
 Eindhoven University of Technology

MASTER

On an online version of Rota's Basis Conjecture

Bollen, G.P.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b5a6b782-ed75-466a-aac4-726a942f7901


Department of Mathematics and Computer Science

On an online version of Rota’s Basis Conjecture

Guus P. Bollen

August 29, 2014





Abstract. In this thesis, a conjecture by Gian-Carlo Rota on disjoint in-

dependent transversals of bases in a vector space is discussed. The three-
dimensional case, which was already proven in literature, is shown in a different

manner.

Furthermore, a (new) online version of Rota’s Basis Conjecture is given.
For even dimensions, this online version turns out to follow from the Alon-Tarsi

Conjecture, just like Rota’s Basis Conjecture. For odd dimensions, however,

this online version turns out to be false. Some variants of this online version
are also discussed.

Finally, we zoom in on an online version of Rota’s Basis Conjecture for

graphic matroids. A concrete heuristic is proposed to solve this problem, which
is shown to be correct for trees up to 5 vertices, and is conjectured to work for

higher numbers of vertices.
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CHAPTER 1

Introduction

1. Rota’s Basis Conjecture

In 1989, Rota conjectured the following [1].

Conjecture 1.1. (Rota’s Basis Conjecture). Consider bases

(B1, . . . , Bn) = ((b11, . . . , b1n), . . . , (bn1, . . . , bnn))

of an n-dimensional vector space V over an arbitrary infinite field. Then there exist
π1, . . . , πn ∈ Sn such that for all i = 1, . . . , n, (b1,π1(i), . . . , bn,πn(i)) is a basis of V .

A multiset of vectors that contains exactly one vector of each B1, . . . , Bn is also
called a transversal of (B1, . . . , Bn).

A way to visualize this conjecture is the following. Place the vectors of the
bases in an n× n table, where the k’th row contains Bk:

b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn

By construction, the rows are bases. The columns, however, are not necessarily
bases. A simple example for this is when the bases B1, . . . , Bk are taken to be
identical. Then each column contains n copies of the same vector; clearly not a
basis. Rota’s Basis Conjecture claims that it is always possible to permute the
vectors within each row in such a way that the columns, too, are bases.

The simplest ‘analogy’ that comes to mind is a Sudoku: a popular puzzle where
one has to complete a 9 × 9 square of numbers where in particular each row and
each column can only contain one of each number. When B1, . . . , B9 consist of the
same 9 vectors, and each vector is labeled by the numbers 1 up to 9, each solution
of a Sudoku translates directly into a solution of Rota’s problem. Of course, in
this case there are many solutions; otherwise solving Sudoku’s would be rather
monotonous. Then again, the assumption that all n bases are the same is a rather
big simplification.

Rota’s Basis Conjecture should not be confused with Rota’s Conjecture, which
is a different conjecture from matroid theory by Rota. This conjecture is about
excluded minors for representability of matroids over a finite field. In 2013, Geelen,
Gerards and Whittle announced that they had proven Rota’s Conjecture. In this
thesis, there will be no further mention of Rota’s Conjecture.

2. Outline of the thesis

The thesis will be structured as follows.
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2 1. INTRODUCTION

Chapter 1 contains an introduction to Rota’s Basis Conjecture, this outline,
and a discussion about applications of the results in this thesis.

In Chapter 2, known results about Rota’s Basis Conjecture will be briefly dis-
cussed.

Chapter 3 will start off with a theorem on three coloured sets in a partial linear
space. This theorem is then used to show that Rota’s Basis Conjecture is true in
dimension three.

In Chapter 4, we discuss an online version of Rota’s Basis Conjecture, of which
Draisma suspected that it could highlight some of the differences between Rota’s
Basis Conjecture for even and odd dimensions. As it turns out, this is indeed
the case: the online version of Rota’s Basis Conjecture appears to be conditioned
on the Alon-Tarsi conjecture for even dimensions, while it is simply false for odd
dimensions. This is our main result.

Figure 1 shows the relations between various problems. These relations will all
be discussed in chapters 2 through 4.

Alon-Tarsi Conjecture

Rota’s Basis Conjecture (even n)

Online version of Rota’s Basis Conjecture (even n)

Rota’s Basis Conjecture (odd n)Online version of Rota’s Basis Conjecture (odd n)

Generalized Alon-Tarsi Conjecture

Rota’s Basis Conjecture (odd n)
assuming known non-empty intersection of all bases

Online version of Rota’s Basis Conjecture (odd n)
assuming known non-empty intersection of all bases

Rota’s Basis Conjecture (n = 3)

Figure 1. An overview of the relations between some of the prob-
lems discussed in this thesis. Green means proven; red means false.

Finally, in Chapter 5 we zoom in on one special case of Draisma’s online version
of Rota’s Basis Conjecture, namely the case where we restrict ourselves to graphic
matroids rather than general matroids or vector spaces. This allows us to be much
more concrete when it comes to describing the algorithms of which, assuming the
Alon-Tarsi conjecture holds, only the existence was shown in the previous chapter.

A part of the results covered in this thesis was simultaneously written in the
form of an article by my supervisor Jan Draisma and me [10].

3. Applications

Many people, most of whom are not mathematicians, have asked me throughout
the course of my master’s project how the results of my research can be applied
in practice. Sadly, I had to disappoint these people by telling them I do not know
of any applications in practice. Yet, my research is not completely distanced from
reality, although still not known to be very close to reality. The reader who wishes
to move straight on to the mathematics can safely skip the remainder of this section.

Suppose there are n entities. They might be people, they might be machines,
they could be anything. Suppose each of these entities has n objects. These might
be items, these might be jobs, these could be anything. Suppose certain relations
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hold that determine which objects can be with the same entity together, and which
cannot. Initially, all of these relations are satisfied, since clearly each entity already
has n objects that can thus be together.

Now suppose that, for some reason, the n2 objects need to be redistributed over
n (not necessarily the same) entities, in such a way that each of the new entities
has precisely one object from each original entity. The objects with one of the new
entities must then again be related in such a way that they can be together.

If the relations between the objects follow a certain pattern, then Rota’s Basis
Conjecture can be applied to achieve this redistribution.

As a very concrete example, highlighting the results from this thesis, consider
the following. Let the n entities be students, and let their objects be solutions
to exercises. The professor, who is a great believer of the Alon-Tarsi conjecture,
does not want to check all of the exercises himself, so he wants to distribute the
exercises over n correctors. Since these correctors may all have a different style of
correcting the solutions, the professor thinks it is the fairest if each of them gets
precisely one exercise to check from each student. He also has some demands about
which solutions can be given to the same corrector, and to his relief the relations
turn out to be such that Rota’s Basis Conjecture tells him it is indeed possible to
redistribute the solutions.

However, the professor does not only want to be able to distribute the solutions
properly when he receives them all at the same time, like in the case of a written
examination, but also for hand-in homework exercises. From experience, he knows
that students likely do not all hand their solutions in at the same time. Since the
professor does not want to keep the correctors waiting until all students have handed
in their solutions, he wants to assign the solutions to the correctors immediately as
he receives them. Again, he is happy to know that the solutions, although he does
not know precisely what they look like yet, satisfy relations such that the online
version of Rota’s Basis Conjecture can be applied. So he can assign the solutions to
the correctors. At least, if the number of students is even. Shocked, the professor
remembers that it may not at all be possible for an odd number of students and
solutions. So he decides to make sure that one of the exercises is so easy that he
is certain that each student will deliver the exact same solution. Then he is again
able to assign the solutions to the correctors due to a special version of the online
version of Rota’s Basis Conjecture for odd n.

When could all of this be happening, one might wonder. The answer is simple.
This could happen at some point in time after the professor has read this thesis.
Not just this thesis, though. More results are required, such as for instance the
verification of the Alon-Tarsi conjecture for large enough n, and the discovery of
correct algorithms to solve (the online version of) Rota’s Basis Conjecture, rather
than just their existence.

Of course, this example is just hypothetical and very unlikely to be a useful
application of Rota’s Basis Conjecture in reality. It just shows that applications for
seemingly very theoretical problems can be very well hidden, only to be uncovered
much later.





CHAPTER 2

Rota’s Basis Conjecture

Closely related to Conjecture 1.1 is a conjecture from 1986 by Alon and Tarsi
[2] on Latin squares. A Latin square of size n is an n× n table of numbers, where
each row is a permutation of [n] and each column is a permutation of [n]. The
row (column) sign of a Latin square is the product of the signs of all row (column)
permutations; the sign of the Latin square is the product of its row and column
signs. The Alon-Tarsi conjecture is about the number of Latin squares that have
even sign (els(n)) compared to the number of Latin squares that have odd sign
(ols(n)).

Conjecture 2.1. (Alon-Tarsi). Let n be even. Then els(n) 6= ols(n).

In 1995, the numbers of even and odd Latin squares have been computed for
n ≤ 8 [8], verifying the Alon-Tarsi conjecture for these n. In Table 1, the respective
differences between the numbers of even and odd Latin squares are given [9].

n els(n)− ols(n)
2 2
4 576
6 199065600
8 1262123552342016000

Table 1

1. The relation between the Alon-Tarsi Conjecture and Rota’s Basis
Conjecture

The relation between Conjecture 2.1 and Conjecture 1.1 is captured by the
following theorem.

Theorem 2.2. Let n be even and suppose Conjecture 2.1 holds for n. Then
Conjecture 1.1 holds for n.

Huang and Rota already proved this relation in their paper in which Conjecture
1.1 first appeared [1]. They proved the equivalence between Conjecture 2.1 and a
conjecture by Rota on the bracket algebra. Then they proved that this conjecture on
the bracket algebra implies Rota’s Basis Conjecture using umbral linear operators.

The essence of their proof is the same as that of the proof by Onn, who in
1997 showed the same relation without using the bracket algebra and umbral linear
operators [3]. Let Sn be the collection of n-tuples of permutations in Sn and
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6 2. ROTA’S BASIS CONJECTURE

suppose 1W, . . . , nW are nonsingular n× n matrices. When W is a matrix, let W j

be its j’th column vector. Onn showed that the following identity holds.

∑

ρ∈Sn

n∏

k=1

sgn(ρk)
n∏

i=1

det(1W ρ1(i), . . . , nW ρn(i)) = (els(n)− ols(n)) ·
n∏

j=1

det(jW ).

Now if Conjecture 2.1 holds for some even n, then the right-hand side of the equation
is nonzero. Hence there must be a nonzero summand on the left-hand side. Suppose
that, for each j, the basis Bj consists of the columns of jW . Then this nonzero
summand on the left-hand side indicates the transversals:

n∏

i=1

det(1W ρ1(i), . . . , nW ρn(i)) 6= 0,

so (1W ρ1(i), . . . , nW ρn(i)) are disjoint valid transversals for all i.
In this thesis, a stronger statement than Theorem 2.2 is proven. So here it

suffices to say that Theorem 2.2 is a direct consequence of Theorem 4.1(a).
Results for special cases of the Alon-Tarsi Conjecture exist in literature. When

p is a prime, results in [12] show that the conjecture holds for p + 1, and results
in [13] show that the conjecture holds for p− 1. Due to these results, the smallest
unsolved case for even n of the Alon-Tarsi Conjecture is n = 26 [13]. Hence, Rota’s
Basis Conjecture follows for these dimensions.

The Alon-Tarsi conjecture does not say anything about Rota’s Basis Conjecture
for odd n. There is, however, a generalization of the Alon-Tarsi conjecture that
also covers odd n. This generalization relates to a special case of Rota’s Basis
Conjecture for odd n, which will be described in section 3 of chapter 4.

2. Rota’s Basis Conjecture for matroids

An analogous conjecture to Conjecture 1.1 that concerns bases of a matroid
rather than bases of a vector space was made simultaneously by Rota [1].

Conjecture 2.3. (Rota’s Basis Conjecture for matroids) Consider (disjoint)
bases

(B1, . . . , Bn) = ((b11, . . . , b1n), . . . , (bn1, . . . , bnn))

in a rank n matroid M . Then there exist π1, . . . , πn ∈ Sn such that for all i =
1, . . . , n, (b1,π1(i), . . . , bn,πn(i)) is a basis of M .

