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Abstract

Linear compartment models describe the transport of a given material through
a set of compartments and can be represented by a directed graph. The para-
meters of a linear compartment model correspond to the transport rates between
different compartments. These parameters are usually estimated from experimental
input-output data, by solving the parameter estimation problem. A fundamental
prerequisite for parameter identification is identifiability: this concerns the ques-
tion whether the experimental data correspond to a unique set of parameter values.
In this thesis we consider generic local identifiability, meaning that a sufficiently
general set of parameter values is at least locally a unique solution to the parameter
estimation problem.

A problem that arises is what do to when a model is unidentifiable. A com-
mon approach is to search for an identifiable reparametrization of the model: a
map which reduces the number of parameters, such that the reduced model is
identifiable. Of particular interest in biological applications are rational scaling
reparametrizations, which correspond to a rational scaling of the state variables.

We study a specific class of models, which are known to be unidentifiable.
Earlier studies presented a criterion to decide whether a model has an identifiable
scaling reparametrization, based on the dimension of the input-output map. Using
algebraic geometry and graph theory, we translate this criterion to a criterion based
on the rank of a bi-adjacency matrix. This new criterion can be evaluated by a ran-
domized algorithm with asymptotic complexity of O(n6) operations. Furthermore,
we present several new constructions to obtain a graph with an identifiable scaling
reparametrization. Using these constructions, a large subclass of graphs which have
an identifiable scaling reparametrization is obtained. This leads to a procedure of
subdividing or deleting edges to ensure that a model has an identifiable scaling
reparametrization.
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CHAPTER 1

Introduction

Linear compartment models are used to describe the transport of material
between different compartments of a system and appear widely in the fields of
systems biology and pharmacokinetics. These models can be given by a directed
graph, where the edges represent the flow of material from one compartment to an-
other. The rate of transport from i to j is assumed to be time-invariant and linear
in the amount of material in compartment i. We will study identifiability of a par-
ticular class of models and the existence of identifiable scaling reparametrizations,
following and extending the ideas of Meshkat and Sullivant [MS14].

1.1. Problem description

The parameters corresponding to a compartment model are often unknown and
are therefore estimated from experimental data. An important step in the modeling
process is to check before experimenting whether several or even infinitely many
parameter sets could yield the same data. If this is the case, it is impossible to tell
which parameter values are correct, hence the parameter estimates could lead to
wrong predictions.

We assume that the experimental data consists of input-output values: the in-
put corresponding to the amount of material that was added to the system in certain
input compartments, and the output corresponding to the amount or concentration
of material measured in the output compartments. A model is called identifiable if
we can recover the parameter values from the (noiseless) input-output data of this
experiment. If there is a finite number of possible parameter values corresponding
to given input-output data, then we can indeed recover the parameter values, at
least locally. More details on identifiability can be found in Chapter 2.

A compartment model can be described by a directed simple graph G = (V,E),
i.e. a directed graph without loops or multiple edges. Throughout this thesis, a
graph G is assumed to be directed unless stated otherwise, with n = |V | the number
of vertices in G and m = |E| the number of edges in G. Let [k] denote the set
{1, . . . , k} for given k ∈ N. We associate to G the n × n parameter matrix A(G)
defined by

(1.1) A(G)ij =





aii if i = j

aij if j → i ∈ E
0 otherwise,

where the aij (i, j ∈ [n], i 6= j) are independent real parameters representing the
exchange rate from compartment j to compartment i. Possible outflow of material
to the exterior is taken into account: each compartment is allowed to have a leak,
given by a0i, which represents the exchange rate of material from compartment i
to some compartment outside the system (the environment). The diagonal entries
of A(G) are defined as aii = −a0i −

∑
j 6=i aji, the negative total flow out of com-

partment i. Observe that the parameter matrix A(G) uniquely determines G and
vice versa.

1



2 1. INTRODUCTION

The parameter space of a compartment model given by G consists of all matrices
of the form A(G). This space will be denoted by ΘG ⊆ Rn×n, to emphasize that the
parameter space depends on the graph G. The elements of ΘG are n× n matrices
which have zeros on positions (i, j) with i 6= j such that j → i is not an edge in
G. In particular, the elements of ΘG have n + m nonzero positions which we can
choose freely; hence the dimension of ΘG equals n+m.

Remark 1.1.1. In this thesis almost every statement involves a matrix A cor-
responding to the given graph G: either A = A(G) or A ∈ ΘG. When we write
A = A(G), we mean the symbolic matrix defined in equation (1.1). On the other
hand, by A ∈ ΘG we mean a matrix with the zero pattern of A(G) and parameter
values substituted for the symbolic entries aij , i.e. an element of Rn×n.

A linear compartment model described by a graph G gives rise to a system
of linear differential equations. Let x ∈ Rn be the state variable representing the
concentration of material in each compartment, let u ∈ Rn be the input vector
corresponding to the input data of the experiment, and let y ∈ Rn be the output
vector representing the measurement data. Furthermore, let A = A(G) be the
parameter matrix corresponding to G, and let B ∈ Rn×n be a matrix that indicates
from which compartments the output is obtained. Then the transport of material
through the compartments can be described by a parametrized system:

(1.2)
ẋ(t) = Ax(t) + u(t)

y(t) = Bx(t).

Note that the matrices A and B do not depend on the time t, since we assume the
model to be time-invariant.

As in [MS14], we only consider a specific class of linear compartment models,
namely the models that satisfy the following three assumptions:

Assumption 1.1.2. The input and output take place only in compartment 1.

This implies that the input vector is of the form u = (u1, 0, . . . , 0)T ∈ Rn and that
the output vector y is of the form (x1, 0, . . . , 0)T . Therefore, system (1.2) can be
simplified to system (1.3).

(1.3)
ẋ(t) = Ax(t) + u(t)

y(t) = x1(t).

The output y is no longer a vector in Rn, but just a value in R. Because of
this assumption, we do not need to indicate the input and output in the graph
representation of a given model.

Assumption 1.1.3. The graph G is strongly connected.

In other words, there is a directed path between any pair of vertices in G. A path
will be denoted by a sequence of vertices: the sequence {v0, v1, . . . , vk} represents
the path from v0 to vk using the edges v0 → v1, v1 → v2, . . . , vk−1 → vk. Why we
impose Assumption 1.1.3 will become clear in Section 2.2.

Assumption 1.1.4. Every compartment has a leak.

This assumption ensures that all parameters in the model are independent; the aij
were already assumed to be independent and the aii are defined as

aii = −a0i −
∑

j 6=i
aji
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Figure 1.1. General 2-compartment model

hence a0i 6= 0 for all i ∈ [n] implies that all parameters are independent. A leak at
compartment i would correspond to an edge from i to the environment, but these
edges are not included in G.

Example 1.1.5. Consider the general 2-compartment model and its graph rep-
resentation in Figure 1.1. This model can be described by the following ODE
system:

ẋ1(t) = −(a01 + a21)x1(t) + a12x2(t) + u(t)

ẋ2(t) = a21x1(t) +−(a12 + a02)x2(t)

y(t) = x1(t).

Define a11 = −a01 − a21 and a22 = −a12 − a02, then the equations for ẋ1, ẋ2 can
be written as [

ẋ1(t)
ẋ2(t)

]
=

[
a11 a12
a21 a22

] [
x1(t)
x2(t)

]
+

[
u1(t)

0

]
,

which bring the system of equations in the form of system (1.3).

When considering model identifiability, a problem that arises is what to do with
unidentifiable systems. As we will see in Chapter 2, a model satisfying Assump-
tions 1.1.2-1.1.4 can never be identifiable unless n = 1. We follow the approach of
[MS14] by searching for identifiable combinations of parameters and using these
to find identifiable scaling reparametrizations of the original model. An identifiable
reparametrization is a map which transforms the model into a lower dimensional
model which is identifiable. We restrict ourselves to rational scaling reparametriz-
ations; these correspond to a rational scaling of the state variables. The advantage
of a scaling reparametrization is that it has a relatively simple connection to the
original model. Although the parameters of the reparametrized model do not allow
us to estimate the original parameter values, they correspond to certain combina-
tions of the original parameters and hence we can predict relative size changes of
these parameters. The aim of this thesis is to find a complete classification of mod-
els (satisfying the above assumptions) for which there exists an identifiable scaling
reparametrization.

1.2. Applications

Compartment models appear widely in the fields of pharmacokinetics and eco-
logy, but also in engineering. When applying a compartment model, it is always
assumed that within each compartment the material is distributed homogeneously.
In a pharmacokinetic model the compartments correspond to different organs or
regions of the body, and the transport of a certain drug through the body is being
modeled. Identifiability of various pharmacokinetic models has been studied, see
e.g. [Yat06, SJH97]. In ecology, the compartments represent the different species
in an ecosystem. The transported material could be any compound, such as cal-
cium or phosphorus [Hal79]. In engineering, compartment models may be used to
model a distillation column [EL78] or the products of chemical reactions [CP08].
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Figure 1.2. Representations of the human body

From all these applications, pharmacokinetic models correspond best to our
assumptions. Indeed, such models are often assumed to be linear. Furthermore,
an input-output experiment can be performed by injecting a known amount of
drug directly into the blood and at the same time measuring the concentration of
this drug in the blood. In this experiment, the input and output both take place
in the same compartment; hence if we take compartment 1 to contain the blood,
Assumption 1.1.2 is satisfied.

An example of a pharmacokinetic representation of the human body that was
taken from [JRY13] is presented in Figure 1.2a. Since any compartment lies on
a cycle, the corresponding graph is strongly connected. The input-output com-
partment will be either the arteries or the veins. Many pharmacokinetic models are
obtained by lumping together certain compartments of this model. For example, the
lungs, arteries and veins are often lumped together to form a new input-output com-
partment. Another common simplification is to distinguish between well-perfused
and poorly perfused tissues, and group these together. This is illustrated in Fig-
ure 1.2b. Note that any model obtained by lumping together compartments of a
strongly connected model will be strongly connected again.

Finally, consider the assumption that every compartment must have a leak.
In a pharmacokinetic model, a leak usually corresponds to the elimination of the
drug from the corresponding compartment. Elimination can occur in the liver and
kidneys, but also in secondary eliminating tissues such as the skin and the lungs.
Hence it is certainly possible to design a model in which also Assumption 1.1.4 is
satisfied. In Chapter 5 we will come back to pharmacokinetic models.

Remark 1.2.1. In a biological setting, the parameters aij with i 6= j must be
nonnegative, or they would correspond to a negative flow. Combining this with
the assumption that every compartment has a leak, it follows that the parameters
aii defined as −a0i −

∑
j 6=i aji must be strictly negative. These constraints are

not accounted for in our identifiability analysis, but they may help to recover the
correct parameters when a model is only locally identifiable or even unidentifiable.

1.3. Previous work

The concept of identifiability of dynamical systems was introduced by Bellman
and Åström [BÅ70] in 1970, and has been studied extensively since. Godfrey
[God83] gives a thorough description of compartment models and applications,
also treating the concept of identifiability. There have been different approaches to
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determining whether a system is identifiable or not, where one has to distinguish
between local and global identifiability, as defined in [BÅ70]. These methods
include a Taylor series expansion approach [Poh78], a Laplace transform approach
[BÅ70], a similarity transformation approach [CG85] also known as exhaustive
modeling, and a differential algebra approach [LG94, MED09]. Identifiability of
biological and pharmacokinetic systems has been studied in [SJH97, Yat06]. A
comparison of different algorithms for parameter identifiability analysis of biological
systems is given in [RKS+14].

We consider the question what to do with unidentifiable systems. In this case
there are too many parameters (unknowns) compared to the amount of information
obtained from the experiment, so the parameter space has to be constrained some-
how. This can be done using a reparametrization of the original system, which
reduces it to a lower dimensional identifiable system. A procedure for finding
such a reparametrization has been discussed for the differential algebra approach
[LG94, MED09, MAD11], for the Taylor series approach [EC00], and for the
similarity transformation approach [CG98]. However, as we only consider a spe-
cific class of models, the problem of finding identifiable reparametrizations becomes
easier compared to the general setting discussed in these references.

The problem setting of this thesis was taken from [MS14], where the same
class of models is considered and several results for the existence of identifiable
reparametrizations are derived. Most results of [MS14] will be discussed and for
some also a sketch of the proof is given. Meshkat and Sullivant also present an
algorithm to find an identifiable scaling reparametrization if one exists, which was
used to obtain Example 2.4.2.

1.4. Outline of the thesis

The main goal of this thesis is to obtain a classification of graphs (satisfying our
assumptions) for which there exists an identifiable scaling reparametrization. We
continue on the work of Meshkat and Sullivant, presented in [MS14]. In order to
be self-contained, Chapter 2 contains a brief summary of the definitions and results
given in [MS14]. Most results are stated without proof, as these can be found in
the corresponding article. In Section 2.1 it is defined what it means to be identifi-
able. An identifiability analysis in Section 2.2 shows that the models satisfying our
assumptions can never be identifiable, hence in Section 2.3 the concept of an iden-
tifiable reparametrization is defined. Subsequently, a criterion for the existence of
an identifiable scaling reparametrization is presented in Section 2.4. This criterion
is referred to as the dimension criterion, since it depends on the dimension of the
image of a certain map. If a graph has an identifiable scaling reparametrization,
we say it has the expected dimension. Chapter 2 relies heavily upon [MS14].

In Chapter 3, we consider the following question:

Question 1.4.1. For which graphs satisfying our assumptions does there exist
an identifiable scaling reparametrization?

To answer this question, we will derive a reformulation of the dimension cri-
terion from [MS14]. In Section 3.1 we analyze the kernel of the differential of the
input-output map that was defined in Section 2.2. Then we consider the preimage
of this kernel under the commutator map [·, A], which we define in Section 3.2. In
Section 3.3 this leads to a necessary condition for a graph to have the expected
dimension, i.e. for an identifiable scaling reparametrization to exist. Next, in Sec-
tion 3.4 we obtain a criterion based on bipartite graphs, the main result of this
thesis.
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Theorem 1.4.2. Let G = (V,E) be a graph satisfying Assumptions 1.1.2-1.1.4.
Then G has an identifiable scaling reparametrization if and only if the matrix B(G)
defined by

B(G)(k,l),(i,j) =





−ajl if i = k, j 6= l and l→ j ∈ E
aki if i 6= k, j = l and i→ k ∈ E
akk − all if i = k and j = l

0 otherwise.

has full column rank.

The final section of Chapter 2 is devoted to a complexity analysis, comparing
an algorithm based on the dimension criterion from [MS14] with an algorithm
based on our newly obtained criterion.

In Chapter 4, the following question is considered:

Question 1.4.3. What constructions can we apply to a given graph, such that
the resulting graph has an identifiable scaling reparametrization?

The first two sections of this chapter present definitions and results from
[MS14]. In Section 4.3 several new constructions are derived, which allow us
to construct many graphs which have the expected dimension. This is analyzed in
Section 4.4, where we discuss the concept of an ear decomposition of a graph. An
ear is defined to be a directed path and an ear is said to be trivial if it is a path
of length one. Moreover, an ear decomposition of G is a partition of the edges of
G into a sequence ears, where the first ear is a cycle and the endpoints of each ear
belong to earlier ears in the sequence, while the internal vertices do not. We obtain
the following result:

Theorem 1.4.4. Let G be a graph that has a correct ear decomposition, i.e. an
ear decomposition without trivial ears, whose initial cycle contains vertex 1. Then
G has the expected dimension.

In other words, if G has a correct ear decomposition, then there exists an
identifiable scaling reparametrization for G. Chapter 4 is concluded with some
computational results (obtained using Mathematica) in Section 4.5. For graphs
with few vertices, we present the size of certain classes of graphs which have the
expected dimension.

The final chapter, Chapter 5, gives a short summary of the previous chapters
and the obtained results, which are discussed from a pharmacokinetic point of view
as well. Also, a few words will be spent on remaining questions and future research.

At the start of each chapter, we introduce the necessary notation and defini-
tions. All notations used in this thesis can also be found in the list of notations
on page vii. Furthermore, some of the proofs in Chapter 2 rely on algebraic the-
orems. A short overview of the necessary definitions and results can be found in
Appendix A.



