
 Eindhoven University of Technology

MASTER

Parse forest disambiguation

van der Sanden, L.J.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7d25bdfe-d457-4124-8b90-a7c603469fc3

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

Department of Mathematics and Computer Science
Software Engineering and Technology Research Group

Supervisor:
Mark van den Brand

Eindhoven, August 29, 2014

Abstract

Context-free grammars are the most widely used formalism to express the
concrete syntax of general-purpose and domain-specific languages. Gener-
alized parsers are able to handle any context-free grammar, which allows
grammar engineers to write grammars in a natural way. A consequence of
supporting the whole class of context-free grammars is that also ambiguous
grammars are supported. This means that parsing an input sentence may
lead to multiple derivations rather than a unique derivation. In generalized
parsing, the set of all parse trees of a given input sentence is embedded in
a parse forest. By using disambiguation rules and disambiguation filters,
undesired derivations can be removed.

In this thesis we will define a set of parser-technology independent
parse forest filters, that allows the removal of undesired parse trees from a
shared packed parse forest. These filters remove all parse trees from a parse
forest that contain some construct, such as an invalid path. Given declar-
ative disambiguation rules expressing the associativity, and precedence of
operators, we can create filters that specify the constructs that should be re-
moved. We will describe a new filter based on precede and follow restric-
tions, that allows the disambiguation of expression grammars containing
mixfix operators with respect to associativities and precedences of opera-
tors. As a case study we will look into the disambiguation of the mCRL2
language, where also other disambiguation filters like keyword restriction
and prefer filtering are used.

Often disambiguation filtering can be partially applied on parse time,
avoiding the creation of undesired parse trees in the first place. We will
show how our disambiguation filters for expression grammars can be in-
corporated into the GLL algorithm. This integration leads to a substantial
decrease in the total time needed for parsing and disambiguation of input
sentences containing many ambiguities.

iii

Contents

1 Introduction 2
1.1 Motivation . 3
1.2 Research Questions . 4
1.3 Scope . 5
1.4 Outline . 5

2 Preliminaries 6
2.1 Generalized LL Parsing . 7
2.2 Shared Packed Parse Forest (SPPF) 8

3 Disambiguation 14
3.1 Disambiguation Rules . 15
3.2 Moment of disambiguation 16
3.3 Disambiguation Filters . 18

3.3.1 Subtree Exclusion . 19
3.3.2 Reject rules . 19
3.3.3 Precede-follow restrictions 20

4 Filtering in the SPPF 22
4.1 Parse Trees in an SPPF . 23
4.2 SPPF Filters . 24
4.3 Removing parse trees from the SPPF 25

4.3.1 Removing all parse trees containing some node . . . 27
4.3.2 Removing all parse trees containing some edge . . . 30
4.3.3 Removing all parse trees containing some path 32
4.3.4 Removing all parse trees containing some subtree . . 38

5 Disambiguation of Expression Grammars 41
5.1 Expression Grammars . 41
5.2 Precedence correct parse trees 42
5.3 Why two-level filtering is not sufficient 43
5.4 Precede and Follow Restrictions 43

5.4.1 Disambiguate all single character operators 45
5.4.2 Disambiguate Java expressions 49

v

CONTENTS vi

6 Disambiguation of Mixfix Expressions 52
6.1 Mixfix expressions . 52
6.2 Causes of ambiguity in mixfix expressions 53

6.2.1 Shared separator tokens 53
6.2.2 Adjacent operands . 54
6.2.3 Left-open vs. right-open operators 54

6.3 mCRL2 specification language 57
6.3.1 Data types . 57
6.3.2 Processes and Actions 58

6.4 Parsing mCRL2 specifications 58
6.4.1 Restricted keywords 60
6.4.2 Ambiguities in sort expressions 60
6.4.3 Ambiguities in data expressions 63
6.4.4 Ambiguities in process expressions 63

6.5 Left-open right-open filter . 64
6.5.1 Hidden openness with nullable nonterminals 64
6.5.2 Applicability of restrictions 65
6.5.3 Updating the walker 66
6.5.4 Left-open right-open filter pseudo code 67
6.5.5 Apply left-open right-open filtering on parse time . . 68

6.6 Order of filtering is of importance 70

7 Experimental Evaluation 73
7.1 Experimental Setup . 73
7.2 Hypotheses . 75
7.3 Results and Discussion . 75

7.3.1 Results . 75
7.3.2 Discussion . 78

8 Implementation 80
8.1 GLL parser generator . 80

8.1.1 Abstract parser . 81
8.1.2 Scanner . 81

8.2 Parse tree removal . 82

9 Conclusions 83
9.1 Contributions to Research Questions 83
9.2 Future work . 85

A DParser grammar for mCRL2 92

B BNF grammar for mCRL2 99

C Experimental data 104

Preface

This thesis is the result of my gradation project at Eindhoven University
at Technology. Before starting this project, I have done a honors project
and seminar on GLL parsing together with Bram Cappers and Josh Men-
gerink. Together, we have implemented an object-oriented variant of the
GLL parsing algorithm extended with a plug-in architecture for supporting
error handling. This project also sparked my interest to continue research
in the field of software language engineering.

I would like to thank Mark van den Brand for being my supervisor in
both projects. During my graduation project, he gave me a lot of freedom
to explore the topic of parse forest disambiguation, and provided me with
good advice. Furthermore, he suggested the topic of disambiguation which
turned out to be very interesting.

During my studies I have met a lot of wonderful people at the uni-
versity, which made the time I spend there very enjoyable. I would like to
thank the friends I made over the past five years for making the courses and
studying fun. In particular I would like to thank Bram Cappers and Josh
Mengerink, with whom I shared many great moments during my master
studies. Furthermore I would like to thank my family for supporting me
during my entire studies.

I would like to thank Elizabeth Scott for providing me with thorough
feedback and suggestions on ideas, and parts of this thesis. Also thanks
to Sjoerd Cranen and Wieger Wesselink for providing me with the mCRL2
grammar, and describing the issues that arise while parsing mCRL2 files.
Finally, I would like to thank Adrian Johnstone, Elizabeth Scott, and Tim
Willemse for serving on my examination committee.

