array values do

create statement:
:id2 rdf:li :id2,...,number of array values
if array has more than one element then

add positions to each element:
:id rdfx:pos position value

end if
end for

end if
Go to step 3 for each value

3.2.3 CSV to RDF

CSV stores data in a tabular format. Each row in the table is represented as a unique subject
with the header titles as predicates and column values as objects of the triples. If the CSV
document has no header, a custom header is generated. The positions of rows of the document
is captured by the rdfx:pos. Data type information is also captured in the transformation.
Listing 3.2 and Figure 3.4 illustrates the transformation.

Year , Model
1997 , E350
1999 , Venture Exteneded Edit ion

Listing 3.3: Sample CSV document

26 Data source synchronization in cloud-based triple stores

CHAPTER 3. DATA TRANSFORMATION

Figure 3.4: CSV graph

Algorithm 3 describes the algorithm for the transformation

Algorithm 3 CSV to RDF

for all rows do
create a unique object as the subject of the statement:
:id1
add position statement:
:id1 rdfx:pos position
for all values in a row do

create these statements:
:id1 default namespace:column header :id2
:id2 rdfs:literal literal value
:id2 rdfs:Datatype literal datatype

end for
end for

Data source synchronization in cloud-based triple stores 27

CHAPTER 3. DATA TRANSFORMATION

3.3 Semantic or model specific transformation

This phase of the transformation consists of a list of functions, which transforms an input set
of triples into a desired format. The set of functions may consist of generic functions for data
restructuring tasks such as string splitting, string concatenation, word replacement, language
translation, exporting of data in specified formats, etc. It may also consist of custom functions
defined to restructure specific data sets. So, given a set of triples T and a list of functions
< f1, f2, . . . , fn >, we compute T

′
= fn(fn−1, . . . , fn(T)), where T

′
is the newly transformed

set of triples.
The list of functions are executed on the triples in the order in which they are specified

in the mapping rules. Each function takes a reference to a local triple store and an optional
list of string parameters. The implementation details of functions as a plugin is discussed in
Section 5.3 Examples of functions and their definitions are shown in Examples 1, 2 and 3.

Example 1 (adding a namespace).
Given a set of triples T a prefix, p and a URI, u
add namespace(T, p, u) = T

⋃
{p, u}

Example 2 (replacing a predicate).
Given a set of triples T , predicates, p and p

′
,

then for all triples s p x ∈ T ,
replace predicate(T, p, p

′
) = (T

⋃
{s, p′ , x})− {s, p, x}

Example 3 (splitting a value).
Given a set of triples T , a predicate, p and a separator, k,
then for all triples s p x ∈ T ,
split value(T, p, k) = (T

⋃
{s, p, x1, s, p, x2, . . . , s, p, xn, })− {s, p, x}

where x = x1 + x2 + · · ·+ xn.

3.4 Summary

We have presented a generic transformation process that converts a source data in XML,
JSON or CSV into RDF. This transformation is based on a fixed set of mapping rules that
can be applied automatically without any human intervention. The transformation captures
data type information, and position of elements. A semi-automated semantic transformation
using a list of functions further transforms data into a desired format to make data more
meaningful. We have also presented algorithms for each transformation process.

28 Data source synchronization in cloud-based triple stores

Chapter 4

Change detection and Update
execution

4.1 Introduction

The ability to automatically detect changes between different versions of data is very impor-
tant in data synchronization. It is important for synchronized data to stay up-to-date and
consistent. The difference between synchronized data sources needs to be detected, calcu-
lated and then propagated to enhance freshness and consistency of data. It is also essential
for monitoring the evolution of data.

In this section, we assume an XML source, transformed with our proposed transformation
engine to RDF, is synchronized with a triple store i.e an RDF graph. We discuss how changes
in an XML source document can be efficiently calculated and transformed as an RDF change
to update the corresponding RDF graph in the triple store. In much the same way, we
consider how changes in the RDF graph can be efficiently calculated and transformed as an
XML change to update the XML source document. Most of the ideas presented in this chapter
are adapted from existing works. We however introduce novel propositions and algorithms for
a more efficient change detection process. We also propose a simple vocabulary for describing
and representing changes within XML and RDF. We then discuss how delta, based on the
vocabulary, can be used to update an XML document or an RDF graph.

4.2 XML change detection

An XML tree may be ordered or unordered. In an ordered tree, both ancestor (parent-
child) relationship and left-to-right ordering among siblings are significant whilst only ancestor
relationships are significant in an unordered XML tree. Accordingly, algorithms for detecting
changes can be grouped into two broad categories depending on whether they treat XML trees
as ordered or unordered. In this context, we will recognize XML trees as unordered since they
are applicable to a wide variety of XML documents. Unordered XML trees are problematic
to round tripping since sibling elements’ positions are not preserved. However, transforming
RDF back to the original XML may not be feasible after many semantic transformations have
been performed on the RDF. The semantic transformations may not be invertible therefore
preventing round tripping. Applications that require the original XML documents will connect

Data source synchronization in cloud-based triple stores 29

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

directly to the source systems. The change detection method proposed in this section is
adopted from Wang et al. (2003). We are interested in three kinds of nodes in an XML tree:

1. Element node - Non-leaf node identified by a name label.

2. Text node - leaf node with a value.

3. Attribute node - Non-leaf node identified by a name and a value.

These edit operations are allowed on a tree:

• insert(x(name, value), y): inserts x with name and value as a child node of y.