CHAPTER 2

Identifiability and reparametrizations

In this chapter identifiability is defined more precisely and we shall see that
a linear compartment model satisfying Assumptions 1.1.2-1.1.4 can never be iden-
tifiable. Therefore, we define what it means to have an identifiable scaling repa-
rametrization. These definitions can be found in Sections 2.1-2.3, which are based
on [MS14]. In the final section we consider a criterion for the existence of an
identifiable scaling reparametrization that was found by Meshkat and Sullivant.

First recall some basic notation that will be used throughout this thesis. The
n × n identity matrix will be denoted In, or simply I when the dimension is clear
from the context. Moreover, e1, . . . , en ∈ Rn represent the standard unit vectors,
and Eij = eie

T
j ∈ Rn×n denotes the matrix with a 1 at position (i, j) and zeros

elsewhere.
The rank of a matrix M is denoted rk(M), and equals the greatest number of

linearly independent columns of M . When M has size k × l, we say that M has
full rank if rk(M) = min{k, l}. The kernel of M is denoted ker(M).

Furthermore, let f : X → Y be a mapping, where X and Y are varieties.
The differential (or derivative, or Jacobian) of f at the point p is denoted dpf and
contains all first-order partial derivatives of f evaluated at p. The chain rule applies
when calculating the differential of the composition g ◦ f :

dp(g ◦ f) = (df(p)g)(dpf).

The differential dpf maps the tangent space Tp(X) of X at p to the tangent space
Tf(p)(Y ). When f is a surjective regular map, the differential dpf is generically
surjective, in which case the rank of dpf equals the dimension of Tp(Y ). See also
Appendix A.

2.1. Identifiability and genericity of parameters

There have been different approaches to the problem of system identifiability,
as described in Section 1.3. Here we follow the approach of [MS14], which means
forming an input-output equation to relate the observed data to the (unknown)
parameters:

ψ(y, u,A) = 0.

This equation depends only on the parameters A, input u, and output y, but it may
also contain derivatives ẏ, ÿ, . . . , u̇, ü, . . .. The input-output equation is obtained by
eliminating the state variable x from the parametrized system (1.2). In general,
this can be done via Ritt’s pseudodivision algorithm, as described in [BSAD07].
However, for the class of models corresponding to system (1.3) the problem is less
complicated, as we shall see in Section 2.2.

An input-output equation gives rise to a coefficient map c that maps a para-
meter matrix A ∈ ΘG to the coefficient vector of the input-output equation. This
vector contains the coefficients of y, ẏ, ÿ, . . . , u, u̇, ü, . . . in terms of the parameter
values aij . A model is called identifiable when it is possible to recover the para-
meter values from observing the input-output behaviour. This behaviour is given
by the input-output equation and hence by the coefficient map c, so using c we

7
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can define identifiability in mathematical terms. Suppose two distinct parameter
matrices A,A′ yield the input-output data, i.e. c(A) = c(A′). Then it is impossible
to tell from only observing the relations among input and output whether the para-
meter values corresponding to the model should be those of A or of A′. This shows
that identifiability of the model can be stated as an injectivity condition on the
coefficient map.

Definition 2.1.1. Let c : ΘG → Rk be a function on the parameter space
ΘG. The parameters are said to be globally identifiable from c if and only if the
map c is injective. The parameters are locally identifiable from c if and only if c is
finite-to-one, i.e. for any A there exists an open neighborhood NA such that c is
injective on NA. Otherwise, the parameters are unidentifiable from c.

We say that a model is globally (resp. locally) identifiable if its parameters are
globally (resp. locally) identifiable from some function c. However, it may occur
that the parameters are identifiable almost everywhere, except for some small subset
of the parameter space. According to Definition 2.1.1 such a model is unidentifiable,
even though it is almost identifiable. Therefore, the concept of generic identifiability
is introduced:

Definition 2.1.2. Let c : ΘG → Rk be a function on the parameter space
ΘG. The parameters are said to be generically globally identifiable from c if and
only if the map c is injective on some dense open subset U ⊆ ΘG. Similarly, the
parameters are generically locally identifiable from c if they are locally identifiable
on some dense open subset of U , and generically unidentifiable from c otherwise.

Clearly, global identifiability implies local identifiability. In this thesis only
generic local identifiability and generic unidentifiability are considered, so from
now on identifiable means generically locally identifiable, and unidentifiable means
generically unidentifiable. In other words, G is identifiable if and only if there is a
map c : ΘG → Rk that is locally injective on an open dense subset U ⊆ ΘG. This
set U is called a generic set, and the points A ∈ U are called sufficiently general.

The above injectivity conditions can be translated to a condition on the di-
mensions of the parameter space and the image of c, as stated in the following
proposition:

Proposition 2.1.3 ([MS14, Prop. 2.6]). Let c : ΘG → Rk be a rational map.
Then the model is identifiable from c if and only if the dimension of the image of c
equals the dimension of the parameter space ΘG.

In the next section, the input-output equation and the corresponding coefficient
map are derived for the ODE system (1.3).

2.2. The double characteristic polynomial map

Given a matrix M , let M1 denote the submatrix obtained by deleting the first
row and column of M . For linear ODE models satisfying our assumptions we obtain
the following input-output equation:

Theorem 2.2.1 ([MS14, Thm. 2.2]). Let G be a graph satisfying Assumptions
1.1.2-1.1.4 and let A = A(G). Then the input-output equation corresponding to
(1.3) becomes

(2.1) y(n) + c1y
(n−1) + . . .+ cny = u

(n−1)
1 + d1u

(n−1)
1 + . . .+ dn−1u1

where c1, . . . , cn and d1, . . . , dn−1 are the coefficients of the characteristic polyno-
mial of A and A1, respectively.
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Because of this theorem, the matrices A and A1 will play a major role in the
rest of this thesis. A sketch of the proof is given, more details can be found in
[MS14].

Proof sketch.
Let ∂ denote the differential operator d

dt , then we can rewrite the ODE system (1.3)
as (∂In−A)x = u. Applying Cramer’s rule we get x1 = det(A′)/ det(∂In−A) where
A′ is the matrix ∂In − A with the first column replaced by u. Since only the first
entry of u is nonzero, we have det(A′) = u1 det(∂In−1−A1). After replacing x1 by y
we obtain det(∂In−A)y = det(∂In−1−A1)u1, which is an equation purely in terms
of A, u and y. Let f, f1 denote the characteristic polynomial of A,A1, respectively,
then this equality can be written as f( ddt )y = f1( ddt )u1. Meshkat and Sullivant show
that f and f1 are relatively prime if and only if G is strongly connected. This can
be seen by rearranging the matrix A such that it becomes a block upper triangular
matrix, each block corresponding to a strongly connected component. Then the
characteristic polynomial of A factors through the characteristic polynomials of
the diagonal blocks, so the strongly connected components not containing vertex
1 cause common factors in f and f1. If G is strongly connected no factors cancel
out, hence we obtain equation (2.1). �

This proof shows that if a graph is not strongly connected, the input-output
equation will result from taking the strongly connected component containing ver-
tex 1. Thus, for such models there are parameters which do not appear in the
input-output equation. In this case the dimension of ΘG will be too large com-
pared to the dimension of the image of c. In other words, when G is not strongly
connected, it is certainly not identifiable. This motivates why we only consider
strongly connected graphs when characterizing whether G is identifiable (Assump-
tion 1.1.3).

From the input-output equation we obtain the coefficient map c : ΘG → R2n−1

given by
c(A) := (c1, . . . , cn, d1, . . . , dn−1),

where c1, . . . , cn, d1, . . . , dn−1 are the coefficients of equation (2.1). This map is
called the double characteristic polynomial map.

Example 2.2.2. Consider the general 2-compartment model in Figure 1.1. We
derived the ODE system corresponding to this model in Example 1.1.5, and here we
compute its double characteristic polynomial map from det(tI−A) and det(tI−A1):

det

[
t− a11 −a12
−a21 t− a22

]
= t2 − (a11 + a22)t+ a11a22 − a21a12,

det[t− a22] = t− a22.
We obtain c : ΘG → R3 defined by

c(A) = (−a11 − a22, a11a22 − a12a21, −a22).

There are four parameters to determine, while c(A) only gives three parameter
combinations, so we can never recover all parameters. Indeed, from the entries of
c(A) it can be seen that a11 and a22 are identifiable, but for a12 and a21 we only
learn the value of their product. We conclude that G is unidentifiable.

In the previous example, there were too many parameters compared to the
amount of information one obtains from c(A). As shown in [MS14], this is no
coincidence: there will always be too many parameters to recover all of them. Due
to our assumptions on the model there are m + n independent parameters, i.e.
the parameter space ΘG has dimension m + n. Proposition 2.1.3 implies that G
is identifiable if and only the dimension of the image of the double characteristic
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ΘG Rk Rlc φ

f

q

Figure 2.1. A reparametrization q and identifiable map f

polynomial map c equals m + n. However, if G is strongly connected and n > 1
we must have m ≥ n, which implies that m + n ≥ 2n > 2n − 1 ≥ dim im c. This
shows that a linear compartment model satisfying our assumptions can never be
identifiable, except for the trivial case where n = 1.

2.3. Identifiable scaling reparametrizations

One approach when dealing with unidentifiable models is to restrict the para-
meter space to a lower-dimensional space, such that identifiability is guaranteed.
We look for identifiable combinations of parameters, which may be used to find
a reparametrization of the model. An identifiable reparametrization reduces the
number of parameters, such that the model becomes identifiable.

Definition 2.3.1. A reparametrization of the input-output equation is a map
q : Rl → ΘG such that im(c ◦ q) = im c, where q is called identifiable if the
parameters in Rl are identifiable from c ◦ q.

We also introduce the notion of an identifiable function:

Definition 2.3.2. Let c : ΘG → Rk be a function on the parameter space ΘG.
A function f : ΘG → Rl is globally identifiable from c if there exists a function
φ : Rk → Rl such that φ ◦ c = f . The function f is locally identifiable from c if
there exists a function φ : Rk → Rl that is finitely multivalued, such that φ ◦ c = f .

Similar to Definition 2.1.2, generic identifiability of a function means that it is
identifiable on some open dense subset of ΘG. We shall always consider generic local
identifiability, hence from now on a function is called identifiable if it is generically
locally identifiable.

According to Meshkat and Sullivant, finding an identifiable reparametrization
is equivalent to finding a map φ : im c→ Rl such that f := φ◦c consists of functions
that are identifiable from c. (Figure 2.1)

Linear compartment models have many applications in biological systems. For
these applications a rational scaling reparametrization is preferred over more com-
plicated reparametrizations. Such a reparametrization corresponds to a rational
scaling of the state variables and therefore it respects the biological properties of
the model. If an identifiable scaling parametrization exists, it can always be made
rational [MS14]. To obtain an identifiable scaling reparametrization, we search for
functions fi : ΘG → R, i = 1, . . . , n, such that the model with scaled state variables
X1, . . . , Xn defined by

Xi = fi(A)xi

is identifiable. The parameters bij of the scaled system are given by

bij = aijfi(A)/fj(A).

The corresponding reparametrization is identifiable if and only if the new paramet-
ers bij are identifiable functions from c.

Note that we need the reparametrized system to correspond to the input-output
data obtained from the original system. Therefore, we must have X1 = x1 and
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hence f1(A) = 1. Moreover, the diagonal entries of the parameter matrix remain
the same:

bii = aiifi(A)/fi(A) = aii.

Once an identifiable scaling reparametrization is found, we can recover the cor-
responding scaled parameter values bij . However, from the reparametrized model
we cannot recover the original parameter values. The scaling has cancelled out a
subset of the parameters, and we learn nothing about their values. We do know the
values of certain combinations of parameters, and using these we can still predict
relative size changes.

Lemma 2.3.3 ([MS14, Cor. 2.13]). If G has an identifiable scaling reparame-
trization, then G has at most 2n− 2 edges.

Because of Lemma 2.3.3 we only need to consider graphs which have at most
2n− 2 edges, so from now on we will assume m ≤ 2n− 2.

2.4. The dimension criterion

The main result of Meshkat and Sullivant gives a criterion to decide whether
an identifiable scaling reparametrization exists.

Theorem 2.4.1 ([MS14, Thm. 1.2]). A graph G has an identifiable scaling
reparametrization if and only if the dimension of the image of the double charac-
teristic polynomial map is m+ 1.

We will refer to Theorem 2.4.1 as the dimension criterion. This criterion re-
duces the problem of deciding whether or not an identifiable scaling reparametri-
zation exists to calculating the dimension of the double characteristic polynomial
map. Note that the dimension criterion allows us to check whether G has an iden-
tifiable scaling reparametrization by calculating the rank of the differential dAc of
the map c at a sufficiently general point A ∈ ΘG. This follows from the fact c is a
polynomial map, surjective on im c, hence for A in an open dense subset of ΘG the
rank of dAc equals the dimension of the image of c (Appendix A).

Example 2.4.2. Consider the graph G given in Figure 2.2, which represents
the general 3-compartment model. Then G is not identifiable, but calculating dAc
shows that dim im c = rk(dAc) = 5 = m+ 1 for sufficiently general A. So according
to the dimension criterion, G has an identifiable scaling reparametrization. Using
the algorithm presented in [MS14], we obtain the following scaling functions:

f1(A) = 1, f2(A) = 1/a21, f3(A) = 1/a31.

We replace the original parameters aij by the scaled parameters

bij = aijfi(A)/fj(A),

such that the parameter matrix A is replaced by the scaled matrix A′:

A =



a11 a12 a13
a21 a22 0
a31 0 a33


  A′ =



a11 a12a21 a13a31
1 a22 0
1 0 a33


 .

The scaled state variables become X1 = x1, X2 = 1
a21
x2 and X3 = 1

a31
x3, hence

the reparametrized model can be written as:


Ẋ1

Ẋ2

Ẋ3


 =



b11 b12 b13
1 b22 0
1 0 b33





X1

X2

X3


+



u1
0
0




y = X1.
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1 23

Figure 2.2. General 3-compartment model (Example 2.4.2)

Note that in this example, the reparametrized system has only 5 parameters
while the original system had 7. Let Θ′G be the reduced parameter space. Because of
the decrease in the number of parameters, we have dim Θ′G = 5 = m+1 = dim im c,
hence the system has become identifiable according to Proposition 2.1.3.

Definition 2.4.3. We say that G has the expected dimension if the dimension
of the image of the double characteristic polynomial map equals m+ 1.

In other words, an identifiable scaling reparametrization exists if and only if
G has the expected dimension. If this is the case, the scaling reparametrization
can be found using the algorithm presented in [MS14]. Some known properties of
graphs with the expected dimension will be discussed in Section 4.2. However, a full
classification of graphs with the expected dimension remains to be found. The goal
of this thesis is to find such a classification; our first step is to derive an alternative
criterion to test whether a given graph has the expected dimension, which can be
found in the next chapter.



CHAPTER 3

Reformulating the dimension criterion

In the previous chapter we discussed all relevant definitions and earlier results.
From now on we take a new approach, starting with a reformulation of the dimen-
sion criterion that was given in Theorem 2.4.1. This leads us to our main result: an
alternative criterion to test whether a given graph has the expected dimension. In
other words, we determine whether an identifiable scaling reparametrization exists.
This criterion can be verified in probabilistic polynomial time by a randomized
algorithm presented in Section 3.5.

So far we have been working over the real numbers, since all parameters are
assumed to be real. However, R lies dense in C and the dimension of the image of
the double characteristic polynomial map c is determined by the rank of its Jacobian
at a sufficiently general point, so we might as well work over the complex numbers
to determine the dimension of the image of c. From now on let ΘG ⊆ Cn×n and let
c : ΘG → C2n−1. Working over the complex numbers simplifies issues concerning
diagonalizability, which we shall be using later on.

In this chapter we will consider the matrix group GLn(C), the general linear
group, consisting of all invertible n× n matrices over C. We shall be working over
the complex numbers, hence for simplicity GLn is written instead of GLn(C). The
tangent space of GLn at the identity is its Lie algebra gln. This space consists
of all n × n complex matrices, with the commutator serving as the Lie bracket:
[X,A] := XA − AX. We write gln instead of Cn×n to emphasize that it arises as
the tangent space of GLn.

Furthermore, given a matrix A ∈ Cn×n, the centralizer of A in gln is denoted
Zgln(A). It contains all X ∈ gln that commute with A, i.e. [X,A] = 0.

