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A B S T R A C T

Oil refineries are faced with complex scheduling problems which
have seen several decades of research. To reduce the complexity of the
to be solved scheduling problem, the oil refinery process is generally
split into three separate processes. These three processes are Crude
Oil Operations, Component Production Process, and Product Blending and
Distribution. This thesis studies the Crude Oil Operations Scheduling
Problem (COSP) and the Product Blending and Distribution Schedul-
ing Problem (PBDSP) on behalf of the Business Unit Oil and Gas
(BUOG) inside software vendor Quintiq [2].

The COSP starts at the unloading of crude oil, after which the oil is
stored in storage tanks, blended in charging tanks, and finally fed to
a crude oil distillation unit. This problem has several non-linear con-
straints which increase its complexity. To solve the COSP we study
the best known solution method in literature, which is the solution
method proposed in Mouret 2010 [15]. Here a two-step approach was
proposed, that uses a Mixed Integer Programming (MIP) model for
the first step and a Non-Linear Programming (NLP) model for the
second step. In this thesis we present an improved MIP model for
the first step, which is up to 9 times faster than Mouret’s model and
as such allows to solve instances that up to now were beyond reach.
To solve the NLP problem of the second step, we study several ap-
proaches and show that the NLP solver CONOPT [1] performs best.

We also propose a heuristic model that finds a solution in one step.
This 1-Step Heuristic replaces the non-linear constraints by linear con-
straints that only allow for cases in which the non-linear constraints
are satisfied. This model has the advantage of being linear, so a non-
linear solver is not needed. The experiments show that it finds good
results within a practically acceptable time limit.

The optimizers were tested using real life examples taken from liter-
ature and larger examples inspired by Quintiq’s practice [2]. The final
recommendation to Quintiq is to use the two-step approach using our
improved MIP model together with the NLP solver CONOPT.

The PBDSP is about the blending of components, which are interme-
diate products made in the Component Production Process, into final
products, and the distribution of these final products. We extend the
PBDSP, compared to what is known in literature, by allowing for the
scheduling of loading and unloading through the use of pipelines.
This extension was a requirement coming from Quintiq’s practice.

The PBDSP is a combination of two separate problems, namely i)
recipe optimization, which finds the best blend of components for a
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product, and ii) logistics optimization, which solves the logistic prob-
lem of moving the components and products through the network.

We present two approaches to solve the PBDSP. The first is a com-
bination of iterative Linear Programming and iterative Mixed Integer
Programming. The second approach uses blending indices to keep the
model linear without the need to use an iterative approach.

The optimizers are again tested on instances inspired by Quintiq’s
practice. These are new instances as the PBDSP, as defined in this the-
sis, has thus far not been solved in literature before. The results show
that the problem is solved close to optimality within a practically ac-
ceptable time limit, by both approaches, but we see that the second
approach has the better performance.



Mostly, when you see programmers, they are not doing anything. One of
the attractive things about programmers is that you cannot tell whether or
not they are working simply by looking at them. Very often they are sitting

there seemingly drinking coffee and gossiping, or just staring into space.
What the programmer is trying to do is get a handle on all the individual

and unrelated ideas that are scampering around in his head.

— Charles M. Strauss
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1
I N T R O D U C T I O N

We start the introduction with a short motivation for the thesis in
Section 1.1. Section 1.2 introduces the company where the study took
place. Next the research assignment, methodology, and contributions
of this thesis are given in Sections 1.3-1.5. Section 1.6 takes a look at
related work and Sections 1.7 and 1.8 introduce several subjects that
facilitate the understanding of this thesis. Finally, Section 1.9 gives an
overall overview of the structure of the thesis.

1.1 motivation

Oil refineries have a large supply chain process. When this process
is optimized it can save the refinery millions of dollars [10]. Because
of this there is and has been a lot of research on optimizing the oil
refinery process.

Despite the research done to date, there is limited useful work for
this thesis, which is because of two reasons. The first reason is that
quite some work created inefficient optimizers, meaning that they
give optimal solutions for real life instances but are too slow for
the intended purpose of this thesis, see for instance the work of Lee
et al. 1996 [11]. The second reason is that research makes unrealistic
assumptions, such as fixed blending recipes or linear blending func-
tions, see for instance the work of Jia and Ierapetritou 2003 [8]. There
are however some research papers which are highly relevant and are
used as inspiration and starting points to solving the problems of
this thesis. These papers are primarily Mouret 2010 [15] and Méndez
et al. 2006b [13].

The reason a lot of optimizers are inefficient or make unrealistic
assumptions is because the problem has complexities that cannot be
solved easily using today’s technology. Because the entire problem
is so complex it is often split into three subproblems, namely: Crude
Oil Operations, Component Production Process, and Product Blending and
Distribution. This thesis will focus on solving the Crude Oil Opera-
tions Scheduling Problem (COSP) and the Product Blending and Distribu-
tion Scheduling Problem (PBDSP). We look at the scheduling problems
because it includes all the complexities of the problem. Scheduling
means that we want to create a detailed schedule where we take pre-
cise decisions on when to start and end the operations in the refinery
and on the volume transferred during these operations. This implies
that the scheduled tasks have a start, end and volume given to them,
in such a way that the schedule can be executed by the refinery op-
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2 introduction

erators. This is mostly done for small horizons as a lot can change in
the real world which can make that a schedule becomes practically
unusable.

1.2 quintiq

The study was done on behalf of the Business Unit Oil and Gas (BUOG)
inside Quintiq [2].

Quintiq is a company that sells software that solves planning and
scheduling problems. The software uses optimization technology to
create plans and schedules automatically. Quintiq is active in a lot
of verticals (industry and/or region based), like the metals industry
or aviation. One of the newer verticals is the oil and gas industry.
As Quintiq is relatively new to this vertical, there are optimization
problems that have not been solved yet within Quintiq. Some of these
problems lie within oil refineries. BUOG is continuously improving
their planning and scheduling software for oil refineries, by doing in-
house research. This thesis is part of that research, where we look into
the COSP and PBDSP to see if they can be scheduled automatically
using Quintiq’s software and optimizer technology. This brings us to
the research assignment defined in the next section.

1.3 research assignment

The research assignment of the project is formulated as follows:

• Create optimizers for the COSP and for the PBDSP that give a
good solution in reasonable time. The BUOG defined a solution
to be good if the obtained objective value is at most 5% from
the optimal objective value, and the CPU time to be reasonable
if it is at most 5 minutes. Priority is given to Mathematical Pro-
gramming technology and Constraint Programming technology as
these technologies are readily available in Quintiq.

• Integrate optimizers in a Quintiq application, so that the ob-
tained solutions can be validated to be correct.

• Apply the optimizers on instances known from literature and
realistic instances inspired by Quintiq’s practice to show the
quality of the optimizers.

Now, as progress came faster than anticipated, the following goal
got added over the course of the project:

• Develop a better solution method than the best solution method
known in literature for the COSP.
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1.4 methodology

To complete the research assignment the following methodology is
used:

1. Problem definition. We first start with the problem definition
phase. Crucial components are determining input data, defining
what a solution to the problem is, determining the constraints
defined on solutions, and defining the Key Performance Indicators
(KPIs) of the problem. One tool we use is to build a set of small
test instances to increase our understanding of the constraints
and KPIs.

2. Developing optimizers. In this phase mathematical models are
created, which serve as the basis to develop optimizers, to solve
the defined problem.

3. Benchmarks. In the benchmark phase test instances are found
and/or created to test the implemented optimizers.

4. Iterative phase: The different test instances (may) pinpoint short-
comings of the optimizers, which we improve in an iterative
way. As we go we will do extensive testing to determine which
properties of the optimizers contribute to their strength in what
way.

1.5 contributions

The main contributions of this thesis are:

• We took the model presented in Mouret 2010 [15] and found sev-
eral changes and additions which improved the performance.
We also take a look at cardinality constraints, show how impor-
tant they are, and devise a rule to get the input data needed for
these constraints.

• An efficient way of solving the PBDSP, which includes the load-
ing of final products, and unloading of bought components us-
ing main pipelines. We use an (iterative) LP/MIP model, which
uses the model found in Méndez et al. 2006b [13] as a basis and
is extended to allow for precise distribution scheduling. This al-
lows Quintiq to model and solve the PBDSP in practice.

• For the COSP the standard set of benchmarks known in litera-
ture of 4 instances is extended by i) 3 new and larger instances,
which also have different types of vessels, and ii) 13 variants on
the now 7 main instances.

• We took the known MIP + NLP approach from literature, see Mouret 2010 [15],
and developed an equivalent MIP + CP approach having similar
solutions on the original 4 benchmark instances.
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• A MIP that solves the COSP using a non-linear avoidance ap-
proach, meaning that the non-linear constraints are replaced by
linear constraints that only allow for cases in which the non-
linear constraints are satisfied. It has the advantage of being a
linear model, so a non-linear solver is not needed.

1.6 related work

The planning and scheduling of oil refinery operations has seen sev-
eral research papers over the last decades, though it seems the re-
search is on the decline as less work is found when looking into the
last ten years. An overview of past research can be found in Bengts-
son and Nonås 2008 [5].

The research on the COSP is mainly focused on short-term schedul-
ing. There are two main approaches to solve this problem. The first is
creating a (successive) Linear Program (LP) [4], which means that the
non-linear constraints are relaxed. To still get close to a usable solu-
tion, the optimizer is made successive, getting closer with every itera-
tion. To do this, special relaxation techniques are used like McCormick
Envelopes [12], a technique that changes a non-linear constraint into
several linear constraints that give a bound that can be tightened in ev-
ery iteration. The second approach is decomposition of the Mixed In-
teger Non-Linear Program (MINLP) into a Mixed Integer Program (MIP)
and a Non-Linear Program (NLP) [15]. This approach is used as the
MINLP cannot be solved in a reasonable time with present technol-
ogy. Using this decomposition, first a MIP will be solved which can
be done very fast. Then using the solution of the MIP, an NLP can be
defined where several variables are already bounded due to the MIP
solution. This NLP can then be solved, using the non-linear solver
CONOPT, within a second according to the results presented.

There were only several papers found on the PBDSP problem and
nothing very recent, this may be because research is kept confidential
or the research focus is more on the other two processes.

Glissmann and Gruhn 2001 [7] presents a solution method that
uses an NLP to do recipe optimization and use the solution as in-
put to a MIP that solves the scheduling problem. Jia and Ierapetri-
tou 2003 [8] gives a MIP model to solve the scheduling problem but
assumes fixed recipes, which is not always the case or wanted. Mén-
dez et al. 2006b [13] presents a successive LP/MIP that solves both
the recipe optimization and the scheduling problem in an efficient
way, but does not precisely schedule the final distribution of the de-
manded products to the vessels or the unloading of bought compo-
nents.
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1.7 oil refinery

An oil refinery has as main goal to produce final oil products such
as gasoline, diesel fuel, asphalt base, heating oil, and kerosene. It is
normally a large facility with large storage tanks for crude oil and
products (“products” is often used as shorthand for final oil prod-
ucts) and distillation units to distil crude oil. Extensive piping runs
between the tanks and to and from the distillation units to transfer
the crude oil and products. The process that goes on inside such a
refinery will be explained in this section. An overview of the entire
process is shown in Figure 1.

As in practice it is found that the entire process is complicated
to optimize, it is generally split into three sub-processes. The first
process is called Crude Oil Operations which covers the unloading of
crude oil, the transfer of oil between the tanks, and the transfer of
crude oil to Crude Oil Distillation Units (CDUs). The second process
is called Component Production Process which starts at the CDUs and
ends at the component storage tanks. This thesis will not go into
depth on this second sub-process as it is outside the scope of this
study. This was decided as it is a more complex and different prob-
lem compared to the other two. The third and last process is called
Product Blending and Distribution, sometimes also referred to as Prod-
uct Blending and Shipping.

Figure 1: An overview of an oil refinery process

1.7.1 Crude Oil Operations

The Crude Oil Operations Process starts with the supply of crude oil.
The crude oil comes to the oil refinery through oil tankers or via a
direct pipeline. There are generally two types of oil tankers. The very
large crude carriers (VLCCs) that can carry multiple crude types and
smaller vessels that carry only one type of crude (“crude” is often
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used as shorthand for crude oil). The VLCCs are normally too large
to come close to shore so they dock at a single buoy mooring (SBM)
station offshore. The smaller vessels berth at a jetty (smaller docking
place). From both types of docking stations the oil is unloaded via a
pipeline and stored into large storage tanks. In most cases there will
be only one SBM, thus the VLCCs could have a queue as only one
can unload at a time.

After the crude oil has spent some time inside the storage tanks
to let the brine (sea water) settle, which may take several hours, it
may be further processed. The crude oil will next be transferred from
the storage tank to a charging tank. A charging tank may get several
types of crude oil to blend. The blending may be done to get crude oil
that can be better processed by the Component Production Process.

The blending of crude oil is one of the operations that make oil re-
fineries complex. Crude oil has several properties and characteristics,
for instance viscosity or the sulfur percentage. The values of these
properties and characteristics are used to define the quality of the
crude oil / crude oil mix. The values of the properties and charac-
teristics of a mixed crude oil obviously depend on the values of the
properties and characteristics of the used crude oils. The difficulty is
that the dependencies between the values is not always linear. For
example 20 bbl (oil barrel) of crude oil type A mixed with 40 bbl of
crude oil type B does not have the same quality as 10 bbl of crude oil
type A and 20 bbl of crude oil type B.

When a charging tank is ready, it may start discharging the crude
oil to a CDU. As the Component Production Process is a continuous
process, the CDU needs to be fed continuously from a charging tank.
In most cases only one charging tank can charge a CDU at a time,
and a charging tank can only charge one CDU at a time.

Figure 2: Overview of the crude oil operations process from
Mouret 2010 [15]
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1.7.2 Component Production Process

The central equipment in the Component Production Process are the
CDUs. An illustration of a CDU is given in Figure 3. A CDU gets
crude oil fed from a charging tank. The crude oil inside the CDU is
then heated and becomes gas and floats upward, or is too heavy and
goes down, through the distillation tower. In gas form all the compo-
nents of the crude oil can be separated by their condensation point.
The components may then be further processed by production units
that complete the needed components. These units include cracking
unit, alkylation unit, and reformer. All the components are finally
stored in their own storage tanks.

Figure 3: An illustration of a CDU from Wikipedia (2014)

1.7.3 Product Blending and Distribution

Some of the components coming out of the Component Production
Process are final products and can directly go to finished product
tanks. Others need to be blended with other components in a blend
header. A blend header mixes the components in real time while they
are fed through the pipeline without intermediate storage. It keeps
track of the blend properties and can make small adjustments to keep
the outflow inside the product specifications. Thus the big difference
between a blend header and a blending tank (charging tank) is that
a blend header constantly needs input that keeps the blend within
specifications as there is no storage. Some of the properties have non-
linear blending behaviour which makes this a complex problem to
solve.
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The blending of products can be seen as a separate problem, called
recipe optimization. This problem ignores the logistic constraints and
only looks at finding the best blend of components per product. The
best blend is the blend with the highest value within the given prod-
uct specifications. The solution is a product recipe per product. A prod-
uct recipe states the fraction per component for the product. An ex-
ample of recipe optimization is given in Figure 4. In the figure we
see three different components C1, C2, and C3, with their respective
cost and property value for property K1, a blend header B1 which
can blend the components, and product P1 with its property specifi-
cation. As recipe optimization only looks at product specifications we
do not need any information about tank capacities, initial tank levels,
etc. Recipe optimization simply looks at the cheapest way to blend 1
bbl of product P1 using the three components, while adhering to the
product specifications. As we can see in the figure, the optimal recipe
for product P1 is then to let 3/4 of the total blended volume consist
of component C1 and 1/4 consist of component C3.

Figure 4: An example of recipe optimization

These optimal product recipes can then be set as a fixed recipe. A
fixed recipe means to always blend the product according to the
recipe, which means that the product specifications are not needed
anymore at this point. Thus truly separating the blending and lo-
gistics problem. Another possibility is using the recipes as preferred
recipes, thus still allowing for deviation from the recipe. If the quality
is optimized during the scheduling, with or without using preferred
recipes, the problem becomes more complex, but could also give bet-
ter solutions.

After the blend header blends the different components into an end
product it is transferred to product storage tanks. From these prod-
uct storage tanks the products will be distributed to their respective
vessels.

The distribution from the product storage tanks to the vessels uses
a set of main pipelines. These main pipelines are used for loading the
product inside one product storage tank into one vessel that demands
that product. There is also the possibility of buying components from
outside sources. These will then be delivered by component vessels and
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will use the same pipelines as for the loading to unload the compo-
nent from the vessel into a designated component tank.

1.8 optimization technology

Optimization Technology is defined as technology used to solve com-
binatorial optimization problems. In a combinatorial optimization prob-
lem one is given a set of decision variables, a set of constraints, and an
objective function (also called goal function). The problem is to find an
assignment of values to decision variables, called a solution, such that:

1. all constraints are adhered to (i. e., the solution is feasible)

2. the objective function is optimized (i. e., the solution is optimal)

A solution is optimal when there can be no other solution that has a
higher (lower) value for the objective function, when the problem is
being maximized (minimized). An example of a combinatorial opti-
mization problem is the following:

x, y, z (decision variables)

maximize x− y ∗ z (objective function)

subject to:

1 ≤ x ≤ 10 (1) (constraints)

1 ≤ y ≤ 10 (2)

1 ≤ z ≤ 10 (3)

x− y > 6 (4)

z + y < 5 (5)

x + y > 7 (6)

z ∗ x > 18 (7)

Solution: x = 10, y = 1, z = 2, optimal value is 8.

Optimization technology has been used for decades to solve sup-
ply chain problems. For many problems optimization technology is
capable to not only find a feasible solution but also finding a feasible
optimal solution. There are several different optimization technolo-
gies such as for example Mathematical Programming (MP), Constraint
Programming (CP), and Local Search (LS).

Combinatorial optimization problems can be classified into differ-
ent groups. In this thesis we use four different groups namely: Linear
Programming (LP), Non-Linear Programming (NLP), Mixed Integer Pro-
gramming (MIP), and Mixed Integer Non-Linear Programming (MINLP).
An LP problem is a problem that is defined by variables with con-
tinuous domains (i. e., reals) and linear constraints, meaning that the
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constraints can be written as linear functions of the variables. Exam-
ples are constraints 4, 5, and 6 in the example above. With an NLP
problem there are also non-linear constraints, for instance constraint
7 in the example. A MIP will have variables that have binary or in-
teger domains, but can still have variables with continuous domains,
and will only have linear constraints. Lastly there is MINLP which is
a combination of NLP and MIP.

It is important to note that LPs are in the computational complex-
ity class P where MIPs are in NP thus making LPs structurally eas-
ier to solve. For a detailed discussion of complexity classes we refer
to Garey and Johnson 1979 [6]. Note that when there are non-linear
constraints involved, the practical complexity to solve a problem is
increased which is why such constraints are avoided whenever possi-
ble.

When using MP the example above can be used as input and the
solver will search for the optimal solution using mathematical meth-
ods. CP works a bit differently. First of all CP only has decision vari-
ables with an integer or binary (boolean) domain, the reason is that
CP needs finite domains to work with. When a CP starts searching
for a solution it does essentially two things. The first thing is con-
straint propagation, which means that the domains of the variables
are set tighter using the constraints. Of course there are a lot of prob-
lems where this is not enough to decrease all the domains to one
value. This means that a search is needed which is the second thing.
The search is simply choosing a value for a decision variable within
its domain after which constraint propagation can happen again to
tighten the domains further. The search follows a search strategy, this
strategy says which variables should be chosen and which value in
the domain should be looked at. An example of a search strategy is
for instance: pick the largest possible value of the variable with the
largest domain. If a smart strategy is used then the search can be
reduced significantly.

1.9 structure

The remainder of this thesis is split into two parts. The first part I has
as subject the COSP, and the second part II has as subject the PBDSP.

Both parts are structured in the same way. They start with a chap-
ter on the problem statement of their respective problem, see Chap-
ters 2 and 6. Followed by a chapter about the solution methods, see
Chapters 3 and 7. Then the different solution models are presented
in Chapters 4 and 8. Finally, there is a chapter on the computational
study of the respective problem, see Chapters 5 and 9.

The thesis is then finalized with Chapter 10, which presents the
overall conclusion and possible future work.
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Crude Oil Operations
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2
P R O B L E M S TAT E M E N T C R U D E O I L O P E R AT I O N S

This chapter describes the Crude oil Operations Scheduling Problem
(COSP) and provides an abstract model of this problem. The problem
description and abstract model are inspired by Lee et al. 1996 [11]
and Mouret 2010 [15].

2.1 general description

The central activities in Crude Oil Operations Scheduling are the un-
loading, transfer, and charging (also called distillation) operations. An
unloading operation unloads crude oil from a crude vessel to a stor-
age tank. A transfer operation transfers crude oil from a storage tank
to a charging tank. A charging operation charges (transfers) crude oil
from a charging tank to a CDU. The COSP can be described as de-
termining when operations execute (this can be several times during
the schedule), how long each execution takes, and how much volume
is transferred during an operation, such that the total gross margin
is maximized. The total gross margin is defined by the sum of crude
volumes that are transferred into a CDU times their respective gross
margin.

A COSP instance is defined by the following input data:

• A scheduling horizon, which indicates the ending of the sched-
ule.

• Arrival times of the crude vessels, indicating when the vessels
arrive.

• A vessel type for each vessel, indicating the berth the vessel will
use. We assume that we have exactly one berth for every given
type. If there is no vessel type given in the input data, then we
assume they are all the same type.

• Capacity limits of tanks, indicating how much a tank can hold.

• Initial composition of vessels and tanks, indicating i) which
crude oil type is present at the start of the schedule and ii) how
much crude oil is present.

• Gross margins and property values for every crude type, indi-
cating the expected profit of distilling the respective crude type
and what the value is for a certain property for the respective
crude type.

13
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• Demands for each charging tank, indicating how much volume
needs to be transferred using charging operations during the
schedule.

• Crude property specifications per charging tank, indicating that
the property values of the blends need to within the given spec-
ifications before it can be fed into a CDU.

• Flowrate limitations per operation type, indicating how much
crude can, or must in case of a lower bound, be transferred per
day.

• Number of distillation operations, indicating the number of charg-
ing operations that must be executed during the schedule. This
can also be set by a lower bound and/or upper bound.

An example of a COSP instance is given in Figure 5, which shows
the network, and Table 1, which shows the input data. Note that vol-
umes are given in Mbbl, which stands for a 1000 barrels. In this in-
stance there are thus 2 crude vessels, one arriving at the start of the
schedule and one on day 4. We can also see that vessel 1 brings 1000
Mbbl of crude type A. For the storage and charging tanks we can see
what their capacity is. In this case they all have a minimum capac-
ity of 0 and a maximum capacity of 1000 Mbbl. The list of crude
types shows their property values and gross margins respectively.
Then there is the list of demanded crude blends, which shows their
property specifications and demand of, in this case, 1000 Mbbl respec-
tively. Note that we need to know what crude type is initially in each
resource at the start of the schedule, because we need to know their
property values. During the schedule these initial crude types can be
blended to get crude oil blends, which will have their own property
values. The crude oil (blend) in the charging tank should be within
the given property specification before it can be fed into a CDU. Fi-
nally the flowrate limitations and number of distillations are given.

Figure 5: A COSP network example
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Table 1: A COSP input data example

Scheduling horizon 8 days
Vessels Arrival time Composition Amount of crude (Mbbl)
Vessel 1 0 100% A 1,000

Vessel 2 4 100% B 1,000

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [0, 1000] 100% A 250

Tank 2 [0, 1000] 100% B 750

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 1000] 100% C 500

Tank 2 (mix Y) [0, 1000] 100% D 500

Crudes Property 1 (sulfur concentration) Gross margin ($/bbl)
Crude A 0.01 1

Crude B 0.06 6

Crude C 0.02 2

Crude D 0.05 5

Crude mixtures Property 1 (sulfur concentration) Demand (Mbbl)
Crude mix X [0.015, 0.025] [1000, 1000]
Crude mix Y [0.045, 0.055] [1000, 1000]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [50, 500] Number of distillations 3

2.1.1 Solution

The main decisions in the Crude Oil Operations Scheduling Problem
are the following:

• decide how many times an operation will be executed before
the horizon

• decide on the start of each operation execution

• decide on the duration of each operation execution

• decide on the volume transferred during each operation execu-
tion

From these decisions we define a solution to COSP as follows.
We have a set of operations O, which is given by the network, see

for example Figure 5 where the arrows represent the operations. We
start by defining for each operation o ∈ O a set of tasks To, where
the size of To, which expresses how often operation o is executed, is
defined by # : O→ N. Let T be the set of all tasks, i. e., T =

⋃
o∈O

To. A

solution to the COSP is then defined as a tuple < s, d, v > where:

• s : T → R gives the start of the task
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• d : T → R gives the duration of the task

• v : T → R gives the volume transferred during the task

The problem is then to find a solution that satisfies all constraints
of Section 2.1.3 and maximizes the objective function described in
Section 2.1.2. An example of a solution is given in Figure 6. The ex-
ample shows the operations and when they are executed. Note that
the 8 operations are linked to the operations (arrows) seen in the ex-
ample network, see Figure 5. The arrows indicate which resource is
the source and which resource is the target. A volume is transferred
from the source to the target. So operation Unloading 1 unloads vol-
ume from vessel V1 to storage tank S1, operation Transfer 3 transfers
volume from storage tank S1 to charging tank C1, operation Distilla-
tion 7 charges volume from charging tank C1 to CDU U1 and so forth.
Note that the network data is given as input, meaning that we cannot
decide on which operation there are to choose from for the schedule.
We cannot for instance add an operation from vessel V1 to storage
tank S2. Also note that vessels will have only one operation, we as-
sume this is because the decision to which storage tank the vessel will
unload has already been made.

The volumes can be derived from the tank level changes. For in-
stance, the first unloading operation, Unloading 1, starts after around
1.5 days, has a duration of 2 days, and transfers 1000Mbbl of crude
oil, which leads to an increase of the level, by 1000Mbbl crude oil, in
storage tank 1.

We can also see that the distillation operations are only executed
when their respective charging tank has a crude oil (blend) that is
within the given property specifications. If we for instance look at
operation Distillation 8, we see a transfer of a 1000Mbbl, which con-
sists of the initial 500Mbbl of crude type D and of the 500Mbbl of
crude type B, which was transferred by operation Transfer 6. The
property value of crude type D is 0.05 and for crude type B its 0.06.
The property value of the crude blend can be calculated using the
volumetric average. This will give the crude blend a property value
of (500 ∗ 0.05 + 500 ∗ 0.06)/1000 = 0.055. The property specification
for charging tank C2 is [0.045, 0.055], thus the crude blend with a
property value of 0.055 is within the property specification.

2.1.2 Objective Function

The objective of the optimizer is to maximize the total gross margin.
The total gross margin is calculated by the volume of crude oil that is
fed into a CDU multiplied by their respective gross margin.
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Figure 6: Example of a solution to the COSP

Using the solution definition, the objective function can be formal-
ized as follows. Let T CH be the set of tasks of distillation operations.
The total gross margin is then expressed by:

totalgrossmargin = ∑
t∈T CH

v(t) · grossmargint

Where grossmargint is the gross margin of the blend of crude oil trans-
ferred by t. Figure 7 shows an example of how grossmargint is calcu-
lated. In the example there is a task t which charges a volume of 550
Mbbl. This volume consists of 250 Mbbl of crude A and 300 Mbbl
of crude B. The gross margins of these crude oils are 1 and 3 re-
spectively. grossmargint is then calculated by taking the volumetric
average which gives us a gross margin of 2.09.

Figure 7: An example of how the gross margin is calculated
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2.1.3 Constraints

In this section the different constraints, grouped by subject, are de-
scribed.

Logistic

The logistics constraints that a solution to the COSP needs to satisfy
are the following.

