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A B S T R A C T

In this thesis we present the problem and solution for automatically
generating routing logic for a baggage handling system, used by Van-
derlande. Routing logic for a baggage handling system is captured
through routing rules. Routing rules indicate at decision points what
the preferred course of action is to get baggage to its (intermediate)
destination. We want to generate a valid (i.e. complete) and good (i.e.
high performance) set of routing rules, which are currently created
manually. For a large baggage handling system, creating a complete
set of routing rules can take up to two months of man-hours, which
is why Vanderlande seeks a way to reduce this.

We present a framework capable of doing so, consisting of three
processes: the creation process, the analysis process and the optimiza-
tion process. Using graph theory as a basis, the creation algorithm
applies a modified shortest path algorithm in order to generate an
initial set of routing rules. The creation process only regards singu-
lar bags, and disregards the effect of multiple bags in the system. The
analysis process is used for analysing an arbitrary set of routing rules,
in order to indicate the performance of that set. Through the use of
flow algorithms, we simulate thousands of bags in the system, being
routed using the given set of routing rules. This analysis process is
capable of indicating possible bottlenecks in the system due to in-
efficient routing. The optimization process uses these bottlenecks as
input and applies optimization techniques in order to try to resolve
or reduce the bottlenecks.

Using two datasets of actual baggage handling systems used by
Vanderlande, we analysed the performance of the routing rules gen-
erated by our framework. The initial sets of routing rules generated
by the creation algorithm already contain 50% to 75% of all manually
created routing rules. The performance of these initial sets are around
two-thirds worse than the performance of the manually created sets.
After analysis and applying optimizations, the performance of these
initial sets can be further increased by 15% to 20%.

Further improvements to the framework are still possible by intro-
ducing knowledge about the history of baggage, used in the anal-
ysis process. This increases the amount of information extracted by
the analysis algorithm, and makes it possible to resolve bottlenecks
that are the result of multiple inefficient routing decisions spread out
across the system.
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I N T R O D U C T I O N

Vanderlande specializes (among other things) in baggage handling
systems, which nowadays are a must at airports in order to success-
fully get baggage from point A to point B in ever-growing airport
terminals. Such a baggage handling system is responsible for getting
passenger baggage from the check-in desk to the loading area of the
passenger’s aircraft. Not only does the system need to take care of
routing baggage through kilometers of underground conveyor belts,
but baggage also needs to be scanned, checked and sometimes ad-
justed manually. One can imagine that these systems are increasingly
complex, both because of the amount of routing possibilities, as well
as the use of redundancy in order to decrease the possibility of com-
plete failure of the systems.

These baggage handling systems are captured in computer models,
which describe such a system in a schematic way. Using these models,
all routing possibilities of baggage are predetermined by the system
architects. When baggage is inserted, it is known what parts of the
system the baggage can possibly be routed through. At any position
in the system, it should be known how to route baggage to any of
those possible destinations. This knowledge is captured in a routing
scheme which consists of routing rules.

Each system has decision points, which can be seen as the intersec-
tions on a highway having multiple exits. It is possible that a single
bag can take two or more exits, and thus we want to indicate which
exit should be taken. Such a decision is a routing rule: for a single
intersection indicating what exit is most preferable, given a destina-
tion for a bag. As such, these routing rules make sure that a bag can
always be routed towards its destination. In cases of failure in the
system (e.g. breakdown of a conveyor), different sets of routing rules
take over in order to cope with the changed situation in the system.
Thus, the routing rules are adaptive towards the state of the entire
system: when the system state changes, the routing rules change as
well.

Currently, these routing rules are created manually at Vanderlande.
Using the experience of employees, routing rules are tailor-made for
each system. The goal of this project is to develop a method capable
of generating a valid and good set of routing rules based on a given
computer model of a baggage handling system. A valid set of routing
rules is complete: it is always possible for a bag to be routed towards
its destination. A good set of routing rules is optimal: the number
of bags the system can handle under peak times is maximized. The
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xiv introduction

developed method should be generic enough to work for any baggage
handling system.

We will present a framework capable of generating such a set of
routing rules. This framework consists of independent processes which
can be used to come to a such a set of valid and good routing rules.
This framework is displayed in Figure 1.

Create initial
routing rules

Analyse
routing rules

Input data

Output
routing rules

Optimize
routing rules

Iterative process

Figure 1: Framework used for reaching the project goal

In this framework, we have defined three distinct processes. Each
of these processes will contribute on their own to the project goal.

initial creation process is responsible for creating an initial
set of valid (but not necessarily good) routing rules.

analysis process can analyse an arbitrary set of routing rules and
present bottlenecks that are present in the system.

optimization process , based on the bottlenecks found by the
analysis process, tries to resolve the bottlenecks by modifying
the set of routing rules.

We intentionally introduce a distinction between the initial creation
of routing rules and the iterative process of analysing and optimizing
those rules. There are multiple reasons for this:

• Separation of concerns; we can more easily reason and argue
about both processes if we keep them apart;
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• Independent execution; having a separate analysis process, it is
also possible to analyse and optimize already existing sets of
routing rules;

• Different metric specialisations; the creation of the initial set of
routing rules is primarily focussed on creating a valid set of
routing rules (focus on single bags). The analysis and optimiza-
tion of routing rules are primarily focussed on creating a good
set of routing rules (focus on the entire system, with multiple
bags in it). This separation of specialisation makes it possible
for us to optimize each method for each metric.

Performance metrics will be introduced, through which we can in-
dicate the performance of a set of routing rules. Extracting the defi-
nition of these performance metrics are also part of this graduation
project, as they were previously not defined or ready to use for us. Us-
ing these metrics, we will provide validation for sets of routing rules,
proving the validity (i.e., completeness) of sets. Subsequently, we will
analyse the outcome of our framework, and compare the generated
set of routing rules to those currently operating on existing baggage
handling systems. This shows the performance of rules created with
our framework compared to manually created routing rules; we in-
dicate what the differences between the manually created rules and
generated rules are, and why these differences exist.

In Chapter 1, we will provide a detailed context description on
baggage handling systems and their inner workings. Subsequently,
in Chapter 2, we discuss the problem of generating routing rules for
a baggage handling system, and what exactly is needed to solve this
problem. The approach for solving this problem is given in Chap-
ter 3, where we go in depth on the presented framework. Details on
the implementation of this framework are given in Chapter 4, which
is followed by an extensive analysis of the presented framework in
Chapter 5. We conclude this thesis with the results of our methodol-
ogy, and a discussion about future and related work in Chapter 6.



1
B A G G A G E H A N D L I N G S Y S T E M S

This chapter contains a description of a Baggage Handling System
(BHS) and of the general flow of baggage through such a system.
Also, we discuss the major controlling parts of such a BHS, and show
how routing of baggage is performed.

1.1 baggage flow

Before we can dive into the details about the inner workings of a
BHS, and describing what process layers are present, we first need
to explain how baggage flows through a BHS. An illustration of this
general flow is depicted in Figure 2. The blue dashed lines indicate
the main flow through a BHS. About 90% of all bags will only flow
through these parts of the process.

Check-in

Transfer-in

Auto-
Identification

Manual
coding

Problem
bag

Screening

Store

Lateral Exit

Main flow

Figure 2: General flow of baggage

Generally, baggage is inserted in the system through either check-
in stations, or transfer-ins. Check-in stations are the well-known front
desks of airliners, where passengers report for their flight and drop
off their baggage. Transfer-in is the input of baggage which needs to
be transferred between flights. This applies to passengers who have
landed on an intermediate airport, which is not their end destination,
and need to switch aircrafts. Their baggage needs to be transferred
from one aircraft to the other; also, sometimes this means the baggage
has to be transferred between terminals.

After either of these two input possibilities, the baggage is now in
the BHS. A bag is automatically identified using the label that is placed
on the bag, using ID scanners. Sometimes, the label is unreadable,
which results in the bag being diverted to a manual coding station. An
employee identifies the bag if possible, and returns it to the main line.
All bags after this point in the process need to be checked for any
dangerous materials, thus all baggage will undergo screening. If a bag
does not clear in screening, it will be purged from the system. Should
the bag be deemed secure, it can enter the rest of the BHS (which is

1



2 baggage handling systems

off-limits for unsafe baggage). In case a bag still cannot be identified
even after it has been through manual coding, the bag will go to a
problem bag station (after it has been screened). Here, the bag will be
identified by a more thorough identification process, and returned to
the main line.

If the passenger has checked his baggage in very early (i.e. a cer-
tain amount of hours before the flight), it cannot be stored in its cor-
responding aircraft yet due to regulations. In order to save valuable
space in the system, the bag is then temporarily taken out of the main
flow of the BHS, and moved into storage. There, it is placed on a rack
until it can be processed further. When the corresponding aircraft can
be loaded with baggage, these bags will be taken out of storage and
reinserted in the main flow of the BHS.

Finally, when baggage needs to be loaded onto an aircraft, it needs
to move towards the make-up zone, where all baggage for a specific
aircraft is collected and stored inside the aircraft. The make-up zone
is divided into laterals, which are the final conveyor belts on which
the baggage exits the BHS.

Vanderlande strives for a BHS which is operational 100% of the
time. In order to guarantee such a high availability, a lot of subsys-
tems in a BHS are redundant. Every station is present multiple times,
and important high capacity lines are duplicated. This means that
whenever part of a BHS fails, it is still possible for the BHS to operate
normally due to the huge amount of redundancy.

1.2 running example

Before we actually dive into the inner workings of a BHS, we will
first introduce a running example which we will use throughout this
thesis. Using a running example will enable the reader to visualize
aspects of a BHS when they are explained. Also, the running exam-
ple will provide the reader with a more general feeling of how a BHS
works and what layout a BHS could have. We show the running ex-
ample in Figure 3.

In the running example, we show a fictional BHS. The entire BHS
is shown as a graph, with nodes as dots and edges as arrows. The
nodes represent either stations where a bag undergoes a procedure
(e.g. identification, screening) or where the system can change a bag’s
direction. The edges represent conveyor belts. One edge does not nec-
essarily represent a single conveyor belt, it can also represent multiple
conveyor belts, or part of a single belt.

This model is created specifically for this thesis in order to pro-
vide a clear example containing all major parts of a BHS which we
want to talk about, more specifically, the most important aspects of
the general flow as shown in Figure 2. This fictional BHS is therefore
less complex than a real BHS, both in terms of having less function-
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ality as well as less nodes and edges. The layout of this BHS is more
streamlined, in order to ease understanding and have functionality
immediately clear at a glance.

This running example consists of over 250 nodes and over 300

edges. Real BHSs can very well consist of over 2000 nodes and 2300

edges. This demonstrates the complexity of a real BHS compared to
our running example. It should be mentioned, however, that all the-
ory presented in this thesis has been validated and analysed against
real BHSs, not fictional ones.

The graph visualization makes reasoning about the BHS easier, as
distinct areas are clearly shown. Moreover, the layout of the graph
does not necessarily have to be an exact copy of the physical system.
This means that we can move around parts of the BHS to increase
readability. A downside of this approach is visual deceit: one could
instinctively correlate the length of an edge to the length of the con-
veyor belt it represents. However, a very short edge in this visual-
ization could very well be one of the largest conveyor belts in the
physical BHS.

As said, we have almost every aspect of the general flow present
in this running example. On the left-hand side of the BHS, shown in
blue, we have all input points for the BHS. We have four identical
groups of check-in inputs, and two groups of transfer-in inputs. Sub-
sequently, baggage entering the BHS through these input points are
collected on the two main loops, indicated in dark red and dark blue.

On these main loops, a bag can undergo screening, shown in pur-
ple, or go to manual coding for identification, shown in green. If the
bag can be loaded onto the aircraft, it will go to one of the output
points on the right-hand side of the graph, shown in pink. If the bag
cannot be loaded onto the aircraft yet (for example, because it is too
early), the bag can go to the store, shown in yellow. It should be pos-
sible to directly go from the store to one of the output points, as such
there are dedicated lines from the store to the output area.

The problem bag part of the process is not shown in this running
example, mainly because it would complicate the example. Moreover,
the problem bag area of a BHS plays a very small role in the entire
operations of the system, and is thus not of high importance for our
example.

A good thing to notice is that a lot of edges (mainly the loops) are
often present in pairs, i.e. there is a lot of redundancy in the system.
This is a chief aspect of any BHS made by Vanderlande, and this
aspect will play an important role in some of the decisions we make.
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1.3 terminology

In order to easily identify specific parts in the graph representation
of a BHS, we introduce a few terms which we will use extensively
throughout this thesis.

divert Whenever we have a node with one ingoing edge and two
or more outgoing edges, we have a divert.

merge Symmetrical to diverts, whenever we have a node with two
or more ingoing edges and one outgoing edge, we have a merge.

Both diverts and merges can change the direction of bags, albeit
only diverts can do this actively. Diverts have a single stream of in-
coming bags, and they have the possibility to propagate bags over
one of their outgoing edges. Merges have incoming streams of bags
over multiple edges, and (as the name indicates) merge the incom-
ing edges into a single outgoing edge. Diverts are the main decision
points in a BHS, because at each divert a bag can be routed to one of
its outgoing edges.

Figure 4: Example of diverts and merges

In Figure 4, a snippet of the running example is shown. More specif-
ically, the transition from the two main loops towards the store. Here,
bags can either continue on the loop, or take an exit towards the store.
This example shows both diverts and merges, indicated in light blue
and dark green, respectively.

station A node where a bag can undergo a procedure, like screen-
ing or identification.

task Procedures like screening or identification are called tasks. When-
ever a bag is in the system, it always has a task which it must
complete.

destination Only certain stations can complete tasks for a bag.
Thus, all possible stations that can complete a task for a bag
will be its possible destinations.
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For now, one should assume that a bag always has a task, and
that through this task the destination of the bag is defined. In Sec-
tions 1.4.2 and 2.5, we will explain in more detail how and by whom
these tasks are handed out.

Sometimes we will also discuss the relative position of one area
inside the BHS compared to another area. To indicate this, we use
the terms upstream and downstream. For now, one should assume that
everything in a BHS generally flows in one direction. An analogy best
describes these two terms. Imagine a river; the river always flows in
one direction, and at any point on that river, we have an the upstream
part of the river (everything against the flow of the river) and the
downstream part of the river (everything with the flow of the river).
This can also be applied on BHSs.

upstream Whenever at a specific point in the BHS, everything in
reverse direction of the BHS is upstream.

downstream Whenever at a specific point in the BHS, everything
in the normal direction of the BHS is downstream.

1.4 layers of control

BHSs generally span many square kilometers of conveyor belts, all of
which are controlled by multiple layers of logical processors. At any
time thousands of bags can be present in a BHS. These bags need to
be tracked individually, and specific parts of the system have to react
per passing bag.

In order to cope with such a level of complexity, control of the
system is divided into layers. For this project, we have to deal with
three of those layers: the process layer, the logistics layer, and the
controls layer. The process layer consists of the Process Controller (PC),
whereas the logistics layer consists of the Logistics Manager (LM). The
controls layer consists of smaller components, the Programmable Logic
Controllers (PLCs), which are responsible for managing the hardware
parts of a BHS. Each layer communicates with other layers in order
to retrieve the information it needs. This communication is shown in
Figure 5.

The PC is responsible for keeping track of a bag’s progress in the
higher level process (like in the process displayed in Figure 2). It only
knows what a bag is currently doing (e.g. undergoing screening) and
what it should do after that is done (e.g. go to a lateral). It has no
knowledge of the state of the BHS, this is the main concern of the
LM.

The LM receives from the PC what the next task of a bag should
be, and where it can possibly be routed towards (i.e. a list of possible
destinations). Once the LM has determined a single destination for
a bag, it communicates this towards the PLCs who will direct the
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Controls layer

PLC PLC PLC

Logistics Manager

Process
Controller

Task and
destinations

Destination

Bag
destination

Bag
routing

System
status

Routing
update

Process
layer

Logistics
layer

Figure 5: Communication between layers

machinery in order to route the bag. Should there be a failure in
the BHS, the PLC managing the failure will notify the LM, who will
update the routing of each PLC so that bags in the affected area(s)
will be rerouted.

The main focus for this project is the LM. Because we still need the
necessary information from the other layers, we will emulate those
layers by supplying the necessary information when needed. When-
ever we need to emulate information coming from either the process
layer or controls layer, we will discuss our methodology for doing so.

1.4.1 Programmable Logic Controller

A PLC is responsible for controlling the hardware components which
consists of actual conveyor belts, components which can change the
direction of baggage, etc. A PLC only knows what direction a bag
should go, when it arrives at a decision point in the area it controls.
It retrieves this decision information from a routing table, which is
created by the LM for each PLC specifically.

Initially, these routing tables are created by the LM, which assumes
the entire BHS is completely operational. Whenever there is a failure
inside an area which a PLC controls, the PLC will report this failure
to the LM. The LM will then, using its own information, create a new
routing table for the PLC which will route baggage around the failed
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part. The actual creation of routing tables, and their use, is outside
the scope of this graduation project. We are only interested in the
information needed to create these routing tables.

1.4.2 Process Controller

The PC keeps track of the progress of each bag in the system. When-
ever a bag has completed a task, the PC will know what the next task
should be, and it will communicate this towards the LM. Since the
PC is only aware of the next task of a bag and it does not know the
current state of the BHS, it will present the LM with all possible desti-
nations for that task. It is then the responsibility of the LM to reduce
this list of possible destinations to one.

As mentioned, we have a set of stations at which a bag can undergo
the task assigned to it. This means only out of this set of stations a
single destination can be appointed to the bag, not any other stations
or nodes. This simplifies the system, because only a relatively small
set of nodes can be a destination. This increases the understanding
for all engineers who have to work with the BHS.

All functionality of the PC is outside the scope of this graduation
project, and therefore we assume that the LM always receives a task
and list of destinations for each bag.

1.4.3 Logistics Manager

The main responsibility of the LM is to make sure that a bag has a
valid destination, which it can reach. It can reduce the list of possible
destinations by using internal heuristics based on the current state
of the BHS, which it knows through all of its PLCs. This reduction
method is outside the scope of this project, and thus we assume it
exists and works properly. Furthermore, the LM needs to make sure
each PLC has a routing table which contains a valid routing (i.e. bag-
gage can reach its destination).

An explicit decision has been made for handing out one destina-
tion per time, per bag, instead of just handing out the entire list of
destinations and calculating the entire route of a bag at once. A BHS
is constantly changing, and it is quite easy for one bag to create a
snowball effect of events affecting other bags. When a specific station
breaks down, all bags that were routed towards that station need to
be rerouted towards another station, and this could very well mean
that all bags for those stations need to be rebalanced. The bags them-
selves can also impose changes on the BHS: the flight of a bag can get
cancelled, resulting in a change of scheduling, or the label of a bag
can become unreadable. The BHS has to react per bag, and because
the bags and the BHS itself are constantly changing, all bags in the
BHS also have to be routed with these changes in mind. It simply is
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not efficient to calculate the entire route once if this route needs to
change many times throughout the process.

1.4.4 Routing rules

Routing tables are created by using routing rules. These routing rules
are used as a basis on which the LM creates routing tables for each
PLC, and thus it is important to note that these two definitions are not
the same. A routing table is the result of a function based on routing
rules.

One could reason why these routing rules exist at all; why such a
static method determines the way a bag needs to be routed, instead of
just calculating the routing possibilities real-time for each bag. There
is one major argument against dynamic routing: understandability.
The engineers at Vanderlande who need to work with a BHS need
to understand how the BHS routes baggage through its system. If
each bag would be routed dynamically, explaining the behaviour of
the system would be very difficult. Predictability is in this case more
desired than efficiency.

1.4.4.1 Usages

At diverts, there are multiple outgoing routes. When a bag arrives
at a divert, a decision has to be made what route the bag will be
forwarded on, based on the destination of that bag. The first edge
of each outgoing route determines this decision, and the information
which edge the bag will be forwarded on is supplied in the form
of usages. These usages are defined by Vanderlande, and are used
internally in multiple layers of control. For each outgoing edge at a
divert, four usages are possible:

favourite (f) The preferred route for the destination. At every di-
vert, at least one outgoing route is marked as Favourite.

substitute favourite (s) In case the Favourite route is unavail-
able, the route with this Substitute Favourite can be used as an
alternative.

option (o) Similar to Substitute Favourite, except that the respec-
tive PLC is aware of this route, whereas it is not of routes
marked as Substitute Favourite.

no route Also noted as the absence of a usage on a route. This
means that for the destination, this route is not considered at
all.

The abbreviation for each usage (F, S, O) is given for future ref-
erence. The No Route usage does not have an abbreviation, as it is
defined by the lack of a usage on an edge. For each divert, for each
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reachable destination, each outgoing route is marked as one of the
three usages, or no usage at all. An example of usages on routes is
given in Figure 6.

F

S
(a) Favourite and Substitute Favourite

F

O
(b) Favourite and Option

Figure 6: Example of usages on routes

The difference between Substitute Favourite and Option is that in
the generated routing tables for the respective PLC, routes with Op-
tion are present, whereas routes with Substitute Favourite are not.
This means the PLC is aware of routes with Option, but not of routes
with Substitute Favourite. The reason behind this is that the PLC can
redirect baggage on its own, without intervention of the LM if it has
Option routes available.

When we have applied a usage on an edge, for a specific destina-
tion, we have created a routing rule. These routing rules are nothing
more than a function defined on the Cartesian product between edges
and destinations. If an edge is important for the routing towards a
specific destination, there will be a routing rule indicating what us-
age is applied on the edge for that specific destination.

Whenever a destination is reachable from a divert, there will always
be at least one outgoing edge for which a routing rule is defined. This
routing rule will indicate that edge as the Favourite edge for traveling
to that destination. This way, we can ensure there will always be a way
for a bag to be routed towards its destination.

1.4.4.2 Transport default

Besides usages, another concept of routing preference is used primar-
ily on high capacity main loops. Because these main loops are a major
part of a BHS, they have their own preference system based on the
usages described in Section 1.4.4.1. The idea of a transport default is
introduced, and the following analogy can best explain this system.
On highways, for example, signs indicate each destination for which
one should exit the highway. Every other destination is implicit; it
is not given, assuming the driver knows that he should stay on the
highway until his destination appears on one of the exit signs (in gen-
eral, at least). The principle is applied for the transport default. Using
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transport default, we can indicate at each divert for what destinations
the baggage should leave the main line. For any other destination, it
should stay on the main loop.