3.1. The kernel of the differential map

For sufficiently general A ∈ ΘG we have the following chain of equalities:

(3.1) dim im c = rk(dAc) = m+ n− dim ker(dAc),

where dAc denotes the differential (or Jacobian) of c at the point A. The first
equality was already mentioned in the previous section; it holds since c : ΘG → im c
is a surjective polynomial map in characteristic zero. The second equality follows
directly from the rank-nullity theorem. Thus we have shown the following lemma.

Lemma 3.1.1. The dimension of the image of the double characteristic polyno-
mial map c equals m+1 if and only if the dimension of the kernel of the differential
dAc equals n− 1 for sufficiently general A ∈ ΘG.

Using this result, we can determine whether a given model has the expected
dimension by calculating the rank of the differential dAc. In order to classify which
models have the expected dimension, we need to know what the kernel of dAc looks
like. By definition of the double characteristic polynomial map c, the kernel of dAc
is equal to the intersection of the two kernels corresponding to the differentials of
the characteristic polynomials of A and A1. Using this observation we will derive
the form of ker(dAc).

13
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Proposition 3.1.2. For sufficiently general A ∈ Θ, the kernel of the differen-
tial map dAc : ΘG → C2n−1 is given by

(3.2)

{
C ∈ ΘG

∣∣∣ ∃X ∈ gln : [X,A] = C
∃Y ∈ gln−1 : [Y,A1] = C1

}

where A1, C1 denote the matrices obtained by removing the first row and the first
column from A,C, respectively.

Proof. We begin by writing c(A) = [c0(A)|c1(A)], where c0, c1 are the coeffi-
cient maps corresponding to the characteristic polynomials of A,A1, respectively.
Let dAc0 ∈ Cn×(n+m) and dAc1 ∈ C(n−1)×(n+m) be the differential maps of c0, c1,
respectively, containing the partial derivatives with respect to the model paramet-
ers. The differential of c can be written as

dAc =

[
(dAc0)T

(dAc1)T

]
,

which shows that X lies in the kernel of dAc if and only if X lies in both the kernel
of dAc0 and dAc1.

Consider the map c0 : Cn×n → Cn and define the map ψ : GLn → Cn×n that
sends g to gAg−1 for some fixed A ∈ Cn×n. Define the composition φ := c0 ◦ ψ,
which is of the form

GLn
ψ−−−−→ Cn×n c0−−−−−→ Cn

g 7−→ gAg−1 7−→ (a1, . . . , an)

where a1, . . . , an are the coefficients of the characteristic polynomial of gAg−1. The
characteristic polynomial of A is invariant under conjugation by an element of GLn,
hence a1, . . . , an are equal to the coefficients of the characteristic polynomial of A.
This implies that the composition c0 ◦ ψ is in fact a constant map sending each
g ∈ GLn to the fixed point (a1, . . . , an) ∈ Cn. Therefore, the differential dφ is
identically zero; in particular dIφ = 0 for the n× n-identity matrix I.

According to the chain rule for differentiation, dIφ = (dAc0)(dIψ). From the
observation that dIφ = 0 it follows that the image of dIψ is contained in the kernel
of dAc0. Note that dIψ works on the tangent space TI(GLn) = gln. We can find the
image of dIψ by determining the coefficient of ε in ψ(I+εX) = (I+εX)A(I+εX)−1

modulo ε2, as described in Appendix A. We find

(I + εX)A(I + εX)−1 = (I + εX)A(I − εX) mod ε2

= A+ ε(XA−AX) mod ε2,

so the coefficient of ε in the above expression equals the Lie bracket (or commutator)
[X,A] := XA − AX. This shows that for X ∈ gln we have (dIψ)(X) = [X,A],
hence the image of dIψ equals [gln, A]. We conclude that [gln, A] ⊆ ker(dAc0).

On the other hand, since c0 is a surjective polynomial map from Cn×n to Cn,
the dimension of the kernel of dAc0 is generically equal to n2−n (Proposition A.4).
The kernel of the Lie bracket [·, A] is precisely the centralizer of A in gln, which has
dimension n according to Lemma 3.1.3 below. This shows that the dimension of
[gln, A] equals n2−n, and because the kernel is a linear subspace of ΘG we conclude
that ker(dAc0) = [gln, A].

The same argument applies to the map c1 : Cn×n → Cn−1, showing that
ker(dAc1) = {C | C1 ∈ [gln−1, B]} for any A ∈ ΘG. Combining these results, we
see that C lies in the kernel of dAc if and only if C lies in [gln, A] and C1 lies in
[gln−1, A1]. In other words, there exist X ∈ gln and Y ∈ gln−1 such that [X,A] = C
and [Y,A1] = C1. �
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Lemma 3.1.3. For sufficiently general A ∈ Cn×n, the centralizer of A in gln,
denoted by Zgln(A), has dimension n.

Proof. Let A ∈ Cn×n be such that it has n distinct, nonzero eigenvalues. The
centralizer Zgln(A) consists of all matrices B ∈ gln that commute with A. Such
an element B must leave the eigenspaces of A invariant: if v is an eigenvector of A
with eigenvalue λ, then BA = AB implies λ(Bv) = A(Bv), hence Bv is in the same
eigenspace. Therefore the elements of Zgln(A) must be diagonalized by the same
basis that diagonalizes A, and such elements are determined by their eigenvalues
on this basis. This leaves us n choices, i.e. the centralizer has dimension n. �

3.2. The preimage of the kernel

In the previous section we saw that G has the expected dimension if and only
if the kernel of the differential of the double characteristic polynomial map has
dimension n − 1. So far, we have determined this kernel, but what can we say
about its dimension?

For given A ∈ ΘG, the kernel of dAc equals the image of the commutator map
X 7→ [X,A] restricted to the linear subspace VA ⊆ gln defined by

VA := {X ∈ gln | [X,A] ∈ ker(dAc)},
which is the preimage of ker(dAc) under the commutator map. From the fact that
[·, A] is a linear map it follows that VA is a linear subspace of gln. Furthermore,
any X that commutes with A is contained in VA, since [X,A] = 0 and [X,A]1 =
0 = [Y,A1] for any Y ∈ Zgln−1

(A1). From Lemma 3.1.3 we know that the kernel of
the commutator map has dimension n, which implies that

(3.3) dim ker(dAc) = n− 1 ⇔ dimVA = 2n− 1.

In words, G has the expected dimension if and only if the dimension of VA is 2n−1.
Therefore, we will examine the structure of VA for a given graph G. Besides the
centralizer of A, VA will always contain the space Dn of all n×n diagonal matrices
with entries in C. Indeed, by computing DA−AD for D ∈ Dn we find

(3.4) (DA−AD)ij = (dii − djj)aij for i, j = 1, . . . , n.

If position (i, j) of A is zero, it follows that position (i, j) of [D,A] is zero as well.
This shows that [D,A] has the correct zero pattern, i.e. [D,A] ∈ ΘG. Moreover,
one can check that

[D1, A1] = [D,A]1

so the second constraint for being in the kernel of dAc is also satisfied. The space
of n × n diagonal matrices Dn is again n-dimensional, hence we already have two
n-dimensional subspaces of VA. However, these two subspaces have a nontrivial
intersection, as the next lemma shows.

Lemma 3.2.1. Zgln(A) ∩ Dn = CIn for sufficiently general A ∈ ΘG and G
strongly connected.

Proof. Suppose that X = diag(λ1, . . . , λn) ∈ Zgln(A)∩Dn, then by definition
of Zgln(A), X satisfies XA = AX. Combining this equality with equation (3.4)
shows that for aij 6= 0 this equality implies that λiaij = λjaij and hence λi = λj .
Since G is strongly connected, starting from vertex 1 we can get to any other vertex
j along some path {1, i1, . . . , ik, j}. The corresponding entries ai11, ai2i1 , . . . , ajik
are nonzero for sufficiently general A, and by the previous observation it follows
that λ1 = λi1 = . . . = λj . But we can find such a path for any vertex j ∈ [n], so we
conclude that λ1 = . . . = λn and therefore X must be of the form cIn, c ∈ C. �
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What we have seen so far is that Zgln(A) +Dn ⊆ VA for any G. According to
Lemma 3.2.1 this is a subspace of dimension 2n − 1, so the dimension of VA is at
least 2n−1. Combining this with equation (3.3), it follows that VA = Zgln(A)+Dn
if and only if G has the expected dimension.

Corollary 3.2.2. G has the expected dimension if and only if

VA
/

(Zgln +Dn) = {0}.

We shall now derive several restrictions on the form of elements of the quotient
space in the above corollary. An important tool will be the following lemma:

Lemma 3.2.3. Let G be a graph, not necessarily strongly connected, and let
A ∈ ΘG sufficiently general. Suppose v = (v1, . . . , vn) is an eigenvector of A. If
vi 6= 0 and there exists a path from i to j in G, then also vj 6= 0.

Proof. Let v = (v1, . . . , vn) ∈ Cn such that Av = λv. Partition the indices
1, . . . , n into two sets, [n] = I t J , such that vi = 0 ∀ i ∈ I and vj 6= 0 ∀ j ∈ J .
Construct the |J | × |J | matrix A′ by removing the rows and columns of A indexed
by elements of I. Similarly, let v′ be the vector obtained from v by removing its
zero entries. Then we have A′v′ = λv′ and for sufficiently general A this determines
the vector v′ ∈ C|J| up to multiplication by a scalar. Since v is obtained from v′

by adding zero entries at positions indexed by I, also v has been determined up to
scalar multiplication. However, for Av = λv to hold, v must satisfy a system of n
linear equations of the form

∑

j∈J
aijvj = λvi, i ∈ [n].

We know that v must be a solution of the subset of these equations corresponding
to i ∈ J , since Av′ = λv′. The equations that remain to be satisfied are of the form

(3.5)
∑

j∈J
aijvj = 0, i ∈ I.

The entries vj with j ∈ J are already fixed and only depend on the matrix A′, so
for sufficiently general A the vj are completely independent of the entries aij with
i ∈ I. Therefore, if vj 6= 0 and aij 6= 0, the nonzero term aijvj cannot be cancelled
from equation (3.5). So for v to satisfy Av = λv, one must have vi 6= 0 whenever
there exists j ∈ [n] such that j → i is an edge in G and vj 6= 0.

Now suppose vi 6= 0 and there exists a path {i, s1, . . . , st, j} in G. Then by our
previous observation, we have

vi 6= 0 ⇒ vs1 6= 0 ⇒ . . . ⇒ vst 6= 0 ⇒ vj 6= 0.

�

This lemma implies that v is either all zero or all nonzero on a strongly con-
nected component of G. In other words, the support of v consists of the union of
vertex sets of strongly connected components of G. In particular, if G is strongly
connected, then v does not have any zero entries.

Proposition 3.2.4. Let G be strongly connected and A ∈ Θ sufficiently general.
Then any class [X] ∈ VA /

(
Zgln(A) +Dn

)
has a representative x = (xij) ∈ VA

whose first row, first column and diagonal are all zero, i.e. xi1 = x1i = xii = 0 for
all i ∈ [n].

Proof. Let [X] ∈ VA /
(
Zgln(A) +Dn

)
. First we show that there exists a

representative x of [X] whose first row and the diagonal are zero, then we use these
facts to show that also the first column must be zero.
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We claim that projecting M ∈ Zgln(A) onto its first row yields a bijection
between Zgln(A) and the space of matrices with only the first row nonzero. Note
that indeed both spaces are n-dimensional. The set of diagonalizable matrices is
dense in Cn×n, so a sufficiently general A ∈ ΘG is diagonalizable. Let A = PDP−1

be the eigendecomposition of A, the columns of P forming a basis of eigenvectors.
If A is diagonalizable, then MA = AM if and only if M is diagonalized by the same
basis of eigenvectors as A. Since G is strongly connected, Lemma 3.2.3 implies that
P contains no zeros. Hence if M is nonzero, then M = PD′P−1 implies that the
first row of M has at least one nonzero position. Therefore projection onto the first
row is injective and as both spaces have dimension n, it must also be surjective.

Now choose M ∈ Zgln(A) such that its first row equals the first row of X and
choose a diagonal matrix D ∈ Dn whose diagonal equals the diagonal of X −M .
Then M + D ∈ Zgln(A) + Dn and [X] = [X − (M + D)] ∈ VA /

(
Zgln(A) +Dn

)
,

hence x = X − (M + D) is a representative of [X] satisfying x1i = xii = 0 for
all i ∈ [n]. Moreover, if x is an element of VA of this form, then it gives rise to a
nonzero class [x] ∈ VA /

(
Zgln(A) +Dn

)
.

What remains to be shown, is that for X ∈ VA which has its first row and
diagonal all zero, also the first column of X must be zero. Write both X and A as
block matrices in the following way:

X =

[
0 0T

x1 X1

]
A =

[
a11 aT1

a2 A1

]

Here x1, a1 and a2 are vectors in Cn−1 and X1, A1 are matrices in C(n−1)×(n−1).
Multiplying these matrices to obtain XA−AX, we see that

[X,A]1 = X1A1 −A1X1 + x1a
T
1 .

For X to lie in VA there must exist Y ∈ gln−1 such that [X,A]1 = [Y,A1], so we
obtain

x1a
T
1 = (Y −X1)A1 −A1(Y −X1) = [Y −X1, A1].

We need to show that for sufficiently general A this implies x1 = 0, i.e.
{
x1a

T
1 | x1 ∈ Cn−1

}
∩ [gln−1, A1] = {0}.

Observe that the first space has dimension n−1, while the dimension of the second
space equals dim gln−1 − dimZgln−1

(A1) = (n − 1)2 − (n − 1). This suggests that
their intersection is indeed trivial.

Let B = x1a
T
1 ∈ [gln−1, A1] en let vT1 , . . . , v

T
n−1 the row eigenvectors of A1,

where v1, . . . , vn−1 ∈ Cn−1. We know that a1 has at least one nonzero position,
otherwise G would not be strongly connected. Therefore B = 0 implies x1 = 0, in
which case we are done. From now on, suppose B is not the zero matrix. Then

vTi B ∈
⊕

j 6=i
CvTj for i = 1, . . . , n− 1

which can be seen from the following. Suppose B = [C,A1] for some C ∈ gln−1,
then

vTi B = vTi CA1 − λivTi C = vTi (CA1 − λiC) = vTi C(A1 − λiI).

For sufficiently general A, the eigenvectors vT1 , . . . , v
T
n−1 of A1 are linearly inde-

pendent, hence they form a basis of Cn−1. We can write vTi C =
∑n−1
j=1 αjv

T
j with

coefficients α1, . . . , αn−1 ∈ C. Observe that vTi (A1 − λiI) = 0, and therefore

vTi B =

n−1∑

j=1

αjv
T
j (A1 − λiI) =

∑

j 6=i
αj(λj − λi)vTj ∈

⊕

j 6=i
CvTj .
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Since B has rank one, the row space of B is one-dimensional. Say it is spanned
by a vector w ∈ Cn−1, then for each left eigenvector vTi of B either vTi B = 0 or
vTi B = cwT for some c ∈ C. We know that the eigenvectors vT1 , . . . , v

T
n−1 of A1 are

linearly independent, so w can be written as a linear combination of these vectors:

w =

n−1∑

i=1

civi, c1, . . . , cn−1 ∈ Cn−1.

From the observation that vTi B ∈
⊕

j 6=i CvTj , it follows that if vTi B 6= 0, then

ci = 0. Hence there exists a proper partition I t J = [n − 1] (I, J 6= ∅) such that
w =

∑
j∈J cjvj (cj ∈ C∗) and vjB = 0 for all j ∈ J . Since B = x1a

T
1 , it follows that

aT1 must be a scalar multiple of w, i.e. it is a linear combination of the vj , j ∈ J .
Let P be the matrix whose rows are vT1 , . . . , v

T
n−1, then we can write aT1 = cTP

for some c ∈ Cn−1. If we can show that cT = aT1 P
−1 has no zero entries, we have

arrived at a contradiction, because this would imply I = ∅ while we assumed I to
be nonempty.