• delete(x): deletes node x.

• update(x, new value): changes the value of leaf node x to new value. Only text nodes
and attributes values can be updated. An update cannot modify a node’s name.

• insert(Tx, y): insert a subtree Tx as a child of y.

• delete(Tx): delete subtree Tx.

insert(Tx, y) and delete(Tx) are compositions of the first three basic edit operations. Changes
between two XML documents are specified as a sequence of edit operations referred to as edit
script or an XML delta. The following definitions and theories are essential to understand
the change detection algorithm proposed in Wang et al. (2003).

Definition 1.
Given an edit script, E that transforms tree T1 to T2, E is the minimum-cost edit script for
(T1 7→ T2) iff ∀ E

′
of (T1 7→ T2), Cost(E

′
) ≥ Cost(E). Cost(E) = n where n is the number

of basic edit operations in E.

Definition 2.
Editing distance between T1 and T2, Dist(T1, T2) = Cost(E) where E is a minimum-cost edit
script for (T1 7→ T2)

Definition 3.
The signature of a node x in a tree T , is given by
signature(x) = /Name(x1)/.../Name(xn)/Name(x)/Type(x), where x1 is the root of T and
(x1, . . . , xn, x) is the path from root to x. The signature is obtained by concatenating all
the names and the type. Only nodes of the same signature are matched during the change
detection process.

Definition 4.
A pair of nodes (x, y) is matching, M from T1 to T2 iff ,

1. (x, y) ∈M , x ∈ T1, y ∈ T2, signature(x) = signature(y)

2. ∀(x1, y1) ∈M , and (x2, y2) ∈M , x1 = x2 iff y1 = y2.

3. M is prefix closed, i.e given (x, y) ∈ M , suppose x
′

is the parent of x and y
′

is the
parent of y, then (x

′
, y

′
) ∈M .

30 Data source synchronization in cloud-based triple stores

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

The matching, M which generates a minimum-cost edit script is referred to as the minimum-
cost matching, Mmin from T1 to T2.

Lemma 1.
Suppose both x and y are leaf nodes, x ∈ T1, y ∈ T2; θ denotes null.

1. Dist(x, y) = 0 iff Signature(x) = Signature(y), V alue(x) = V alue(y) (identical);

2. Dist(x, y) = 1 iff Signature(x) = Signature(y), V alue(x) 6= V alue(y) (update);

3. Dist(x, θ) = Dist(θ, y) = 1 (delete & insert).

Given two XML documents doc1 and doc2, let T1 and T2 be their tree representations.
The algorithm consists of three main steps.

1. Parsing and hashing : doc1 and doc2 are parsed into xtrees T1 and T2. The hash values
of every node in the trees are then calculated.

2. Matching : The hash values of the trees are compared to find equivalences and differences
between the trees. This is done to find the minimum-cost matching between T1 and T2.

3. Generating minimum cost edit scripts: based on the minimum-cost matching, a mini-
mum cost edit script E for (T1 7→ T2) is generated.

These steps are illustrated in algorithms 4, 5 and 6.

Algorithm 4 X-Diff Algorithm Wang et al. (2003)

Input: (DOC1, DOC2)
Parsing and Hashing
Parse DOC1 to T1 and hash T1;
Parse DOC2 to T2 and hash T2;
Checking and Filtering
if (XHash (Root(T1)) = XHash (Root(T2))) then
DOC1 and DOC2 are equivalent, stop.

else
Do Matchng:
Find a minimum-cost matching Mmin(T1, T2) from T1 to T2.

end if
Generating minimum-cost edit script
Do EditScript:
Generate the minimum-cost edit script E from Mmin(T1, T2).

Data source synchronization in cloud-based triple stores 31

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Algorithm 5 X-Diff Matching Algorithm Wang et al. (2003)

Input: Tree T1 and T2
Output: a minimum-cost matching Mmin(T1, T2)
Initialize: set initial working sets
N1 = all leaf nodes in T1, N2 = all leaf nodes in T2
Set the Distance Table DT = {}
Step 1: Reduce matching space
Filter out next-level subtrees that have equal XHash values
Step 2: compute editing distance for (T1 7→ T2)
DO {
for all nodes x in N1 do

for all nodes y in N2 do
if Signature(x) = Signature(y) then

Compute Dist(x, y);
Save matching (x, y) with Dist(x, y) in DT

end if
end for

end for
Set:
N1 = parent nodes of previous nodes in N1;
N2 = parent nodes of previous nodes in N2

} WHILE(both N1 and N2 are not empty)
Step 3: mark matchings on T1 and T2
Set Mmin(T1, T2) = {}
if Signature(Root(T1)) 6= Signature(Root(T2)) then

Return; # Mmin(T1, T2) = {}
else

Add (Root(T1), Root(T2)) to Mmin(T1, T2)
for all non-leaf nodes mapping (x, y) ∈Mmin(T1, T2) do

Retrieve matchings between their child nodes that
are stored in DT.
Add child node matchings into Mmin(T1, T2)

end for
end if

32 Data source synchronization in cloud-based triple stores

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Algorithm 6 X-Diff EDIT-SCRIPT Algorithm Wang et al. (2003)

Input: Tree T1 and T2, a minimum-cost matching Mmin(T1, T2), the distance table DT.
Output: an edit script E
Initialize: set E = Null;
x = Root(T1), y = Root(T2)
if (x, y) /∈Mmin(T1, T2) then