A main loop (i.e. transport default) is a physical property of a BHS.
Once we have a loop, it is by definition a main loop because every-
thing on it can recirculate. This means that every position on a main
loop is reachable over and over without taking a divert, because of
the very nature of a loop. This physical property of the loop is cap-
tured in a single data field, which indicates for a set of edges whether
it is a transport default or not. Indeed, this information can also be
extracted by the topology of the BHS, but Vanderlande has chosen to
supply additional information, thus losing the necessity of deducing
a transport default.

F F F

F

(a) No transport default

F

(b) Transport default

Figure 7: Example of transport default

An example of the use of transport default is given in Figure 7,
which is a simplified version of the situation shown in Figure 4, now
with only one main loop. Assume we have a bag which needs to
exit the loop at the last divert, shown in orange. If we do not use
transport defaults, we need to indicate for each divert along the way
what the preferred outgoing edge would be. As is shown in Figure 7a,
this would mean that we have three Favourite usages on the main
loop, and one Favourite usage indicating the exit. Now, with transport
default, the main loop is the implicit ‘ongoing’ route. If there is no
usage for the destination of a bag, just route it over the transport
default. As is shown in Figure 7b, we now only need to explicitly state
the exit edge on the last divert, the other three diverts are implicit
because of the transport default.

1.5 breakdowns and rerouting

Vanderlande strives for a BHS which is operational 100% of the time.
In order to achieve this, any BHS is designed towards this high avail-
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ability concept. As can be seen in the running example in Figure 3,
a lot of redundancy is present in a BHS in order to be able to cope
with breakdowns of parts of the BHS. When one part of the system
fails, another part of the system will function as back-up. In order to
cope with failures, several systems have been devised to indicate and
respond to these situations.

1.5.1 Status edges

Each edge in the system can fail, and usually this means that edges
in the direct vicinity can no longer operate as well. An example is
given in Figure 8. Assume we have three consecutive edges and the
edge in the center fails; now the other two edges before and after the
failing edge can no longer correctly transport baggage. In order to
group edges together which are failure-sensitive towards each other,
we define a status edge: a set of edges which all propagate the same
failure when one of them in the same set fails. This means that, when
one edge fails, all others in the same status edge fail as well.

Figure 8: Affected edges when one fails

1.5.2 Influence rules

When failures in the system arise, and certain (status)edges become
unavailable because of it, the routing tables of the affected PLCs need
to be updated. In case of small breakdowns, baggage can no longer be
routed over the unavailable edge and rerouting is needed. In case of
large breakdowns (whole areas become unavailable), rerouting is nec-
essary to prevent baggage from being routed towards the unavailable
area and becoming trapped.

For these failures, influence rules exists. When a part of the system
fails, influence rules bound to that part of the system will come into
effect. I.e. influence rules are defined on areas of a BHS, and will
only be enabled when that specific part fails. An influence rule dic-
tates what routing rules will have to change once it comes into effect,
meaning it will change the usages on specific edges during the time
the influence rule is enabled. Once the failure has been solved, the in-
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fluence rule will be disabled and the original routing rule will come
back into effect.

An influence rule will only change the usages on edges that are nec-
essary to reroute all baggage in order to circumvent the failing area.
It should be noted that it is possible for multiple influence rules to
come into effect simultaneously. In this case, should affected routing
rules overlap, the influence rule that is enabled last will dictate the
changes.

1.6 summary

In this chapter, we have explained the definition of a BHS and shown
how a BHS works internally. We have introduced a running example
in Figure 3 which we will use throughout this thesis. We display a
BHS as a graph, using nodes for important parts in the system where
something can happen to a bag, and edges as abstractions for the
conveyor belts.

Diverts and merges are special nodes in the system. Diverts are de-
cision points in the system, where the ongoing route of baggage can
be altered, with a choice for two or more outgoing edges. Merges
are points in the system where multiple ingoing edges come together,
and are merged into a single outgoing edge.

Bags always have a task which they need to complete, for example
to go through screening or manual coding. Each node in the system
where a task can be completed is a station, and a bag will always be
routed towards one of these stations, also known as the destination for
that bag.

A layered control structure exists, and this control structure con-
sists of a PC, an LM, and multiple PLCs. The PC is responsible for
handing out tasks for each bag, but is not aware of the current state
of the BHS. A PLC manages a specific area of hardware components,
and physically routes baggage through an area by making use of rout-
ing tables. These routing tables are created by the LM through the use
of routing rules.

The LM is the main focus of this graduation project. Sets of routing
rules are created based on an extensive layer of information on top
of the topology of a BHS. This layer consists of the notion of usages
(Favourite, Substitute Favourite and Option), and transport default to
indicate what the best possible choice would be at any divert.

Finally, we have extended this notion of routing by introducing ad-
ditional systems used when parts of a BHS breaks down and rerout-
ing is necessary. We have shown status edges (which group edges
together), and influence rules (which are modifications on the rout-
ing rules used in a fully functional system).





2
G E N E R AT I N G R O U T I N G L O G I C

Using the knowledge of the system as presented in Chapter 1, we
can now define the problem we are going to solve in this project. In
this chapter, we will explain the basic routing problem, and subse-
quently add more complexity in order to reach the final definition of
the problem. We talk about the conditions in which we are to operate,
as well as the performance measurements needed for analysing the
problem’s solutions. Several interesting scenarios are presented for us
to take into account when devising a solution.

2.1 routing

For the LM to be able to make routing decisions, the LM primarily
relies on the usages defined on edges (as described in Section 1.4.4.1).
These usages are captured in routing rules, and a collection of routing
rules enveloping an entire BHS is called a set of routing (logic) rules.

In the end, we want to achieve the most optimal set of routing
rules for a given BHS. Due to the complexity of a BHS, automatically
generating the most optimal set of routing rules is challenging. For
some rules, human insight and knowledge of the system is necessary,
something which cannot (or at least, not easily) be emulated through
computer algorithms. Thus, we strive towards automatically generat-
ing the most cumbersome and repetitive rules, those whom can be
deduced through basic logic and are mathematically proven, whilst
still trying to optimize the set for the given BHS. We define the core
goal of this graduation project as follows:

To develop a generation method capable of generating for
a BHS a valid and good set of routing rules, consisting of
routing rules for each divert towards all reachable destina-
tions.

There are two major points of interest in the goal definition given
above, namely valid and good. A valid set of routing rules enables each
bag to reach its destination. The bag should not get trapped in an area,
even when specific areas of a BHS break down and rerouting is nec-
essary. We will elaborate on this in Section 2.4. A good set of routing
rules is subject to the goals which we will describe in Section 2.3, and
several performance measurements present in Section 2.7.

15
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2.2 operating conditions

Before we can actually measure how well a set of routing rules per-
forms, we first need to set the constraints and assumptions for the
context of our problem. Vanderlande’s main focus with BHSs is to
minimize the delay of baggage. Naturally, a system will most likely
have trouble performing optimally when under high stress, and in
the case of a BHS, this stress will be primarily caused during peak
performance. How the system is able to cope with high amounts of
incoming bags during peak times is directly related to the amount of
bags that will be delayed. In order to recreate these peak performance
moments, we assume worst case scenarios throughout this thesis, and
define this in a singular worst case scenario for an entire BHS.

To simulate the high stress on the system during peak times, we
can look at the input points in the system. If one looks at the general
flow of baggage in Figure 2, one can see two input points: check-in
and transfer-in. The amount of bags we insert in the system through
these input points define the load on the system. For each BHS, Van-
derlande has requirements on the performance of that BHS. As such,
they have a requirement stating what peak load the system needs
to be able to process, i.e. the amount of bags per hour during peak
performance the system should be able to process.

For our worst case scenario, we define that the system will receive
this peak load to process (which, naturally, differs per BHS). However,
there are two assumptions for this worst case scenario:

1. The peak load will be distributed equally over all possible input
points (check-in desks, transfer-in points, etc.);

2. The main flow has the most impact on the performance of the
system.

For Case 1, equal division of load over all input points is a direct
result from the peak load requirement. We do not want to create ar-
tificial bottlenecks in the system by excluding input points from the
peak load, thus we take all input points into account. For Case 2, we
have a main flow through which 90% of all baggage flows. If we are
interested in the system’s performance, we want to look at the bot-
tlenecks present during peak load in these main flow parts of the
system. The remaining 10% processed outside of the main flow will
have little effect on the system, for two reasons:

1. The amount of bags passing through the non-main flow parts
of the BHS are already much lower;

2. The non-main flow parts of the BHS are often dedicated areas
through which main flow baggage does not pass.
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Thus, the possible bottlenecks in the non-main flow parts are not
of our main concern, and the main flow will primarily have our focus.
However, within the bounds of this worst case scenario, we also want
to stress the system equally. The BHS has multiple (intermediate) des-
tinations, and we want to spread the load over all these (intermediate)
destinations such that the entire BHS will be used through the gener-
ated set of routing rules. In other words, we want our routing rules to
maximize the coverage inside the BHS. This is something that relaxes
the worst case scenario somewhat, because we are not interested in
the worst case scenario when it results in completely unrealistic be-
haviour. This would yield no usable information on the performance
of our set of routing rules, and thus we use the maximization of cov-
erage to create a more realistic worst case scenario.

For the remainder of this thesis, we will assume this definition of
worst case scenario under all circumstances. Each aspect requiring
new constraints and/or assumptions for this worst case scenario will
be explained accordingly.

2.3 key performance indicators

For Vanderlande to be able to guarantee a customer that the BHS
they deliver meets the negotiated standards, there are several Key
Performance Indicators (KPIs) to measure the performance of such
a BHS. Routing rules form a small part of the very complex system
that a BHS is. Still, they can contribute greatly to its performance. If
a set of routing rules is badly designed, baggage can get lost or stuck.
This all results in the same thing: baggage not arriving on time at the
aircraft they are supposed to be.

There are two important goals Vanderlande tries to achieve with all
of its BHSs:

1. Reduce the amount of bags delayed to such an extent that they
miss their flight;

2. Maximize the throughput of the system during peak times.

Naturally, it becomes obvious that the second goal is tightly coupled
with the first goal. These two goals should be kept in mind whilst
generating routing rules. Since we cannot directly measure the KPIs
related to these goals (and the effects which influences them) due to
their complexity, there are several causes to these effects which we
can measure and will pay attention to throughout this project.

2.3.1 Switching

Both diverts and merges are points in a BHS where the system can
physically alter the direction a bag is traveling. It does this by ei-
ther shoving a bag off a conveyor belt, dumping it on another a belt,
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or moving an entire conveyor belt into another direction, for exam-
ple. Whenever a divert1 needs to alter the direction of a bag, the di-
vert needs to switch from its current position to an other position.
Switches are mechanical operations and thus take time, besides wear-
ing on the machine doing the operations.

In our case, the mechanical wear on the machines is not directly
important. This, because it is not a short-term problem. Eventually,
the wear on the machine will cause it to fail more often, but these
long-term problems are outside the scope of our project. We are more
interested in the time it takes to switch a divert. Whenever a divert
has to switch, the divert is temporarily unable to route baggage, and
can thus be considered as disabled. All oncoming bags which need
to be routed over this divert will thus have to wait until the divert is
done switching for them to continue on their way to their destination.
This will result in bags being temporarily delayed, which is directly
related to the first goal. Moreover, when during peak times the load
on the system is increased, in a worst case scenario switching has to
be done equally more often, and thus the second goal is affected as
well.

2.3.2 Exceeding capacity

Each conveyor belt in a BHS (and thus, also each edge in the graph)
has an upper bound on the number of bags it can process per hour:
its capacity. Whenever an edge exceeds its capacity, bags that are to
enter that edge will have to wait until the edge has space available to
process them. This means that any bags that are to go over that edge
will have to be rerouted over other edges, in order to still reach their
destination.

The result of edges exceeding capacity is two-fold. The edge is un-
available for routing, and bags will have to take an other route in
order to get to their destination, which can increase their total travel
time (i.e. the total time it takes for the bag to get to its destination,
from its starting point). Also, since we have to reroute, other diverts
and merges will be stressed more, because they will have to process
the rerouted bags as well as their regular flow of bags. This increase
in number of processed bags can result in more switch operations for
diverts and merges on the rerouted path. This results in this KPI also
being related to the switching KPI.

1 Here, every mention of a divert is analogous for merges. We leave out the mentioning
of merges for the sake of readability
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2.4 adherence to properties

When we want to generate a set of routing rules, we need to adhere
to several properties of a BHS. We will list these properties here and
indicate why they are necessary.

Capacity

Obviously, a bag is not alone in a BHS. Even on atomic parts of the
system (e.g. a single conveyor belt), multiple bags can reside. This
means that we have to take into account the capacity of each of the
subsystems of a BHS.

The BHSs on which we have to apply our routing algorithm have
already been extensively reworked (by layout architects) such that
they will be able to meet the terminal’s demands for the next 15 to
20 years. Generally, the main flow of a BHS (as indicated in Figure 2)
has the highest capacity. Any alternative routes (which are taken sub-
stantially less often) have much lower capacity. These differences in
capacity have to be taken into account, such that we do not send huge
amounts of bags over low capacity lines, essentially clogging the BHS.

Discourage certain areas

For some parts of a BHS we would like to discourage the routing of
bags, because they are simply not meant for bags, or because they are
redundant paths which are not capable of processing large quantities
of bags.

For example, a BHS could contain storage units for the carts in
which baggage is transported in some BHSs. Naturally, these stor-
age units are not meant for baggage, and thus routing through them
should be prevented.

Load balancing

Aside from actually getting a bag in time to its final destination, we
also need to take into account the equal division of load over the
system. In order to explain this equal division of load, we show an
applicable scenario in Figure 9.

Here, assume we have a starting node and an ending node (red
and blue, respectively) and four parallel paths in between. The paths
are equivalent, and it does not matter which of the paths we take in
order to get from our starting node to our ending node. If we divide
our load from the starting node equally over the four paths, we can
process all bags four times faster than if we were to take only one
path and propagate everything sequentially.
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Figure 9: Parallel paths applicable for load division

We mentioned in Section 1.2 that Vanderlande explicitly introduces
redundancy in its systems. This redundancy is present primarily as a
failsafe system; in case an area breaks down, there are still other ways
to circumvent the disabled area. However, when the system is fully
operational, those redundant paths can be used to divide the load on
the system.

2.5 task topology

In Section 1.3, we already mentioned the use of tasks in order to know
what operation a bag should complete next. These tasks are handed
out by the PC, who has knowledge about these tasks and in what
order they should be handed out. Whenever the LM receives a task
for a bag, it also receives a set of possible destinations from the PC.
Because a bag can only be routed towards one destination at a time,
the LM needs to reduce this set of possible destinations to a single
destination. For this, the LM uses the task topology, and through this
task topology, we also emulate a part of the needed functionalities of
the PC.

In the task topology, task groups are defined. A task group is a set
of edges which are related towards each other based on the tasks that
can possibly be handed out whilst a bag is on one of those edges.
For example, if we define all edges in a main loop as a task group,
then all tasks that can be handed out for bags that main loop are the
same for all edges in that task group. Additionally, we have sets of
stations, called station groups. A station group consists of stations that
can perform the same task, e.g. all stations in a station group can only
perform screening operations.

The task topology is a function of the Cartesian product between
a task and a task group, which maps to one or more station groups.
Thus, with a specific task and a task group, we get one or more station
groups out of the task topology. In a more intuitive sense: we can
look up the possible destinations once we know where a bag is in the
system and we know what task the bag should complete next.



2.5 task topology 21

This resulting set of possible destinations will be intersected with
the set of destinations received from the PC, and with further set re-
duction the LM will come up with a single destination towards which
the bag will be routed. This final set reduction method is outside the
scope of this project, and one should assume that the LM will always
be capable of reducing a set of possible destinations to one. Also, it is
important to note that the creation and maintenance of the task topol-
ogy is outside the scope of this project; we only use the task topology
as additional user input.

We show a practical example of the use of the task topology. As
said, the next destination of a bag depends on the current position of
the bag inside the BHS. In Figure 10, we have a snippet from the run-
ning example where we can see the two main loops, and the screening
stations reachable from both loops.

4

5

6

7

Figure 10: Task topology example on screening

Whenever a bag needs to undergo screening, it can visit one of the
four screening stations, from either of the loops. However, we would
rather want to dedicate half of the stations to the red loop, and the
other half to the blue loop. This would result in two stations for each
loop, which again results in less switching at the merges just before
the screening stations. This helps reduce the total number of switches
as explained in Section 2.3.1.

We can see the result of this separate dedication in Figure 10, where
stations 4 and 5 form one station group, and stations 6 and 7 form an
other station group. The red loop is a task group, and the blue loop
is an other task group. So, if we have the task ‘Screening’, and look
up the station group for the blue task group in the task topology, the
set {6, 7} will be the resulting station group. Similarly, if we do the
same for the red task group, the set {4, 5} will be the resulting station
group.
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Through this task topology, we can further extend our worst case
scenario described in Section 2.2. We mentioned wanting to maximize
the coverage of our simulations within the bounds of the worst case
scenario by using all destinations. We now know all possible destina-
tions that can be handed out at any given point in the system. Thus,
we will use all of these possible destinations equally during the gen-
eration of a set of routing rules.

2.6 interesting scenarios

If calculating the routing logic were straightforward, this graduation
project would not have existed. Therefore, we now show some inter-
esting scenarios in which an optimal routing is not as obvious as one
would think.

2.6.1 Cross

Redundancy is one of the main aspects of a BHS, and thus there will
often be multiple paths leading to a single destination. An example of
this is given in Figure 11. This is a snippet from the running example,
just before baggage from the input reaches one of the main loops.

Figure 11: Cross with redundant edges

We have two dedicated paths (shown in orange), both coming from
separate groups of input points. The crossing edges (shown in blue)
are redundant paths. This division of dedicated/redundant paths is
present in the data supplied along with the BHS, and we can retrieve
this through the merges. Each merge contains data on what edges are
dedicated edges and what are redundant edges.

When further downstream of this cross a path fails, the redun-
dant paths are there to reroute baggage over the other path if neces-
sary. However, these redundant paths often have much lower capacity.
There are two possibilities when deciding how to route baggage over
this cross, shown in Figure 12.

In Figure 12a, we show the desired routing of baggage. Both dedi-
cated paths are used, the upper path leads to the red loop, the lower
path to the blue loop. However, another possibility we do not want is
shown in Figure 12b. Here, not the dedicated paths are used, but a re-
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(a) Desired routing (b) Undesired routing

Figure 12: Routing on the cross

dundant path is used. This results in baggage being routed over lower
capacity edges. Moreover, two large flows of baggage are merged at
the lower merge. Obviously, we want to prevent the latter routing
possibility.

2.6.2 Loops

Similar to the scenario described in Section 2.6.1, due to redundancy
there are often multiple paths in order to route baggage from one
loop to another. Again, we show a snippet from the running example
in Figure 13. Here, we show the transition from the two main loops
to the two storage loops.

Figure 13: Multiple loops

(a) Desired routing (b) Undesired routing

Figure 14: Routing on the loops

We can see four paths leading from the lower two loops to the
upper two loops. We want to route baggage from one loop to the
corresponding other loop. In this case, we want to route baggage on
the red main loop to the red storage loop, the baggage on the blue
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main loop to the blue storage loop. We would rather not intertwine
these flows, because we would need to merge flows coming from two
loops, possibly creating a bottleneck.

However, a greedy approach to choosing the best route could very
well result in the routing shown in Figure 14b. Here, all possibilities of
routing baggage from either of the loops are being used. This would
result in unnecessary merging. We do want to dedicate paths between
the loops, as shown in Figure 14a. Now, we dedicate paths per loop,
decreasing the change of the merges clogging up due to two major
flows of baggage that need to be merged.

2.6.3 Crossing of flow

One last scenario is that of the merging of multiple flows of baggage.
An example is shown in Figure 15. Here, we have a snippet from
the running example showing the two main loops, and the two store
loops. Both have outgoing edges, that are being merged into a single
edge, eventually leading to the output points.

Figure 15: Multiple loops merged into one

Assume both sets of loops contain many bags, and that merging
those two flows of bags has to be done carefully. If the two flows are
merged bluntly, as is shown in Figure 16b, severe bottlenecks could be
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present at the merges. This, because the single edges after the merge
are not capable of handling such a large amount of bags. Moreover,
the merges have to switch between the two incoming edges all the
time, which affects the switching KPI as described in Section 2.3.1.

More desirable is the routing as shown in Figure 16a. Here, we
dedicate two of the lines to each of the sets of loops. This means that
the merges do not have to switch anymore, as there is just a single
incoming edge per merge that actually has a flow. Note that the de-
sired routing still has some leeway, as we can also further dedicate
the outgoing edges from the main loops. It could also be reasonable
to dedicate one edge per main loop instead of two, but that is a dis-
cussion other than that of the crossing of flow, and is a combination
of the cross and loop scenario shown earlier.

(a) Desired routing (b) Undesired routing

Figure 16: Routing on the crossing of flow

The interesting scenarios presented are one of the most common
constructions in BHSs where straightforward routing cannot be achieved
without some tailor made constructs. This is why we will pay special
attention to these scenarios throughout this project and the solutions
we present.



26 generating routing logic

2.7 performance measurement

In Section 2.1, we mentioned we want to achieve a set of ‘good’ rout-
ing rules. Now that we have defined our KPIs, explained which parts
of the BHS affect these, and what interesting scenario’s we need to
take into account, we can define a performance measurement on a
set of routing rules.

We want the peak performance of the system to be as high as possi-
ble, i.e. the system should be able to handle high amounts of load for
a reasonable amount of time. In order to effectively measure this, all
of the following performance measurements take the worst case sce-
nario into account. In Section 2.2, we already explained the context
of this worst case scenario and how it affects our system. For each
performance measurement, the worst case scenario has a different
impact, and each impact will be explained accordingly.

2.7.1 Amount of capacity bottlenecks

As described in Section 2.3.2, we want to use as much as possible of
the capacity given to us, but we do not want to exceed this capac-
ity, as it would result in clogging the BHS. In order to measure the
performance of a set of routing rules on this point, we can simulate
a large amount of bags traversing through the BHS. We divide the
bags equally over the available destinations, and check if the routing
rules would result in any bottleneck where we approach or exceed
the given capacity of the system.

2.7.2 Amount of switches

For each divert and merge, we have bags that need to travel over
these diverts and merges. In a worst case scenario, these bags arrive
at a divert or merge in the least efficient way possible. An example
is given in Figure 17. Here, we see a divert and merge in their worst
case scenario.

(a) Divert (b) Merge

Figure 17: Switching worst case scenario
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In Figure 17a, the divert has incoming baggage, alternating be-
tween the two outgoing edges. This means the divert has to switch
from its current direction to the other direction each time a bag ar-
rives.