Note that P−1 is the matrix whose columns are the column eigenvectors of A1.
If the graph corresponding to A1 is strongly connected, we know from Lemma 3.2.3
that P−1 contains no zeros. For sufficiently general A, the first row vector a1 is
independent of A1 and hence of P and P−1. Therefore, if P−1 contains no zeros
and a1 has at least one nonzero position, aT1 P

−1 has no zeros.
If the graph G1 corresponding to A1 is not strongly connected, let C1, . . . , Cl

be its strongly connected components. Let u be a column of P−1, then u is a
column eigenvector of A1. From Lemma 3.2.3 it follows that for each component
Ci, the entries of u corresponding to the vertices of Ci are either all zero or all
nonzero. The eigenvector u must be nonzero on at least one component Ci, and if
this component has an edge to vertex 1 in the original graph G, then aT1 u 6= 0 since
u does not depend on a1. If Ci does not have an edge to vertex 1 in G, there must
be a path in G1 from Ci to some component Cj which does have an edge to 1 in G,
as G is strongly connected. But from Lemma 3.2.3 it follows that for every vertex k
on this path we have uk 6= 0. In particular, all entries of u corresponding to vertices
of Cj are nonzero, and since Cj has an edge to 1 in G, again we obtain aT1 u 6= 0.
Hence cT = aT1 P

−1 has no zeros, which contradicts the fact that |J | < n− 1. This
shows that x1 = 0 and therefore the first column of X must be zero. �

This proposition implies that when looking for X ∈ VA /
(
Zgln(A) +Dn

)
, it

suffices to search for X whose first row, first column and diagonal are all zero.
By definition, VA contains all X ∈ gln for which [X,A] lies in the kernel of the
differential dAc. From Proposition 3.1.2 we know that this implies that [X,A] ∈ ΘG

and there must exist Y ∈ gln−1 such that [Y,A1] = [X,A]1. For X ∈ gln whose
first row, first column and diagonal are all zero, we can just take Y = X1, since
[

0 0T

0 X1

][
a11 aT1

a2 A1

]
−
[
a11 aT1

a2 A1

][
0 0T

0 X1

]
=

[
0 aT1X1

X1a2 [X1, A1]

]

Hence for X of this form we have

X ∈ VA ⇔ [X,A] ∈ ΘG.

Combining this observation with Corollary 3.2.2 and Proposition 3.2.4, we obtain
the following corollary.

Corollary 3.2.5. G has the expected dimension if and only if, for sufficiently
general A ∈ ΘG, there does not exist X ∈ gln of the form X1i = Xi1 = Xii = 0 for
all i ∈ [n], X 6= 0, such that the commutator [X,A] lies in the parameter space ΘG.



3.3. A NECESSARY CONDITION TO HAVE THE EXPECTED DIMENSION 19

1

2 3

4

Figure 3.1. Example 3.3.2

Thus, to determine whether a graph has the expected dimension, we need to
check whether there exists X ∈ gln satisfying the properties of Corollary 3.2.5.

3.3. A necessary condition to have the expected dimension

In this section we derive some sufficient conditions on a graph G, such that
there exists X ∈ gln satisfying Corollary 3.2.5. This implies that G has the expected
dimension, i.e. an identifiable scaling reparametrization of the model exists. These
sufficient conditions for G not to have the expected dimension will lead us to a
necessary condition for G to have the expected dimension.

Condition 3.3.1. There exists an ordered pair (i, j) with i, j ∈ {2, . . . , n},
i 6= j, such that the support of the j-th row is contained in the support of the i-th
row of A and the support of the i-th column is contained in the support of the j-th
column of A.

For a strongly connected graph G, the matrix A = A(G) satisfies the above
condition whenever there exist vertices i, j 6= 1 such that for all k ∈ [n] the following
holds: for any edge k → j there is also an edge k → i and for any edge i→ k there
is also an edge j → k. Also the nonzero entries aii and ajj of A should be taken
into account, which implies that both aij and aji are nonzero, i.e. i and j form a
2-cycle in G.

Example 3.3.2. Consider the graph G in Figure 3.1 and its parameter matrix

A(G) =




a11 0 0 a14
a21 a22 a23 0
0 a32 a33 0
0 0 a43 a44




Observe that the pair (2, 3) satisfies Condition 3.3.1. Let X = E23 be the matrix
with a 1 at position (2, 3) and zeros elsewhere, then [X,A] has the correct zero
pattern:

[X,A] =




0 0 0 0
0 a32 a33 − a22 0
0 0 −a32 0
0 0 0 0




This shows that E23 represents a nontrivial element of VA /
(
Zgln(A) +Dn

)
and

hence G does not have the expected dimension.

As illustrated by this example, Condition 3.3.1 is a sufficient condition for
VA /

(
Zgln(A) +Dn

)
to be nontrivial. If this condition holds for sufficiently general

A ∈ ΘG, then G cannot have the expected dimension. This will be shown in the
next lemma.

Lemma 3.3.3. Let G be a strongly connected graph such that the pair (i, j)
satisfies Condition 3.3.1 with A ∈ ΘG. Then the matrix X = Eij ∈ gln yields a
nontrivial class [X] ∈ VA /

(
Zgln(A) +Dn

)
.
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Figure 3.2. Example 3.3.5

Proof. From i, j ∈ {2, . . . , n} and i 6= j, it follows that X is of the correct
form: it has its first row, first column and diagonal all zero. According to Corol-
lary 3.2.5 we only need to show that [X,A] ∈ ΘG. Consider the two terms of the
Lie bracket: XA has its i-th row equal to the j-th row of A and zeros elsewhere,
while AX has its j-th column equal to the i-th column of A and zeros elsewhere.
Clearly A itself must have the correct zero pattern, so from Condition 3.3.1 we
immediately see that XA−AX must be in ΘG. �

Each [X] ∈ VA /
(
Zgln(A) +Dn

)
spans a one-dimensional subspace, since [cX]

is an element of VA /
(
Zgln(A) +Dn

)
for any c ∈ C.

However, Condition 3.3.1 is not a necessary condition. Figure 3.2 gives an
example of a graph which does not satisfy Condition 3.3.1 and it does not have
the expected dimension either. This case is covered by the following more general
condition:

Condition 3.3.4. There exists a set S containing k distinct pairs (i, j) that
satisfy Condition 3.3.1, except for at most k− 1 positions of A where the supports
are not contained in one another. These positions are zero while they should be
nonzero for A to satisfy Condition 3.3.1 and will be called exceptions.

Example 3.3.5. Consider the graph G in Figure 3.2 and its parameter matrix

A(G) =




a11 0 0 a14
a21 a22 a23 0
0 a32 a33 a34
0 a42 0 a44




Then the set S = {(2, 4), (3, 4)} satisfies Condition 3.3.4, since only one exception
occurs. Indeed, let

X = x24E24 + x34E34

then [X,A] has the correct zero pattern except for position (2, 4):

[X,A] =




0 0 0 0
0 a42x24 0 (a44 − a22)x24 − a23x34
0 a42x34 0 (a44 − a33)x34 − a32x24
0 0 0 −a42x24




In order to have [X,A] ∈ ΘG we must solve

(a44 − a22)x24 − a23x34 = 0

which yields

x34 =
a44 − a22
a23

x24.

Thus, we have found a one-dimensional subspace of VA /
(
Zgln(A) +Dn

)
.

In general, if A ∈ ΘG satisfies Condition 3.3.4 for some set S, define

X =
∑

(i,j)∈S
xijEij .
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Each exception (as defined in Condition 3.3.4) corresponds to a position in [X,A]
which is nonzero while it should be zero in order to have the correct zero pattern.
Each of these positions contains a linear expression in xij and aij , and to ensure
that these entries become zero we must solve a system of linear equations. If
Condition 3.3.4 holds, we obtain a system of k−1 equations in k variables. Setting
xij = 0 for all i, j ∈ [n] certainly is a solution, so the system is solvable and hence
there must be a solution space of dimension (at least) 1. In the next section, we
will explicitly construct this system of equations.

Proposition 3.3.6. Let G be a strongly connected graph and S a set such that
Condition 3.3.4 holds for sufficiently general A ∈ ΘG. Then there exists a nonzero
matrix

X =
∑

(i,j)∈S
xijEij ∈ gln

such that [X,A] ∈ ΘG.

In other words, if Condition 3.3.4 holds for sufficiently general A ∈ ΘG, then
G does not to have the expected dimension. One can use this condition to con-
clude directly from the parameter matrix A(G) that G does not have the expected
dimension, without having to do any calculations.

In conclusion, we have seen that a necessary condition for G to have the ex-
pected dimension is that for sufficiently general A ∈ ΘG Condition 3.3.4 does not
hold. In the next section this will be translated to a criterion on a bipartite graph
to decide whether a given graph has the expected dimension.

3.4. A rank criterion based on bipartite graphs

Recall that a bipartite graph consists of two disjoint sets of vertices L,R, such
that every edge connects a vertex in L to a vertex in R. A matching M ⊆ E is a
subset of the edges, such that no two edges are incident to the same vertex. The
matching is called perfect if every vertex in the graph is incident to some edge in M .
When |R| 6= |L| no perfect matching exists, but a matching is called L-saturating
if it is perfect with respect to L.

For a given (directed) graph G on n vertices we define a bipartite (undirected)
graph H(G) = (L ∪R,E) as follows:

(3.6)

L = {(i, j) | i, j ∈ {2, . . . , n} and i 6= j}
R = {(k, l) | k, l ∈ [n], k 6= l and l→ k is not an edge of G}
E = {((i, j), (k, l)) | [Eij , A] is nonzero on position (k, l)} .

Note that L corresponds to all positions of X ∈ VA that are outside the first row,
first column and the diagonal. Also note that R corresponds to all zero positions of
A(G), hence all positions of [X,A] where an exception might occur. Furthermore,
there is an edge between (i, j) ∈ L and (k, l) ∈ R if and only if Eij causes an
exception at position (k, l). Now recall Hall’s marriage theorem:

Hall’s Theorem. Let G = (L ∪ R,E) be a bipartite graph, then there exists an
L-saturating matching in G if and only if for every subset S ⊆ L we have

|S| ≤ |N(S)|
where N(S) denotes the set of neighbors of S in G.

Observe that Condition 3.3.4 is satisfied if and only if there exists a subset
S ⊆ L such that |N(S)| < |S|. But if this is the case, then Hall’s theorem implies
that there cannot be an L-saturating matching in H(G).
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Proposition 3.4.1. Let G = (V,E) be a graph satisfying Assumptions 1.1.2-
1.1.4 and let H = H(G) be the corresponding bipartite graph. If G has an identifi-
able scaling reparametrization, then there exists an L-saturating matching in H.

This shows that an L-saturating matching in H(G) is a necessary condition for
G to have the expected dimension. But is it also a sufficient condition?
Let X ∈ gln have its first row, first column and diagonal all zero and write

X =
∑

(i,j)∈L
xijEij .

As discussed in the previous section, the constraint [X,A] ∈ ΘG gives rise to a
system of linear equations in the entries of X and A. To see what this expression
looks like, consider the two terms of the Lie bracket [Eij , A]. The product EijA
has its i-th row equal to the j-th row of A and zeros elsewhere, while AEij has its
j-th column equal to the i-th column of A and zeros elsewhere. Hence Eij adds a
nonzero term to position (k, l) of [X,A] only in the following three cases:

i = k, j 6= l and l→ j ∈ G  −ajl
i 6= k, j = l and i→ k ∈ G  aki

i = k and j = l  akk − all

Define the matrix B(G) ∈ C|R|×|L| as

(3.7) B(G)(k,l),(i,j) =





−ajl if i = k, j 6= l and l→ j ∈ E
aki if i 6= k, j = l and i→ k ∈ E
akk − all if i = k and j = l

0 otherwise.

From our previous observations, it follows that B(G) is the coefficient matrix cor-
responding to the system of equations obtained from [X,A] ∈ ΘG. On the other
hand, if we define edge weights for the edges in the bipartite graph H(G) by

w((i, j), (k, l)) = [Eij , A]kl

with (i, j) ∈ L and (k, l) ∈ R, then B(G) is the weighted bi-adjacency matrix
corresponding to H(G).

Let x ∈ C|L| be the vector of coefficients xij , (i, j) ∈ L, then the linear system
corresponding to [X,A] ∈ ΘG is given by

B(G)x = 0.

It follows that each solution x ∈ C|L| gives rise to a class [X] ∈ VA /(Zgln(A) +Dn)
and vice versa. Furthermore, x = 0 if and only if X = 0. Combining these
observations with the fact that B(G) has a nontrivial kernel if and only if its rank
is less than |L|, we obtain the following theorem.

Theorem 1.4.2. Let G be a graph satisfying Assumptions 1.1.2-1.1.4 and let
L ∪ R be the vertex set of the bipartite graph H(G). Then G has the expected
dimension if and only if the |R| × |L| bi-adjacency matrix B = B(G) has full
column rank, i.e. rk(B) = |L|.

If |R| < |L|, then B(G) certainly has rank smaller than |L|. However, this
implies that the number of zero positions of A is less than (n− 1)(n− 2). Since the
number of zero positions in A equals n2 − (n+m), we obtain

n2 − (n+m) < (n− 1)(n− 2)

and hence m > 2(n − 1). This is equivalent to Lemma 2.3.3, which stated that if
m > 2n− 2 then G does not have the expected dimension.
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Now what can we say about the existence of an L-saturating matching in H(G)
and the rank of B(G)? First of all, B(G) has rank |L| if and only if there exists some
|L|×|L| submatrix B′ which has nonzero determinant. This submatrix corresponds
to an induced subgraph H ′ of H(G), containing L entirely but only a subset of R
of size |L|. The determinant of B′ can be computed as a sum over all permutations
σ in S|L|:

det(B′) =
∑

σ∈S|L|
sgn (σ)

|L|∏

i=1

(B′)i,σi .

Each nonzero term in this sum corresponds to a perfect matching in H ′. Therefore,
if det(B′) 6= 0 then there exists a perfect matching in H ′ and hence an L-saturating
matching in H(G). This is exactly what Proposition 3.4.1 says, but does the con-
verse hold as well? In other words, if there exists an L-saturating matching in
H(G), will the corresponding submatrix B′ of B(H) have nonzero determinant?

If all entries of B′ are linearly independent, then no two matchings can yield
the same term in the determinant, hence a perfect matching in H ′ exists if and
only if B′ is nonsingular. However, this is not the case: each parameter may
appear at multiple positions of B′. Indeed, Example 3.4.2 shows that although
an L-saturating matching in H exists, the matrix B(H) does not have rank |L|.
Calculations in Mathematica have shown that these cases are rare: there is no
graph on four vertices which has a perfect matching but not the expected dimension,
and for graphs on five vertices there are only ten such cases.

Example 3.4.2. Let G be the graph given in Figure 3.3a with its corresponding
bipartite graph H(G) in Figure 3.3b, where the red edges represent an L-saturating
matching M . Note that |L| = |R|, so this is actually a perfect matching. However,
M is not the only perfect matching. The matrix B(G) is of the following form:
One can check that the last six columns of this matrix are linearly dependent,
hence B(G) has rank 11 while |L| = 12. In other words, G does not have the
expected dimension.

3.5. Complexity analysis

In this section we consider the theoretical complexity of determining whether a
graph has the expected dimension or not. Two algorithms are compared: the first
based on the dimension criterion from [MS14], given in Theorem 2.4.1, and the
second based on the main result of this chapter, Theorem 1.4.2.

Recall that the dimension criterion states that G has the expected dimension
if and only if the dimension of the image of c equals m + 1. This is equivalent
to the rank of the differential dAc being equal to m + 1 for sufficiently general
A ∈ ΘG. Thus, a naive way to check whether G has the expected dimension would
be to construct A = A(G) and compute the characteristic polynomials of A and A1

symbolically in order to obtain the double characteristic polynomial map c. Then
we need to differentiate the coordinates of c with respect to the parameters aij to
obtain the differential (or Jacobian) dAc. Finally, the generic rank of dAc has to be
computed, i.e. the rank of dAc in sufficiently general A.