Return ”Delete(T1), Insert(T2)”
else if Dist(T1, T2) = 0 then

Return ””;
else

for all node pairs (xi , yj) ∈ Mmin(T1, T2), xi is a child node of x, yj is a child node
of y do

if xi and yj are leaf nodes then
if Dist(xi, yj) = 0 then

RETURN ””;# Subtree deletion and insertion
else

Add Update(xi , V alue(yj)) to E; # Update leaf node
end if

else
Add EditScript(Txi, T yj) to E;# Call subtree matching
RETURN E;

end if
end for
for all nodes xi not in Mmin(T1, T2) do

Add ”Delete(Txi)” to E;
end for
for all nodes yj not in Mmin(T1, T2) do

Add ”Insert(Tyj)” to E;
end for

end if
return E;

The representation of the nodes in the edit script should uniquely and unambiguously
identify the specified nodes. Section 4.4 describes how this change can be unambiguously
represented. The change detection approach presented above is fast and efficient for small
XML files but inefficient in handling large XML files since:

1. the entire trees of both XML documents have to reside in memory during the detection
process and

2. an XML DOM tree is twice as large as the XML document Sundaram & Madria (2012).

The detection process is therefore constrained by the system’s available main memory. For a
more scalable change detection, XML documents should be stored in a database and queried.
This approach would be more scalable as large documents can be stored in databases and
efficiently queried and manipulated.

Data source synchronization in cloud-based triple stores 33

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

4.3 RDF change detection

Changes between two RDF knowledge bases are represented as a set of triple additions and
deletions. These set of changes are referred to as RDF delta. An update to a part of a
triple without explicit deletion of the triple will consist of deleting the triple and adding a
new updated triple. In the same vein, a triple replacement will consist of a deletion and an
addition of a new triple. An RDF delta will contain:

1. del(x, y , z) - delete a triple

2. add(u, v, w) - add a triple.

Note that we do not consider RDF Schema since it introduces a certain type of ”non-
determinism” as data changes and the schema evolves Chirkova & Fletcher (2009).

RDF graphs may contain blank nodes, which makes it more difficult to compare two graphs
since the scope of blank nodes is restricted to the local graph in which they belong. We will
first discuss computing delta between graphs without blank nodes. Computing the explicit
difference between two RDF graphs with no blank nodes is simple and straight forward. As
defined by Berners-Lee & Connolly (2004):

Definition 5.
If G1 and G2 are ground RDF graphs, then the ground graph delta of G1 and G2 is a pair
(insertions, deletions) where insertions is the set difference G2−G1 and deletions is G1−G2.

Since we have to translate a set of additions and deletions of triples (RDF delta) to a set
of edit operations (XML delta), we will consider only explicit RDF deltas. Figure 4.1 shows
two RDF graphs and their delta.

34 Data source synchronization in cloud-based triple stores

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Figure 4.1: Delta between K and K’

The RDF delta is defined as

4 = (K,K
′
) = ({add(t)|t ∈ K ′ −K}

⋃
{del(t)|t ∈ K −K ′})

4 is reversible and composable according to the definitions below Zeginis et al. (2011)

Definition 6 (Reversibility).
The inverse of an atomic change operation is defined as: Inv(Add(t)) = Del(t) and Inv(Del(t)) =
Add(t) A set of change operations D can be reversed as follows: Inv(D) = U {Inv(d)|d ∈ D}
4 is reversible if: Inv(4(K,K

′
)) = 4(K

′
,K)

Definition 7 (Composition).
A differential function 4 is composable if: 4(K1,K2)◦· · ·◦4(Kn−1,Kn) = 4(K1,Kn) where
41 ◦ 42 = 41

⋃
42.

For graphs containing blank nodes, the blank nodes need to be renamed in such a way
that the graphs will be comparable. In most practical RDF graphs, we notice that each
blank node has one incoming edge and many outgoing edges. So a blank node is used as an
object of a triple only once. RDF graphs with this property is known to have a nested form
D.-H. Lee et al. (n.d.). We propose a renaming scheme for blank nodes. The following defines
the renaming scheme.

Data source synchronization in cloud-based triple stores 35

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Definition 8 (Blank node renaming).
Suppose x is a blank node and the object of the triple s1, p1, x, then the new name of x,
name(x) = s1.p1 if s1 is a URI or a renamed blank node. If s1 is a blank node and not
renamed, then s1 should be renamed first before x. The new name is transformed into a URI
using a chosen default URI.

Figure 4.2: Blank node renaming

Figure 4.2 illustrates the renaming scheme. After applying the renaming scheme, the RDF
graphs become ground graphs(graphs with no blank nodes) and definition 5 can be applied
to compare and find the difference between the two graphs. To prevent naive comparison and
make the delta calculation more efficient, we adopt predicate-grouping and triple partition as
proposed by D.-H. Lee et al. (n.d.). In this approach, triples are grouped according predicates
and comparison is done between groups of the same predicate. As a result, this reduces the
amount of comparisons. Figure 4.3 illustrates predicate grouping.

Figure 4.3: Predicate grouping

The steps to find an RDF delta are presented in algorithm 7.