In Figure 17b, incoming baggage over both incoming edges is just
far enough apart that each time a new bag arrives, it will be over the
other ingoing edge as opposed to the edge over which the previous
bag arrived. So the merge will have to switch over to the other bag in
order to process it.

The performance of such switching situations will be optimal if
only one ingoing edge (for diverts) or one outgoing edge (for merges)
is being used. This would result in no switching whatsoever, thus
reducing the amount of switching time to zero. This relates directly
to the KPI described in Section 2.3.1.

2.7.3 Severity of switching

Not only do we want to know what switching bottlenecks we have,
but the severity of such a bottleneck also plays a role. Additional to
the capacity of an upper bound of bags per hour which the edge can
process, we also have the amount of bags which can (at one time)
reside on the edge, which is defined as the maximum holding capac-
ity. Where the capacity as Vanderlande has defined it is more like a
throughput, this maximum holding capacity is the actual number of
bags which can physically stay on the edge should the edge break
down.

This relates to the impact a switching operation has on the system.
When a divert needs to switch a lot, we can look at the maximum
holding capacities of the incoming edges. When these are very large,
the impact of such a high switching point is less severe than when
the edges cannot hold that many bags. For example, we have a divert,
where one edge is the main loop, and the other leads to a screening
machine. When this divert needs to switch a lot, and the edge to the
screening machine has a maximum holding capacity of 3, the divert
does not have a lot of leeway before the edge to the screening machine
is full and bags are forced to skip the exit and travel along the main
loop. In such a situation, the impact on the system of a divert which
needs to switch a lot is much higher.

2.7.4 Amount of crossing flows

Related to reducing the amount of switches, we also want to pre-
vent the merging of large flows as much as possible, as was given
the example in Section 2.6.3. This is a cumulation of all previous
performance measurements, because the impact of the crossing of
main flows is the highest. This, due to the large amount of necessary



28 generating routing logic

switches, the probability that the resulting merge will exceed capac-
ity, and that the ingoing edges do not have a high maximum holding
capacity. I.e. on all previous three performance measurements, the
probability that those will be affected here is high.

2.8 summary

In this chapter, we have defined the problem which we are going to
solve. We have shown that we want to generate routing logic, such
that baggage can traverse in a BHS from point A to point B. We have
defined this routing logic as a configuration for the LM, and call this
configuration a set of routing rules.

We introduced the Key Performance Indicators (KPIs) Vanderlande
uses in their BHSs, of which one KPI is the most important: the
amount of bags delayed to such an extent that they miss their flight.
Because the delay of a bag can have multiple causes, we explained
two other KPIs which more directly relate to the delay of bags: switch-
ing and exceeding of capacity. Switching is the amount of mechanical
operations a divert or merge has to make in order to process bags.
Worst case a divert or merge has to constantly alternate between its
possible switching positions. Each edge in the system also has a ca-
pacity, which is the amount of bags per hour that can be processed
over that edge. When we exceed that capacity, the edge will be dis-
abled and rerouting is necessary; this results in other edges being
more stressed, as well as other diverts and merges having to switch
more often.

We defined the main goal of this graduation project, which is as
follows:

To develop a generation method capable of generating for
a BHS a valid and good set of routing rules, consisting of
routing rules for each divert towards all reachable destina-
tions.

We indicated what the properties of a BHS is, to which we need to
make sure our generated set of routing rules adhere. We introduced
the task topology, which enables the LM to determine what the possi-
ble destinations are to which a bag can be routed, given an certain
position in the system.

We have shown multiple interesting scenarios, to which we pay spe-
cial attention throughout the rest of this thesis due to their complexity.
These interesting scenarios consist of:

• Preventing the use of redundant paths which will result in un-
wanted merges;

• Using redundant paths which could lead to spreading the load
on the system;
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• Preventing crossing main flows which could result in severe
bottlenecks.

Finally, we explained how a set of routing rules could be measured
performance-wise. These measurements are a direct result of the KPIs,
and they amount to:

• Amount of capacity bottlenecks; the number of times an edge
exceeds the number of bags per hour it can ultimately process;

• Amount of switching; the number of times a divert or merge
has to switch between one of its switching positions;

• Severity of switching; the relation between the amount of switches
and the impact of a high amount of switching, due to the max-
imum number of bags an edge can physically hold when it is
disabled;

• Amount of crossing flows; a cumulation of the previous three
measurements, with the highest impact on the performance of
the entire BHS.





3
A P P R O A C H

In this chapter, we will discuss our approach for solving the problems
as discussed in Chapter 2. As a foundation for this approach, we will
introduce a framework which divides the approach in three distinct
processes. Subsequently, a graph definition is presented, which will
be used throughout this thesis. Using the framework as a basis, we
will describe each of the processes, explaining their contribution to
solving the project goal. First, we create an initial set of routing rules,
followed by an analysis method, and finally an optimization method
for finetuning of the routing rules.

3.1 framework

In order to generate a valid and good set of routing rules, as was de-
fined in Section 2.1, we introduce a framework to do so, displayed in
Figure 18. We can separate the goal in two distinct parts: the creation
of a valid set of initial routing rules, and the creation of a good set of
routing rules. This distinction can also be seen in the framework.

Create initial
routing rules

Analyse
routing rules

Input data

Output
routing rules

Optimize
routing rules

Iterative process

Figure 18: Framework used for reaching the project goal

We have a set of input data, which contains all relevant data of
the BHS for us to work on. With this data, we create an initial set of

31
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routing rules. This initial creation aspect will be concerned with gen-
erating a valid set of routing rules. We will analyse the performance
of this set of routing rules separately. The result of this analysis could
indicate that there are aspects of the set of routing rules which are
applicable for improvement. In order to achieve these improvements,
we will modify the routing rules in order to achieve these improve-
ments. The modified set of routing rules will again be analysed in
order to check if improvements were actually achieved. As a result,
this is an iterative process: after analysing a set of routing rules, we
try to optimize the routing rules, reanalyse to check the performance,
possibly modify again, and so on.

In the initial creation aspect, we focus on single bags. We are not
interested in whether or not the routing rules we are creating are
feasible. We are only interested in creating a complete set of rules
which makes it possible for all baggage to reach their destination
regardless of the situation. In the iterative analysis and optimization
aspects, we look at the BHS as a whole, and try to modify the rules
such that they are more optimal for the entire system. Here, we do
take into account capacities and the interesting scenarios which we
described in Section 2.6.

In this presented framework, we have three distinct aspects in the
process of generating a valid and good set of routing rules:

• Creating a valid set of routing rules (creation algorithm);

• Analysing this (or a) set of routing rules (analysis algorithm);

• Improving the performance by modifying the routing rules and
analysing them again (optimization algorithm).

In this chapter, we will show our solution for each of these aspects.
We talk about the creation of a valid set of routing rules in Section 3.3,
the analysis of a set of routing rules in Section 3.4, and finally the
optimization of these rules in Section 3.5.

3.2 graph definition

Before we can actually solve the problems, we first have to define a
graph to which we can map a BHS. In Section 1.2, we already men-
tioned that a BHS can be represented as a graph. As such, we de-
fine a directed graph G = (V ,E), whereas V is the set of nodes, and
E ⊆ V ×V is the set of edges between these nodes. In terms of a BHS,
one should think of the nodes as important parts in the system where
something can actually happen to a bag (baggage scanners, diverts,
manual coding, etc.) and the edges as conveyor belts. Though, it is
not necessarily the case that a single edge represents a single con-
veyor belt, it can also represent multiple (connected) conveyor belts
or even parts of a single conveyor belt.
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An edge e ∈ E is defined as e = (v,w) where v,w ∈ V . Thus, we
have a directed edge e which starts in v and ends in w. In order to
more easily talk about the start and end node of an edge we define
functions σ, τ : E → V , such that σ((v,w)) = v and τ((v,w)) = w.
Self-loops are not possible, so ∀(v,w) ∈ E : v 6= w. For each v ∈ V ,
δ−(v) denotes the indegree of v, δ+(v) the outdegree of v; the set of
ingoing edges and outgoing edges, respectively. The number of edges
in these sets are depicted as |δ−(v)| or |δ+(v)| .

In the set V , we define special nodes, which play a vital role in a
BHS. We define the set of destination nodes T ⊆ V , which are nodes
in V to which bags can be explicitly directed. At any time in a BHS,
a bag always has a destination t ∈ T to which it will be routed. A
destination is not necessarily a final destination, i.e. the bag does not
necessarily leave the system after it has arrived at such a t. A t can
also be an intermediary destination, thus it is not necessarily the case
that δ+(t) = 0. We do however state that ∀t ∈ T : δ−(t) > 1.

For the routing logic, diverts are decision points in a BHS. Because
of this, we define a special set of divert nodesD = {d ∈ V | δ+(d) > 2},
i.e. each divert node has two or more outgoing segments. Because
diverts cannot be destinations, we can say that D∩ T = ∅.

Merging also plays an important role when considering combining
large flows, and thus we want to indicate these as well. We do this
by defining a set of merge nodes M = {m ∈ V | δ−(m) > 2}, which
is symmetrical to D. No node can be both a divert and a merge, thus
D∩M = ∅. Destinations cannot be merges as well, T ∩M = ∅.

Two edges are consecutive (denoted by �) if the end-node of one
edge matches the start-node of the other edge: ∀e0, e1 ∈ E : e0 �
e1 ⇒ τ(e0) = σ(e1). We define a path p, which is a sequence of
consecutive edges p = {e0, . . . , en−1}. By this definition, it is possible
to traverse the path from σ(e0) to τ(en−1) without going against the
direction of the edges. Like with edges, we define functions σp, τp :

P(E) → E, where σp indicates the first edge in a path p, and τp the
last edge in a path p. In the given example p, σp(p) = e0 and τp(p) =
en−1. Cycles are possible in a path, so edges can occur multiple times
in a path. The length of the path is defined by |p|, which is denoted by
the number of edges p contains. Also, we denote a function distance
d(v,w) where v,w ∈ V , which denotes the length of the shortest path
from v to w. If there is no path available, d(v,w) =∞.

Additionally, we introduce multiple edge functions in order to per-
form graph operations later on. We define two functions c, tt : E →
R+. Here, c indicates the capacity of a single edge, i.e. the maximum
number of bags per hour an edge can process, and tt indicates the
travel time of a single edge, i.e. the time in seconds it takes for a bag
to traverse over the edge.
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3.3 creating valid routing rules

The first aspect in our framework is to create a set of valid routing
rules. At this moment, we are primarily concerned with the validity
of the set of routing rules, not with its performance. For this we use
a graph as defined in Section 3.2. What we want is for every divert
d ∈ D to define a routing rule for each reachable destination t ∈ T .
This means that for each edge e ∈ δ+(d) we need to set a usage,
being either Favourite, Substitute Favourite or Option, for the specific
destination t.

3.3.1 Calculating best path

At first glance, the situation and problem very much tend towards
applying a single-source shortest path algorithm. However, in a BHS,
the shortest path is almost never the preferred path. The reasons for
this will become apparent in this section. Although we cannot use a
plain shortest path algorithm, we can use the shortest path algorithms
that are available as a basis for our own algorithm. For our application
we use Dijkstra’s well-known single-source shortest path algorithm as
the basis for our algorithm[Dijkstra, 1959; Korte and Vygen, 2000].

We choose Dijkstra’s algorithm, due to its simplicity. It is a straight-
forward solution for a single-source shortest path problem, and is
quite easily implemented and checked. Due to our graph being a
sparse graph (where |E| ≈ |V |), there are also some more benefits
which contributed to our choice for (a modification of) Dijkstra’s al-
gorithm, but these will become more apparent in Chapter 4.

Since Dijkstra’s single-source shortest path algorithm is common
knowledge, we will only glance over the algorithm itself. For more
detail, we refer to the paper of Dijkstra[Dijkstra, 1959]. We start in
our source node. Every iteration, we take the node with the smallest
cumulative cost to the source node, and expand from that node to
all its neighbours. In the next iteration, we again take the node with
the smallest cumulative cost to the source node, except we now also
include the neighbour nodes in the search space. This way, we keep
on expanding, until we have eventually reached the target node and
we know that there is no shorter path possible.

3.3.2 Cost function

For the cost of an edge, we define a cost function w : E → R. With a
shortest path approach, generally one has a predefined weight on an
edge, for each edge in the graph. The shortest path is based on the cu-
mulative cost of this weight. However, because we are not interested
in the shortest path, we define our own cost function to be used with
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the algorithm. As the base for this cost function we take the travel
time of an edge.

The travel time of an edge corresponds to the time a bag takes to
get from the beginning of an edge to the end of it. Our reason for
choosing this as the base of our cost function is because it is tightly
coupled with our KPIs. Since we want to reduce the time the bag is
in the system, time itself naturally plays a very important role in this.
The travel time of an edge determines for a large amount the time a
bag is in the system, and thus we will use this as the base for the cost
function of an edge.

The resulting cost function is as follows, where use the travel time
function introduces in Section 3.2:

w(e) = tt(e) (1)

However, the cost function as given in Equation (1) will result in noth-
ing more than a fastest path calculation. There are several special
cases in our graph which we want to take into account, and for this
we need to augment our cost function. These special cases will be
explained in the following sections.

3.3.2.1 Prevent unwanted shortcuts

Throughout the graph, we have destinations that are not necessarily
the destination to which we want to route the bag. In the case of
intermediary destinations (e.g. Screening, Manual Coding, not Later-
als), we can still route baggage through those destinations in order
to get to the destination of our bag. However, these intermediary des-
tinations often have their own dedicated areas in a BHS, where the
capacity is lower than the main loops in the system. This is, because
these areas should only be used to route baggage towards one of
those destinations, and thus we do not want bags in those areas that
do not belong there.

An example on this scenario is given in Figure 19. Here, we have
the snippet from the running example showing the Screening stations
and part of the Store loops. Assume we have a bag which needs to be
routed towards the Store. Due to our simplistic cost function shown
in Equation (1), it is very well possible that the bag is routed through
one of the Screening stations in order to get to the Store (shown in
orange).

The result of this routing is that Screening stations receive bags
that do not have to be there. The consequence of this is that bags that
actually have to be at the Screening stations have to wait, because of
this increased load on those stations. Thus, this is directly related to
the capacity KPI as defined in Section 2.3.2.

The solution for this problem is to augment the cost function with a
case where the cost is increased to infinity if we want to route through
a station that is not our destination t, i.e. route over an edge e ∈ E
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Screening

Store

Figure 19: Unwanted routing through Screening

where τ(e) ∈ T ∧ τ(e) 6= t. The resulting augmented cost function is
given in Equation (2)

w(e) =

{ ∞ τ(e) ∈ T ∧ τ(e) 6= t
tt else

(2)

3.3.3 Setting the usages

Once we have calculated the best path from a specific divert d to a
specific destination t, we can determine the usages for d. As a result,
we mark the first edge of the best path as the Favourite for the route
from d to t.

In Figure 20, we show a snippet from the running example, show-
ing part of the output area. We have a divert d, shown in light blue,
and a destination t, shown in pink. At d, we have two possible acyclic
paths to get to t, either beginning with edge 105 or 102. Along the
edges, their cost is given. When we look at both possible paths, we
get a total cost of 4+ 6+ 9+ 15+ 2 = 36 when starting with edge 105,
and a total cost of 5+ 6+ 9+ 20+ 9+ 15+ 2 = 66 when starting with
edge 102. Thus, the path starting with edge 105 is the best path, so
we will use that in order to define our routing rule.

As described in Section 1.4.4.1, we also have the possibility to indi-
cate alternative paths. A divert has two or more outgoing edges, so
once we have determined one of those edges as the Favourite edge,
we should also take the remaining edges into account for alternative
routing. Suppose we have edge ef ∈ δ+(d) marked as Favourite for t.
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Figure 20: Best path calculation from d to t

We should then see if edges e ∈ δ+(d) \ {ef} are also capable of rout-
ing a bag towards t, i.e. is t also reachable through the other edges?
If this is the case, we have edges on which we can apply usages for
alternative routing.

There is a tradeoff between having an alternative path, and actu-
ally using one by setting a usage. This tradeoff is the total cost of
alternative paths. We do not want to indicate alternative paths signif-
icantly longer than the best path, because the effect of switching to
the alternative path in case the best path becomes unavailable could
very well be negative. An analogy: one can travel from Amsterdam
to Paris by train in a fairly straight manner. However, one can also
travel from Amsterdam to Paris by first going through Moscow. Ob-
viously, such a detour is unwanted due to the enormous increase in
travel time. Similarly, we want to prevent such alternative paths here
as well. We do this by setting a threshold on the increased total cost
of alternative paths. If we have a path p, then w(p) =

∑
e∈pw(e). For

all alternative paths p ′, we indicate that they only qualify for setting
a usage when w(p ′) < 1.10 ·w(pbest), i.e. when the total cost of the
alternative path lies within 10 percent of the total cost of the best path.
This percentage threshold can change per BHS, due to the nature of
the BHS; as such, this will also become part of the user input. We
intentionally do not choose for a K best paths approach[Yen, 1971;
Eppstein, 1998], due to the possible large gap between the first and
subsequent best paths. With a percentage approach, we can control
how close the alternative paths lie in terms of cost. With a K best path
approach this is also possible, but requires additional methodology to
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use these algorithms and thus unnecessarily complicates the overall
methodology.

There are two possible usages for alternative edges, namely Substi-
tute Favourite and Option. Assume we have an edge er ∈ δ+(d) \ {ef}
through which t is reachable, then the usage on er will become:

• Substitute Favourite if er lies on a status edge which is a loop,

• or Option otherwise.

The rationale behind this distinction is due to the difference be-
tween the Substitute Favourite and Option usages, as was also ex-
plained in Section 1.4.4.1. Only the LM can determine routing over
loops, as it cannot be left to a PLC. The reason for this is that loops
are always running, and an isolated PLC does not have the overview
of the entire loop, and thus cannot make an accurate decision on
whether it is a good choice to route over the loop or not. The LM
always has an overview of the entire BHS, and thus the LM can make
such a decision. This is why we want to leave alternative routing over
loops to the LM, and thus indicate those edges as Substitute Favourite.
All other alternative paths that do not lie on a loop can receive the
Option usage.

In our example with edges 102 and 105, the remaining edge 102
does not lie on a loop, and thus it could receive the Option usage.
However, since the total cost of the alternative path does not adhere
to our threshold of 10 percent (36 · 1.10 < 66), we will not indicate
the alternative path as such. The resulting routing rules are shown in
Table 1. In order to show a more realistic set of routing rules, we have
added multiple destinations for which edges 102 or 105 (or neither)
are the Favourite starting point.

Table 1: Routing rules after best path calculation

Destination

14 15 38 284 285 286 287 288

Edges
102 F F F F

105 F F F

3.3.4 Validity

In Sections 2.1 and 2.4 we stated that we want our set of routing
rules to be valid, and adherent to certain properties. Actually, the
properties stated in Section 2.4 are not our primary concern when
creating an initial set of routing rules. This, because they are mainly
concerned with the actual performance of a set of routing rules; how
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well the system is able to process baggage with the given set of rout-
ing rules. With the creation algorithm, we are primarily interested
in creating a valid set of routing rules and, as said in Section 2.2, to
operate according to the worst case and maximize our coverage.

In order to prove that the creation algorithm generates a valid set of
routing rules, we need to make some assumptions about the proper-
ties of any BHS and therefore about the graph representation of those
BHSs:

1. The topology is complete, and there are no unreachable areas
from any point in the graph which should be reachable;

2. Edges in the graph have a finite travel time;

3. All destinations are reachable through non-destination nodes
from any node in the system (both destinations as non-destinations).

These assumptions are made on the functionality of the BHS, and
as such do not belong to the scope of this project. If a BHS does not
adhere to these properties, the system is in itself dysfunctional and
generating a valid set of routing rules could be impossible.

Our definition of a valid set of routing rules was that each bag
should be able to reach its destination. This can also be interpreted
as: at each point in the system, we should be able to get to all pos-
sible destinations. We intentionally talk about possible destinations,
because due to the nature of the BHS we cannot reach all areas from
every other area in the BHS. When we want to prove the validity of
our created set of routing rules, we want to prove that we have gener-
ated routing rules for each possible tuple of edges and destinations.

Trivially, every edge not coming out of a divert already enables
bags to reach all destinations. This, because nodes connected to those
edges are either simple nodes that can only propagate bags in one
way, or they are merges and they cannot actively change the direction
of bags at all.

This leaves us with proving that all diverts enable bags to reach all
possible destinations. We are using a modification of Dijkstra’s single-
source shortest path algorithm, and it has already been proven that
Dijkstra’s algorithm terminates and if there is a shortest path, it will
find it[Korte and Vygen, 2000]. Our modified cost function incorpo-
rates travel time, and with assumption Case 2, we know that if there is
a best path, it will not have an infinite cost due to all edges in the path
having a cost lower than infinity. However, we raise the cost to infinity
ourselves whenever we reach a destination that is not the destination
towards which we want to route. This is negated by assumption Case
3: if there is at least one path possible from a divert to a possible des-
tination, at least one of those paths will not contain any destination
nodes. So whenever our modified Dijkstra’s algorithm finds a best
path, it will be a valid one.
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Now, since we run our modified Dijkstra’s algorithm for each tuple
of diverts and destinations (d, t),d ∈ D∧ t ∈ T , and with our assump-
tion Case 1, we know that if there is a best path between divert d and
destination t, our algorithm will find it and associate a routing rule
with it. Thus, for each divert we will create a routing rule for each
possible destination, and as such we will validate that at any point in
the system a bag can reach any of its possible destinations.

3.4 analysis of routing rules

Generating a set of routing rules without ever checking its perfor-
mance is obviously undesirable. We want to know what the effects
of a set of routing rules on a BHS are, using the performance mea-
surements as described in Section 2.7. At this moment, full analysis
of routing rules at Vanderlande is done using extensive simulations.
These simulations are expensive, both in time and cost, which is why
we want to eliminate errors in the routing rules as early on as possi-
ble. Thus, when we can indicate the performance of a set of routing
rules early on in the design process, less errors will be encountered
later on. As such, time and costs can be saved during the simulation
phase at the end of the entire design process.