This last step can be performed in polynomial time using a randomized al-
gorithm that substitutes random parameter values from a finite set S. It brings
the risk of decreasing the rank of the input matrix, but the rank cannot increase.
In other words, substituting random parameter values yields a true-biased Monte-
Carlo algorithm: a positive output is always correct, but a negative output may
be false with a certain probability. However, the probability of this event can be
bounded from above using the Schwartz-Zippel Lemma [Sch80, Zip79]:



24 3. REFORMULATING THE DIMENSION CRITERION

1 23

45

(a) G

(2, 3) (2, 4) (2, 5) (3, 2) (3, 4) (3, 5) (4, 2) (4, 3) (4, 5) (5, 2) (5, 3) (5, 4)

(1, 2) (1, 3) (2, 3) (2, 4) (2, 5) (3, 2) (3, 4) (3, 5) (4, 1) (4, 3) (5, 1) (5, 2)

L

R

(b) H(G)




(2,3) (2,4) (2,5) (3,2) (3,4) (3,5) (4,2) (4,3) (4,5) (5,2) (5,3) (5,4)

(1,2) 0 0 0 0 0 0 a14 0 0 a15 0 0
(1,3) 0 0 0 0 0 0 0 a14 0 0 a15 0
(2,3) a22 − a33 0 −a53 0 0 0 0 0 0 0 0 0
(2,4) 0 a22 − a44 −a54 0 0 0 0 0 0 0 0 0
(2,5) 0 −a45 a22 − a55 0 0 0 0 0 0 0 0 0
(3,2) 0 0 0 a33 − a22 −a42 0 0 0 0 0 0 0
(3,4) 0 0 0 0 a33 − a44 −a54 0 0 0 0 0 0
(3,5) 0 0 0 0 −a45 a33 − a55 0 0 0 0 0 0
(4,1) 0 0 0 0 0 0 −a21 −a31 0 0 0 0
(4,3) a42 0 0 0 0 0 0 a44 − a33 a53 0 a45 0
(5,1) 0 0 0 0 0 0 0 0 0 −a21 −a31 0
(5,2) 0 0 0 a53 0 0 a54 0 0 a55 − a22 0 −a42




(c) B(G)

Figure 3.3. Example 3.4.2

Lemma 3.5.1 (Schwartz, Zippel). Let f ∈ K[x1, . . . , xn] be a non-zero poly-
nomial of degree d ≥ 0 over a field K. Let S be a finite subset of K and choose
r1, . . . , rn at random independently and uniformly from S. Then

Pr[f(r1, . . . , rn) = 0] ≤ d

|S| .

By taking the domain S large enough, we can make the probability of a false
negative as small as desired. This bound depends on the degree of the polynomial
being evaluated. In order to apply the Schwartz-Zippel lemma, we must express the
event that dAc has rank m+1 as a certain polynomial being nonzero. As described
in [CKL13], we compress the matrix into a (m+1)×(m+1) matrix by introducing
new variables and taking linear combinations of the rows and columns of dAc in
terms of these new variables. Then the generic rank of D′ equals the generic rank
of dAc, so we can apply the Schwartz-Zippel lemma to the function det(D′). Note
that the entries of D′ are polynomials of degree O(n), hence the determinant of D′

has degree O(m)O(n) = O(n2), since we assume n ≤ m ≤ 2n − 2. In practice, it
is not necessary to perform this step, but it shows that we can indeed apply the
Schwartz-Zippel lemma.

Although the rank can be determined efficiently, computing the characteristic
polynomials of A and A1 symbolically is very expensive. Therefore, we derive a
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more efficient way to evaluate the dimension criterion. We would like to substitute
the random parameter values at an earlier point in the algorithm, to reduce the
number of symbolic computations and hence reduce the computation costs.

Observe that for an n × n matrix B whose entries are polynomials in aij ,
i, j ∈ [n], the following equality holds:

(3.8)
∂ det(B)

∂aij
=

n∑

k=1

det(Bk)

where Bk is the matrix obtained from B by differentiating its k-th column with
respect to the parameter aij . This equality follows from the product rule for differ-
entiation and the fact that each term in the determinant is the product of entries
of B from different columns. Since the characteristic polynomials of A and A1 are
equal to det(tIn−A) and det(tIn−1−A1), equation (3.8) allows us to differentiate
terms of tIn−A instead of its determinant. When differentiating with respect to aij ,
the only position of tIn −A that remains nonzero is position (i, j). For tIn−1 −A1

the same holds, except when i = 1 or j = 1, in which case differentiating with
respect to aij always yields a zero. Let B = tIn − A, B1 = tIn−1 − A1 and let
B(i, j) denote the matrix obtained from B by removing the i-th row and the j-th
column. Then

∂ det(B)

∂aij
= −det(B(i, j))

∂ det(B1)

∂aij
=

{
−det(B1(i, j)) if i, j 6= 1

0 otherwise.

The right hand side expressions do not have to be differentiated anymore, so the
random parameter values can be substituted before calculating the determinants
of B(i, j). However, B(i, j) still contains the variable t. We can solve this by
calculating det(B(i, j)) for t = 1, 2, . . . , n and then find the interpolating polynomial
of this set of points. Since det(B(i, j)) is a polynomial of degree n−1, it is uniquely
determined by its value in n different points. Similarly, the determinant of B1(i, j)
is a polynomial of degree n− 2 and hence it is uniquely determined by its value in
n− 1 different points.

These observations lead to Algorithm 3.1, which allows us to compute the dif-
ferential map dAc in a random point A∗ ∈ ΘG without doing symbolic determinant
calculations.

We will compare Algorithm 3.1 with Algorithm 3.2, which is based on The-
orem 1.4.2: it constructs the matrix B(G) and determines its rank for sufficiently
general A. This algorithm avoids the costly procedure of computing the character-
istic polynomials; its most expensive step is computing the determinant of B(G).
Again, the most efficient way to do this is using a randomized algorithm, thus we
substitute random parameter values from a finite domain S into B(G).

Note that the matrix B(G) need not be square, but similar to the case of dAc,
we can compress B(G) into a matrix B′ of size (n − 1)(n − 2) × (n − 1)(n − 2)
such that B′ has nonzero determinant if and only if B(G) has full rank. Then
we can apply the Schwartz-Zippel lemma to the determinant of B′. The entries
of B′ are polynomials of degree O(1), so its determinant has degree O(n2). This
is (asymptotically) the same degree as for the previous algorithm, hence using the
same set S yields (asymptotically) the same bound for the probability of a false
negative.

The computation times of the two algorithms have been compared using the
computer algebra package Mathematica, the results of which are presented in
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Algorithm 3.1 Jacobian rank test

Input: Graph G = (V,E), finite set S
Output: True if G has the expected dimension, False otherwise

1: (n,m)← (|V |, |E|)
2: A← A(G)
3: Construct A1 by deleting the first row and column of A
4: B0 ← tIn −A
5: B1 ← tIn−1 −A1

6: Choose A∗ uniformly at random from S
7: for l = 0, 1 do
8: M ← Bl
9: n′ ← n− l

10: for (i, j) with j → i ∈ E or i = j do
11: for t∗ = 1, 2, . . . , n′ do
12: Substitute t = t∗ into M
13: if aij appears in M then
14: Construct M(i, j) from M by removing row i and column j
15: else
16: M(i, j)← 0
17: end if
18: Substitute the parameter values A∗ into M(i, j)
19: xt∗ ← det(M(i, j))
20: end for
21: Let pij(t) be the interpolating polynomial through x1, . . . , xn′

22: cij ← coefficient vector of 1, t, . . . , tn
′−1 in pij(t)

23: end for
24: dA∗cl ← [c11| · · · |cij | · · · |cn′n′ ]T
25: end for
26: dA∗c← [dA∗c0 | dA∗c1]T

27: if rk(dA∗c) = m+ 1 then
28: return True
29: else
30: return False
31: end if

Table 3.1. These are average computation times (seconds per graph) of 50 compu-
tations on random strongly connected graphs, with a fixed amount of vertices and
edges. Both implementations use the same set S = {z ∈ Z| − 1000 ≤ z ≤ 1000}
and the rank of dAc and B(G) is evaluated in two random points in S. Thus, the
probability of a false negative has an asymptotic upper bound of 1

4O(n4) · 10−6.
A theoretical upper bound on the computational complexity of Algorithm 3.1

is determined by calculating det(B(i, j)) for t = 1, 2, . . . , n. This can be done
using Gaussian elimination taking O(n3) operations. Computing the interpolating
polynomial can also be done using Gaussian elimination and takes another O(n3)
operations. We obtain a total estimate of the number of operations of

O((n+m)(n3 · n+ n3)) = O(n5),

which is a theoretical upper bound for computing the rank of the Jacobian. This
algorithm could be optimized by using more efficient techniques than interpolation
to calculate the symbolic determinant.

For Algorithm 3.2 the computational complexity is determined by computing
the rank of B(G) at a random point A∗. This matrix has n2 − (n + m) rows and
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Algorithm 3.2 Rank test of B(G)

Input: Graph G = (V,E), finite set S
Output: True if G has the expected dimension, False otherwise

1: Construct the sets L,R defined by

L = {(i, j) | i, j ∈ {2, . . . , n} and i 6= j}
R = {(k, l) | k, l ∈ [n], k 6= l and l→ k /∈ E}

2: Construct the symbolic |R| × |L| matrix B(G) with entries

B(G)(k,l),(i,j) =





−ajl if i = k, j 6= l and l→ j ∈ E
aki if i 6= k, j = l and i→ k ∈ E
akk − all if i = k and j = l

0 otherwise.

3: Choose A∗ uniformly at random from S
4: Calculate the generic rank of B(G) by substituting A∗ into B(G)
5: if rk(B(G)) = |L| then
6: return True
7: else
8: return False
9: end if

(n− 1)(n− 2) columns, hence calculating its rank can be done in O(n6) operations
using Gaussian elimination. Note that the matrix B(G) is much larger than dAc,
but also much sparser; one could use this sparseness to improve Algorithm 3.2.

These asymptotic complexities imply that for n large enough, Algorithm 3.2
is less efficient than Algorithm 3.1. However, Table 3.1 shows that this is not the
case for small values of n. This might be because Mathematica recognizes B(G)
as a sparse matrix and computes its rank more efficiently than using just Gaussian
elimination.

(n,m) Algorithm 3.1 Algorithm 3.2

(5,8) 0.024 0.002

(10,18) 0.484 0.070

(15,28) 3.747 0.540

(20,38) 17.323 2.575

(25,48) 57.880 8.549

Table 3.1. Computation times (seconds per graph)





CHAPTER 4

Properties and constructions

In the previous chapter we have seen how to check efficiently whether a given
graph has the expected dimension, i.e. whether there exists an identifiable scaling
reparametrization. In this chapter, we consider the question how we can extend a
given graph with the expected dimension by adding vertices and edges, such that the
resulting graph has the expected dimension as well. Some constructions satisfying
this property were already presented in [MS14], but using Theorem 1.4.2 we can
derive stronger results. First, some properties and constructions will be defined,
followed by a short summary of constructions proved by Meshkat and Sullivant.
In Section 4.3 we derive two new constructions, using the results of the previous
chapter. These constructions allow us to build many graphs with the expected
dimension. In Section 4.4 we discuss ear decompositions of a graph. This leads
us to a procedure of deleting or subdividing edges of a given graph, such that
the resulting graph has the expected dimension. The chapter is concluded with
computational results for graphs on four and five vertices.

4.1. Definitions

We are interested in extensions of graphs with the expected dimension, such
that the resulting graphs again have the expected dimension. These operations we
call valid:

Definition 4.1.1. An operation on a graph G is called valid if the resulting
graph G′ has the expected dimension whenever G has the expected dimension. It
is said to be strongly valid if the inverse implication holds as well, i.e. G′ has the
expected dimension if and only if G has the expected dimension.

Before we derive several valid operations, we need some definitions. Given two
graphs, one can construct a new graph by taking the union:

Definition 4.1.2. Given G1 = (V1, E1) and G2 = (V2, E2), define the union
G1 ∪G2 to be the graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2.

Of course, one can also start with a single graph, and add or remove vertices or
edges from this graph. Such operations are valid only if the graph satisfies certain
properties.

Definition 4.1.3. A graph G is said to have an exchange with i if there exists
a vertex i ∈ {2, . . . , n} such that both 1 → i and i → 1 are edges in G. More
general, a graph has an exchange if there exists i ∈ V such that G has an exchange
with i.

If a graph has an exchange, one of the operations that we can apply is the
collapse of two vertices:

Definition 4.1.4. Given a graph G = (V,E) that has an exchange with i,
the collapsed graph G′ = (V ′, E′) is the graph in which vertex 1 and i have been
identified, with V ′ = V \ {i}. An edge u→ v appears in G′ if u→ v appears in G,
or if v = 1 and u→ i is an edge in G, or if u = 1 and i→ v is an edge in G.

29



30 4. PROPERTIES AND CONSTRUCTIONS

2 3

41

G = G′ =

3

41

Figure 4.1. Left: Exchange (blue) and line segment (red) in G.
Right: The graph G′ obtained by collapsing the exchange.

Figure 4.1 illustrates an exchange with vertex 2 in G and the collapsed graph
G′. Observe that if G is strongly connected, then the collapsed graph G′ is again
strongly connected. When collapsing two arbitrary vertices, it is hard to tell
whether the resulting graph will have the expected dimension or not. In some
special cases where G has an exchange with i and G′ is obtained by collapsing the
exchange, i.e. vertices 1 and i are identified, we can predict whether or not the
collapsed graph will have the expected dimension. This will be discussed in the
next sections.

Identifying two vertices reduces the number of vertices by one. Conversely, we
can also increase the number of vertices, for example by subdividing an edge.

Definition 4.1.5. Let G = (V,E) be a graph on n− 1 vertices and let i → j
be an edge in G. The graph G′ = (V ′, E′) obtained by subdividing the edge i→ j
has vertex set V ′ = V ∪ {n} and edges E′ = (E \ {i→ j}) ∪ {i→ n, n→ j}.

Another way to increase the number of vertices is by adding a line segment to
G: choose two vertices k, l of G, add new vertices n1, . . . , ns, and add the edges of
the path {k, n1, n2, . . . , ns, l}. This is called a line segment, as defined below.

Definition 4.1.6. A line segment of length k ≥ 2 in a graph G is a tuple
(v0, v1, . . . , vk) such that v0 → v1, . . . , vk−1 → vk are edges in G and these are the
only edges incident to v1, . . . , vk−1.

Note that given an edge i→ j in G, subdiving this edge creates a line segment
of length two, since the new vertex n is incident to i and j but no other vertices.
Figure 4.1 illustrates a line segment of length two in the graph G.

Definition 4.1.7 ([MS14], Def. 5.6). A chain of cycles in G is a sequence of
directed cycles C1, C2, . . . , Ck, such that for i = 1, . . . , k the cycle Ci is attached to
Ci+1 by joining at a vertex.

Other properties that we shall be using involve specific forms of strongly con-
nectedness:

Definition 4.1.8. A graph G = (V,E) is minimally strongly connected if it
is strongly connected and for each edge e ∈ E the graph (V,E \ {e}) is no longer
strongly connected. G is said to be inductively strongly connected if there exists
some ordering of vertices of the n vertices, say 1, . . . , n, such that for each i ∈ [n]
the induced subgraph G{1,...,i} containing vertices 1, . . . , i is strongly connected.

In Section 2.3 we have seen that if G has the expected dimension, then the
number of edges is at most 2n− 2.

Definition 4.1.9. A graph G is maximal if it contains 2n− 2 edges.

Observe that if G is inductively strongly connected, then it must have at least
2n − 2 edges. Hence any inductively strongly connected graph that satisfies the
bound on the number of edges (m ≤ 2n− 2) is maximal.
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4.2. Earlier results and conjectures

Meshkat and Sullivant have already proven two constructions to be (strongly)
valid and derived some properties of graphs with the expected dimension. These
results will be considered in this section. The proofs can be found in [MS14], and
in some cases an alternative proof is given based on the results of Sections 4.3-4.4.
Also a conjecture that was formulated by Meshkat and Sullivant will be discussed.

Proposition 4.2.1 ([MS14, Prop. 5.3]). Let G be a strongly connected max-
imal graph that has the expected dimension. Then G has an exchange.

If a graph is not maximal, then an exchange is not a necessary condition for
a graph to have the expected dimension. For example, a directed cycle has the
expected dimension:

Lemma 4.2.2 ([MS14, Prop. 5.4]). The cycle of length n has the expected
dimension for any n ≥ 1.

Proof. This lemma follows immediately from Corollary 4.4.5 and the fact that
a cycle is minimally strongly connected. �

The first valid construction that we consider is to add an exchange to a given
graph. The proof in [MS14] considers the characteristic polynomials of the corres-
ponding parameter matrices, but this proposition is also an immediate consequence
of the results in Section 4.3.

Proposition 4.2.3 ([MS14, Prop. 5.5]). Let G be a graph on n vertices and
construct G′ from G by adding a new vertex 1′ and an exchange 1 → 1′, 1′ → 1.
Then the resulting graph G′ with input-output node 1′ has the expected dimension
if and only if G has the expected dimension.