1. Every vessel type (e. g. VLCC) has one unloading berth.

2. Simultaneous inlet and outlet transfers on tanks are forbidden.

3. A tank may charge only one CDU at a time.

4. A CDU can be charged by only one tank at a time.

5. CDUs must be operated continuously throughout the schedul-
ing horizon.

(1) The first logistics constraint allows for different types of vessels
and more than one unloading berth, while still keeping the problem
as simple as possible. It is possible to make the assumption that a
single vessel type has several unloading berths but this overly com-
plicates the problem.

(2) The second logistics constraint only has effect on the storage
and charging tanks as the vessels and CDUs only have an outlet or
inlet respectively. In some refineries there are waiting constraints on
the storage tanks to let brine settle. As the charging tanks are often
used to blend crude oil from different storage tanks it is logical to
first let the different crude oils blend before the blend is charged into
a CDU. Due to this second logistics constraint, inventory tracking in
the tanks can be done by looking at the start of the inlet and outlet
operations at the tanks instead of looking at the entire interval of the
operation.

(3) The third logistics constraint prevents the blend of crude oil to
split, as this could change certain properties of the crude oil outside
of their demanded specifications.

(4) The fourth logistics constraint prevents the blending of crude
oils inside the CDU, which would change the blends created in the
charging tanks.

(5) The fifth logistics constraint is a direct refinery constraint as the
Component Production Process is a continuous process, which means
the process needs a constant input.

Besides the logistics constraints there are also constraints for the
tank levels, flowrates, crude blends, compositions, unloading, and de-
mands.

Tank Level



2.1 general description 19

Every tank (storage tanks and charging tanks) may have a lower
and/or upper bound in which the level variable needs to lie. Further-
more, the level variable needs to be equal to the initial level plus the
volume of inflow operations minus the volume of outflow operations.
There is also the constraint which links the individual crude levels to
the total level, which is simply that the sum of individual crude levels
is equal to the total level.

Flowrate

The flowrate also needs to be within its bounds. The flowrate is
calculated using the volume and duration. The volume will be con-
strained between the flowrate lower bound multiplied by the dura-
tion and the flowrate upper bound multiplied by the duration.

Crude Blend

The crude blends that flow into a CDU need to be within certain
property bounds. The most important properties, which are sulphur
and gravity, have a linear blending behaviour. For these it is easy
to express a constraint, but there are also properties that blend in
a non-linear way. These latter properties are often either linearized
or ignored. In this thesis we will assume that we only have linear
properties as input for the COSP.

Composition

The composition constraint expresses that the ratio of crude oils
in an outflow operation is equal to the ratio that is in the tank. This
is a non-linear constraint (which will be explained in more detail
later in Section 4.2), which makes it a constraint that complicates the
problem. Therefore, it is important to know that this constraint is not
needed when there is only one crude in the tank or when the outflow
empties the tank. If these two options are added as constraints then
the non-linear constraint disappears, but the final solution might be
somewhat too constrained and thus not optimal, see Section 3.2.1 for
more detail.

Unloading

Unloading constraints are about the unloading of the crude oil ves-
sels, making sure that everything is unloaded and that the unloading
of a vessel does not start until it has arrived.

Demand

Demand constraints are present if there is a demand given. This
could be a total demand or a demand per crude blend or even per
individual crude.
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S O L U T I O N M E T H O D S F O R T H E C O S P

This chapter will give an overview of the solution methods we imple-
mented to solve the COSP.

Section 3.1 presents the solution method proposed by Mouret 2010 [15].
Section 3.2 presents possible ways to work with the non-linear compo-
sition constraint. Section 3.3 presents which approaches were chosen
to be implemented in this thesis.

3.1 mouret’s solution

In Mouret 2010 [15] a two step decomposition strategy is described to
solve the Crude Oil Operations Scheduling Problem (COSP). See Fig-
ure 8 for an overview of that strategy. Mouret describes an MINLP
model, which can provide an optimal solution but has low perfor-
mance, meaning that the model can be solved but the solvers will
give sub-optimal solutions if not given enough time.

The strategy to improve the performance is to first solve a linearly
relaxed MINLP which results in a MIP. The MIP will be used to deter-
mine which operations will be used in the solution, how many times
an operation will be executed, and in what sequence they will be exe-
cuted. These results can then be used to fix the sequence of operation
executions, which changes the MINLP into an NLP which is easier to
solve. Although the MIP does not necessarily give a feasible solution
to the COSP, as the non-linear constraints are removed, it does give
an upper bound to the problem. The reason is because the MINLP
is further constraint with the composition constraint thus will never
find a better solution than the MIP. It is important to note that the
NLP was solved using a local NLP solver (i. e., CONOPT [1]), thus no
proven optimal solution is found.

3.1.1 Multi Operation Sequencing

This section will give a summary of Multi Operation Sequencing (MOS),
which is the time representation used in Mouret 2010 when solving
the COSP.

Mouret states that MOS is a time representation that works well
when a problem has the following characteristics:

• There is a set of operations that may be executed once, several
times, or not executed at all.

21
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Figure 8: Two step decomposition strategy from Mouret 2010 [15]

• Decisions need to be made on which operations will be exe-
cuted, when they start, and their duration.

• There are certain scheduling constraints such as due dates and
non overlap.

• There are side constraints specific to the problem such as inven-
tory balancing of resources.

MOS was chosen as time representation for the COSP as that problem
has these characteristics.

MOS uses an Overlap Matrix (OM) to extract useful information
about the operations. The rows and columns in the overlap matrix
correspond to the operations. Every cell in the matrix is thus a com-
bination of two operations. The cells are filled with a 1 or 0, where 1
means that this pair of operations may overlap in time and 0 means
that they cannot overlap in time. Let for example v1 be an operation
that transfers crude oil to storage tank s1 and let v2 be an operation
that transfers crude oil from s1. If s1 cannot have an inflow operation
and an outflow operation at the same time then OMv1v2 = 0, which
is always the case for storage tanks in the COSP.

Besides the overlap matrix, MOS also makes use of a totally ordered
set of priority slots, generally referred to as slots T = 1, ..., n. These
priority slots are used to assign and order the execution of operations.
They also provide the possibility for an operation to be executed up
to n times (one execution per priority slot), as long as the constraints
allow it. The number of priority slots n needs to be set before solving
the COSP. A larger n gives a better chance of obtaining the optimal
solution but also increases the search space. How n is set and the
COSP problem is solved will be explained in Section 4.1.7.
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The possible assignments are all the pairs of an operation and a
priority slot, where an assignment means that an operation will be
executed for a priority slot. Thus if there are six operations and four
priority slots, then there are 24 possible assignments. This also means
that a single operation can be executed at most four times during a
schedule. The following two constraints create a partial scheduling
order.

• operations may not be assigned to the same priority slot if they
cannot overlap, which is indicated by the OM.

• an operation v1 is assigned to slot i, and another operation v2

is assigned to slot j where i < j, and the two operations may
not overlap, then operation v1 needs to end before operation v2

starts.

An example will now illustrate the use of MOS. The example is
defined by the resource requirements shown in Table 2 and the OM
shown in Table 3. The resource requirements table shows on which re-
sources an operation must be scheduled. Figure 9 presents a possible
schedule of this example using MOS. The numbers inside a sched-
uled task indicate the assigned priority slot. We see that operation v1

is scheduled twice but in separate priority slots, thus showing that
operations can be executed more than once (as long as there is more
than one priority slot and no constraints are violated). The schedule
also shows that priority slot 1 has two operations that may overlap
according to the OM, but that operations v2 and v5 are assigned to
priority slot 2 as they cannot overlap with operation v6.

It is important to note that v2 can overlap with v3, meaning that
there is no precedence constraint between them, but not with v4. So if
for instance v2 has a longer duration that ends at the start of operation
v4 then v2 overlaps with v3 without violating any constraints. This
shows that priority slots can overlap if the OM allows it.

Table 2: Resource requirements for the MOS example [15]

Operation v1 v2 v3 v4 v5 v6

Resources r1 r2 r3 r1 ∧ r2 r1 ∧ r3 r2 ∧ r3
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Table 3: Overlap matrix for the MOS example [15]

v1 v2 v3 v4 v5 v6

v1 0 1 1 0 0 1

v2 1 0 1 0 1 0

v3 1 1 0 1 0 0

v4 0 0 1 0 0 0

v5 0 1 0 0 0 0

v6 1 0 0 0 0 0

Figure 9: An illustration of a continuous time schedule using MOS [15]

The complete mathematical model can be found in Mouret 2010 [15].
This model also contains the basic constraints used for cardinality
constraints, assignment constraints, time constraints, variable bound
constraints, non overlapping constraints, and precedence constraints.
Several of these constraints are used in the later solution models, see
Chapter 4, for the COSP.

3.2 non-linear solution

There were several possible solutions found to solve the non-linear
problem, divided into three categories: Avoidance, Relaxation, Non-linear
solver.

3.2.1 Avoidance

Avoiding the non-linear composition constraint means to get a good
and usable result without the use of the non-linear composition con-
straint. This means that the cases for which the non-linear composi-
tion constraint is needed are avoided with the help of newly added
linear constraints.

For instance, the composition constraint can be avoided by the use
of a simple constraint, which will be explained here. The composition
constraint makes sure that, when there is a blend in a tank, the crude



3.2 non-linear solution 25

ratio in a tank is the same crude ratio that flows out of the tank. There
are two cases where the ratios are guaranteed equal without the use
of the composition constraint. The first case is that there is only one
crude in the tank making both ratios 1 : 1. The second case is that
there is a blend of different crude oils but the tank is completely
emptied during the outflow, essentially moving the entire blend and
thus keeping the ratios equal.

Thus to avoid the composition constraint, one of the cases need
to hold for every outflow from a tank. The first case does not need
a constraint as it already holds. The second case does need a new
constraint to enforce it. This constraint says that the total outflow
volume needs to be equal to the total tank level when there is a crude
blend in a tank.

Although this is a solution method to solve the non-linearity of
the problem, there are a few down sides. The first point is that there
might not be a solution at all, for instance if all tanks have blends
and there is no possible outflow that can move the entire inventory,
because the receiving tank does not have enough capacity. Another
example is that there might be minimum capacity constraints that
prohibits the transfer of the entire inventory. Second point is that the
solution, although feasible and usable, is not always optimal and may
not even be close to being optimal. For instance, it could be that it
is far more profitable to not empty a tank in one outflow operations
because the remaining blend can be further blended with a high value
crude oil and get the blend within specifications.

It is important to note that a solution found by this approach is a
feasible solution to the COSP.

3.2.2 Relaxation

Another way to solve a non-linear problem is by linear relaxation of
the non-linear constraints. One way of doing this is by using the Mc-
Cormick envelope and McCormick cuts [12] [15]. How this method
works will be explained by an example. Let the non-linear constraint
be the following: Xiv = AivViv, where X, A, and V are continuous
variables and i and v are indices for priority slots and operations re-
spectively. For every variable a lower and upper bound is known, for
instance variable X has lower bound XL

iv and upper bound XU
iv .

Note that the non-linear composition constraint is a bit different,
looking more like the following: LivWiv = AivViv, which in its turn
can be written as LivWiv = Xiv = AivViv. Thus the non-linear composi-
tion constraint is twice as big as the example. The detailed non-linear
composition constraint can be found in Section 4.2.

Next step is the linear relaxation of the non-linear constraint. The
non-linear constraint is replaced by the following constraints.
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Xiv ≥ AL
ivViv + AivVL

iv − AL
ivVL

iv

Xiv ≥ AU
ivViv + AivVU

iv − AU
ivVU

iv

Xiv ≤ AL
ivViv + AivVU

iv − AL
ivVU

iv

Xiv ≤ AU
ivViv + AivVL

iv − AU
ivVL

iv

Figure 10 will be used to illustrate why these constraints can re-
place the non-linear constraint. The figure shows a graph where the
horizontal axis is used for variable V and the vertical axis is used for
variable A. Note that variable X is defined as the area of A · V. The
light blue area illustrates the right hand side of the first constraint
and the red box illustrates the area of X. As shown the area of X
is larger than the light blue area. We can also immediately see that
the blue area cannot be larger than the area of X. We also see that the
closer the lower bounds get to the chosen values of A and V, the more
area is covered by the light blue area within the red box. Using this
illustration and deriving the other constraints in the same way we see
that these constraints can indeed replace the non-linear constraint as
long as the bounds can get close enough to the values of A and V.

Figure 10: Illustration of the first constraint

Now that the non-linear constraint is replaced by four linear con-
straints the model has become linear. But it will not find the right
solution without a way to set the lower and upper bounds. This is
done in an iterative way where the bounds are gradually contracted
until their difference is within a set error value. To contract a bound
the method uses McCormick cuts. In general a cut is a constraint that
invalidates the current infeasible solution but does not remove any
feasible solutions. When a feasible solution is found the bounds can
be contracted using constraint propagation. This method might be
implement in Quintiq but is too complex for this thesis. Figure 11

shows an overview of the method to contract the bounds. There are
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also slightly different methods to contract the bounds such as shown
in Karuppiah et al. 2007 [9].

Figure 11: Branch and cut algorithm with McCormick cuts [15]

3.2.3 Non-linear solver

The last option is to use a solver that can handle non-linear con-
straints.

The first possibility is making use of constraint programming, which
is integrated in Quintiq’s software. The second possibility is a com-
mercial tool called LocalSolver [3]. The third possibility is a commer-
cial NLP solver called CONOPT [1]. CONOPT was used in Mouret 2010 [15]
as the solver for the second step where it showed good solutions and
performance.

3.3 implemented solutions

As project time is limited some choices had to be made on which
possible solutions to chase. The first choice that was implemented
was the two-step approach of Mouret where the second step uses CP
instead of an NLP solver. The second choice was the approach that
avoids the non-linear composition constraint, called 1-Step Heuris-
tic. The third choice was to look at LocalSolver to replace the CP
as the second step in the two-step approach of Mouret. The fourth
choice was to look at CONOPT to be the NLP solver for the second
step. Lastly, we also looked into other possible heuristic approaches,
which will be discussed at a later stage. The implemented methods
are further explained in Chapter 4





4
S O L U T I O N M O D E L S F O R T H E C O S P

This chapter presents the best solution method for the COSP known
in literature, being Mouret’s MIP model, in Section 4.1. Section 4.2
presents a Constraint Programming model, followed by a MIP-based
heuristic in Section 4.3, and another MIP-based heuristic in Section 4.4.
The LocalSolver model is given in Section 4.5, and we end the chapter
with a discussion on performance in Section 4.6, where we look into
several possibilities to improve Mouret’s MIP and the CP model.

4.1 mouret’s mip

This section gives a mathematical model of the COSP. The definition
consists of sets, parameters, variables, constraints and an objective
function. This initial model is taken from Mouret 2010 [15].

4.1.1 Sets

The model has the following sets to represent the resources, opera-
tions, and crude oils with their properties.

• T = 1, ...., n is the set of priority slots

• RV is the set of vessels

• RS is the set of storage tanks

• RC is the set of charging tanks

• RD is the set of CDUs

• R is the set of resources: R = RV ∪ RS ∪ RC ∪ RD

• WU is the set of unloading operations from vessels to storage
tanks

• WT is the set of transfer operations from storage to charging
tanks

• WD is the set of charging operations from charging tanks to
CDUs

• W is the set of operations: W = WU ∪WT ∪WD

• Ir is the set of inlet operations on resource r

• Or is the set of outlet operations on resource r

29
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• C is the set of crude oils

• K is the set of crude oil properties (e. g. sulfur concentration)

Note the sets of resources and operations are defined by the network
of an instance, such as seen in Figure 5. While the sets of crude oils
and properties are defined by the input data of the instance, such
as seen in Table 1. Finally the set of priority slots is defined by an
algorithm that is later explained in this section.

4.1.2 Input Data

The model has the following input data.

• H is the scheduling horizon

• Typer is the vessel type of vessel r ∈ RV

• [Vt
v , Vt

v ] are bounds on the total volume transferred during oper-
ation v ∈ W. Note that the superscript t simply denotes that it
is the total volume. In all instances, Vt

v = 0 except for unloading
where it holds that Vt

v = Vt
v being the volume of crude in the

crude vessel

• [ND, ND] are the bounds on the number of distillations

• [FRv, FRv] are the bounds on the flowrate for operation v ∈W

• Sv is the earliest possible start time of unloading operation v ∈
WU (i. e., arrival time of the corresponding crude vessel)

• [xvk, xvk] are the bounds of property k of the blended products
transferred during operation v ∈ WD. The input data links the
property specification to the charging tank, thus these operation
property specification comes from its source resource, which is
generally a charging tank.

• xck is the value of property k in crude c

• [Lt
r, Lt

r] are the total capacity bounds of tank r

• Lt
0r is the initial total level inside tank r

• L0rc is the initial crude level inside tank r for crude c

• [Dr, Dr] are the bounds of the demand on products to be trans-
ferred out of the charging tank r ∈ RC during the scheduling
horizon. Thus the sum of the volumes of all outflow operations
of r needs to be within the demand bounds.

• Gc is the gross margin of crude c
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4.1.3 Variables

The variables used in the model are composed of binary assignment
variables, and continuous time, operation and resource variables.

• Assignment variables Ziv ∈ {0, 1} i ∈ T, v ∈W

Ziv =

1, if operation v is assigned to priority-slot i

0, otherwise

• Time variables Siv ≥ 0, Div ≥ 0, Eiv ≥ 0 i ∈ T, v ∈W
Siv is the start time of operation v if it is assigned to priority-slot
i, Siv = 0 otherwise.
Div is the duration of operation v if it is assigned to priority-slot
i, Div = 0 otherwise.
Eiv is the end time of operation v if it is assigned to priority-slot
i, Eiv = 0 otherwise.

• Volume variables Vt
iv ≥ 0 and Vivc ≥ 0 i ∈ T, v ∈W, c ∈ C

Vt
iv is the total volume of crude transferred during operation v

if it is assigned to priority-slot i, Vt
iv = 0 otherwise.

Vivc is the volume of crude c transferred during operation v if it
is assigned to priority-slot i, Vivc = 0 otherwise.

• Resource variables Lt
ir and Lirc i ∈ T, r ∈ R, c ∈ C

Lt
ir is the total accumulated level of crude in tank r ∈ RS ∪ RC

before the operations assigned to priority-slot i.
Lirc is the accumulated level of crude c in tank r ∈ RS ∪ RC
before the operations assigned to priority-slot i.

The decision variables are Ziv, Siv, Div, and Vivc. These decision vari-
ables can be related to the solution definition, see Section 2.1.1, in the
following way. Every assignment, meaning Ziv = 1, is a task where
v is the operation the task performs. The size of To (the function #),
where o = v, can then be derived from the number of assignments
Ziv for a certain operation v. Every assignment can be linked to a task
t, where s(t) and d(t) can be directly set from Siv, Div. v(t) is the sum
of Vivc for the different crude oils, which is the same as variable Vt

iv.

4.1.4 Objective Function

The objective is to maximize the summed total of gross margins of
the distilled crude blends, which represents the approximate revenue
of the crude blends. Using the individual gross margins Gc it is calcu-
lated as follows.

maximize ∑
i∈T

∑
r∈RD

∑
v∈Ir

∑
c∈C

Gc ·Vivc
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4.1.5 Constraints

This section contains all the constraints in Mouret’s MIP model.

Time constraints

Constraint 4.1a says that a vessel cannot unload before it has ar-
rived. Constraint 4.1b makes sure that all assigned operations end be-
fore the end of the time horizon. Constraint 4.1c expresses that start
plus duration is equal to the end of an execution of an operation.

Siv ≥ Sv · Ziv i ∈ T, v ∈WU (4.1a)

Eiv ≤ H · Ziv i ∈ T, v ∈W (4.1b)

Eiv = Siv + Div i ∈ T, v ∈W (4.1c)

Distillation constraints

The distillation constraint 4.2 sets a bound on the number of charg-
ing operations. This way the model has control on the number of
switches which is important as it costs a lot to switch charging oper-
ations.

ND ≤ ∑
i∈T

∑
v∈WD

Ziv ≤ ND (4.2)

Overlap constraints

Constraint 4.3 says that two different operations that may not over-
lap may not be assigned to the same priority slot. OM represents the
overlap matrix between all the operations and gives 0 if the operations
may not overlap, see Section 3.1.1. v1 < v2 is added instead of v1 6= v2

to reduce the number of constraints, because OMv1v2 = OMv2v1 . To
know which operation is “smaller”, id’s were added to the opera-
tions.

Ziv1 + Ziv2 ≤ 1 i ∈ T, v1, v2 ∈W, v1 < v2, OMv1v2 = 0 (4.3)

When two operations may not overlap then a precedence is set
between the two. Constraint 4.4 looks at one operation and expresses
that the operation should end before the start of the same operations
that are assigned to later priority slots. Constraint 4.5 looks at two
different operations and expresses that the operation assigned to a
lower priority slot should end before the start of an operation that is
assigned to a higher priority slot. Note that of the pairs of start, end
and assignment variables one will always be zero, because of the time
constraints and the first overlap constraint.

Ei1v1 ≤ Si2v1 + H · (1− Zi2v1)

i1, i2 ∈ T, i1 < i2, v1 ∈W, OMv1v1 = 0
(4.4)

Ei1v1 + Ei1v2 ≤ Si2v1 + Si2v2 + H · (1− Zi2v1 − Zi2v2)

i1, i2 ∈ T, i1 < i2, v1, v2 ∈W, v1 6= v2, OMv1v2 = 0
(4.5)
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Crude vessel constraints

These constraints set the unloading precedence on the vessel un-
loading, ships will be unloaded in the sequence they arrive. Con-
straint 4.6 expresses a vessel should be unloaded before a later ar-
riving vessel of the same vessel type starts unloading, whereas con-
straint 4.7 expresses that the unloading operation of a vessel needs
to be assigned to a lower slot than the unloading operation of a later
arriving vessel of the same vessel type.

∑
i∈T

∑
v∈Or1

Eiv ≤ ∑
i∈T

∑
v∈Or2

Siv

r1, r2 ∈ RV , r1 < r2, Typer1 = Typer2

(4.6)

∑
j∈T
j<i

∑
v∈Or1

Zjv ≤ ∑
j∈T
j≤i

∑
v∈Or2

Zjv

i ∈ T, r1, r2 ∈ RV , r1 < r2, Typer1 = Typer2

(4.7)

Constraint 4.8 is a cardinality constraint that expresses that vessels
must be unloaded in one unload operation.

∑
i∈T

∑
v∈Or

Ziv = 1 r ∈ RV (4.8)

CDU constraints

constraint 4.9 expresses that CDUs need to be charged continuously
during the entire horizon.

∑
i∈T

∑
v∈Ir

Div = H r ∈ RD (4.9)

Volume constraints

Constraint 4.10a expresses that when an operation is assigned its
volume should be under its upper bound. The upper bound can be
set to the maximal capacity of the resource the flow originates from.
For unloading operations it can be set to the initial amount.
Constraint 4.10b expresses that when an operation is assigned its vol-
ume should be above its lower bound. The lower bound can be set to
the initial amount for unloading operations, and to zero for the rest.
Constraint 4.10c expresses that he volumes of the different crude oils
should be equal to the total volume transferred.

Vt
iv ≤ Vt

v · Ziv i ∈ T, v ∈W (4.10a)

Vt
iv ≥ Vt

v · Ziv i ∈ T, v ∈W (4.10b)

Vt
iv = ∑

c∈C
Vivc i ∈ T, v ∈W (4.10c)

Level constraints
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Constraint 4.11a expresses that the level in a tank at the start of a
priority slot is equal to initial level plus all the volume transferred in
prior minus the volume transferred out prior.
Constraint 4.11b expresses the same for the individual crude levels
inside a tank.
Constraint 4.11c expresses that the sum of all the individual crude oil
levels in a tank should add up to the total level inside a tank.

Lt
ir = Lt

0r + ∑
j∈T
j<i

∑
v∈Ir

Vt
iv −∑

j∈T
j<i

∑
v∈Or

Vt
iv i ∈ T, r ∈ R (4.11a)

Lirc = L0rc + ∑
j∈T
j<i

∑
v∈Ir

Vivc −∑
j∈T
j<i

∑
v∈Or

Vivc i ∈ T, r ∈ R, c ∈ C

(4.11b)

Lt
ir = ∑

c∈C
Lirc i ∈ T, r ∈ R (4.11c)

Operation constraints

Constraint 4.12a expresses that the flowrate of an operation should
be within its bounds. Constraint 4.12b expresses that the crude (blend)
that is charged during a charging operation should be within the
given property specification. Note that the operation property speci-
fications come from its source which is a charging tank. Note that we
assume that the properties blend in a linear way.

FRv · Div ≤ Vt
iv ≤ FRv · Div i ∈ T, v ∈W (4.12a)

xvk ·Vt
iv ≤ ∑

c∈C
xckVivc ≤ xvk ·Vt

iv i ∈ T, v ∈W, k ∈ K (4.12b)

Capacity constraints

Constraint 4.13a expresses that the total level inside a tank should
be between its bounds during the scheduling horizon. Constraint 4.13b
expresses that the level of a single crude inside a tank should be be-
tween zero and the upper bound of the tank. constraints 4.13c and
4.13d express that the total level and individual crude levels variables
are also within bounds at the end of the horizon.

Lt
r ≤ Lt

ir ≤ Lt
r i ∈ T, r ∈ RS ∪ RC (4.13a)

0 ≤ Lirc ≤ Lt
r i ∈ T, r ∈ RS ∪ RC, c ∈ C (4.13b)

Lt
r ≤ Lt

0r + ∑
i∈T

∑
v∈Ir

Vt
iv −∑

i∈T
∑

v∈Or

Vt
iv ≤ Lt

r r ∈ RS ∪ RC (4.13c)

0 ≤ L0rc + ∑
i∈T

∑
v∈Ir

Vivc −∑
j∈T

∑
v∈Or

Vivc ≤ Lt
r r ∈ RS ∪ RC, c ∈ C

(4.13d)

Demand constraints
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Constraint 4.14 expresses that the total outflow from a charging
tank is within the bounds of its demand.

Dr ≤ ∑
i∈T

∑
v∈Or

Vt
iv ≤ Dr r ∈ RC (4.14)

4.1.6 Additional Constraints

This section presents constraints that were added to the core con-
straints, by Mouret, to enhance the performance of the model.

4.1.6.1 Symmetry constraints

There is symmetry in the model, which means that two different so-
lutions are equivalent and have the exact same objective value. An
operation could for instance be assigned to priority slot one or prior-
ity slot two without changing the rest of the solution. This degrates
performance because the solver can be wasting time finding a solu-
tion that is in essence already found. To remedy this, constraint 4.15

was added to the model. The constraint says that an operation cannot
be assigned to priority slot i if it can also be assigned to priority slot
i− 1.

Ziv ≤ ∑
v′∈W

OMvv′=0

Z(i−1)v′ i ∈ T, i > 1, v ∈W (4.15)

4.1.6.2 Strengthening constraints

There is also the possibility of adding strengthening constraints, by
creating sets of operations that may not overlap with each other. In
this case maximal sets of operations are constructed that may not
overlap with each other, where a maximal set needs to have at least 3

operations. A set is maximal when there is no operation left outside
the set that cannot overlap with any of the operations already in the
set. For every maximal set W ′ the following constraints are added.
Constraint 4.16 says that for every priority slot only one operation
in the set may be assigned. Constraint 4.17 says that the end of an
operation in the set W ′, plus the duration of operations in the set
assigned to priority slots in between, should be before the start of an
operation assigned to a higher slot.

∑
v∈W ′

Ziv ≤ 1 i ∈ T (4.16)

∑
v∈W ′

Ei1v + ∑
i∈T

i1<i<i2

∑
v∈W ′

Div

≤ ∑
v∈W ′

Si2v + H · (1− ∑
v∈W ′

Zi2v)
i1, i2 ∈ T, i1 < i2 (4.17)
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4.1.6.3 Cardinality constraints

In Mouret 2010 [15] there was nothing mentioned about other car-
dinality constraints besides the vessel unloading, see Constraint 4.8,
and number of distillation bounds, see Constraint 4.2. However we
found the model Mouret, used to run his COSP experiments, pub-
lished online [14]. When we went through the model we saw two
extra cardinality constraints.