36 Data source synchronization in cloud-based triple stores

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Algorithm 7 RDF delta algorithm

Input: Graphs G1 and G2

Apply blank node renaming to G1 and G2

Apply predicate grouping and partition G1 and G2

Find G2 − G1 and G1 − G2

for same predicate groups in G1 and G2 do
Compare triples
if s p x ∈ G2 and s p x /∈ G1 then

add ”ADD(s p x)” to delta
else if s p x ∈ G1 and s p x /∈ G2 then

add ”DEL(s p x)” to delta.
end if

end for

The delta can be represented using the vocabulary defined in the next section.

4.4 Delta representation and Update execution

To be able to propagate changes in an XML document to its corresponding RDF graph, the
basic edit operations (XML delta) should be uniquely and unambiguously represented as an
RDF delta. In the reverse direction, RDF delta should also be uniquely represented as an
XML delta. Figure 4.4 illustrates the idea of finding the difference two XML or RDF versions
of a document, propagating only the delta which is then used to update the synchronized
target.

Figure 4.4: Change detection and update

We propose a simple vocabulary that captures all possibles changes in an XML tree and an
RDF graph. The format for representing deltas using the vocabulary may be XML or RDF.
Recall that, in this work, we confine change detection and update between XML documents
and RDF graphs. The format for delta representation is relevant as deltas may not only be
used for updates but may be stored to monitor data evolution and also for version control.
Before discussing the delta vocabulary, we reiterate the notion of XML path expression.

Data source synchronization in cloud-based triple stores 37

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Definition 9 (XML path expression).
Path expressions are used to find nodes in trees. In this work, we define the path of a node
as the concatenation of all nodes names in the path from the root to the node. Given a node
x in a tree T ,
path(x) = /Name(x1)/Name(x2)/.../Name(xn)/Name(x) where x1 is the root of T and
(x1, ..., xn, x) is the path to x.

In our generic transformation of XML to RDF, node names are represented as predicates
in RDF triples. We therefore define path of a triple as the concatenation of all predicates from
the root of the RDF graph to the subject of the triple. The path value is a literal value. The
following vocabulary may be used to represent all deltas:

1. deltaType - identifies the type of delta representation. It has two literal values: ”XML”and
”RDF”.

2. add - denotes a simple insert operation at leaf level (insert node name and value).

3. delete - denotes a simple remove operation at leaf level (remove node name and value),

4. path - gives the path expression of a node or a triple.

5. position - gives the location of an element. It gives the position of an element to be
removed or the location to insert an element.

6. id - identifies an XML document or an RDF graph to which a delta belongs.

To get a clear understanding of how deltas are represented with this vocabulary, we will
illustrate how the basic XML edit operations are represented. Figure 4.5 shows an XML tree
and its corresponding RDF graph.

Figure 4.5: XML tree and RDF graph structure

A node insertion at the leaf level (insert() operation) is illustrated in Figure 4.6. The
corresponding delta in RDF is shown in Figure 4.7.

38 Data source synchronization in cloud-based triple stores

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Figure 4.6: Node insertion

Figure 4.7: Delta for node insertion

A simple SPARQL query of the delta for the path, literal and position values is shown in
Listing 4.1.

s e l e c t ?path ? value ?pos
where { ? s rd fx : add ?o .

?o rd fx : path ?path .
?o r d f s : L i t e r a l ? va lue .
OPTIONAL { ?o rd fx : pos ?pos }

}

Listing 4.1: SPARQL to get path, value and position

The last name in the path value gives the name of the node to be inserted and the literal
value gives the node’s value. The rest of the path literal value and the position values are
used to locate where to insert the set of triples. To update the corresponding RDF graph, the
query in Listing 4.2 finds the point of insertion (the subject of the new triples to be added).

s e l e c t ? sub
where { ?m : a ?n .

?n : c ? sub .
? sub : pos pos .
}

Listing 4.2: SPARQL to get subject of triples to insert

Data source synchronization in cloud-based triple stores 39

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Figure 4.8 shows a node deletion at the leaf level.

Figure 4.8: Node deletion

The corresponding delta representations are shown in Figure 4.9.

Figure 4.9: Delta for node deletion

The path value together with the literal and the position values uniquely identify the node
to be deleted. The query in Listing 4.3 updates the corresponding RDF graph.

de l e t e { ?a : e ?b .
?b ? c ?d

} where { ?m : a ?n .
?n : c ?a .
?a : e ?b .
?b : L i t e r a l va lue .
?b : pos pos .
?b ? c ?d
}

Listing 4.3: SPARQL to delete triples

An update is treated as a sequence of deletes and insertions. Figure 4.10 shows an updated
node at leaf level.

40 Data source synchronization in cloud-based triple stores

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Figure 4.10: node value update

The corresponding delta is shown in Figure 4.11.

Figure 4.11: Delta for update

An update of the corresponding RDF graph will first execute delete operations followed
by add operations. Insertion and deletion of subtrees are compositions of the three basic edits
above. To be able to properly update triples, generated nodes and blank nodes in an RDF
graph should be uniquely identifiable and traceable to specific elements in the source XML
during their transformation to RDF.

To transform an RDF delta to a corresponding XML edit operation, we apply this rule: A
set of additions and deletions of triples in an RDF delta will be propagated as an XML delta
if and only if they form a set of valid XML edit operations. Triples in the RDF delta will be
transformed to XML trees and if a tree corresponds to a valid XML update, that update will
be propagated. In the generic transformation, it is quite straight forward to transform triples
to XML by treating predicates as element names, literals as text or attribute values. Figure
4.12 shows an RDF graph, a valid and an invalid RDF deltas.