Proof. This follows directly from Proposition 4.3.1 and Lemma 4.2.2, by writ-
ing G′ as the union of G and a 2-cycle. �

The next proposition shows that adding a line segment of length two is a valid
operation, if G has a chain of cycles containing both vertex 1 and the line segment.

Proposition 4.2.4 ([MS14, Thm. 5.7]). Let G′ be a graph that has the expected
dimension with n− 1 vertices. Let G be a new graph obtained from G′ by adding a
new vertex n and two edges k → n and n→ l and such that G has a chain of cycles
containing both 1 and n. Then G has the expected dimension.

Proof. This is a weaker version of Proposition 4.3.3. �

Recall that an inductively strongly connected graph can be constructed by
adding the vertices one by one, while in each step the corresponding subgraph is
strongly connected. Combining this fact with Proposition 4.3.3, one can derive the
following corollary by induction on the number of vertices.

Corollary 4.2.5 ([MS14, Thm. 5.13]). If G is inductively strongly connected
with at most 2n− 2 edges, then G has the expected dimension.

Meshkat and Sullivant have also formulated a conjecture:

Conjecture 4.2.6 ([MS14, Conj. 6.6]). Let G be a graph with n vertices,
2n−2 edges, and an exchange with i. Let the collapsed graph G′ be the graph where
1 and i have been identified. If G′ has 2n− 4 edges with an exchange, then G has
the expected dimension if and only if G′ has the expected dimension.
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(a) Graph G
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(b) Collapsed graph G′

Figure 4.2. Counterexample to Conjecture 4.2.6

We have constructed a counterexample, showing that this conjecture certainly
does not hold in both directions. Consider the graph G in Figure 4.2a, which is
strongly connected, has an exchange, and satisfies m = 2n−2. Its parameter matrix
is given by

A(G) =




a11 a12 0 a14 0 0
a21 a22 a23 0 0 a26
0 a32 a33 0 0 0
0 0 0 a44 a45 0
0 0 a53 0 a55 0
0 0 0 a64 a65 a66



.

One can check that G has the expected dimension using Mathematica and the
algorithm based on Theorem 1.4.2. After collapsing the exchange with 2, we obtain
the graph G′ given in Figure 4.2b. This graph has parameter matrix

A(G′) =




a11 a13 a14 0 a16
a31 a33 0 0 0
0 0 a44 a45 0
0 a53 0 a55 0
0 0 a64 a65 a66



.

We see thatG′ is again strongly connected, has an exchange and satisfiesm = 2n−4.
However, G′ does not have the expected dimension. This follows from the fact that
A(G′) satisfies Condition 3.3.1: the support of the column corresponding to vertex
6 is contained in the column corresponding to vertex 4, and for the rows vice versa.
So the fact that G has the expected dimension does not imply that G′ has the
expected dimension as well.

The other direction remains a conjecture, although a partial result follows from
Proposition 4.4.6.

4.3. New constructions

In this section several new properties and valid constructions of graphs with the
expected dimension are derived. All proofs rely on Theorem 1.4.2, so the matrix
B = B(G) plays an important role in this section. Recall that the rows of B are
indexed by pairs (i, j) corresponding to the zero positions of A(G), and the columns
are indexed by pairs (k, l) with k, l ∈ [n], k 6= l and k, l 6= 1. These column indices
correspond to the possible nonzero entries of X ∈ VA whose first row, first column
and diagonal are zero. For G = (V,E) the entries of B are given by

(4.1) B(G)(k,l),(i,j) =





−ajl if i = k, j 6= l and l→ j ∈ E
aki if i 6= k, j = l and i→ k ∈ E
akk − all if i = k and j = l

0 otherwise.
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We will refer to the entry B(G)(k,l),(i,j) as the entry (or position) indexed by
(k, l), (i, j), where (k, l) is the row index and (i, j) the column index. We start
with some basic observations on the structure of B = B(G). For an entry to be
nonzero, the two pairs representing the row and column index must have at least
one coordinate in common. Entries indexed by (i, ·), (·, i) or (·, i), (i, ·) are zero,
since neither the rows nor the columns of B have indices (i, i). Furthermore, the
column indices have no coordinate equal to 1, hence a nonzero entry in the row
indexed by (i, 1) must be of the form aj1. Similarly, a nonzero entry in the row
indexed by (1, i) must be of the form a1j . Also note that every entry in a given row
or column of B contains a different parameter.

Proposition 4.3.1. Let G be of the form (V ′ ∪ V ′′, E′ ∪ E′′) for some graphs
G′ = (V ′, E′), G′′ = (V ′′, E′′), such that V ′ ∩ V ′′ = {v}, E′ ∩ E′′ = ∅ and 1 ∈ V ′.
Let 1 be the input-output compartment of G and G′, while G′′ has input-output
compartment v. Then G has the expected dimension if both G′ and G′′ have the
expected dimension. Conversely, if G′′ does not have the expected dimension, then
neither does G.

Proof. Let A = A(G), A′ = A(G′) and A′′ = A(G′′). The input-output
compartment of G′′ is vertex v, so if we order the vertices of G′ such that the last
row and column of A′ correspond to vertex v, then A is of the following form:

A′

A′′0

0

A =

The matrices A′, A′′ intersect at only one position, which is the entry containing
avv. Let B = B(G), B′ = B(G′) and B′′ = B(G′′). First, we will derive that B
has full rank whenever both B′, B′′ have full rank, thus proving the first part of
the proposition. To do so, we partition the matrix B into blocks, such that some
of these blocks are equal to B′, B′′. Recall that the rows of B are indexed by the
zero entries of A, and the columns of B are indexed by the pairs (i, j) with i, j 6= 1
and i 6= j. These pairs correspond to the (possibly) nonzero positions of X ∈ VA
whose first row, first column and diagonal are all zero. We find a block partition
of B by partitioning both A and X, since this gives us a partition of the row and
column indices. Let A′, A′′, A3, A4 be blocks of A and let X ′, X ′′, X3, X4 be blocks
of X as given below:

A = X =

A′

A′′

A3

A4

X ′

X ′′

X3

X4

V ′′ \ {v}

V ′ \ {v}

V ′′ \ {v}

v

V ′′ \ {v}

v v

v

V ′ \ {v}

V ′′ \ {v}

V ′ \ {v}

V ′ \ {v}

The solid lines indicate the partitioning and the dotted lines indicate the position
of the row and column indexed by vertex v. We obtain a partition of the rows and
columns of B by distinguishing between the four blocks of A and X, respectively.
Note that the blocks of A do not form a partition of the matrix, because A′ and
A′′ intersect. However, they intersect at a nonzero position, so this position does
not appear as a row index of B. Therefore the blocks of A induce a well-defined
partition of the row indices of B. We obtain the following block matrix:
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X ′ X ′′ X3 X4

A′

A′′

A3

A4

0

0 0 0

0

0

B′

B′′

D1

D20

0

C1 C2

C3

C4

B =

The zero positions of the matrices A′, A′′ are exactly the row indices of B′, B′′,
respectively. Furthermore, the positions of X ′, X ′′ which are outside the first row,
first column and diagonal of X yield exactly the column indices of B′, B′′, respect-
ively. Since each edge of G′ also appears in G, it follows from equation (4.1) that
the block indexed by A′ and X ′ is indeed the matrix B′ corresponding to G′, and
similarly, the block indexed by A′′ and X ′′ is exactly the matrix B′′ corresponding
to G′′. Now consider the block indexed by A′ and X ′′; if (k, l) is a zero position of
A′ and (i, j) is a nonzero position of X ′′, then these two pairs only have a coordin-
ate in common is when j = l = v or i = k = v. Then the corresponding entry of B
is of the form aki or −ajl, respectively, with i, j ∈ V ′′ \ {v} and k, l ∈ V ′. However,
there are no such edges j → l or k → i in G, because these would correspond to
edges between G′ and G′′ not incident to v. Hence the corresponding entry of B is
zero, and therefore the entire block indexed by A′, X ′′ is zero. A similar analysis
shows that each of the blocks of B denoted with a zero indeed is a zero matrix.

Next, we analyze the blocks C1, C2, C3 and C4. For C1 to have a nonzero entry,
we need a position (k, l) of A′ and a position (i, j) of X3 to have a coordinate in
common. From the way that A and X have been partitioned, we see that the only
option is k = i. This gives the entry −ajl, where j ∈ V ′′ \ {v} and l ∈ V . The only
parameters of this form are ajv, with v → j an edge in G′′. Therefore, the nonzero
entries of C1 are indexed by (i, v), (i, j) such that v → j is an edge in G, and the
corresponding entry is of the form −ajv. Similarly, the nonzero entries of C2 are
indexed by (v, j), (i, j) such that i → v is an edge in G′′, and the corresponding
entry is of the form avi. For the block C3 the same analysis shows that all nonzero
entries are of the form −avi, while the nonzero entries of C4 are of the form aiv,
i ∈ V ′′ \ {v}. The exact form of these blocks is not important for our further
analysis, all we need is that the only nonzero entries are either ±avi or ±aiv with
i ∈ V ′′ \ {v}.

Finally, consider the block D1, which is indexed by A3, X3. The block A3

has size (|V ′| − 1)(|V ′′| − 1) and consists entirely of zeros, so the number of rows
of D1 equals (|V ′| − 1)(|V ′′| − 1). The columns of D1 are indexed by the block
X3 of size |V ′|(|V ′′| − 1). Since the first row of X must be zero, X3 gives only
(|V ′| − 1)(|V ′′| − 1) column indices. We conclude that D1 is square, hence we can
calculate its determinant to see whether it has full rank. Observe that A3 yields
pairs (i, j) with i ∈ V ′ \ {v} and j ∈ V ′′ \ {v}, while the pairs corresponding to X3

are of the form (i, j) with i ∈ V ′ \ {1} and j ∈ V ′′ \ {v}. Let {v, i1, . . . , it, 1} be
a path in G1 from v to 1, and let r1, . . . , rk be the vertices of G′ not appearing in
this path. We use this path to order the row indices of D1 by their first coordinate:

(i1, ·), (i2, ·), . . . , (it, ·), (1, ·), (r1, ·), . . . , (rk, ·).
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Figure 4.3. G′ ∪ G′′

We order the column indices in a similar fashion:

(v, ·), (i1, ·), . . . , (it, ·), (r1, ·), . . . , (rk, ·).
Next, each subset of the form (i, ·) is ordered by increasing value of the second
coordinate. Note that the second coordinate of both the row and the column indices
runs through all elements of V ′′ \{v}. We choose this ordering because it makes all
diagonal entries nonzero: the entries indexed by (is, k), (is−1, k) with k ∈ V ′′ \ {v}
have value aisis−1 , which is nonzero because is−1 → is is an edge in the path from v
to 1. The remaining diagonal entries are indexed by (r, j), (r, j) for r ∈ {r1, . . . , rk},
j ∈ V ′′ \ {v}. These entries are of the form arr − ajj , which is certainly nonzero as
it contains independent diagonal entries of A. Hence the entire diagonal of D1 has
become nonzero and, more importantly, entries of the form ±aisis−1

cannot appear
outside the diagonal of D1. This is derived from the fact that there are no indices
(·, is−1), (·, is), because is ∈ V1 while the second coordinates lie in V2. Entries of the
form ±(arr − ajj) can only appear at two positions of M , namely (j, r), (j, r) and
(r, j), (r, j), but only the second position lies in D1. This shows that the diagonal
entries are independent of the other entries of D1, hence the determinant of D1 is
generically nonzero.
A very similar argument shows that also D2 has nonzero determinant.

Now suppose that both B′ and B′′ have full rank. These matrices do not
need to be square, since the number of rows may be larger than the number of
columns. However, being full rank means that there exists a subset of the rows
such that the corresponding matrix is square and invertible. Let B̂′, B̂′′ be such
square submatrices with nonzero determinant, and let B̂ be the corresponding
square submatrix of B. Then from the structure of B, we see that the determinant
det(B̂) contains a term

det(B̂′) det(B̂′′) det(D1) det(D2).

Moreover, the determinant of B̂ contains a factor det(B̂′′), because all other entries
in the corresponding rows and columns are zero. The nonzero off-diagonal blocks
only contain entries of the form avj and ajv with j > v, but these entries do not
appear in D1, D2 or B′. Therefore the term above can never vanish, i.e. B̂ has
nonzero determinant.

The second part of the proposition follows directly from the fact that the de-
terminant of B̂ contains a factor det(B̂′′): if det(B̂) is nonzero, then det(B̂′′) must
also be nonzero. �

Remark 4.3.2. Let G,G′, G′′ be as in Proposition 4.3.1. We have just seen
that if both G′, G′′ have the expected dimension, then so does G. Conversely, if G′

does not have the expected dimension, this does not necessarily imply that G does
not have the expected dimension. For example, the graph in Figure 4.3 has the
expected dimension, while its subgraph G′ does not. However, if V ′ ∩ V ′′ = {1},
then applying the proposition twice shows that G has the expected dimension if
and only if both G′ and G′′ have the expected dimension.
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For our next result, recall Proposition 4.2.4 of the previous section; it states
that if G′ is a graph on n − 1 vertices which has the expected dimension and we
construct G from G′ by adding a new vertex n and two edges k → n and n → l
such that G has a chain of cycles containing both 1 and n, then G has the expected
dimension as well. Using Theorem 1.4.2 we prove a stronger version of this theorem:

Proposition 4.3.3. If G = (V,E) on n−1 vertices has the expected dimension
and we construct G′ from G by adding a new vertex n and edges k → n and n→ l
for some k, l ∈ V , then G′ has the expected dimension.

Proof. Let A = A(G) and A′ = A(G′) be the parameter matrices correspond-
ing to G and G′, respectively. Observe that A′ is constructed from A by adding an
extra row and column, so A is a submatrix of A′. Consider the coefficient matrices
B = B(G) and B′ = B(G′) corresponding to G and G′, respectively. Since G is
assumed to have the expected dimension, we know from Theorem 1.4.2 that B has
full rank. We will use this fact to show that B′ has full rank as well.

From the fact that B has full rank, it follows that B has a square submatrix B̂
of size (n− 3)(n− 2) which has nonzero determinant. This matrix is obtained from
B by deleting a subset of the rows. Because A is a submatrix of A′, all row indices
of B are also row indices of B′, so we can construct B̂′ from B′ by removing the
same subset of the rows as we removed from B.

Rearrange the rows of B̂′ such that the last 2n − 4 rows are indexed by pairs
of the form (n, i) or (j, n), where i, j ∈ {1, . . . , n − 1}, i 6= k and j 6= l. Similarly,
rearrange the columns of B′ such that the last 2n− 4 columns are indexed by pairs
of the form (n, i) or (j, n), where i, j ∈ {2, . . . , n − 1}. If we would remove these
rows and columns, the remaining matrix would be precisely the matrix B̂. So we
write B̂′ as a block matrix,

B̂′ =

[
B̂ C1

C2 D

]
,

where the block D has size (2n− 4)× (2n− 4).
Next, consider the blocks C1, C2 and D. According to equation (4.1), blocks

C1 and C2 have entries of the form ±ain and ±anj with i, j ∈ {1, . . . , n − 1}, but
the only nonzero parameters of this form are ank and aln, since these are the only
edges to and from vertex n. Block D can again be written as a block matrix, by
distinguishing between entries of the form (n, ·) and (·, n). Note that B(n,i),(j,n) = 0
for all i, j 6= n. We claim that D will be block diagonal:

D =




(n, ·) (·, n)

(n, ·) −(AT )k,1,n 0

(·, n) 0 Al,1,n


,

where the diagonal blocks Al,1,n,−(AT )k,1,n are submatrices of A,AT , respectively,
defined as follows. Let (AT )k,1,n be the submatrix of AT obtained by removing row
k and column 1, and replacing aii by aii − ann for i ∈ {2, . . . , n− 1}. Let Al,1,n be
the submatrix of A obtained by removing row l and column 1, and replacing aii by
aii− ann. Indeed, for the entries of block D that are indexed by ((i, n), (j, n)) with
i 6= l, n and j 6= 1, n, we obtain the matrix A except for column 1 and row l, with
diagonal entries aii − ann. Similarly, it follows that the other diagonal block of D
equals −(AT )k,1,n. For sufficiently general A, the matrices Ak,1,n and Al,1,n have
full rank (Lemma 4.3.4) hence D will have nonzero determinant.