The first cardinality constraint 4.18 expresses that the number of
executions of a certain charging operation needs to be within given
bounds. The bounds will be expressed as [MinCardv, MaxCardv], where
v ∈WD.

MinCardv ≤ ∑
i∈T

Ziv ≤ MaxCardv v ∈WD (4.18)

The second cardinality constraint 4.19 expresses that for the first
priority slot and for every CDU there needs to be at least one in-
coming operation assigned. For this we define the set Wto−r, which
includes all operations that have a given resource r as target.

∑
v∈Wto−r

Z1v = 1 r ∈ RD (4.19)

We will do a comparison between the model with and without
these constraints to see how important they are to the performance,
as they were left out of the dissertation paper, , see Section 5.3.2 for
the results. Note that to do this we need to have values for the bounds
in Constraint 4.18. We can take the values used by Mouret for his
instances but they differ per instance and we also have new instances.
So to get these values we propose a rule to get values for the bounds.

The rule is based on the notion that the number of outflows from
the charging tanks is balanced. This happens because of the logistic
assumptions that say that a CDU can only have one inflow operation
at a time, a charging tank can only have one outflow operation at a
time, and a CDU needs to be charged continuously. Together with
the given networks we will get a wave effect with the distillation
operation executions, whereby the charging tanks will for instance
first use their first operation and then at some point need to change to
using their second operation. Also note that the first and last charging
tanks only have one outgoing operation whereby the other charging
tanks will have two outgoing operations. This implies that to keep the
balance we need to count the operations for the first and last charging
tanks double.

The rule to set the MinCardv is defined as follows: nrCH · 2− 2 +

x(nrCH · 2− 2) ≤ ND, where nrCH denotes the number of charging
tanks and x is the integer decision variable. We want to maximize
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this x. Then the MinCardv is set to x + 1 for the outlet operations v
of a charging tank. For example if nrCH = 2 and ND = 3, then we
get x = 0. Thus the MinCardv are set to 1, which is logical because to
balance the minimum of 3 distillation operations both charging tanks
need to have at least one outlet operation, while setting the minimum
to two would bring it to four outlet operations which is one too many.

The rule to set the MaxCardv is defined as follows: nrCH · 2 +

x(nrCH · 2 − 2) ≥ ND, where nrCH denotes the number of charg-
ing tanks and x is the integer decision variable. We want to minimize
this x. Then the MaxCardv is set to x + 2 for the outlet operations v
of the first and last charging tank, while the MaxCardv is set to x + 1
for the outlet operations v of the other charging tanks. For example if
nrCH = 2 and ND = 3, then we get x = 0. As we only have two charg-
ing tanks they are the first and last tanks, thus their outlet operations
are set to MaxCardv = 2. This is again logical as having less than 2
would bring the total possible distillations to 2, which is not enough,
and adding to this would possibly break up the balance, because one
charging tank could then take all the distillation operations.

4.1.7 Priority Slot Algorithm

The MIP model in Section 4.1 assumes one has n priority slots. This
section will show how to find a good or the best value for n and simul-
taneously solve the COSP. The method was taken from Mouret 2010 [15].
When an optimal solution is found, it is optimal for the n priority slots
but adding a slot might give a better solution, because by adding a
priority slot every operation has the possibility of an extra execution,
thus allowing for new solutions. The less priority slots there are how-
ever, the faster a solution can be found.

The strategy of Mouret 2010 [15] is an additive approach, which
starts by solving the COSP using one priority slot and then keep solv-
ing the COSP with an added priority slot each iteration until a stop-
ping criterion is reached. There are several possible stopping criteria.
A first criterion is to stop when the variation between the previous ob-
jective value and the current objective value is smaller than a set error
margin. A second criterion is to stop when a set upper bound of pri-
ority slots is reached. A third criterion is to set a time limit. Only the
second criterion can guarantee global optimality if the upper bound
for n is known, though there is no known method to get this upper
bound for the COSP. Although the first criterion does not guaran-
tee that global optimality will be reached, experiments performed by
Mouret show that global optimality was reached in most cases. Note
that Mouret tested this algorithm on more problems than only the
COSP.

By adding priority slots, the search space is increased but during
the previous search a large part was already searched. To ignore the
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previous search space, constraint 4.20 is added, which says that all pri-
ority slots need to have at least one assignment. This way the search
space only considers new solutions.

∑
v∈W

Ziv ≥ 1 i ∈ T (4.20)

Another way of increasing performance is by setting the cutoff value,
which is the minimal allowed objective value, to the objective value of
the previous found solution. This means that solutions with smaller
objective values than the cutoff are not considered as feasible solu-
tions.

The algorithm that solves the problem and finds the best value for
n is given by Algorithm 1. Here z and z* are the current and previous
solutions respectively, n is the number of priority slots, and n0 is
the initial number of priority slots. As the optimizer maximizes the
objective, the cutoff is initially set to negative infinity. The optimizer
call is indicated by Maximize(MOS(n), cuto f f ).

Algorithm 1 Additive approach to solving the COSP and finding a
good n, Mouret 2010 [15]

z*← ∅;
cuto f f ← −∞;
n← n0;
repeat

z←Maximize(MOS(n), cutoff);
∆← z.objectivevalue() - z*.objectivevalue();
if ∆ > 0 then

z*← z;
cutoff← z*.objectivevalue();

end if
n← n + 1;

until stopping criteria;
return z*;

4.2 constraint programming model

This section proposes a CP model that implements the second step
in Mouret’s two step decomposition strategy, where Mouret used an
NLP model and a non-linear solver named CONOPT. The CP model
will use the solution of Mouret’s MIP to get the assigned operations,
with their sequence, as additional input for the CP model. This means
that the assignment variable is not needed in the CP model, i. e., the
CP model does not have to decide on the number of executions per
operation and the sequence of all the chosen executions. It still needs
to decide on the start, duration, and crude volumes. Thus the other
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variables are still needed and are given a range for the CP to work
with. The time variables get the range [0, horizon.inseconds]. It is im-
portant to notice that CP only works with integer decision variables
and the horizon, which was first expressed in days, is now converted
to seconds. This conversion also holds for the arrival times of the
vessels. The level ranges need to be set to [Lt

r, Lt
r] and the volume

ranges are set to [0, Lt
r], where resource r is the source resource. The

quantities given by the data are in Mbbl (1000 barrels), which may be
increased by a quantity factor to allow for more solutions, but which
will increase the search space. We do this because we would then al-
low for more precise volumes to transfer, which could result in higher
valued crude blends.

The CP model has the same objective function, defined in Sec-
tion 4.1.4, as the MIP. It also uses the following constraints from the
MIP: 4.1a, 4.1c, 4.9, 4.10a, 4.10b, 4.10c, 4.11a, 4.11b, 4.11c, 4.12a,
4.12b, 4.13a, 4.13b, 4.13c, 4.13d, and 4.14.

The overlap and precedence constraints can be merged into one
simple constraint because the sequence of operation executions is al-
ready fixed. This constraint looks at the assigned operations and says
that operations on lower priority slots should end before the start of
operations on higher priority slots if they may not overlap:

Ei1v1 ≤ Si2v2 i1, i2 ∈ T, i1 < i2, v1, v2 ∈W,

OMv1v2 = 0, Zi1v1 = 1, Zi2v2 = 1

The last constraint is the non-linear composition constraint for which
this CP was created. This constraint says that the crude ratio flowing
out of a tank should be the same as the crude ratio in the tank. We
will explain why this constraint is needed with the help of an exam-
ple given in Figure 12. In the figure we see a storage tank S1 and a
transfer operation 4. S1 holds a volume of 100 Mbbl, where 50 Mbbl
is of type crude A, and 50 Mbbl is of type crude B. This means that
the crude ratios in S1 are 1 : 2. Now we have a transfer operation
4, which transfers 50 Mbbl. What we want to know is how many of
the 50 Mbbl that is transferred is of crude type A and how much
is of crude type B. Without the composition constraint this could be
anything, for instance the 50 Mbbl that is transferred could consist
of only crude type A. But in reality this is physically impossible of
course because the crude types in S1 are blended, meaning that we
cannot choose how much of which crude type we want to transfer.
Using the composition constraints this is also taken into account in
the model. Because this constraint says that the ratios are equal thus
the ratio of the crude types in the transferred volume needs to be 1 : 2
for both types. As such the 50 Mbbl that is transferred consists of 25
Mbbl of crude type A and 25 Mbbl of crude type B.

The composition constraint looks as follows:
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Figure 12: Illustration of the composition constraint

Vivc · Lt
ir = Lirc ·Vt

iv i ∈ T, r ∈ R, v ∈ Or, c ∈ C

The proposed model can be found in Appendix 11 in OPL code.

We also propose a variant on the CP. This variant only partly sets
the assignments. Which means that the assignments obtained by the
MIP are set to 1, but the other possible assignments are not set to 0,
i. e., these assignments can still become 1 if possible. This approach
allows for more solutions and possibly better solutions than can be
found using the first variant, while still reducing the total search
space by a large factor compared to when there are no fixed assign-
ments.

This proposed variant can be found in Appendix 12 in OPL code.

4.2.1 Search Strategy

The search strategy that was found to be a good fit for this CP model
is Restart. Restart is a search strategy that is standard implemented
in IBM ILOG CPLEX CP Optimizer version 12.6. The precise workings
of this strategy are confidential, but we can infer that it is a strategy
which starts over when a certain limit is reached. This limit can be
time, depth of the search tree, etc.

The search strategy can be further influenced by search phases.
These search phases tell the search which set of variables should be
focused on first. Here the first search phase is set to the crude volume
variables as all the level and volume variables can be calculated from
this variable and the objective function is also calculated by this vari-
able. Next is the search phase where the start variables are focused
on, which means that the time intervals are moved to a place such
that the operations that may not overlap are not overlapping and are
in the right sequence. The OPL code of the search phases looks as
follows:

cp.setSearchPhases( f .searchPhase(cvolume), f .searchPhase(start));
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4.3 1-step heuristic

In Section 3.2.1 a non-linear avoidance approach was described as
a possible solution method to avoid the non-linear composition con-
straint. This section proposes a MIP that implements this approach,
called 1-Step Heuristic. 1-Step Heuristic avoids the non-linear con-
straint by adding some new additional variables and linear constraints
to Mouret’s MIP. This model has two variants. The first is using it as
described, producing a solution to the entire problem using n pri-
ority slots. The second is when Mouret’s MIP is run first and the
assignments are then locked for the 1-Step Heuristic, thus essentially
replacing the second step.

The constraint that needs to be added is the one that sets the out-
flow of crude of a resource equal to the crude level in the resource if
there is a crude blend in the resource. Meaning that if there is a blend
of crude oils in a tank, then the tank should be emptied in one oper-
ation. To add this constraint two sets of binary variables are added.
The first set of binary variables express if the level of a crude c in a
resource r in a priority slot i is greater than zero. The binary will be
set to 1 if the level is greater than zero, and to 0 otherwise. The second
set of binary variables will check if there is a blend in resource r in a
priority slot i by counting the number of binary variables set to 1 in
the first set of binary variables. The binary will be set to 1 if there is
a blend in the resource, and to 0 otherwise.

• crude level binary CLirc ∈ {0, 1} i ∈ T, r ∈ R, c ∈ C

CLirc =

1, if Lirc > 0

0, otherwise

• crude blend binary CBir ∈ {0, 1} i ∈ T, r ∈ R

CBir =

1, if ∑c∈C CLirc > 1

0, otherwise

The following constraint 4.21 is used to set the crude level binary.
Note that Lirc cannot be between 0 and 1bbl, because of the way the
lower bound of the constraint is set.

0.001 ∗ CLirc ≤ Lirc ≤ Lt
r · CLirc i ∈ T, r ∈ R, c ∈ C (4.21)

The following constraint 4.22 is used to set the crude blend binary.
It is a big-M constraint where the M is equal to the number of crude
oils that could have a level in the resource, a method to get these
crude oils is later explained in Section 4.6.1.1.

2 · CBir ≤ ∑
c∈C

CLirc ≤ M · CBir + 1 i ∈ T, r ∈ R (4.22)
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The last constraint 4.23 sets the total volume equal to the total level
if the crude blend binary is 1. Note that the total volume is already
at most the total level, which means that the constraint only needs
to add that the total volume needs to be at least the total level when
a crude blend is present. The constraint is a big-M constraint where
M is equal to the maximal capacity of the resource. The assignment
variable is added so that this constraint only needs to hold when the
outflow operation is actually scheduled.

As explained, the problem instances do not always allow for a fea-
sible solution where the tanks with a crude blend can be emptied
in one operation. Because of these cases we add a continuous erroriv
variable, so that it will allow for such a tank to not be emptied com-
pletely in one operation but we do want the tank to be as empty as
possible.

Lt
r(1− Ziv) + Lt

r(1− CBir) + Vt
iv+erroriv ≥ Lt

ir

i ∈ T, r ∈ R, v ∈ Or
(4.23)

As such the objective function is changed to incorporate the erroriv
variable. At this point we rather want the tanks with a crude blend
to empty in one operation than a high total gross margin, because
we are looking for a feasible solution to the entire problem. Thus
the weight for the error will be higher than the weight for the gross
margin. The weight is set to 105, it needs to be this high to be as
independent as possible regarding the total gross margin. Note that
if it is the other way around we get the same results as Mouret’s MIP.
The new objective function 4.24 looks as follows:

maximize ∑
i∈T

(
∑

r∈RD

∑
v∈Ir

∑
c∈C

(Gc ·Vivc)− ∑
v∈W

(erroriv ∗ 105)

)
(4.24)

The idea is that emptying a tank with a crude blend as much as
possible will keep the transgression of the composition constraint to
a minimum. Thus obtaining a result that is an actual solution or is
close to an actual solution to the COSP.

4.4 another heuristic

This section discusses another heuristic, where the idea is again to not
need the composition constraint. We found that the idea behind the
heuristic is wrong, but we still present it as the idea looks attractive
but does not work.

The model checks on the outflow of a charging tank if the trans-
ferred volume is within the property specifications. When the compo-
sition constraint is added this will mean that what is in the charging
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tank has the same values. But when the composition constraint is left
out, there is no constraint that makes sure that what is in the tank
right before an outflow transfer occurs is within specifications. Thus
constraints were added to only allow an outflow out of a charging
tank when the crude blend in the tank is within specifications. The
reason that this does not work is because this is only correct as long
as the outflow does not break the composition constraint. As soon
as this happens the newly added constraint will look at crude ratios
that are already wrong so even if they are within specifications then
that does not mean that what should be in the tank is also within
specifications.

We will go through a small example to try to clarify. Figure 13

shows a small network to illustrate the example. The network has
two storage tanks, where the first storage tank S1 has a crude type A
with property value 0.2 and the second storage tank S2 has a crude
type B with property value 0.3. We will for this example assume that
the storage tanks have infinite volume. Then there is a charging tank
C1 which has an initial volume of 100Mbbl of crude type A and has
the property specification [0.17, 0.24].

Figure 13: A small network to illustrate the example of why the charging
tank specification heuristic does not work

Now we look at Table 4, which shows us a possible outcome of
choices that the optimizer made. First there is a transfer of 40 Mbbl
of crude type B to the charging tank. Next there is an outflow from
the charging tank of 100 Mbbl, where 60 Mbbl is of crude type A and
40 Mbbl is of crude type B. Note that this is against the composition
constraint. But the property value in the charging tank was 0.229,
which is within the specification and thus allows for the outflow, and
the property value of the outflow is 0.24, which is also within the
specification. Note that after the outflow there is 40 Mbbl of crude
type A left in the charging tank. Next there is a transfer of 20 Mbbl
of crude type A and 40 Mbbl of crude type B to the storage tank.
This bring the property value within the charging tank to 0.24, which
is again within specifications. Finally there is an outflow from the
charging of 100 Mbbl which empties the tank, the outflow had of
course a property value of 0.24.

If we now take the same sequence of events but this time adhere to
the composition constraint we will see what goes wrong. The outflow
of the first 100 Mbbl will consist of 71.43 Mbbl of crude type A and
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Table 4: Example of possible optimizer choices to show why the charging
tank specification heuristic does not work

Operation (From-To) Volume Transferred (Mbbl)

S2-C1 40

C1-U1 100 (A: 60, B: 40)

S1-C1 20

S2-C1 40

C1-U1 100 (A: 60, B: 40)

28.57 Mbbl, which has the same property value as what was in the
tank, namely 0.229. So far there is nothing wrong. Note that there
is now 28.57 Mbbl of crude type A and 11.43 Mbbl of crude type
B left in the charging tank. Next we get the transfers bringing the
volumes to 48.57 Mbbl of crude type A and 51.43 Mbbl of crude type
B. The property value in the charging tank now became 0.25, which
is outside of the specifications. Note that this is the same property
value which will flow out of the charging tank when it empties. Thus
this example shows that this proposition will not work.

4.5 localsolver

The LocalSolver model we use is the same as the CP model, as it is
also used as the second step in the two-step approach. The model
used for the first problem instance is given in Appendix 13. In Sec-
tion 5.3.6 it is shown that this model does not perform well, so we
have limited the attention we pay to it here.

4.6 improving performance

This section will propose several ways to improve the performance
of Mouret’s MIP and the Constraint Programming model, and will
also indicate some ways that could possibly have improved the per-
formance but did not.

4.6.1 Improving Mouret’s MIP Model

This section proposes various ways to improve Mouret’s MIP model
and also has a subsection on ways that failed to improve the model.

4.6.1.1 Decrease Crude Variables

Less crude volume variables obviously implies a reduced search space.
This method is already used by using the assignments made by the
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MIP, but the number of crude volume variables can be further re-
duced. The model as presented gives an operation the possibility to
transfer all the possible crude oils, but in reality and enforced by the
level constraints this is not the case most of the time. For instance a
vessel arriving with one type of crude can obviously only unload that
type of crude.

We therefore propose to decrease the crude volume variables by
only creating crude volume variables for an operation if the resource
the volume is transferred from has the possibility of having that crude
in storage. It is possible for a crude to be in storage at a certain re-
source r, if there is a path of operations from a resource that has the
crude as initial crude to r. This is calculated, in a declarative way, for
every resource r ∈ R by defining a set allowed crude oils that has the
start crude of r together with the crude sets of all resources that have
an outlet operation to r, of course the crude oils in the set are kept
unique, so there will be no duplicates.

4.6.1.2 No Derived Variables

Another improvement is to only use the decision variables, which
takes away readability of the model but removes all the derived vari-
ables, which could improve performance. This is partly tried in this
thesis by replacing the total volume variable by the sum of its respec-
tive crude volume variables.

4.6.1.3 No Consecutive Assignments

An operation can be assigned to consecutive priority slots, but this
does not add possibilities because if that happens then they can be
merged into one operation. To remedy this, constraint 4.25 is added,
expressing that an operation that may not overlap with itself cannot
be assigned to two consecutive priority slots.

Ziv1 + Z(i+1)v1
≤ 1 i ∈ T, i 6= n, v1 ∈W, OMv1v1 = 0 (4.25)

4.6.1.4 No Transfer Operations at the End

Another improvement is adding constraint 4.26, which forbids the
assignment of transfer operations on the last priority slot (i. e., n).
A transfer operation is only used as preparation to create space for
unloading vessels or to have a crude blend in the charging tanks. But
there is obviously no unloading or charging operation after the last
priority slot. Thus we know that no solution is lost by removing the
possibility of assigning transfer operations on the last priority slot.

4.6.1.5 No Strengthening Constraints

In Section 4.1.6.2 the strengthening constraints of Mouret were pre-
sented. They were introduced as extra constraints to improve perfor-
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mance, however, we found these constraints to be more of a detri-
ment to the performance than an improvement. For this reason, to
improve performance, we removed these strengthening constraints
in our model.

Ziv = 0 i ∈ T, i = n, v ∈WT (4.26)

4.6.1.6 Failed Improvements

This section will present some ways that were thought to be improve-
ments but after running the tests the results showed that the perfor-
mance decreased.

Flowrate Lowerbound

There are constraints that give lower and upper bounds to the
flowrate of an operation. But the flowrate can be given a direct value
for most operations. The distillation operations have the constraint
that they need to continuously charge the CDUs, thus here it is im-
portant to be able to set different flowrates. The other operations have
no reason to use a flowrate under the maximum. Thus the flowrate
bound constraints can be changed such that for operations other than
distillation operations are set to the maximum flowrate.

Symmetry Breaking in the Objective Function

Another way to add symmetry breaking, besides the symmetry con-
straint presented in Section 4.1.6.1, is to change the objective function.
This is done by giving the priority slots a score from high to low
or from low to high. A score is counted if an operation is assigned.
Using this approach the solver will try to assign an operation to the
earliest priority slot to get the highest score added or the lowest score
subtracted. If high to low score is used then the score is added to the
objective value. Note that this change will also try to get as many as-
signments as possible after the objective of maximizing the total gross
margin. If low to high is used the score is subtracted from the objec-
tive value. Note that this change will also try to keep assignments to
a minimum. It is important to keep the weight of the total gross mar-
gin higher as that objective is more important. Objective function 4.27

shows the high to low variant and objective function 4.28 shows the
low to high variant.

maximize ∑
i∈T

(
∑

r∈RD

∑
v∈Ir

∑
c∈C

(Gc ·Vivc) + ∑
v∈W

(Ziv ∗ 0.00001 ∗ (n− i))

)
(4.27)

maximize ∑
i∈T

(
∑

r∈RD

∑
v∈Ir

∑
c∈C

(Gc ·Vivc)− ∑
v∈W

(Ziv ∗ 0.00001 ∗ i)

)
(4.28)
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4.6.2 Constraint Programming Performance

For the CP model we studied three points that can influence perfor-
mance besides the other topics we just discussed in this section.

• The first point is the size of the domains. The domains influence
the precision of the search. The larger the domain, the larger the
search space, allowing for possibly new solutions. The schedul-
ing horizon H has a granularity of seconds but that could also
be minutes which takes away a factor 60 of possible values from
the time domains. On the other hand, this decreases the preci-
sion of the search and could possibly have a worse final solution
than when using seconds. It is clear that there is a balance be-
tween good solutions and performance. The same holds for the
quantity domains (volume and level). Instead of using Mbbl it
could for instance be set to bbl which increases the domains by
a factor 1000, decreasing performance but with a possibility of
finding better solutions.

• The second point is the search strategy. The way the search
is performed influences the performance significantly, which is
why it is important to discover how to best configure the search.

• The third point is that setting an upper and/or lower bound on
the objective value could enhance performance for the CP. The
CP’s upper bound can be set to the objective value found by the
MIP, as it is impossible to find a better objective value when the
composition constraint is added.





5
C O M P U TAT I O N A L S T U D Y F O R T H E C O S P

This chapter presents the computational study we did for the COSP.
Section 5.1 presents the different problem instances that were used

to test the implemented models. Section 5.2 compares our implemen-
tation of Mouret’s MIP with Mouret’s own results, after which Sec-
tion 5.3 shows the different experiments and their results. This starts
with Section 5.3.2, which compares Mouret’s original model, the “Car-
dinality Rule” model, and our“Improved” model. Next there is Sec-
tion 5.3.3, which looks at our “Improved” model as a possible heuris-
tic. After that we take a look at the results of the 1-Step Heuristic in
Section 5.3.4. Section 5.3.5 looks at the results of the CP model and
Section 5.3.6 presents the results of LocalSolver. We also take a look
at the NLP solver named CONOPT that was used in Mouret 2010 [15]
as the second step in Section 5.3.7. Lastly a conclusion of the experi-
ments is given in Section 5.4.

5.1 problem instances

Four of the problem instances used were taken from Lee et al. 1996 [11].
They are named COSP1 to COSP4. These instances were also used
by Mouret [15] making them ideal to be used as benchmarks. To in-
crease the practical relevance of our study we added 3 new instances
COSP5-7 which are larger and have different types of vessels. We next
added 13 new instances, all being variations of COSP1-7, this to get
a broader set of instances upon which we can judge the performance
of the different approaches.

The instances are defined by their network, the resources and paths
between resources, and input data. Table 5 refers to the respective
network figures and data tables. Note that, other than COSP1, the
problem instances can be found in Appendix 17.

Table 5: COSP problem instances

Problem instance Network Data

COSP1 Figure 14 Table 7

COSP2 Figure 23 Table 21

COSP3 Figure 23 Table 22

COSP4 Figure 24 Table 23

COSP5 Figure 25 Table 24

COSP6 Figure 26 Tables 25 and 26

COSP7 Figure 27 Tables 27 and 28

49
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The 13 variation instances are listed in Table 6. There are three
groups of variants. The first group varies the number of properties
that are considered, to see what the effect is of having more or less
properties. The second group sets all the minimal capacities of the
resources to zero, to see if this has any effect on the 1-Step Heuristic.
The last group splits the vessels into two equal parts. This means that
an original vessel splits into two vessels which are exactly the same
(arrival time, operations, etc), except for the volume which is half of
the original volume. This is done to see what happens when there are
more vessels without changing the instance too much.

Table 6: COSP problem instances variants

Problem instance Description

COSP2a Only property 1 is considered

COSP5a Only property 1 is considered

COSP5b Only properties 1 and 2 are considered

COSP6a Only property 1 is considered

COSP6b Only properties 1 and 2 are considered

COSP7a Only property 1 is considered

COSP7b Only properties 1 and 2 are considered

COSP4c All minimal capacities are set to zero

COSP5c All minimal capacities are set to zero

COSP6c All minimal capacities are set to zero

COSP7c All minimal capacities are set to zero

COSP3v Vessels are split into two

COSP4v Vessels are split into two

Figure 14: Crude oil operations network for COSP1 from Lee et al. 1996 [11]
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Table 7: Overview of the COSP1 data

Scheduling horizon 8 days
Vessels Arrival time Composition Amount of crude (Mbbl)
Vessel 1 0 100% A 1,000

Vessel 2 4 100% B 1,000

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [0, 1000] 100% A 250

Tank 2 [0, 1000] 100% B 750

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 1000] 100% C 500

Tank 2 (mix Y) [0, 1000] 100% D 500

Crudes Property 1 (sulfur concentration) Gross margin ($/bbl)
Crude A 0.01 1

Crude B 0.06 6

Crude C 0.02 2

Crude D 0.05 5

Crude mixtures Property 1 (sulfur concentration) Demand (Mbbl)
Crude mix X [0.015, 0.025] [1000, 1000]
Crude mix Y [0.045, 0.055] [1000, 1000]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [50, 500] Number of distillations 3

5.2 verification and validation

The verification of our implementation of Mouret’s MIP was done
using his computational results which are presented in Table 8. The
n column indicates the number of priority slots used. The MIP col-
umn shows the objective values of the MIP solutions, the “no im-
provement” indication means that there is no better solution found
compared to 1 priority slot less. The NLP column shows the objective
values of the NLP solutions. The Gap column gives the variation of
objective values between the best MIP solution and the NLP solution.
Our results where exactly the same as reported by Mouret, thus we
concluded the MIP was correctly implemented.

The validation has been done using a Quintiq application, which
we debugged, slightly improved and changed to allow for the opti-
mizer to run. The application checks if a given solution violates any
constraints and gives a nice visual overview.

5.3 experiments and results

This section discusses the setup used for the experiments and their
results.
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Table 8: Computational results taken from Mouret 2010 [15]

Instance n MIP NLP Gap

COSP1

1-4 infeasible
7975 0%5 7975

6 no improvement

COSP2

1-3 infeasible

10117 0%
4 9000

5 9617

6 10117

7 no improvement

COSP3

1-2 infeasible

8540 2.3%
3 8250

4 8450

5 8740

6 no improvement

COSP4

1-3 infeasible
13255 0%4 13255

5 no improvement

5.3.1 Setup

The experiments were run on an Intel(R)Core(TM) i5 CPU M 450 @
2.40GHz CPU. The MIP models were implemented using Quintiq soft-
ware, which uses IBM ILOG CPLEX Optimizer version 12.5 as solver.
The CP was implemented using IBM ILOG CPLEX CP Optimizer ver-
sion 12.6. The LocalSolver tests were run on LocalSolver 4.5.