So, we need a way to approach these full fledged simulations, with-
out actually performing them. A simulation is done by taking into
account the entire BHS, and simulating thousands of bags inside the
BHS. Each bag is tracked by the simulation, and every important vari-
able that is part of the system is taken into account. The costly nature
of simulations lies in the fact that they have to be performed real-time.
Simulations are not sped up, in order to accurately simulate the en-
tire BHS. This means that time alone is a very important factor for us
to save when eliminating as much errors as possible, early on in the
design process. Additionally, a simulation is heavy performance-wise,
because every single bag in the system has to be accurately simulated.
This means that, while keeping track of each and every single bag in
a flow of thousands of bags, simulations have to be performed on
multiple servers, dedicated to the calculations of these simulations.
We, however, can abstract from these simulations by not taking into
account every single bag, but larger groups of bags.

The idea is to use flow algorithms to perform more crude simula-
tions compared to the actual simulations. These flow algorithms take
into account larger groups of bags, and by assuming a worst case
scenario during the operation of the system, we can indicate whether
we have conflicting flows or bottlenecks in the system. Of course, it
is impossible to have an airtight proof on the performance of a set of
rules without doing full fledged simulations. With these more crude
simulations, we intend to give insight early on in the process about
the performance of a set of routing rules, and feed information back
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into the creation algorithm which can adjust its parameters in order
to circumvent the found bottlenecks. This is also shown in the frame-
work in Figure 18, at the start of this chapter. Additionally, the end
user can take the given information into account, and make decisions
based on this information. These could for example be changes to the
routing rules requiring human insight, or intentional changes that are
suboptimal, but with a predefined reason.

In comparison with the full fledged simulation Vanderlande per-
forms, our simulation will lose some precision. This is mainly due
to the assumptions we make throughout this project, and the loss of
physical properties of the system. We only regard the most major in-
fluences the physical system has on the actual routing of baggage,
whereas a Vanderlande simulation takes all these properties into ac-
count. However, the results from our simulations should be at least
close to the results a full simulation by Vanderlande outputs.

3.4.1 Flow

Throughout this thesis, we have been sporadically dropping the term
flow. We used the term in a more natural sense, in order to talk about
entire groups of bags flowing through the system. Due to the BHS
behaving very much like a network, where almost all bags move from
one direction to the other (and seldom backwards), the formal term
flow from graph theory quickly springs to mind. Describing this flow
of baggage by making use of the appropriate flow algorithms is one
solution which we will now explore.

The aspect of flow throughout a network is a field of graph theory
which always has been of much interest to researchers. One of the
most researched topics are those concerned with calculating the max-
imum possible flow throughout a network, where the flow adheres to
the capacity of the network[Ford and Fulkerson, 1955; Edmonds and
Karp, 1972; Denic, 1970]. Another topic is an extension of the maxi-
mum flow problem, where we are also concerned with flow taking
the least costly paths inside the network, the so called minimum-cost
network flow problem. The network is augmented with weighted
edges, and solutions for this problem often take into account some
shortest path algorithm[Fulkerson, 1961; Ford and Fulkerson, 1962;
Goldberg and Tarjan, 1990].

We will briefly touch upon these two main problems, describe the
problems and their solutions in a generic manner, and follow up with
their applicability for this project.

3.4.1.1 Maximum flow problem

The maximum flow problem is a thoroughly researched topic in the
field of graph theory, with solutions dating back as early as 1955[Ford
and Fulkerson, 1955]. We have a directed graph G = (V ,E), which is
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augmented to a network by adding two special nodes, source α and
sink ω, thus V ← V ∪ {α,ω}. The notion of source node α and sink
node ω will be used consistently throughout the rest of this thesis.

To explain the idea of flow throughout a network, we use an anal-
ogy; that of a network of pipes through which water flows. Water
has to come from a single point, which is the source α. After it flows
through the system, it needs to exit at some point. There can be multi-
ple exits, but for simplicity we assume we have a single exit: the sink
ω. Each water pipe has a certain amount of water it can process. It can
hold water up to this amount, after which it is completely filled and
no more water can enter the pipe. This upper bound on the amount
of water is the capacity of the pipe. The flow in this network of pipes
is the amount of water that can move from α to ω.

Now, if we map this back to our actual network G, we have a source
of flow α, a sink ω where flow terminates, and edges e ∈ E which
have a capacity c : E → R+, and a flow f : E → R+. The solution for
the maximum flow problem is to create a total amount of flowN in G,
from α to ω, adhering to the capacity of each edge in E, such that N
is maximum. Also, we want to impose that for each v ∈ V (except α
and ω) the ingoing flow is equal to the outgoing flow. More formally:

Maximize N =
∑

(f(e) : e ∈ E)

subject to

f(e) > 0, ∀e ∈ E∑
(f(e) : e ∈ δ−(v)) =

∑
(f(e) : e ∈ δ+(v)),∀v ∈ V \ {α,ω}

Throughout the years, many solutions have been given for this
problem. Each solution lowered the running time, or presented a so-
lution for special graphs (for example, sparse graphs[Sleator, 1981;
Gabow, 1985], or for implementing parallel calculations[Shiloach and
Vishkin, 1982]).

3.4.1.2 Minimum-cost flow problem

An extension of the maximum flow problem is that of the minimum-
cost flow problem. Here, in addition to the given graph G, we also
have a cost function w ′ : E→ R. Each edge in E has a certain cost for
each unit of flow passing through it. We want to minimize the total
cost of a given flow throughout G. More formally:

Minimize
∑

(f(e)w ′(e) : e ∈ E)

subject to

f(e) > 0, ∀e ∈ E
w(e) > 0,∀e ∈ E∑

(f(e) : e ∈ δ−(v)) =
∑

(f(e) : e ∈ δ+(v)),∀v ∈ V \ {s, t}
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Close observers can see that this is indeed an extension of the max-
imum flow problem, or rather, the maximum flow problem is a sub-
class of this problem. This, because if we set the weights for each edge
to 1, we exactly have the maximum flow problem.

3.4.1.3 Applicability

We now look at the applicability for analysing a set of routing rules,
using one of the two main flow problems explained in Sections 3.4.1.1
and 3.4.1.2.

An initial set of routing rules has already been created using a best
path algorithm (see Section 3.3). This means that the aspect of mini-
mizing the cost of a flow has already been done throughout this best
path algorithm. Using the minimum-cost flow problem as a basis for
the analysis of a set of routing rules would indicate that we take the
aspect of cost into account twice. Also, we want to have a separation
of concern between generating and analysing a set of routing rules.
Both processes come with their own set of demands according to
what output they should deliver, so separating these would increase
the understandability of both approaches. Most importantly, if we
separate both processes, we can run them separately. This way, our
analysis algorithm can be applied on already existing routing rules
(those currently operating on existing BHSs), and indicate potential
bottlenecks in those rules.

So, with these arguments, we can cross off the minimum-cost flow
problem, and apply the maximum flow problem for our analysis.

3.4.2 Push-relabel maximum flow algorithm

To solve the maximum flow problem for our analysis, we use Gold-
berg and Tarjan’s push-relabel flow algorithm[Goldberg and Tarjan,
1988]. Their algorithm is currently the fastest algorithm with a run-
ning time of O(nm log(n2/m)) using a dynamic trees data struc-
ture[Sleator and Tarjan, 1983, 1985]. Aside from the running time, the
elegance and simplicity of their algorithm also plays an important
role for the choice of using it in our analysis. It is quite an intuitive
algorithm, which we will explain in this section. For a more detailed
explanation, with proofs of correctness and termination, we refer to
the paper itself.
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3.4.2.1 Flow and preflow

The authors use Karzanov’s notion of preflow[Karzanov, 1974]. Before
we can explain what preflow is, we first need to give the definition of
flow:

f(v,w) 6 c(v,w) , ∀(v,w) ∈ E (3)

f(v,w) = −f(w, v) , ∀(v,w) ∈ E (4)∑
u∈V

f(u, v) = 0 ,∀v ∈ V \ {α,ω} (5)

Here, we have in Equation (3) the capacity constraint, in Equation (4)
the antisymmetry constraint and in Equation (5) the flow conserva-
tion constraint. Equations (3) and (5) were already given, although in
some other form, in Section 3.4.1.1.

3.4.2.2 Relaxation of constraint

The authors extend the capacity function with the notion that c(v,w) =
0 for all (v,w) /∈ E. The definition of preflow is similar to that of flow,
but with the flow conservation constraint in Equation (5) weakened:∑

u∈V

f(u, v) > 0 , ∀v ∈ V \ {α,ω} (6)

This means that we no longer have the constraint that the ingoing
flow of a node must be equal to the outgoing flow of a node. Now,
the ingoing flow can be larger than the outgoing flow. The authors
define a flow excess function indicating the total value of the ingoing
flow minus the total value of the outgoing flow, i.e. the amount of
flow which ’overflows’ the node.

3.4.2.3 Pushing flow

The idea behind the push-relabel algorithm is that we take into ac-
count all nodes which still have excess flow, and push that flow to-
wards sinkω. If there is no possibility of pushing excess flow towards
ω, excess is pushed back towards source α. Eventually, there will be
no more nodes with an excess flow; the network has then reached a
state where a normal flow is present. Even more, that normal flow
will then be the maximum flow.

In order to move flow throughout the network, we need to know
when we can push flow, and if so, how much flow. The authors in-
troduce the notion of residual capacity, which is nothing more than
the amount of flow that still can be pushed over a certain edge:
rf(v,w) = c(v,w) − f(v,w). Whenever we have a node with excess
flow, and it has an edge e with rf(e) > 0, we can push flow over e in
order to reduce the excess flow at v.

Additionally, we need to make sure we are pushing flow towards
ω. The authors do this by applying a label to each node v ∈ V , where
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d(v,ω) is set as the label. Initially, the labeling can be set to d(α) = |V |,
d(ω) = 0 and d(v) = 0.

3.4.2.4 Pushing and relabeling

The push-relabel algorithm received its name due to the two main
operations the algorithm consists of: pushing, and relabeling. The
algorithm keeps running whilst there are still active nodes. A node v
is active when v ∈ V \ {α,ω} ∧ d(v) <∞∧ e(v) > 0, i.e. a node which
is not the source or sink of the graph, which has a valid labeling and
still has excess flow. The algorithm will keep on applying push and
relabel operations, until the set of active nodes is empty.

When the algorithm applies a push operation on the edge (v,w), it
increases f(v,w) and e(w) by δ = min(e(v), rf(v,w)), and decreases
f(w, v) and e(v) by the same δ. So we push either all excess we have,
or only that which the capacity of the edge still allows us to. The
resulting excess will eventually be pushed back towards the source.

When the algorithm applies a relabel operation on node v, it sets
the label of v to the minimum label of all its outgoing neighbouring
nodes, plus one: d(v) ← min{d(w) + 1 | (v,w) ∈ δ+(v)∧ rf((v,w)) >
0}. As mentioned, the relabeling is necessary to know whether we
are pushing towards ω or towards α. If we again use the analogy of
water, one can see the labeling as pushing from a high placed node to
a lower placed node, by using gravity. It will then only be possible to
push ‘downwards’, i.e. by making use of the gravity, to lower labeled
nodes.

3.4.3 Maximum overflow

With the push-relabel algorithm as explained in Section 3.4.2, we can
calculate the maximum flow in our graph G. This is, however, too
restrictive for the information we want. When we want to analyse the
performance of a set of routing rules, we want to check its perfor-
mance under a worst case scenario. This means that all input points
of the graph will operate under (near-)maximum capacity. Whenever
we calculate a maximum flow, what we in essence do is calculating
what the maximum flow is that the BHS can handle, and adjust the
flow of the input points accordingly (because, outgoing flow of α
must equal ingoing flow of ω). This is contradictory when looking
at the real-life scenario, where the input of a BHS is one thing that
cannot easily be turned off, especially in a worst case scenario.

What we do want to calculate, is to set the flow of all input points
at their maximum capacity (or close to it), and push flow through the
entire system. The input flow has to be seen as an unstoppable force,
and it can only exit at ω. We do not want to adhere to the systems
capacity (at least, for the analysis). We want to ‘drown’ the system in
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its input flow and see if and where the bottlenecks are present. Thus,
we talk about maximum overflow instead of maximum flow.

3.4.4 Modified push-relabel algorithm

The push-relabel algorithm calculates the maximum flow of a net-
work, but with some modifications, we can calculate the maximum
overflow of a network. These modifications are relaxations on some
operations and/or constraints of the algorithm. This, because we re-
move an important constraint: we do not want the flow to adhere
to the capacity of the BHS. Only if we ignore the capacity, we can
push high amounts of flow through low capacity parts of the system,
and thus we can later on indicate that this would be a problem if the
analysed set of routing rules were to be used in the real BHS.

We no longer have need for the capacity constraint (Equation (3)),
because we do not want to adhere to the capacity of the system. So,
for our relaxation, we remove this constraint entirely. This means that
flow on an edge can be higher than the capacity, which will be an
indication that we have a bottleneck (see Section 2.3.2). Since we have
removed this constraint, we also no longer need the notion of resid-
ual capacity, because the capacity in essence has become infinity. This
means that it will always be possible to push flow over an edge, be-
cause rf(v,w) =∞− f(v,w) =∞.

In the original algorithm, as soon as ∀e ∈ δ+(v) : rf(e) = 0 we
would push flow back towards source α because we could no longer
push flow towards sink ω. The removal of the residual capacity (ac-
tually, the residual capacity always being ∞) has made it possible to
always push flow towards ω.

3.4.5 Steering flow

In its current state, the analysis algorithm is capable of simulating an
‘unstoppable’ input flow, which needs to be pushed throughout the
entire BHS. However, the flow itself is uncontrolled. Whenever flow
arrives at a divert, it is divided over all outgoing edges, disregard-
ing the destinations to which flow (or in our case, baggage) needs
to travel. This means that flow is sent to otherwise impossible desti-
nations, and the routing rules which we have created as a result of
the algorithm described in Section 3.3 are completely ignored. In its
current state, the analysis algorithm is only capable of analysing the
topology of a BHS, ignoring any routing defined on that BHS.

After some research, we did not find any solutions or algorithms
capable of directing flow. This means that we have to modify the
algorithm to be able to cope with directing flow. What we want to
achieve, is to steer the flow such that it will take into account the
routing rules which we want to analyse. So, we need a mechanism
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which divides the flow at a divert, according to the routing rules
(and, as appears later on, the task topology). The solution for this is
two-fold. We use the main flow of baggage, as is shown in Figure 2,
alongside with a combination of routing rules and the task topology.

In the following sections, we will explain how we will steer flow
according to the routing rules. We will discuss each topic separately,
and in the end we will provide an overall example showing a combi-
nation of all discussed topics.

3.4.5.1 Main flow

Each BHS is different, and as of such, extracting the main flow out of
such a BHS is not straightforward. Due to it not belonging to the ac-
tual generation of routing rules, we leave this out of the scope of this
project. Because of this, we define a user input which indicates what
the main flow in a BHS is. Each major area of the BHS will be indi-
cated, as well as the connections between these areas. An example is
given in Figure 21, here we can see that we have process flow similar
to Figure 2. We define a set of main flow nodes Vm and a set of main
flow edges Em whose functionality is identical to those in the graph
G definition described in Section 3.2. The areas in a BHS can be seen
as main flow nodes with tasks, and the main flow edges indicate the
subsequent tasks that are possible after a task has been completed.

Check-in

Transfer-in

Manual
coding

Problem
bag

Screening

Store

Lateral

3000

1000

90%

10%

60%

40%

100%

2%

100%

28%
100%

70%

Figure 21: Example of user input on flow through main process

By using this main flow, we can analyse each single main flow edge
one at a time. For example, we know (through the main flow) that of
the 3000 bags arriving at the check-in input points, 90% continues to-
wards Screening. Then, we can calculate how many bags this is (2700),
set up the flow algorithm for this, and push this amount through the
graph.

If we calculate the maximum overflow for each main flow edge, we
are only interested in the two main flow nodes connected through
this main flow edge. This means that we can create a subgraph out
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of G, using these two main flow nodes. If we, for example, want to
calculate the maximum overflow from Manual Coding to Screening,
we only need to take into account parts of G that make it possible
for bags to travel from all Manual Coding stations to all Screening
stations. The rest of the graph is irrelevant, and thus we can leave it
out.

Using subgraphs for each single main flow edge cuts back the cal-
culation time of our algorithms, because the subgraph can be much
smaller than the whole graph G. If we now calculate, for each main
flow edge, the maximum overflow between two main flow nodes in
the main flow, we can merge all these maximum overflow subgraphs
into one single maximum overflow graph. The result is again the en-
tire graph, with one maximum overflow which holds for the entire
main flow.

Not all BHSs will use the exact same distribution as shown in Fig-
ure 21. Though, there will be common elements almost every BHS
will need, like the check-in and screening areas. Thus, the core of a
distribution can be identical in many BHSs. However, due to the sim-
plicity of a distribution, they can be interchangeable between BHSs,
and it is not necessary for a distribution to cover all areas of a specific
BHS. If one wants to test a specific part of a BHS, he can leave out all
irrelevant parts in the distribution, and the algorithms will be able to
cope with such a minimal distribution.

3.4.5.2 Destination of flow

Our graph G has been augmented to a network by adding source α
and sink ω. As such, sink ω serves as a termination node for all flow
in the graph. This means that all nodes that are connected to ω are
the actual end points of the graph. Not each end point will be used
equally, because of the use of a main flow distribution. If we start
with 10000 bags at the check-in nodes, and we only send 10% towards
Manual Coding compared to 90% towards Screening, we need some
way to direct only 10% of the flow towards Manual Coding, instead of
equally dividing all flow over Screening and Manual Coding. Manual
Coding also consists of multiple stations, so we also need to divide
the 10% of the flow over these stations, and for this we use the task
topology.

As was described in Section 2.5, we can retrieve all possible desti-
nations given a task and an edge in the BHS. When we create flow at
each of the input points of a graph, we determine what destinations
can possibly be handed out by the PC. Subsequently, we divide flow
over all these possible destinations.
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3.4.5.3 Division of flow

What remains is to steer all flow at every divert. This means that we
have to keep track of flow, and where it needs to go. We can no longer
have one generic amount of flow which spreads itself throughout the
graph. Instead, from the moment we create flow, we need to know
where it goes, and how it needs to get there.

We solve this by augmenting the notion of flow: introducing desti-
nation flow ft ∈ R+ × T . In the basic algorithm, we push real-valued
flow throughout the graph, which is indistinguishable. For example:
at merges, two incoming flows are merged, but these consist only of
real-valued units, thus we can no longer distinguish them from each
other once they have been added up. This makes routing towards
a specific destination impossible. So, with our destination flows, we
combine the real-valued unit with a destination.

Each ft contains a certain amount of flow, which is still real-valued.
However, we add a destination t ∈ T . Instead of pushing singular
units of flow, we push tuples of destination flows through the graph.
Whenever a destination flow ft needs to be pushed from a divert
d ∈ D there are two possibilities, given the routing rules for d:

1. There is only one edge e ∈ δ+(d) which leads to ω;

2. There are two or more edges e ∈ δ+(d) which lead to ω.

With Case 1, we do not have any choice other than to push ft over
the single available edge e. With Case 2, we need to divide the desti-
nation flow over all possible edges. Assume we have n possible edges
which lead to ω. If we have, for example, an ft where the amount of
flow is 18, then we create n new destination flows f ′t, and each f ′t will
have a flow equal to 18/n. All f ′t will still have the same destination
ω. Now, we can divide each f ′t over each n outgoing edge, over which
ω is reachable.

Figure 22: Load balancing when dividing flow

A special case when we have to split up destination flows, is when
we have multiple possible routes which are all eligible for load balanc-
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ing. This is only the case when we have a loop, and multiple routes
starting from this loop can all lead to the same destination. An exam-
ple is shown in Figure 22. Here, we have a snippet from the running
example where we have baggage going from either of the two main
loops to the Store loops. As can be seen, there are multiple paths
leading to the Store loops. This is a practical version of the (interest-
ing scenario) balancing problem shown in Section 2.6.2.

In this case, there are four parallel paths all eligible for load balanc-
ing. So, we divide a single destination flow ft in four new destination
flows f ′t, all with the same destination. Still, a destination flow needs
to know which path it needs to take, because up to now it only knew
its end destination, and relied on the routing rules in order to get
there. Our solution is to include a ‘pass through’ divert dv ∈ D in
the destination flow. The destination flow has to travel through dv
in order to get to its destination, and has to disregard any other di-
verts that can possibly lead to the destination. This way, we can force
destination flows to be only pushed over diverts which we indicate,
thus forcing the load balancing. After it has traveled through dv, dv
is reset and the destination flow can continue along its way using the
routing rules.

We intentionally apply load balancing in our analysis algorithm,
and not during the initial creation of the routing rules. Due to the
creation algorithm being a modification of Dijkstra’s shortest path
algorithm, we could use K-shortest path algorithms in order to deter-
mine the K− 1 best paths[Yen, 1971; Eppstein, 1998]. Through these K
best paths, we could check if there are multiple paths leading to the
same destination, and use some of them for load balancing. However,
there are two main arguments against this approach.

The first argument is that of separation of concern. As we said, we
want to use the creation algorithm to calculate all valid paths from
any divert to any reachable destination. If we are also taking into ac-
count load balancing, we are shifting this concern towards generating
a good set of routing rules as well, which is the main concern of the
analysis algorithm.

The second argument is that of simplicity. During our analysis, we
are already taking into account several performance measurements,
and load balancing is part of this. It would be contra-intuitive to take
something which fits very well inside this aspect, and move it to a
separate aspect.

3.4.5.4 Combined example

We shall now provide a single example in which we will show the
practical result of the theory explained above. Assume we want to
calculate the maximum overflow from Manual Coding to Screening,
which can be seen in Figure 21. For this, we will create a subgraph
from the running example, in which we take all possible input points
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(all Manual Coding stations) and all possible output points (all Screen-
ing stations). We remove the ingoing edges from the input points, and
remove the outgoing edges from the output points. Subsequently, we
add the source α and sinkω, and match them to the input and output
points respectively. The resulting subgraph is shown in Figure 23.
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f: 300
f: 50; d: 45
f: 50; d: 47

f: 50; d: 41
f: 50; d: 43

f: 25; d: 41
f: 25; d: 43
f: 25; d: 45
f: 25; d: 47

Manual Coding

Screening

Figure 23: Flow from Manual Coding to Screening

Assume we want to send a flow of 300 bags over this subgraph.
There are four possible destinations (Screening stations), with ids 41,
43, 45, 47. We have three Manual Coding stations which are the input
points, so we divide the flow of 300 over these input points. This
means that each Manual Coding will have a starting flow of 100.