Bram van der Sanden
August 12, 2014

Eindhoven

vii

Chapter 1

Introduction

Context-free grammars are prevalent in software engineering to define a
wide range of languages. From a context-free grammar, parsers that derive
the structure of a sentence in the language can be automatically generated.
Classical deterministic parser generators in the line of YACC [30] are able
to deal with almost all modern programming languages and are used for
parsing languages like RUBY, OCAML, and PHP. The output of a determin-
istic parser is a parse tree that reflects the derivation of the sentence. Over
the years it has been shown that these kind of parser generators are not able
to solve modern challenges in software engineering [6, 9, 15]. These chal-
lenges include issues related to modularity of grammars, domain-specific
languages, and reverse engineering.

For these and other reasons, there has been a lot of interest in general-
ized parsing techniques [35, 46, 51, 52] in the last decade. Parser generators
that are based on generalized parsing algorithms have several advantages.
The main advantage is that they can generate a working parser for any
context-free grammar automatically. When using a subclass of all context-
free languages, some user grammar may not be supported and rewriting
may be necessary to fit it into the subclass. Supporting the full class of
context-free grammars means that the grammar can be written in a natural
way, which ensures better maintainability and comprehensibility. Further-
more the full class of context-free grammars is closed under composition.
That is, when two context-free grammars are combined, the result is again
a context-free grammar. This allows for modular grammars and reuse
of grammars. One can think of examples like template languages where
programming code is added into the template [5], or integrating database
query languages into general purpose programming languages.

One of the consequences of supporting the whole class of context-free
grammars is that also ambiguous grammars are supported. In an ambiguous
grammar there are sentences in the language that can be derived in multi-
ple ways. Each derivation could potentially reflect a different interpretation

2

3 CHAPTER 1. INTRODUCTION

of the sentence, depending on the semantics of the language. Detecting
whether a context-free grammar is ambiguous is in general undecidable
[19]. There has, however, been a substantial amount of research in the area
of ambiguity detection for specific types of ambiguities [8,11,18,42]. These
techniques can detect various types of ambiguity by looking at the struc-
ture of the grammar and generating a set of input sentences to see whether
they are ambiguous.

In most cases one is interested in a specific derivation rather than all
possible derivations. By means of disambiguation, the intended derivation
is selected from the set of of possible derivations. Using a set of declarative
disambiguation rules one can specify properties like the priority and associa-
tivity of operators. Based on these rules, disambiguation methods can be
designed that enforce these rules, removing undesired derivations.

Since generalized parsers generate all possible derivations given a gram-
mar and a sentence, the output of the parse can be a set of trees rather than
a single parse tree. In most generalized parsing algorithms, a parse forest
is used to represent the set of parse trees. In this data structure sharing is
often used to allow a more compact storage of all trees.

In this thesis we will look at the disambiguation of shared packed parse
forests (SPPFs), which can be generated by generalized algorithms like Ear-
ley [45], generalized LR (GLR) variants like RIGLR [45] and RNGLR [43],
and generalized LL (GLL) [46]. As the name already indicates, sharing is
used to reduce the required space for storing all parse trees. So rather than
storing each tree separately, subtrees that occur in multiple trees are shared.

1.1 Motivation

Since the start of research in the area of parsing technology, there has been
a lot of interest in the topic of ambiguity and disambiguation. Before the
introduction of generalized parsing methods, ambiguities where most of
the time avoided by rewriting the grammar or handled by changing the
actions in shift-reduce based parsers. While these techniques reached their
goal – the outcome was a single desired parse tree – the side effects where
complex grammars, and disambiguation semantics directly defined based
on steps taken in the specific parser algorithm.

With the introduction of generalized parsing algorithms it became pos-
sible to generate all parse trees, and clearly define the desired and unde-
sired trees based on the notion of disambiguation filters. In this thesis we
will look at SPPF filters to remove parse trees from the SPPF containing
some construct, such as paths between two nodes that each correspond
to some production. In this way, we can remove all parse trees having
this construct at once, rather than first expanding the SPPF into a set of all
parse trees. These SPPF filters are used in the specification of disambigua-

1.2. RESEARCH QUESTIONS 4

tion filters aimed at resolving specific types of ambiguities. We will look
at disambiguation filters that resolve ambiguities in expression grammars,
mostly related to the associativity and precedence of operators. The ambi-
guities are resolved by finding undesired constructs, and removing them
using our SPPF filters.

This approach has a number of advantages. First of all, we can precisely
define which parse trees we want to remove. Exactly those parse trees can
be removed using the SPPF filters, while keeping valid parse trees in the
SPPF. Because the filters are defined on trees, they are parser-independent.
Based on the semantics of the filter, we can possibly implement them in the
generated parsers, to avoid generating the undesired trees in the first place.
In this situation, care has to be taken that valid trees will still be present in
the output SPPF.

1.2 Research Questions

The objective of this thesis is to look at disambiguation in shared packed
parse forests that are generated by generalized parsing algorithms such as
GLL and GLR. We will investigate the problem of ambiguity in expres-
sion grammars with operators of arbitrary fixity (infix, prefix, postfix, and
closed operators), and higher arity (e.g. unary, binary), and use parse for-
est disambiguation as a method for resolving these ambiguities. The main
difficulty in filtering SPPFs is the fact that sharing is used. Because of this
sharing, we must always be very cautious in removing certain nodes or
edges to avoid removing valid parse trees.

Research Question 1 How can we remove undesired parse trees from an
SPPF while keeping desired parse trees?

Given algorithms to remove undesired parse trees from an SPPF, we
would like to look at ambiguity resolution in expression grammars with
unary and binary operators. These kinds of grammars are part of practi-
cally any modern programming language. What kind of ambiguities oc-
cur, and how can we specify and implement parse forest filters that resolve
these ambiguities?

Research Question 2 What kind of ambiguities occur in expression gram-
mars and how to implement parse forest filters to resolve these ambi-
guities?

Given the parse forest filters for expression grammars, we would like
to see whether these filters can be adapted to apply to the wider class of
mixfix expressions having operators of arbitrary fixity.

Research Question 3 Are the parse forest filters able to resolve all ambigu-
ities occurring in mixfix grammars?