This conjecture is more general than Rota’s Basis Conjecture for vector spaces.
If M is chosen to be a vector matroid, then the two conjectures are equivalent.

There are several results in literature about Rota’s Basis Conjecture for ma-
troids.

In 2007, Geelen and Webb proved the following two theorems [4].

Theorem 2.4. For n ≥ 2
(
k
2

)
+ 1, if (B1, . . . , Bn) are disjoint bases in a rank

n matroid, then there are k disjoint transversals of (B1, . . . , Bn) that are bases.

The global idea of their proof is to divide the elements of (B1, . . . , Bn) into
bases (X1, . . . , X(k

2)) and a remainder S, in such a way that |Xi ∩Bi| = n− i and
|Xi ∩Bn−i| = i for all i. See Figure 1. Then they show that k disjoint independent
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transversals (T1, . . . , Tk) can consecutively be found, where

Tt ⊆ (S ∪
(t
2)⋃

i=1

Xi) \
t−1⋃

r=1

Tr

for each t = 1 . . . k.

B1

B2

B3

Bn−3

Bn−2

Bn−1

Bn

X1

X2

X3

X1

X2

X3

S

1 · · · n ≥ 2
(
k
2

)
+ 1

...
...

Figure 1

The second theorem they prove is the following.

Theorem 2.5. If (B1, . . . , Bk) are disjoint bases in a rank n matroid where
n ≥

(
k+1
2

)
+ 1, then there are n disjoint independent transversals of (B1, . . . , Bk).

This is proven roughly as follows. See Figure 2. Since k is large enough,
disjoint independent sets Z and Z ′ can be found such that k + 1− i = |Z ∩ Bi| =
k + 1 − |Z ′ ∩ Bi|. Then they argue that there are n − k disjoint independent
transversals of (B1, . . . , Bk) that do not contain elements in Z ∪ Z ′. Then, they
show that the remaining elements can be divided into transversals of subsets of
the bases as shown in Figure 2. Finally, they show that Z ∪ Y1 ∪ · · · ∪ Yk−1 and
Z ′∪Y ′1∪· · ·∪Y ′k−1 can be partitioned into the remaining 2k independent transversals,
finishing the proof.

T1 T2 Tm· · ·
Z

Z ′

Yk−1 · · · Y2 Y1

Y ′1 Y ′2 · · · Y ′k−1

B1

Bk

...

(m = n − 2k)

Figure 2

In 2006, Geelen and Humphries proved a stronger version of Rota’s Basis Con-
jecture for paving matroids [5]. In a paving matroid M of rank n, each circuit
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has size n or n + 1. Their version is stronger in the sense that not all bases are
necessarily bases of the same matroid M . Instead, for each i, Bi is a basis of a
matroid Mi, where M1, . . . ,Mn are rank n paving matroids on

⋃n
i=1Bi. Then it is

shown that there exist transversals (T1, . . . , Tn) of (B1, . . . , Bn) such that, for all i,
Ti is a basis of Mi. If the matroids are chosen such that M1 = . . . = Mn, then we
have Rota’s Basis Conjecture for paving matroids.

Geelen and Humphries first show that the Rota’s Basis Conjecture for paving
matroids is true for n = 3. Then by induction on n, they prove that it is true for
all n ≥ 3.

3. Rota’s Basis Conjecture: vector spaces versus matroids

Let a set of vectors V = {v1, . . . , vN} be given that span an n-dimensional
linear space. Let I denote the set of subsets of V in which the vectors are linearly
independent. It is well-known that {V, I} is then a matroid of rank n. Matroids
that can be expressed as such a set of vectors with the correct linear independence
relations are called linear or representable matroids.

As a consequence, any theorem about Rota’s Basis Conjecture for linear spaces
implies a similar theorem for linear matroids, and vice versa. This equivalence is
particularly useful when theorems about more general matroids are concerned, like
in the previous section.

On the other hand, a theorem about Rota’s Basis Conjecture for linear spaces
does not necessarily imply a similar theorem for non-linear matroids.



CHAPTER 3

Three coloured sets in a partial linear space

In this chapter, we look at a problem involving three coloured sets in a partial
linear space in order to prove the vector space version of Rota’s Basis Conjecture
as well as the matroid version for dimension n = 3. The same result was derived in
a different manner by Chan [6].

A partial linear space consists of a set of points and a set of lines satisfying the
following axioms.

• Any line is incident with at least two points
• Any pair of distinct points is incident with at most one line.

Let R,W,B (Red, White and Blue) be three sets of n > 2 points in a partial
linear space such that there is no line that contains more than two points of any of
these sets, and let P := R tW tB be the disjoint union of these sets. Denote

LP := {l ⊂ P | l ∩R 6= ∅, l ∩W 6= ∅, l ∩B 6= ∅, there is a line on which
all of the points in l and only the points in l lie}.

For convenience, elements of LP will be called lines, rather than the actual lines of
the partial linear space. We call a set T ⊂ P a valid transversal of (R,W,B) when
|T ∩R| = |T ∩W | = |T ∩B| = 1 and ∀l ∈ LP : T 6⊆ l (T contains three points, one
from each set, that are not aligned). When two (three) points coincide, we call it a
double (triple).

Theorem 3.1. Let R,W,B be three sets of n > 2 points in a partial linear
space such that there is no line that contains more than two points of any of these
sets. Then there exist n disjoint valid transversals of (R,W,B).

A way to visualize this theorem can be seen in Figure 1. In the illustrations
hereafter, dots, crosses and circles will be used instead of the coloured disks, so that
it is easier to depict doubles and triples. Moreover, while the pictures illustrating
the various cases all contain straight lines, this straightness is not demanded by the
partial linear space structure.

Lemma 3.2. Whenever there are at least three points of each colour, there is
always a valid transversal containing any two non-coinciding points of a different
colour. In particular, there is always a valid transversal.

Proof. Let any two such points be given. Since no three points of the remain-
ing colour are aligned, there must be at least one of them that is not on the line
through the two chosen points. This point and the two chosen points form a valid
transversal. As not all points can coincide, there is always a pair of non-coinciding
points of distinct colours, and hence there is always a valid transversal. �

9



10 3. THREE COLOURED SETS IN A PARTIAL LINEAR SPACE

Figure 1. An example of five valid disjoint transversals of three
sets of points in a two-dimensional affine plane.

Lemma 3.3. Let disjoint valid transversals (T1, . . . , Tn−2) of (R,W,B) be given
such that P \ T (where T =

⋃n−2
i=1 Ti) satisfies the following properties (also see

Figure 2):
1) ∀l ∈ LP\T , |l| ≤ 4 (no more than four points lie on any line);
2) (R \ T ) ∩ (W \ T ) ∩ (B \ T ) = ∅ (no triples occur in the remainder after

removing T );
3) maxl∈LP\T |l| = 3 ⇒ Not all p ∈ P \ T lie on two lines.

Then there are transversals Tn−1, Tn of (R,W,B) such that (T1, . . . , Tn) are disjoint
valid transversals.

(a) Property 1.

(b) Property 3.

Figure 2. Examples of cases excluded in Lemma 3.3 because they
do not allow two valid transversals.

Proof. Several cases are distinguished.
• Four points on a line thrice.

The only possible configuration contains three non-aligned doubles, and
is solved easily. See Figure 3.
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Figure 3

• Four points on a line twice.
Since we have only 6 points, this can only happen when we have a double
that is on the intersection of both lines. Take one point from that double,
and another point from both of the lines. This is a valid transversal, and
so is the remainder, because each transversal contains two points that lie
on each of the given four-point lines, and one that does not. See Figure
4.

Figure 4

• Four points on a line once.
Note that on a line of four points, there is one colour that appears twice,
while the other colours appear once. Take two points from this line, of
which one from each double if there are any on the line, and of which one
from the colour that appears twice. Take the final point outside of the
line. Then the remainder is also a valid transversal. See Figure 5.

Figure 5

• At most three points on a line.
By the third property, there is a point that lies on one or no lines. If it is
on a line, pick the transversal containing the two other points on the line.
If it is not on a line, pick any valid transversal not containing this point.

Hence in all cases we can find two new disjoint valid transversals. �
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Lemma 3.4. Let disjoint valid transversals (T1, . . . , Tn−3) of (R,W,B) be given.
Then there is a valid transversal Tn−2 such that (T1, . . . , Tn−3, Tn−2) satisfies the
conditions in Lemma 3.3.

Proof. In this proof, Lemma 3.2 will often be applied without notice.

First look at the general cases when it is not possible to violate the third con-
dition of Lemma 3.3, and distinguish the following cases:

• At least two triples.
Take one point from both triples, and the last point from somewhere else.
Then the remainder contains no more triples. The line between the two
former triples then contains 4 points. Any line that contained 5 points
must have had one of the triples on it, so will now contain at most 4
points. Finally, if any other line contained 6 points, then it must contain
all three outside points and a triple, so that only 4 points remain on that
line. See Figure 6.

Figure 6

• At most one triple and 6 on a line twice.
Note that the intersection of both lines must be a triple, as there are only
9 points. Hence taking one point from the triple, and one other point
from each of the lines does the job.

• At most one triple and 6 on a line once.
There can be at most one line of 5 that does not contain a triple, since
there are only three points outside of the line of 6. If there is such a line
of 5, these three points must hence all be aligned with a double on the
line of 6. Take two points on the line of 6, one of which from the triple
if there is one on the line, and one outside. If any line of 5 contained a
triple, then the number of points on it will be reduced to at most 4. If a
line of 5 did not, then it contained all of the points outside of the line of
6, and will thus contain at most 4 points as well. See Figure 7.

• One triple and no 6 on a line.
Note that there is at most one line containing 5 points that does not
contain the triple. Hence taking at least one point from the line of 5 not
containing the triple, if it exists, and one point from the triple does the
job.
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Figure 7

• No triples and no 6 on a line.
If there are no lines of 5, pick any transversal. If there is one line of 5,
pick a transversal containing a point on the line of 5. If there are two lines
of 5, they must intersect in a point as there are only 9 points. Hence pick
a transversal containing the point on the intersection. Finally, if there
are three lines of 5, they must form a triangle and intersect in doubles.
Taking one point from two intersection points, and the last point not on
the line that contains both of these points does the job. See Figure 8.

Figure 8

This covers all possibilities. Now assume it is possible to violate the third
condition of Lemma 3.3. Then the plane must look like Figure 2b (the original
points) with a valid transversal of (R,W,B) added (the newly added points). Note
that there can never be a line of 6 or a triple in this case.

• There is a line of 4 or at most one line of 5.
One or two points must be added to one of the existing lines, for otherwise
the three new points are aligned, which does not happen by assumption.
On this line of 4 or 5, there must be a colour that does not appear twice
on the line. If we now pick that point along with a newly added point on
the line, and a point outside of the line, then that is a valid transversal.
See Figure 9. Removing this transversal does the job: After the removal,
the former line of 4 or 5 is eliminated, and any remaining original point
on this former line can only lie on at most one line.

• There are several lines of 5.
Note that any two lines of 5 must in this case intersect in an original
point. The same procedure as previously can be applied to any line of
5, but when picking the newly added point on the line, it should be on
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Figure 9

another line of 5 if the first point was not already. This ensures that no
lines of 5 remain. See Figure 10.

Figure 10

• There are no lines of 4 or 5.
Then we can simply take a transversal with two points from the newly
added points and one from the original points, when the final newly added
point will not be on any line.

Hence in all possible cases we can find a transversal in order to satisfy the conditions
in Lemma 3.3. �

Proof of Theorem 3.1. By Lemma 3.2, we can pick disjoint valid transversals
(T1, . . . , Tn−3). By Lemma 3.4, we can then pick Tn−2 such that (T1, . . . , Tn−2)
satisfies the conditions of Lemma 3.3, which then yields Tn−1 and Tn such that
(T1, . . . , Tn) are disjoint valid transversals. �

1. Rota’s Basis Conjecture in dimension three

Let M be a rank 3 matroid on 9 points such that there exist three disjoint bases
(B1, B2, B3). If M is a linear matroid, then each of the points can be associated with
a vector in R3. Consider a two-dimensional affine subspace A of R3 (not containing
the origin) that is not parallel to any of these vectors. Then the linear span of each
vector intersects A in precisely one point. Let (R,W,B) be the points of intersection
of the vectors in bases (B1, B2, B3) respectively. Then, by Theorem 3.1, there are
disjoint valid transversals of (R,W,B). Hence, Rota’s Basis Conjecture for n = 3
follows.
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Suppose, on the other hand, that M is a non-linear rank 3 matroid on 9 points
such that there exist three disjoint bases. For these matroids, too, it is possible to
embed them in a partial linear space:

Theorem 3.5. Let M be a rank 3 matroid on 9 points such that there exist
three disjoint bases. Then M can be embedded in a partial linear space.