For each Manual Coding station, we look at the task topology in
order to determine what destinations we should route all bags to.
Assume the task topology tells us that the upper Manual Coding
station needs to route towards either 41 or 43, the middle station
towards either 45 or 47, and the lower station can route towards all
four. As such, we divide the flow of each Manual Coding station
according to the task topology, and this results in two destination
flows for the upper two Manual Coding stations (both containing
destination flows with 50 flow each), and four destination flows for
the lower Manual Coding station (with 25 flow each).

3.4.5.5 Stateless flow

One of the properties of the way flow is propagated through the net-
work is its statelessness. Flow does not know where it is coming from,
only where it is going, and even then it does not know how it is sup-
posed to get there. This is a deliberate choice which we are making.
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It creates a more abstract way of talking about flow, since we are
only concerned with the current position of flow. This simplifies our
modified push-relabel flow algorithm, as we never have to take into
account the history of any destination flow.

The downside of stateless flow is just that, we are missing informa-
tion about the history of destination flow. Naturally, it is still possible
to generate routing rules with stateful flow, and we will discuss this
methodology in Section 6.1.3.

3.4.6 Analysing bottlenecks

Once we have calculated the entire maximum overflow, using the
main flow as user input, we can start to analyse what the bottlenecks
in the graph are. We already explained how we can measure the per-
formance of a set of routing rules in Section 2.7, and now we are
going to apply these measurements using the maximum overflow we
have calculated.

There are three possible ways for us to indicate a bottleneck:

1. A divert has to switch too often;

2. A merge has to switch too often;

3. An edge has more flow than the capacity of that edge.

The term ‘too often’ is a subjective measurement which the end
user can determine. It differs per divert and merge how often is ‘too
often’, and it is outside the scope of this project to determine this
automatically. Each bottleneck indication is in itself a valid way for
determining whether a bottleneck is present in a BHS, but it does
not give us a way for comparing bottlenecks with each other and
ultimately comparing sets of routing rules on the same BHS. This is
why we introduce a way for incorporating all bottleneck indications
into a single measurement.

3.4.6.1 Defining bottlenecks

We essentially have two ways for indicating a bottleneck, through
switching and through the exceeding of capacity. However, when we
have two diverts both switching equally often, it can still be the case
that one divert has a bigger impact because of the capacity of its
surrounding edges. So, we need a way to combine both the switching
and capacity KPI. We do this, by calculating a capacity reduction on
ingoing edges for both merges and diverts. The capacity reduction is
the result of the amount of switching operations a divert or merge
has to perform, combined with the capacity of each ingoing edge. A
switch takes time, and the higher the amount of switching operations
a divert or merge has to perform, the more time is lost as a result of
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these switches (see Section 2.3.1). For each second a divert or merge is
busy switching, the incoming edges can handle less bags per second.
This effectively lowers the capacity of all incoming edges, because the
effect of switching takes place upstream of that switching node.

Applying the capacity reduction differs between diverts and merges.
This, because the calculation of the amount of switches differs be-
tween diverts and merges. Worst case, a node n has to switch as much
as the lowest amount of flow it needs to process (i.e. alternating be-
tween each direction) when |δ+(n)|+ |δ−(n)| = 3, and as much as the
lowest two amounts when |δ+(n)|+ |δ−(n)| = 4. The total amount of
switches for a node n with |δ+(n)|+ |δ−(n)| = 3 becomes:

#switches(n) =

{
min({f(e) | e ∈ δ+(n)}) n ∈ D
min({f(e) | e ∈ δ−(n)}) n ∈M

(7)

And for a node n with |δ+(n)|+ |δ−(n)| = 4 becomes:

emax =

{
{e | e ∈ δ+(n)∧ ∃e ′ ∈ δ+(n) : f(e ′) < f(e)} n ∈ D
{e | e ∈ δ−(n)∧ ∃e ′ ∈ δ−(n) : f(e ′) < f(e)} n ∈M

(8)

#switches(n) =

{
f(emax) + max({f(e) | e ∈ δ+(n) \ {emax}}) n ∈ D
f(emax) + max({f(e) | e ∈ δ−(n) \ {emax}}) n ∈M

(9)

On average, a switch takes 3 seconds to perform, regardless whether
it is a divert or a merge. Thus, the total amount of busy waiting for
a node is #switches(n) · 3. During this busy waiting period, the node
cannot process bags, and thus the capacity of each incoming edge is
reduced by the amount of bags it could have processed in this pe-
riod of busy waiting. This results in the following capacity reduction
credux(e) for all e ∈ δ−(n):

credux(e) = #switches(n) · 3 · c(e)
3600

(10)

We divide the capacity of e by 3600 because the capacity is denoted
in bags per hour, and our busy waiting time is denoted in seconds. If
we subtract this capacity reduction on all edges e ∈ M ∪D, we have
a more realistic performance measurement on the impact a switch
has on the system. This means that we have eliminated the skewed
comparison between two switches who both had an equal switching
ratio, but different capacities to cope with.

Whenever an edge e ∈ E has a flow higher than the reduced capac-
ity of that edge, f(e) > c(e)− credux(e), we have a bottleneck. This bot-
tleneck is caused by the node at the end of this e, due to its switching
behavior. Thus, with a bottleneck edge eb ∈ E, we have a correspond-
ing bottleneck node τ(eb) = nb ∈ V . The amount of overflow on the
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reduced capacity of the bottleneck edge indicates the severity of the
bottleneck. This way, we can compare bottlenecks within the same
set of routing rules, and even between different sets of routing rules
for the same BHS. Whenever we want to resolve a bottleneck edge,
we can only do this by looking at its corresponding bottleneck node.
As such, for the remainder of this thesis, whenever we talk about
resolving bottlenecks, we talk about bottleneck nodes.

3.4.7 Analysis overview

When we look at all aspects we have used for the analysis algorithm
so far, we can clearly identify each of the layers of control we dis-
cussed in Section 1.4. Figure 24 contains a schematic of the relation-
ship between each layer when we are analysing a set of routing rules.

Baggage
input flow

Main flow

Task topology

Process Controller

Routing
rules

Logistics Manager

Graph

Controls layer (PLCs)

Performance

Bottlenecks

Figure 24: Overview of all layers during analysis

Naturally, we have the routing rules. The routing rules are an inte-
gral part of the LM and, as it is the main focus of this project, they
play a central role in our analysis. The routing rules are based on
the functionality of the graph, which in turn mimics the functionality
of the PLCs (i.e., the controls layer). We emulate each conveyor belt
through edges, and each junction through nodes, and thus we sim-
ulate the entire controls layer through this graph. Finally, we need
information from the PC in order for us to simulate the LM. We do
this by emulating the PC through the use of a main flow, which em-
ulates the process logic the PC contains (what tasks a bag should
complete), and we use the task topology to emulate what possible
destinations could be handed out.

As we have said in Section 1.4, we needed to emulate parts of the
BHS in order for us to receive all necessary information. We do this
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through all of the methodologies described in this section. Naturally,
more realistic results could be possible if we have actual simulations
of the PC and/or PLCs, but due to lack thereof, we try to approach
these simulations as close as possible.

Important to note is that whenever we are analysing a BHS, we use
the main flow given to us (by the user). This means that everything we
analyse and, more importantly, optimize is dependent on this main
flow. Everything not included in the main flow will therefore not be
analysed and optimized.

One way of resolving this is to do a two step analysis/optimization
cycle. First, one uses a main flow covering the entire functionality of
the BHS, rather called a ‘complete’ flow. Next, when all rules have
been optimized globally, one can use an actual main flow in order
to focus on specific parts of the BHS that require special attention.
For this thesis, we only focus on the use of a main flow and not an
additional complete flow, for the sake of conciseness.

3.5 iterative optimization

After analysing a set of routing rules, whether it is generated by our
creation algorithm or it is an existing set of routing rules, we can try
to improve the set by applying optimizations. For this, we take the
bottlenecks we have found as a result of our analysis, and change the
routing rules in order to resolve these bottlenecks. We then re-analyse
these modified set of routing rules in order to see if we have improved
the performance.

3.5.1 Ordering bottlenecks

Before we can resolve bottlenecks, we first need to determine in what
order we are going to resolve them. The main flow in our system
determines how different areas in a BHS are connected, and in what
direction baggage flow runs. This means that we also need to look at
the main flow in order to determine the ordering of bottlenecks. For
example, when we have a bottleneck in a Check-In area, and a bottle-
neck in a Screening area, it is very well possible that the bottleneck
in the Screening area is the result of the bottleneck in the Check-In
area, because Screening is done after Check-In. As a result of this, we
want to first order the bottlenecks based on the main flow of the BHS
in which they are present.

Each node in the graph can be mapped back to a single main
flow node. This indicates that for each node, we have a correspond-
ing main flow node and thus can determine the ordering based on
the main flow. In Section 3.4.6.1, we defined bottlenecks as edges
whose flow exceeds its corresponding reduced capacity, and their cor-
responding nodes causing the bottleneck edges. Because bottlenecks
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edges are the result of switching behaviour downstream, whenever
we have a bottleneck edge eb ∈ E, the node causing that bottleneck
is its downstream node τ(eb) = vb ∈ V . This node vb will thus be
the bottleneck node of eb. Through nb, we can determine what main
flow node nb can be mapped to. If we do this for all bottlenecks, we
have an initial ordering of bottlenecks based on the main flow.

Should we try to resolve bottleneck nodes, we start with the bottle-
necks that can be mapped to the first main flow nodes in the main
flow, i.e. a main flow node nm ∈ Vm whereas |δ−(nm)| = 0. There
is a special case on nodes that lie on the edges of two areas defined
by two distinct main flow nodes. These nodes can be mapped to both
main flow nodes; in this case we map the node to the main flow node
that has the outgoing edge towards the other main flow node. More
formally, we can possibly map node n ∈ V to two main flow nodes
n ′
m ∈ Vm and n ′′

m ∈ Vm. If there is an edge em ∈ Em such that
σ(em) = n ′

m and τ(em) = n ′′
m, then we map n to n ′

m, else we map n
to n ′′

m.
Once we have a collection of sets of bottlenecks that all map to

their own main flow node, we still need an ordering inside these sets
of bottlenecks. For instance, if we take all bottlenecks that map to
the Check-In main flow node, we need to know how we order the
bottlenecks inside this set. For this, we use a distance measurement
inside the area defined by the main flow node, using the distance
function δ(v,w) with v,w ∈ V as described in Section 3.2.

Because each main flow node defines a subgraph Gm ⊆ G, we
can determine the distance in this subgraph measured from its start-
ing nodes to its ending nodes. Whenever we have a bottleneck node
nb ∈ E, we calculate the shortest distance from the start of Gm. This
distance measurement can then be used to order the bottlenecks in a
way that will provide us with enough information to be able to over-
all solve the bottlenecks from the ‘front’ of the graph to the ‘back’ of
the graph (or, from upstream to downstream).

Now that we have defined an ordering on the bottlenecks, we can
start trying to resolve the bottlenecks. In this ordering, we take the
first bottleneck node nb ∈ V , and match the type of nb against a few
cases in order to determine how we are going to try to resolve this
bottleneck:

• Divert

– On a loop

– Not on a loop

• Merge

– On a loop

– Not on a loop
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Additionally, in some cases it can be feasible to try to resolve mul-
tiple equivalent bottlenecks simultaneously. Assume we have a set
of bottleneck nodes B ⊂ V . For each bottleneck vb ∈ B, we can de-
termine non-identical bottleneck equivalent nodes, i.e. other nodes
v ∈ V : v 6= vb that map to the same main flow node. For an edge v to
be bottleneck equivalent to vb, they need to have identical reachable
destinations. This means that it does not matter for a bag whether
it is at v or vb, it can still get to all of its destinations from either
of the two. Whenever we have multiple equivalent bottlenecks, we
have more options on spreading the load of the bottlenecks over the
several bottlenecks, with an increased probability of reducing and/or
solving the bottleneck.

3.5.2 Resolving bottlenecks

Whenever we have a bottleneck, it is either present on a divert, or
a merge. Indirectly, bottlenecks at merges are the effect of inefficient
routing rules at diverts upstream (because merges themselves can-
not reroute baggage), or the result of unavoidable merging. As will
become apparent, resolving the bottlenecks at merges will be done
through bottlenecks further upstream.

There are four possible scenarios for a bottleneck. Either it is a
divert or a merge, and then it can either lie on a loop or not. In this
section, we will describe each possible scenario for a bottleneck, and
how we are going to try to resolve this. For each solution, we assume
that, whenever we are dealing with a bottleneck, it will be the first
bottleneck present in the system, given that we traverse the graph
from the begin nodes (Check-In, Transfer-In, etc.) downstream to the
end nodes (Laterals, etc.). Through this assumption, we know there
are no other possible bottlenecks upstream that may be influencing
the bottleneck we are trying to resolve.

The general solution for resolving bottlenecks will be to modify the
routing rules that could be affecting the bottlenecks. A bottleneck is
always a case of high load on a node or edge (or both), and thus we
want to reroute (part of) this high load. Our best effort to do this will
be to modify large quantities of routing rules, and this can easily be
achieved by looking at station groups. We explained the notion of sta-
tion groups in Section 2.5. They are sets of task equivalent stations
(destinations), which are generally considered altogether when hand-
ing out a specific destination. Due to their equivalence, we can try to
reroute part of a high load by modifying the routing rules of all sta-
tions in a station group, and preferable the largest station group that
is reachable at the bottleneck. This rerouting is done by modifying
the routing rules affecting the bottleneck.

Other possibilities when rerouting is to look at single destinations,
or all destinations. Looking at single destinations means modifying a
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single routing rule per optimization iteration. The subsequent analy-
sis step for checking whether the small modification is a (small) im-
provement takes too much time. Thus, looking at single destinations
is infeasible and takes too much computational time. Taking all desti-
nations into account is too coarse a step, because one either modifies
all routing rules, or one modifies none. This results in solutions that
are alternating between two extremes.

3.5.2.1 Modifying routing rules

Modifying a set of routing rules in order to optimize them relies on
the alternative paths we have discovered during the initial creation of
the set of routing rules, as described in Section 3.3, or the presence
of those paths in any other (not created by us) set of routing rules.
This means that aside from Favourite usages, we also need Substitute
Favourite and Option usages in the routing rules, otherwise we have
no knowledge of alternative paths.

During each of the possible bottleneck scenarios we will talk about
‘modifying the routing rules’. Because these modifications are the
same each time, we elaborate on this operation here. It also became
apparent that we only modify the routing rules themselves, meaning
that we only do this at diverts.

Whenever we modify a single routing rule, we have for a specific
destination an already existing routing rule indicating that for a cer-
tain divert d ∈ D, we have a certain outgoing edge e ∈ δ+(d) with
a Favourite usage. Modifying this routing rule such that we try to
resolve a bottleneck means ‘flipping’ the routing rule over: we regard
one of the other outgoing edges as Favourite, create a routing rule for
that and remove the already existing routing rule, i.e. the Favourite
usage flips over to an other outgoing edge.

Whenever divert d has an outdegree size of 2, |δ+(d)| = 2, flipping
the routing rule over is quite easy. We have an edge e which is the
current Favourite edge for a specific destination, and should the other
edge e ′ ∈ δ+(d) : e 6= e ′ have a Substitute Favourite or Option usage
for the same destination, we just flip the usages around. Now e ′ will
become Favourite, and e will become Substitute Favourite or Option,
regarding the situation before the flip. An example of this operation
is shown in Figure 25.

Should |δ+(d)| = 3, we have two choices for the usage to flip over
to (two remaining outgoing edges). In this case, we take the outgoing
edge that has the lowest amount of flow. This way, we minimize the
chance that we create a new bottleneck downstream by flipping to an
already highly stressed edge.
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Figure 25: Flipping usages

3.5.2.2 Divert; not on a loop

Whenever the bottleneck is a divert d ∈ D not residing on a loop,
we have the most straightforward scenario to resolve. We know (by
assumption) that there are no bottlenecks upstream, thus the only
way we can possibly try to resolve this bottleneck is by alleviating the
load on the edge with the highest overflow. Here, the bottleneck is the
divert node itself. When we have no bottleneck equivalent nodes, we
will look at the largest station group present at this bottleneck, and
modify the routing rules for each station in this station group.

If we do have bottleneck equivalent nodes, we have a set of bot-
tleneck equivalent nodes B. We order B based on the severity of the
bottleneck, i.e. on the amount of capacity reduction of the ingoing
edge for each bottleneck b ∈ B, from high to low. Subsequently, we
divide B into two (roughly) same sized sets of bottlenecks B ′ and B ′′,
such that |B ′| =

⌈
|B|
2

⌉
and |B ′′| =

⌊
|B|
2

⌋
. B ′ will contain the first |B ′| el-

ements of B based on the ordering on bottleneck severity, whereas B ′′

will contain the last |B ′′| elements of B based on the same ordering.
Now, we will modify the routing rules of the largest station group

for the bottlenecks in B ′ only, not for the bottlenecks in B ′′. This will
put more pressure on the bottlenecks in B ′′, and relieve the bottle-
necks in B ′ from their high load.

3.5.2.3 Divert; on a loop

The scenario when the bottleneck node is a divert residing on a loop
is almost identical to the non-loop scenario, except we now have the
transport default property of the loop to consider. Whenever we mod-
ify routing rules, and we want to reroute baggage over the loop, we
first need to check if there is actually an alternative path present. An
alternative path is a path that does not include the same divert again
(i.e. we do not want a full traversal over the loop to wind back up at
the bottleneck again).

If there is such an alternative path, we can apply the same scenario
as when we have a divert that does not lie at a loop. If there is no
possible alternative path, we cannot resolve this bottleneck. In that
case, the divert is the only possible way for all of its routing rules,
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and thus it is impossible for us to reroute baggage in order to relieve
the load on the divert.

3.5.2.4 Merge; not on a loop

Whenever the bottleneck is a merge m ∈ M not residing on a loop,
we need to trace the problem back upstream. We do this by tak-
ing the incoming edge emax ∈ δ−(m) with the highest overflow on
the reduced capacity: ¬∃ e ′ ∈ δ−(m) : f(e ′) − (c(e ′) − credux(e

′)) >

f(emax) − (c(emax) − credux(emax)). We take the edge with the highest
overflow on the reduced capacity, because the effect of resolving this
bottleneck will be the highest.

We traverse upstream (i.e., backwards) through emax until we reach
the first divert d ∈ D. If we reach d, this means that we have a path p
from d tom such that bothm and d are in p (m ∈ p∧d ∈ p), and that
there is no other divert in p: ¬∃d ′ ∈ D : d ′ 6= d∧ d ′ ∈ p. Now that
we have traced the problem back to divert d, we will treat d similar as
to it being a bottleneck itself. Thus, we take the largest station group,
and modify all routing rules containing the first edge of p.

This is the solution for resolving a single bottleneck m. If we have a
set of bottleneck equivalent merges B, we trace each bottleneck b ∈ B
back to its respective divert, in an identical way as when we have a sin-
gular merge bottleneck. Now, we have a set of bottleneck diverts Bd,
identified through each of the merge bottlenecks in B. We divide Bd

in sets of bottleneck equivalent diverts. For each subset Bde ∈ P(Bd),
we apply the same non-loop divert bottleneck solution as presented
in Section 3.5.2.2, depending on the size of Bde accordingly.

Merge; on a loop

Should the bottleneck be a merge m ∈ M which resides on a loop,
we can perform almost the same resolve technique as whenever m is
not on a loop. However, instead of traversing back over the incoming
edge with the highest capacity reduction, we take the edge that does
not lie on the loop. This, because whenever m itself is a bottleneck,
the probability that this is caused due to baggage being inserted on
the loop is very high, as opposed to baggage that is already on the
loop itself. Should there be two edges that are not on the loop (i.e.,
we have three ingoing edges in total), then we still take the non-loop
edge with the highest capacity reduction.

Whenever we traverse back over (one of) the incoming non-loop
edge(s), we can apply the rest of the resolving technique identical to
the non-loop merge bottleneck technique.

Prevent flow crossing

Whenever we have a merge bottleneck, there is the possibility that
the bottleneck is present due to crossing flows, as we have described
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in Section 2.6.3. For both the merge bottleneck cases, we should also
look for the prevention of these flow crossings.

If we look at the main flow, we can identify possible flow crossing
points. Each time a main flow node nm ∈ Vm has two or more ingo-
ing edges (i.e. |δ−(nm)| > 1), there is a possibility that we have cross-
ing flow. So, if we have a merge bottleneck that maps back to such
a main flow node nm, we need to check if we can possibly reroute
baggage such that we prevent the crossing of flow.

In addition to the techniques we already discussed for resolving
merge bottlenecks, if we have a flow crossing possibility, we need to
divide the station groups per main flow edge over the bottlenecks.
This means that, if we have multiple diverts, we want to dedicate
each flow to a specific set of diverts, as we have also shown in the
crossing flows interesting scenario in Figure 16a. We want to prevent
overlap between these sets of diverts, as this would again result in
crossing of flow. So, whenever we are modifying the routing rules in
a merge case, we also want to dedicate the main flows whenever we
are dealing with a (possible) flow crossing scenario.

3.5.3 Re-analysis and re-iteration

Each time after an attempt to resolve a bottleneck, we need to re-
analyse the entire graph in order to make sure that we indeed did
resolve the bottleneck and thus have further optimized the routing
rules. This is the iterative part of the optimization algorithm. We do
not want to try to resolve multiple non-related bottlenecks at once,
as this makes it difficult to indicate what optimization(s) did indeed
optimize the routing rules. Thus, we only focus on a single bottleneck
at once, or multiple if we have bottleneck equivalency, and analyse
after each modification step.

After re-analysing with the modified routing rules, several situa-
tions can become apparent:

1. The bottleneck has been reduced or entirely resolved;

2. The bottleneck has not been reduced;

3. The bottleneck has been increased;

4. The bottleneck has been either reduced, increased or remains
identical, but one or more new bottlenecks have been intro-
duced as well.

We will only regard Case 1 as an optimization/improvement of the
set of routing rules. All other cases we will regard as a decline in
the performance of the set of routing rules. Should the outcome of
the re-analysis be any other than Case 1, we will roll back the mod-
ification to the state of the set of routing rules as they were before



62 approach

we started modifying them. Even whenever we have reduced (or re-
solved) the bottleneck, but introduced one or more new bottlenecks
(Case 4), we will roll back the modifications. This, because the effects
of modifications are hard to keep track of when we try to resolve mul-
tiple layers of bottlenecks introduced with each layer of optimization.
Thus, we stick to one layer of optimization only, and only if we can
optimize within that layer without introducing new bottlenecks, we
will continue with the modified set of routing rules.