5 CHAPTER 1. INTRODUCTION

1.3 Scope

In this thesis we will look at ambiguity resolving in expression grammars
and mixfix grammars. These kind of grammars are often part of program-
ming languages, and are typically used as a case study to demonstrate dis-
ambiguation filters. Another class where ambiguity resolving plays a big
role is the class of natural language grammars. In the research area of nat-
ural language processing (NLP), generalized parsing algorithms are used
for parsing natural languages. Often statistics are used to determine the
most likely derivation, for instance in the Stanford Parser [32]. We will not
look into natural language grammars, but the algorithms given for remov-
ing parse trees in the SPPF are grammar independent and can hence also
be applied in this research area.

1.4 Outline

The remainder of this thesis is structured in the following way. In Chap-
ter 2 we formally introduce the notation that we will use throughout this
thesis, and describe the structure of shared-packed parse forests. In Chap-
ter 3, we focus on the topic of disambiguation and introduce the notion of
disambiguation filters.

Chapter 4 tries to answer our first research question, and looks into
removing parse trees from an SPPF. Throughout this chapter we will give
examples of the usefulness and applicability of our removal filters.

Chapters 5 and 6 look at the disambiguation of expression grammars,
and mixfix grammars respectively. The disambiguation is done by means
of a set of disambiguation filters. As a case study of a mixfix grammar
language, we will look at the disambiguation of mCRL2 [20] in Chapter 6.

In Chapter 7, we describe the experiments that have been run to test
our filters on mCRL2 input files. We also show the performance gain, when
filters are integrated into the parser. The implementation of our GLL parser
generator and filters that have been used for running the experiments, are
described in Chapter 8.

Finally, Chapter 9 concludes this paper by summing up the contribu-
tions of this thesis and providing suggestions for future research.

Chapter 2

Preliminaries

In this thesis the following definitions are used. A context-free grammar
(CFG) Γ is defined as a quadruple 〈T,N, P, S〉, where T is a set of termi-
nal symbols, N a set of nonterminal symbols, S is the start symbol, and
P ⊆ N × (T ∪ N)∗ a set of productions. We write A ::= α for a production
p = 〈A,α〉 ∈ P , whereA is called the head, and α the body of the production.
Productions with the same left hand sides are often composed into a single
rule using the alternation symbol, A ::= α1 | . . . | αp. We refer to strings αi
as the alternates of A. Productions are also sometimes called grammar rules.

A sentential form is a finite string in (T∪N)∗, that can be derived from the
start symbol in zero or more steps. A sentence is a sentential form without
nonterminal symbols. The symbol ε denotes the empty sentential form.
We use lowercase greek characters α, β, γ, . . . for variables over sentential
forms. A derivation step has the form γAβ ⇒ γαβ where γ, β ∈ (T ∪N)∗ and
A ::= α is a production. A derivation of τ from σ is a sequence σ ⇒ β1 ⇒
β2 ⇒ . . .⇒ βn−1 ⇒ βn = τ , also written as σ ∗⇒ τ , or, if n > 0, σ +⇒ τ . A full
derivation is a sequence of production rule applications that starts with the
start symbol and ends with a sentence. A derivation is left-most if at each
step the left-most nonterminal is replaced. The language L(Γ) of a grammar
Γ is the set of all sentences derivable from S, i.e. the set u ∈ T ∗ such that
S
∗⇒ u. A grammar is ambiguous if there is a sentence u for which there is

more than one left-most derivation S ∗⇒ u.
A nonterminal A is nullable if A ∗⇒ ε. If there is a γ ∈ (T ∪N)∗ such that

A
+⇒ Aγ then A is said to be left recursive, and if A ∗⇒ βAγ where β +⇒ ε we

say A has hidden left recursion.
A grammar slot defines the position immediately before or after any

symbol in any alternate. A grammar pointer points to a grammar slot in the
grammar. Grammar slots are written in the same fashion as LR(0) items, so
S ::= α ·β is the position in the grammar immediately after the last symbol
in α.

Define FIRSTT (A) = {t ∈ T | ∃α(A ∗⇒ tα)}, and FOLLOWT (A) = {t ∈

6

7 CHAPTER 2. PRELIMINARIES

T | ∃α, β(S ∗⇒ αAtβ)}. If A is nullable, define FIRST(A) = FIRSTT (A) ∪
{ε}, otherwise FIRST(A) = FIRSTT (A). If S ∗⇒ αA define FOLLOW(A) =
FOLLOWT (A) ∪ {$}, otherwise FOLLOW(A) = FOLLOWT (A).

In a bracketed derivation [24], each application of a rule is recorded by
a pair of brackets. For example S ⇒ (αEβ) ⇒ (α(E + E)β) ⇒ (α(E +
(E ∗E))β). Brackets are (implicitly) indexed with their corresponding rule.
In our example S derives E, which in turn derives E + E and so forth.
Bracketed derivations will only be used for epsilon-free grammars.

A parse tree is an ordered finite tree representation of a full derivation
of a specific sentence. The root node is labeled with the start symbol, the
interior nodes are labeled with nonterminals and the leaf nodes are labeled
with elements of T ∪ {ε}. The children of an interior node n labeled A are
ordered and labeled with the symbols (in order) of some alternate αi of
A. We define head(n) = A, and prod(n) = 〈A,αi〉. Define T (t) to be the
subtree rooted at t. When we say n ∈ T (t), we mean that n is contained in
the set of nodes of the tree with root t.

The extent of a node with symbol X denotes the substring on which the
symbol has been matched. For every n ∈ t we define extent(n) = 〈in, jn〉
with 1 ≤ in ≤ jn ≤ m, where the input string has length |m|. Variable in
refers to the left extent of the node, and defines the starting position in the
input string. Variable jn refers to the right extent of the node, and defines
that the symbol is matched up to (so not including) position jn.

A parse forest is a set of parse trees, extended with some construct to
denote ambiguities. A parse forest represents full derivations of a single
sentence. In this thesis we will use the term parse forest to denote a shared-
packed parse forest, that is used for instance in the generalized LL parsing
algorithm [46]. The shared-packed parse forest is described in Section 2.2.
The yield of a tree t is the string containing all leaves from the left to right.
The function can be lifted to a set of parse trees by yield(Φ) = {yield(t) |
t ∈ Φ}. If there are two or more parse trees with the same yield in grammar
Γ, the grammar is called ambiguous.