5.3.2 Comparing Mouret’s MIP to the Improved MIP

Table 9 presents the results of running Mouret’s “Dissertation” MIP,
the “Cardinality Rule” MIP, and our “Improved” MIP. The “Disserta-
tion” is the model as presented in Mouret 2010 [15]. This model in-
cludes the symmetry and strengthening constraints from Sections 4.1.6.1
and 4.1.6.2. The “Cardinality Rule” model adds the cardinality con-
straints of Section 4.1.6.3, that were found in the online published
models [14]. The cardinality rule presented in Section 4.1.6.3 is used
to get the minimum and maximum cardinality values. The “Improved”
model changed and added several things in Mouret’s MIP model to
further improve the performance. Note that this model also uses the
cardinality constraints and cardinality rule of Section 4.1.6.3. These
changes and addition are mostly explained in Section 4.6.1, and can
be shortly summarised as follows:

• Only allowed crude volume/level variables, see Section 4.6.1.1
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• Total volume replaced with sum of crude volumes, thus remov-
ing the total volume variables, see Section 4.6.1.2

• No two consecutive assignments of the same operation, see Sec-
tion 4.6.1.3

• No transfer operations allowed on the last priority slot, see Sec-
tion 4.6.1.4

• The strengthening constraints are removed, see Section 4.6.1.5

The n shows the best number of priority slots found. The “Obj.
Val.” column shows the obtained objective value, “no sol.” indicates
that there was no solution found within the time limit, also note that
the bold objective values are the best found objective values (if the
same value is found we look at the best search time) for their re-
spective instance. The “CPU” column denotes the total accumulated
search time in seconds. Note that the objective values for COSP1 to
COSP4 are the same as given in Table 8, indicating that the models
are correctly implemented. The time limit per iteration was set to 90
seconds. The reason is that there are sometimes up to three feasible
iterations until no better solution was found, so that if they run up to
the time limit we get 4.5 minutes, which is still within the time limit
of 5 minutes.

Note that some runs stopped at the time limit of 1.5 minutes. This
does not mean that a better result can be found but that the current
result is not confirmed to be optimal. These runs do have a relative
optimal gap of less than one percent, indicating that the found solu-
tions are good enough to use in practice.

The first thing to notice when looking at the results is an obvious
performance improvement when we look from left to right.

When we compare the ’Dissertation’ and ’Cardinality Rule’ models
we see one of two cases. The first case is that we see an improvement
in the found objective values. We only see this when the iteration
was stopped, for the ’Dissertation’ model, on the time limit, which
means that the objective value was not proven to be optimal and thus
had a large chance to be able to increase a bit more. Sometimes this
leads to an extra iteration which increases the running time, but as
we find a better objective value this is an improvement. The second
case is that we see an improvement of the running time performance
when the same objective value is found, except for COSP1. This im-
provement lies between 1.3 to 9 times faster search times. From this
comparison we can conclude that the cardinality constraints improve
performance considerably and should have been included in the dis-
sertation, together with an explanation of where the minimal and
maximal cardinality values come from. To remedy this we have pro-
posed the cardinality rule, which gives the same values for COSP1-4
as Mouret used in his models found online [14].
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Table 9: Mouret’s MIP results, comparing dissertation, model with cardinal-
ity rule, and the improved model

Dissertation Cardinality Rule Improved
Instance n Obj. Val. CPU(s) n Obj. Val. CPU(s) n Obj. Val. CPU(s)

COSP1 5 7975 4 5 7975 5 5 7975 1

COSP2 6 10117 185 6 10117 54 6 10117 9

COSP3 5 8740 99 5 8740 14 5 8740 5

COSP4 4 13255 103 4 13255 18 4 13255 3

COSP5 6 15641 271 6 15641 199 6 15651 111

COSP6 5 27150 182 6 27159 273 5 27156 181

COSP7 no sol. 276 no sol. 280 9 42096 275

COSP2a 6 10117 203 6 10117 48 6 10117 15

COSP5a 6 15745 249 6 15745 191 7 15751 197

COSP5b 6 15745 245 7 15748 276 6 15745 107

COSP6a 5 27115 181 6 27159 273 5 27156 181

COSP6b 5 27104 181 6 27157 272 5 27161 180

COSP7a no sol. 277 8 42080 188 8 42134 182

COSP7b no sol. 276 no sol. 276 8 42053 183

COSP4c 4 13261 126 4 13261 14 4 13261 5

COSP5c 7 15639 354 6 15651 204 6 15651 120

COSP6c 5 27139 180 7 27161 362 6 27160 271

COSP7c no sol. 278 no sol. 278 9 41997 273

COSP3v 7 8740 182 7 8740 110 7 8740 19

COSP4v 6 13255 182 6 13255 108 6 13255 11

Next we compare the ’Cardinality Rule’ and ’Improved’ models.
First note that the ’Improved’ model finds solutions for all instances,
where the other versions did not. This is a large improvement. It is
observed in the larger and thus practically more relevant COSP7 in-
stances, thus indicating the additional practical value of the improved
model. We also have the same two cases where we see an improve-
ment of objective value, mostly small changes though COSP7a in-
creased by 54, or total search time. For the search time we improve-
ments between 1.3 up to almost 10 times faster search times. There are
even a few cases where we see both, compare for instance the results
of COSP5, COSP6b, and COSP7a. We also see that less iterations are
needed in some cases, see COSP6, COSP6a, COSP6b, and COSP6c,
which improves the search time by 90 seconds, while still finding
comparable values. It is important to notice that there is only one oc-
currence that had a slower search time, see COSP5a, which is only a
6 seconds difference and the ’Improved’ version even found a better
solution. There are also no occurrences where a higher n was found.
From this comparison we can conclude that the ’Improved’ version
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has better performance than the ’Cardinality Rule’ version, meaning
that we have further improved the model that Mouret [15] [14] pre-
sented. Note that only the ’Improved’ version found a solution for
each instance within 5 minutes, with only three occurrences where it
took over 4 minutes.

When we look at the results of the property variant instances the
first thing to notice is that we cannot draw a straight conclusion about
the performance when the instance has more or less properties. How-
ever we do observe that if less properties are considered then there is
the possibility of a higher objective value, as there are less property
specification constraints, which is proven by the presented results.

Next, we look at the results of the no minimal capacity instances.
Here we do not immediately see a large difference with their respec-
tive main instance results, but we can still make some interesting
observations. The instances did get a bit more freedom so a higher
objective value is possible as we see with the results of COSP4c and
COSP6c. We also see lower objective values when the time limit is
reached, see COSP7. We also observe an increase in iterations for
COSP6c From this we conclude that the extra freedom makes the
instance harder to solve.

Lastly, we look at the results of the split vessel instances. First we
notice that the best objective values are still the same as for their re-
spective main instance. When we split the vessels there is in essence
only one change to the problem which is that a vessel is now un-
loaded in two steps, thus allowing for more freedom, which could
have resulted in a better objective value but certainly not a worse
objective. Second we notice that there are more priority slots needed.
The reason is that the instances now have 6 vessels which cannot over-
lap, thus their respective unloading operation needs to be scheduled
on a separate priority slot. Meaning that for 6 vessels we need at least
6 priority slots. There is also an increase in the search time which is
probably a result of the increased freedom and the increase in priority
slots. Note that these instances were created to see what happens if
more vessels were added i. e., not directly to allow for more unload-
ing operations per vessel.

We just saw that the larger instances often have no proof of having
found an optimal solution before the time limit of 90 seconds. To see
how much of a difference it would mean on the objective values, if we
had a higher time limit, we ran the same instances, but now with a
time limit of 900 seconds. These results are presented in Appendix 15.
Note that in terms of quality (objective value) “Cardinality Rule” and
“Improved” are quite comparable, but we still see that the “Improved”
model has better search times or objective values most of the time.
The results further show us differences of less than 1% between the
objective values, where most are even less than 0.1%. From this we
can conclude that increasing the time limit does not give significantly
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better objective values on our instances, thus allowing us to use the
time limit of 90 seconds, which gives us total maximal search times
of around 5 minutes.

5.3.3 Improved MIP Heuristic

Our Improved MIP is used as the first step of the two step approach.
The reason that the MIP of itself is not a good solution method is
that the non-linear composition constraint is not taken into account.
This means that a obtained solution could have an actual objective
value that is lower and/or the blends in the charging tanks are out-
side the property specifications. To see if this is what happens in
practice, we took the obtained solutions from our Improved MIP and
checked what the actual values are and how far the solutions are out-
side their respective property specification. The results are presented
in Table 10. The “Obj. Value” column shows the objective value of
our Improved MIP. The “Act. Value” is the value of the solution if it
were to be used in practice, meaning that the composition constraint
is adhered to, this value is calculated by the Quintiq application after
inputting the found solution. The “Diff” column is the difference of
the objective and actual value in percent. The last column “Within
Spec.” shows how far outside the property specification the found
solution really is. For every charging operation we calculate what
the percentage is that the blend properties are within the property
specifications of the respective charging tank. These percentages are
averaged per charging tank, thus the average of all operations that
flow out of a certain charging tank. We then take the sum of this per-
centage multiplied by its respective demand and finally divide by the
total demand.

The results present us something interesting. First we see that the
actual value is mostly within 1% difference and at most 6.83%. Sec-
ond is that all solutions are within 1% of a 100% property specifi-
cation adherence. Even more noteworthy is that 12 solutions have a
100% property specification adherence, meaning that these solutions
can be used without any problems. Note that there is no guarantee
that a repeat of the same run will find the exact same solution and
thus the same actual value, but there is enough evidence to suggest
that another solution will also be very close to or exactly be 100%
within property specifications. From these results we conclude that
our Improved MIP is a heuristic of itself. Note that the total running
time is always faster than the two-step approach as there is obviously
no second step. However, if the second step is done with an NLP
solver (e. g. CONOPT), this is not an improvement as we found the
NLP solver will solve the NLP within a second.
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Table 10: Mouret’s MIP as Heuristic Results

Instance Obj. Value Act. Value Diff.(%) Within Spec.(%)

COSP1 7975 7975 0 100

COSP2 10117 9780 3.33 100

COSP3 8740 8143 6.83 100

COSP4 13255 13254 0.01 100

COSP5 15651 15555 0.61 100

COSP6 27156 26806 1.29 99.948

COSP7 42096 42042 0.13 99.78

COSP2a 10117 10117 0 100

COSP5a 15751 15690 0.39 100

COSP5b 15745 15655 0.57 100

COSP6a 27156 27154 0.01 99.684

COSP6b 27161 26918 0.89 99.993

COSP7a 42134 42087 0.11 99.092

COSP7b 42053 41837 0.51 99.998

COSP4c 13261 13261 0 100

COSP5c 15651 15555 0.61 100

COSP6c 27160 26984 0.65 99.993

COSP7c 41997 41981 0.04 99.915

COSP3v 8740 8526 2.45 100

COSP4v 13255 13255 0 100

5.3.3.1 Tighter Specification Bounds Heuristic

The results of our Improved MIP where we saw that the solutions
are very close to being within the bounds gave the idea of tightening
the property specification bounds. The thought behind this idea is
that if our Improved MIP gives solutions that are almost within the
specification bounds, then, if we tighten the specification bounds for
the optimizer, the actual solution (e. g. adhering to the composition
constraint) will be within the property specifications. A downside of
this approach is that there is a chance that the optimal solution cannot
be obtained, but a good solution can still be obtained as long as the
bounds are not made too tight. Another potential downside is that
there may be no feasible solution left because certain crude blends
are no longer possible.

This heuristic was tested using three different levels of tightening
the bounds, namely 0.5%, 1%, and 3%. This means that a specification
lower bound is increased by x% and a specification upper bound is
decreased by x%. The results are presented in Table 11.

The first level of 0.5% gave some good results until COSP6 where
no feasible solution was left. The reason for this is likely because the
start crude oils in the charging tanks are already at the upper bound.
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Table 11: Results of the MIP with tightened bounds

Tightening Bounds: 0.5%

Instance Obj. Value Actual Value Diff.(%) Within Spec.(%)

COSP1 7936 7913 0.290 100

COSP2 10075 10075 0.000 100

COSP3 8711 8390 3.685 100

COSP4 13221 13221 0.000 100

COSP5 15567 15562 0.032 100

COSP6 Infeasible - - -

Tightening Bounds: 1%

Instance Obj. Value Actual Value Diff.(%) Within Spec.(%)

COSP1 7879 8061 -2.310 97.197

COSP2 10032 10032 0.000 100

COSP3 8681 8450 2.661 99.858

COSP4 13187 13275 -0.667 99.51

Tightening Bounds: 3%

Instance Obj. Value Actual Value Diff.(%) Within Spec.(%)

COSP1 7740 7721 0.245 100

COSP2 9854 9854 0.000 100

COSP3 8564 8185 4.426 99.344

COSP4 Infeasible - - -

This means that with the decrease the start crude oils are not allowed
to flow into a distillation unit, thus the model cannot adhere to the
continuous flow constraint for every distillation unit. An idea could
be to check this and see how far the upper bound can be tightened,
but this will need to be tested in a future project.

When we look at the 1% and 3% level, we immediately see that
they give solutions that are not within specifications. From this we
can conclude that tightening the bounds too much does not work.
Not only do we still get solutions outside the bound, but the solutions
have a high chance of being suboptimal.

This heuristic does not have any guarantee of finding a solution
within specifications, but the results of the first level do show some
promise. It would need a lot of testing in practice to see if there is
any real difference in accuracy between the normal bounds and the
tightened bounds. As this, as well as the previous idea, could not
be further researched for this thesis it is added to the future work
section.
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5.3.4 1-Step Heuristic Results

Tables 12 and 13 present the results of the 1-Step Heuristic, which was
proposed in Section 4.3. Table 12 shows the results where the 1-Step
Heuristic is used as a replacement of the two-step approach. Table 13

shows the results when the assignments found by our MIP are fixed
for the heuristic. In this case the heuristic only replaces the second
step of the two-step approach.

The n indicates the number of priority slots used. The “Obj. Value”
column shows the obtained objective value. The “CPU” column de-
notes the search time in seconds. The column “Within Spec.” shows
how far outside the property specification our 1-Step Heuristic MIP
really is. For every charging operation we calculate what the percent-
age is that the blend properties are within the property specifications
of the respective charging tank. The “Act. Value” is the value of the
solution if it were to be used in practice, meaning that the composi-
tion constraint is adhered to.

Note that if the 1-Step Heuristic has the same objective value as our
Improved MIP, making the MIP Gap equal to zero, and the Improved
MIP found its optimal solution, then the solution found by the 1-Step
Heuristic is the best found solution, because the Improved MIP gives
an upper bound for the problem.

When studying Table 12, the first thing we notice is that there are
only two solutions that are just outside of the property specifications
and there is one instance, COSP7c, where no solution was found at all.
The second thing to notice is that all found objective values are within
2% of the objective values found by the Improved MIP in Table 9, ex-
cept for COSP3 and COSP3v, which has a difference of 5.6%. Note
that the best found solution by Mouret for COSP3 was 8540, which
brings the found objective values of the 1-Step Heuristic within 3.4%
of the best found solution. Also note that for COSP1, COSP2, COSP4,
and their respective variants we find the exact same objective values
as the best known objective values. The search times are still smaller
or around the 5 minutes, but we can clearly see that the 1-Step Heuris-
tic has more difficulties finding the best solution than the Improved
MIP. However, it is still an interesting heuristic as it does not need a
non-linear solver to get a complete solution for the COSP.

Next we look at the results obtained by using the 1-Step Heuristic
with the set assignments, meaning that we first run the Improved MIP
and use the assignments of its found solution as input for the 1-Step
Heuristic, see Table 13. Here we get comparable results as when we
do not use the set assignments. There are two instances that are just
outside the property specifications, but this time all instances found
a solution. When we look at the objective values we see that most of
them are a bit lower than when we do not use the set assignments.
Which is logical as the search space is decreased, creating the pos-
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Table 12: 1-Step Heuristic results

Instance n Obj. Value CPU(s) Within Spec.(%) Act. Value

COSP1 5 7975 3 100 -
COSP2 6 10117 19 100 -
COSP3 4 8250 7 100 -
COSP4 4 13255 4 100 -
COSP5 7 15594 307 100 -
COSP6 5 27038 180 100 -
COSP7 10 42019 273 99.999 42015

COSP2a 6 10117 19 100 -
COSP5a 6 15529 211 100 -
COSP5b 7 15689 302 100 -
COSP6a 5 27032 180 100 -
COSP6b 6 26983 271 100 -
COSP7a 9 42008 274 99.989 42007

COSP7b 8 41493 182 100 -

COSP4c 4 13261 6 100 -
COSP5c 6 15433 215 100 -
COSP6c 5 27053 180 100 -
COSP7c no solution 270

COSP3v 7 8250 157 100 -
COSP4v 6 13255 31 100 -

sibility that feasible solutions are removed. Note however, that the
objective values are still within a 3% difference with the objective val-
ues of the Improved MIP, except for COSP3 and COSP3v. When we
look at the search times we see a large difference. The search times
should be compared though to the second step algorithms as we used
the assignments that were found by the first step. When done by an
NLP solver, such as CONOPT, the second step does this within a
second for instances COSP1-7. Which means that the heuristic is as
fast or sometimes slower than an NLP solver, this together with the
fact that the NLP solver has a high chance of finding a better solu-
tion makes this approach less appreciated. Though if no NLP solver
is available it becomes a lot more interesting. If we for instance com-
pare it with the results of the Constraint Programming approach, see
Section 5.3.5, we see that the 1-Step Heuristic with fixed assignments
is significantly faster, with comparable objective values.

5.3.5 Constraint Programming Results

Table 14 presents the results of the Constraint Programming model
using fixed and partly fixed assignments. Note that the CP model
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Table 13: 1-Step Heuristic with set assignments results

Instance n Obj. Value CPU(s) Within Spec.(%) Act. Value

COSP1 5 7975 0 100 -
COSP2 6 10117 0 100 -
COSP3 5 8450 0 100 8041

COSP4 4 13254 0 100 -
COSP5 6 15354 0 99.977 -
COSP6 5 26761 1 100 -
COSP7 10 41601 9 100 -

COSP2a 6 10117 0 100 -
COSP5a 6 15479 0 100 -
COSP5b 6 15399 0 100 -
COSP6a 5 26400 1 100 -
COSP6b 6 26952 1 100 -
COSP7a 8 41599 1 100 -
COSP7b 9 41063 9 99.855 -

COSP4c 4 13261 0 100 -
COSP5c 7 15449 1 100 -
COSP6c 5 26484 0 100 -
COSP7c 8 41620 2 100 -

COSP3v 7 8740 0 100 8285

COSP4v 6 13255 0 100 -

was run on both variants on all instances, but the table only shows
the instance if one of the variants found a solution within the time
limit of 60 seconds. This time limit was chosen as our Improved MIP
already takes 4 to 5 minutes for the larger instances. For the CP model
the search strategy was to focus on the crude volumes first and on the
start of the operations second. The search used for the CP model was
Restart. These choices were made after doing performance tests. The
results and conclusions of these tests can be found in Appendix 16.

We also experimented if giving the objective value found by Mouret’s
MIP as an upper bound has any influence, which results in two lines
per instance where one has no upper bound and the other was given
the upper bound. The upper bound is shown in column “Upper
bound”.

The first thing to notice that the only instances that are missing are
COSP6, COSP7, and their variants. From this alone we can conclude
that the CP model is not the best alternative to an NLP solver as it
cannot find a solution for the larger instances within the time limit.
However, when we look at the other instances and the objective values
that are found we see that they are all within 5% of the upper bound,
except for COSP3 and COSP3v with the upper bound, which makes
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Table 14: CP results

Fixed Partly Fixed
Instance Upper bound Obj. Value CPU(s) Obj. Value CPU(s)

COSP1
∞ 7970 4.38 7965 13.49

7975 7950 21.31 7975 40.8

COSP2
∞ 10006 48.82 10112 48.25

10117 10114 33.96 10034 55.63

COSP3
∞ infeasible 0 8507 44.69

8740 infeasible 0 8294 51.7

COSP4
∞ 13247 32.97 13249 59.6

13255 13246 56.94 13236 59.95

COSP5
∞ 15092 58.25 no solution

15651 15275 58.13 no solution

COSP2a ∞ 10106 52.62 10078 58.42

10117 10112 52.25 10004 58.39

COSP5a ∞ 15501 55.79 no solution
15751 15353 59.3 no solution

COSP5b ∞ 15421 58.43 no solution
15745 15383 58.5 no solution

COSP4c ∞ 13245 59.1 13241 59.65

13261 13244 36.9 13259 54.24

COSP5c ∞ 15167 58.59 15246 37.96

15651 15216 52.63 15124 55.75

COSP3v ∞ 8408 19.75 8466 30.03

8740 8423 48.97 8130 58.96

COSP4v ∞ 13245 57.59 no solution
13255 13254 48.49 no solution

them good solutions. Note also that if we compare the objective val-
ues of COSP3 and COSP3v with the best known objective value, 8540,
they are still within the 5% limit of the research assignment defined
in Section 1.3.

When we look at the difference between the fixed and partly fixed
variant we see two interesting things.

The first is that where the fixed variant found infeasible for COSP3,
the partly fixed found a very good solution. Note that, because we
found infeasible for COSP3, we can conclude that the found assign-
ments by the Improved MIP will not always result in a feasible solu-
tion for the CP model.



5.3 experiments and results 63

The second is that the partly fixed variant does not find a solution
for several of the instances where the fixed variant does. This is be-
cause the partly fixed variant has a larger search space, resulting in a
possible longer search time before a feasible solution is found.

When we look at the difference of using an upper bound or not us-
ing an upper bound, we observe both objective values that got higher
as well as lower. As such we cannot draw any conclusions on the use
of an upper bound. Though we can see that, with the upper bound,
the fixed variant gets higher objective values on most instances, while
the opposite happens for the partly fixed variant.

To conclude, the CP model could be used as the second step in the
two-step approach, but it will need some real improvements if it is to
be used for the larger instances.

5.3.6 LocalSolver Results

As explained we also set out to evaluate LocalSolver [3], but in the
end only tested on a few problem instances. The reason is that the
results, see Table 15, showed rather quickly that going further with
this model contained limited promise. The first test was on COSP1,
which gave the best known result in 5 seconds. This let us think that
LocalSolver could also solve the other problem instances in compa-
rable time, but as can be seen in the results no solution was found
for COSP2 or COSP3 within 1 hour. Note that the models used for
the other instances are correct. This was tested by adding constraints
which set the volume variables using a solution of the CP. The same
solution was then found by LocalSolver within 1 minute.

Table 15: LocalSolver results

Instance Obj. Value CPU(s)

COSP1 7975 5

COSP2 - 3600

COSP3 - 3600

5.3.7 CONOPT Results

In Mouret 2010 [15], CONOPT [1] is used as the NLP solver for the
second step of the two-step method. Mouret wrote that a local opti-
mum was found within a second. We did our own experiments to
confirm that CONOPT is indeed so fast and also works well on the
larger instances. This was done by recreating the model and two-step
approach. As it became too much work to prepare all 20 instances,
only the main 7 COSP instances were tested. The results are pre-
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sented in Table 16. Here we observe that a solution for the second
step is indeed found within a second by CONOPT for all instances.
More importantly, the objective values are all equal or higher than the
ones found by the 1-Step Heuristic or the CP Model. With this perfor-
mance the use of an NLP solver such as CONOPT is recommended
compared to the other two methods.

Table 16: CONOPT results

Instance Improved MIP Obj. Value CPU(s)

COSP1 7975 7975 0.02

COSP2 10117 10117 0.02

COSP3 8740 8540 0.03

COSP4 13255 13255 0.03

COSP5 15651 15636 0.08

COSP6 27156 27087 0.27

COSP7 42096 42065 0.91

5.4 conclusion

In this part of the thesis several viable solutions were found for the
COSP, as well as some approaches that did not work. The most im-
portant items and conclusions on these are stated in this section.

We first looked at Mouret’s MIP where we showed the importance
of the cardinality constraints that were omitted in Mouret 2010 [15].
At the same time we presented an Improved MIP model that used
Mouret’s MIP as basis and showed that it had better performance
than the model of Mouret.

The newly proposed 1-Step Heuristic gave very good results even
for the larger instances. This is the case for both the normal variant
as for the variant where we fix the assignments. The other proposed
heuristics, the Improved MIP itself and the tightened bounds heuris-
tic, gave mixed results. The Improved MIP can be outside of specifi-
cations but only by a slight margin. There would be no need for a
second step, as long as this small margin can be ignored in practice,
thus making it a good heuristic under those circumstances. The tight-
ening of bounds showed good results for the lowest level of 0.5%, but
not for the other levels. More research needs to be done to see if this
heuristic is viable in practice.

The adapted two-step approach, using a CP model for the second
step, worked well up until a point where the problem instances be-
came too large to handle. The CP variant, that only partly sets the
assignments, was worse in performance compared to the basic CP,
but could be helpful finding better solutions for certain instances.
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Finally we looked at two commercial solvers LocalSolver and CONOPT,
to see how their performance is compared to the 1-Step Heuristics
and CP Model. We observed that LocalSolver could be fast as a sec-
ond step, but will need some more work as we did not get any solu-
tions for later instances. When we used CONOPT as second step we
found that it outperformed the other second step approaches, finding
the best objective values in less than a second.
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6
P R O B L E M S TAT E M E N T P R O D U C T B L E N D I N G A N D
D I S T R I B U T I O N

This chapter gives a general description of the Product Blending and
Distribution Scheduling Problem (PBDSP) and an abstract model rep-
resenting this problem. The problem description and mathematical
model are inspired by Méndez et al. 2006b [13], but are extended to
involve the distribution of the products to the vessels.

6.1 general description

The general process of the PBDSP was explained in Section 1.7.3. This
section goes into more detail describing the problem.

The central activities in Product Blending and Distribution Schedul-
ing are blending, loading, and unloading. The blending operations are
the operations that have a transfer to or from a blend header. They
are used to make a transfer from one or several component tanks
to a product tank using a blend header. The loading and unloading
operations fall under pipeline operations, where loading goes from a
product tank to a demand vessel through a main pipeline, and un-
loading goes from a component vessel to a component tank through
a main pipeline. The main pipelines (often shortened to pipelines) are
defined as resources, meaning that we can define how many opera-
tions may use a resource at a time.

The PBDSP can then be described as the problem of determining
when operations execute (this can be several times during the sched-
ule), how long the executions take, and how much volume is trans-
ferred during each operation, such that the total profit is maximized.
The profit is defined by the product revenue minus the total component
cost. The product revenue is calculated by the sum of product vol-
umes that are transferred into a product tank times their respective
price. The total component cost is calculated by the sum of component
volumes that are transferred into a blend header times their respec-
tive cost. Thus the objective will be to create as much (high valued)
product as possible (product revenue), while at the same time us-
ing the cheapest components to create them (total component cost).
Note that in Section 1.7.3 an example of the blending problem was
already given, here we saw why choosing the right blend of com-
ponents while keeping it cheap was not trivial. Figure 15 shows a
possible network created with the resources and operations available.

69
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Figure 15: An overview of an example network for the PBDSP

How we define the usage of the pipelines and the rest of the net-
work is stated in the following list of constraints:

• Component tanks can only hold one component.

• Inflow of components is known and constant over time.

• Every component tank is linked to every blend header.

• Every blend header is linked to every product tank.

• Product tanks may only hold one product.

• Product tanks may not have overlapping inflow and outflow
operations.

• A pipeline can not be loading and unloading at the same time.