Once we have acknowledgement that we have indeed further op-
timized the set of routing rules (i.e. the re-analysis reports that we
have a Case 1 modification result), we will use the modified set of
routing rules as a new basis for further optimization. We will again
run the optimization algorithm on the remaining bottlenecks, further
trying to resolve those as well. However, should we have to perform
a rollback (Cases 2, 3 and 4), we will still keep track of the tried mod-
ifications. This is to prevent the optimization algorithm from trying
to apply the same modifications each iteration. This also enables us
to keep track of all tried modifications per bottleneck. Since each di-
vert has a finite number of station groups to which it can possible
route, we also have a finite number of modifications we can apply
on the routing rules. After we have tried all modifications, we have
exhausted all possibilities of resolving the bottleneck. Should it still
be present (either fully present or in reduced form) we will regard
the bottleneck as ‘dried out’, i.e. we can no longer try to optimize it
and will move on to other bottlenecks.

3.5.4 Maintaining validity

After each optimization iteration, we will have a modified set of rout-
ing rules. Especially if we start optimizing a set of routing rules that
we created initially through our creation algorithm, we need to prove
that we still adhere to the ‘valid’ property of that initial set of routing
rules. In Section 3.3.4, we have proven the validity of our initial set of
routing rules. Now, we are going to prove that all modifications the
optimization algorithm performs still keep this validity intact.

The creation algorithm not only generates a set of routing rules for
primary paths with Favourite usages, it also generates routing rules
for alternative paths using Substitute Favourite and Option usages.
When we are modifying a routing rule, we flip the Favourite usage
if and only if there is an alternative path indicated with a Substitute
Favourite or Option usage. This simplifies our proof to the question
whether or not the alternative paths generated by the creation algo-
rithm are valid, alongside the primary paths.

Whenever the creation algorithm finds a best path between a divert
d ∈ D and a destination t ∈ T , it will also look for alternative paths
that lie within a certain (user-defined) percentage of that best path,
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cost-wise, as described in Section 3.3.3. These alternative paths are
all nth best paths: there are n− 1 better paths between d and t. Still,
the path finding algorithm for alternative paths is exactly the same as
for the best path. This means that (given the proof in Section 3.3.4),
whenever there is an alternative path, that path will be a valid one.
Using that alternative path when modifying the routing rules thus
replaces a valid routing rule with an alternative but still valid rule.
The resulting modified set of routing rules will still be valid, and
thus we have proven our optimized set to also be valid at any time.

3.6 summary

In this chapter, we showed the theoretical solutions for solving the
routing generation problems as presented in Chapter 2. We presented
a framework as the foundation for these solutions, shown in Figure 18.
In this framework, we have three algorithms: the creation algorithm,
the analysis algorithm, and the optimization algorithm. Each algorithm
is responsible for a distinct aspect in the process of generating a valid
and good set of routing rules:

• Creating a valid set of routing rules (creation algorithm);

• Analysing this (or a) set of routing rules (analysis algorithm);

• Improving the performance of the analysed set by modifying
the routing rules and analysing them again (optimization algo-
rithm).

We have explained the graph notation which we will use through-
out the rest of this thesis. Subsequently, we explained each of the
aspects present in the framework.

The creation algorithm is primarily concerned with creating a valid
set of routing rules, where the performance of the set of routing rules
is not of direct importance. We use Dijkstra’s single-source shortest
path algorithm as the basis for the creation algorithm. We apply mod-
ifications to the cost function, incorporate travel time and unwanted
shortcut prevention in order to come to a best path cost function.

With the modification of Dijkstra’s shortest path algorithm into a
best path algorithm, we can create an initial set of routing rules. We
calculate, for each divert, towards each possible destination for that
divert, the best path available. The first edge of that best path will be-
come a routing rule with the Favourite usage. All non-Favourite edges
can still be applicable for alternative paths, so we keep on checking
for second and third best paths, which we could possible have as an
alternative path. Should there be such an alternative path, it will get
a Substitute Favourite or Option usage, depending on the context of
the edge.
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The analysis algorithm is used for analysing the performance of a
set of routing rules. This set of routing rules does not necessarily have
to be created by the creation algorithm, it can also be an already ex-
isting set, for example on a actual operating BHS. Simulations which
Vanderlande runs are too costly for us, which is why we introduce a
new way of analysing the performance of a set of routing rules: flow
algorithms.

We take the notion of flow and Goldberg and Tarjan’s push-relabel
flow algorithm to apply it on our analysis method. The actual algo-
rithm is too restrictive to be applicable for us, which is why we relax
some of its constraints. The intuitive idea behind the algorithm is that
we push flow from the input of the graph to the output of the graph.
We introduce the notion of maximum overflow, to indicate flow ex-
ceeding the capacity of its edge. Through this overflow, we can show
where in the BHS the routing rules are creating bottlenecks.

Methodology to ‘steer’ flow in our graph is presented, and we first
introduce the notion of a main flow. Main flow indicates the major
areas of importance in the BHS, and in such a main flow graph we
can indicate how these major areas are interlinked. Through this main
flow, and the task topology introduced in Section 2.5, we can divide
flow throughout the graph in order to maximize our coverage of the
BHS.

Once the flow algorithm is done, we can start analysing the result-
ing maximum overflow graph in order to indicate bottlenecks in the
system. We recognize three different type of bottlenecks in the sys-
tem:

1. A divert has to switch too often;

2. A merge has to switch too often;

3. An edge has more flow than the capacity of that edge.

We introduced the notion of capacity reduction in order to be able
to compare bottlenecks in the same set of routing rules, and between
different sets of routing rules. This capacity reduction is based on the
amount of switching of a node, resulting in a decreased capacity of
all edges leading to that node. The more the node has to switch, the
higher the capacity reduction will be.

Once we have analysed a set of routing rules and know what the
bottlenecks are, we can use our optimization algorithm to try and
improve the set of routing rules. We look at each bottleneck, try to
shift around with the routing rules, analyse the set again and see if
the bottleneck has been resolved.

In order to efficiently try to resolve bottlenecks, we imposed an
ordering based on the main flow of that BHS. Each bottleneck can be
mapped to a main flow node, and thus we have an initial ordering.
Within this initial ordering, we order all nodes that map to a single
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main flow node based on the distance measurement of a node. This
is the distance from the starting nodes to the bottleneck, and through
this we have an ordering sufficient enough for us to start trying to
resolve bottlenecks from upstream to downstream.

Subsequently, we defined four cases for the actual resolving of a
bottleneck. Either a bottleneck is a divert or a merge, and then it can
either reside on a loop or not. We introduce the definition of bottle-
neck equivalency, indicating that nodes are bottleneck equivalent if
they are distinct nodes, but have an identical set of reachable and
possible destinations. Next, we defined resolving techniques for each
bottleneck case:

• Divert; not on a loop We modify the routing rules for the largest
station group whenever we have a single bottleneck, and modify
the routing rules for the largest station group for half of the
bottlenecks if we have a set of bottleneck equivalent bottlenecks;

• Divert; on a loop Almost identical to the previous case, however
we also have to check if there is an alternative path present;

• Merge; not on a loop Bottlenecks at merges are caused by bot-
tlenecks upstream, so we search for the first divert upstream
through the edge with the highest overflow on the reduced ca-
pacity and try to apply the divert resolving case on it. Should
there be multiple bottlenecks, we match each bottleneck to its
divert, and divide those diverts in sets of bottleneck equivalent
diverts. We then solve it simultaneously, as with the divert case;

• Merge; on a loop Almost identical to the previous case, however,
we now only look at incoming edges not part of the loop.

Modifying a (set of) routing rule(s) means that we ‘flip’ the routing
rule over to other possible edges. We look at all non-Favourite edges,
and check if we have a Substitute Favourite or Option. If so, we switch
the usages on both edges around, such that the original Favourite
edge now becomes a Substitute Favourite or Option, and the non-
Favourite edge now becomes a Favourite.

Once we have modified all routing rules in a single iteration, we re-
analyse the resulting modified set of routing rules. Should we have
reduced or completely removed the bottleneck, we continue with the
modified set of routing rules. If this is not the case, we roll back the
modifications, and try other resolving techniques.

Because we are only operating within the bounds that are created
by the creation algorithm, we can also prove that our modifications
still result in a valid set of routing rules. This, because each alternative
path generated by the creation algorithm is also valid, as opposed to
the best path. Since we are only using these alternative paths, and no
other paths, as a substitute for the best path, we still have a valid set
of routing rules.
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I M P L E M E N TAT I O N

In this chapter, we will expand the solutions as given in Chapter 3.
Firstly, we discuss the coherence of each solution in a bigger picture.
We will show what the interaction of the end-user is, and how both
algorithms will come to a solution. Secondly, each problem will be
discussed with a more in-depth elaboration on the used solution. For
this, we provide pseudocode in Appendix A, and the necessary detail
on the implementations in this chapter.

4.1 input data

There are several datasets available as input data for our framework.
As the foundation of all this data, we have the Node Segment Dia-
gram (NSD). This NSD is the graphical representation of the BHS, as
used internally at Vanderlande. This NSD is a Visio file, with nodes
and segments to visualize a BHS. Each node and segment, both de-
fined as shapes, have shape data. This shape data is both partially
present in the NSD, as well as separately (and more extensively) in
an Extensible Markup Lanuage (XML) file.

We can map the NSD to our graph, defined in Section 3.2. Both
the nodes and segments in the NSD can be directly mapped to nodes
and edges in our graph, respectively. After mapping this NSD to our
graph, we have the following data available to us.

Node

id Unique identifier.

type Type of the node (Workstation, Exit, Merge, Divert, etc.).

Destination

id Unique node identifier.

destination_id Unique destination identifier.

type Type of station (e.g. lateral, HBS, AutoScan).

maximum_capacity Bags per minute the station can at most han-
dle. This is convenient for setting the input of a subgraph when
running the analysis algorithm.

67



68 implementation

Edge

id Unique identifier.

node_id_start The id of the starting node.

node_id_end The id of the ending node.

ind_transport_default Indicates whether the segment is a trans-
port default (can be the case with loops).

system_capacity Bags per hour the segment can at most trans-
port.

travel_time Time in seconds for a bag to traverse over the seg-
ment.

status_segment_id The id of the status segment to which this
route segment belongs.

Status Edge

Status segments are the equivalent of status edges in our graph, i.e.
they are sets of edges that are failure sensitive towards each other.

id Unique identifier.

transport_type General type of the edges it contains (e.g. tubtrax,
bagtrax).

Figure 26: Class diagram of the input data
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After mapping the data to our graph, we have the class diagram as
shown in Figure 26.

4.2 utilization

An important factor in the creation of a tool which uses the frame-
work shown in Figure 18, is how it is used: the utilization of such a
tool. The end goal of the tool is the same as the goal of this gradua-
tion project: to generate a good and valid set of routing rules given a
BHS.

Here, we will explain how the user will use the framework, what
input and output data is expected for each aspect of the framework,
and what user interaction is necessary.

4.2.1 Initial creation algorithm

For this we have, as explained, the mapping of the NSD to our graph.
Additionally, we determined in Section 2.5 that we need the task
topology as user input, in order to retrieve all possible destinations.
Naturally, the task topology that is given has to match the BHS on
which the NSD is based.

The user can indicate whether or not edges in the graph are dis-
abled or not. It could be possible that some edges in the graph should
never be considered during routing, or functionality of areas in the
BHS is incomplete and generating routing rules for those areas is
unnecessary. All disabled edges will be ignored during the initial cre-
ation of routing rules.

Once the user ran the initial creation algorithm, it will have gener-
ated routing rules for each divert towards each reachable and possible
destination. These routing rules can be exported to a file by the user
in the form of an E×D matrix. If there is a usage present for a tu-
ple (e,d), e ∈ E∧ d ∈ D, it will be indicated as either F, S, or O for
Favourite, Substitute Favourite or Option, respectively. If there is no
usage present, the tuple will still be present in the matrix, but the
usage will be empty.

4.2.2 Analysis algorithm

The input data for the analysis algorithm is identical to the input of
the creation algorithm, plus the output data of the creation algorithm:
a dataset of routing rules in the form of an E×D matrix. This dataset
does not necessarily have to be the output data of an execution of the
creation algorithm. It can also be extracted from an already existing
set of routing rules present in a BHS.

Additionally, we need the main flow of the given BHS as user input.
This main flow will be a graph as well, as is shown in Figure 21. This
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main flow will have a node for each major area present in the BHS, or
a subset of this set of possible nodes. In our graph G = (V ,E), each
node n ∈ V can be mapped to one node in the main flow. This means
that each main flow node can be mapped to a set of nodes Q ⊆ V , but
there is is no overlap with the resulting set from an other main flow
node. Each main flow node will have at least one edge, connecting it
to an other node. Each edge indicates the possibilities for a bag at a
specific node. Each outgoing edge determines what areas the bag can
be routed towards.

After the analysis algorithm has been run, the graph has been aug-
mented with more data. Each edge will have a certain amount of
flow and a capacity reduction, and each node will have a switch ratio.
These values will be used to indicate whether or not a node or edge
is a bottleneck. A single performance measurement will also be given,
indicating on a whole how the routing rules perform.

4.2.3 Optimization algorithm

Once we have a graph augmented with data from the analysis algo-
rithm, the user can run the optimization algorithm. The optimization
algorithm will make decisions based on the intensity of the bottle-
necks, in order to resolve them. Each iteration of the optimization
algorithm will try to solve one bottleneck. After an iteration the algo-
rithm will have, if it has found a more optimal set of routing rules,
modified the input set of routing rules. Again, the user can export
this set of routing rules in the same way as is possible after the initial
creation of routing rules.

It could be possible for the user to manually execute iterations in
the optimization algorithm, or to let it run until it converges towards a
solution where improvements are difficult to get or the improvements
are only marginally better.

4.2.4 Implementation framework

Now that we have established the input and output of each algorithm,
we can take the framework shown in Figure 18 and extend it. This
results in an implementation framework, shown in Figure 27.

We have the task topology as user input for both the creation and
analysis algorithm, and the main flow is user input for the analysis
algorithm. The creation algorithm additionally takes the BHS data,
in order to generate a set of routing rules. These routing rules are
the main dataset on which all three algorithms operate. The creation
algorithm generates them, the analysis algorithm analyses them and
generates KPIs, and the optimization algorithm modifies the rules
based on the generated KPIs.
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Figure 27: Implementation framework

4.3 initial creation algorithm

Even though the creation algorithm is only used for initial genera-
tions of routing rules, it is still a vital part of the entire framework.
It uses Dijkstra’s single-source shortest path algorithm[Dijkstra, 1959]
as its basis. Dijkstra’s running time is O(n2), where n = |V | given a
graph G = (V ,E)[Korte and Vygen, 2000]. However, this is only the
running time for a single instantiation of Dijkstra’s. Since we need
to calculate for every divert, for every reachable and relevant desti-
nation wether or not we have a path, the worst case running time is
increased by a factor n: O(n3). This results in a running time which
is too high for our application, we simply have too much nodes —on
average there are thousands of nodes present in a BHS.

Our solution for reducing this running time is by using a modifi-
cation of Dijkstra’s shortest path algorithm, which uses a data struc-
ture called Fibonacci Heaps[Fredman and Tarjan, 1987]. Our graph is
a sparse graph, where |E| ≈ |V |. The proof for this is straightforward:
every node has at least one edge, but never more than four, due to
constraints on the BHS determined by Vanderlande. So, worst case we
have |E| = 4 · |V |, which is still very sparse compared to dense graphs
where the maximum number of edges is achieved (|E| = |V | · |V − 1|,
when we do not take loops into account). The implementation of Dijk-
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stra’s with Fibonacci Heaps is most effective on sparse graphs[Korte
and Vygen, 2000], which is an additional argument for the use of this
implementation.

These Fibonacci Heaps are capable of performing deletion opera-
tions on an n-item heap in O(logn) worst case running time. How-
ever, all other heap operations can be completed in O(1) worst case
running time, significantly reducing the running time of Dijkstra’s
algorithm from O(n3) to O(n2 logn+nm).

Practical test results showed that the running time of the creation
algorithm on a real BHS with around 2000 nodes went down from 45

minutes to under 2 minutes due to the use of Fibonacci Heaps as the
underlying data structure.

4.3.1 Finding a best path

In Algorithm 1, we present the algorithm for finding the best path
between a source node s and a target node t. The algorithm uses
Dijkstra’s functionality as explained in Section 3.3.1, however here
it is modified to be used with Fibonacci Heaps and the heap nodes
that are part of the data structure. The Scan function plays a vital
part in the algorithm, for it is the function which traverses through
the heap nodes stored in the heaps. For further explanation of the
specific operations on the Fibonacci Heaps, we refer to the excellent
explanation present in the author’s paper[Fredman and Tarjan, 1987].

In Algorithm 2, we show the Scan function used in the Algorithm 1.
Each scanning operation takes the minimum node of all heaps (since
that is our most valuable candidate for the best path), and traverses
the heap.

Finally, the cost function as we have defined it in Section 3.3.2 used
in the algorithm is shown in Algorithm 3.

4.3.2 Creating initial set of routing rules

Now that we have established a way to calculate the best path from
any node to any other node, we can use this algorithm to create an
initial valid set of routing rules. The resulting algorithm is shown in
Algorithm 4. This algorithm is the final algorithm which represents
the entire generation scope in the framework.

We loop over every divert d ∈ D. For that divert, we retrieve
the taskgroup to which the divert belongs, using the task topology.
Through this taskgroup, we know what the possible destinations Tp
from that divert are. Subsequently, we run for each t ∈ Tp the Best-
Path algorithm. Should the BestPath algorithm return a path, we
know that this path is the best path for the given combination of
nodes. Thus, we create a routing rule indicating a usage Favourite for
that combination. Still, we need to calculate all alternative paths be-
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sides the best path. We do this by disabling the first edge of the best
path, and again running the BestPath algorithm for each remaining
edge.

After the algorithm has completed, we have a E× T matrix Routin-
gRules containing all routing rules.

4.4 analysis algorithm

With the analysis algorithm, we take a matrix E× T containing rout-
ing rules. This matrix does not necessarily have to be created by our
creation algorithm, it can also be extracted from already existing BHS
configurations. Additionally, we use the same data input as the cre-
ation algorithm; the BHS data, and the task topology. Finally, we also
add the main flow graph, defined by the user. This main flow graph
defines part of the BHS our algorithm cannot easily extract. An exam-
ple of this graph is shown in Figure 21.

The actual implementation of the analysis algorithm is very com-
plicated, mostly due to the special cases necessary to properly push
flow over a BHS. Since stating this here would require multi-page
pseudocode examples, we will only show the most straightforward
cases and leave out the special cases.

4.4.1 Calculating flow through a (sub)graph

We begin with the initialisation of our graph G = (V ,E) with the
initialization code shown in Algorithm 5. We simply add a source
α and sink ω to V , and connect those with all relevant nodes. Sub-
sequently, we already start setting the flow of the input points. We
assume we have some sort of integer amount of input flow called in-
putFlow. This amount will be divided over all input points, and we
will create flowsets for each group of flow.

It should be noted that graph G does not necessarily have to be
the complete graph as used in the creation algorithm. It can also be a
subset of the graph. This is relevant in our case of main flow. Since we
do not calculate the flow of our entire graph at once, we use the main
flow to divide the calculation into pieces. Each edge in the main flow
graph will be a separate calculation, using the appropriate starting
nodes and ending nodes. The input flow of this subgraph will be the
flow as has been iteratively calculated from the starting nodes of the
main flow, up to the point where we have our input flow.

After initialisation, we can start calculating the flow over the aug-
mented graph. We do this by calling the Discharge method shown
in Algorithm 6. This algorithm is the core of our analysis algorithm.
It contains a queue Q of active nodes, and for each node will keep
on applying PushRelabel operations until the node become inactive.
Should the label of the node become higher than the total amount of
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nodes in the graph, we know that we have flow which cannot get to
its destination, and we will abort the operation.

The PushRelabel method shown in Algorithm 7 consists mainly
of pushing flow around over all possible edges of v. Should a node
w become active during this pushing process, it will be added to
the queue Q. Due to the size of the PushRelabel operation, both
the Push operation, as well as the ApplicableForPush method are
shown separately in Algorithms 8 and 9.

The Push method is concerned with pushing flow from v over edge
e to node w. It takes into account the routing rules RR, or other as-
pects of the system like transport default edges. It should be noted
that, although we talked about ‘via diverts’ dv in Section 3.4.5.3, we
left the implementation out in the pseudocode. We do show how to
balance flow in Algorithm 10, but the actual use of via diverts is too
repetitive to show here. Implementation is quite trivial: if a flowset
has a via divert set, it should ignore any other diverts until it reaches
the via divert. Once it has traveled over this divert, the via divert
should be reset in the flowset.

After the Discharge method has completed, graph each edge e ∈ E
has been augmented with integer amounts of flow, indicating what
the amount of flow was that traveled over e during the calculation.

4.4.2 Indicating bottlenecks

Once we have a collection of subgraphs, each containing a flow cal-
culation for an edge in the main flow, we can start indicating the
bottlenecks in our system. First, we need to merge all subgraphs back
into one single graph containing all flow calculations. This is quite
trivial, as it only requires a summation of all edges in each subgraph,
and as such we will not show that here.

What we are interested in, however, is the calculation of switch
ratios and capacity reductions. This is shown in Algorithms 11 and 12,
respectively.

4.5 optimization algorithm

Once we have a list of bottlenecks presented by the analysis algorithm,
we can use the optimization algorithm to try and resolve these bot-
tlenecks. In order to save time during the implementation phase, we
have not implemented the bottleneck ordering system as described in
Section 3.5.1. The ordering itself is not relevant for the actual perfor-
mance of the optimization algorithm, and as such we have emulated
the ordering by manually following the exact same ordering as was
described in Section 3.5.1.

Due to the straightforward nature of the optimization algorithm,
we will not go into detail about aspects of the algorithm that are
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trivial to implement, like the case distinction between the type of
bottleneck and how to solve these, as well as how to determine the
equivalency of bottlenecks, as this relies on the task topology.

In Algorithm 13, we show the flipping of routing rules. Important
to notice when implementing this is to keep track of the current
state of usages on the edges. One needs to take care not to switch
a Favourite usage when there is no alternative path available, as this
could potentially invalidate the set of routing rules.

4.6 visualization

As both the routing rules and KPIs are essential data for the end-user,
both need to be visualized. For this, we use the input graph as the
basis for our visualization. For each destination, we can display all
routing rules which are affected by this destination. As such, when
the user selects a single destination, we can visualize each matching
routing rule by coloring all outgoing edges for each divert in the
graph. This way, a user can have a quick glance over all routing rules
through a familiar representation.