Proof. Let the points of the partial linear space be the points of M , where
two points coincide if they are dependent, and let the lines be induced by the
dependence relations between the points. Since M contains three disjoint bases,
there are no loops, and hence by construction each line contains at least two points.

So it remains to show that any two distinct points lie on at most one line.
Suppose a, b, c and d are four points in the partial linear space, where a and b do
not coincide. Suppose that a, b and c are on a line, and a, b and d are on a line.
Then it should follow that a, b, c and d are all on the same line, for otherwise there
are two different lines through a and b. See Figure 11.

a c b

d

a c b

d

a c b

d

Figure 11

Hence we need to show that moreover a, c and d are on a line, and that b, c and
d are on a line. But this follows from the matroid exchange property: suppose that
a, c and d are not a line, and hence independent. Since a and b do not coincide,
they are also independent. Hence there is a point in {a, c, d} that can be added to
{a, b} that maintains independence. However, by the assumptions, none of these
points accomplish that. Thus a, c and d are on a line. Analogously, b, c and d are
on a line.

So all three-element subsets of {a, b, c, d} are aligned. Hence the dependencies
between all of these subsets can be integrated in one line through all four elements.
Thus, two distinct points lie on at most one line. �

So it turns out that all matroids of rank 3 on 9 points that can be partitioned
into three disjoint bases can be embedded in a partial linear space, where the bases
can be identified with the sets (R,W,B) in Theorem 3.1. Hence, for n = 3, Rota’s
Basis Conjecture for matroids follows. Consequently, Rota’s Basis Conjecture for
vector spaces is also true for n = 3.





CHAPTER 4

Draisma’s online version of Rota’s Basis
Conjecture

In order to gain a better understanding of Rota’s Conjecture, it is useful to look
at a stronger version of it. Suppose that not all n bases are given at the same time,
but instead one by one. In each step, we then need to fix a permutation for the
new basis, based only on the bases given and permutations chosen in the previous
steps.

For even n, the online version of Rota’s Basis Conjecture turns out to be con-
ditioned on the same conjecture as Rota’s Basis Conjecture itself: the Alon-Tarsi
conjecture. For odd n, however, the online version is false. The following theorem
will elaborate on the details.

Theorem 4.1. Let n > 1. Consider bases

(B1, . . . , Bn) = ((b11, . . . , b1n), . . . , (bn1, . . . , bnn))

of an n-dimensional vector space V over C.
(a) If n is even and the Alon-Tarsi conjecture is true for n, then there exists

an n-step online algorithm as follows: in the k’th step, the algorithm is
given Bk and is required to fix πk ∈ Sn. After the last step, the algorithm
has found (π1, . . . , πn) such that for all 1 ≤ j ≤ n, (b1,π1(j), . . . , bn,πn(j))
is a basis of V .

(b) If n is odd, then there exists no such algorithm.

The relation between Latin squares and (the online version of) Rota’s Basis
Conjecture lies in the permutations. At first sight, it might seem that this relation
is the correspondence between the permutation chosen for a basis and a permutation
of the numbers 1 to n in a row of a Latin square. The relation, however, is not
that simple: Latin squares require columns to be permutations as well, while our
conjecture does not demand that as long as the columns are bases. For suitable
bases, we might even leave each basis in its original order to solve the problem.
The relation is more subtle, and will be unveiled in the proof of this theorem.

Before we proceed with the proof, it is good to understand what exactly an
algorithm can do in the n’th (last) step. If, after the (n− 1)’st step, an algorithm
can find a correct πn for each possible basis Bn, then it will succeed. The following
theorem pinpoints exactly when this is the case.

Theorem 4.2. Let V be an n-dimensional vector space over a field K. Suppose
that V1, . . . , Vn ⊂ V are (n− 1)-dimensional linear subspaces of V . Then:

For all bases b1, . . . , bn of V , there exists some π ∈ Sn such that for all i ∈
{1, . . . , n}: bπ(i) 6∈ Vi (i.e. 〈Vi, bπ(i)〉 = V ) if and only if for all k ∈ {1, . . . , n} and
distinct i1, . . . , ik ∈ {1, . . . , n}: dim(Vi1 ∩ . . . ∩ Vik) = n− k.

17
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Proof. Assume that for some k and i1, . . . , ik we have that dim(Vi1 ∩ . . . ∩
Vik) ≥ n− k + 1. Pick a basis of V such that b1, . . . , bn−k+1 ∈ Vi1 ∩ . . . ∩ Vik . This
leaves only k − 1 other basis vectors, and as such not all of the Vij can be paired
with a basis vector that it does not contain. Furthermore, the V -codimension of
each of the Vi is 1, so dim(Vi1 ∩ . . . ∩ Vik) ≥ n− k. This proves the ‘only if’ part.

For the converse, assume that dim(Vi1 ∩ . . . ∩ Vik) = n− k for all k, i1, . . . , ik.
Let a basis b1, . . . , bn of V be given. The desired result will now be derived by
induction.

Certainly, we can match b1 to one of the Vi, since dim(V1 ∩ . . . ∩ Vn) = 0.
Assume that for some 0 < r < n, b1, . . . , br are matched to (without loss of

generality) V1, . . . , Vr in a way that each matched pair spans V . Now consider br+1.
If it can be matched to some Vi where i > r, then we are done. So assume br+1 can
only be matched to (again without loss of generality) V1, . . . , Vs for some 0 < s ≤ r.
Define N0 := {V1, . . . , Vs} and

Np+1 := {Vi | some bj that is matched to a space in Np can be matched to Vi}.

Note that whenever Vr+1, . . . , Vn 6∈ Np, we have that |Np+1| > |Np|, since otherwise
we would have |Np|+1 independent vectors that all lie in the intersection of n−|Np|
of the Vi, which was assumed to have dimension |Np|. Hence there must be a
smallest p for which {Vr+1, . . . , Vn} ∩ Np 6= ∅. So let W ∈ {Vr+1, . . . , Vn} ∩ Np.
Since W ∈ Np, there is a sequence bj0 , . . . , bjp−1 such that for each 0 ≤ q < p− 1,
bjq can be matched to the space that bjq+1 is matched to, where each bjq is matched
to a space in Nq, and bjp−1 (matched to a space in Np−1) can be matched to W .
Now replace bj0 by br+1, bjq+1 by bjq for all q and match bjp−1 to W . Then this
gives a matching between b1, . . . , br+1 and V1, . . . , Vr,W such that each pair spans
V , as desired.

So by induction, the b1, . . . , bn can all be matched to V1, . . . , Vn in such a way
that each pair spans V . This matching gives rise to a π ∈ Sn such that bπ(i) 6∈ Vi
for all 1 ≤ i ≤ n. �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1(a). The structure of the proof is roughly as follows. First, we
model the problem by means of exterior algebra. Then we construct hypersurfaces
Hk that define the ‘bad’ solutions in our model. Finally, we show that the Alon-
Tarsi conjecture assures us that we can in fact stay outside of the bad solution set,
hence giving us a good solution.

The algorithm is required to construct n ordered sets of vectors step by step,
where each set should remain independent after each step. We use the exterior
algebra to model these sets. An ordered set (v1, . . . , vk) is modeled as v1 ∧ . . .∧ vk.
The alternating property of the exterior algebra makes sure that whenever there is
a dependency between the vectors given by vk =

∑k−1
i=1 civi, we get

v1 ∧ . . . ∧ vk =

v1 ∧ . . . ∧ vk−1 ∧ (
k−1∑

i=1

civi) =

k−1∑

i=1

ci(v1 ∧ . . . ∧ vk−1 ∧ vi) = 0.
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Whenever v1, . . . , vk are independent and w1, . . . , wk span the same space, we get

w1 ∧ . . . ∧ wk = (
k∑

i=1

c1,ivi) ∧ . . . ∧ (
k∑

i=1

ck,ivi),

which is equal to some nonzero scalar multiple of v1 ∧ . . . ∧ vk. In this sense, when
v1, . . . , vk are independent, their exterior product modulo scalars can be identified
with the vector subspace they span.

So in the context of this model, the algorithm needs to make sure that each of
the n exterior products of vectors remain nonzero after each step.

In order to model the step of adding a vector to a space, consider the following
map:

Ψk,π : (
∧k−1

V )n × V n → (
∧k

V )n, (ω,B) 7→ (ω1 ∧Bπ(1), . . . , ωn ∧Bπ(n)).

Ψk,π models adding the π(i)’th vector of the given basis B to the i’th space in the
k’th step of the algorithm. Note that this map is also well-defined when B is not a
basis.

Now we will construct a hypersurface Hk in (
∧k

V )n that defines the tuples of
spaces after the k’th step that should be avoided by the algorithm. This Hk should
clearly contain all n-tuples that have one or more entries equal to zero, since a zero
entry corresponds to a linear dependence in the corresponding space. But there are
more tuples that need to be avoided, because for general tuples that do not contain
a zero, there can be bad choices of remaining bases that force any algorithm to
end up with a zero in the last step. For instance, all n-tuples of spaces that do
not satisfy the conditions on the dimensions of their intersections in Theorem 4.2
should be in Hn−1 (and only those).

In order to capture this constraint, we need the following relation to hold
between Hk and Hk−1: if for some (ω,B) ∈ (

∧k−1
V )n × V n, with B a basis, it

holds that for all π ∈ Sn, Ψk,π(ω,B) is in Hk, then ω must already be in Hk−1.
Let us now construct these hypersurfaces Hk. In order to do this, we first

switch to tensor products rather than working with exterior powers. We can do
this, because the dual of the canonical projection V ⊗k → ∧k

V identifies alternating
tensors in (V ∗)⊗k with linear functions on

∧k
V .

So consider, analogously to Ψ, the map

Φk,π : (V ⊗k−1)⊗n × V n → (V ⊗k)⊗n, (t, B) 7→ (t1 ⊗Bπ(1), . . . , tn ⊗Bπ(n)).

Take xi ∈ V ∗ as the dual of the standard basis vector ei ∈ V . Now denote the
tensor (xa11 ⊗ . . .⊗ xak1)⊗ . . .⊗ (xa1n

⊗ . . .⊗ xakn
) by the tableau

(4.1)



a11 · · · a1n

...
...

ak1 · · · akn


 ,

where aij ∈ {1, . . . , n} for all i ∈ {1, . . . , k} and j ∈ {1, . . . , n}. Note that all
tableaux of this form together span the space ((V ∗)⊗k)⊗n. Consider the linear map

Θk : ((V ∗)⊗k)⊗n → ((V ∗)⊗k−1)⊗n,
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a11 · · · a1n

...
...

ak1 · · · akn


 7→ σ ·




a11 · · · a1n

...
...

ak−1,1 · · · ak−1,n


 .

Here, σ is equal to zero if (ak1, . . . , akn) is not a permutation of [n], and equal to
its sign in Sn if it is a permutation of [n].

Set Fn := det⊗n, an n-linear function in ((V ∗)⊗n)⊗n. Set Fk−1 := ΘkFk. Since
each Θk is linear, the n-linearity property of Fk is preserved by Θk. Note that Fn
is an n-alternating tensor, and due to linearity of Θk, so are all Fk. For all k, define
H ′k ⊂ (V ⊗k)⊗n as the zero set of Fk.

By n-linearity of Fk for each k, the n-tuples of tensors of which some entry is
zero are contained in H ′k.