• A pipeline can only have one inflow from a product tank and
one outflow to a demand vessel at a time when loading.

• A pipeline can only have one inflow from a component vessel
and one outflow to a component tank at a time when unloading.

• A component vessel has one component to unload and the com-
ponent tank has already been decided.

• A component vessel cannot unload a component in a compo-
nent tank when that component tank is used for blending.

A PBDSP instance is defined by the following input data:

• A scheduling horizon, indicating the end of the schedule.

• Planned arrival times of component vessels, indicating when a
component vessel arrives during the schedule.
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• Planned departure times of demand vessels, indicating when a
demand vessel departs during the schedule.

• Capacity limits of tanks, indicating how much a tank can hold.

• Transfer flowrate limitations for the blending and pipeline op-
erations, indicating how much crude can, or must in case of a
lower bound, be transferred per day.

• Initial composition of tanks and vessels, indicating which com-
ponent or product is in the tank at the start of the schedule and
how much.

• Product specifications for component ratios and properties, in-
dicating that the property values and/or component ratios of
the products need to be within the given specifications.

• The cost per component and price per product, which are needed
to determine the profit.

• Demand for a product per demand vessel, indicating how much
of a product needs to be loaded on a demand vessel.

• Stock of a component per component vessel, indicating how
much component volume needs to be unloaded of the compo-
nent vessel.

6.1.1 Solution

Given an instance of the PBDSP, the following decisions need to be
made:

• Which product does a blend header produce during a blending
operation.

• How much of a component is used by a blend header during a
blending operation.

• The time intervals when a pipeline is loading and unloading.

• When and what volume is loaded, from product tanks to de-
mand vessels and through which pipeline.

• When and what volume is unloaded, from component vessels
to component tanks and through which pipeline.

Note that this list clearly shows what kind of decisions need to be
made but these can also be converted into deciding the following:

• decide how many times a blending, loading, or unloading oper-
ation will be executed before the horizon
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• decide on the start of each operation execution

• decide on the duration of each operation execution

• decide on the volume transferred during each operation execu-
tion.

These decisions are practically the same as for the COSP only we
now have three different types of operations, making the problem a
bit easier to understand. A solution would again look like Figure 6

only with different operation types.
From these decisions we define a solution to the PBDSP as follows.
We have a set of operations O, which is given by the network, see

for example Figure 15 where the arrows represent the operations. We
start with defining for each operation o ∈ O a set of tasks To, where
the size of To, which expresses how often operation o is executed, is
defined by # : O→ N. Let T be the set of all tasks, i. e., T =

⋃
o∈O

To. A

solution to the PBDSP is then defined as a tuple < s, d, v > where:

• s : T → R gives the start of the task

• d : T → R gives the duration of the task

• v : T → R gives the volume transferred during the task

The problem is then to find a solution that satisfies all constraints
of Section 6.1.3 and maximizes the objective function described in
Section 6.1.2.

6.1.2 Objective Function

The objective of the PBDSP is to maximize the total profit. The total
profit is calculated by the product revenue minus the total compo-
nent cost. The total component cost is the total volume taken from
a component tank times its component cost. The product revenue is
the total volume of produced product times its price.

Using the solution definition the objective function can be formal-
ized as follows: Let T C be the set of tasks of blending operations that
transfer volume from a component tank to a blend header and let T P

be the set of tasks of blending operations that transfer volume from a
blend header to a product tank. The total profit can then be obtained
by the following equation:

totalpro f it = ∑
t∈T P

v(t) · pricet − ∑
t∈T C

v(t) · costt

Where pricet is the price of the produced product of task t and costt

is the cost of the used component of task t.
We also need to add a penalty to the objective function. Where this

penalty precisely comes from will be later explained in Section 7.4,
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but is, shortly explained, used for deviation of preferred recipes to
give the solution method a bit more freedom. This penalty will be
defined as follows:

penalty = ∑
t∈T C

excesscostt · excesst + shortagecost · shortaget

Where excesst is the component volume that went over the component
volume of the preferred recipe, shortaget is the component volume
that is below the preferred recipe, and excesscostt and shortagecostt

are their respective cost weights.
The final objective function will then be as follows:

objective = totalpro f it− penalty

6.1.3 Constraints

This section gives an overview of the constraints of the PBDSP.

Logistics constraints

A blend header can only produce one product at a time. A prod-
uct tank can only have an inflow or outflow operation at a time. A
pipeline can only load or unload at a time. An unloading operation
can only transfer from one component vessel to one component tank.
A loading operation can only transfer from one product tank to one
demand vessel.

Time constraints

There can be precedence constraints between operations. Boundary
constraints can also be added to the operations. For instance a mini-
mum duration constraint to make sure the operation are not to short.
Another example is a minimum start that says that the interval of
an unloading operation cannot start before the component vessel has
arrived.

Tank level constraints

The tank level constraints set the tank levels during the start and
end of the operations and check if they are within the capacity bounds
of their respective tank. Component tank levels are set by adding the
constant inflow times duration plus any unloaded volume minus the
volume used for blending. The product tank levels are calculated by
adding the produced product volumes minus the volume that has
been loaded onto the demand vessels.

Flowrate constraints
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The flowrate constraints make sure that the transferred volume can
actually flow through the pipelines during the operation’s duration.
A flowrate constraint can also be added to keep the volume zero
when an operation will not be executed.

Product specification constraints

Product specification constraints are added to comply with the
product specification. The constraints check if the produced products
are within the specified limits. There are two kinds of product spec-
ification constraints: component concentration and property specification.
Component specifications are limits on the component ratios within
a certain product. If all the component concentrations for a certain
product are fixed (i. e., equalizing the upper and lower limit) then
it also fixes the recipe of that product, making the property specifi-
cation constraint redundant as there is no choice left. The property
constraints are the limits on the property values of a product. These
product property values can be calculated using the component prop-
erty values and a blending function. The property specification con-
straints are not straight forward as there are also properties that blend
in a non-linear way. See Sections 7.3, 7.5 for more information about
properties that blend in a non-linear way.

Unloading and Demand constraints

Unloading constraints are about the unloading of the component
vessels, making sure that everything is unloaded. Demand constraints
are present if there is a demand given. There are also the constraints
that unloading cannot start before arrival of the respective component
vessel and loading cannot happen after departure of the respective
demand vessel.

Preferred Recipe Deviation constraints

When a preferred recipe is given these constraints allow for devia-
tion but set one of the deviation variables, excess or shortage, which
are used in the objective function. The addition to the objective func-
tion will, together with the weight, make sure that the deviations are
kept to a minimum.
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S O L U T I O N M E T H O D S F O R T H E P B D S P

This chapter discusses several important elements of the proposed
solution method. Section 7.1 proposes a new time representation that
uses Méndez et al. 2006b [13] as inspiration. Section 7.2 explains the
recipe optimization. Section 7.3 introduces the linear approximation
approach from Méndez et al. 2006b [13]. The iterative procedure pro-
posed by Méndez et al. 2006b [13] is described in Section 7.4. Finally,
Section 7.5 introduces blending indices, which are often used in prac-
tice.

7.1 time representation

In Méndez et al. 2006b [13] a continuous time representation was
introduced. It defines subintervals for every unique departure time of
the demand vessels, where the subinterval starts at the previous due
date and ends at the current due date. For each of these sub-intervals,
time slots can be added, which lie within the boundary of the sub-
interval and do not overlap with each other. These time slots are then
used as the scheduling intervals for the blending operations. In every
time slot there can be as many blending operations as there are blend
headers, but they all use the same time slot interval. Figure 16 gives
an overview of this time representation.

Figure 16: An overview of the continuous time representation by Méndez
et al. [13]

This time representation was used by Méndez et al. [13] to solve
the Product Blending Scheduling Problem (PBSP). This worked as the
blending operations were the only operations that were scheduled.

We adapted the time representation to include the pipeline oper-
ations, i. e., to solve the PBDSP with the distribution logistics. The
adapted time representation has a time slot that encompasses the
blending and pipeline intervals. A blending interval represents the
time interval for all the scheduled blending operations. The pipeline
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intervals are added because of the distribution logistics extension,
they represent either a task of an unloading or a loading operation.
For every pipeline in the PBDSP an interval is added per time slot.
The intervals need to be within their respective time slot, but are in-
dependent from each other. Note that the separate intervals do not all
have to be used by a schedule, but they are available when needed.
Figure 17 shows an overview of the time representation and its usage.
The s(t) and d(t) of a task can be derived from the start and duration
of the interval. Note that an interval is always used by more than one
task, because as was said previously the blend headers and pipelines
are not resources that should hold their own volume thus when vol-
ume is transferred by a task to one of them then that volume should
also be transferred further along to another resource by another task.
Thus if there is a task that transfers product volume from a blend
header to a product tank during an interval i, then there are also one
or more tasks that transfer component volume to the blend header
during i.

Figure 17: An overview of the continuous time representation

7.2 recipe optimization

As mentioned in the introduction, see Section 1.7.3, recipe optimiza-
tion is about finding the best blending recipe for a product. This is
done using only the product specification constraints and a constraint
that says that there needs to be 1 bbl of every product produced. The
best blending recipe is then the recipe that gives the highest objective
value (i. e., most profit). When the optimal product recipes are used
as fixed recipes, there is no guarantee that a feasible solution will
be found, because there may not be enough components to blend
following the optimal recipes. For this reason the optimizer will op-
timize the recipe and do the logistics scheduling at the same time.
This makes the problem harder to solve but will give a better solu-
tion. Another approach is to use the optimal recipe as the preferred
recipe and allow for deviation. This way the optimizer is encouraged
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to use the preferred recipe when possible or use a recipe close to the
optimal recipe.

7.3 linear approximation

Méndez et al. 2006b [13] presents a solution method to linearize a
non-linear blending function in case the correlation for predicting a
particular product property is based on a linear volumetric average
plus additional non-linear terms. The non-linear terms can then be
replaced with a correction factor bias. The correction factor is set for
every non-linear property for every product for every time slot, using
an iterative procedure which will be explained in Section 7.4. The
resulting constraints are later presented in Section 8.1.5.

The iterative procedure and the linear approximation proposed by
Méndez et al. are illustrated in Figure 18. The figure shows a com-
parison between the values of the linear volumetric average, the non-
linear correlation, and the proposed linear approximation. The exam-
ple shows the blending of two components A and B, the final prod-
uct property is a non-linear function of component concentrations.
As shown in the figure, if 40% of component A is blended with 60%
of component B, the values of the volumetric average and the real
non-linear correlation are 88.5 and 88.74, respectively.

Figure 18: A non-linear property and the proposed linear approximation by
Méndez et al. [13]

In order to correct this difference the correction factor bias is set to
be the difference between the two given values, in this case bias =

0.24. The linear approximation comprising the volumetric average to-
gether with the correction factor bias will always predict the exact
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value of the property if the same component concentration is used in
the next iteration. Furthermore, it was observed by Méndez et al. that
the proposed linear approximation tends to predict a very close value
of the real property if component concentrations are not significantly
changed in the next iteration as shown in Figure 18.

7.4 iterative procedure

In Méndez et al. 2006b [13] an iterative approach was introduced to
solve the PBDSP. This approach is also used for our optimizer as it
was proven to be reliable by Méndez et al. Méndez et al. also prove
that this approach always converges to an end solution as long as
a feasible solution can be found during every iteration. It is however
important to note that we changed and extended the model proposed
by Méndez et al., which means that this proof might not hold any-
more. Because of this there is no guarantee that the iterative approach
will converge to a solution, however the results show that the model
converges on the given problem instances, see Chapter 9.

Figure 19 shows how the iterative approach works. First an initial
recipe is chosen or found for every product, where chosen means that
it is manually set by a user, while found means that an algorithm or
optimization technique is used, such as recipe optimization of which
an example was given in Section 1.7.3. If there are no known pre-
ferred recipes, then the simplest method would be to solve the recipe
optimization using only the linear properties. This would make the
model an easy to solve LP.

The initial recipe is then used to set the initial bias values for every
non-linear property for every product for every time slot. The bias
is calculated by taking the difference between the non-linear value
and the linear value. The non-linear value for a non-linear property
for a product is calculated by using the initial recipe and the non-
linear blending function. The linear value is calculated using the ini-
tial recipe and then taking the volumetric average.

When the initial bias values are set the first run of the optimizer
can start. The optimizer can be either an LP model used to find the
optimal recipe or a MIP that solves both the recipe optimization and
the scheduling problem (i. e., PBDSP). The obtained solution is then
used to calculate the actual non-linear values and see if the values
are within the specified product limits. If all properties for a certain
blending operation are within product specifications than the recipe
can be either fixed or set as a preferred recipe, which will still allow
for some variation. Note that to solve the PBDSP we will first need
to run the LP model to get product recipes after which these recipes
are used as initial recipes when we run the MIP model to solve the
PBDSP. Both the LP and MIP use the same iterative method to deal
with the properties that blend in a non-linear way.
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Figure 19: Proposed iterative approach for simultaneous blending and
scheduling by Méndez et al. [13]

If all the scheduled blending operations are within product speci-
fications, then a feasible solution is found and the iteration can stop.
Otherwise the bias values will be recalculated for all the blending
operations that produced product, because if there was nothing pro-
duced the bias would always be set to zero. We do not want to reset
the bias to zero because, when the bias becomes zero, the non-linear
property will be seen as linear and will almost always be outside its
specifications, whereas if there is no product produced then the bias
will have no influence so it is not important if it is not set to zero.
When the bias values are recalculated, the algorithm will execute an-
other iteration.

7.5 blending index

Properties that blend in a non-linear way is what makes the blending
problems so difficult. To cope with this problem the refining industry,
over a period of many years, has produced many correlations. These
correlations have been used to obtain index functions, which are used
to convert the non-linear properties into linear indices. As the name
suggests these can be blended in a linear way, making them easy
to incorporate in the model as linear constraints. After a solution
is calculated, the non-linear property values can be converted back.
We will call this the index approach in this thesis. We will use this
approach as a possible alternative to the iterative approach to deal
with the properties that blend in a non-linear way. Figure 20 gives an
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overview of how index functions are used. Note that NL is used as
an abbreviation of non-linear.

Figure 20: An illustration of the use of index functions

We use the linear indices to see if the property value is within the
property specifications. It is therefore important to realise that a maxi-
mum specification on some non-linear properties, such as Flash Point,
has to be converted to a minimum specification on the index when
the actual blending calculation is done. However, for other non-linear
properties, such as Reid Vapour Pressure, a maximum specification on
the engineering unit results in a maximum specification on the pour
point index.

To further illustrate the use of linear indices two examples are given.
The index functions given in the examples are not necessarily true for
every refinery.

7.5.1 Flash Point

Flash point (FLS) is the temperature at which a product will self-
ignite.

The flash index (FLI) is calculated according to the following equa-
tion:

log(FLI) = 42.1093− 14.286 ∗ log(FLS + 460)

where FLS is defined in degrees F.
The resulting flash index value is then converted back to flash point

using the following equation:

FLS = 10(42.1093−log(FLI))/14.286 − 460

The result is defined in degrees F.
As mentioned above, flash index decreases with increasing flash

point. Hence a minimum flash point specification translates to a max-
imum flash index specification.
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7.5.2 Reid Vapour Pressure

Reid Vapour pressure Index (RVI) is calculated from the Reid Vapour
Pressure (RVP) using the following equation:

RVI = RVP1.25

where RVP is Reid vapour pressure in PSI
The resulting Reid vapour pressure index value is then converted

back to Reid vapour pressure using the following equation:

RVP = RVI0.8

where the result is in PSI
We will now use the index functions of RVP to give a small example.

So first of all we will use the first function on all RVP properties
that we have in the input data. So all RVP property values of every
component, together with the RVP property bounds of the product
property specifications. Note that these bounds would be switched
(minimum becomes maximum and other way around) in the case of
Flash Point, but will stay the same for RVP. The now newly obtained
index values will replace the old RVP property values in the input
data. Thus the model will use the index values that blend linearly.
When the solution is obtained we can calculate the index values of the
product blends used in the solution. These index values can then be
transformed back into actual RVP property values using the second
function.





8
S O L U T I O N M O D E L S F O R T H E P B D S P

This chapter presents the mathematical model we developed to solve
the PBDSP. The model was inspired by Méndez et al. 2006b [13],
and was further adapted to allow for the scheduling of tasks for the
loading and unloading of the demand and component vessels respec-
tively.

Section 8.1 presents the proposed model to solve the PBDSP. Sec-
tion 8.2 presents the recipe optimization model from Méndez et al. 2006b [13]
that can be used in the overall approach. Section 8.3 introduces the
proposed model that uses indices to keep the model linear without
the need of an iterative approach.

8.1 pbdsp model

The PBDSP model is the mathematical model used to solve the PBDSP.

8.1.1 Sets

The following definitions are used in the PBDSP model:

• C is the set of component tanks

• CV is the set of component vessels

• DV is the set of demand vessels

• D is the set of unique departure times of the demand vessels

• K is the set of properties for the components and products

• P is the set of final product tanks

• PL is the set of pipelines

• T is the set of time slots

• Td is the set of time slots of the sub-interval, see Section 7.1,
ending at due date d

• TTd is the set of time slots that occur before the sub-interval that
ends at due date d
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8.1.2 Input Data

The model has the following input data:

• arrivalcv is the arrival of component vessel cv

• stockcv is the quantity component vessel cv needs to unload

• componentcv is the component component vessel cv needs to
unload

• biasp,k,t is the correction factor of the value of property k of the
product in product tank p in time slot t

• costc is the cost of the component inside component tank c

• ddv is the demand due date for demand vessel dv

• demanddv is the demand of demand vessel dv

• fc is the constant flowrate into component tank c

• h is the time horizon

• inic is the initial inventory level of component tank c

• inip is the initial inventory level of product tank p

• Lmax
c is the maximum storage capacity of component tank c

• Lmin
c is the minimum storage capacity of component tank c

• Lmax
p is the maximum storage capacity of product tank p

• Lmin
p is the minimum storage capacity of product tank p

• nB
t is the maximum number of blend headers that can be work-

ing in parallel in time slot t

• nPL is the number of pipelines available for use

• pltyR−
c,p is the penalty weight for taking a lower volume concen-

tration of the component in component tank c for the product
in product tank p than indicated by the preferred recipe

• pltyR+

c,p is the penalty weight for taking a higher volume concen-
tration of the component in component tank c for the product
in product tank p than indicated by the preferred recipe

• pricep is the price of the product in product tank p

• prc,k is the value of property k for the component in component
tank c
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• prmax
p,k is the maximum value of property k for the product in

product tank p

• prmin
p,k is the minimum value of property k for the product in

product tank p

• ratemax
c is the maximum flowrate from component tank c

• ratemin
c is the minimum flowrate from component tank c

• ratemax
pl is the maximum flowrate of pipeline pl

• ratemin
pl is the minimum flowrate of pipeline pl

• rcpc,p is the preferred volume concentration of the component
in component tank c in the product in product tank p according
to the preferred product recipe

• rcpmax
c,p is the maximum concentration of the component in com-

ponent tank c in the product in product tank p

• rcpmin
c,p is the minimum concentration of the component in com-

ponent tank c in the product in product tank p

8.1.3 Variables

The following binary and continuous variables are used in the model:

• AB
p,t denotes the binary variable denoting that product for prod-

uct tank p is blended in time slot t

• APL+
p,pl,dv,t denotes the binary variable denoting that product for

demand vessel dv is transferred from product tank p through
pipeline pl during time slot t

• APL−
cv,pl,t denotes the binary variable denoting that component

from component vessel cv is transferred through pipeline pl to
the corresponding component tank during time slot t

• ST
t denotes the continuous start variable of time slot t

• ET
t denotes the continuous end variable of time slot t

• SB
t denotes the continuous start variable of blending in time slot

t

• EB
t denotes the continuous end variable of blending in time slot

t

• SPL
pl,t denotes the continuous start variable of pipeline operations

for pipeline pl during time slot t



86 solution models for the pbdsp

• EPL
pl,t denotes the continuous end variable of pipeline operations

for pipeline pl during time slot t

• LC
c,t denotes the continuous tank level variable of component

tank c at the start of time slot t

• L′Cc,t denotes the continuous tank level variable of component
tank c at the end of time slot t

• LP
p,t denotes the continuous tank level variable of product tank

p at the end of time slot t

• L′Pp,d denotes the continuous tank level variable of product tank
p at due date d

• VC
c,p,t denotes the continuous component volume variable, which

is the volume that is taken from component tank c to product
tank p during time slot t

• VP
p,t denotes the continuous total product volume variable de-

noting the volume that is transferred to product tank p during
time slot t

• VPL+

p,pl,dv,t denotes the continuous volume variable, which is the
volume that is transferred from product tank p to demand ves-
sel dv through pipeline pl during time slot t

• VPL−
cv,pl,t denotes the continuous volume variable denoting the vol-

ume that is transferred from component vessel cv to the corre-
sponding component tank through pipeline pl during time slot
t

• DR−
c,p,t denotes the continuous component shortage variable de-

noting that for the product in product tank p there was a short-
age of the component in component tank c during time slot t
according to the preferred recipe

• DR+

c,p,t denotes the continuous component excess variable denot-
ing that for the product in product tank p there was an excess of
the component in component tank c during time slot t accord-
ing to the preferred recipe

8.1.4 Objective Function

The objective is to maximize the profit, which means revenue minus
the costs. The revenue is calculated by the produced product volumes
and their price, where the cost is calculated by the used component
volumes and their cost. The penalty can be used when a preferred
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recipe has been defined, the solver will then try to use the recipe
whenever it is possible.

maximize ∑
t∈T

∑
p∈P

(
pricep ·VP

p,t − ∑
c∈C

costc ·VC
c,p,t

)
− penalty

penalty = ∑
t∈T

∑
p∈P

∑
c∈C

(
pltyR+

c,p · DR+

c,p,t + pltyR−
c,p · DR−

c,p,t

)

8.1.5 Constraints

This section contains all the constraints of the model.

Blending constraints

Constraint 8.1 expresses that there will not be more blend assign-
ments per time slot than blend headers.

∑
p∈P

AB
p,t ≤ nB

t t ∈ T (8.1)

Product volume constraints

Constraint 8.2 defines that the produced product volume is equal
to the sum of used component volumes for every blending operation.

∑
c∈C

VC
c,p,t = VP

p,t t ∈ T, p ∈ P (8.2)

Recipe constraints

Constraint 8.3 ensures that the concentration per component per
product is within the given limits.

rcpmin
c,p ·VP

p,t ≤ VC
c,p,t ≤ rcpmax

c,p ·VP
p,t t ∈ T, p ∈ P, c ∈ C (8.3)

Constraint 8.4 expresses that the properties of a blended product
are within the property specifications for that product.

prmin
p,k ·VP

p,t ≤ ∑
c∈C

prc,k ·VC
c,p,t + biask,p,t ·VC

c,p,t

≤ prmax
p,k ·VP

p,t t ∈ T, p ∈ P, k ∈ K
(8.4)

Constraint 8.5a sets the recipe shortage variable by taking the dif-
ference between the component amount that is taken and the amount
that is preferred. Constraint 8.5b works in the same way but looks at
the excess instead of the shortage.

rcpc,p ·VP
p,t + DR−

c,p,t ≥ VC
c,p,t t ∈ T, c ∈ C, p ∈ P (8.5a)

rcpc,p ·VP
p,t − DR+

c,p,t ≤ VC
c,p,t t ∈ T, c ∈ C, p ∈ P (8.5b)
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Flowrate constraints

Constraint 8.6a ensures that the flowrate lies within the given flowrate
bounds. Note that the minimum flowrate will be ignored when there
is no flow as there will not be a feasible solution otherwise. Con-
straint 8.6b expresses that there is no volume transferred when the
blend operation is not assigned. It is important to know that these
flowrate constraint are set on the inflow of the blend header. The con-
straints can also be set on the outflow this will reduce the number of
constraints but can only be done if all the inlets of the blend header
have suitable flowrate limits.

ratemin
c (EB

t − SB
t )− ratemin

c h(1− AB
p,t) ≤ VC

c,p,t

≤ ratemax
c (EB

t − SB
t ) t ∈ T, p ∈ P, c ∈ C

(8.6a)

VC
c,p,t ≤ ratemax

c hAB
p,t t ∈ T, p ∈ P, c ∈ C (8.6b)

Level constraints

Constraint 8.7a sets the component tank level at the end of the time
slot. This is done by taking the initial level, adding the produced
component volume, and subtracting the used component volumes
for blending operations. Constraint 8.7b also sets the component tank
level but at the start of the time slot.

LC
c,t = inic + fcET

t − ∑
t′∈T
t′≤t

(
∑
p∈P

VC
c,p,t′ − ∑

cv∈CV
∑

pl∈PL
VPL−

cv,pl,t′

)
t ∈ T, c ∈ C

(8.7a)

L′Cc,t = inic + fcST
t − ∑

t′∈T
t′<t

(
∑
p∈P

VC
c,p,t′ − ∑

cv∈CV
∑

pl∈PL
VPL−

cv,pl,t′

)
t ∈ T, c ∈ C

(8.7b)

Constraint 8.8 sets the product tank level at the end of every time
slot. This is done by taking the initial level, adding the produced
product volumes, and subtracting the volumes that have been loaded
onto the demand vessels.

LP
p,t = inip + ∑

t′∈T
t′≤t

(
VP

p,t′ − ∑
pl∈PL

∑
dv∈DV

VPL+

p,pl,dv,t′

)
t ∈ T, p ∈ P

(8.8)

Capacity constraints

Constraints 8.9a and 8.9b keep the component tank level variables
within the capacity limits of the component tanks.

Lmin
c ≤ LC

c,t ≤ Lmax
c t ∈ T, c ∈ C (8.9a)

Lmin
c ≤ L′Cc,t ≤ Lmax

c t ∈ T, c ∈ C (8.9b)
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Constraint 8.10 keeps the product tank level within its capacity
bound.

Lmin
p ≤ LP

p,t ≤ Lmax
p t ∈ T, p ∈ P (8.10)

Time and sequence constraints

Constraints 8.11a and 8.11b set the duration of blending and pipeline
intervals to zero if the intervals are not used.

EB
t − SB

t ≤ h · ∑
p∈P

AB
p,t t ∈ T (8.11a)

EPL
t − SPL

t ≤ h ·

 ∑
dv∈DV

p∈P

APL+

p,pl,dv,t + ∑
cv∈CV

APL−
cv,pl,t

 t ∈ T, pl ∈ PL

(8.11b)

Constraint 8.12 sets the time sequence between the time slots, mak-
ing sure that the next time slot does not start until the previous one
has ended.

ET
t ≤ ST

t+1 t ∈ T (8.12)

Constraints 8.13a and 8.13b express that time slots of a certain sub
interval lie within that sub interval, thus the time slots start after the
previous sub intervals due date and end before the due date of their
own sub interval.

ST
t ≥ d− 1 t ∈ Td (8.13a)

ET
t ≤ d t ∈ Td (8.13b)

Constraints 8.14a, 8.14b, 8.14c, and 8.14d keep the blending and
pipeline operation intervals within their time slot interval.

ST
t ≤ SB

t t ∈ T (8.14a)

ET
t ≥ EB

t t ∈ T (8.14b)

ST
t ≤ SPL

pl,t t ∈ T, pl ∈ PL (8.14c)

ET
t ≥ EPL

pl,t t ∈ T, pl ∈ PL (8.14d)

The following constraints are constraints on the pipeline assign-
ments.

Pipeline constraints

Constraint 8.15a expresses that there cannot be more pipeline load-
ing assignments then there are pipelines during a time slot. Con-
straint 8.15b says that there can only be one pipeline loading as-
signment per demand vessel per time slot. Constraint 8.15c says that
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there can only be one assignment (blending or loading) per product
tank per time slot. Constraint 8.15d says that there can only be one
assignment (loading or unloading) per pipeline per time slot. Con-
straint 8.15e expresses that there can only be one unloading assign-
ment per component vessel.