A recognizer for Γ is a terminating function that takes any sentence α
as input and returns true if and only if S ∗⇒ α. A parser for Γ is a termi-
nating function that takes any sentence α as input and returns a parse forest
for α. Scannerless parsing is a term used to indicate parsing without a sep-
arate lexical analysis phase. In scannerless parsing, a syntax definition is a
context-free grammar with characters as terminals.

2.1 Generalized LL Parsing

There are two main flavors of parsing algorithms: bottom-up parsers, and
top-down parsers. Bottom-up parsers start with the target string and try to
derive the start symbol. This type of parsers use a parse table and shift/re-

2.2. SHARED PACKED PARSE FOREST (SPPF) 8

duce actions. The parse table is typically constructed automatically and
makes the bottom-up parsers generated hard to read. Top-down parsers
begin at the start symbol of the grammar and try to apply production rules
to arrive at the input string. This kind of parsers follow the structure of the
grammar, and is therefore easier to debug and understand. One of the most
recent top-down algorithms is the generalized LL (GLL) [44,46] parsing al-
gorithm. This algorithm generates parsers that can deal with ambiguity
and left-recursion, and runs in worst case cubic time. Because it is a top-
down parser, the generated parser code is easy to read, and debug and can
be easily generated by means of a code template. It is even feasible to do
the implementation of the parser for a given grammar by hand.

The GLL algorithm is based on the idea of traversing the grammar Γ,
using an input string u. For the traversal we use a pointer into the grammar
(a grammar slot), and another pointer into the input string. Multiple traver-
sals are handled using descriptors. A descriptor (L, s, i, w) is processed by
restarting a traversal with the grammar pointer at grammar slot L, s as the
stack top and the input pointer at position i. Pointerw refers to a SPPF node
in the SPPF that is being generated. We need a reference to the stack top to
know where we have to continue the derivation after deriving the current
symbol. There are potentially infinitely many descriptors for a given input
string, because the number of stacks may be unbounded. The solution to
this problem, introduced by Tomita [50], is to use a graph-structured stack
(GSS). Lower portions of stacks that are identical are merged, and stack
tops are recombined when possible. Cycles are added to the GSS in order
to deal with left-recursion. Because of this sharing, a descriptor can record
several partial traversals when they restart at the same grammar and at
the same input position. When the set of pending descriptors is empty, all
possible traversals have been explored, and all valid derivations have been
determined.

2.2 Shared Packed Parse Forest (SPPF)

A GLL parser uses a shared packed parse forest (SPPF) to represent the com-
plete set of derivation trees for a given input string. An SPPF is a bipartite
graph where sharing is used to reduce the total space required to represent
all derivation trees. Nodes which have the same subtree are shared, and
nodes are combined which correspond to different derivations of the same
substring from the same nonterminal.

There are three types of nodes in an SPPF associated with a GLL parser:
symbol nodes, packed nodes, and intermediate nodes. In the visualizations sym-
bol nodes are shown as rectangles with rounded corners, packed nodes are
shown as circles, or ovals when the label is visualized, and intermediate
nodes are shown as rectangles.

9 CHAPTER 2. PRELIMINARIES

Symbol nodes have labels of the form (x, j, i) where x is a terminal,
nonterminal, or ε (i.e. x ∈ T ∪ N ∪ {ε}), and 0 ≤ j ≤ i ≤ m with m being
the length of the input sentence. The tuple (j, i) is called the extent, and
denotes that the symbol x has been matched on the substring from position
j up to position i. Here j is called the left extent, and i is called the right
extent.

Packed nodes have labels of the form (t, k), where 0 ≤ k ≤ m. Here
k is called the pivot, and t is of the form X ::= α · β. The value of k rep-
resents that the first symbol of β starts at position k of the input string.
Packed nodes are used to represent multiple derivation trees. When mul-
tiple derivations are possible with the same extent, starting from the same
nonterminal symbol node, a separate packed node is added to the symbol
node for each derivation. We will sometimes refer to these packed nodes
as alternatives.

Intermediate nodes are used to binarize the SPPF. They are introduced
from the left, and group the children of packed nodes in pairs from the
left. The binarization ensures that the size of the SPPF is worst-case cubic
in the size of the input sentence. The fact that the SPPF is binarized does
not mean that each node in the SPPF has at most two children. A symbol
node or intermediate node can still have as many packed node children as
there are ambiguities starting from it. Intermediate nodes have labels of the
form (t, j, i) where t is a grammar slot, and (j, i) is the extent. There are no
intermediate nodes of the shape (A ::= α·, j, i), where the grammar pointer
of the grammar slot is at the end of the alternate. These grammar slots are
present in the form of symbol nodes.

Consider Grammar Γ2.1. The SPPF resulting from this grammar and
sentence abcd is shown in Figure 2.1a. Suppose that the intermediate nodes
had not been added to the SPPF. Then the nonterminal symbol nodes for
A, B, C, and D would have been attached to the nonterminal symbol node
S as is shown in Figure 2.1b. This example shows how intermediate nodes
ensure that the tree is binarized.

S ::= ABCD A ::= a B ::= b C ::= c D ::= d (Γ2.1)

Cycles

Grammars that contain cycles can generate sentences which have infinitely
many derivation trees. A context-free grammar is cyclic if there exists a
nonterminal A ∈ N and a derivation A

+⇒ A. Note that a cyclic context-
free grammar implies that the context-free grammar is left-recursive, but
the converse does not hold. The derivation trees for a cyclic grammar are
represented in the finite SPPF by introducing cycles in the graph.

2.2. SHARED PACKED PARSE FOREST (SPPF) 10

(S, 0, 4)

(S ::= A B C • D ,0,3) (D, 3, 4)

(S ::= A B • C D ,0,2) (C, 2, 3)

(A, 0, 1) (B, 1, 2)

(a, 0, 1) (b, 1, 2)

(c, 2, 3)

(d, 3, 4)

(a) SPPF with intermediate nodes

(S, 0, 4)

(A, 0, 1) (B, 1, 2) (C, 2, 3) (D, 3, 4)

(a, 0, 1) (b, 1, 2) (c, 2, 3) (d, 3, 4)

(b) SPPF without intermediate nodes

Figure 2.1: SPPF for grammar S ::= ABCD A ::= a B ::= b C ::=
c D ::= d and sentence abcd.