Next, suppose that there is some basisB such that for all π ∈ Sn, FkΦk,π(t, B) =
0. Here it is convenient to assume that B = (e1, . . . , en). This is indeed a valid
assumption: the set {t | Fk(t) = 0} is GL(V )-invariant. We also know that for
given π ∈ Sn and g ∈ GL(V ), gΦk,π(t, B) = Φk,π(gt, gB). So if FkΦk,π(t, B) = 0,
then also FkΦk,π(gt, gB) = FkgΦk,π(t, B) = 0. We can now rewrite Fk as follows:

Fk =
∑

π∈Sn

cπ ·




| |
t̂1 · · · t̂n
| |

π(1) · · · π(n)


+Rt.

Here, Rt consists of the part of Fk that maps Φk,π(t, ·) to zero. Hence ΘkRt
also maps t to zero. The upper part of the tableau, (t̂1, . . . , t̂n), represents the
t̂ ∈ ((V ∗)⊗k−1)⊗n for which FkΦk,π(t̂, B′) 6= 0 for some B′. By multilinearity of
the tensor product, we indeed get a pure tensor for each π in this representation of
Fk. Now we obtain:

Fk−1 = ΘkFk

=
∑

π∈Sn

cπ ·Θk




| |
t̂1 · · · t̂n
| |

π(1) · · · π(n)


+ ΘkRt

=
∑

π∈Sn

cπ · sgn(π) ·



| |
t̂1 · · · t̂n
| |


+ ΘkRt

Now the assumption that for all π ∈ Sn we have that FkΦk,π(t, B) = 0 implies that
all cπ are equal to zero. Thus it follows that Fk−1t = 0.

Moreover, none of the H ′k is equal to the entire space (V ⊗k)⊗n if the Alon-
Tarsi conjecture holds. To see this, consider F0 = Θ1 ◦ Θ2 ◦ . . . ◦ ΘnFn. Since
Fn = det⊗n, Fn is a linear combination of tensors of the form (4.1) with k = n,
where the columns are permutations of [n] and where the coefficient of each such
tensor is the product of the signs of the permutations represented by its columns.
Then each Θk, k = n, . . . , 1, kills a tensor if the k’th row is not a permutation of [n],
and removes the row while contributing its sign in Sn when it is a permutation of
[n]. Then F0, which is a scalar, has a nonzero contribution only from each tableau
in Fn of which both all columns and all rows are permutations of [n]. Tableaux
with this property are also known as Latin squares. This contribution is exactly
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the product of the column signs and the row signs, which is exactly the sign of the
Latin square. So F0 is equal to the number of even Latin squares minus the number
of odd Latin squares. Hence, if the Alon-Tarsi conjecture is true, F0, and thus all
Fk, are not equal to zero.

For each k, we can now define Hk as the canonical projection of H ′k onto
(
∧k

V )n. Then Hk satisfies the properties we demanded.
Finally, we get to the online algorithm. Start with some ω0 ∈ (

∧0
V )n \ H0,

which exists when the Alon-Tarsi conjecture holds. In the k’th step, we have
ωk−1 ∈ (

∧k−1
V )n \ Hk−1, and a basis Bk of V . Pick πk in such a way that

ωk := Ψk,πk
(ωk−1, Bk) 6⊆ Hk. This is possible since ωk−1 6∈ Hk−1. Then proceed

to the next step. In the end, we have ωn 6∈ Hn. But for each i = 1, . . . , n,
ωn,i = b1,π1(i) ∧ . . .∧ bn,πn(i)) 6= 0. Thus (b1,π1(i), . . . , bn,πn(i)) must be a basis of V ,
and the algorithm has succeeded. � �

Proof of Theorem 4.1(b). In this part of the proof, for each algorithm an instance
of bases (B1, . . . , Bn) will be given that makes the algorithm fail to produce bases.
Globally, this will be done as follows. First, regardless of the algorithm, we pick
n− 2 bases for which each algorithm chooses permutations. Then, based on these
choices, a (n− 1)’st basis is constructed in such a way that the algorithm is unable
to choose a permutation for this basis in such a way that it can deal with every
possible n’th basis.

Choose B1 = . . . = Bn−2 = (e1, . . . , en), the standard basis. Let π1, . . . , πn−2

be given such that (b1,π1(i), . . . , bn−2,πn−2(i)) span codimension 2 spaces for 1 ≤ i ≤
n. Each of these spaces misses two standard basis vectors. A graph can now be
constructed with as vertex set {ek | 1 ≤ k ≤ n} and with an edge (ek, el) for each
of the spaces that misses ek and el. This graph is regular of degree 2, since each ek
is missing in precisely two of the spaces. Hence the graph must be a collection of
disjoint cycles of size at least 2. Since n is odd, at least one of the cycles contains an
odd number of vertices m. Consider the spaces corresponding to the edges of this
odd-length cycle. Without loss of generality, these are the first m spaces, missing
(e1, e2), (e2, e3), . . . , (em−1, em) and (em, e1) respectively.

Now consider the matrix

X =
(
V 0
0 I

)

where V is an m × m matrix with entries Vk,l = ζkl. Here ζ ∈ C is a primitive
m’th root of unity. The columns of this matrix form the basis Bn−1. Now let
πn−1 ∈ Sn be given such that each column space Vi := 〈b1,π1(i), . . . , bn−1,πn−1(i)〉 is
(n − 1)-dimensional. In particular, πn−1 maps the first m columns of X in some
order to the first m spaces, since these columns are contained in the other n −m
spaces. Now we argue that regardless of this choice, there will be a final basis Bn
for which there exists no suitable πn.

For each i = 1, . . . ,m, consider the orthogonal complement that is spanned by
a normal vector zi with respect to the inner product of the respective space Vi.
Explicitly, such a normal vector must be perpendicular to all el with l 6= i, i + 1
(the indices are regarded modulo m with offset 1, so that m + 1 ≡ 1), and to the
πn−1(i)’th column of X, which is

(ζπn−1(i), ζ2πn−1(i), . . . , ζmπn−1(i), 0, . . . , 0)T .
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Hence zi = aei + bei+1 such that aζiπn−1(i) + bζ(i+1)πn−1(i) = 0. So we can pick
zi = ζπn−1(i)ei − ei+1. These zi turn out to be linearly dependent:

det




ζπn−1(1) −1
−1 ζπn−1(2)

. . . . . .
−1 ζπn−1(m)


 = ζ

∑m
k=1 πn−1(k) + (−1)m.

Now since
m∑

k=1

πn−1(k) =
m∑

k=1

k =
1
2
m(m+ 1)

is divisible by m due to m+ 1 being even, the determinant of the matrix is

ζ
∑m

k=1 πn−1(k) + (−1)m = ζ
m+1

2 m − 1 = 1− 1 = 0.

So we find that dim(V ⊥1 +. . .+V ⊥m ) < m. Now we claim that (V ⊥1 +. . .+V ⊥m )⊥ =
V1 ∩ . . . ∩ Vm. Indeed, if v is in the left-hand side, then it must be perpendicular
to all V ⊥1 , . . . , V ⊥m . Hence v ∈ (V ⊥1 )⊥ ∩ . . . ∩ (V ⊥m )⊥, which equals the right-hand
side. Conversely, if w is in the right-hand side, then w is perpendicular to each
V ⊥1 , . . . , V ⊥m , and thus to the sum of these spaces. As such,

dim(V1 ∩ . . . ∩ Vm) = dim((V ⊥1 + . . .+ V ⊥m )⊥) > n−m.
By Theorem 4.2, this completes the proof. �

If n = 3, then the above counterexample is unique up to symmetries and the
choice of ζ as the primitive 3rd root of unity.

Now if n is a multiple of m for some m < n for which the Alon-Tarsi conjecture
holds, then it turns out that at least m+1 bases can be ordered correctly by means
of an online algorithm. First consider the following lemma.

Lemma 4.3. Let m be an even divisor of n. Suppose the Alon-Tarsi conjecture
holds for m. Then Fn−m as in the proof of Theorem 4.1(a) is nonzero.

Proof. It suffices to show that there exists a basis vector in ((V ∗)⊗n−m)⊗n

that has a non-zero coefficient in Fn−m. For this, consider a tableau of the following
form:

T =
[
A1 A2 · · · A n

m

]
.

Each Ai, i = 1, . . . , nm , is an (n − m) × m subtableau containing precisely the
numbers [n] \ {(i − 1)m + 1, . . . , im} in each column. Note that, while it is not
required, it is possible for the rows of T to be a permutation of [n].

The coefficient of this tableau in Fn−m is equal to the sum of the signs of the
m × n partial Latin squares with which it can be extended in such a way that no
column contains any number more than once. However, due to the properties of its
subtableaux, T can only be extended to n× n squares of the form

[
A1 A2 · · · A n

m

L1 L2 · · · L n
m

]
,

where Li, i = 1, . . . , nm , is an m × m Latin square on the numbers {(i − 1)m +
1, . . . , im}. Hence the sum of the signs of all of these extensions is equal to (els(m)−
ols(m))

n
m , up to a sign. This was assumed to be nonzero. �

Now we can derive a result that, for some values of n, is stronger than the
results in [4].
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Theorem 4.4. Let n > 1 be even. Let m < n be an even divisor of n. Consider
bases

(B1, . . . , Bm+1) = ((b11, . . . , b1n), . . . , (bm+1,1, . . . , bm+1,n))
of an n-dimensional vector space V .

If the Alon-Tarsi conjecture holds for m, then there exists an (m+1)-step online
algorithm as follows: in the k’th step, the algorithm is given Bk and is required to
fix πk ∈ Sn. After the last step, the algorithm has found (π1, . . . , πm+1) such that
for all 1 ≤ j ≤ n, (b1,π1(j), . . . , bm+1,πm+1(j)) are linearly independent in V .

Proof. Suppose the Alon-Tarsi conjecture holds for m. It follows from Lemma
4.3 that Fn−m 6= 0. Let T be a tableau that has nonzero coefficient in Fn−m such
that its first row is a permutation of [n]. Due to symmetry, B1 can be assumed
to be the standard basis. Choose π1 according to the first row of T : π1(i) is
chosen to be the j such that T1,j = i. Nonzeroness of the coefficient of T in Fn−m
implies that, whenever there are multisets of basis vectors (B′1, . . . , B

′
n−m) and

permutations (π′1, . . . , π
′
n−m) such that b′i,π′i(j) = eTij , there is an online algorithm

that can assign any m bases of V by means of m permutations (π′n−m+1, . . . , π
′
n)

in such a way that (b′1,π′1(j), . . . , b
′
n,π′n(j)) are linearly independent in V for all j.

Clearly, this online algorithm that findsm such permutations would also work in
the simpler case, where there is only the linear independence with b′1,π′1(j) = b1,π1(j)

to be taken into account for each j. Hence, there is an online algorithm that can
find n disjoint independent transversals of at least m + 1 bases, which is what
needed to be shown. �

1. Hypersurfaces for odd dimensions

In the proof of Theorem 4.1(a), the assumption that n is even is only used when
Conjecture 2.1 is applied. This conjecture assures that whenever n is even, the
defining function Fk of the hypersurface H ′k is nonzero for each k. Such assertions
do not exist for odd n. In fact, it can be shown that the only non-zero defining
functions are Fn−1 and Fn.

Recall that Fk is an element of ((V ∗)⊗k)⊗n that can thus be represented as a
linear combination of tableaux of the form (4.1), and that Fk−1 = ΘkFk.

In Fn−2, all tableaux must have columns that contain each element of [n]
no more than once, since Fn = det⊗n. A coefficient of such a tableau can only
be nonzero if it can be extended to an n × n tableau of which the columns are
permutations of [n] and the last two rows are permutations of [n]. Denote by ST
the set of pairs of permutations that can extend a tableau T . The coefficient of T
is then given by

cT :=
∑

(σ,τ)∈ST

sgn(σ)sgn(τ)cT,σ,τ ,

where cT,σ,τ is the coefficient of T with last two rows σ and τ added, which is equal
to the product of the column signs. However,

sgn(σ)sgn(τ)cT,σ,τ = −sgn(τ)sgn(σ)cT,τ,σ,

since exchanging two rows in an odd-sized tableau inverts the column sign. Hence
cT = 0.