∑
p∈P

∑
pl∈PL

∑
dv∈DV

APL+

p,pl,dv,t ≤ nPL t ∈ T (8.15a)

∑
p∈P

∑
pl∈PL

APL+

p,pl,dv,t ≤ 1 t ∈ T, dv ∈ DV (8.15b)

AB
p,t + ∑

pl∈PL
∑

dv∈DV
APL+

p,pl,dv,t ≤ 1 t ∈ T, p ∈ P (8.15c)

∑
cv∈CV

APL−
cv,pl,t + ∑

p∈P
∑

dv∈DV
APL+

p,pl,dv,t ≤ 1 t ∈ T, pl ∈ PL (8.15d)

∑
pl∈PL

APL−
cv,pl,t ≤ 1 t ∈ T, cv ∈ CV (8.15e)

Flowrate constraints

Constraints 8.16a and 8.16b are again flowrate constraints but this
time for the pipeline loading operations instead of the blending oper-
ations.

ratemin
pl (EPL

pl,t − SPL
pl,t)− ratemin

pl h(1− APL+

p,pl,dv,t) ≤ VPL+

p,pl,dv,t

≤ ratemax
pl (EPL

pl,t − SPL
pl,t) t ∈ T, dv ∈ DV, pl ∈ PL, p ∈ P

(8.16a)

VPL+

p,pl,dv,t ≤ ratemax
pl hAPL+

p,pl,dv,t t ∈ T, dv ∈ DV, pl ∈ PL, p ∈ P
(8.16b)

Constraints 8.17a and 8.17b are again flowrate constraints but now
for the pipeline unloading operations.

ratemin
pl (EPL

pl,t − SPL
pl,t)− ratemin

pl h(1− APL−
cv,pl,t) ≤ VPL−

cv,pl,t

≤ ratemax
pl (EPL

pl,t − SPL
pl,t) t ∈ T, cv ∈ CV, pl ∈ PL

(8.17a)

VPL−
cv,pl,t ≤ ratemax

pl hAPL−
cv,pl,t t ∈ T, cv ∈ CV, pl ∈ PL (8.17b)

Vessel constraints

Constraint 8.18 ensures that a component vessel has unloaded all
the bought component quantity within the horizon.

∑
t∈T

∑
pl∈PL

VPL−
cv,pl,t = stockcv cv ∈ CV (8.18)

Constraint 8.19 ensures that there is no component volume unload
from a component vessel before it has arrived.

SPL
pl,t + h

(
1− APL−

cv,pl,t

)
≥ arrivalcv t ∈ T, cv ∈ CV, pl ∈ PL

(8.19)
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Constraint 8.20 ensures that the demand for a demand vessel is
loaded before the due date.

∑
t∈TTddv

∑
p∈P

∑
pl∈PL

VPL+

p,pl,dv,t = demanddv dv ∈ DV (8.20)

Constraint 8.21 ensures that there is no new product volume loaded
onto a demand vessel after the due date, as by then the vessel has
already left.

∑
t∈T

t/∈TTddv

∑
p∈P

∑
pl∈PL

VPL+

p,pl,dv,t = 0 dv ∈ DV (8.21)

8.2 recipe optimization model

As explained in Section 7.2, the Recipe Optimization Model only looks
at the product specifications to find the cheapest recipes for the prod-
ucts. This means that we only need the constraints 8.3 and 8.4 of the
PBDSP model. Furthermore, we add a constraint that limits the pro-
duction per product to one volume and only use one time slot. The
added constraint looks as follows:

VP
p,t = 1 p ∈ P, t ∈ T

Note that we do not have initial recipes, to solve this problem we
first do a run where the non-linear properties are ignored. The recipes
obtained using this run are then used as initial recipes for the rest of
the iteration where we do look at the non-linear properties.

The recipes obtained by this model can then be used as initial
recipes when using the iterative approach with the PBDSP Model.

8.3 blending index model

The Blending Index Model is a variant of the PBDSP Model. This model
does not need the iterative approach to solve the problem of prop-
erties that blend in a non-linear way. It uses preprocessing of the
property and product specification values to obtain index values that
blend linearly. This method was explained in Section 7.5. To obtain
the Blending Index Model we only need to replace constraint 8.4 with
the following constraint:

indexprmin
p,k ·VP

p,t ≤ ∑
c∈C

indexprc,k ·VC
c,p,t

≤ indexprmax
p,k ·VP

p,t t ∈ T, p ∈ P, k ∈ K
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Where indexpr is the index value of pr. Note that, as explained ear-
lier, prmin

p,k and prmax
p,k could become indexprmax

p,k and indexprmin
p,k respec-

tively. As the index function may switch the lower and upper bound,
look for instance back to the Flash Point property in Section 7.5.1.
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C O M P U TAT I O N A L S T U D Y F O R T H E P B D S P

This chapter presents the problem instances used for the experiments,
the experiments that were used to validate the proposed models, and
the results of the experiments. Section 9.1 presents the different prob-
lem instances that were used to test the implemented models. Sec-
tion 9.2 shows the different experiments and their results. Note that
the computational study is not an in depth study as done for the
COSP. The reason is that the PBDSP was a more direct practical prob-
lem that had to be solved and because of time constraints it was de-
cided to only do a more in depth study for the COSP.

9.1 problem instances

There are two problem instances used for this computational study.
The first is an instance taken from Quintiq’s practice, called PBDSP1.
The second instance is an extended and adapted version of the prob-
lem instance presented in Méndez et al. 2006b [13], called PBDSP2.
There are only two problem instances as the primary research focus
lies in the COSP problem, whereas for the PBDSP the focus lay in
solving PBDSP1. This means that we the conclusions we make will
not have a lot of backing, but they can be used to create new theo-
ries, which can be further researched in future work. We will also see
that the two instances are very different from each other. PBDSP1 has
more operation restrictions and only a few properties of which only
one is non-linear. The reason for this is that we only have a part of the
property data, the rest is held confidential by a potential customer of
Quintiq. PBDSP2 has less operation restrictions but a lot more prop-
erties of which 4 are non-linear.

The instances are defined by their network, which encompasses
the resources and paths between resources, and input data, which
has all the needed input values. The data is split into several tables.
Table 17 refers to the respective network figures and data tables. The
non-linear properties in table “Component Data” are indicated by
(NL) behind the property name.
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Table 17: PBDSP problem instances

Problem Instance

PBDSP1 PBDSP2

Network Figure 21 Figure 22

Component Tank Data Table 35 Table 41

Component Data Table 36 Table 42

Product Tank Data Table 37 Table 43

Product Data Table 38 Table 44

Main Pipeline Data Table 39 Table 45

Demand Vessel Data Table 40 Table 46

Component Vessel Data - Table 47

Figure 21: PBDSP1: network

Figure 22: PBDSP2: network
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9.2 experiments and results

This section discusses the setup used for the experiments and their
results.

9.2.1 Setup

The experiments where run on an Intel(R)Core(TM) i5 CPU M 450 @
2.40GHz CPU. The models were implemented using Quintiq software,
which uses IBM ILOG CPLEX Optimizer version 12.5 as solver.

9.2.2 Recipe Optimization Results

This section presents the results of the Recipe Optimization. Two vari-
ants were used, one variant uses the iterative approach and the other
uses the index approach. The results are presented in Table 18. The ob-
jective value is shown in column “Obj. Value”, the CPU time is shown
in seconds in column “CPU”, and the column “Opt. Gap” gives the
relative optimality gap for the index approach.

Table 18: Recipe Optimization Results

Iterative Index
Obj. Value CPU Iterations Obj. value CPU Opt. Gap (%)

PBDSP1 66111.11 0.08s 0 66111.11 0.06s 0

PBDSP2 13393.13 0.6s 7 13393.27 0.05s 0

The Recipe Optimization model is an LP, which can easily be solved
as seen in the results, as it finds the optimal solution within a sec-
ond for both problems. The results further show that the iteration
and index approach both give almost the same objective value. Both
approaches also give an optimality gap of 0 but as the iteration ap-
proach does not give a guarantee on optimality we only show the gap
obtained with the index approach. That the iterative approach does
not guarantee optimality is directly proven by the results where we
see that it found a slight lower objective value. This happens because
we can only approximate the actual non-linear blending function us-
ing the bias. For the PBDSP1 the initial recipe run, which only looks
at linear properties, gave recipes that are also within specifications for
the non-linear property thus no iterations were needed.

9.2.3 PBDSP Results

This section looks at the results of the PBDSP Model and the Blending
Index Model, which use the iterative approach and index approach,
respectively. The results are presented in Table 19.
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Table 19: PBDSP Results

Iterative Index
Obj. Value CPU Iterations Obj. Value CPU Opt. Gap (%)

PBDSP1 2372.31 536s 33 2372.99 5.88s 0

PBDSP2 2633.60 1.79s 1 2633.60 2.36s 0

When looking at the objective values we again see little difference
between the two approaches, but the solving time shows something
interesting. For BPDSP1 we see that the blending index approach
is almost 100 times faster than the iterative approach, whereas for
PBDSP2 we see that the iterative approach is slightly faster. A poten-
tial explanation lies in the difference of the properties. As shown in
the problem instances, PBDSP1 only has four properties of which one,
P4, is non-linear, and if looked closely we see that P2 does not have
any influence at all. Furthermore, tests have shown that P4 has a lot
of influence on both the recipes and the objective value. This means
that it takes a long time to get all the correct bias values, which also
explains the large number of iterations. There is also the difference
of horizon and time slots. PBDSP1 needs at least 20 time slots, where
PBDSP2 only needs 13 time slots, and tests have indicated that more
time slots increases the solving time. Lastly is the penalty weight used
for the preferred recipe. Here tests have indicated that the weight can
have influence on the search time, though not on the profit value.

Besides the huge solving time difference we do see that the index
approach solves the problems in a few seconds and always has the
highest objective value between the two approaches. This indicates
that the index approach is better than the iterative approach, though
the negative side is that we need an index function for every non-
linear property, which could be a problem in practice.

Lastly it is important to note that although the optimality gap is
0, this does not mean that an optimal solution is found. The reason
is because of the time slots. Although small tests have indicated that
no better solution is found when using more time slots, see Table 20,
there is no guarantee that there is no better solution.

Table 20: Results using large amount of time slots

Index

Obj. Value CPU Time Slots Opt. Gap (%)

PBDSP1 2372.99 157s 102 0

PBDSP2 2633.60 77s 98 0
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9.3 conclusion

We cannot draw strong conclusions from the computational study.
The reason is because we only looked at two instances which do not
give a lot of data. We did not create more instances as creating these
instances is not trivial, as shown by the large amount of data needed
for the two instances, together with the limited time, and focus on
the COSP. However, because of the differences between the problem
instances and results, we were able to have some interesting observa-
tions, which were enough to create some theories. These theories can
be further researched in a later project, see Section 10.2 about future
work. It is also important to note that, although the scientific value is
low, the value for Quintiq was quite high as they now have a working
model with which to test and show in practice.

The conclusion we can draw is that most of the results obtained
were within the given limits, except the solving time of almost 9 min.
Furthermore, we saw that even when using around a 100 time slots
the objective values practically stayed the same, which shows that
adding a lot of time slots does not necessarily help find a better solu-
tion.

Another conclusion we can draw is that the blending index ap-
proach has better performance than the iterative approach, however
it has the disadvantage that we need to have the corresponding blend-
ing index functions.
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C O N C L U S I O N S A N D F U T U R E W O R K

This chapter gives the final conclusions in Section 10.1 and presents
some ideas for future research in Section 10.2.

10.1 conclusions

In this thesis we studied two refinery scheduling problems, namely
the COSP and the PBDSP. We present the conclusions on these two
problems in Section 10.1.1 and Section 10.1.2 respectively.

10.1.1 COSP

For the COSP we studied several solution methods. We took the two-
step approach and model from Mouret 2010 [15] as a starting point.
Next we improved the model in various ways as well as created a
cardinality rule to get the needed input data. We also looked at the
model as a heuristic itself where we saw that the found solutions are
already (almost) usable. From here we looked into a 1-Step Heuristic
which avoided the need of an NLP solver by avoiding the non-linear
constraints. This heuristic gave very good results though not the best.
We also looked into the second step, for which we used CP, Local-
Solver, and CONOPT. Here we found that CP gave good results for
the smaller instances, but broke down on the largest two. LocalSolver
only found a solution for COSP1 after which it broke down. Lastly
we used CONOPT which by far gave the best results.

To conclude, we found several good solution methods that Quintiq
could use to solve the COSP.

10.1.2 PBDSP

To solve the PBDSP we studied the solution method of Méndez et al..
They presented an interesting way of dealing with properties that
blend in a non-linear way, using an iterative approach. We took this
model and adapted it into a new model that has more emphasis on
the distribution side, which now includes the loading of demanded
final products and the unloading of bought components. We also de-
veloped another possible way of dealing with properties that blend
in a non-linear way. This way is to use index functions to transform
the non-linear properties into linear properties and use these linear
properties in the model. There was only a small computational study,
as the research emphasis of this thesis lay in solving the COSP. The re-
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sults showed that the iterative approach is in some cases slower than
the index approach, but both approaches could find good solutions.
And even though there is no proof that the iterative approach will
converge to a feasible solution, the runs so far all converged.

To conclude, a new problem definition coming from practice was
proposed and two approaches to solving the problem with properties
that blend in a non-linear way were developed. Both approaches find
good solutions, but the index approach has the best performance.

10.2 future work

This section gives ideas on possible future research for both the COSP
and the PBDSP.

10.2.1 COSP

In this section a number of ideas for future research for the COSP are
listed.

• Testing the different approaches on more real-life instances. This
will give new insights and more reliable conclusions.

• The Tightening Bounds Heuristic needs more research towards
the sensitivity of the levels to see if this approach has any real
value. This should include checking how close the properties of
the start crude oils are already to the upper and lower bounds
of the property specifications.

• For the 1-Step Heuristic one could look into adding cases that
allow for partial output when a crude blend is in the tank. For
instance, this could possibly be extended by allowing a partial
output when there is a certain property value in the tank, which
can be forced to be the same property value that flows out of
the tank.

• The CP model we created was an adaption of Mouret’s model.
A potential better approach is to create a CP based scheduling
model, where we reason directly with activities, resources, tem-
poral constraints, etc.

• Have a look at Section 3.2.2 which talks about a relaxation method.
There was insufficient time to study this for this thesis, but it
could be a valid solution method for the COSP.

• One could look at a cost objective function. Costs include for
instance: Sea Waiting Costs, Storage Costs, and Switching Costs.

• One could always try to improve the performance of the models,
because the refinery business changes constantly which means
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that schedules will need to adapt constantly. The faster this can
be done, the less pressure there is on the refinery schedulers
and they will be more flexible as they can respond faster.

10.2.2 PBDSP

In this section a number of ideas for future research for the PBDSP
are listed.

• One could start by studying the newly proposed model and see
if it can be improved. This could be by adding constraints such
as symmetry breaking constraints or an overhaul of the time
representation.

• What’s more, the model uses time slots which are for now set by
the user. It would be better if the time slots are set automatically
by an algorithm.

• A next idea is to find or construct more instances to be able to
do a full computational study of the different approaches.

• Do a sensitivity analysis on the weight of the preferred recipe,
to see how the performance changes.

• The optimal recipe, which is now used as initial recipe, can of-
ten not be used in the actual schedule. Thus it would be a good
idea to change the optimal recipe model to find a good recipe
that has a high chance of being used in the full PBDSP model.

• Study the iterative approach and its convergence. Can it be
proven that it always converges? Is there a way to speed up
the convergence?
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11
C P M O D E L

This appendix presents the proposed CP model in OPL code.

using CP;

tuple Vessel {

key string vesselId;

int arrivalTime;

string crudeId;

int initAmount;

string type;

}

{Vessel} Vessels = ...;

tuple StorageTank {

key string storageTankId;

int mincapacity;

int maxCapacity;

string crudeId;

int initAmount;

}

{StorageTank} StorageTanks = ...;

tuple ChargingTank {

key string chargingTankId;

int mincapacity;

int maxCapacity;

string crudeId;

int initAmount;

string crudeMixId;

}

{ChargingTank} ChargingTanks = ...;

tuple Clique {

key int first;

key int second;

key int third;

}

{Clique} Cliques = ...;

tuple Unit {

key string unitId;

}
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{Unit} Units = ...;

tuple Resource {

key string resourceId;

string resourceType;

int minCapacity;

int maxCapacity;

string crudeId;

int initAmount;

}

{Resource} Resources = ...;

int Horizon = ...;

int Distillation = ...;

int Time = ...;

int Lowerbound = ...;

int Upperbound = ...;

tuple CrudeMix {

key string crudeMixId;

float prop1Lower;

float prop1Upper;

float prop2Lower;

float prop2Upper;

float prop3Lower;

float prop3Upper;

int demandLower;

int demandUpper;

}

{CrudeMix} CrudeMixes = ...;

tuple Crude {

key string crudeId;

float prop1;

float prop2;

float prop3;

float grossMargin;

}

{Crude} Crudes = ...;

tuple PrioritySlot {

key int slotId;

}



cp model 111

{PrioritySlot} PrioritySlots = ...;

tuple Operation {

key int operationId;

string fromResourceId;

string toResourceId;

int minFlowrate;

int maxFlowrate;

string operationType;

string vesselType;

}

{Operation} Operations = ...;

tuple AssignedSlotOperation {

key int prioritySlotId;

key int operationId;

}

{AssignedSlotOperation} AssignedSlotOperations = ...;

tuple OperationCrude {

key int operationId;

key string crudeId;

}

{OperationCrude} OperationCrudes = ...;

tuple SlotOperation {

key PrioritySlot prioritySlot;

key Operation operation;

}

{SlotOperation} SlotOperations = {<s,o> | s in PrioritySlots, o

in Operations, so in AssignedSlotOperations:

s.slotId==so.prioritySlotId && o.

operationId==so.operationId };

tuple SlotOperationCrude {

key PrioritySlot prioritySlot;

key Operation operation;

key Crude crude;

}

{SlotOperationCrude} SlotOperationCrudes = {<s,o,c> | <s,o> in

SlotOperations, c in Crudes, oc in OperationCrudes:

oc.operationId==o.operationId &&

oc.crudeId==c.crudeId};

tuple SlotResource {

key PrioritySlot prioritySlot;

key Resource resource;
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}

{SlotResource} SlotResources = {<p,r> | p in PrioritySlots, r in

Resources};

tuple SlotResourceCrude {

key PrioritySlot prioritySlot;

key Resource resource;

key Crude crude;

}

{SlotResourceCrude} SlotResourceCrudes = {<p,r,c> | p in

PrioritySlots, r in Resources, c in Crudes, o in Operations,

oc in OperationCrudes:

r.resourceId==o.fromResourceId && oc.operationId==o.

operationId && oc.crudeId==c.crudeId};

tuple SlotTank {

key PrioritySlot prioritySlot;

key Resource resource;

}

{SlotTank} SlotTanks = {<p,r> | p in PrioritySlots, r in

Resources: r.resourceType=="Tank"};

tuple SlotTankCrude {

key PrioritySlot prioritySlot;

key Resource resource;

key Crude crude;

}

{SlotTankCrude} SlotTankCrudes = {<p,r,c> | <p,r> in SlotTanks, c

in Crudes, o in Operations, oc in OperationCrudes:

r.resourceId==o.fromResourceId && oc.operationId==o.

operationId && oc.crudeId==c.crudeId};

tuple ResourceCrude {

key Resource resource;

key Crude crude;

}

{ResourceCrude} ResourceCrudes = {<r,c> | r in Resources, o in

Operations, oc in OperationCrudes, c in Crudes

: r.resourceType=="Tank" && o.operationId==oc.operationId

&& oc.crudeId==c.crudeId && o.fromResourceId==r.

resourceId};

int OverlapMatrix[Operations][Operations];

execute {

for(var i in Operations)

{
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for(var j in Operations)

{

if( ( i.operationId==j.operationId ) //self

|| ( ( i.operationType=="Unloading"

&& j.operationType=="Unloading"

&& i.vesselType==j.vesselType )

&& ( i.operationId != j.operationId ) ) //vessels

|| ( i.toResourceId==j.fromResourceId

|| i.fromResourceId==j.toResourceId ) //inflow

outflow

|| ( i.fromResourceId==j.fromResourceId

&& ( i.operationId != j.operationId )

&& i.operationType=="Distillation" ) //double out

charging tanks

|| ( i.toResourceId==j.toResourceId

&& ( i.operationId != j.operationId )

&& i.operationType=="Distillation" ) //double in CDUs

)

{

OverlapMatrix[i][j] = 0;

}

else

{

OverlapMatrix[i][j] = 1;

}

}

}

}

int quantity = 1;

range volumeRange = 0..9999*quantity;

range cvolumeRange = 0..9999*quantity;

range levelRange = 0..9999*quantity;

range timeRange = 0..Horizon;

dvar int start[so in SlotOperations] in timeRange;

dvar int duration[so in SlotOperations] in timeRange;

dvar int end[so in SlotOperations] in timeRange;

dvar int tvolume[so in SlotOperations] in volumeRange;

dvar int cvolume[soc in SlotOperationCrudes] in cvolumeRange;

dvar int tlevel[t in SlotTanks] in levelRange;

dvar int clevel[tc in SlotTankCrudes] in levelRange;
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dexpr float TotalGrossMargin = sum(<s,o,c> in SlotOperationCrudes

: o.operationType=="Distillation")(c.grossMargin*cvolume[<s,o

,c>])/quantity;

execute {

cp.param.Workers = 1;

cp.param.TimeLimit = 60;

var f = cp.factory;

cp.setSearchPhases(f.searchPhase(cvolume), f.searchPhase(

start) );

}

maximize

TotalGrossMargin;

subject to {

forall(<s,o> in SlotOperations)

start[<s,o>] + duration[<s,o>] == end[<s,o>];

forall(<s,o> in SlotOperations, v in Vessels: o.operationType=="

Unloading" && v.vesselId==o.fromResourceId)

start[<s,o>] >= v.arrivalTime;

forall(<s,o> in SlotOperations, v in Vessels: o.operationType=="

Unloading" && v.vesselId==o.fromResourceId)

tvolume[<s,o>] == v.initAmount*quantity;

forall(<s,o> in SlotOperations, r in Resources: o.operationType

!="Unloading" && r.resourceId==o.fromResourceId)

tvolume[<s,o>] <= r.maxCapacity*quantity;

forall(<s,o> in SlotOperations, <s2,o2> in SlotOperations:

s.slotId+1==s2.slotId && OverlapMatrix[o][o2]==0)

end[<s,o>] <= start[<s2,o2>];

forall( v in Vessels, v2 in Vessels: v.arrivalTime < v2.

arrivalTime && v.type == v2.type)

sum(<s,o> in SlotOperations: o.fromResourceId == v.vesselId)

end[<s,o>]

<= sum(<s,o> in SlotOperations: o.fromResourceId == v2.

vesselId)start[<s,o>];

forall(u in Units)

Horizon==sum(<s,o> in SlotOperations: o.toResourceId==u.

unitId)duration[<s,o>];

forall(<s,o> in SlotOperations)

tvolume[<s,o>]==sum(<s,o,c> in SlotOperationCrudes)cvolume

[<s,o,c>];
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forall(<s,o> in SlotOperations: o.operationType=="Distillation")

o.minFlowrate*quantity*duration[<s,o>] <= tvolume[<s,o>]*
Time

&& o.maxFlowrate*quantity*duration[<s,o>] >= tvolume[<s,o

>]*Time;

forall(<s,o> in SlotOperations: o.operationType!="Distillation")

o.maxFlowrate*quantity*duration[<s,o>] == tvolume[<s,o>]*
Time;

forall(<s,o> in SlotOperations, ct in ChargingTanks, m in

CrudeMixes:

ct.crudeMixId==m.crudeMixId && o.fromResourceId==ct.

chargingTankId)

( m.prop1Lower*tvolume[<s,o>] <= sum(<s,o,c> in

SlotOperationCrudes)c.prop1*cvolume[<s,o,c>] )

&& ( m.prop1Upper*tvolume[<s,o>] >= sum(<s,o,c> in

SlotOperationCrudes)c.prop1*cvolume[<s,o,c>] )

&& ( m.prop2Lower*tvolume[<s,o>] <= sum(<s,o,c> in

SlotOperationCrudes)c.prop2*cvolume[<s,o,c>] )

&& ( m.prop2Upper*tvolume[<s,o>] >= sum(<s,o,c> in

SlotOperationCrudes)c.prop2*cvolume[<s,o,c>] )

&& ( m.prop3Lower*tvolume[<s,o>] <= sum(<s,o,c> in

SlotOperationCrudes)c.prop3*cvolume[<s,o,c>] )

&& ( m.prop3Upper*tvolume[<s,o>] >= sum(<s,o,c> in

SlotOperationCrudes)c.prop3*cvolume[<s,o,c>] )

;

forall(<s,r> in SlotResources, <s,o> in SlotOperations, c in

Crudes, oc in OperationCrudes:

r.resourceType=="Tank" && oc.operationId==o.operationId

&& oc.crudeId==c.crudeId && o.fromResourceId==r.

resourceId)

cvolume[<s,o,c>] * tlevel[<s,r>] == tvolume[<s,o>] * clevel

[<s,r,c>];

forall(ct in ChargingTanks, m in CrudeMixes: ct.crudeMixId==m.

crudeMixId)

m.demandLower*quantity <= sum(<s,o> in SlotOperations: o.

fromResourceId==ct.chargingTankId)tvolume[<s,o>]

&& m.demandUpper*quantity >= sum(<s,o> in SlotOperations: o

.fromResourceId==ct.chargingTankId)tvolume[<s,o>];

forall(<p,r> in SlotResources: r.resourceType=="Tank" )

tlevel[<p,r>] == quantity*r.initAmount

+ sum(<s,o> in SlotOperations:

s.slotId<p.slotId && o.toResourceId==r.resourceId)(

tvolume[<s,o>])

- sum(<s,o> in SlotOperations:

s.slotId<p.slotId && o.fromResourceId==r.resourceId)(

tvolume[<s,o>]);
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forall(<p,r,c> in SlotResourceCrudes: r.resourceType=="Tank" )

clevel[<p,r,c>] == quantity*r.initAmount*(r.crudeId==c.

crudeId)

+ sum(<s,o,c> in SlotOperationCrudes:

s.slotId<p.slotId && o.toResourceId==r.resourceId)(

cvolume[<s,o,c>])

- sum(<s,o,c> in SlotOperationCrudes:

s.slotId<p.slotId && o.fromResourceId==r.resourceId

)(cvolume[<s,o,c>]);

;

forall(<p,r> in SlotResources: r.resourceType=="Tank")

tlevel[<p,r>]==sum(<p,r,c> in SlotResourceCrudes)clevel[<p,

r,c>];

forall(<p,r> in SlotResources: r.resourceType=="Tank")

r.minCapacity*quantity<=tlevel[<p,r>] && tlevel[<p,r>]<=

quantity*r.maxCapacity;

forall(<p,r,c> in SlotResourceCrudes: r.resourceType=="Tank")

0 <= clevel[<p,r,c>] && clevel[<p,r,c>] <= r.maxCapacity*
quantity;

forall(r in Resources: r.resourceType=="Tank" )

r.minCapacity*quantity <= quantity*r.initAmount

+ sum(<s,o> in SlotOperations:

o.toResourceId==r.resourceId)(tvolume[<s,o>])

- sum(<s,o> in SlotOperations:

o.fromResourceId==r.resourceId)(tvolume[<s,o>]);

forall(r in Resources: r.resourceType=="Tank" )

r.maxCapacity*quantity >= quantity*r.initAmount

+ sum(<s,o> in SlotOperations:

o.toResourceId==r.resourceId)(tvolume[<s,o>])

- sum(<s,o> in SlotOperations:

o.fromResourceId==r.resourceId)(tvolume[<s,o>]);

forall(<r,c> in ResourceCrudes: r.resourceType=="Tank")

0 <= r.initAmount*quantity*(r.crudeId==c.crudeId)