Neither D nor B̂ can contain the parameters ank, aln, which are the only
nonzero entries of C1, C2. Therefore, we can set ank = aln = 0, such that B̂′
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Figure 4.4. Graph G′; obtained from G (black) by adding a line seg-
ment (red).

becomes a block diagonal matrix with invertible diagonal blocks. This proves that
B̂′ has full rank on an open dense subset of ΘG′ , so B′ has full column rank for
sufficiently general A′. We conclude that G′ has the expected dimension. �

Lemma 4.3.4. Let G be a strongly connected graph on n − 1 vertices and let
A ∈ ΘG. For l ∈ [n−1] define Ak,l,n to be the submatrix of A obtained by replacing
the diagonal entries aii by aii−ann for all i ∈ [n−1], and removing row k and column
l. Then for sufficiently general A, the matrix Ak,l,n has nonzero determinant.

Proof. Since G is strongly connected, there exists a path p from k to l, say

p = {k = v1, v2, . . . , vr−1, vr = l}.
Let vr+1, . . . , vn−1 be the vertices of G that do not appear in p. Rearrange the rows
and columns of Ak,l,n such that the row indices are ordered as

v2, v3, . . . , vr, vr+1, . . . , vn−1

and the column indices are ordered as

v1, v2 . . . , vr−1, vr+1, . . . , vn−1.

Then Ak,l,n has diagonal

(av2v1 , av3v2 , . . . , avrvr−1 , avr+1vr+1 − ann, . . . , avn−1vn−1 − ann)

whose entries are nonzero for sufficiently general A. All entries of Ak,l,n correspond
to different parameters, so taking the diagonal entries large enough will make the
determinant of Ak,l,n nonzero. Having full rank is a Zariski open condition on
the parameters (Appendix A) so it follows that Ak,l,n has full rank for sufficiently
general A. �

Observe that the proof of Proposition 4.3.3 does not need any restrictions on
k, l ∈ V , so we can add a cycle by choosing k = l.

The converse of Proposition 4.3.3 does not hold; if G does not have the expected
dimension, then G′ might still have the expected dimension. For example, consider
the graph G′ in Figure 4.4 which is obtained from the graph G by adding vertex
5 and edges 3 → 5 and 5 → 2. The graphs G,G′ have parameter matrices A,A′,
respectively:

A =




a11 a12 0 a14
a21 a22 0 0
0 a32 a33 a34
0 0 a43 a44


 A′ =




a11 a12 0 a14 0
a21 a22 0 0 a25
0 a32 a33 a34 0
0 0 a43 a44 0
0 0 a53 0 a55




From the structure of A we see that G does not have the expected dimension, since
the pair (3, 4) satisfies Condition 3.3.1. On the other hand, one can check that G′

does have the expected dimension using Algorithm 3.2.
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Figure 4.5. Block form of B̂′

We have just proven that it is a valid operation to add a line segment of length
two to a given graph with the expected dimension. The next theorem strengthens
this result, saying that it is a valid operation to add a line segment of any length.

Proposition 4.3.5. Let G = (V,E) on n − 1 vertices be a graph with the
expected dimension. Construct G′ from G by adding new vertices n1, . . . , ns and
edges k → n1, ns → l and ni → ni+1 for i = 1, . . . , s−1, where k, l ∈ V are vertices
of G. Then G′ has the expected dimension.

Proof. Let A = A(G) and A′ = A(G′) and observe that A is a submatrix
of A′, since G is a subgraph of G′. Consider the coefficient matrices B = B(G)
and B′ = B(G′) corresponding to G and G′, respectively. Similar to the proof
of Proposition 4.3.3, we will use the fact that B has full rank to show that also
B′ has full rank. Let B̂ be obtained from B by deleting a subset of the rows,
such that B̂ has nonzero determinant. Let B̂′ be obtained from B′ by deleting the
same subset of the rows, and additionally deleting the rows indexed by (1, np) for
all p ∈ [s]. Again, we rearrange the rows and columns of B̂′, but since we add
multiple vertices this needs a bit more attention. Distinguish between indices of
the form (i, j) with i, j ∈ V and indices of the form (np, r) or (r, np) with p ∈ [s]
and r ∈ V ∪ {nq | q < p}. We claim that this brings B̂′ into the form of Figure 4.5,
where the empty blocks are all zero, and the blocks containing a parameter aij
contain both zero entries and entries of the form aij .

To show that B̂′ is indeed of this form, we consider the different blocks one by
one, starting with the upper left block. From the fact that A is a submatrix of A′,
it follows that the submatrix of B̂′ corresponding to the rows and columns indexed
by pairs of the form (i, j) with i, j ∈ V is exactly the matrix B̂.

The remaining positions in the rows indexed by (i, j) with i, j ∈ V have columns
indexed by (np, r) or (r, np) with p ∈ [s] and r ∈ V ∪ {nq | q < p}. According to
equation (4.1), the only nonzero entries occur when r = j or r = i, respectively,
and this gives the entry anpi or ajnp

. However, the only entries of A′ of this form
are an1k and alns

. A similar analysis of the positions in the columns indexed by
(i, j) with i, j ∈ V but outside B̂, shows that the only nonzero entries are of the
form an1k and alns as well.
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Next, consider the blocks Dp, where p ∈ [s]. The positions of Dp are indexed
by (i, np), (j, np), hence they have at least their second coordinate in common. If
i 6= j, the corresponding entry is of the form aij , and if i = j we obtain aii−anpnp .
Because of our ordering of rows and columns, we have i, j ∈ V ∪{nq | q < p}, i 6= 1,
and by definition of B′ = B(G′) also j 6= 1. Therefore the block Dp equals the
submatrix of A′ obtained by deleting rows and columns indexed by 1 or nq with
q ≥ p. Furthermore, the diagonal entries aii of A′ have been replaced by entries
aii−anpnp . Thus, the block Dp is a block lower diagonal square matrix of the form

Dp =

A1,1,np

an1k an1n1 − anpnp

anp−1np−1
− anpnp

an2n1

anp−1np−2

with determinant

det(Dp) =

{
det(A1,1,np

) if p = 1

det(A1,1,np
)
∏p−1
j=1(anjnj

− anpnp
) if p ≥ 2.

Analogously, the row and column indices of blocks D′p all have their first co-
ordinate in common. The positions are indexed by (np, i), (np, j), which implies
that the entries are of the form −aji or −(aii − anpnp

). Note that we obtain −aji
instead of aij , so if we apply a similar analysis as we did for Dp, we obtain some
submatrix of −(A′)T . Furthermore, there is no row index of the form (np, np−1),
since the edge np−1 → np occurs in G′. Hence −(D′p)

T equals the submatrix of A′

obtained by deleting rows and columns indexed by nq with q ≥ p, and also deleting
column np−1 and row 1. Again, the diagonal entries aii of A′ have been replaced by
entries aii − anpnp

. If we separate column k from the rest of the columns indexed
by (np, i) with i ∈ V , we see that the block D′p is a block upper diagonal square
matrix of the form

−(D′p)T =
an1n1 − anpnp

anp−2np−2
− anpnp

an2n1

anp−1np−2

A1,k,np

an1k

a(n−1)k

a2k

and its determinant satisfies

±det(D′p) =





det(A1,k,n1
) if p = 1

det(A1,k,n2)an1k if p = 2

det(A1,k,np)an1k

∏p−2
j=1(anj+1nj ) if p ≥ 3.

Finally, consider the entries which do not lie in any of the blocks Dp or D′p or

in the rows and columns denoted by V in B̂′. These rows are indexed by (np, ·) or
(·, np), while the columns are indexed by (nq, ·) or (·, nq) with q 6= p. If two such
pairs have an entry in common, then the two remaining entries determine the value
of the corresponding entry of B̂′. Equation (4.2) gives an overview of all possible
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pairs of indices having a coordinate in common, the corresponding entry of B̂′ and
the conditions for this entry to be nonzero.

(4.2)

(np, i), (nq, i)  anpnq
6= 0 iff p = q + 1

(i, np), (i, nq)  anqnp
6= 0 iff p = q − 1

(np, nq), (i, nq)  anpi if p > q = 0
(nq, np), (nq, i)  ainp if p > q 6= 0 iff p = s, i = l
(np, i), (np, nq)  anqi if p < q = 0
(i, np), (nq, np)  ainq

if p < q 6= 0 iff q = s, i = l

We conclude that B̂′ is indeed as claimed. Since the diagonal blocks of B̂′ have
full rank, its determinant contains a term

m1 = det(B̂)

s∏

p=1

det(Dp) det(D′p),

and we will show that this term cannot be cancelled out.
Recall that it is enough to show that det(B̂′) is nonzero for A in some Zar-

iski open subset of Θ, since we only consider sufficiently general A (see also Ap-
pendix A). Therefore, we can simplify things by setting alns = 0 and ansns−1 = 0.
Note that these parameters do not appear in m1, because none of the Dp, D

′
p con-

tain rows or columns of A′ that are indexed by ns, hence setting these parameters
to zero does not affect m1.

Suppose m2 is a term of the determinant of B̂′ which cancels out m1, then
it must have at least one entry from outside the diagonal blocks of B̂′. From our
previous observations, we know that these entries are of the form

an1k, an2n1
, . . . , ans−1ns−2

,

since ansns−1
= ajns

= 0. As we have seen, these parameters also appear in
the determinants of D′p. More specific, ans−1ns−2

occurs only in det(D′s), while
ans−2ns−3

occurs in det(D′s) and det(D′s−1), continuing up to an1k which divides all
of det(D′1), . . . ,det(D′s). Using this observation, we will argue that m2 can never
yield the term m1.

Consider the block D′s. From the fact that we set ansns−1 to zero, it follows that

the rows of B̂′ indexed by (ns, ·) are all zero outside D′s. Therefore, any term in
the determinant of B̂′ contains det(D′s). The parameter ans−1ns−2

appears exactly
once in m1, namely in det(D′s), so m2 cannot contain another factor ans−1ns−2

.
Now consider the block D′s−1 and observe that the only nonzero entries in the

rows of B̂′ indexed by (ns−1, ·) are of the form ans−1ns−2 . From the observation
that m2 cannot contain these entries, it follows that m2 contains a factor det(D′s−1).
The parameter ans−2ns−3

appears exactly twice in m1, namely in det(D′s) and in
det(D′s−1), hence m2 cannot contain a third factor ans−2ns−3

. One can repeat this
argument, showing step by step dat m2 cannot contain any entries which are outside
the diagonal blocks. However, this implies that m1 cannot be cancelled out by m2

in the determinant of B̂′. This shows that det(B̂′) is nonzero for sufficiently general
A′, thus proving that G′ has the expected dimension. �

One can obtain Proposition 4.3.5 from Proposition 4.3.3 by subdividing the
edges of the line segment. We believe that in general, subdividing an edge is a
valid operation. It has been verified for all graphs G on four and five vertices using
Mathematica, as well as for larger random graphs. Unfortunately, the techniques
we used to prove the previous propositions cannot be applied here so easily, because
the matrix A(G) is not a submatrix of A(G′).



4.4. EAR DECOMPOSITIONS 41

1

2 3

4 1

2 3

4 1

2 3

4 1

2 3

4

G E1 E2 E3

Figure 4.6. A graph G with three different ear decompositions E1, E2, E3.

Conjecture 4.3.6. Let G be a graph on n − 1 vertices and let k → l be an
edge in G. Construct the graph G′ on n vertices subdividing the edge k → l, i.e.
by adding vertex n to G and replacing the edge k → l by two edges k → n, n → l.
Then if G has the expected dimension, G′ has the expected dimension as well.

4.4. Ear decompositions

This section describes how to construct graphs with the expected dimension
using Propostion 4.3.5. Starting from a cycle, which has the expected dimension,
we can add line segments to obtain new graphs, for example all minimally strongly
connected graphs. This gives rise to a procedure to obtain a graph which has the
expected dimension from a graph which does not have the expected dimension. An
important concept that we shall be using is the ear decomposition of a directed
graph, as defined in [BJG07]:

Definition 4.4.1. Given a directed graph G, let E = {P0, P1, . . . , Pt} be a
sequence of cycles and paths in G, t ≥ 0, and define Gi = P0 ∪ P1 ∪ . . . ∪ Pi. Then
E is an ear decomposition of G if P0 is a cycle, Gt = G, and each Pi is a path
from Gi−1 to Gi−1, but has no vertices in common with P0, . . . , Pi−1 except for
its starting point and its endpoint. The Pi are called the ears of E , and if Pi has
length one it is called a trivial ear.

Note that the graphs G0, . . . , Gt are strongly connected, hence if G has an ear
decomposition then it must be strongly connected. The converse also holds: if
a graph is strongly connected, then it must have an ear decomposition. Indeed, a
strongly connected graph G contains at least one cycle, so let this be P0. Suppose we
have found ears P0, P1, . . . , Pi with corresponding graphs G0, G1, . . . , Gi as defined
above. If Gi does not contain all vertices of G, choose a vertex y that is not in
Gi, such that there exists an edge x→ y in G for some vertex x in Gi. Since G is
strongly connected, such a vertex must exist. Furthermore, there must be a path
P from y back to Gi, so choose Pi+1 to consist of x → y followed by P . We can
continue this procedure, until at some point Gj contains all vertices of G. Then all
remaining edges must be trivial, so we can add these one by one to complete the
ear decomposition. Thus, we have shown the following well-known condition:

Lemma 4.4.2. A graph has an ear decomposition if and only if it is strongly
connected.

A graph may have many different ear decompositions, as shown in Figure 4.6.
Each of these decompositions has the same number of ears, namely m−n+1. This
follows from the fact that all ears are edge disjoint, and if the ear Pi contains k
edges, then the corresponding graph Gi has k−1 new vertices with respect to Gi−1.
So if a decomposition has t ears, then the number of vertices of G must be equal
to m − t + 1, where the term “+1” comes from the initial cycle P0. We conclude
that indeed the number of ears in an ear decomposition of a given graph is fixed.
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Our purpose is to construct graphs with the expected dimension, using the
results of the previous section. Therefore, we define a specific kind of ear decom-
position:

Definition 4.4.3. A graph G is said to have a correct ear decomposition if it
has an ear decomposition without trivial ears, and such that the initial cycle P0

contains vertex 1.

Consider the graph G given in Figure 4.6, and the three ear decompositions
E1, E2, E3. In each Ei, let P0, P1 and P2 be the red, blue and green ears, respectively.
Then the initial cycle P0 contains vertex 1 in each of the three decompositions.
However, E1 is the only ear decomposition without trivial ears. In other words, E1
is a correct ear decomposition of G, but E2 and E3 are not.

Theorem 1.4.4. Let G be a graph that has a correct ear decomposition, then
G has the expected dimension.

Proof. Let G have a correct ear decomposition E = {P0, . . . , Pt}. A correct
ear decomposition consists of nontrivial ears, and a nontrivial ear corresponds to a
line segment of length at least two, as defined in Section 4.1. Since a cycle is known
to have the expected dimension, it follows that G0 has the expected dimension, and
we can apply Proposition 4.3.5 t times to conclude that G1, G2, . . . , Gt all have the
expected dimension. In other words, if a graph has a correct ear decomposition,
then it certainly has the expected dimension. �

Conversely, if a graph has the expected dimension, it does not need to have a
correct ear decomposition. For example, the graph in Figure 4.3 has no correct ear
decomposition, yet it does have the expected dimension.

Proposition 4.4.4. A graph G is minimally strongly connected if and only if
all its ear decompositions have no trivial ears.

Proof. Suppose that G has an ear decomposition with a trivial ear. Then the
graph obtained from G by deleting the edge of this trivial ear is strongly connected,
because it has an ear decomposition. Hence G is not minimally strongly connected.

Conversely, suppose that G is not minimally strongly connected, then it has
an edge e that can be removed, such that the resulting graph G′ remains strongly
connected. Then G′ has an ear decomposition, and adding the trivial ear that
contains the edge e results in an ear decomposition of G that has a trivial ear. �

We have seen that a graph which has a correct ear decomposition has the
expected dimension, hence an immediate consequence of the above proposition is
the following:

Corollary 4.4.5. If G is minimally strongly connected, then it has the expec-
ted dimension.