Data source synchronization in cloud-based triple stores 41

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Figure 4.12: Delta transformation

Assuming these triples are deleted:
(book 1 title title 1)
(title 1 Literal ”Irise”)
and these triples added.
(book 1 distributor distributor 1)
(distributor 1Literal ”Semaku”)
The first set of triples form a valid XML delete operation and the second forms a valid XML
insert operation. The representation of the delta is shown in Figure 4.13.

42 Data source synchronization in cloud-based triple stores

CHAPTER 4. CHANGE DETECTION AND UPDATE EXECUTION

Figure 4.13: Example RDF delta

To update a corresponding XML tree, we query for the path, literal and position values.
The XQUERY query in Listing 4.4 performs an insert update.

i n s e r t node <d i s t r i bu t o r>Semaku</d i s t r i bu t o r> i n to doc (”doc . xml”) //Books/book [
fn : p o s i t i o n () = pos]

Listing 4.4: XQUERY to insert node

Listing 4.5 shows a delete update.
The position value identifies the element in which to insert the new node and not the exact
position to insert the node

de l e t e node doc (”doc . xml”) //Books/book/ t i t l e [. = ’Semaku ’ and fn : p o s i t i o n () =
pos]

Listing 4.5: XQUERY to delete node

The delta transformation and representation is sound and complete since every XML edit
operation has a corresponding RDF delta. The corresponding RDF delta is unique. Also,
every valid RDF delta also transforms uniquely and unambiguously to corresponding XML
edit operations.

4.5 Summary

We have presented an XML detection algorithm, X-Diff and proposed an RDF change detec-
tion algorithm. We have proposed a blank node renaming scheme to make our RDF change
detection easier and more efficient. Furthermore, we have proposed a vocabulary to represent
all valid deltas in XML and RDF. We have also discussed a novel delta transformation and
representation from XML to RDF and vice versa.

Data source synchronization in cloud-based triple stores 43

Chapter 5

Software Development and
Implementation

5.1 Introduction

This section is divided into two subsections. The first subsection describes the design and
implementation of the data transformer. The second subsection describes the implementation
of the update engine. We discuss assumptions, properties and requirements for the realization
of the data transformer and the update engine.

5.2 Data transformer

5.2.1 Purpose

The purpose of this tool is to transform data from XML, JSON, and CSV formats to RDF.
It provides a two-stage transformation process: A generic transformation and a semantic
transformation, which provides a means to add more meaning and structure to a source
RDF. The resulting RDF can be serialized into a different format(N-triples, Turtle, etc)
and then loaded into a remote triple store. The platform provides an automated means to
transform a source file in XML, JSON, CSV to RDF without any human intervention. To
further transform a set of triples to a desired form, the platform provides a semi-automated
semantic transformation through a list of operations to perform on the source RDF.

5.2.2 Definitions

5.2.2.1 Pluggable application framework

Application plugins are software components that provide a means to extend an application’s
functionality. A software application is pluggable if it supports addition of plugins.

5.2.2.2 Reflection

Reflection is a property of a software application to modify its structure and behavior at
runtime. Using reflection, the software application can inspect classes within packages, load,

Data source synchronization in cloud-based triple stores 45

CHAPTER 5. SOFTWARE DEVELOPMENT AND IMPLEMENTATION

instantiate and invoke methods of these classes at runtime. Reflection is mostly possible with
high-level virtual machine programming languages such as Java, PHP, etc.

5.2.3 System overview

The platform consists of several components. Figure 5.1 shows the major components. The
generic transformer handles the transformation of the XML, JSON or CSV to RDF. The
dynamic plugin loader reads and loads the plugins at runtime. The semantic transformer
reads mapping rules and executes them on triples in the semantic transformation phase.
Triples are stored in the local triple store. The local triple store also supports SPARQL
queries. The transport component sends the triples to a remote triple store. Figure 5.1
demonstrates the system overview.

Figure 5.1: System overview

5.2.4 Specific requirements

5.2.4.1 Logical database requirements

5.2.4.1.1 XML database

For easy processing and querying of XML documents, the tool employs an XML database.
An XML database allows the storage of XML documents and query them using the powerful
XQUERY language. Sedna XML database is deployed in this tool. Sedna is an open source
native XML database, which supports the full XQUERY language as specified by W3C. It
provides easy backup to files and provides APIs for all the major programming languages.

46 Data source synchronization in cloud-based triple stores

CHAPTER 5. SOFTWARE DEVELOPMENT AND IMPLEMENTATION

5.2.4.1.2 RDF triple store

A local RDF triple store or simply triplestore is required to store and query the generated
triples. Triplestore is a database for triples. OpenRDF Sesame triplestore is deployed in this
tool. OpenRDF Sesame provides RDF database (triplestore) with in-memory and file storage.
It offers an easy to use JAVA API that provides means to connect the database and query
using W3C’s SPARQL.

5.2.5 Other requirements

The set of plugins and functions for semantic transformations and transport are described in
an XML file. An XML parser is required to parse and read the file. This tool uses a Xerces
XML parser.

A JSON parser is required to parse a source JSON document in order to transform it to
RDF. Also the mapping rules for semantic transformations are specified as JSON. This tool
uses Java API for JSON processing.