+ sum(<s,o,c> in SlotOperationCrudes:

o.toResourceId==r.resourceId)(cvolume[<s,o,c>])

- sum(<s,o,c> in SlotOperationCrudes:

o.fromResourceId==r.resourceId)(cvolume[<s,o,c>]);

forall(<r,c> in ResourceCrudes: r.resourceType=="Tank")

r.maxCapacity*quantity >= r.initAmount*quantity*(r.crudeId

==c.crudeId)

+ sum(<s,o,c> in SlotOperationCrudes:

o.toResourceId==r.resourceId)(cvolume[<s,o,c>])

- sum(<s,o,c> in SlotOperationCrudes:

o.fromResourceId==r.resourceId)(cvolume[<s,o,c>]);

TotalGrossMargin <= Upperbound;
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}

tuple Output {

key int slot;

key int operation;

float duration;

int volume;

};

{Output} Outputs = {<s.slotId, o.operationId, duration[<s,o>]/

Time, tvolume[<s,o>]> | <s,o> in SlotOperations };

execute {

writeln("Total Gross Margin: ", TotalGrossMargin);

writeln();

for(var o in Outputs)

{ writeln(o.slot, ", ",

o.operation, ": D: ", o.duration, ", V: ", o.volume);

}

writeln();

} �
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C P M O D E L VA R I A N T

This appendix presents the proposed variant on the CP model in OPL
code.

using CP;

tuple Vessel {

key string vesselId;

int arrivalTime;

string crudeId;

int initAmount;

string type;

}

{Vessel} Vessels = ...;

tuple StorageTank {

key string storageTankId;

int mincapacity;

int maxCapacity;

string crudeId;

int initAmount;

}

{StorageTank} StorageTanks = ...;

tuple ChargingTank {

key string chargingTankId;

int mincapacity;

int maxCapacity;

string crudeId;

int initAmount;

string crudeMixId;

}

{ChargingTank} ChargingTanks = ...;

tuple Unit {

key string unitId;

}

tuple Clique {

key int first;

key int second;

key int third;

}
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{Clique} Cliques = ...;

{Unit} Units = ...;

tuple Resource {

key string resourceId;

string resourceType;

int minCapacity;

int maxCapacity;

string crudeId;

int initAmount;

}

{Resource} Resources = ...;

int Horizon = ...;

int Distillation = ...;

int Time = ...;

int Lowerbound = ...;

int Upperbound = ...;

tuple CrudeMix {

key string crudeMixId;

float prop1Lower;

float prop1Upper;

float prop2Lower;

float prop2Upper;

float prop3Lower;

float prop3Upper;

int demandLower;

int demandUpper;

}

{CrudeMix} CrudeMixes = ...;

tuple Crude {

key string crudeId;

float prop1;

float prop2;

float prop3;

float grossMargin;

}

{Crude} Crudes = ...;

tuple PrioritySlot {

key int slotId;

}
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{PrioritySlot} PrioritySlots = ...;

tuple Operation {

key int operationId;

string fromResourceId;

string toResourceId;

int minFlowrate;

int maxFlowrate;

string operationType;

string vesselType;

}

{Operation} Operations = ...;

tuple AssignedSlotOperation {

key int prioritySlotId;

key int operationId;

}

{AssignedSlotOperation} AssignedSlotOperations = ...;

tuple OperationCrude {

key int operationId;

key string crudeId;

}

{OperationCrude} OperationCrudes = ...;

tuple SlotOperation {

key PrioritySlot prioritySlot;

key Operation operation;

}

{SlotOperation} SlotOperations = {<s,o> | s in PrioritySlots, o

in Operations };

tuple SlotOperationCrude {

key PrioritySlot prioritySlot;

key Operation operation;

key Crude crude;

}

{SlotOperationCrude} SlotOperationCrudes = {<s,o,c> | <s,o> in

SlotOperations, c in Crudes, oc in OperationCrudes:

oc.operationId==o.operationId &&

oc.crudeId==c.crudeId};

tuple SlotResource {

key PrioritySlot prioritySlot;

key Resource resource;

}
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{SlotResource} SlotResources = {<p,r> | p in PrioritySlots, r in

Resources};

tuple SlotResourceCrude {

key PrioritySlot prioritySlot;

key Resource resource;

key Crude crude;

}

{SlotResourceCrude} SlotResourceCrudes = {<p,r,c> | p in

PrioritySlots, r in Resources, c in Crudes, o in Operations,

oc in OperationCrudes:

r.resourceId==o.fromResourceId && oc.operationId==o.

operationId && oc.crudeId==c.crudeId};

tuple SlotTank {

key PrioritySlot prioritySlot;

key Resource resource;

}

{SlotTank} SlotTanks = {<p,r> | p in PrioritySlots, r in

Resources: r.resourceType=="Tank"};

tuple SlotTankCrude {

key PrioritySlot prioritySlot;

key Resource resource;

key Crude crude;

}

{SlotTankCrude} SlotTankCrudes = {<p,r,c> | <p,r> in SlotTanks, c

in Crudes, o in Operations, oc in OperationCrudes:

r.resourceId==o.fromResourceId && oc.operationId==o.

operationId && oc.crudeId==c.crudeId};

tuple ResourceCrude {

key Resource resource;

key Crude crude;

}

{ResourceCrude} ResourceCrudes = {<r,c> | r in Resources, o in

Operations, oc in OperationCrudes, c in Crudes

: r.resourceType=="Tank" && o.operationId==oc.operationId

&& oc.crudeId==c.crudeId && o.fromResourceId==r.

resourceId};

int OverlapMatrix[Operations][Operations];

execute {

for(var i in Operations)

{
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for(var j in Operations)

{

if( ( i.operationId==j.operationId ) //self

|| ( ( i.operationType=="Unloading"

&& j.operationType=="Unloading"

&& i.vesselType==j.vesselType )

&& ( i.operationId != j.operationId ) ) //vessels

|| ( i.toResourceId==j.fromResourceId

|| i.fromResourceId==j.toResourceId ) //inflow

outflow

|| ( i.fromResourceId==j.fromResourceId

&& ( i.operationId != j.operationId )

&& i.operationType=="Distillation" ) //double out

charging tanks

|| ( i.toResourceId==j.toResourceId

&& ( i.operationId != j.operationId )

&& i.operationType=="Distillation" ) //double in CDUs

)

{

OverlapMatrix[i][j] = 0;

}

else

{

OverlapMatrix[i][j] = 1;

}

}

}

}

int quantity = 1;

range volumeRange = 0..9999*quantity;

range cvolumeRange = 0..9999*quantity;

range levelRange = 0..9999*quantity;

range timeRange = 0..Horizon;

dvar boolean assign[so in SlotOperations];

dvar int start[so in SlotOperations] in timeRange;

dvar int duration[so in SlotOperations] in timeRange;

dvar int end[so in SlotOperations] in timeRange;

dvar int tvolume[so in SlotOperations] in volumeRange;

dvar int cvolume[soc in SlotOperationCrudes] in cvolumeRange;

dvar int tlevel[t in SlotTanks] in levelRange;

dvar int clevel[tc in SlotTankCrudes] in levelRange;
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dexpr float TotalGrossMargin = sum(<s,o,c> in SlotOperationCrudes

: o.operationType=="Distillation")(c.grossMargin*cvolume[<s,o

,c>])/quantity;

execute {

cp.param.Workers = 1;

cp.param.TimeLimit = 60;

var f = cp.factory;

cp.setSearchPhases(f.searchPhase(assign), f.searchPhase(

cvolume), f.searchPhase(start) );

}

maximize

TotalGrossMargin;

subject to {

forall(<s,o> in SlotOperations, v in Vessels: o.operationType=="

Unloading" && v.vesselId==o.fromResourceId)

start[<s,o>] >= v.arrivalTime * assign[<s,o>];

forall(<s,o> in SlotOperations)

end[<s,o>] <= Horizon * assign[<s,o>];

forall(<s,o> in SlotOperations)

start[<s,o>] + duration[<s,o>] == end[<s,o>];

Distillation == sum(<s,o> in SlotOperations: o.operationType == "

Distillation")assign[<s,o>];

forall(<s,o> in SlotOperations, <s,o2> in SlotOperations:

OverlapMatrix[o][o2]==0 && o.operationId < o2.operationId)

(assign[<s,o>] + assign[<s,o2>]) <= 1;

forall(<s,o> in SlotOperations, <s2,o> in SlotOperations:

s.slotId<s2.slotId && OverlapMatrix[o][o]==0)

end[<s,o>] <= start[<s2,o>] + Horizon * (1-assign[<s2,o>]);

forall(<s,o> in SlotOperations, <s,o2> in SlotOperations, <s2,o>

in SlotOperations, <s2,o2> in SlotOperations:

s.slotId<s2.slotId && o.operationId != o2.operationId &&

OverlapMatrix[o][o2]==0)

end[<s,o>] + end[<s,o2>] <= start[<s2,o>] + start[<s2,o2>] +

Horizon * (1-assign[<s2,o>]-assign[<s2,o2>]);

forall( v in Vessels, v2 in Vessels: v.arrivalTime < v2.

arrivalTime && v.type == v2.type)

sum(<s,o> in SlotOperations: o.fromResourceId == v.vesselId)

end[<s,o>]

<= sum(<s,o> in SlotOperations: o.fromResourceId == v2.

vesselId)start[<s,o>];
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forall( s in PrioritySlots, v in Vessels, v2 in Vessels: v.

arrivalTime < v2.arrivalTime && v.type == v2.type)

(sum(<s2,o> in SlotOperations: o.fromResourceId == v.vesselId

&& s2.slotId < s.slotId)(assign[<s2,o>]))

>= (sum(<s2,o> in SlotOperations: o.fromResourceId == v2.

vesselId && s2.slotId <= s.slotId)(assign[<s2,o>]));

forall( v in Vessels)

sum(<s,o> in SlotOperations: o.fromResourceId == v.vesselId)

assign[<s,o>] == 1;

forall(u in Units)

Horizon==sum(<s,o> in SlotOperations: o.toResourceId==u.

unitId)duration[<s,o>];

forall(<s,o> in SlotOperations, v in Vessels: o.operationType=="

Unloading" && v.vesselId==o.fromResourceId)

tvolume[<s,o>] == v.initAmount*quantity * assign[<s,o>];

forall(<s,o> in SlotOperations, r in Resources: o.operationType

!="Unloading" && r.resourceId==o.fromResourceId)

tvolume[<s,o>] <= r.maxCapacity*quantity * assign[<s,o>];

forall(<s,o> in SlotOperations)

tvolume[<s,o>]==sum(<s,o,c> in SlotOperationCrudes)cvolume

[<s,o,c>];

forall(<s,o> in SlotOperations)

o.minFlowrate*quantity*duration[<s,o>] <= tvolume[<s,o>]*
Time

&& o.maxFlowrate*quantity*duration[<s,o>] >= tvolume[<s,o

>]*Time;

forall(<s,o> in SlotOperations, ct in ChargingTanks, m in

CrudeMixes:

ct.crudeMixId==m.crudeMixId && o.fromResourceId==ct.

chargingTankId)

( m.prop1Lower*tvolume[<s,o>] <= sum(<s,o,c> in

SlotOperationCrudes)c.prop1*cvolume[<s,o,c>] )

&& ( m.prop1Upper*tvolume[<s,o>] >= sum(<s,o,c> in

SlotOperationCrudes)c.prop1*cvolume[<s,o,c>] )

&& ( m.prop2Lower*tvolume[<s,o>] <= sum(<s,o,c> in

SlotOperationCrudes)c.prop2*cvolume[<s,o,c>] )

&& ( m.prop2Upper*tvolume[<s,o>] >= sum(<s,o,c> in

SlotOperationCrudes)c.prop2*cvolume[<s,o,c>] )

&& ( m.prop3Lower*tvolume[<s,o>] <= sum(<s,o,c> in

SlotOperationCrudes)c.prop3*cvolume[<s,o,c>] )

&& ( m.prop3Upper*tvolume[<s,o>] >= sum(<s,o,c> in

SlotOperationCrudes)c.prop3*cvolume[<s,o,c>] )

;
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forall(<s,r> in SlotResources, <s,o> in SlotOperations, c in

Crudes, oc in OperationCrudes:

r.resourceType=="Tank" && oc.operationId==o.operationId

&& oc.crudeId==c.crudeId && o.fromResourceId==r.

resourceId)

cvolume[<s,o,c>] * tlevel[<s,r>] == tvolume[<s,o>] * clevel

[<s,r,c>];

forall(ct in ChargingTanks, m in CrudeMixes: ct.crudeMixId==m.

crudeMixId)

m.demandLower*quantity <= sum(<s,o> in SlotOperations: o.

fromResourceId==ct.chargingTankId)tvolume[<s,o>]

&& m.demandUpper*quantity >= sum(<s,o> in SlotOperations: o

.fromResourceId==ct.chargingTankId)tvolume[<s,o>];

forall(<p,r> in SlotResources: r.resourceType=="Tank" )

tlevel[<p,r>] == quantity*r.initAmount

+ sum(<s,o> in SlotOperations:

s.slotId<p.slotId && o.toResourceId==r.resourceId)(

tvolume[<s,o>])

- sum(<s,o> in SlotOperations:

s.slotId<p.slotId && o.fromResourceId==r.resourceId)(

tvolume[<s,o>]);

forall(<p,r,c> in SlotResourceCrudes: r.resourceType=="Tank" )

clevel[<p,r,c>] == quantity*r.initAmount*(r.crudeId==c.

crudeId)

+ sum(<s,o,c> in SlotOperationCrudes:

s.slotId<p.slotId && o.toResourceId==r.resourceId)(

cvolume[<s,o,c>])

- sum(<s,o,c> in SlotOperationCrudes:

s.slotId<p.slotId && o.fromResourceId==r.resourceId

)(cvolume[<s,o,c>]);

;

forall(<p,r> in SlotResources: r.resourceType=="Tank")

tlevel[<p,r>]==sum(<p,r,c> in SlotResourceCrudes)clevel[<p,

r,c>];

forall(<p,r> in SlotResources: r.resourceType=="Tank")

r.minCapacity*quantity<=tlevel[<p,r>] && tlevel[<p,r>]<=

quantity*r.maxCapacity;

forall(<p,r,c> in SlotResourceCrudes: r.resourceType=="Tank")

0 <= clevel[<p,r,c>] && clevel[<p,r,c>] <= r.maxCapacity*
quantity;

forall(r in Resources: r.resourceType=="Tank" )

r.minCapacity*quantity <= quantity*r.initAmount

+ sum(<s,o> in SlotOperations:

o.toResourceId==r.resourceId)(tvolume[<s,o>])

- sum(<s,o> in SlotOperations:

o.fromResourceId==r.resourceId)(tvolume[<s,o>]);
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forall(r in Resources: r.resourceType=="Tank" )

r.maxCapacity*quantity >= quantity*r.initAmount

+ sum(<s,o> in SlotOperations:

o.toResourceId==r.resourceId)(tvolume[<s,o>])

- sum(<s,o> in SlotOperations:

o.fromResourceId==r.resourceId)(tvolume[<s,o>]);

forall(<r,c> in ResourceCrudes: r.resourceType=="Tank")

0 <= r.initAmount*quantity*(r.crudeId==c.crudeId)

+ sum(<s,o,c> in SlotOperationCrudes:

o.toResourceId==r.resourceId)(cvolume[<s,o,c>])

- sum(<s,o,c> in SlotOperationCrudes:

o.fromResourceId==r.resourceId)(cvolume[<s,o,c>]);

forall(<r,c> in ResourceCrudes: r.resourceType=="Tank")

r.maxCapacity*quantity >= r.initAmount*quantity*(r.crudeId

==c.crudeId)

+ sum(<s,o,c> in SlotOperationCrudes:

o.toResourceId==r.resourceId)(cvolume[<s,o,c>])

- sum(<s,o,c> in SlotOperationCrudes:

o.fromResourceId==r.resourceId)(cvolume[<s,o,c>]);

forall(<s,o> in SlotOperations, z in AssignedSlotOperations: z.

prioritySlotId == s.slotId && o.operationId == z.operationId

)

assign[<s,o>] == 1;

TotalGrossMargin <= Upperbound;

}

tuple Output {

key int slot;

key int operation;

float duration;

int volume;

};

{Output} Outputs = {<s.slotId, o.operationId, duration[<s,o>]/

Time, tvolume[<s,o>]> | <s,o> in SlotOperations };

execute {

writeln("Total Gross Margin: ", TotalGrossMargin);

writeln();

for(var o in Outputs)

{ writeln(o.slot, ", ",

o.operation, ": D: ", o.duration, ", V: ", o.volume);

}

writeln();

} �
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L O C A L S O LV E R M O D E L

This appendix presents the LocalSolver model for COSP1.

function input(){

H=8;

PS=5;

//volume at time t of element j of oil p

//vessel 1

L[0][1][1] = 1000;

L[0][1][2..4] = 0;

//vessel 2

L[0][2][1] = 0;

L[0][2][2] = 1000;

L[0][2][3..4] = 0;

//storage tank 1

L[0][3][1] = 250;

L[0][3][2..4] = 0;

//storage tank 2

L[0][4][1] = 0;

L[0][4][2] = 750;

L[0][4][3..4] = 0;

//charging tank 1

L[0][5][1..2] = 0;

L[0][5][3] = 500;

L[0][5][4] = 0;

//charging tank 2

L[0][6][1..3] = 0;

L[0][6][4] = 500;

//CDU

L[0][7][1..4] = 0;

//sulfure:

C[1] = 0.01;

C[2] = 0.06;

C[3] = 0.02;

C[4] = 0.05;

//margin by Mbbl

MARGIN[1] = 1;

MARGIN[2] = 6;
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MARGIN[3] = 2;

MARGIN[4] = 5;

LABELS[1] = "V1";

LABELS[2] = "V2";

LABELS[3] = "ST1";

LABELS[4] = "ST2";

LABELS[5] = "CT1";

LABELS[6] = "CT2";

LABELS[7] = "CDU";

// 0,1,2,3,4,5,6,7,8

overlap[1] = {0,0,0,0,0,1,1,1,1};

overlap[2] = {0,0,0,1,1,0,0,1,1};

overlap[3] = {0,0,1,0,1,1,1,0,1};

overlap[4] = {0,0,1,1,0,1,1,1,0};

overlap[5] = {0,1,0,1,1,0,1,0,1};

overlap[6] = {0,1,0,1,1,1,0,1,0};

overlap[7] = {0,1,1,0,1,0,1,0,0};

overlap[8] = {0,1,1,1,0,1,0,0,0};

}

function model(){

z[1..PS][1..8] <- bool();

s[1..PS][1..8] <- float(0,H);

e[1..PS][1..8] <- float(0,H);

constraint z[1][1] ==0;

constraint z[1][2] ==0;

constraint z[1][3] ==0;

constraint z[1][4] ==0;

constraint z[1][5] ==0;

constraint z[1][6] ==1;

constraint z[1][7] ==1;

constraint z[1][8] ==0;

constraint z[2][1] ==0;

constraint z[2][2] ==0;

constraint z[2][3] ==1;

constraint z[2][4] ==0;

constraint z[2][5] ==1;

constraint z[2][6] ==0;

constraint z[2][7] ==0;

constraint z[2][8] ==1;

constraint z[3][1] ==1;

constraint z[3][2] ==0;

constraint z[3][3] ==0;

constraint z[3][4] ==0;

constraint z[3][5] ==0;

constraint z[3][6] ==1;

constraint z[3][7] ==0;

constraint z[3][8] ==0;

constraint z[4][1] ==0;
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constraint z[4][2] ==1;

constraint z[4][3] ==1;

constraint z[4][4] ==0;

constraint z[4][5] ==0;

constraint z[4][6] ==0;

constraint z[4][7] ==0;

constraint z[4][8] ==0;

constraint z[5][1] ==0;

constraint z[5][2] ==0;

constraint z[5][3] ==0;

constraint z[5][4] ==0;

constraint z[5][5] ==0;

constraint z[5][6] ==0;

constraint z[5][7] ==1;

constraint z[5][8] ==0;

for[p in 1..PS][o in 1..8]{

d[p][o] <- e[p][o] - s[p][o];

}

for[p in 1..PS][o in 1..8]{

constraint s[p][o] <= e[p][o];

constraint d[p][o] <= e[p][o] * z[p][o];

}

for[p in 1..PS]{

constraint s[p][2] >= 4 * z[p][2];

}

for[p in 1..PS][o in 1..8]{

constraint e[p][o] <= H * z[p][o];

}

constraint sum[p in 1..PS] (z[p][7] + z[p][8]) == 3;

for[p in 1..PS][o in 1..7][o2 in o+1..8: overlap[o][o2] == 0]{

constraint z[p][o] + z[p][o2] <= 1;

}

for[p in 1..PS-1][p2 in p+1..PS][o in 1..8: overlap[o][o] ==

0]{

constraint e[p][o] <= s[p2][o] + H * (1-z[p2][o]) ;

}

for[p in 1..PS-1][p2 in p+1..PS][o in 1..8][o2 in 1..8: o != o2

&& overlap[o][o2] == 0]{

constraint e[p][o] + e[p][o2] <= s[p2][o] + s[p2][o2] + H *
(1-z[p2][o]-z[p2][o2]) ;

}

constraint sum[p in 1..PS](z[p][1]) == 1;

constraint sum[p in 1..PS](z[p][2]) == 1;
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constraint sum[p in 1..PS][o in 7..8](d[p][o]) == H;

q[1..PS][1..8] <- float(0,1);

for[p in 1..PS]{

constraint q[p][3] + q[p][4] <= 1;

constraint q[p][5] + q[p][6] <= 1;

}

for[p in 1..PS][c in 1..4]{

L[p][1][c] <- L[p-1][1][c] - q[p][1] * L[p-1][1][c] * z[p

][1]; //V1

L[p][2][c] <- L[p-1][2][c] - q[p][2] * L[p-1][2][c] * z[p

][2]; //V2

L[p][3][c] <- L[p-1][3][c] + q[p][1] * L[p-1][1][c] * z[p][1]

- q[p][3] * L[p-1][3][c] * z[p][3] - q[p][4] * L[p

-1][3][c] * z[p][4]; //ST1

L[p][4][c] <- L[p-1][4][c] + q[p][2] * L[p-1][2][c] * z[p][2]

- q[p][5] * L[p-1][4][c] * z[p][5] - q[p][6] * L[p

-1][4][c] * z[p][6]; //ST2

L[p][5][c] <- L[p-1][5][c] + q[p][3] * L[p-1][3][c] * z[p][3]

+ q[p][5] * L[p-1][4][c] * z[p][5] - q[p][7] * L[p

-1][5][c] * z[p][7]; //CT1

L[p][6][c] <- L[p-1][6][c] + q[p][4] * L[p-1][3][c] * z[p][4]

+ q[p][6] * L[p-1][4][c] * z[p][6] - q[p][8] * L[p

-1][6][c] * z[p][8]; //CT2

L[p][7][c] <- L[p-1][7][c] + q[p][7] * L[p-1][5][c] * z[p][7]

+ q[p][8] * L[p-1][6][c] * z[p][8]; //CDU

}

for[p in 1..PS][r in 3..6][c in 1..4]{

constraint L[p][r][c] <= 1000;

constraint L[p][r][c] >= 0;

}

for[p in 1..PS][c in 1..4]{

V[p][1][c] <- q[p][1] * L[p-1][1][c];

V[p][2][c] <- q[p][2] * L[p-1][2][c];

V[p][3][c] <- q[p][3] * L[p-1][3][c];

V[p][4][c] <- q[p][4] * L[p-1][3][c];

V[p][5][c] <- q[p][5] * L[p-1][4][c];

V[p][6][c] <- q[p][6] * L[p-1][4][c];

V[p][7][c] <- q[p][7] * L[p-1][5][c];

V[p][8][c] <- q[p][8] * L[p-1][6][c];

}

for[p in 1..PS][r in 3..6]{

L[p][r] <- sum[c in 1..4](L[p][r][c]);

constraint L[p][r] <= 1000;

constraint L[p][r] >= 0;

}
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constraint sum[c in 1..4] (L[PS][1][c]) == 0;

constraint sum[c in 1..4] (L[PS][2][c]) == 0;

for[p in 1..PS][o in 1..8]{

Vt[p][o] <- sum[c in 1..4](V[p][o][c]);

}

for[p in 1..PS]{

constraint 0.015 * Vt[p][7] <= sum[c in 1..4](V[p][7][c] * C[

c]);

constraint sum[c in 1..4](V[p][7][c] * C[c]) <= 0.025 * Vt[p

][7];

constraint 0.045 * Vt[p][8] <= sum[c in 1..4](V[p][8][c] * C[

c]);

constraint sum[c in 1..4](V[p][8][c] * C[c]) <= 0.055 * Vt[p

][8];

}

for[o in 7..8]{

constraint sum[p in 1..PS] (Vt[p][o]*z[p][o]) == 1000;

}

for[p in 1..PS][o in 1..6]{

constraint 0 * d[p][o] <= Vt[p][o];

constraint Vt[p][o] == 500 * d[p][o];

}

for[p in 1..PS][o in 7..8]{

constraint 50 * d[p][o] <= Vt[p][o];

constraint Vt[p][o] <= 500 * d[p][o];

}

maximize sum[c in 1..4] (L[PS][7][c] * MARGIN[c]);

}

function param(){

lsSeed=1;

lsTimeLimit={10};

setObjectiveBound(0,20000);

lsTimeBetweenDisplays = 1;

lsNbThreads = 2;

}

function output() {

solFile = openWrite("solution");

for[p in 1..PS][o in 1..8]{

if (getValue(z[p][o]) == 1){

println(solFile, "assign: ", p, " ", o, " assign: ", getValue

(z[p][o]), " s: ", getValue(s[p][o]), " d: ", getValue(d[

p][o]), " e: ",getValue(e[p][o]), " volume: ", getValue(

Vt[p][o]), " ");
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}

}

println(solFile);

} �
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P R O B L E M I N S TA N C E S O F T H E C O S P

This chapter presents the remaining problem instances that were used
to test the optimizers.