Of course Fn is nonzero. Then Fn−1 cannot be zero either, because there is a
one-to-one correspondence between tableaux that have a nonzero coefficient in Fn
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and tableaux that have a nonzero coefficient in Fn−1. This is because there can
only be one possible permutation that can be added as the last row to a tableau in
Fn−1 in order to match a tableau in Fn with nonzero coefficient, since each column
in the tableau in Fn−1 misses only one number.

The fact that Fk = 0 for k ≤ n − 2 is precisely the reason that the proof of
Theorem 4.1(a) does not apply to odd n. However, if we make an extra assumption
on the given bases, we can adapt the proof to make it work for odd n. This will be
discussed in section 3.

2. Decomposed bases

Assume V = V1 ⊕ . . .⊕ Vd. Suppose that it is given that all bases respect this
decomposition: the vectors of each basis Bk can be split into bases Blk of Vl, for
l = 1, . . . , d. We will use the notation Bk = B1

k ⊕ . . .⊕Bdk . This assumption on the
bases allows us to slightly simplify the task of finding an online algorithm.

Let P ⊆ [n]2 be a set of positions in an n×n grid. P is called a pattern of size
m if |P ∩ ({i} × [n])| = m for each i. In other words, P is a pattern of size m if P
contains precisely m positions from each row.

Theorem 4.5. Let V = V1 ⊕ . . . ⊕ Vd be an n-dimensional vector space. For
k = 1, . . . , n, let Bk be a basis of V such that Bk = B1

k ⊕ . . . ⊕ Bdk. Furthermore,
let, for l = 1, . . . , d, a pattern Pl of size dim(Vl) be given such that P1, . . . , Pd are
pairwise disjoint.

Suppose that for each l there is an n-step online algorithm as follows: in the
k’th step, the algorithm is given Blk and is required to fix an assignment of the
vectors in Blk to the positions of Pl in row k. After the last step, the algorithm has
assigned a vector to all positions of Pl in such a way that the vectors assigned to
the same column are independent.

Then simultaneously running these d algorithms results in an assignment of
vectors to all positions in [n]2 in such a way that the vectors assigned to the same
column are independent.

The d algorithms combined form an algorithm that precisely fits the description
of an algorithm in Theorem 4.1(a).

Proof. Note that the existence of a working algorithm for each l implies that
not only each row of [n]2 contains exactly dim(Vl) positions in Pl, but also each
column. Otherwise there would be a column that contains more than dim(Vl)
positions in Pl. The vectors assigned to this column cannot be independent.

The vectors assigned to a column by algorithm l thus precisely span Vl. Hence,
combining the algorithms, each column has a subset of positions to which vectors
are assigned that span Vl for all l. As a consequence, the vectors assigned to a
column span V1 ⊕ . . .⊕ Vd = V . �

Theorem 4.5 allows us to split the task of finding an online algorithm that orders
n bases consisting of n vectors, into smaller tasks of finding algorithms that do the
same for n bases of a smaller space and some partitioning of [n]2 into patterns, if
the decomposition of V which the bases respect is given beforehand.



3. ONLINE ROTA FOR ODD DIMENSIONS 25

3. Online Rota for odd dimensions

Zappa found a generalization of Conjecture 2.1 that says something about both
even and odd n, rather than just even n [7]. Consider Latin squares with ones on
the diagonal. Call the number of even and odd Latin squares with that property
dels(n) and dols(n) respectively. Then the generalization is as follows.

Conjecture 4.6. Let n be a positive integer. Then

dels(n) 6= dols(n).

If n is even, then switching two rows or columns of a Latin square does not
change its sign. By switching rows (or columns) of a Latin square, one can move
the ones onto the diagonal. The new diagonalized square hence has the same sign
as the original square. For each diagonalized Latin square there are n! general
Latin squares that correspond to it: one for each position of the ones. Hence in
this case n! · dels(n) = els(n) and n! · dols(n) = ols(n). So it follows that for even
n, Conjectures 2.1 and 4.6 are equivalent.

The choice of putting the ones on the diagonal of the Latin square is, of course,
arbitrary. The same equivalences hold when the ones (or other numbers) are fixed
to a pattern other than the diagonal.

Note that Theorem 4.5 is independent of the parity of n. When n is odd,
Theorem 4.1(b) assures us that there exists no good online algorithm for patterns
of size n. It turns out, however, that there does exist such an algorithm for patterns
of size n− 1 if Conjecture 4.6 holds.

Using Zappa’s generalization, Aharoni and Kotlar have proven a weaker ver-
sion of Rota’s Basis Conjecture (not the online version) for odd n [11]. Namely,
rather than n transversals, a set of n bases has at least n− 1 disjoint independent
transversals. Their result bears some similarities with the following theorem for the
online version.

Theorem 4.7. Let n > 1. Consider bases

(B1, . . . , Bn) = ((b11, . . . , b1n), . . . , (bn1, . . . , bnn))

of an n-dimensional vector space V , such that bkk = en for all k ∈ [n].
If Conjecture 4.6 is true, then there exists an n-step online algorithm as de-

scribed in Theorem 4.1(a).

Note that any other vector than en could have been chosen here as being present
in all bases without loss of generality. Moreover, the position of the common vector
within the bases does not matter. So for convenience the common vector is assumed
to be the k’th basis vector of Bk.

Proof. If n is even, the theorem follows from Theorem 4.1(a) and the equiv-
alence of Conjectures 2.1 and 4.6.

So suppose n is odd. We will follow the same procedure as in the proof of
Theorem 4.1(a), but then for patterns of size n− 1. The remainder is a pattern of
size 1, for which the algorithm is trivial.

So we have V = W ⊕ 〈en〉. Define for k ∈ [n] and π ∈ Sym({1, 2, . . . , k− 1, k+
1, . . . , n}):

Ψk,π : ((
∧k−2

W )k−1 × (
∧k−1

W )n−k+1)×Wn−1 → (
∧k−1

W )k × (
∧k

W )n−k,
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(ω,B) 7→ (ω1 ∧Bπ(1), . . . , ωk−1 ∧Bπ(k−1), ωk, ωk+1 ∧Bπ(k+1), . . . , ωn ∧Bπ(n)).
As before, Ψk,π models adding vectors of a basis B to an n-tuple of ‘spaces’ ω
according to a permutation π. The expression may seem a bit complicated, but the
idea behind it is as follows. Since we follow a pattern of size n− 1, we do not add
a vector from W to each of the n columns in each step. This causes an imbalance
in the exterior powers in which the ωj live, illustrated by the following table.

step ω1 ω2 . . . ωn

1
2
...
n




· ∗ ∗ ∗
∗ · ∗ ∗
∗ ∗ . . . ∗
∗ ∗ ∗ ·




Wherever there is a dot, no vector is added to the corresponding space in that step.
So prior to the k’th step, there are k−1 columns that contain k−2 vectors, and the
remaining columns contain k − 1 vectors. After the k’th step, there are k columns
that contain k − 1 vectors, and the remaining columns contain k vectors.

Now we will move to the tensor algebra. So instead of Ψk,π, we now work with

Φ̂k,π : ((W⊗k−2)⊗k−1 ⊗ (W⊗k−1)⊗n−k+1)×Wn−1 → (W⊗k−1)⊗k ⊗ (W⊗k)⊗n−k,

(t, B) 7→ (t1 ⊗Bπ(1), . . . , tk−1 ⊗Bπ(k−1), tk, tk+1 ⊗Bπ(k+1), . . . , tn ⊗Bπ(n)).

For each k, we can now injectively map (W⊗k−1)⊗k ⊗ (W⊗k)⊗n−k onto (V ⊗k)⊗n,
where en is added on the diagonal. This injection identifies Φ̂k,π with a map

Φk,π : ((W⊗k−2)⊗k−1 ⊗ (W⊗k−1)⊗n−k+1)×Wn−1 → (V ⊗k)⊗n.

Now we will construct the hypersurfaces Hk. In order to do this, we look again
at ((V ∗)⊗k)⊗n, which is spanned by tableaux of the form (4.1). We do not use
the same definition of the Θk as in the proof of Theorem 4.1(a), however. Instead,
define the linear map

Θk : ((V ∗)⊗k)⊗n → ((V ∗)⊗k−1)⊗n,


a11 · · · a1n

...
...

ak1 · · · akn


 7→ τ ·




a11 · · · a1n

...
...

ak−1,1 · · · ak−1,n


 .

Here, τ is equal to zero if (ak1, . . . , akn) is not a permutation of [n] with akk = n,
and equal to its sign in Sn if it is a permutation of [n] with akk = n.

Now we construct Fk ∈ ((V ∗)⊗k)⊗n for k = n, . . . , 1 again as follows: Fn :=
det⊗n and Fk−1 = ΘkFk. It remains to show that Conjecture 4.6 implies that all
Fk are nonzero. Fn is some linear combination of tableaux of the form (4.1). By
definition of Fn, no column in any of the tableaux that have a nonzero coefficient in
Fn contains any number from [n] twice. Then for each k, Θk annihilates a tableau
if its last row is not a permutation σ of [n] such that σ(k) = n. Tableaux in Fk
that do not get annihilated by Θ1 ·Θ2 · · ·Θk have the following structure:




n a12 · · · a1k · · · a1n

a21 n
...

...
...

. . . ak−1,k

...
ak1 · · · ak,k−1 n · · · akn



,
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where each row is a permutation of [n]. Hence these tableaux correspond to partial
Latin squares. Now each n×n tableau with n’s on the diagonal has the product of
its column signs as coefficient in Fn. Θk adds exactly the sign of the permutation
of row k, so that in the end the contribution of such a tableau to F0 is precisely
the sign of the corresponding Latin square. It follows that F0 = dels(n)− dols(n).

If Conjecture 4.6 holds, then F0 6= 0. Then, by linearity of Θk for all k,
F1, . . . , Fn 6= 0 as well.

Now set H ′k = {t ∈ (V ⊗k)⊗n | Fk = 0}. Project H ′k onto (
∧k

V )n to obtain
Hk. In the same way as in the proof of Theorem 4.1(a), it can be shown that Hk

has the following properties. First, it contains all tuples that have a zero entry.
Second, whenever there exists a basis B of V (with Bn = en) such that for all
π ∈ Sym(1, . . . , k − 1, k + 1, . . . , n) it holds that adding B to ω ∈ (

∧k−1
V )n gives

us a tuple in Hk, then ω must already be in Hk−1.
Finally, the algorithm is precisely the algorithm used in the proof of Theorem

4.1(a), using the hypersurfaces H0, . . . ,Hn constructed in this proof instead.
�

In the theorem we assumed that it was already known which vector all bases
had in common. What can we do if we only know that all bases have some vector
in common, but are not told which vector that is?

If we would like to prove that an algorithm exists for this case, we could try
thinking along the lines of the proof of Theorem 4.7. However, it does not work
in this case, since it requires us to fix a decomposition of V into an 1-dimensional
subspace and an (n − 1)-dimensional subspace. The order in which the hypersur-
faces H1, . . . ,Hn are constructed is opposite to the order in which the algorithm
uses them. For instance, in the second step, an algorithm chooses π such that
Ψ2,π(ω,B2) 6∈ H2, where H2 is based on a decomposition of V into 〈v〉 and its or-
thogonal complement in V . But in the next step, it might turn out that it was not
v, but some other vector that all bases have in common. When the hypersurfaces
are then recalculated with respect to a different decomposition of V and a different
pattern, it may turn out that Ψ2,π(ω,B2), that was just fixed, is not in the new H2

at all.
In order not to run into this problem, extra conditions should be added. Denote

by Hv,P
k the hypersurface Hk constructed with respect to some size n− 1 pattern

P and the decomposition of V into 〈v〉 and its orthogonal complement. Let Ck be
the set of vectors that B1, . . . , Bk have in common. Then a necessary condition
on a successful algorithm is that, in the k’th step, it chooses π such that there
exist patterns Pv such that Ψk,π(ω,Bk) 6∈ Hv,Pv

k for all v ∈ Ck. Surely each
Hv,Pv

k individually is strictly contained in (
∧k

V )n, as was shown in the proof of
Theorem 4.7. But what guarantee is there that there exist patterns Pv such that⋃
v∈Ck

Hv,Pv

k 6= (
∧k

V )n?
If, on the other hand, we would like to disprove that an algorithm exists for

this case, we need to come up with a different counterexample than the one used in
the proof of Theorem 4.1(b): if the algorithm orders the first n− 2 standard bases
in such a way that m is equal to n, we cannot pick the proposed (n − 1)’st basis,
as it would have no vector in common with any of the first n− 2 bases.
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4. Online Rota for matroids

There are several ways to generalize the online version of Rota’s Basis Conjec-
ture to matroids.