5.2.6 System Structure

The class diagram in Figure 5.2 gives the structural model of the system. The diagram only
shows the main classes without other helping classes. As their names suggest, the XML-
DatabaseManager instantiates a Sedna XML database, loads XML documents and returns
a reference to the XMLTripleGenerator class. The XMLTripleGenerator class is responsible
for transforming XML to RDF and loading in the local RDF triple store. The JSONTriple-
Generator class parses JSON documents and transforms them to RDF before loading them
in the local triple store. The CSVTripleGenerator class likewise transform CSV files. The
PluginPropertiesLoader class reads the plugins specified in the plugin properties file. The
MappingRulesLoader class reads the mapping rules applied during the semantic transforma-
tions. The dynamic loading of plugins and calling of functions on triples are done by the
MainEngine Class.

Data source synchronization in cloud-based triple stores 47

CHAPTER 5. SOFTWARE DEVELOPMENT AND IMPLEMENTATION

Figure 5.2: System structure

5.2.7 Software System Attributes

5.2.7.1 Portability

The software prototype is written in Java, which is a cross-platform programming language.
The application can therefore be deployed on all platforms where the Java Virtual Machine
can run. Porting from source to other programming languages is possible if the language
supports reflection i.e loading and instantiation of classes and invoking methods of these
classes at runtime.

5.2.8 Implementation

The software prototype was implemented following the Agile Software development process.
The agile software development process is based on ”inspect and adapt” where developers
gather requirements at the same time software is in development. Regular meeting between
the developer and Semaku B.V (customer) was conducted to explain algorithms, features,
development environments. Feedback and desired changes from the customer were then in-
corporated into the software prototype. The software prototype is implemented in Java
programming language.
The platform depends on these libraries.

1. OpenRDF sesame Java API: OpenRDF Sesame provides RDF database (triplestore)
with in-memory and file storage. It offers an easy to use JAVA API that provides
means to connect the database and query using W3C’s SPARQL.

48 Data source synchronization in cloud-based triple stores

CHAPTER 5. SOFTWARE DEVELOPMENT AND IMPLEMENTATION

2. sedna XQJ Java API: Sedna provides a free native XML database with persistent stor-
age, ACID transactions and backup. It comes with a JAVA API that allows to connect,
add and delete documents from the database. It supports W3C’s XQUERY for querying
XML documents.

3. Xerces XML parser: Provides a library for parsing, generating, manipulating and vali-
dating XML documents using DOM and SAX APIs.

4. JAVA API for JSON processing: The standard JAVA API for JSON processing provides
a streaming API and an Object Model API for parsing and manipulating JSON docu-
ments. The streaming generates events as an XML document is parsed whiles Object
Model API creates a tree-like structure of the JSON data in memory.

5.3 Semantic transformation API

The data transformer consists of a generic transformer and a semantic transformer. The
generic transformer uses a fixed set of rules to transform source data to RDF triples. These
rules cannot evolve without explicit changes at the source code level. The semantic trans-
former on the other hand is a list of functions defined if and when needed. These functions
are public class functions which are exported as Java jar files and added to the application.
A function may accept a connection to a repository and two string lists. These parameters
are optional and could be replaced by null values. The lists are to provide a means to pass
data to the functions if necessary. Listing 5.1 show a sample class with one public function
for semantic transformation.

pub l i c class ReplacePred icate {

pub l i c void r e p l a c e p r e d i c a t e (Repos i tory rep , L i s t<Str ing> l e f t , L i s t<Str ing>
r i g h t)

{
. . .

}

}

Listing 5.1: Java function for semantic transformation

The Java class is exported as a jar file and added to the application. The complete class name
and function names are added to the application’s configuration file as shown in Listing 5.2.

<?xml ve r s i on=” 1 .0 ” ?>
<plug ins>

<plugin>
<class−name>p lug in s . ReplacePredicate</class−name>
<f unc t i ons>r e p l a c e p r ed i c a t e </funct i ons>

</plugin>
</plug ins>

Listing 5.2: Plugins configuration file

To use this function in the semantic transformation, add the function name to the list of
functions defined in the semantic rules. Note that the platform only provides a means to add

Data source synchronization in cloud-based triple stores 49

CHAPTER 5. SOFTWARE DEVELOPMENT AND IMPLEMENTATION

functions to extend the semantic transformation and not what the function actually does.
Listing 5.3 shows a sample list of semantic functions.

{
”add namespace” :{
” l e f t ” : [” evans ”] ,
” r i g h t ” : [” http :// wiout . com/”]
} ,

” e x p o r t n t r i p l e s ” :{
” l e f t ” : [” n t r i p l e s ”] ,
” r i g h t ” : []
}

}

Listing 5.3: Sample list of semantic functions

5.4 Change Update Engine

5.4.1 Purpose

The change detection framework consists of three main components; an XML change detector,
an RDF change detector and an update engine. The XML change detector generates delta
between two versions of an XML document, which is then passed to the update engine to
update a corresponding RDF graph in the repository. On the other hand, the RDF change
detector generates RDF delta which is used to update a corresponding XML document. Figure
5.3 gives an illustration of the framework.

Figure 5.3: Change detection platform

In this section we describe a prototype implementation of the update engine. Implemen-
tation of the change detectors are out of scope for this project.

50 Data source synchronization in cloud-based triple stores

CHAPTER 5. SOFTWARE DEVELOPMENT AND IMPLEMENTATION

5.4.2 Assumptions

We assume both XML and RDF deltas are in RDF format.