Both KPIs can be visualized by using this same graph representa-
tion, but by slightly altering the visualization.

4.6.1 Colormaps

One of the most straightforward ways to convey data on large inter-
vals to a user is through the use of coloring. We choose to use a col-
ormap, due to the simplicity of implementing it, and getting effective
results in terms of quickly visualizing data.

A colormap defines colors on an interval specified by the user. Spe-
cific values within the interval are connected to a color, and the col-
ormap will calculate the appropriate color for any value in between
the interval. This is achieved by dividing the interval in smaller in-
tervals, and calculating the correct color for such a subinterval; this
result is called a lookup table. This way, we only need a function to
map a value to any of those subintervals, and the color is predefined
for us; this saves calculation time.

We will show an example using one of the applicabilities in our
implementation. We have edges with flow and capacity, and we want
to show to the user in what manner the flow adheres to the capacity
(i.e. if the flow exceeds capacity). We do this by defining a colormap,
which is shown in Figure 28.

We have a colormap ranging from 0% to 125%. The reason behind
an interval exceeding 100% is to also be able to indicate how much
flow exceeds capacity. Should we cap the interval at 100%, we would
not be able to show this. The general idea is that we do not want flow
exceeding capacity, but also not lacking the use of the capacity (e.g. an
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edge with a capacity of 6000 with a flow of only 10 bags). This means
that we need to differentiate between the two extremes on our inter-
val. For this, we use a double-ended colormap, ranging from blue to
gray to red[Borland, 2007]. Blue indicates overcapacity, red indicates
undercapacity (too little flow and too much flow, respectively).

In Figure 28, we also show the division of the main colors red,
green and blue. Naturally, we need full blue and red at either end
of the colormap, so both colors gradually decrease and increase, re-
spectively, over the course of the interval [0, 125]. In order to create
gray in the center of the colormap, we gradually increase green to 0.5
intensity towards the center of the interval, and gradually decrease it
afterwards.

0% 62.50% 125%100%25%

R

B

G
1

0

1

0

1

0

Figure 28: Double-ended blue-gray-red colormap

If we have an interval i = [imin, imax] for which we want to create
a colormap, we first need to divide the interval in equal parts for the
lookup table. The granularity of this division determines how smooth
the transition from one part to the other is. The reason for this is that
all values that fall inside a subinterval will have the same color, so
naturally, if we have few subintervals we get harsh transitions from
one color to the other.

Given a value si ∈ i, in order to retrieve a color from the lookup
table (with size n) matching si, we use the index calculation shown
in Equation (11)

i =


0 si < imin

n− 1 si > imax⌊
(n− 1)

(
si−imin
imax−imin

)⌋
else

(11)
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Now, in order to calculate the colors that are matching a value si ∈ i
in the blue-gray-red colormap, we use Equations (12) to (14).

red(si) =


0 si < imin

1 si > imax
si−imin
imax

else

(12)

green(si) =


0 si < imin

0 si > imax
si−imin
imax

si > imin ∧ si 6
imax−imin

2

1− si−imin
imax

else

(13)

blue(si) =


1 si < imin

0 si > imax

1− si−imin
imax

else

(14)

4.6.2 Flow and capacity

As said in Section 4.6.1, when we visualize the flow on an edge, we
want to visualize the adherence to the capacity of that edge. For this,
we introduce the colormap already shown in Figure 28. When we
have an edge e, the ratio φ = f(e)/c(e) indicates the percentual use
of the flow on the capacity. When φ > 100, we have more flow than
capacity and thus the edge exceeds its capacity.

We want to indicate primarily the edges exceeding their capacity
(red), and the edges barely using the capacity given to them (blue).
Any edges in between these two extremes are not directly to our in-
terest (gray).
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A N A LY S I S

In this chapter, we will analyse the practical performance of the the-
ory presented in Chapter 3, using the implementation presented in
Chapter 4. We will present the datasets of two distinct, real BHSs
which we will use for analysis.

5.1 datasets

For the analysis we are going to perform, we present two datasets.
Each dataset is a complete and operational BHS as used by Vander-
lande. Due to confidentiality we cannot disclose any specific informa-
tion about their locations or what functionality is present, but fortu-
nately that information is also unnecessary for performing such an
analysis. The properties of the used datasets (and, additionally, that
of the running example), are shown in Table 2.

Table 2: Properties of the analysed datasets

|V | |E| Stations Complexity

Dataset A 133 152 40 Low

Dataset B 1507 1779 385 High

Running example 252 314 55 Medium

One should note that the perceived level of complexity is a mere
indication of the amount of technical properties a BHS has. It is not
quantifiable, but is only present to give the reader an indication how
Vanderlande perceives the BHS in a given dataset. Additionally, the
running example will not be analysed, and is presented only as a com-
parison factor. This, because it is the only way for the user to know
how the running example compares to the actual datasets (through
the level of complexity). The running example in itself is only used in
this thesis for reference; it is infeasible to extend the running example
with all relevant data in order to be able to analyse it, as this would
require too much work. Naturally, analysing real world examples re-
sults in more reliable indications on the applicability of the presented
theory, and it should again be noted that all theory in this thesis is
based on those real world examples.

79
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5.2 methodology

For the analysis, we will use a tool that implements the theory pre-
sented in Chapter 3, using the implementation techniques presented
in Chapter 4. This tool will also serve as a proof of concept, where we
show that the theory is indeed applicable for generating a set of valid
and good routing rules.

As mentioned, each dataset represents an actual, operational BHS,
and because of this all datasets have an operational set of routing
rules. These routing rules have been created manually by Vander-
lande employees. We are going to compare these manually created
routing rules to those generated by our tool.

There are three ways we are going to compare our generated set of
routing rules to those created manually:

1. Difference between the sets based on the matching and mis-
matching of routing rules;

2. Total number of bottlenecks present; i.e. total number of edges
e ∈ E where the flow exceeds the reduced capacity (overflow),
f(e) > c(e) − credux(e);

3. Total sum of overflow; i.e.
∑
f(e) − (c(e) − credux(e)),∀e ∈ E :

f(e) > c(e) − credux(e).

For Case 1, we express the difference between two sets in percent-
ages. However, this measurement does not incorporate the actual per-
formance of a set of routing rules. Even when the generated set of
routing rules is completely different, the generated set can still out-
perform the manual set because it has less bottlenecks or a lower sum
of overflow. So, Case 1 is purely for us to have some sort of grasp how
the generated set of routing rules compare to the manually created
one.

We use Cases 2 and 3 to actually measure the performance of a set
of routing rules. Given a certain input flow, we calculate the number
of bottlenecks present, and the total sum of these bottlenecks. If we
calculate these measurements over a certain interval of input flows,
we can see how sensitive a set of routing rules is. We can see when
the system starts to give in under the increasing pressure of the input
flow, and we can see how large these impacts will be. This will give
us a comparison method between sets of routing rules.

For each dataset, we will use a main flow distribution determined
by Vanderlande employees as feasible for that corresponding dataset.
We regard the input flow of those distributions as the demanded in-
put flow for which we want to minimize the number of bottlenecks.
For the sensitivity analysis, we define an interval (which differs per
dataset) which starts from the lowest feasible amount of bags in
which we have no bottlenecks. We increase the input flow steadily,
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dividing the increase equally over all input nodes, until we reach the
wanted input flow (defined by the main flow distribution) and push
past that to see how the system operates at above-capacity levels.

The differences (and similarities) between the manually created
routing rules and the (by our tool) generated routing rules will be
presented. We will discuss why these difference are present, and in
what parts of the datasets they manifest. Furthermore, we will revisit
the interesting scenarios presented in Section 2.6 to see how the algo-
rithms cope with those.

5.3 results

We will discuss the results of each dataset separately. This, due to the
functional differences between each dataset; comparing the results
between the datasets themselves does not contribute any valuable
information.

5.3.1 Dataset A

Dataset A is the smallest dataset we are analysing. It is a fairly straight-
forward BHS with not a lot of functionality. This means that the set
of routing rules is simple, as there are not a lot of possibilities for
baggage to traverse the BHS.

5.3.1.1 Percentage difference

In Table 3, we present the percentage difference between the (by Van-
derlande employees) manually created set of routing rules and our
set of generated routing rules. As can be seen, our initial created set
of routing rules (before any optimizations) has a difference of 25%
compared to the manually created set. Due to the small size of the
BHS, there are not a lot of routing rules possible. The main difference
can be explained by one destination. The manual set deliberately de-
cides to route baggage for that destination over a loop, whilst the
initial set regards that path as too costly and takes a shortcut.

Table 3: Percentage difference between manual and generated sets of rout-
ing rules on Dataset A, per optimization iteration

Initial Opt #1

Dataset B 25.00 25.00

After one optimization step, we still have the same difference per-
centage. A few routing rules have been flipped, but the flipped ver-
sions are still mismatching compared to the manual set, hence the
equal difference. Due to the small size of the dataset, we only have
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one successful optimization step. Any other optimization step re-
sulted in reduced performance of the set.

5.3.1.2 Performance analysis

In Figure 29 (and Table 4) and Figure 30 (and Table 4), we can see the
performance analysis on the number of bottlenecks and the summa-
tion of overflow present in Dataset A. An input flow of 6000 bags per
hour is considered as the demanded input flow. To indicate this, we
have marked this with a gray dotted line. A range of analysis runs
have been made, starting at an input flow of 1000 bags per hour, in-
creasing it with 1000 bags per run and ending with 8000 bags per
hour.

Table 4: Number of bottlenecks presented in Figure 29

1000 2000 3000 4000 5000 6000 7000 8000

Manual 0 0 1 3 22 35 36 40

Initial 0 0 8 12 25 29 32 34

Opt #1 0 0 1 5 21 28 32 39

Table 5: Sum of overflow presented in Figure 30

1000 2000 3000 4000 5000 6000 7000 8000

Manual 0 0 494 1593 5761 16768 30269 45174

Initial 0 0 3134 10435 21713 36185 52462 70144

Opt #1 0 0 520 2322 8263 17852 29444 42968

As one can see, our initial set continually has a higher amount of
bottlenecks compared to the manual set, until the demanded 6000

bags per hour mark, where it drops below the manual set. Perfor-
mance under the demanded mark is of higher importance than the
performance above it, due to peak loads. The load above the de-
manded mark will only be present in bursts, and thus will have a
short duration. However, the load under the demanded mark will be
a more consistent load, hence the duration will be longer. Also, even
though the number of bottlenecks drops below that of the manual set,
we can see that the sum of overflow is continually far above that of
the manual set. So even though our initial set comes fairly close to
the manual set, some improvements can still be made.

These improvements become apparent after the first (and only) op-
timization step is made. During this optimization step, a cross is opti-
mized. This cross is present just after some major input points, result-



5.3 results 83

1 3 5 7

·103

0

10

20

30

40

Input flow

N
um

be
r

of
bo

tt
le

ne
ck

s
Manual
Initial
Opt #1

Figure 29: Number of bottlenecks on Dataset A per different sets of routing
rules
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Figure 30: Sum of overflow on bottlenecks on Dataset A per different sets of
routing rules
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ing in the cross being a major bottleneck due to inefficient routing.
We can see that the sum of overflow of the opt #1 set comes very
close to that of the manual set. It is apparent that this bottleneck was
the major bottleneck that throttled the entire system, and now that it
is solved the system is more capable of handling a high amount of
input flow.

One interesting fact is that the opt #1 set still has less bottlenecks
than the manual set, as much as 7 distinct bottlenecks less on the de-
manded input flow. This does not necessarily results in a better per-
formance of the opt #1 set compared to the manual set. Even though
the manual set has more bottlenecks, the sum of overflow is the same,
which means that on average overflow could be spread more evenly
over all present bottlenecks.

5.3.2 Dataset B

Dataset B is substantially more complex than A. It can be seen in
Table 2 that B contains almost ten times more stations than A, and
one can imagine that all those stations also need the corresponding
edges and paths in order to be able to route to them. As the topology
of B is more common than A, we are very interested in the results of
the analysis on this dataset.

5.3.2.1 Percentage difference

In Table 6, we present the percentage difference between the manual
set of routing rules and the generated set of routing rules. What im-
mediately becomes apparent, is the high difference percentage of 55%
in the initial created set of routing rules. This is mainly due to one
major feature of this dataset, it has a (highly complex) storage area.
This storage area has its own set of tailored routing rules, and these
routing rules do not necessarily follow the conventions of the rest
of the graph because the area itself is fully automated—it does not
work with conveyor belts. After some consideration, this area was re-
garded as out of scope of this project, due to its complexity. Though,
the routing rules for this storage area are present in the manual set.
The algorithms do try to take the storage area into account, but the
generated routing rules for that area (and all rules leading to that
area) will not be complete, and thus we have a huge mismatch be-
tween the two sets of routing rules explaining the large percentage
difference.

After one optimization step (opt #1), several crosses have been op-
timized. Similarly as with Dataset A, we had several crosses close to
the input points of the BHS. Due to inefficient routing, a lot of bag-
gage was being routed over a single loop (whilst there is more than
one loop). Contrary to Dataset A, the modifications in opt #1 did re-
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Table 6: Percentage difference between manual and generated sets of rout-
ing rules on Dataset B, per optimization iteration

Initial Opt #1 Opt #2

Dataset B 55.9 54.02 54.00

sult in routing rules now identical to those in the manual set, thus we
get a difference decrease of 1.88 percentage point.

After the second optimization step (opt #2), a few diverts leading
to loops have been optimized. Originally, all diverts routed baggage
to the same loop, whereas there are two loops present. One loop went
over capacity, whilst the other loop still had some capacity left. The
optimization algorithm flipped half of the diverts over to the other
loop, resulting in similar behaviour as the manual set. However, since
we are only talking about 8 edges in a dataset containing 1779 edges,
the difference percentage only decreases by 0.02 percentage point.

5.3.2.2 Performance analysis

In Figure 31 (and Table 7) and Figure 32 (and Table 7), we can see
the performance analysis on the number of bottlenecks and the sum-
mation of the overflows present in Dataset B. An input flow of 11000
bags per hour is considered as the demanded input flow. To indicate
this, we have marked this with a gray dotted line. A range of analysis
runs have been made, starting at an input flow of 3000 bags per hour,
increasing it with 1000 bags per run and ending with 14000 bags per
hour.

Contrary to the initial set of A, the initial set in B continually per-
forms worse than the manual set, both in terms of number of bottle-
necks as well as the sum of overflow. This is mainly due to the much
larger scale of B compared to A. It is much harder for the creation
algorithm to immediately generate a good performing set of routing
rules, even when the amount of input flow is low.

Two noticeable peaks are present, both in the number of bottlenecks
as the sum of overflow, at an input flow of 10000 and 12000 bags
per hour. The first peak (10000 bags per hour) can be explained by
the saturation of screening stations. Their capacity is reached at 9000
bags per hour, the additional 1000 bags per hour increase results in
all ingoing routes clogging up. This remains steady until 12000 bags,
when a major bottleneck increase is noticeable. This is the result of the
entire output of the system buckling under the extremely high input
flow. Two major flows are being combined just before the laterals,
resulting in a lot of overflow on these lines.
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Figure 31: Number of bottlenecks on Dataset B per different set of routing
rules
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Figure 32: Sum of overflow on bottlenecks on Dataset B per different sets of
routing rules
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Table 7: Number of bottlenecks presented in Figure 31

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

Manual 0 4 4 11 11 27 27 44 57 77 81 100

Initial 0 4 7 12 13 45 48 71 78 116 139 155

Opt #1 0 4 5 9 12 45 47 68 74 101 117 133

Opt #2 0 4 5 11 11 46 47 67 74 100 115 133

Table 8: Sum of overflow presented in Figure 32

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000

Manual 0 272 592 3257 4004 8594 10386 17514 21010 39378 54523 60532

Initial 0 272 1455 4383 5615 14296 17653 33437 36349 67192 107396 114280

Opt #1 0 272 1002 2666 3819 13332 14871 27946 31468 59336 85327 89376

Opt #2 0 272 802 2525 3446 10992 12774 26553 28978 56808 80058 87780
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After the first optimization step (opt #1), multiple cross bottlenecks
are optimized, similar to the cross bottleneck present in the initial
set of A. However, in B, multiple crosses are present, and all are
inefficiently routed in the initial set. We will elaborate on the changes
made on the cross in Section 5.4.1. With the changes, load is now more
evenly directed to one of the loops. Because the loops themselves have
high capacities, the performance improvements are only noticeable
when the input flow nears the demanded input flow (i.e. when it gets
high).

After the second optimization step (opt #2), diverts leading to loops
have been optimized. Again, we will elaborate on the changes in Sec-
tion 5.4.2. What can be seen is that the number of bottlenecks in opt #1
and opt #2 are roughly the same. The diverts that have been changed
are already going over capacity after 9000 bags (with and without
the optimizations), and since the number of bottlenecks do not make
a distinction between small or large overflows, the number of bot-
tlenecks does not change. However, if we look at the sum of over-
flows, we can see that the bottlenecks themselves have been reduced
by around 20% at 9000 bags per hour and above, compared to the
initial set.

5.4 interesting scenarios in practice

We have shown interesting scenarios for our theory in Section 2.6,
and paid special attention to solving those interesting scenarios dur-
ing our approach in Chapter 3. In this section, we will revisit those
interesting scenarios using the results we have retrieved through the
analysis on datasets A and B.

5.4.1 Cross

In Dataset B, we had a crossing problem similar to the interesting
scenario presented in Section 2.6.1. In Figure 33, we can see the rout-
ing rules present before and after optimization. In Figure 34, we can
see the same cross visualized and annotated with the remaining ca-
pacity. After we push flow through, we have a certain amount of
remaining capacity, i.e. for an edge e ∈ E the reduced capacity minus
the flow: (c(e) − credux(e)) − f(e). If this number is negative, we have
more flow going over the edge than the reduced capacity can take. In
other words: we have overflow, and thus a bottleneck. The coloring is
the direct result of the colormap we have described in Section 4.6.1.

As can be seen in Figure 33a, the routing rules originally routed all
traffic over the Favourite edges through the lower merge. The down-
side of this routing can be seen very clearly in Figure 34a. Both edges
going into the lower merge are red hot, both with an overflow of
almost 700 bags per hour. The upper merge has almost no traffic to
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process, resulting in a very idle merge node with remaining capacities
almost identical to the actual capacity of 1800 bags per hour.

O
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F

(a) Before optimization
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(b) After optimization

Figure 33: Optimization of routing rules on a cross
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Figure 34: Remaining capacity of routing rules on a cross

After the actual optimization step, we can see the routing rules have
been flipped over, resulting in the situation shown in Figure 33b. We
now send flow over their dedicated paths instead of the redundant
paths, and the result of this is very clearly shown in Figure 34b. The
redundant path is relieved of its stress, and is actually no longer used
(we have no flow going over it, hence why the remaining capacity is
equal to its actual capacity). Because the lower merge no longer has
to process a lot of bags, the lower dedicated path is also no longer a
bottleneck.

The input flow is different, due to this cross not being the only
one in the system that is optimized in the same optimization step
(because of bottleneck equivalency). The outgoing flow can now pose
as a problem, because of its negative remaining capacity, but this can
be due to an other bottleneck downstream, or due to an input flow
which is too high.

5.4.2 Loops

In Dataset B, we had a scenario similar to the interesting scenario
presented in Section 2.6.2. Diverts that were leading to loops were
routing all baggage to one loop, instead of spreading the load over
multiple loops. In Figure 35, we have created a similar situation in
order to explain how the optimization algorithm dealt with this.
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Figure 35: Optimization of routing rules on loops

In Figure 35a, we can see four diverts all leading to either of the
two main loops. However, all diverts have routing rules resulting in
baggage only being routed towards the blue loop. This resulted in
bottlenecks on the blue loop, due to the high flow of baggage that
was being routed over it. After the optimization step (done in opt #2),
half of the routing rules were flipped over to the red loop, resulting in
the situation displayed in Figure 35b. This reduced the bottlenecks on
the blue loop, and increased the flow over the red loop. This reduced
the overall sum of overflow, as is apparent in Figure 32.

5.4.3 Crossing of flow

What became apparent during all optimization iterations (both suc-
cessful and unsuccessful iterations) was the difficulty of determining
crossing of flow and actually solving it. The ‘crossing of flow’ exam-
ple we presented in Section 2.6.3 is a very simple and straightforward
one, where we have a single point of failure on the merging of multi-
ple main flows.

In Dataset B, we have one major issue near the output where mul-
tiple main flows are being merged. Because there are multiple bot-
tlenecks present, it is hard for the optimization algorithm to exactly
pinpoint the direct cause of those bottlenecks. This results in many
failed optimization attempts due to lack of information.

The primary reason for this lack of information is the use of state-
less flow. Whenever we have a bottleneck, we only know that the bot-
tleneck exists at that point, not how it is formed. We do not have any
history on the flow upstream, and how those decisions might have
influenced the bottleneck currently present. Should we have stateful
flow, we could use the history of flow to extract useful knowledge
about upstream behavior. This could result in better optimization
techniques in order to prevent crossing of flow.
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5.5 evaluation

With the results presented in Section 5.3, and the analysis of interest-
ing scenarios in Section 5.4, we can now evaluate the performance of
the algorithms, and ultimately, the theory itself.

When we look at the initial sets of routing rules generated, it is
apparent that already a lot of the correct routing rules are gener-
ated. With a difference of 25% in Dataset A and 56% in Dataset B,
we already prevent the manual creation of 50% of all routing rules.
This, in itself, is already a major improvement regarding the amount
of man-hours needed for creating the same amount of routing rules
manually.

On average, creating a full set of routing rules for BHSs as big as
Dataset B takes around two months of man-hours1. Even if we as-
sume that the initial set only contains the most straightforward rout-
ing rules, we could reduce this by two to two-and-a-half weeks of
man-hours.

The optimization techniques presented in Section 3.5.2 further in-
crease the performance of sets of routing rules by 15% to 20% on
Datasets A and B. Two of the three interesting scenarios are indeed
recognized and taken into account when regarding bottlenecks, ef-
fectively reducing the bottlenecks or completely resolving them. The
remaining interesting scenario (crossing of flow) appears difficult to
resolve due to lack of information, resulting in only the capability of
resolving bottlenecks caused by local routing problems.