Consider as an example Grammar Γ2.2. All derivation trees of sentence
a generated by this grammar can be represented by the SPPF shown in
Figure 2.2.

S ::= SS | a | ε. (Γ2.2)

A particular derivation tree can be retrieved from the SPPF by unwind-
ing the cycle the required number of times, and selecting one packed node
below each symbol and intermediate node.

Ambiguities

A parse forest is ambiguous if and only if it contains at least one ambiguity.
An ambiguity arises when a symbol node or intermediate node has at least
two packed nodes as its children. We will call such a node ambiguous. Con-
sider for instance Grammar Γ2.3 and input sentence 1 + 1 + 1. This gives
the SPPF as shown in Figure 2.3.

E ::= E + E | 1 (Γ2.3)

In this SPPF, symbol node (E, 0, 5) has two packed nodes as children.
This means that there are at least two different parse trees starting at this
node, the parse trees representing derivations (E+(E+E)) and ((E+E)+
E) respectively.

11 CHAPTER 2. PRELIMINARIES

(S
,
0
,
1
)

(S
 :
:=

 a
•
,0

)
(S

 :
:=

 S
 S

•
,1

)
(S

 :
:=

 S
 S

•
,0

)

(a
,
0
,
1
)

(S
 :
:=

 S
 •

 S
 ,
0
,1

)
(S

,
1
,
1
)

(S
 :
:=

 S
 •

 S
 ,
0
,0

)

(S
 :
:=

 S
 •

 S
 ,
0
)

(S
 :
:=

 ε
•
,1

)
(S

 :
:=

 S
 S

•
,1

)

(ε
,
1
,
1
)

(S
 :
:=

 S
 •

 S
 ,
1
,1

)

(S
 :
:=

 S
 •

 S
 ,
1
)

(S
 :
:=

 S
 •

 S
 ,
0
)

(S
,
0
,
0
)

(S
 :
:=

 ε
•
,0

)
(S

 :
:=

 S
 S

•
,0

)

(ε
,
0
,
0
)

Fi
gu

re
2.

2:
SP

PF
fo

r
gr

am
m

ar
S

::=
S
S
|a
|ε

an
d

se
nt

en
ce
a

.

2.2. SHARED PACKED PARSE FOREST (SPPF) 12

(E, 0, 5)

(E ::= E + • E ,0,2)

(E, 2, 5)

(E, 4, 5)

(E ::= E + • E ,0,4)

(E, 0, 1) (+, 1, 2)

(1, 0, 1)

(E ::= E + • E ,2,4)

(E, 2, 3) (+, 3, 4)

(1, 2, 3)

(1, 4, 5)

(E, 0, 3)

Figure 2.3: SPPF for grammar E ::= E + E | 1 and sentence 1 + 1 + 1.

13 CHAPTER 2. PRELIMINARIES

All parse trees can be retrieved from the SPPF by unfolding it. When
a symbol node has multiple packed nodes as child, one of these has to be
selected. The intermediate nodes and packed nodes can be removed in the
second step. When removing a node, its children are attached to the parent
of the node. It is important that the order of the children stays the same.

Structural properties of an SPPF

There are various structural properties that are useful when reasoning about
SPPFs in general. At first note that each symbol node (E, j, i) with E ∈
T ∪ N ∪ {ε} is unique, so an SPPF does not contain two symbol nodes
(A, k, l) and (B,m, n) with A = B, k = m, and l = n.

Terminal symbol nodes have no children. These nodes represent the
leaves of the parse forest. Nonterminal symbol nodes (A, j, i) have packed
node children of the form (A ::= γ·, k) with j ≤ k ≤ i, and the number of
children is not limited to two.

Intermediate nodes (t, j, i) have packed node children with labels of the
form (t, k), where j ≤ k ≤ i.

Packed nodes (t, k) have one or two children. The right child is a sym-
bol node (x, k, i) and the left child (if it exists) is a symbol or intermediate
node with label (s, j, k), where j ≤ k ≤ i. Packed nodes have always ex-
actly one parent which is a symbol node or intermediate node.

It is useful to observe that the SPPF is a bipartite graph, with on the one
hand the set of intermediate and symbol nodes and on the other hand the
set of packed nodes. Therefore edges always go from a node of the first type
to a node of the second type, or the other way round. As a consequence,
cyles in the SPPF are always of even length.

Chapter 3

Disambiguation

When a given input sentence can be parsed in various ways, the resulting
parse forest will contain multiple parse trees. Each of these parse trees has
a different structure, corresponding to a different derivation. In order to
choose the intended parse tree when multiple parse trees are available, a set
of disambiguation rules is given next to the context-free grammar. These
disambiguation rules can be used to deal with ambiguities before, after, and
during parsing. Figure 3.1 shows this architecture, which has been first in-
troduced by Klint and Visser [33]. In this chapter we will look at some
of the most used disambiguation rules. Section 3.2 describes how they are
used for dealing with ambiguities during various moments of parsing. Sec-
tion 3.3 introduces the notion of filters to specify which parse trees are un-
desired.

CFG’

Parser Generator

ParserSentence Forest Filter Tree

CFG

Transformations

Disambiguation Rules

Figure 3.1: Use of disambiguation rules at different phases.

14

15 CHAPTER 3. DISAMBIGUATION

3.1 Disambiguation Rules

Already in 1975, Aho and Johnston [4] noted that various syntactic con-
structs in programming languages can be specified more naturally and
concisely using an ambiguous grammar rather than an equivalent unam-
biguous grammar. In their work, the ambiguous grammar is accompanied
by a set of disambiguation rules that are used to resolve parsing action con-
flicts. Using these disambiguation rules for instance operator precedence,
and associativity can be handled, as well as the well-known dangling else
problem. This approach, of using a set of rules aimed at resolving parsing
action conflicts, has been implemented for the first time in the still widely
used YACC parser generator [30].