A natural way is to first fix a matroid M of rank n. Then, an algorithm is given
bases of M one by one, and must label each of the n basis elements differently before
knowing the remaining bases. In the end, the elements with the same label should
form a basis of M .

In applying this generalization to linear matroids M , the results from this
chapter still hold. First fix a representation of M . Then, the representations of all
basis elements of a basis of M span the same vector space V . Thus these elements
can be treated as vectors in V , and the bases of M as bases of V .

A second way to generalize the online version is the following. Rather than
fixing a matroid beforehand, the matroid structure is only known to an algorithm
for the basis elements it has received. Hence, an algorithm is given, one by one,
bases of some priorly unknown matroid M and the independence relations between
the elements of the new basis and the elements of the previously labeled bases.
Then, the algorithm must label the new basis in such a way that in the end, the
elements with the same label form a basis of M .

When discussing vector spaces, it has never been an issue whether the vector
space V is known to the algorithm or not. This is due to the fact that, given the
first basis, it is already known that the V is precisely the span of the basis vectors
of the first basis (and any of the n− 1 bases to come). For matroids, this property
does not hold. Suppose B is a basis of M . Then M can be extended to another
matroid M ′ in such a way that B is still a basis of M ′. So, in contrast to vector
spaces, bases of a matroid do not uniquely identify a matroid.

Contrary to the first generalization, the results from this chapter do not carry
through for this second generalization for linear matroids. A simple example is the
following. See Figure 1. Let n ≥ 3, and let the first (n− 1) bases be disjoint bases
of the uniform matroid M of rank n on n(n − 1) elements. Up to this point, no
difference between any labeling can be distinguished by any algorithm. So suppose
the algorithm labeled the bases elements in a valid way with the labels {1, . . . , n}.
Now extend M with an element e in such a way that the only dependent sets of
size n are e joined with the set of n − 1 elements labeled i, for each i = 1, . . . , n.
Then any final basis containing e cannot be labeled correctly.

e

1 2 3 4

B1

B2

B3

Figure 1. An element e that cannot be labeled correctly. The
lines correspond to the dependent sets in the matroid.



CHAPTER 5

An online version of Rota’s Basis Conjecture for
graphic matroids

An interesting question that is closely related to the online version of Rota’s
Basis Conjecture is the following. Is it possible to find a combinatorial online
algorithm for graphic matroids?

Consider a set of n + 1 vertices. Define a matroid on the edges between the
vertices. A set of edges E is defined to be independent if and only if the graph
G = ([n + 1], E) is a forest. In other words, E is independent if and only if G is
cycle-free. This matroid is called the graphic matroid of the complete graph Kn+1.
The bases of these matroids are precisely the spanning trees of the n + 1 vertices.
Hence the rank of the matroid is n.

The graphic matroid is realizable by vectors in Rn+1 as follows. An edge
between vertices i and j corresponds to the vector ei − ej , where the choice of
the sign is unimportant. Indeed, the vectors corresponding to a set of edges are
dependent if and only if the corresponding graph contains a cycle.

Thus, fixing this realization, all previous results for vector spaces apply to this
matroid.

Theorem 5.1. (Online Rota for graphic matroids) Let an even natural number
n be given. Let C be a set of n colours. If Conjecture 2.1 holds for n, then there
exists an n-step online algorithm as follows. In each step, a tree on n+ 1 vertices
is given. The algorithm then colours each edge of the tree with a different colour
from C. After the last step, the edges of each colour form a tree.

Proof. Trees correspond to bases, not only of a matroid, but also of an n-
dimensional linear space. Moreover, the edges of one colour form a transversal of
n trees (bases). Hence this theorem is a weaker version of Theorem 4.1(a), where
the weakness lies in the limitation of the bases to sets of vectors corresponding to
edges. �

An illustration of how such an algorithm would work is given in Figure 1. This
algorithm does not assign the trees in a correct way. In fact, it ignores many of the
conditions that are posed in section 1.1 of this chapter. I challenge the reader to
find out:

• in which steps the algorithm makes a mistake;
• with which tree(s) each mistake can be punished;
• how the algorithm should have assigned the trees instead.

After discussing the relevant conditions, the mistakes will be analyzed in depth in
section 1.1.

In the proof of Theorem 4.1(a), the general algorithm was constructed. How-
ever, the hypersurfaces {Hk | 0 ≤ k ≤ n} are only shown to have a nonempty

29
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Step 1

Step 2

Step 3

Step 4 - tree that cannot be assigned

Figure 1. An example of the choices of an (incorrect) algorithm,
as described in Theorem 5.1
For each step, the tree is first given. The coloured edges in this tree
are not part of the input, but illustrate the choice of the algorithm.
Then, the forests of each colour after colouring this tree are given.

complement, so that the algorithm can avoid picking tuples inside Hk. In order to
construct a combinatorial algorithm, it is necessary describe Hk precisely.

It should be noted that the fact that the online version of Rota’s Basis Con-
jecture is false for odd n does not imply that the version for graphic matroids is
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false if n were odd. The counterexample given in the proof of Theorem 4.1(b) relies
on the existence of primitive m’th roots of unity for certain m ≤ n. This is not
the case here, as only edges can be used, which correspond to a difference of two
standard basis vectors.

Whether the online version of Rota’s Basis Conjecture for graphic matroids is
true for odd n or not remains to be investigated. For n = 3, the counterexample in
the proof of Theorem 4.1(b) has been shown to be unique (up to symmetries). So
certainly, the theorem is true for n = 3. A topic for further research is the question
whether there exist other counterexamples for greater odd n.

1. Combinatorial algorithm

Due to Theorem 5.1, there exists an online algorithm, at least for even n pro-
vided that the Alon-Tarsi Conjecture holds, that colours trees appropriately. But
how can such an algorithm be expressed in a combinatorial way?

For n = 4, it is already difficult to find the algorithm. In order to describe
the conditions that an algorithm should adhere to in its choices, it is convenient to
consider the n constructed forests as partitions of the vertex set [n+1] rather than a
graph. The parts of such a partition then correspond to the connected components
of the corresponding forest. Modeling the forests in this way discards the irrelevant
information of how vertices are connected within each part.

First, let us introduce some terminology.
A refinement of a partition P = {p1, . . . , ps} of a set X is a partition Q of X

such that for each part q of Q, there exists an i : 1 ≤ i ≤ s such that q ⊆ ps. For
instance: {{1}, {2}, {3, 4}, {5}} is a refinement of {{1, 2}, {3, 4, 5}}.

A coarsening of a partition Q of X is a partition P of X such that Q is a
refinement of P .

The Coarsest Common Refinement (CCR) of partitions P1, . . . , Pr is a partition
Q that is a refinement of all partitions P1, . . . , Pr, such that no other refinement
of P1, . . . , Pr is a coarsening of Q. The CCR always exists, since the the partition
into singletons is a refinement of any partition. The CCR is also unique: suppose
that P 6= Q are CCR’s. Since neither is a coarsening of the other, we can assume
that there exist a part p of P and a part q of Q such that q \ p 6= ∅ and p ∩ q 6= ∅.
Since p and q overlap, P1, . . . , Pr all have a part that contains p ∪ q. Hence if in
P all parts containing an element in q are joined with p, we obtain a refinement of
P1, . . . , Pr that is a strict coarsening of P , contradicting the assumption that P is
a CCR.

Similarly, the Finest Common Coarsening (FCC) of partitions Q1, . . . , Qr is
a partition P that is a coarsening of all partitions Q1, . . . , Qr, such that no other
coarsening of Q1, . . . , Qr is a refinement of P . Existence is shown by the fact that
the partition into one part is a coarsening of any partition. In order to see that
the FCC is unique, suppose that P 6= Q are FCC’s. Neither is a refinement of the
other, so we can assume that there is some part p of P that contains elements from
more than one part of Q. Let q be one of these parts of Q. Then splitting p into
p ∩ q and p \ q gives a coarsening of Q1, . . . , Qr that is a strict refinement of P ,
contradicting the assumption that P is a FCC.

Some more (compact but abusive) notation: CCRk
i will denote the CCR of i

forests in step k. Similarly, FCCki will denote the FCC of i forests in step k. For
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instance, the condition |CCRk
i | < j means that the CCR of any subset of i forests

in step k must have fewer than j parts.

1.1. Necessary conditions. Now we will describe conditions that are neces-
sary for the success of an algorithm. Many conditions can be formulated in terms
of the CCR and the FFC.

The first class of conditions ensures that subsets of forests do not have too
many edges in common that cannot be added to any of them.

(5.1) |CCRk
i |
{

= n+ 1, i > k;
> i, i ≤ k.

A more mathematical way of formulating the same conditions is the following.
Let Pl be the partition belonging to forest l. In the k’th step, for all L ⊆ [n] with
|L| = i, it must hold that

|CCR(Pl | l ∈ L)|
{

= n+ 1, i > k;
> i, i ≤ k.

The second class of conditions makes sure that subsets of forests do not have
too many cuts in common in which edges need to be added.

(5.2) |FCCn+1−i
i | = 1.

More mathematically, but less compactly: for all L ⊆ [n] with |L| = i, it must
hold in step n+ 1− i that

|FCC(Pl | l ∈ L)| = 1.

Moreover, there are conditions that concern subsets of vertices. Let P1, . . . , Pn
be the partition of the n forests. For any subset S of the vertices, consider the
restriction operator rS that removes vertices from a partition that are not in S.
For l = 1, . . . , n, denote PSl = rS(Pl). Now for each subset of vertices S such that
|S| = j, the following condition should hold in step k:

(5.3)
n∑

l=1

(|PSl | − 1) ≥ (j − 1)(n− k)

Theorem 5.2. Condition (5.1) is necessary.

Proof. First, suppose i > k and |CCRk
i | < n + 1. Then there is a part in

the CCR of some i partitions that contains more than one vertex. Suppose the
remaining n − k trees contain an edge between two vertices in this part. In each
step, this edge will need to be assigned to one of the other n−i < n−k forests. Hence
there are too few forests left to garrison this edge. So if i > k, then |CCRk

i | = n+ 1
is required.

Second, suppose |CCRk
i | ≤ i. Assume the next tree contains n − i + 1 edges

within the parts of the CCR of some i partitions, which is possible due to the
assumption that |CCRk

i | ≤ i. Then these n − i + 1 edges must be assigned to the
remaining n − i trees, which cannot be done. So it follows that |CCRk

i | > i is
required for all k and i, and in particular for i ≤ k. �

Theorem 5.3. Condition (5.2) is necessary.
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Proof. Suppose that for some i, |FCCn+1−i
i | > 1. Then in some subset of i

forests, there is a cut between one part of the FFC and the rest that contains no
edges. In order for these forests to be completed to a tree after the final step, an
edge between these two sets of vertices must be added to each of them. However,
if each of the remaining i− 1 trees contains only one edge in the cut, then not all
i forests can be completed to trees. Hence |FCCn+1−i

i | = 1 is required. �

Theorem 5.4. Condition (5.3) is necessary.

Proof. |PSl | − 1 is equal to the number of edges that can be added to PSl
without creating a cycle, since each addition of an edge unites two parts.

A tree on all n+ 1 vertices can contain up to j− 1 edges within any subset of j
vertices. In step k, there will be n− k trees remaining. Thus in order to be able to
assign n− k trees that all have j − 1 edges within a given subset of j vertices, it is
necessary to be able to add at least (j − 1)(n − k) edges within this subset across
all forests. �

Conditions (5.1), (5.2) and (5.3) together are, however, not sufficient. Consider
the example in Figure 2 for n = 4 and k = 2. With some work one can verify that
all three conditions indeed hold. However, if the last two trees both contain the
edges (2, 3) and (4, 5), then the forests cannot all be completed to trees.

5

1

2

34

Figure 2. A bad example satisfying conditions (5.1), (5.2) and
(5.3). n = 4; k = 2. The upper four graphs are the forests; the
lower graph is a tree that cannot be assigned in a way that does
not violate the conditions.