Additionally, the performance of the set of routing rules do not only
rely on the efficiency of the set, but also on the efficiency of the task
topology. Because baggage flow is simulated through the information
extracted out of the task topology, the task topology itself has a great
influence on how baggage is pushed through the BHS. If the task
topology is inefficient, the routing rules will appear inefficient as well,
though, this may not necessarily be the case.

1 This is an estimation made by Vanderlande employees





6
C O N C L U S I O N

In this thesis we have introduced the problem of generating rout-
ing logic for Baggage Handling Systems (BHSs). Routing baggage
through BHSs is done making use of pre-defined routing rules, which
indicate for each decision point what the possible next step should be,
in order to get the bag to its (intermediate) destination. These rout-
ing rules are currently created manually at Vanderlande, and the goal
of this graduation project was to automatically generate a valid (i.e.
complete) and good (i.e. high performance) set of routing rules.

In order to generate these routing rules, we introduced a frame-
work capable of doing so. This framework consists of three processes:
the creation process, the analysis process and the optimization pro-
cess. The creation process generates an initial set of routing rules
through a modified shortest path algorithm, by taking into account all
the possibilities of the BHS. This initial set only focusses on baggage,
and disregards the entire BHS. This is why we make use of the anal-
ysis process to analyse this (or an arbitrary) set of routing rules. The
analysis process takes into account mechanical properties of the BHS,
and uses flow algorithms to simulate baggage flowing through the
BHS. The analysis process produces possible bottlenecks that are the
direct result of inefficient routing. Using these bottlenecks as a basis,
the optimization process tries to resolve the bottlenecks by modifying
the routing rules possibly responsible for the bottlenecks.

We analysed the performance of this entire framework by compar-
ing all generated sets of routing rules with those created manually, on
datasets from actual BHSs. The initial sets generated by the creation
algorithm already contain 50% to 75% of all manual routing rules.
This already decreases the number of man-hours needed to create a
complete set of routing rules by around one-third. The performance
of these initial sets are roughly two-thirds worse than the manual set.
After applying optimization steps, the optimization techniques we
presented further increased the performance by an additional 15% to
20%.

Further optimizations are still possible, but impossible without in-
troducing stateful flow instead of stateless flow. Due to the latter be-
ing used in this graduation project, information on the history of flow
is missing. This makes it difficult to accurately predict the exact cause
of bottlenecks whenever these bottlenecks are not the cause of local
routing inefficiencies.
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6.1 future work

Optimization processes are almost always a never ending process.
One has to determine the tradeoff between the amount of effort and
the results achieved. The existence of this project proves that with
some abstraction, one can still provide reasonable arguments on the
performance of a set of routing rules. However, further optimization
is always possible, and in this section we will provide methods for
this. We will show how we can improve the processes we have de-
scribed in this thesis, but also discuss the possibilities of taking into
account a broader scope for the project itself.

6.1.1 Influence rules

In Section 1.5.2, we discussed the notion of influence rules. How they
are present to take over whenever something in a BHS becomes un-
available (either through breakdowns, high loads, or other reasons).
They change routing rules temporarily in order to reroute baggage in
such a way that the unreachable area is circumvented.

We deliberately chose to leave out the calculation of influence rules
in this project. Even though the calculations themselves are quite
straightforward (trivial, even), analysing all those influence rules and
taking them into account when optimizing is quite complex. This was
simply infeasible for the duration of this graduation project. However,
we can elaborate on the possible ways to calculate these influence
rules.

For each possible breakdown, one has to translate this breakdown
into a set of edges Ed ⊂ E that will be disabled as an effect of the
breakdown. As such, in effect we have a new graph Gd = (V ,E \

Ed) on which we run the initial creation algorithm. Each edge in Ed
will not exist for the creation algorithm, and as such it will not take
them into account. The resulting initial set of routing rules will thus
route all baggage around the disabled set of edges Ed. If we take the
difference between the initial set of routing rules on G and that on
Gd, we will have our set of influence rules which temporarily take
over whenever all edges in Ed are disabled due to a breakdown.

The analysis and optimization algorithm can still be used on that
set of routing rules for Gd. Though, two assumptions we made in Sec-
tion 3.3.4 cannot be guaranteed anymore. We do not know for certain
that the topology is complete, and we do not know for certain that
we can route through non-destination nodes. This would endanger
the validity of the routing rules that are in effect when the influence
rules take over. However, one can state that all breakdowns which
can occur always make it possible for baggage to be rerouted as Van-
derlande also incorporates this when designing a BHS.
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6.1.2 Take into account holding capacity

Edges have an additional property we can use when analysing a set
of routing rules. Besides the actual capacity of an edge, indicating the
amount of bags it can process per hour, there is also the notion of
holding capacity. This indicates the physical capacity of the conveyor
belt which the edge represents, defining the maximum number of
bags that can reside on the edge itself. This introduces the actual
length of a conveyor belt into the equation.

Using the holding capacity, we can distinguish between a physi-
cally long and short edge. If we have two edges e, e ′ ∈ E with an
equal capacity of c(e) = c(e ′) = 1500 bags per hour, but e has a hold-
ing capacity of 10 bags, whilst e ′ has a holding capacity of 500 bags,
the short term impact of a mutual edge downstream breaking down
is much more severe compared to the breakdown of edge e ′. One can
see the holding capacity as a buffer: if it is low, there is not much
buffer space and the edge will clog up fast if it needs to temporarily
store baggage.

We can extend the capacity reduction equation which was shown in
Section 3.4.6.1. For example, we can decrease the capacity reduction
whenever the holding capacity, defined by chold : E→ R+, increases:

credux(e) =
1

chold(e)
· #switches(n) · 3 · c(e)

3600
(15)

However, the impact of the holding capacity can be too steep if used
as in Equation (15). This is something that should be investigated,
and adjusted accordingly.

6.1.3 Introduce stateful flow

As described in Section 3.4.5.5, we have deliberately chosen for state-
less flow in our approach. A possible extension on this work would
be to replace this stateless flow with stateful flow. For this, one would
have to keep track per destination flow the previously visited nodes.
This way, once we have a bottleneck in a BHS, more information can
be retrieved on the possible flows that were responsible for this bot-
tleneck.

For example, assume we have a bottleneck node. When using state-
ful flow, we can backtrack through the list of passed nodes for each
destination flow. With these lists of passed nodes, we can check if
there are multiple nodes present in history lists of different destina-
tion flows. Should we have such a node present, we can try to shift
the routing rules for that node around. In more direct terms: we can
directly pinpoint the common ancestor for multiple bottlenecks, and
here we have the most change of successfully altering the routing
rules such that we resolve the bottleneck.
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This also makes it easier to detect whether we have main flows
crossing through the system. As was already evaluated in Section 5.5,
history on destination flows are necessary in order to make optimiza-
tions based on non-local bottleneck problems.

6.1.4 Incorporate Process Controller logic

In this project, the LM and the PC are considered as separate entities,
only communicating with each other the necessary information. We
assume we receive the correct information from the PC (where, in the
main flow, a bag needs to go) and react on that. The logic of the PC,
i.e. how it reacts on the position of a bag, or the conditions of the
system, can be extracted and captured in logic rules.

These logic rules of the PC can then be combined with the method-
ology presented in this thesis to create more realistic routing rules.
In this project, we only know the possible destinations for each point
in the system, by using the task topology. If we incorporate the logic
rules from the PC in this project, we can use this logic to generate
rules tailored on these possible decisions. We achieve this because we
increase the knowledge about the entire BHS using these logic rules.
We can now know what the possible future steps for a bag are, at a
certain position. Currently, we only know the current step a bag has
to undertake, not its possible future steps.

This knowledge can be valuable for generating routing rules, be-
cause we can look into creating the best possible path for a bag to
take from its first destination to its final destination. We can take into
account where a bag has been, and more importantly, where it needs
to go. This way, we can try to generate routing rules which allows for
a more seamless flow from input to output points for each bag.

6.2 related work

This graduation project uses many aspects of graph theory and other
fields of research. There are many past and possible future research
topics closely related to this graduation project, and in this section
we will discuss these research topics. Both in and out of the scope of
this graduation project.

6.2.1 Realtime shortest path calculation in simulations

In 2001, a previous graduation project was performed at Vander-
lande[de Jongh, 2001]. The goal of this project was to investigate if
it is possible to calculate routing logic in a realtime way for environ-
ments, whilst also taking into account balancing. The similarities to
this current graduation project are high, with the exception that the
graduation project by de Jongh was focussed on actual simulation
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models, whereas this graduation project focusses on pre and post de-
sign models.

The conclusion of the graduation project was the infeasibility (at
that time) of realtime calculation of routing logic, as it would take
too much time to do so. Moreover, errors in the created routing logic
was present, as it was only using a shortest path calculation method-
ology. This is also the reason why in this current graduation project
we do not only rely on the shortest path methodology for creation
routing rules, but also on optimizing these rules. Finally, several load
balancing methods were considered, but none of them were found to
be optimal for the systems Vanderlande uses.

6.2.2 Retrieve correlated destinations

As mentioned in Section 2.5, the task topology enables the LM to de-
termine the possible destinations to which it can route a bag, given
the bag’s current position in the system. These sets of destinations
(station groups) are predefined in the task topology, i.e. correlated
destinations are combined manually into sets. Originally, the use of
these station groups were to ease the work of the system architect;
this way he does not have to redefine a destination multiple times for
many positions in the system, but he can rather define a whole group
of destinations and use this group over and over. However, through
this project it became apparent that the functionality of these station
groups is not only useful for the system architects, but they also pro-
vide valuable information on the relationship between destinations,
which we have used as well.

Currently, these station groups are created through the insights of
a system architect. Usually, destinations are grouped whenever they
are all considered equally whenever handing out a task which they all
perform. E.g. when it does not significantly matter which destination
we choose, they are all feasible.

This process of creating station groups can also be automated. For
this, one should look into methodologies for finding correlated nodes
in a graph. After some research, it seems that the notion of assor-
tative mixing could be a primary candidate for solving this prob-
lem[Newman, 2003]. Through assortative mixing, assortativity can be
applied for each combination of nodes, expressing the attraction be-
tween those nodes. If one uses an assortative function which is able
to express the similarity between destinations, one can create a new
graph composed of similar destination nodes. Through this graph,
it is then possible to apply graph clustering techniques in order to
retrieve sets of similar destinations which could be translated into
station groups[Schaeffer, 2007].
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6.2.3 Generate task topology

The task topology we use (explained in Section 2.5) is also manually
created by Vanderlande employees. It is based on the possible deci-
sions that the PC can make, and takes the topology of the BHS into
account in order to know what destinations would be most efficient
given any point in the system.

This task topology can also be generated. The process for doing
this could be complex enough to create an other graduation project.
One could again use the BHS as a graph, but through the calculation
of reachability graphs indicate what destinations are possible at any
point in the system. These reachability graphs can be used as a basis
for clustering techniques in order to determine what station groups
would be most efficient to hand out at a given point in the system.
This information can be sufficient to generate a basic task topology
which experts can use as a starting point whenever a new BHS needs
to be implemented.

6.2.4 Route logic in other fields

Defining routing through graphs and networks is a broadly researched
topic within graph theory, as it adds a layer of complexity where one
needs to take into account actually reaching the destination within
the graph, just as we also needed to do in this graduation project.
Routing logic can be applied on any graph with the appropriate data,
hence the interest not only in autonomous systems like Vanderlande’s
BHS, but also in car navigation technology[Flinsenberg, 2004; Duck-
ham and Kulik, 2003], with added complexity by applying turn re-
strictions[Winter, 2002] and even when considering electric distribu-
tion networks[Nguyen et al., 2010].

A BHS is a static collection of conveyor belts, they do not dynam-
ically alter such that extra routing possibilities can appear. This is
similar to a network of roads. One could apply the theory presented
in this thesis for generating and optimizing the flow of cars in a city.
The layout of the city can be represented as a graph with roads as
edges and intersections as nodes. If we apply turn restrictions, we
can also prohibit cars from making illegal turns. The capacity and
travel time of roads can be mapped in a similar way as we did with
conveyor belts. Major destinations can be marked, and subsequently
we can calculate an optimal routing schema.

For normal routing behaviour a city can be too complex for the
theory presented, due to the large diversity of destinations each car
has. However, in case of special events in a city, a substantial amount
of cars will have the same (small set of) destination(s). This way, we
can calculate the most optimal routing to get all cars in and out of the
city in the most efficient way.
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A
P S E U D O C O D E

In this chapter we will provide the pseudocode accompanying Chap-
ter 4. We have divided the chapter in the same sections and subsec-
tions as present in Chapter 4, with the same section titles.

We will provide no further explanation per algorithm, as they are
already discussed in Chapter 4. It should be noted that, due to read-
ability, the pseudocode we show only the most relevant parts needed
for implementation. In any implementation, practical issues will arise
that are not relevant for the theory itself, and as such we have left
them out here as well. The pseudocode in this section is fairly com-
plex and concise, and we suggest one to be very familiar with the
theory presented in this thesis before implementing based on this
pseudocode.

a.1 initial creation algorithm

a.1.1 Finding best path

Algorithm 1 Retrieve the best path between source s and target t
1: function BestPath(s, t)
2: wtot ← 0

3: bestPath← ∅
4: for all v ∈ V do
5: v.HeapNode← null
6: v.Previous← null
7: v.Marking← Unlabeled
8: end for
9: heaps← ∅

10: heaps.Insert(s, 0)
11: while heaps.MinimumNode 6= null do
12: Scan

13: end while
14: if t.PreviousNode 6= null then
15: b← t

16: while b 6= s do
17: bestPath← (b.Previous,b) ∪ bestPath
18: wtot ← wtot + Cost((b.Previous,b))
19: b← b.Previous
20: end while
21: end if
22: return {bestPath,wtot}

23: end function
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Algorithm 2 Expand the searching from the minimum node in a heap
function Scan

m← heaps.MinimumNode
m.Marking← Scanned
heaps.DeleteMin()
for all e ∈ δ+(m) : ¬e.Disabled do

if t(e) = null then
t(e).HeapNode← heaps.Insert(t(e),m.Key + Cost(e))
t(e).PreviousNode← m

else
if t(e).Marking 6= Scanned

∧ m.Key + Cost(e) < t(e).Key then
heaps.DecreaseKey(m.Key + Cost(e), t(e))
t(e)← Labeled
t(e).PreviousNode← m

end if
end if

end for
end function

Algorithm 3 Return the cost of an edge e = (v,w)
function Cost((v,w))

if w ∈ D∧w 6= t then
return∞

else
return (v,w).TravelTime

end if
end function
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a.1.2 Creating initial set of routing rules

Algorithm 4 Generate all valid routing rules
1: RoutingRules← ∅
2: for all d ∈ D do
3: tg← t ∈ TaskGroups : e ∈ δ−(d) : e.TaskGroup = t

4: Tp ← tg.Destinations B All possible destinations
5: for all t ∈ Tp do
6: path← BestPath(d,t)
7: if path 6= ∅ then
8: RoutingRules[s(path), t]← Favourite
9: wt ← path.Cost

10: s(path).Disabled← true
11: for all eo ∈ δ+(d) : eo 6= s(path) do
12: altPath← BestPath(d,t) B Calculate alternative paths
13: if altPath 6= ∅ ∧ altPath.Cost/wt < 1.10 then
14: if altPath ∈ loops then
15: RoutingRules[s(altPath), t]← Substitute Favourite
16: else
17: RoutingRules[s(altPath), t]← Option
18: end if
19: end if
20: s(altPath).Disabled← true
21: end for
22: end if
23: end for
24: end for
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a.2 analysis algorithm

a.2.1 Calculating flow through a (sub)graph

Algorithm 5 Initialize graph G = (V ,E)
1: V ← V ∪ {s, t} B Create source and sink node
2: for all v ∈ V : δ−(v) = ∅ do B All input nodes
3: E← E∪ (s, v)
4: end for
5: for all v ∈ V : δ+(v) = ∅ do B All output nodes
6: E← E∪ (v, t)
7: end for
8: for all e ∈ E do
9: e.Flow← 0

10: end for
11: for all e ∈ δ+(s) do
12: e.Capacity← inputFlow/|δ+(s)|

13: e.Flow← inputFlow/|δ+(s)|

14: end for
15: for all v ∈ V do
16: v.Label← 0

17: v.Excess← ∅
18: end for
19: s.Label← |V |

20: for all e ∈ δ+(s) do
21: tg← e.TaskGroup
22: Tp ← tg.Destinations B All possible destinations
23: for all tp ∈ Tp do B Create flowsets for each possible destination
24: t(e).Excess← t(e).Excess ∪ (tp, e.Flow/|Tp|)
25: end for
26: end for

Algorithm 6 Discharge
1: Q← V

2: while Q 6= ∅ do
3: v← Q[0]

4: while v.Excess 6= ∅ do
5: if v.Label > |V | then
6: return fail B Recirculating flow present
7: end if
8: PushRelabel(v)
9: end while

10: end while
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Algorithm 7 Push relabel on v
1: e← v.CurrentEdge
2: w← w ∈ e∧w 6= v B Get the other node in e

3: wIsActive← IsActive(w)
4: if ApplicableForPush(e) then Push(e)
5: else
6: if v.CurrentEdge.Next 6= ∅ then
7: v.CurrentEdge← v.CurrentEdge.Next
8: else
9: v.CurrentEdge← v.CurrentEdge[0]

10: v.Label++
11: end if
12: end if
13: if ¬wIsActive ∧ IsActive(w) then B w was not active, but is now
14: Q← Q∪w
15: end if

Algorithm 8 Applicability of push for e = (v,w)
1: if IsActive(v) ∧e.Capacity > 0 then
2: if v /∈ D∨ |δ+(v) = 1 then
3: return false
4: else
5: other← 0

6: for all fs ∈ v.Excess do
7: if RR[e, fs.Destination] = Favourite then
8: return true
9: else

10: for all eo ∈ δ+(v) : eo 6= e do
11: if RR[eo, fs.Destination] = Favourite then
12: other← other + fs.Amount
13: end if
14: end for
15: end if
16: end for
17: if e.TransportDefault then
18: if other =

∑
fs∈v.Excess fs.Amount then

19: return false
20: else
21: return true
22: end if
23: end if
24: end if
25: end if
26: return false
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Algorithm 9 Push operation on e = (v,w)
1: balance← false
2: if v /∈ D∨ |δ+(v) = 1 then
3: if v /∈ loops∧w ∈ loops then
4: balance← true
5: end if
6: e.Flow←

∑
v.Excess fs.Amount

7: w.Excess← w.Excess ∪ v.Excess
8: v.Excess← ∅
9: else

10: for all fs ∈ v.Excess do
11: if RR[e, fs.Destination] = Favourite
12: ∧(dv =null∨dv = v) then
13: if v /∈ loops∧w ∈ loops then
14: balance← true
15: end if
16: e.Flow← e.Flow + fs.Amount
17: w.Excess← w.Excess ∪ {fs}

18: v.Excess← v.Excess \ {fs}

19: else
20: if e.TransportDefault then
21: if ¬∃eo ∈ δ+(v) : eo 6= e∧RR[eo, fs.Destination] = Favourite then
22: e.Flow← e.Flow + fs.Amount
23: w.Excess← w.Excess ∪ {fs}

24: v.Excess← v.Excess \ {fs}

25: end if
26: end if
27: end if
28: end for
29: end if
30: if balance then
31: BalanceFlow(w)
32: end if

Algorithm 10 Balance flow on e = (v,w)
1: balanceFlows← {fs | fs ∈ v.Excess ∧ fs.Via = null }
2: balanceDiverts← {d | d ∈ D∧ d ∈ e.StatusEdge}
3: v.Excess← ∅
4: for all fs ∈balanceFlows do
5: Db ← {db | db ∈balanceDiverts
6: ∧∃eo ∈ δ+(db) : RR[eo, fs.Destination] = Favourite}
7: for all db ∈ Db do
8: fs ′ ← (fs.Destination, fs.Amount/|Db|,db)
9: v.Excess← v.Excess ∪{fs ′}

10: end for
11: end for
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a.2.2 Indicating bottlenecks

Algorithm 11 Switch ratio for a node v ∈ V
1: if v ∈ D then
2: if ∃e ∈ δ+(v) : e.TransportDefault then
3: return 0
4: else
5: return min(δ+(v).Flow)/max(δ+(v).Flow)
6: end if
7: else if v ∈M then
8: if v ∈ loops then
9: emain ← e ∈ δ−(v) : e ∈ loops

10: ein ← e ∈ δ−(v) : e /∈ loops
11: cap← max(δ+(v).Capacity)
12: return |(ein + (emain/cap)2 · ein))/(cap − emain)|

13: else
14: return min(δ−(v).Flow)/max(δ−(v).Flow)
15: end if
16: end if

Algorithm 12 Capacity reduction for a node v ∈ V
1: if v ∈ D then
2: fm ← min(δ+(v).Flow)
3: ei ← ∃1e ∈ δ−(v)

4: redux← CalcCapRedux(fm, ei.Capacity)
5: ei.CapacityRedux← redux
6: else if v ∈M then
7: if v ∈ loops then
8: e← {e | e ∈ δ−(v)∧ e /∈ loops}
9: fm ← min(δ−(v).Flow)

10: redux← CalcCapRedux(fm, e.Capacity)
11: e.CapacityRedux← redux
12: else
13: for all e ∈ δ−(v) do
14: fm ← min(δ−(v).Flow)
15: redux← CalcCapRedux(fm, e.Capacity)
16: e.CapacityRedux← redux
17: end for
18: end if
19: end if
20: function CalcCapRedux(flow, capacity)
21: return flow · 3 · capacity/3600
22: end function
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a.3 optimization algorithm

Algorithm 13 Flip routing rules for diverts Df ⊆ D

1: Dh ← {d ∈ Df | |Dh| =
⌈
|Df|
2

⌉
}

2: for all d ∈ Dh do
3: Tpos ← PossibleDestinations(d)
4: Ts ← Ts ⊆ Tpos =⇒ ¬∃T ′

s ⊆ Tpos : |T ′
s| > Ts

5: ec ← ec ∈ δ+(d) =⇒ ¬∃e ′ ∈ δ+(d) : f(e ′) − c(e ′) − credux(e
′) >

6: f(ec) − c(ec) − credux(ec)

7: if Ts = null then
8: return B Dry node
9: end if

10: for all t ∈ Ts do
11: if Usages[ec, t] 6= "" then
12: if ∃eo ∈ δ+(d) \ ec : Usages[ec, t] 6= "" then
13: oldUsage← Usages[ec, t]
14: Usages[ec, t]← Usages[eo, t]
15: Usages[eo, t]← oldUsage

16: end if
17: end if
18: end for
19: end for
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