5.4.3 System Structure

Figure 5.4 illustrates the structural model of the update engine. The RDFQueryDelta class
queries the RDF delta, which is managed by DeltaStore class. The UpdateXML and Up-
dateRDF classes build queries with the results returned by the RDFQueryDelta class. The
XMLDatabaseManager and RDFRepoManager classes manage connections to the XML and
RDF databases respectively.

Figure 5.4: Structural model of the Update Engine

5.4.4 Implementation

The update engine is implemented within a similar platform as the data transformer. It is
implemented in Java programming language using Agile Software development process.

5.5 Summary

We have discussed the implementation of generic XML, JSON and CSV to RDF transformer.
We have also presented an implementation of an Update Engine.

Data source synchronization in cloud-based triple stores 51

Chapter 6

Performance Testing

In this section we describe and show test results of both the generic transformer and the
update engine. The generic transformation process was required to be completely automated
and round-trippable. Execution times of the data transformation process is dependent on
data size and structure. No strict time requirement was given. In Section 6.1 however, we
measure execution times for some loads to give an estimate of the execution times.

6.1 Testing of generic transformer

Tests with different file sizes were performed to show that the implementation works correctly
and also to give estimates of how long it takes to transform different file sizes. Only generic
transformations from (XML, JSON and CSV) to RDF were tested and measured. Few seman-
tic transformations were tested only to verify correctness. Execution times were not measured
since semantic transformations are document specific and based on the requirements of an
organization and we cannot foresee which semantic transformations will be performed on
which data. Testing was carried out on an HP EliteBook 8560w (Intel Core i7-2670QM) by
increasing load up to approximately 2MB. Typical document sizes used in this project range
from 0 to 1MB. The XML data was generated using XMark benchmark suit, a benchmark
for XML data management CWI (2003). It provides a scalable XML database modeling an
internet auction website. XML documents were generated with the XMark command line
tool. Different sizes of documents were obtained by varying the -f factor. The graphs show a
plot of execution times against data sizes.

Data source synchronization in cloud-based triple stores 53

CHAPTER 6. PERFORMANCE TESTING

Figure 6.1: XML to RDF transformation

JSON data was generated using the online tool at json-generator.com. Different sizes of
the data was obtained by varying the repeat parameter, which corresponds to how many
times the keys and value pairs are repeated.

Figure 6.2: JSON to RDF transformation

CSV data was generated using the online tool at mackaroo.com.

54 Data source synchronization in cloud-based triple stores

CHAPTER 6. PERFORMANCE TESTING

Figure 6.3: CSV to RDF transformation

6.2 Testing update Engine

Testing was done to ensure correctness of the update process. An XML document was edited
(few nodes were deleted and new nodes added) and the corresponding delta manually gener-
ated since change detectors were not implemented in this project. The original XML docu-
ment was transformed to RDF using the generic transformer. With the generated delta, the
update engine successfully updated the RDF graph to reflect all changes. In a same way, the
RDF graph was edited and its delta was generated manually. The update engine successfully
updated the corresponding XML document with the RDF delta.

6.3 Summary

We have presented tests and results of execution times of our generic transformer for certain
sizes of data. The results of the tests are used to give estimates of how long it may take to
transform a document from XML, JSON or CSV to RDF. Successful test results also indicates
correctness of our implementations.

Data source synchronization in cloud-based triple stores 55

Chapter 7

Conclusions

In this section, we discuss the contributions and limitations of this work. We also discuss
desirable features that could be implemented in the future.

7.1 Contributions

We have presented a data transformation process that incorporates generic and semantic
transformations of XML, JSON and CSV to RDF. The transformation process incorporates
two novel things:

• the property of the generic transformation to preserve structure of data and to allow
round-tripping.

• the use of a list of functions for semantic transformations of RDF triples generated from
the generic transformation process.

Also, we have presented an implementation of the platform providing a completely automated
generic transformation and a semi-automated semantic transformation. The platform pro-
vides a means to add more functions to the pool of functions for semantic transformations.
This was made possible with the platform’s plugin architecture. The ability to add func-
tions when needed is essential for flexibility in the transformation and to cater for unforeseen
custom data modifications that may be required.

We also presented a theoretical study and proposed algorithms for change detection meth-
ods in XML and RDF. We further proposed a simple vocabulary for describing changes in
XML and RDF, and based on this vocabulary, an update engine was implemented. The im-
plementation demonstrated how updates between synchronized XML and RDF data can be
represented and executed. An initial study of related work and relevant knowledge was also
presented.

Finally, the implementations were tested to ensure expected results and also to give esti-
mates of execution times for generic transformations of files of different sizes.

7.2 Limitations

Due to time constraints, XML and RDF change detection engines were not implemented.
Changes in XML and RDF had to be detected manually during the test of the update engine.

Data source synchronization in cloud-based triple stores 57

CHAPTER 7. CONCLUSIONS

We could therefore only test the performance of the update engine with a small set of data
generated manually.

Since a full-fledged system with a means to propagate data between remote systems have
not been built yet, the transformation and update engines were tested on one local machine.
It was therefore not possible to test how the system scales in a distributed environment and
with different data sizes and structures.

7.3 Future work

Implementation of RDF and XML change detection engines
We have presented algorithms for detecting changes in XML and RDF. A change detection
engine is an important component of the semantic platform and therefore an implementation
in the future is required.

Data propagation
Synchronizing data sources requires an effective means of data propagation. We therefore
need to investigate effective means to propagate data between the repository and the data
sources. The means of data propagation should be suitable for transferring large amounts of
data and also small chunks of updates.