Hence condition (5.3) needs to be sharpened. Let Q = {q1, . . . , qr} be a par-
tition of the n + 1 vertices. Suppose that for some s ≤ r, q1, . . . , qs are all of the
non-singleton parts of Q. Denote by Ps the set of all partitions of [s]. Then:

(5.4)
n∑

l=1

min
T∈Ps



|T |∑

i=1

(|P
⋃

t∈ti
qt

l | − 1)


 ≥ (n− r + 1)(n− k)

Theorem 5.5. Condition (5.4) is necessary.

Proof. In the first part of the proof, it is shown that

Cl := min
T∈Ps



|T |∑

i=1

(|P
⋃

t∈ti
qt

l | − 1)
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is equal to the number of edges (which we call Nl) that lie within the parts of Q
that can be added to forest l without creating a cycle.

Each T partitions the set {q1, . . . , qs}. As noted before, |P
⋃

t∈ti
qt

l |−1 is precisely
the number of edges that can be added within

⋃
t∈ti qt. Since the partition of the

vertices induced by T is a coarsening of {q1, . . . , qs},
|T |∑

i=1

(|P
⋃

t∈ti
qt

l | − 1)

is an upper bound for Nl. Since this is the case for each T , it follows that Nl ≤ Cl.
Now suppose that Nl < Cl. Let T be a minimizing partition in Cl. Then there

is a part ti of T such that the number of edges that can be added within the parts
of Q indicated by ti is strictly less than

|P
⋃

t∈ti
qt

l | − 1.

But since this is precisely the number of edges that can be added within
⋃
t∈ti qt,

there is some refinement {t′1, . . . , t′m} of {ti} with m > 1 such that
m∑

k=1

(|P
⋃

t∈t′
k
qt

l | − 1) < |P
⋃

t∈ti
qt

l | − 1.

However, this contradicts the minimality of T , as the partition

{t1, . . . , ti−1, t
′
1, . . . , t

′
m, ti+1, . . . , t|T |}

would then give a smaller number. Hence it also holds that Nl ≥ Cl.
Q consists of r parts, so at most n − r + 1 independent edges can be chosen

within the parts of Q. With n− k trees to go, it is therefore necessary that at least
(n− r + 1)(n− k) edges within Q can be added to all l forests together. Hence it
is necessary that

n∑

l=1

Nl ≥ (n− r + 1)(n− k).

�

One can try to slightly relax condition (5.4) by minimizing over a smaller set
than Ps for each forest. This is, however, to no avail.

(5.5)
n∑

l=1

min

(
s∑

i=1

(|P qi

l | − 1), |P
⋃s

t=1 qt

l | − 1

)
≥ (n− r + 1)(n− k)

for each partition Q could be falsely thought to suffice. One could think that
wherever

min

(
s∑

i=1

(|P qi

l | − 1), |P
⋃s

t=1 qt

l | − 1

)

does not accurately represent the number of edges within Q that can be added to
forest l, there is another partition Q′ for which condition (5.5) is violated. This Q′

would be a coarsening of Q such that its only non-singleton parts {q′1, . . . , q′s′} are
precisely those parts for which in forest l,

min




s′∑

i=1

(|P q
′
i

l | − 1), |P
⋃s′

t=1 q
′
t

l | − 1


 = min

T∈Ps



|T |∑

i=1

(|P
⋃

t∈ti
qt

l | − 1)


 .
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The flaw of this reasoning is pointed out by the example in Figure 3. For forest l,
the summand in condition (5.5) indeed indicates the correct number of edges that
can be added within partition Q′ (and Q). However, for other forests, the partition
Q′ may not be the critical partition.

1 2

3

45

6

Figure 3. An example where condition (5.4) is violated for the
partition {{1, 6}, {2, 5}, {3, 4}} indicated by the red ovals, but
where conditions (5.1), (5.2) and (5.5) are not violated.

It should be noted that condition (5.5) is equivalent to condition (5.4) when
n ≤ 4. This is because the number of non-singleton parts in a partition of [n + 1]
is at most bn+1

2 c ≤ 2.

Now we return to discuss the mistakes of the faulty algorithm in Figure 1. The
reader may want to compare these results to their own findings.

Indeed, the algorithm made a mistake in step 3. As it will turn out in section
1.2, all violated conditions in the (n − 1)’st step can be written as a violation of
condition (5.1).

The first mistake, for which the algorithm is punished by the 4’th tree, is that
it allowed the number of parts in the CCR of all four forests to be 4, rather than the
required 5. Indeed, {1, 2} is a part of this CCR, and hence the edge (1, 2) cannot
be added to any of the forests.

Another violation was made in step 3, which can be easily spotted by the
isolated vertex 3 in both the second and the third forest. The CCR of forests 2
and 3 has size 2, rather than the required 3. Or equivalently, the FCC of forests 2
and 3 has size 2. Equivalently as well, condition (5.4) is violated for the partition
{{3}, {1, 2, 4, 5}}. This mistake is punished by any 4’th tree that has only one edge
incident to vertex 3 (and therefore three edges within the part {1, 2, 4, 5}).

Instead, in step 3 the algorithm should have chosen, for instance, the assignment
shown in Figure 4. It can be verified that the forests satisfy all conditions after this
assignment.

In fact, the algorithm was lucky to get a second chance with the given third
tree, for it had already made a few mistakes in step 2, neither of which the tree
given in step 3 was suited to punish.

A keen eye may have spotted that the FCC of forests 1, 2 and 4 has size greater
than one. In all three of these forests there is a cut between {1, 2} and {3, 4, 5}.
Thus if the final two trees both contained only one edge in this cut, this mistake
would be punished.

An even keener eye may have spotted that this was not the only mistake in
step 2. Condition (5.4) is violated as well for the partition {{3}, {1, 2}, {4, 5}}. The
number of edges that can be added within this partition is 3, while the condition
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5

1

2

34Step 3

Figure 4. A correction in step 3 of the algorithm in Figure 1.

requires 4. Thus if the final two trees both contained the edges (1, 2) and (4, 5),
this mistake would be punished.

A correct way to assign the tree is given in Figure 5.

5

1

2

34Step 2

Figure 5. A correction in step 2 of the algorithm in Figure 1.

The algorithm did not make a mistake in step 1, but this is hardly an achieve-
ment. All assignments are the same up to a permutation of the forests.

1.2. Sufficient conditions. So it turns out that conditions (5.1), (5.2) and
(5.4) are necessary conditions, in the sense that if these conditions are not satisfied,
there exist trees in the following steps that force any algorithm to make a mistake.
But are they also sufficient? In other words, if the conditions are all satisfied in
some step k, is it then always possible to assign any tree in such a way that the
conditions are also satisfied in step k + 1, hence giving rise to a correct algorithm?

Let us first look at the final step, which is the easiest to analyze. It turns out
that in this step, conditions (5.2) and (5.4) are special cases of condition (5.1),
since the latter condition is not only necessary for a successful algorithm, but also
sufficient.

Theorem 5.6. Let k = n− 1. Then condition (5.1) alone is sufficient.

Proof. For k = n− 1, condition (5.1) simplifies to

|CCRn−1
i | ≥ i+ 1.

Since k = n − 1 and only one tree remains, the partition of each forest consists of
two parts. In the CCR of some partitions, every split between two parts is also



1. COMBINATORIAL ALGORITHM 37

present in at least one of the partitions the CCR is taken of, for otherwise there is
a coarser common refinement with these two parts joined. Since the partition of
each forest only contains one split, the CCR of i such partitions contains at most i
splits. Hence we find

|CCRn−1
i | ≤ i+ 1.

So in fact, condition (5.1) implies

|CCRn−1
i | = i+ 1.

Recall that the forests live in a graphical matroid, and that each partition corre-
sponding to a forest can be identified with a subspace of Rn+1 spanned by ei − ej
for all edges (i, j) within its parts. Each part of the CCR of i partitions indicates
a subset of vertices that is present in some part of all i partitions. So let i forests
be given, and let P1, . . . , Pi be their corresponding partitions. Let furthermore
V1, . . . , Vi be the corresponding subspaces of Rn+1. Then CCR(P1, . . . , Pi) corre-
sponds to V1 ∩ . . . ∩ Vi. Now the dimension of V1 ∩ . . . ∩ Vi is equal to the number
of independent edges within the parts of CCR(P1, . . . , Pi). Hence

dim(V1 ∩ . . . ∩ Vi) = n+ 1− |CCR(P1, . . . , Pi)| = n− i.
By Theorem 4.2, it follows that each final tree can be assigned. �

Now we have all the ingredients needed to give and prove correctness of a
combinatorial algorithm for n = 3 and n = 4.

Theorem 5.7. Let n = 3. Then any algorithm as in Theorem 5.1 that makes
sure that in each step condition (5.1) is satisfied is correct. Moreover, such an
algorithm exists.

Proof. The counterexample for n = 3 in the proof of Theorem 4.1(b) has been
shown to be unique up to symmetries. Hence, since the bases given there cannot
be represented as trees, there exists a valid algorithm.

In the first step, no mistakes can be made due to symmetry. In the second
step, existence of a correct algorithm implies that there is always a way to satisfy
the necessary condition (5.1). Due to Theorem 5.6, the final step can then also be
executed successfully. �

Theorem 5.8. Let n = 4. Then any algorithm as in Theorem 5.1 that makes
sure that in each step conditions (5.1), (5.2) and (5.4) are satisfied is correct.
Moreover, such an algorithm exists.

Proof. First note that due to Theorem 5.1 and the fact that Conjecture 2.1
is verified for n = 4, there exists a correct algorithm. Since all possible assignments
of the first tree are equivalent, the first real decision for any algorithm is how to
assign the second tree. As conditions (5.1), (5.2) and (5.4) are necessary for success,
existence of a correct algorithm implies that there is always a way to assign the
second tree in such a way that these conditions are satisfied.

By Theorem 5.6, it now suffices to show that for each 4-tuple of forests on 5
vertices with 2 edges that satisfy conditions (5.1), (5.2) and (5.4), any third tree
can be assigned in such a way that condition (5.1) is satisfied.

This can be done by simply checking all cases. First note that, due to symmetry,
there are only two different types of forests on 5 vertices with 2 edges, namely
those with two connected edges and those with two non-connected edges. So, after
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choosing any representative from each of the two types, each 4-tuple of forests can
be altered, by permuting the vertices for all forests, into a 4-tuple of forests with
either of the two chosen representatives as the first forest. When it turns out that
all trees can be assigned in some way, the permutation of vertices can be reversed
to obtain the same result for the other 4-tuples with different first forests. This
is due to the fact that the set of all trees is invariant under permutations of the
vertices. Hence the number of 4-tuples to be checked after applying this symmetry
is 2 ·453 = 182250. Then, for each tuple, it must be checked if each of the 125 trees
can be assigned.

The case checking has been done by means of computer calculations. For the
main part of the Java source code used, see Appendix A. Globally, the program
works as follows. For each tuple, it first checks whether it satisfies conditions
(5.1), (5.2) and (5.4). If this is the case, it checks for all trees whether there is an
assignment of the edges of the tree to the forests such that no cycles are created
and the conditions are satisfied. If there is no such assignment for one of the trees,
it results in a failure. The program counts the number of failures, which turns out
to be zero.

�

For any n, conditions (5.1), (5.2) and (5.4) have been shown to be necessary for
success of an algorithm. Whether any algorithm that makes sure these conditions
are satisfied is always successful remains, for now, unproven. For n > 4, I checked
the algorithm greedyFindPerm(...) as given in Appendix A by means of random
sampling. Specifically, I generated random trees that the algorithm needs to assign.
The algorithm failed in none of these cases. However, the total number of possible
cases grows more than exponentially with n. Due to Cayley’s formula, there are
(n+1)n−1 trees on n+1 vertices. Hence there are ((n+1)n−1)n distinct n-tuples of
trees, of which only a relatively small fraction can be divided out due to symmetries.
The current program is unable to check all of them for any n > 4 within a reasonable
time frame, which is not surprising, since the number of 5-tuples of trees for n = 5
is already approximately 252.