The problem with this approach is that the disambiguation rules are
guided by parser algorithms [10]. In order to understand the semantics of
this kind of disambiguation rule, one must understand the implementation
of the parsing algorithm.

Ideally one would have a set of declarative disambiguation rules that have
a natural form that is easy to understand by language engineers. These
kinds of rules can be implemented as a generic filtering mechanism that re-
move undesired parse trees from a set of parse trees [31, 33]. Using explicit
disambiguation rules makes it possible to apply them selectively, possibly
using context-information that is not always available during parsing.

We will now list a number of often encountered disambiguation rules.
Some of these rules are specific to scannerless parsers. The rules listed be-
low have been implemented in the parser framework of SDF2 [53].

Priority rules specify the relative priorities between productions. For in-
stance the production for addition may not be a direct child of the
production for multiplication.

Associativity rules are used to express the associativity of an operator. For
instance, since addition is left-associative, the production of the ad-
dition operator may not be a direct right child of itself. Besides left-
associative, an operator can be right-associative or non-associative.
Non-associativity means that no nesting is allowed at all.

Follow restriction rules are a simplification of adjacency restriction rules in-
troduced by Salomon et al. [40, 41], and they are used to achieve
longest match disambiguation. Follow restriction rules restrict the
symbols that may follow a certain symbol. For instance, using a fol-
low restriction one can specify that an identifier may not be followed
by any character in the regular expression [A-Za-z0-9].

Reject production rules are used to implement a reserved keywords mecha-
nism. Using reject production rules one can for instance specify that

3.2. MOMENT OF DISAMBIGUATION 16

a production may never derive certain keywords that are reserved in
the language.

Preference/Avoid rules are used for selecting a preferred derivation or avoid-
ing a derivation respectively, when multiple derivations are present.
They can for example be used to disambiguate the dangling else con-
struction. This is done by preferring the production with the if-then
over the if-then-else production.

3.2 Moment of disambiguation

Disambiguation can be carried out before parsing by rewriting the gram-
mar, during parser generation by modifying the parsers being generated,
and as post-parse filtering on the parse forest. In general, deferring disam-
biguation is expensive but also makes it more generic.

Grammar rewriting Grammar transformations are often used to elimi-
nate left recursion, or nullable productions (productions that derive ε in
one or more steps). The transformations are always language preserving,
but the shape of the derivations will look different. Grammar rewriting is
often used to avoid ambiguities arising from associativity and precedence
by encoding these rules in the grammar directly. Consider as an example
grammar Γ3.1.

E ::= E + E | E ∗ E | 1 (Γ3.1)

When parsing a sentence like 1 + 1 ∗ 1, the resulting parse forest will con-
tain two derivations: (E + (E ∗ E)) and ((E + E) ∗ E). To add the higher
precedence of the ∗ over the precedence of + to the grammar, we layer the
grammar. First we create a nonterminal for each level of precedence, then
we isolate the corresponding part of the grammar, and finally we force the
parser to recognize the higher precedence sub-expressions first. When per-
forming these steps we get the modified grammar Γ3.2.

S ::= E

E ::= E + T | T
T ::= T ∗ F | F
F ::= 1

(Γ3.2)

The rewritten grammar is no longer ambiguous, and correctly adheres to
the higher precedence of ∗ over +. One can see that the rewritten grammar
becomes very large and incomprehensible when many precedence levels
are integrated into the grammar. There are also more rewrite steps needed
to reach some of the terminal symbols. For instance, to obtain a number

17 CHAPTER 3. DISAMBIGUATION

from S we have the derivation S ⇒ E ⇒ T ⇒ F ⇒ number. Another prob-
lem arises when new operators need to be added to the modified gram-
mar. If these operators have a precedence level that is not yet present in the
grammar, we need to modify several rules in the grammar. In the original
grammar we would just add alternates for the operators and leave the rest
of the grammar untouched.

It is not always obvious how to eliminate ambiguities by rewriting the
grammar. Furthermore there are ambiguities that cannot be removed by
rewriting [29]. A grammar for which no equivalent unambiguous grammar
exists is called an inherently ambiguous grammar.

Parser modification A technique often deployed in deterministic parser
algorithms is modifying the parsers being generated. By disallowing the
creation of unwanted derivations, ambiguities can be avoided. For instance
in LR parsing, various shift/reduce conflict can be avoided by using prece-
dence declarations. Based on the topmost terminal symbol, the lookahead,
and the precedence declarations either a shift or a reduce is performed.
This mechanism is used in tools like YACC [30].

The ambiguities that can be solved using these techniques are mostly
ambiguities like associativity and priority ambiguities. Ambiguities that
are more complex are often not supported by these standard mechanisms.
Such ambiguities can only be resolved by creating the parser by hand,
which is far from trivial and error-prone.

Parse forest disambiguation As mentioned before, generalized parsers
produce a parse forest containing all the possible derivations of the input
sentence according to the grammar. The ambiguities encountered are en-
coded in the parse forest itself. Using disambiguation, the ambiguities in
the parse forest can be resolved by filtering undesired derivations. This
technique can be used for any parsing algorithm that generates a parse
forest. Filtering parse forests is for instance supported by the parser frame-
work of SDF2 [27,53], based on the scannerless GLR parsing algorithm [52].

Parse forest filtering can be implemented in various ways. For instance,
the paradigm of term rewriting has been used as a mechanism to filter am-
biguities in parse forests. Afroozeh et al. [3] use a form of tree rewriting
in order to resolve ambiguities in SPPFs. Disambiguation is performed
bottom-up, starting at the leaves of the parse forest. Because sharing is
used in an SPPF to reduce the required storage space, care has to be taken
that no valid parse trees are removed by applying a filter.

Brand et al. [13] use term rewriting to filter ambiguities based on se-
mantical information. They use a preprocessing step that transforms the
parse forest into a single tree that represents the parse forest. This tree has
a special ambiguity constructor to make the ambiguities in a parse forest visi-

3.3. DISAMBIGUATION FILTERS 18

ble to a term rewriting system. Since term rewriting is done on a tree rather
than a forest, it is easier to prove that no valid parse trees are removed un-
intentionally. However, the consequence of using a single tree rather than a
forest is that the amount of storage space required might become exponen-
tially larger. By using data structures that enforce maximal sharing, such
as Annotated Terms (ATerms) [12], this can be prevented.