Extensive testing of system performance
In future work, the system has to be extensively tested for scalability to see the system’s per-
formance under increased number of connected sources to the repository, and under increased
workloads.

58 Data source synchronization in cloud-based triple stores

References

Berners-Lee, T. & Connolly, D. (2004). Delta: an ontology for the distribution of differences
between RDF graphs. W3C.
34

Chen, Y., Madria, S. & Bhowmick, S. (2004). DiffXML: change detection in XML data. In
Database systems for advanced applications (pp. 289–301).
19

Chirkova, R. & Fletcher, G. H. (2009). Towards well-behaved schema evolution. In Webdb.
34

CWI. (2003). Xmark - an XML benchmark project. Retrieved from http://www.ins.cwi.nl/

projects/xmark/

53

ECMA. (2013). The JSON data interchange format.
16

Izquierdo, J. L. C. & Cabot, J. (2013). Discovering implicit schemas in JSON data. In Web
engineering (pp. 68–83). Springer.
18

John Boyer, S. M. M. M. R. S. J. S., Sandy Gao. (2011). Experiences with JSON and XML
transformations. W3C.
18

Klein, M. (2002). Interpreting XML documents via an RDF schema ontology. In Database
and expert systems applications, 2002. proceedings. 13th international workshop on (pp.
889–893).
17

Klein, M., Fensel, D., Kiryakov, A. & Ognyanov, D. (2002). Ontoview: Comparing and
versioning ontologies. Collected Posters ISWC 2002 .
19

Lee, D.-H., Im, D.-H. & Kim, H.-J. (n.d.). A change detection technique for RDF documents
containing nested blank nodes. 20, 35, 36

Data source synchronization in cloud-based triple stores 59

http://www.ins.cwi.nl/projects/xmark/
http://www.ins.cwi.nl/projects/xmark/

REFERENCES

Lee, S. K. & Kim, D. A. (2006). X-tree diff+: Efficient change detection algorithm in XML
documents. In Embedded and ubiquitous computing (pp. 1037–1046). Springer.
19

Melnik, S. (1999). Bridging the gap between RDF and XML. Retrieved February , 26 , 2006.
17, 22

Noy, N. F. & Musen, M. A. (2002). Promptdiff: A fixed-point algorithm for comparing
ontology versions. AAAI/IAAI , 2002 , 744–750.
19

Papavasileiou, V., Flouris, G., Fundulaki, I., Kotzinos, D. & Christophides, V. (2013). High-
level change detection in RDF (s) kbs. ACM Transactions on Database Systems (TODS),
38 (1), 1.
19

Shafranovich, Y. (2005). Common format and mime type for comma-separated values (CSV)
files.
16

Sundaram, S. & Madria, S. K. (2012). A change detection system for unordered XML data
using a relational model. Data & Knowledge Engineering , 72 , 257–284.
19, 33

Thuy, P. T. T., Lee, Y.-K., Lee, S. & Jeong, B.-S. (2008). Exploiting XML schema for inter-
preting XML documents as RDF. In Services computing, 2008. scc’08. ieee international
conference on (Vol. 2, pp. 555–558).
17

Volkel, M., Winkler, W., Sure, Y., Kruk, S. R. & Synak, M. (2005). Semversion: A versioning
system for RDF and ontologies. In Proc. of eswc.
19

w3c. (2003). Extensible markup language (XML). http://www.w3.org/{XML}/.
15

w3c. (2008). Sparql query language for RDF.
14

w3c. (2010). Xquery 1.0: An XML query language (second edition).
15

w3c. (2014a). A JSON-based serialization for linked data.
18

w3c. (2014b). Resource description framework. Retrieved from http://www.w3.org/{RDF}/

13

Wang, Y., DeWitt, D. J. & Cai, J.-Y. (2003). X-diff: An effective change detection algorithm
for XML documents. In Data engineering, 2003. proceedings. 19th international conference
on (pp. 519–530).
10, 19, 30, 31, 32, 33

60 Data source synchronization in cloud-based triple stores

http://www.w3.org/{XML}/
http://www.w3.org/{RDF}/

REFERENCES

Zeginis, D., Tzitzikas, Y. & Christophides, V. (2011). On computing deltas of RDF/S
knowledge bases. ACM Transactions on the Web (TWEB), 5 (3), 14.
19, 35

Data source synchronization in cloud-based triple stores 61

	Contents
	Introduction
	Motivation and Problem Statement
	Contributions
	Outline of Thesis

	Background and Related Work
	Introduction
	RDF
	SPARQL
	XML
	XQUERY
	JSON
	CSV
	Related Work
	XML to RDF
	JSON to RDF
	Change detection

	Summary

	Data Transformation
	Introduction
	Generic transformation
	XML to RDF
	JSON to RDF
	CSV to RDF

	Semantic or model specific transformation
	Summary

	Change detection and Update execution
	Introduction
	XML change detection
	RDF change detection
	Delta representation and Update execution
	Summary

	Software Development and Implementation
	Introduction
	Data transformer
	Purpose
	Definitions
	System overview
	Specific requirements
	Other requirements
	System Structure
	Software System Attributes
	Implementation

	Semantic transformation API
	Change Update Engine
	Purpose
	Assumptions
	System Structure
	Implementation

	Summary

	Performance Testing
	Testing of generic transformer
	Testing update Engine
	Summary

	Conclusions
	Contributions
	Limitations
	Future work

	References