The converse does not hold, because for G to have the expected dimension it
is enough to have only one correct ear decomposition. For example, the graph G
in Figure 4.6 has a correct ear decomposition, hence the expected dimension, but
it is not minimally strongly connected.

Proposition 4.4.6. Let G be a graph that contains a 2-cycle {i → j, j → i},
and let G′ be the graph where the vertices i and j have been identified. If G has a
correct ear decomposition, then so does G′.

Proof. Let E be a correct ear decomposition of G. Any 2-cycle C in G must
appear as an ear in E , because if there is an ear that contains only one of the two
edges in C, then the other edge can only appear as a trivial ear. After identifying
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vertices i and j to obtain G′, the 2-cycle no longer exists. A correct ear decom-
position of G′ is obtained from E by removing the ear that is equal to the 2-cycle
and replacing vertex j by vertex i in the remaining ears. Note that the number of
edges in these ears does not change, so they remain nontrivial. �

A special case of this theorem occurs when G has an exchange, and G′ is
obtained by collapsing the exchange. This shows that Conjecture 4.2.6 holds when
G has a correct ear decomposition.

Theorem 1.4.4 gives rise to two options to turn a graph that does not have the
expected dimension into a graph that does have the expect dimension. If G does not
have the expected dimension, then every ear decomposition of G contains a trivial
ear. In order to transform the graph into one that has a correct ear decomposition,
start with an arbitrary ear decomposition and either remove the trivial ears, or
subdivide the corresponding edges, such that they are no longer trivial. To keep the
number of changes as small as possible, one should start with an ear decomposition
with the smallest possible number of trivial ears. In Section 5.2 we will briefly
discuss what this means in practice.

4.5. Computational results

In the previous section, we have seen two classes of graphs with the expected
dimension: the graphs which have a correct ear decomposition, and those which
are minimally strongly connected. Moreover, from Corollary 4.2.5 we know that
all inductively strongly connected graphs (with at most 2n − 2 vertices) have the
expected dimension. Using the computer algebra package Mathematica, the car-
dinalities of these classes have been calculated for n = 3, 4, 5. We will first discuss
in short how these results were obtained, the corresponding source code is available
upon request.

Let G(n) denote the class of strongly connected graphs on n vertices with at
most 2n−2 edges, up to the following equivalence. Since vertex 1 has a special role,
graphs are considered to be equivalent if they can be obtained from one another
by permuting vertices 2, 3, . . . , n. This class can be constructed in Mathemat-
ica using the function “ListGraphs[n, m, Directed]” from the Combinatorica
package. This function generates all directed graphs on n vertices and m edges, up
to permuting vertices 1, 2, . . . , n. We obtain only a subset of G(n), hence to each
graph generated by Mathematica we apply the permutations (12), (13), . . . , (1n),
and filter the resulting graphs up to permutations of 2, 3, . . . , n.

Let G∗(n) be the subset of G(n) containing all graphs which have the expected
dimension. This class is calculated efficiently by applying Algorithm 3.2 of the
previous chapter to the graphs in G(n).

Define Gc(n) to be the class of graphs in G(n) that have a correct ear decom-
position. This class can be calculated by doing a breadth-first search, computing
all correct ear decompositions of the input graph.

Let GISC(n) consists of all graph in G(n) which are inductively strongly connec-
ted. These graphs can be constructed by adding the vertices one by one, while at
each step the resulting graph is strongly connected. Again, this class can be com-
puted by doing a breadth-first search. Note that an inductively strongly connected
graph has at least 2n− 2 edges, so for elements of GISC(n) equality holds.

Finally, let GMSC(n) be the class containing all minimally strongly connected
graphs. To check whether a graph G = (V,E) is in this class, let E = {e1, . . . , em}
and construct graphs Gi = (V,E \ {ei}) for i = 1, . . . ,m. For each of these graphs,
check whether is is strongly connected; as soon as some Gi is indeed strongly
connected, G is not in GMSC(n). If there is no such Gi, then G is minimally
strongly connected.
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n |G(n)| |G∗(n)| |Gc(n)| |GISC(n)| |GMSC(n)|
3 6 5 5 4 3

4 71 43 39 26 12

5 1472 628 450 267 57

Table 4.1. Computational results

From section 4.4, we know that

GMSC(n) ( Gc(n) ( G∗(n) ( G(n).

The class of inductively strongly connected graphs GISC(n) is also a subset of Gc(n),
but GMSC(n) is not contained in GISC(n) or vice versa.

The cardinalities of these classes (for n = 3, 4, 5) are presented in Table 4.1. It
shows that the class of graphs with a correct ear decomposition is a large subset of
G∗(n), but the ratio |Gc(n)|/|G∗(n)| decreases as n grows.



CHAPTER 5

Conclusions

In this chapter we give an overview of the previous chapters and of the results
that we obtained. Section 5.2 discusses how these results can be applied to phar-
macokinetic models, and we conclude with some suggestions for future research in
Section 5.3

5.1. Overview

Identifiability concerns the possibility of uniquely determining the parameters
of a given model from input-output data. We considered generic local identifiabil-
ity, meaning that sufficiently general parameter values are at least locally a unique
solution to the parameter estimation problem. A question that arises is what to
do when a model is unidentifiable. Therefore, we studied a specific class of linear
compartment models, which are known to be unidentifiable [MS14]. This class
consists of all models that can be represented by a strongly connected graph with
a unique input-output compartment, and satisfy the assumption that every com-
partment has an outflow of material to the environment. An input-output map was
presented: the double characteristic polynomial map. We saw that the dimension of
the image of this map is smaller than the dimension of the parameter space. Thus,
the double characteristic polynomial map is not injective and the model parameters
can never be identifiable.

To deal with unidentifiable models, we considered the existence of an iden-
tifiable scaling reparametrization. This is a map which reduces the number of
parameters by scaling the state variables, such that the model becomes identifi-
able. If an identifiable scaling reparametrization exists, then the model is said to
have the expected dimension. In Chapter 3 we considered the following quesion:

Question 1.4.1. For which graphs satisfying our assumptions does there exist
an identifiable scaling reparametrization?

A criterion to test whether a graph has the expected dimension was presented
in [MS14]. This criterion was based on the dimension of the image of the double
characteristic polynomial map. Using basic algebraic geometry and graph theory,
we translated this criterion to an alternative criterion which is easier and more
efficient to evaluate. This was our main result, stated in Theorem 1.4.2. The
criterion is based on the rank of the bi-adjacency matrix of the bipartite graph
defined in equation (3.6).

The two criteria lead to algorithms to test whether a graph has the expected
dimension. Both criteria consider the rank of a matrix, namely the differential dAc
of the double characteristic polynomial map and the bi-adjacency matrix B(G).
The differential map is of size (2n − 1) × (n + m) while the matrix B(G) has
size (n2 − n − m) × (n − 1)(n − 2). On the other hand, the entries of dAc are
polynomials in aij of degree n, while the entries of B(G) are linear combinations
of parameters, hence of degree 1. A complexity analysis showed that both criteria
lead to a probabilistic algorithm that runs in polynomial time. The algorithm that
considers the differential has an asymptotic complexity of O(n5) operations, while
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the algorithm that considers the bi-adjacency matrix has an asymptotic complexity
of O(n6) operations. Computational results showed that for small n the second
algorithm is more efficient, in which case our new criterion reduces the costs of
determining whether a graph has the expected dimension.

Thus, we have derived a new criterion to answer Question 1.4.1. The second
question we considered is the following:

Question 1.4.3. What constructions can we apply to a given graph, such that
the resulting graph has an identifiable scaling reparametrization?

This question was treated in Chapter 4. Theorem 1.4.2 led us to some new
constructions that can be applied to a graph with the expected dimension, such that
the resulting graph has the expected dimension as well. Our first result states that if
a graph can be written as a union of two subgraphs with only one vertex in common,
then this graph has the expected dimension if both subgraphs have the expected
dimension. We saw that this is a sufficient condition, but not necessary. Our second
result states that if a graph has the expected dimension, then after adding a line
segment of length at least two, the resulting graph still has the expected dimension.
This is a very useful construction, because starting from the trivial graph with only
one vertex, one can build many graphs simply by adding line segments. We defined
what it means for a graph to have a correct ear decomposition, which led to our
main result of Chapter 4: if a graph has a correct ear decomposition (i.e. an ear
decomposition without trivial ears and whose initial cycle contains vertex 1), then
it has the expected dimension. This was stated in Theorem 1.4.4.

Finally, we observed that Theorem 1.4.4 allows us to transform any graph into
one that has the expected dimension: find an ear decomposition with the least
number of trivial ears, then adjust the graph such that the trivial ears disappear.
This can be done either by deleting the edges corresponding to the trivial ears, or
by subdividing those edges.

In conclusion, we derived a new criterion for the existence of an identifiable scal-
ing reparametrization and proved several valid constructions. These results bring
us a few steps towards our goal to obtain a full classification of graphs which have
an identifiable scaling reparametrization. The computational results in Section 4.5
show that the class of graphs which have a correct ear decomposition does not
contain all graphs which have the expected dimension. Furthermore, we saw that
the ratio of such graphs decreases as n grows. Thus, there are more constructions
to be discovered, as discussed in Section 5.3.

5.2. Applications

Section 1.2 covered some applications of linear compartment models, with a
focus on pharmacokinetic models. We will briefly revisit these models, and apply
the results that were obtained in this thesis.

Pharmacokinetic models often have a mammillary or catenary structure, as de-
picted in Figure 5.1. For example, the 3-compartment model that was presented in
Figure 1.2b has a mammillary structure. From the results in Chapter 4 it follows
that these models have the expected dimension. In other words, there exists an
identifiable scaling reparametrization. The full body model that was discussed in
the introduction of this thesis (Figure 1.2a) can be seen to have a correct ear decom-
position and therefore it has the expected dimension. Note that the fact that an
identifiable scaling reparametrization exists doest not mean that it is appropriate;
there may be situations in which the model as originally defined has to be studied.

We have seen two ways to transform a model which does not have the expected
dimension into one that does have the expected dimension: either remove the trivial
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Figure 5.1. Pharmacokinetic model structures

ears, or subdivide the corresponding edge. When constructing a model, the latter
is the more natural operation to apply. Indeed, an edge represents the flow of
material, and deleting an edge corresponds to ignoring part of the flow, and this
would give an incorrect model. On the other hand, subdividing an edge corresponds
to adding an extra compartment in between two existing compartments, which is a
much more natural way to adapt the model. Of course, the additional compartment
should also have a leak, in order to satisfy Assumption 1.1.4.

5.3. Future work

In Chapter 4 it was shown that adding a nontrivial ear to graph is a valid
operation, i.e. if the input graph has the expected dimension, then so does the
resulting graph. This allows us to construct many graphs which have the expected
dimension, but not all. A remaining problem is to find out what distinguishes the
graphs which have the expected dimension but no correct ear decomposition, from
the graphs which do not have the expected dimension. More valid constructions
remain to be discovered, which will eventually lead to a full classification of graphs
which have an identifiable scaling reparametrization. In Section 4.3 the following
conjecture was formulated, which would be a nice starting point for future research.

Conjecture 4.3.6. Let G be a graph on n − 1 vertices and let k → l be an
edge in G. Construct the graph G′ on n vertices subdividing the edge k → l, i.e.
by adding vertex n to G and replacing the edge k → l by two edges k → n, n → l.
Then if G has the expected dimension, G′ has the expected dimension as well.

In this thesis we only considered a specific class of models, so the next step
will be to consider more general models. For example, what can we say about
the case where the input and output do not take place in the same compartment?
Suppose the input takes place in compartment 1, while the output takes place in
compartment 2. This affects the input-output equation we found in Section 2.2 and
hence also the double characteristic polynomial map. Similar to Theorem 2.2.1, the
input-output equation becomes

det(∂In −A)y = det(∂In−1 −A2)u,

where A2 denotes the matrix obtained from A by removing its first row and its
second column. This equation gives rise to a coordinate map c′, analogous to the
definition of the double characteristic polynomial map c in Section 2.2. It would
be interesting to see if we can apply a similar analysis to the coordinate map c′ as
we did for c.

Another extension would be to consider multiple input-output compartments.
In this case we also obtain a different, more complicated input-output equation.
The techniques that were used in this thesis cannot be applied directly, but the
ideas might still be useful.
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A final interesting question is what happens if not every compartment has a
leak. In this case the input-output equations remain the same, but the parameters
are no longer independent. In other words, the dimension of the parameter space ΘG

is smaller than m+n. Therefore, such a model might be identifiable, in which case
a reparametrization is no longer required. If it is not identifiable, do the obtained
results concerning the existence of an identifiable scaling reparametrization still
hold?



APPENDIX A

Varieties and tangent spaces

In this appendix we state some basic concepts from algebraic geometry which
are used in the text. The material we present comes from [CLO07], [Har92] and
[Sha13].

Let K be an algebraically closed field, then an affine variety is the set of solu-
tions of a system of polynomial equations over K. When K = C we speak of a
complex variety. In this thesis we only consider complex varieties, but the results
stated here hold in general.

Definition A.1. Given a set of polynomials f1, . . . , fs ∈ K[x1, . . . , xn], the
affine variety X = V(f1, . . . , fs) is defined as

V(f1, . . . , fs) = {(a1, . . . , an) ∈ Kn | fi(a1, . . . , an) = 0 for i = 1, . . . , s}.
This means that a variety X can be represented by an ideal I = (f1, . . . , fs) ∈

K[x1, . . . , xn], which is called the implicit representation of X. Conversely, a variety
X defines an ideal I(X) by

I(X) = {f ∈ K[x1, . . . , xn] | f ≡ 0 on X}.
It is clear that I ⊆ I(V(I)), but equality doesn’t necessarily hold. If so, I is called
a radical ideal.

The topology that is used on algebraic varieties is the Zariski topology. On a
variety X, the Zariski topology is defined by its closed sets, which are taken to be
the common zero loci of polynomials on X. In other words, a set is closed if it is
of the form V(S) for some set S of polynomials in K[x1, . . . , xn]. A set is open if it
is the complement of a closed set.

The Zariski closure of a subset S ⊆ X is the smallest Zariski closed set contain-
ing S, which is V(I(S)). A subset S ⊆ X is called Zariski dense in X if X = S,
where S denotes the closure of S. For K algebraically closed, any nonempty open
set is dense in the Zariski topology. This fact allows us to conclude that if some
Zariski open property holds at a certain point on X, then it must hold almost
everywhere on X.

The tangent space to an affine variety X at a point p consists of all lines through
x which are tangent to X. Given a variety X with ideal I(X) = (f1, . . . , fs), define
the s × n matrix M = (∂fi/∂fj), where i = 1, . . . , s and j = 1, . . . , n. Then the
Zariski tangent space to X at p, denoted Tp(X), is defined as the kernel of M . In
general, the dimension of Tp(X) is at least the dimension of X itself, but it may
be larger. When equality holds, X is said to be smooth at p. The set of smooth
points of a variety is dense, i.e. a variety is smooth almost everywhere.

Definition A.2. Let U ⊂ X be an open set and p ∈ U a point. A function f
on U is called regular at p if in a neighborhood of p it can be written as a quotient
g/h of polynomials g, h ∈ K[x1, . . . , xn] with h(p) 6= 0. Moreover, if f is regular at
every point of U , then f is called regular on U .
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Any regular map f : X → Y induces a map df : Tp(X) → Tf(p)(Y ), the
differential of f . The differential can be obtained by determining the coefficient of
ε in f(x + εv). This follows from the fact that the Taylor series of a function f
around x is of the form

f(x+ εv) = f(x) + (dxf)(v)ε+ . . .

where x, v ∈ X and ε ∈ R. To simplify calculations, note that it is sufficient to
determine the coefficient of ε in f(x+ εv) modulo ε2. In Section 3.1 this is used to
determine the differential of the conjugation map ψ : g 7→ gAg−1 at the identity.

Definition A.3. A regular map f : X → Y is called dominant if its image is
dense in Y .

The following proposition can be used to determine the dimension of the image
of f , and plays an important role in Chapter 3.

Proposition A.4. Let f : X → Y be a dominant regular map of varieties
defined over a field K of characteristic 0. Then there exists a nonempty open
subset U ⊂ Y such that for any smooth point p ∈ f−1(U) in the inverse image of
U , the differential dpf is surjective. In other words, rk(dpf) = dimY for p ∈ U .

Proof. A proof of this proposition can be found in [Har92]. �
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