Figure 23: Crude oil operations network for COSP2 and COSP3 from Lee
et al. 1996 [11]

135
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Table 21: Overview of the COSP2 data

Scheduling horizon 10 days
Vessels Arrival time Composition Amount of crude (Mbbl)
Vessel 1 0 100% A 1,000

Vessel 2 3 100% B 1,000

Vessel 3 6 100% C 1,000

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [0, 1000] 100% A 200

Tank 2 [0, 1000] 100% B 500

Tank 3 [0, 1000] 100% C 700

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 1000] 100% D 300

Tank 2 (mix Y) [0, 1000] 100% E 500

Tank 3 (mix Z) [0, 1000] 100% F 300

Crudes Property 1 Property 2 Gross margin ($/bbl)
Crude A 0.01 0.04 1

Crude B 0.03 0.02 3

Crude C 0.05 0.01 5

Crude D 0.0167 0.0333 1.67

Crude E 0.03 0.023 3

Crude F 0.0433 0.0133 4.33

Crude mixtures Property 1 Property 2 Demand (Mbbl)
Crude mix X [0.01, 0.02] [0.03, 0.038] [1000, 1000]
Crude mix Y [0.025, 0.035] [0.018, 0.027] [1000, 1000]
Crude mix Z [0.04, 0.048] [0.01, 0.018] [1000, 1000]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [50, 500] Number of distillations 5
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Table 22: Overview of the COSP3 data

Scheduling horizon 12 days
Vessels Arrival time Composition Amount of crude (Mbbl)
Vessel 1 0 100% A 500

Vessel 2 4 100% B 500

Vessel 3 8 100% C 500

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [0, 1000] 100% D 200

Tank 2 [0, 1000] 100% E 200

Tank 3 [0, 1000] 100% F 200

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 1000] 100% G 300

Tank 2 (mix Y) [0, 1000] 100% E 500

Tank 3 (mix Z) [0, 1000] 100% F 300

Crudes Property 1 Gross margin ($/bbl)
Crude A 0.01 1

Crude B 0.085 6

Crude C 0.06 8.5
Crude D 0.02 2

Crude E 0.05 5

Crude F 0.08 8

Crude G 0.03 3

Crude mixtures Property 1 Demand (Mbbl)
Crude mix X [0.025, 0.035] [500, 500]
Crude mix Y [0.045, 0.065] [500, 500]
Crude mix Z [0.075, 0.085] [500, 500]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [50, 500] Number of distillations 5
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Figure 24: Crude oil operations network for COSP4 from Lee et al. 1996 [11]
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Table 23: Overview of the COSP4 data

Scheduling horizon 15 days
Vessels Arrival time Composition Amount of crude (Mbbl)
Vessel 1 0 100% A 600

Vessel 2 5 100% B 600

Vessel 3 10 100% C 600

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [100, 900] 100% D 600

Tank 2 [100, 1,100] 100% A 100

Tank 3 [100, 1,100] 100% B 500

Tank 4 [100, 1,100] 100% C 400

Tank 5 [100, 900] 100% E 300

Tank 6 [100, 900] 100% E 600

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 800] 100% F 50

Tank 2 (mix Y) [0, 800] 100% G 300

Tank 3 (mix Z) [0, 800] 100% H 300

Tank 4 (mix W) [0, 800] 100% E 300

Crudes Property 1 (sulfur concentration) Gross margin ($/bbl)
Crude A 0.03 3

Crude B 0.05 5

Crude C 0.065 6.5
Crude D 0.031 3.1
Crude E 0.075 7.5
Crude F 0.0317 3.17

Crude G 0.0483 4.83

Crude H 0.0633 6.33

Crude mixtures Property 1 (sulfur concentration) Demand (Mbbl)
Crude mix X [0.03, 0.035] [600, 600]
Crude mix Y [0.043, 0.05] [600, 600]
Crude mix Z [0.06, 0.065] [600, 600]
Crude mix W [0.071, 0.08] [600, 600]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [20, 500] Number of distillations 7
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Figure 25: Crude oil operations network for COSP5
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Table 24: Overview of the COSP5 data

Scheduling horizon 15

Vessels Arrival time Type Composition Amount of crude (Mbbl)
Vessel 1 0 VLCC 100% B 800

Vessel 2 10 VLCC 100% B 700

Vessel 3 4 VLCC 100% D 400

Vessel 4 5 VLCC 100% E 800

Vessel 5 7 VLCC 100% G 700

Vessel 6 7 Small 100% A 200

Vessel 7 10 Small 100% M 200

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [0, 900] 100% A 600

Tank 2 [100, 1100] 100% B 300

Tank 3 [100, 1100] 100% B 800

Tank 4 [0, 900] 100% D 600

Tank 5 [100, 1300] 100% E 700

Tank 6 [0, 900] 100% F 800

Tank 7 [0, 1000] 100% G 400

Tank 8 [0, 900] 100% H 800

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 800] 100% I 300

Tank 2 (mix Y) [0, 800] 100% J 400

Tank 3 (mix Z) [0, 800] 100% K 600

Tank 4 (mix W) [0, 800] 100% L 100

Crudes Property 1 Property 2 Property 3 Gross margin ($/bbl)
Crude A 0.03 0.049 0.01 3.00

Crude B 0.04 0.04 0.018 4.00

Crude D 0.046 0.035 0.023 4.60

Crude E 0.05 0.03 0.026 5.00

Crude F 0.045 0.025 0.028 4.50

Crude G 0.06 0.02 0.033 6.00

Crude H 0.057 0.012 0.039 5.70

Crude I 0.0375 0.045 0.015 3.75

Crude J 0.042 0.034 0.019 4.20

Crude K 0.051 0.026 0.028 5.10

Crude L 0.057 0.013 0.038 5.70

Crude M 0.045 0.024 0.027 4.50

Crude mixtures Property 1 Property 2 Property 3 Demand (Mbbl)
Crude mix X [0.035, 0.039] [0.043, 0.049] [0.01, 0.016] [800, 800]
Crude mix Y [0.041, 0.045] [0.031, 0.039] [0.018, 0.024] [800, 800]
Crude mix Z [0.048, 0.054] [0.022, 0.029] [0.026, 0.032] [800, 800]
Crude mix W [0.056, 0.059] [0.01, 0.019] [0.034, 0.04] [800, 800]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [20, 500] Number of distillation 9
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Figure 26: Crude oil operations network for COSP6
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Table 25: Overview of the COSP6 data (Part 1)

Scheduling horizon 15

Vessels Arrival time Type Composition Amount of crude (Mbbl)
Vessel 1 0 VLCC 100% B 800

Vessel 2 10 VLCC 100% D 700

Vessel 3 4 VLCC 100% F 400

Vessel 4 5 VLCC 100% H 800

Vessel 5 7 VLCC 100% J 700

Vessel 6 7 Small 100% E 200

Vessel 7 10 Small 100% J 200

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [0, 900] 100% A 600

Tank 2 [100, 1100] 100% B 300

Tank 3 [100, 1100] 100% C 800

Tank 4 [0, 900] 100% D 600

Tank 5 [100, 1300] 100% D 700

Tank 6 [0, 900] 100% E 800

Tank 7 [100, 1000] 100% F 400

Tank 8 [0, 900] 100% G 800

Tank 9 [0, 900] 100% G 600

Tank 10 [100, 1300] 100% H 700

Tank 11 [0, 900] 100% I 800

Tank 12 [0, 1000] 100% J 400

Tank 13 [0,1100] 100% J 800

Tank 14 [0, 900] 100% K 500

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 1000] 100% L 300

Tank 2 (mix Y) [0, 1000] 100% M 400

Tank 3 (mix Z) [0, 1000] 100% N 600

Tank 4 (mix W) [0, 1000] 100% O 100

Tank 5 (mix V) [0, 1000] 100% J 500

Tank 6 (mix U) [0, 1000] 100% P 200
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Table 26: Overview of the COSP6 data (Part 2)

Crudes Property 1 Property 2 Property 3 Gross margin ($/bbl)
Crude A 0.019 0.069 0.01 1.9
Crude B 0.03 0.06 0.015 3

Crude C 0.039 0.053 0.022 3.9
Crude D 0.042 0.048 0.027 4.2
Crude E 0.044 0.043 0.026 4.4
Crude F 0.049 0.04 0.036 4.9
Crude G 0.056 0.032 0.045 5.6
Crude H 0.059 0.027 0.052 5.9
Crude I 0.06 0.025 0.05 6

Crude J 0.058 0.022 0.053 5.8
Crude K 0.073 0.01 0.067 7.3
Crude L 0.026 0.068 0.015 2.6
Crude M 0.037 0.057 0.021 3.7
Crude N 0.044 0.048 0.032 4.4
Crude O 0.052 0.039 0.04 5.2
Crude P 0.069 0.016 0.065 6.9

Crude mixtures Property 1 Property 2 Property 3 Demand (Mbbl)
Crude mix X [0.020, 0.027] [0.061, 0.069] [0.01, 0.016] [1000, 1000]
Crude mix Y [0.035, 0.039] [0.052, 0.059] [0.018, 0.024] [900, 900]
Crude mix Z [0.041, 0.045] [0.043, 0.049] [0.026, 0.032] [1000, 1000]
Crude mix W [0.048, 0.054] [0.031, 0.039] [0.037, 0.045] [900, 900]
Crude mix V [0.057, 0.061] [0.022, 0.029] [0.046, 0.053] [1000, 1000]
Crude mix U [0.064, 0.071] [0.012, 0.019] [0.058, 0.067] [800, 800]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [20, 500] Number of distillation 16
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Figure 27: Crude oil operations network for COSP7
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Table 27: Overview of the COSP7 data (Part 1)

Scheduling horizon 18

Vessels Arrival time Type Composition Amount of crude (Mbbl)
Vessel 1 0 VLCC 100% B 800

Vessel 2 15 VLCC 100% E 700

Vessel 3 4 VLCC 100% F 400

Vessel 4 12 VLCC 100% H 800

Vessel 5 2 VLCC 100% J 700

Vessel 6 14 VLCC 100% L 800

Vessel 7 6 VLCC 100% M 400

Vessel 8 10 VLCC 100% O 500

Vessel 9 7 Small 100% C 100

Vessel 10 3 Small 100% G 200

Vessel 11 6 Small 100% K 250

Vessel 12 16 Small 100% N 100

Vessel 13 13 Small 100% O 200

Storage tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 [0, 900] 100% A 600

Tank 2 [100, 1100] 100% B 300

Tank 3 [0, 900] 100% B 800

Tank 4 [100, 1100] 100% C 1000

Tank 5 [0, 900] 100% D 700

Tank 6 [100, 1300] 100% E 800

Tank 7 [0, 900] 100% E 600

Tank 8 [0, 1000] 100% F 600

Tank 9 [0, 900] 100% G 500

Tank 10 [100, 1300] 100% H 700

Tank 11 [0, 900] 100% I 600

Tank 12 [0,1100] 100% J 300

Tank 13 [0,1000] 100% K 700

Tank 14 [100, 1100] 100% L 500

Tank 15 [100, 1300] 100% M 700

Tank 16 [0, 900] 100% L 800

Tank 17 [0, 900] 100% N 700

Tank 18 [0, 1000] 100% O 600

Tank 19 [0, 900] 100% O 600

Tank 20 [0, 900] 100% P 700

Charging tanks Capacity (Mbbl) Initial composition Initial amount of crude (Mbbl)
Tank 1 (mix X) [0, 1000] 100% Q 300

Tank 2 (mix Y) [0, 1000] 100% B 100

Tank 3 (mix Z) [0, 1000] 100% R 600

Tank 4 (mix W) [0, 1000] 100% S 100

Tank 5 (mix V) [0, 1000] 100% O 500

Tank 6 (mix U) [0, 1000] 100% T 200
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Table 28: Overview of the COSP7 data (Part 2)

Crudes Property 1 Property 2 Property 3 Gross margin ($/bbl)
Crude A 0.019 0.069 0.01 1.9
Crude B 0.035 0.059 0.018 3.5
Crude C 0.038 0.054 0.023 3.8
Crude D 0.028 0.06 0.017 2.8
Crude E 0.04 0.05 0.025 4

Crude F 0.045 0.043 0.032 4.5
Crude G 0.043 0.046 0.028 4.3
Crude H 0.047 0.04 0.036 4.7
Crude I 0.051 0.035 0.041 5.1
Crude J 0.053 0.032 0.043 5.3
Crude K 0.047 0.04 0.035 4.7
Crude L 0.056 0.03 0.045 5.6
Crude M 0.059 0.024 0.048 5.9
Crude N 0.059 0.023 0.051 5.9
Crude O 0.06 0.023 0.052 6

Crude P 0.071 0.012 0.069 7.1
Crude Q 0.025 0.063 0.014 2.5
Crude R 0.043 0.044 0.029 4.3
Crude S 0.053 0.031 0.043 5.3
Crude T 0.069 0.013 0.066 6.9

Crude mixtures Property 1 Property 2 Property 3 Demand (Mbbl)
Crude mix X [0.020, 0.027] [0.061, 0.069] [0.01, 0.016] [1500, 1500]
Crude mix Y [0.035, 0.039] [0.052, 0.059] [0.018, 0.024] [1100, 1100]
Crude mix Z [0.041, 0.045] [0.043, 0.049] [0.026, 0.032] [1500, 1500]
Crude mix W [0.048, 0.054] [0.031, 0.039] [0.037, 0.045] [1500, 1500]
Crude mix V [0.057, 0.061] [0.022, 0.029] [0.046, 0.053] [1500, 1500]
Crude mix U [0.062, 0.071] [0.012, 0.021] [0.056, 0.067] [1500, 1500]

Unloading flowrate [0, 500] Transfer flowrate [0, 500]
Distillation flowrate [20, 500] Number of distillation 30
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M O U R E T ’ S M I P R E S U LT S ( 1 5 M I N I T E R AT I O N )

Table 29: Mouret’s MIP results with a time limit of 15 minutes per iteration

Dissertation Cardinality Rule Improved
Instance n Obj. Value CPU(s) n Obj. Value CPU(s) n Obj. Value CPU(s)

COSP1 5 7975 6 5 7975 4 5 7975 2

COSP2 6 10117 753 6 10117 43 6 10117 10

COSP3 5 8740 89 5 8740 9 5 8740 5

COSP4 4 13255 245 4 13255 9 4 13255 2

COSP5 7 15656 2844 8 15658 2767 7 15656 1238

COSP6 5 27160 1801 6 27169 898 7 27168 2861

COSP7 8 42130 1806 9 42132 2709 9 42134 2532

COSP2a 6 10117 549 6 10117 38 6 10117 11

COSP5a 7 15748 2686 7 15751 1965 8 15752 2124

COSP5b 8 15751 3637 7 15751 1849 7 15751 1427

COSP6a 5 27158 1802 8 27169 3447 6 27163 1998

COSP6b 6 27164 2702 6 27169 1376 7 27168 2772

COSP7a 9 42032 2708 8 42136 1222 8 42137 1374

COSP7b 12 no solution 4509 9 42118 2706 10 42139 2790

COSP4c 4 13261 159 4 13261 5 4 13261 5

COSP5c 7 15656 2781 7 15656 1917 7 15656 1565

COSP6c 6 27168 2255 6 27168 2145 6 27168 1686

COSP7c 10 42126 3609 8 42103 1804 9 42137 2523

COSP3v 7 8740 978 7 8740 99 7 8740 20

COSP4v 6 13255 1800 6 13255 37 6 13255 10

149





16
C P P E R F O R M A N C E

This chapter will present why certain choices were made on how to
run the CP model.

16.1 strengthening constraints

One of the improvements on Mouret’s MIP was removing the strength-
ening constraints. So we did an experiment to see if the same holds
for the CP model. The results are presented in Table 30. At first glance
it looks as if the results are comparable, but when we look at the ob-
jective values we see that there are two instances where a lower value
was found, namely COSP3 and COSP5. This leads to the decision to
also not use strengthening constraints for the CP.

Table 30: Performance CP using strengthening constraints

Basic Str

Instance Obj. Value CPU(s) Obj. Value CPU(s)

COSP1 7975 20.46 7975 20.45

COSP2 10090 44.84 10090 44.55

COSP3 8175 11.70 8166 22.61

COSP4 13247 14.25 13247 14.55

COSP5 15531 53.14 15459 54.06

16.2 search strategy

The search that is used is the Restart search. There were two other pos-
sible choices, Depth first and Multi point but the test results, presented
in Table 31, show is that the Restart search is the best choice.

Besides the search we set the search phases. Several combinations
were used and several were comparable but the best choice was to set
the first phase on the crude volume variables and the next phase on
the start of the operation tasks. This is also a logical choice as the the
level and other volume variables can be derived from crude volume,
after which the precise starting point needs to be determined.

For the CP variant we add a search phase in front of the crude
volume variables which is the assignment variable. The reason is that
we first need to know which operation tasks there are before they can
be given crude volume values and a start time.
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Table 31: Comparison of the possible search strategies

Restart Multi Point Depth First
Instance Obj. Value CPU(s) Obj. Value CPU(s) Obj. Value CPU(s)

COSP1 7950 21.31 7975 29.16 6025 49.18

COSP2 10114 33.96 9826 38.42 9380 59.2
COSP3 infeasible infeasible infeasible
COSP4 13246 56.94 no solution 13109 10.7
COSP5 15275 58.13 no solution no solution
COSP6 no solution no solution no solution
COSP7 no solution no solution no solution

COSP2a 10112 52.25 10114 49.78 9378 12162

COSP5a 15353 59.3 no solution no solution
COSP5b 15383 58.5 no solution no solution
COSP6a no solution no solution no solution
COSP6b no solution no solution no solution
COSP7a no solution no solution no solution
COSP7b no solution no solution no solution

COSP4c 13244 36.9 no solution 13058 46.45

COSP5c 15216 52.63 no solution no solution
COSP6c no solution no solution no solution
COSP7c no solution no solution no solution

COSP3v 8423 48.97 8269 56.72 7970 51.77

COSP4v 13254 48.49 13172 0.12 no solution

Table 32 presents a comparison between having no search phases
and setting the search phases as was just explained. Here we see that
in almost all cases the variant with search phases finds better objective
values than the variant without search phases.

16.3 precision

The quantities given by the data are in Mbbl (1000 barrels), meaning
that if we use this quantity in CP, which has no continuous variables,
we need to move crude oil (blends) in perfect quantities of Mbbl vol-
umes. To remedy this we could increase the domain the same way
we did with the time, see Section 4.6.2. This increase would allow for
more possible volume movements, and thus possibly allow for better
solution. So the default precision is in Mbbl but could for instance be
increased to bbl (a factor 1000). However Table 33, which presents the
results of a comparison between the default Mbbl precision and 100

bbl precision, shows that the increase in search space will give a far
larger chance of finding a lower objective value.
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Table 32: Comparison of the default setting and using search phases

Default Search Phases
Instance Obj. Value CPU(s) Obj. Value CPU(s)

COSP1 7975 10.71 7950 21.31

COSP2 10094 59.13 10114 33.96

COSP3 infeasible infeasible
COSP4 13196 7.3 13246 56.94

COSP5 15364 59.8 15275 58.13

COSP6 no solution no solution
COSP7 no solution no solution

COSP2a 10100 50.87 10112 52.25

COSP5a 14907 32.52 15353 59.3
COSP5b 15314 42.88 15383 58.5
COSP6a no solution no solution
COSP6b no solution no solution
COSP7a no solution no solution
COSP7b no solution no solution

COSP4c 13248 32.8 13244 36.9
COSP5c 15124 56.2 15216 52.63

COSP6c no solution no solution
COSP7c no solution no solution

COSP3v 8335 36.86 8423 48.97

COSP4v 13252 35.94 13254 48.49

16.4 replacing total volume variables

The idea of only using the decision variables, by removing the derived
variables from the model and insert the decision variables in their
place, was already partly used to improve Mouret’s MIP. This was
done by removing the total volume variables and replacing it with
the sum of crude volume variables. We also tested if this would help
the CP.

Tables 34 presents the results of this performance test. Here we see
that smaller objective values are found or that more time is needed,
except for COSP2 which gives a similar result. The reason behind
these results is probably because CP actually performs better with
derived variables. Thus it was decided to keep the derived variables.



154 cp performance

Table 33: Comparison of different smallest units of volume

1 Mbbl 100 bbl
Instance Obj. Value CPU(s) Obj. Value CPU(s)

COSP1 7950 21.31 7961 56.85

COSP2 10114 33.96 10049 49.67

COSP3 infeasible infeasible
COSP4 13246 56.94 13159 57.52

COSP5 15275 58.13 no solution
COSP6 no solution no solution
COSP7 no solution no solution

COSP2a 10112 52.25 9908 51.19

COSP5a 15353 59.3 15107 59.64

COSP5b 15383 58.5 15169 53.79

COSP6a no solution no solution
COSP6b no solution no solution
COSP7a no solution no solution
COSP7b no solution no solution

COSP4c 13244 36.9 no solution
COSP5c 15216 52.63 no solution
COSP6c no solution no solution
COSP7c no solution no solution

COSP3v 8423 48.97 no solution
COSP4v 13254 48.49 13237 42.72

Table 34: Performance test results on the CP, total volume variable removed

Normal Without total volume var.

Instance Obj. Value CPU(s) Obj. Value CPU(s)

COSP1 7975 8.17 7970 3.29

COSP2 10110 24.42 10112 26.46

COSP3 8291 15.10 8291 25.77

COSP4 13249 30.11 13213 59.37

COSP5 15530 59.03 15368 58.33
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This chapter presents input data of the two PBDSP instances that were
used to test the optimizers.

17.1 pbdsp1

Table 35: PBDSP1: component tank data

Component tank
CT1 CT2 CT3 CT4 CT5 CT6 CT7

Cost ($/bbl) 23.00 25.00 21.00 19.00 23.00 30.00 30.00
Prod. Rate(Mbbl/day) 0.96 0.768 1.776 3.84 1.00 0.00 0.00
Initial stock (Mbbl) 0.40 1.00 1.00 1.00 1.00 1.00 1.00
Min capacity (Mbbl) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Max capacity (Mbbl) 7.00 7.00 15.00 6.209 6.209 100.00 100.00
Max outflow (Mbbl) 0.96 3.36 6.72 9.60 9.60 30.00 30.00
Component C1 C2 C3 C4 C5 C6 C7

CT8 CT9 CT10 CT11 CT12 CT13

Cost ($/bbl) 30.00 30.00 30.00 30.00 30.00 30.00
Prod. Rate(Mbbl/day) 0.00 0.00 0.00 0.00 0.00 0.00
Initial stock (Mbbl) 1.00 1.00 1.00 1.00 1.00 25.00
Min capacity (Mbbl) 0.00 0.00 0.00 0.00 0.00 0.00
Max capacity (Mbbl) 100.00 100.00 100.00 100.00 100.00 100.00
Max outflow (Mbbl) 30.00 30.00 30.00 30.00 30.00 30.00
Component C8 C9 C10 C11 C12 C13
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Table 36: PBDSP1: component data

Component
C1 C2 C3 C4 C5 C6 C7

Property
P1 0.57 0.71 0.69 0.77 0.78 0.66 0.68
P2 115.02 66.87 73.6 53.25 50.87 79.00 77.48
P3 97.60 98.00 98.00 89.00 88.00 68.60 68.00

P4 (NL) 63.22 2.90 13.05 1.45 2.90 10.01 11.31

C8 C9 C10 C11 C12 C13 CB1

P1 0.80 0.87 0.66 0.66 0.73 0.75 0.74
P2 45.09 31.56 81.99 82.70 62.50 52.32 58.76
P3 97.40 100.00 68.60 81.00 71.00 110.00 95.10

P4 (NL) 6.67 1.74 10.01 11.60 10.88 7.69 8.56

Table 37: PBDSP1: product tank data

Product Tank
PT1 PT2 PT3 PT4 PT5 PT6

Product P1 P1 P3 P2 P3 P3

Initial Stock (Mbbl) 0 0 0 3.596 0 0
Min capacity (Mbbl) 0 0 0 0 0 0
Max capacity (Mbbl) 66.00 66.00 66.00 23.00 23.00 23.00
Initial Component Blend - - - CB1 - -

Table 38: PBDSP1: product data

Product
P1 (price($/bbl)=30) P2 (price($/bbl)=31) P3 (price($/bbl)=32)
Min Max Min Max Min Max

Specifications
P1 0.70 0.78 0.70 0.78 0.70 0.78
P2 0.00 999 0.00 999 0.00 999
P3 95.00 999 90.00 999 95.00 999

P4 (NL) 0.00 12.00 0.00 12.00 0.00 12.00

Table 39: PBDSP1: main pipeline data

Pipeline
PL1 PL2

Min flowrate (Mbbl/day) 0.10 0.10
Max flowrate (Mbbl/day) 20.00 20.00
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Table 40: PBDSP1: demand vessel data

Demand Vessel
DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8

Product P2 P2 P3 P3 P3 P3 P3 P1

Demand (Mbbl) 4.60 4.60 7.055 20.00 7.055 23.35 7.055 70.78

Departure 9 days 20 days 7 days 9 days 15 days 20 days 24 days 28 days

17.2 pbdsp2

Table 41: PBDSP2: component tank data

Component Tank
CT1 CT2 CT3 CT4 CT5 CT6 CT7 CT8 CT9

Cost ($/bbl) 24.00 20.00 26.00 23.00 24.00 50.00 50.00 50.00 50.00
Prod. Rate (Mbbl/day) 15.00 33.00 20.00 14.00 18.00 10.00 0.00 0.00 0.00
Max outflow (Mbbl/day) 12.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00
Initial stock (Mbbl) 48.00 20.00 75.00 22.00 30.00 54.00 12.00 20.00 15.00
Min capacity (Mbbl) 5.00 5.00 5.00 5.00 5.00 5.00 0.00 0.00 0.00
Max capacity (Mbbl) 100.00 250.00 250.00 100.00 100.00 100.00 100.00 100.00 100.00
Component C1 C2 C3 C4 C5 C6 C7 C8 C9

Table 42: PBDSP2: component data

Component
C1 C2 C3 C4 C5 C6 C7 C8 C9

Property
P1 (NL) 127.27 117.83 158.97 99.48 148.19 118.61 122.14 96.75 111.08
P2 (NL) 33.81 33.34 24.67 35.13 35.76 28.99 33.57 23.52 24.71

P3 0.71 0.87 0.62 0.67 0.65 0.75 0.75 0.82 0.73
P4 3.60 1.00 100.00 94.90 91.50 15.00 0.00 1.30 34.30
P5 16.30 4.50 100.00 97.10 95.50 100.00 0.00 6.00 57.10
P6 94.30 93.50 100.00 100.00 100 100.00 0.00 93.9 95.90
P7 35.00 22.70 351.10 117.10 93.00 31.30 63.30 16.00 52.40

P8 (NL) 377.70 415.20 416.52 408.69 408.91 407.41 394.99 427.48 365.18
P9 0.00 88.60 0.00 2.30 0.20 0.00 43.98 65.30 21.30

P10 0.00 0.10 61.30 48.90 36.00 0.00 1.04 0.60 33.30
P11 0.00 3.30 0.00 1.10 0.10 0.00 3.33 0.90 0.80

P12 (NL) 10.03 11.03 8.21 12.54 12.39 12.50 12.09 7.28 7.25
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Table 43: PBDSP2: product tank data

Product Tank
PT1 PT2 PT3

Product G1 G2 G3

Initial Stock (Mbbl) 0.00 0.00 0.00
Min capacity (Mbbl) 5.00 5.00 5.00
Max capacity (Mbbl) 150.00 150.00 150.00
Initial Component Blend - - -

Table 44: PBDSP2: product data

Product
G1 (price($/bbl)=31.00) G2 (price($/bbl)=31.00) G3 (price($/bbl)=31.00)

Min Max Min Max Min Max

Recipe (%)
C1 0.00 0.22 0.00 0.25 0.00 0.25
C2 0.00 0.20 0.00 0.24 0.00 0.24
C3 0.02 0.10 0.00 0.10 0.00 0.10
C4 0.00 0.06 0.00 0.23 0.00 0.23
C5 0.00 0.25 0.00 0.25 0.00 0.25
C6 0.00 0.10 0.00 0.10 0.00 0.10
C7 0.00 1.00 0.00 1.00 0.00 1.00
C8 0.00 1.00 0.00 1.00 0.00 1.00
C9 0.00 1.00 0.00 1.00 0.00 1.00

Specifications
P1 (NL) 117.00 113.00 120.00
P2 (NL) 31.00 30.00 31.00

P3 0.72 0.775 0.72 0.775 0.72 0.775
P4 20.00 50.00 20.00 48.00 22.00 50.00
P5 46.00 71.00 46.00 71.00 46.00 71.00
P6 85.00 85.00 85.00
P7 45.00 60.00 45.00 60.00 60.00 90.00

P8 (NL) 415.00 415.00 410.00
P9 42.00 42.00 42.00

P10 18.00 18.00 18.00
P11 1.00 1.00 1.00

P12 (NL) 12.50 12.00 14.00
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Table 45: PBDSP2: main pipeline data

Pipeline
PL1 PL2 PL3

Min flowrate (Mbbl/day) 0.00 0.00 0.00
Max flowrate (Mbbl/day) 200.00 200.00 200.00

Table 46: PBDSP2: demand vessel data

Demand Vessel
DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8 DV9

Product G1 G2 G3 G2 G1 G2 G1 G1 G3

Demand (Mbbl) 10.00 12.00 10.00 25.00 25.00 23.00 30.00 10.00 22.00

Departure 1 days 1 days 1 days 3 days 4 days 4 days 7 days 8 days 8 days

Table 47: PBDSP2: component vessel data

Component Vessel
CV1 CV2 CV3

Component C9 C8 C7

Volume (Mbbl) 50.00 85.00 90.00

Arrival 1 days 3 days 6 days
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