Conjecture 5.9. Any algorithm as in Theorem 5.1 that makes sure that in
each step conditions (5.1), (5.2) and (5.4) are satisfied is correct.

Of course the ‘real’ conditions for the success of an algorithm are to make
sure that in step k the tuples of forest stay outside Hk as in Theorem 4.1(a).
The question is whether conditions (5.1), (5.2) and (5.4) accomplish this. This
question can also be posed in another way. For some n and k, is there a necessary
condition on the tuples of n forest that each contain k edges, that is not implied
by conditions (5.1), (5.2) and (5.4)? In other words, are conditions (5.1), (5.2) and
(5.4) a complete set of conditions for success of an algorithm?

The CCR condition (5.1) says something about conditions for any dimension
n, step k and subset size i. So this condition appears to be complete in the sense
that there seems to be no straightforward way to generalize it.

The FCC condition (5.2) is a bit more limited in its applicability: it is only
demanded for the very specific case that i = n + 1 − k. Of course, this condition
also holds for subset sizes greater than i, but that is implied by the condition for
subset size i. Could there be FCC-type conditions on subsets of size smaller than
n + 1 − k, where the size of the FCC is demanded to be at most f > 1? Suppose
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the FCC of some subset of i forests in step k has size f > 1. Then these forests i all
miss f − 1 edges within the cut given by the FCC. However, the smallest number
of edges that any of the remaining n− k trees can have within this cut is f − 1 as
well. So it would be necessary that (n− k)(f − 1) ≥ i(f − 1). Hence it can only be
violated if i ≥ n+ 1− k. But for these i, the FCC condition is already as sharp as
possible.

The partition condition (5.4) says something about the edges within some par-
tition across all trees. Could it be generalized to say something about the edges
within some partition across some subset of size i of trees? This seems unlikely, be-
cause the partition condition counts the number of edges that can be added within
a partition, and bounds that from below. A similar necessary condition on a subset
of forests would thus always be weaker than the condition on all forests, since for
the other n − i forests, the most favourable case needs to be assumed. The only
loophole for the partition condition might be that it counts the number of edges
that can be added to each forest within a partition separately. It is not unimag-
inable that there exists a case where the partition condition is tightly satisfied for
some partition Q, but where it is not possible to actually assign all possible (n−k)
remaining trees that contain the maximum number of edges within Q. Yet, it is
similarly imaginable that such a case does not exist at all, since it could be ruled
out by the other conditions.

All in all, Conjecture 5.9 still stands, ready to be proven or disproven. I look
forward to new insights on this matter.
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APPENDIX A

Graphical Matroid Java program

The first important method in the program checks whether all 4-tuples of forests
on 5 vertices with 2 edges that satisfy the CCR, FCC and partition conditions can
correctly assign each tree.

void checkAl l2 ( ){
Tree [ ] a l l 2 F o r e s t s = a l l 2 F o r e s t s 5 ( ) ;

// a l l 45 f o r e s t s on 2 edges on 5 v e r t i c e s
Tree [ ] a l l T r e e s = a l l T r e e s 5 ( ) ;

// a l l 125 t r e e s on 5 v e r t i c e s
Tree [ ] d i fFor = { a l l 2 F o r e s t s [ 0 ] , a l l 2 F o r e s t s [ 3 0 ] } ;

// d i fFor con ta i ns one f o r e s t wi th two i n c i d e n t edges
//and one f o r e s t wi th two non−i n c i d e n t edges .

int nFa i lu r e s = 0 ;

//For each t u p l e o f f o r e s t s on 2 edges t h a t
// s a t i s f i e s the CCR, FCC and p a r t i t i o n co nd i t io ns ,
// check whether each t r e e can be a s s i g n e d .

for ( int f 0 =0; f0 <2; f 0++){
for ( int f 1 =0; f1 <45; f 1++){
for ( int f 2 =0; f2 <45; f 2++){
for ( int f 3 =0; f3 <45; f 3++){
Tree [ ] conFrsts = new Tree [ 4 ] ;

// Bui ld the t u p l e o f c o n s t r u c t e d f o r e s t s .
for ( int i =0; i < 4 ; i ++){

i f ( i ==0){
conFrsts [ i ] = d i fFor [ f 0 ] ;

} else i f ( i ==1){
conFrsts [ i ] = a l l 2 F o r e s t s [ f 1 ] ;

} else i f ( i ==2){
conFrsts [ i ] = a l l 2 F o r e s t s [ f 2 ] ;

} else {
conFrsts [ i ] = a l l 2 F o r e s t s [ f 3 ] ;

}
43
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}
//Check whether the t u p l e s a t i s f i e s the
// c o n d i t i o n s in s t e p 2 .
boolean c o n d i t i o n s S a t i s f i e d =

checkCondit ions ( conFrsts , 1 , 5 ) ;

// I f the t u p l e s a t i s f i e s the c ond i t i ons , check
// whether each t r e e can be a s s i g n e d .
// I f not , i n c r e a s e the number o f f a i l u r e s .

for ( int t =0; t<125; t++){
i f ( c o n d i t i o n s S a t i s f i e d ){

int [ ] r e s u l t = greedyFindPerm (
a l l T r e e s [ t ] , conFrsts , 2 , 5 ) ;

i f ( r e s u l t [ 0 ] == −1){
//No v a l i d assignment was found .
nFa i lu r e s++;
break ;

}
}

}

} } } }
System . out . p r i n t l n ( ”Number o f f a i l u r e s : ” + nFa i lu r e s ) ;
}

In the above method, the following method is used to find an assignment of a
tree to the constructed forests.

int [ ] greedyFindPerm ( Tree newTree , Tree [ ] conFrsts ,
int step , int v ){

// v = n + 1 and k = s t e p + 1 .
for ( int i = 0 ; i < permutat ions . l ength ; i ++){

boolean validPerm = true ;
//Check whether adding edges accord ing to t h i s
// permutat ion c r e a t e s a c y c l e in any o f the f o r e s t s :
for ( int k=0; k<v−1; k++){

validPerm = validPerm &&
conFrsts [ k ] . addable [ newTree . edges [

permutat ions [ i ] [ k ] ] [ 0 ] ] [
newTree . edges [ permutat ions [ i ] [ k ] ] [ 1 ] ] ;

}

i f ( validPerm ){
Tree [ ] conFrstCopies = new Tree [ v−1] ;
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//Make c o p i e s o f the c o n s t r u c t e d f o r e s t s wi th
// the edges added accord ing to the checked
// permutat ion in order to check the c o n d i t i o n s .

for ( int k=0; k<v−1; k++){
conFrstCopies [ k ] = new Tree ( conFrsts [ k ] ) ;
conFrstCopies [ k ] . addEdge (

newTree . edges [ permutat ions [ i ] [ k ] ] ) ;
}

i f ( checkCondit ions ( conFrsts , step , v ) ){
//The c o n d i t i o n s are met ; re turn the permutat ion .
return permutat ions [ i ] ;

}
}

}

// There i s no v a l i d permutat ion .
int [ ] noSo lut ion = new int [ v−1] ;
noSo lut ion [ 0 ] = −1;
return noSo lut ion ;
}

In both previously listed methods, the following method is used to check
whether the conditions on a tuple are satisfied.

boolean checkCondit ions ( Tree [ ] conFrsts , int step , int v ){

for ( int l =2; l<=v−1 &&
step + 1 < v − 1 && step > 0 ; l ++){

int [ ] [ ] comb = combinat ions [ l ] ;
//comb co nta i ns a l l s u b s e t s o f s i z e l
// o f [ n ] (= [ v−1]) . For each subse t ,
// the CCR and FCC c o n d i t i o n s are checked .

for ( int c =0; c<comb . l ength ; c++){
int [ ] [ ] Fpart = new int [ l ] [ v ] ;
for ( int k = 0 ; k < l ; k++){

Fpart [ k ] = conFrsts [
comb [ c ] [ k ] ] . p a r t i t i o n s ;

}
// Fpart co nta ins the p a r t i t i o n s
// corresponding to each f o r e s t
// in comb .
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i f ( s tep + 1 == v − l ){
boolean FCCsize1 =

FCCsize1 ( Fpart , v ) ;
// FCCsize1 ( . . . ) computes the
//FCC of some p a r t i t i o n s and
// r e t u r n s t r u e only i f i t has
//one par t .
i f ( ! FCCsize1 ){

// I f the c o n d i t i o n s on the FCC
// are not met , re turn f a l s e .
return fa l se ;

}
}

int CCRsize = CCRsize ( Fpart , v ) ;
//CCRsize ( . . . ) computes the CCR
// o f some p a r t i t i o n s and r e t u r n s
// the number o f p a r t s i t has .

i f ( ( l > s tep + 1 && CCRsize < v ) | |
( l <= step + 1 && CCRsize <= l ) ){

// I f the c o n d i t i o n s on the CCR
// are not met , re turn f a l s e .
return fa l se ;

}
}

}
// F i n a l l y , check the p a r t i t i o n c o n d i t i o n s .
// a l l P a r t i t i o n s [ l ] con t a in s a l l p a r t i t i o n s o f [ v ] = [ n+1]
// o f s i z e l .
for ( int l =3; l<v−1; l ++){

//For l<3 and l>=v−1, t h i s c o n d i t i o n i s e q u i v a l e n t
// to e i t h e r the CCR or the FCC c o n d i t i o n .

for ( int p=0; p<a l l P a r t i t i o n s [ l ] . l ength ; p++){
int [ ] checkedPar t i t i on = a l l P a r t i t i o n s [ l ] [ p ] ;

int canBeAdded = addableToPart i t ion (
checkedPart i t ion , conFrsts , v ) ;

// addab l eToPar t i t i on ( . . . ) counts the number o f
// edges t h a t can be added to each f o r e s t w i t h i n
//a c e r t a i n p a r t i t i o n .

i f ( canBeAdded < (v−1 − ( s tep +1))∗((v−l ) ) ){
// I f the p a r t i t i o n c o n d i t i o n i s not met ,
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// re turn f a l s e .
return fa l se ;

}
}

}
// I f none o f the c o n d i t i o n s i s v i o l a t e d , re turn t r u e .
return true ;
}

greedyFindPerm(...) is also more generally applicable. It can be used for
other n. The following method was used to generate random trees, and construct
forests from scratch by in each step letting greedyFindPerm(...) choose the as-
signment for the tree.

void greedySimulate ( int i t e r a t i o n s , int v e r t i c e s ){
int nFa i lu r e s = 0 ;
for ( int i t e r = 0 ; i t e r < i t e r a t i o n s ; i t e r ++){

Tree [ ] conFrsts = new Tree [ v e r t i c e s −1] ;

// c r e a t e n = v−1 empty f o r e s t s :
for ( int i =0; i < v e r t i c e s − 1 ; i ++){

conFrsts [ i ] = new Tree ( v e r t i c e s , true ) ;
}

for ( int i =0; i < v e r t i c e s − 1 ; i ++){
// Generate a random t r e e
Tree randomTree = new Tree ( v e r t i c e s ) ;

// Find an assignment o f the edges o f randomTree
// such t h a t a l l c o n d i t i o n s are met
int [ ] r e s u l t = greedyFindPerm ( randomTree ,

conFrsts , i , v e r t i c e s ) ;

//Add the edges and move on to the next s t e p .
// I f no assignment was found , i t i s a f a i l u r e .
i f ( r e s u l t [ 0 ] != −1){

for ( int k=0; k<v e r t i c e s −1; k++){
conFrsts [ k ] . addEdge (

randomTree . edges [ r e s u l t [ k ] ] ) ;
}

}
else {

nFa i lu r e s++;
System . out . p r i n t l n ( ” Fa i l u r e in s tep ” + ( i +1)) ;
break ;
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}
}
System . out . p r i n t l n ( ” Simulat ion ” + i t e r + ” complete . ” ) ;

}
System . out . p r i n t l n ( ”Number o f f a i l u r e s : ” + nFa i lu r e s ) ;

}
The larger n is, however, the more time it takes to check all of the conditions.

The number of subsets of the n forests grows quickly; the number of partitions of
[n + 1] even more so. Yet, in all cases attempted by random sampling using the
above method, the algorithm never failed to complete the forests to trees.