In general, we can observe that filtering a parse forest consists of two
steps. First, we need to find the invalid parse trees in the SPPF. Given these
invalid parse trees, we need algorithms that remove all invalid parse trees
from the SPPF, while preserving all valid parse trees. Of course, these two
steps can be alternated to remove invalid parse trees as soon as they are
found. In the remainder of this chapter we will describe some parse filters
that have been introduced in the literature, and describe how they can be
implemented. The next chapter will focus on removing invalid parse trees
from an SPPF.

3.3 Disambiguation Filters

Given a set of disambiguation rules, we need a mechanism to specify which
parse trees are desired and which ones are not desired. Klint and Visser [33]
have proposed a framework of filters to describe and compare many dis-
ambiguation methods in a parser-independent way. Using a filter one can
select the intended trees from the set of all parse trees being generated. In
many cases a filter is defined in negative terms by specifying which trees
are undesired, and should be removed. The application of filters it not
limited to post-parse filtering. In some cases filters can be applied earlier,
during parsing or sometimes even during parser generation.

Let Φ denote a set of parse trees, and consider a grammar Γ. A dis-
ambiguation filter F is a function from a set of parse trees to a set of parse
trees, where F(Φ) ⊆ Φ. This condition ensures that a filter does not in-
vent new parse trees. The set of parse trees in Φ can contain parse trees for
different input strings. Given a set of derivation trees, define F(Φ, w) =
{t ∈ Φ | yield(t) = w}. When for all w ∈ L(Γ), |F(Φ, w)| ≤ 1, filter F is
completely disambiguating [33]. A filter is F complete when for all w ∈ L(Γ),
|F(Φ, w)| = 1 [48].

In the remainder of this section we look at various disambiguation meth-
ods that can be described using the filters. These filters typically use some
additional data Q. They formally describe which parse trees are the in-
tended ones, but leave open the implementation. For each of the disam-
biguation methods expressed as filter, possible implementations are given.

19 CHAPTER 3. DISAMBIGUATION

3.3.1 Subtree Exclusion

Thorup [49] introduces a disambiguation method that consists of specify-
ing a finite set of forbidden sub-parse trees that may not occur in any of the
parse trees produced.

Given a finite set Q of tree patterns, called the set of forbidden sub-tree
patterns, the subtree exclusion filter FSE is defined by

FSE(Φ) = {t ∈ Φ | ¬∃s ∈ sub(t) : Q matches s}.

Function sub(t) returns the set of subtrees starting from node t. The
tree patterns in Q are finite, and can for instance be used to enforce priority
rules among binary expressions. Consider Grammar Γ3.3, and assume the
standard semantics of + as plus and ∗ as multiplication, where ∗ binds
stronger than +.

E ::= E + E | E ∗ E | Id (Γ3.3)

We define Q to forbid subtrees where E+E occurs in the subtree of E ∗E,
since this would mean that + would bind stronger than ∗. The set Q looks
as follows

Q =

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

E*E

E+E

,

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

E

E+E

*E

.

This disambiguation method can implemented as a grammar transfor-
mation [49]. The transformation avoids the ambiguities related to prece-
dence of operators from occurring in the modified grammar Γ’, but the size
of Γ’ may be exponential with respect to the original grammar Γ.

It is also possible to implement this disambiguation method as a post-
parse filter. There are various ways in which this can be done. Afroozeh [2]
uses term rewriting as a mechanism to remove subtrees in the parse forest
that match one of the elements in Q.

3.3.2 Reject rules

Reject rules [14] is a disambiguation method that is used to filter restricted
keywords from identifier nonterminals. For instance, in programming lan-
guages a variable name may never be equal to restricted keywords such as
if, then or while.

The data that is being used is a set Q of pairs 〈A, k〉, where A is a non-
terminal and k a terminal string representing the keyword. Define T (t) to

3.3. DISAMBIGUATION FILTERS 20

be the subtree rooted at t. Then the filter for reject rules, FR is defined by

FR = {t | t ∈ Φ ∧ ¬∃(A, y) ∈ Q,w ∈ T (t) : A = w ∧ yield(w) = y}.

Reject rules can be implemented as a post-parse filter, for instance using
term rewriting. One has to look at parse trees that have nodes with label A
with a child k such that 〈A, k〉 ∈ Q, and remove these trees.

3.3.3 Precede-follow restrictions

Follow restrictions are often used as a disambiguation method to achieve
longest match disambiguation. They are a simplification of the adjacency
restriction rules [40]. The dual of follow restrictions are precede restric-
tions [16]. These are not as widely used as the former but are also quite
powerful.

Consider a parse tree t ∈ Φ, not containing ε symbols. For each v ∈ t, we
will define the first, last, follow, and precede values of that node as follows.
Let w = yield(t), with |w| = m. If w is not equal to the empty string then
w = w0 . . . wm−1. Define w−1 = wm = $, where $ is a dummy symbol. Now
for a node v with extent(v) = 〈i, j〉we define

FIRST(v) =
{
ε if i = j

wi otherwise
LAST(v) =

{
ε if i = j

wj−1 otherwise

and PRECEDE(v) = wi−1 and FOLLOW(v) = wj . Figure 3.2 shows an exam-
ple parse tree with the values for an internal node.

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

C

B

d

A

cba

Figure 3.2: Parse tree where extent(A) = 〈0, 3〉, PRECEDE(a) =
$, FOLLOW(A) = d, FIRST(A) = a, LAST(A) = c.

Let Q be a pair 〈P,F〉, where P and F are sets of pairs 〈p, term〉 with
production p ∈ P and terminal term ∈ T , representing the precede and
follow restrictions respectively. Define T (u) to be the set of its descendants
of u, included u itself, and let prod(u) return the corresponding production
of a node u. Then the filter for precede-follow restrictions FPF is defined

21 CHAPTER 3. DISAMBIGUATION

by

FPF = {t ∈ Φ | ¬∃〈p, a〉 ∈ P, 〈q, b〉 ∈ F, w ∈ T (t) :
(p = prod(w) ∧ PRECEDE(w) = a)∨
(q = prod(w) ∧ FOLLOW(w) = b)}

This filter removes all trees where a node corresponding to production
p has t as its precede value for pairs 〈p, t〉 ∈ P, and nodes corresponding to
a production q with u as its follow value for pairs 〈q, u〉 ∈ F.

Precede restrictions can be implemented in parser algorithms that pre-
dict new occurrences of production rules while parsing [16], like Earley [21]
or GLL [46]. In these algorithms the predict is not performed if the preced-
ing input symbol is forbidden. Follow restrictions can also be incorporated
in the parsers being generated by these algorithm. In the Earley algorithm,
no reduce action is performed if the next terminal is forbidden. In the GLL
algorithm, the pop is not executed if the next terminal is forbidden.

Chapter 4

Filtering in the SPPF

In this chapter we will look into filtering of shared packed parse forests
(SPPF). An SPPF is a single data structure that encodes all parse trees, and
uses compaction mechanisms to reduce the required space to represent
multiple derivation trees. There are two methods to reduce the space re-
quired; subtree sharing and local ambiguity packing [39]. By means of subtree
sharing, nodes having the same tree below them are shared. Using local
ambiguity packing, nodes which correspond to different derivations of the
same subsentence from the same nonterminal are combined by creating a
packed node for each alternative.

If there are multiple valid derivations for a given input string, the result-
ing SPPF will contain ambiguities. Disambiguation is needed to remove
undesired derivations from the parse forest, while retaining those that are
valid. Removing an undesired derivation boils down to removing the cor-
responding parse tree that is embedded in the SPPF. In many cases it is not
possible to simply remove the nodes of such a parse tree from the SPPF,
since these nodes are shared with other parse trees embedded in the SPPF.

As stated in the previous chapter, disambiguation filters can be used
to define trees that are not desired. Because we are dealing with an SPPF
rather than a set of parse trees, we need to specify the filters in terms of
parse trees embedded in an SPPF. For this purpose we introduce the con-
cept of SPPF filters. Many filters are defined in negative terms, stating that
parse trees containing certain patterns should be removed. Examples in-
clude subtree exclusion, reject rules, and precede-follow restrictions that
have been described in the previous chapter.

In this chapter we will describe how parse trees are embedded in an
SPPF, and look at removing specific parse trees from the SPPF. We will in-
troduce SPPF filters that are able to remove all parse trees from an SPPF
containing some node, edge, or path. In Chapter 5 we will look at disam-
biguating expression grammars, were we will use these filters for removing
undesired parse tree embeddings. Filters for removing parse trees contain-

22

23 CHAPTER 4. FILTERING IN THE SPPF

ing some subtree (that is not a path) are left for future work.

4.1 Parse Trees in an SPPF

An SPPF S contains a set of SPPF parse trees according to some grammar
and an input string. An SPPF parse tree is the same as a parse tree, except
that it has intermediate nodes and packed nodes that need to be removed.
The set of SPPF parse trees in an SPPF is defined in the following way.

Definition 4.1.1 (Set of all SPPF parse trees in an SPPF). Let S be an SPPF,
and SPTS be the set of SPPF parse trees embedded in S. A SPPF parse tree
t ∈ SPTS can be obtained in the following way.

Start at the root node of S, and walk the tree by choosing one packed
node below each visited node, and choosing all the children of a visited
packed node in a recursive manner.

Any SPPF parse tree can be obtained by making particular choices, and
any tree constructed this way is an SPPF parse tree.

To illustrate this set, and the relationship between SPPF parse trees and
normal parse trees consider the grammar shown in Grammar Γ4.1. In this
grammar there is a single operator, plus, that can be used as prefix, binary,
and postfix operator.

S ::= +S | S + S | S+ | 1 (Γ4.1)

Now suppose we have an input sentence I = “1+++1”. Given the gram-
mar, this sentence is ambiguous and results in three parse trees. The SPPF
S is shown in Figure 4.1.

(S, 0, 5)

(S ::= S + • S ,0,2) (S, 2, 5)

(S, 3, 5)(S ::= S + • S ,0,3)

(S, 4, 5)

(S ::= S + • S ,0,4)

(S, 0, 1) (+, 1, 2)

(1, 0, 1)

(+, 2, 3) (+, 3, 4)

(1, 4, 5)

(S, 0, 2)

(S, 0, 3)

Figure 4.1: SPPF for Grammar Γ4.1 and input I = “1+++1”

4.2. SPPF FILTERS 24

The SPPF parse trees embedded in S, which are elements of the set
SPTS , are shown in Figure 4.2. Figure 4.3 shows the parse trees that result
upon removal of the intermediate and packed nodes.

(1, 0, 1)

(S, 0, 1) (+, 1, 2)

(S, 0, 2) (+, 2, 3)

(S, 0, 3) (+, 3, 4)

(S ::= S + • S ,0,4)

(1, 4, 5)

(S, 4, 5)

(S, 0, 5)

(1, 0, 1)

(S, 0, 1) (+, 1, 2)

(S, 0, 2) (+, 2, 3)

(S ::= S + • S ,0,3)

(+, 3, 4)

(1, 4, 5)

(S, 4, 5)

(S, 3, 5)

(S, 0, 5)

(1, 0, 1)

(S, 0, 1) (+, 1, 2)

(S ::= S + • S ,0,2)

(+, 2, 3)

(+, 3, 4)

(1, 4, 5)

(S, 4, 5)

(S, 3, 5)

(S, 2, 5)

(S, 0, 5)

Figure 4.2: SPPF parse trees in S.

1

S

S

+

S

+

S

+ S

1

1

S

S

+

S

+ S

+ S

1

1

S

S

+ S

+ S

+ S

1

Figure 4.3: Parse trees in S.

Intermediate nodes and packed nodes in an SPPF parse tree can be re-
moved by removing the node itself, and attaching its children to its parent
node. It is important to note that the order of the children needs to be pre-
served.

4.2 SPPF Filters

In order to remove certain parse trees from the SPPF we introduce the no-
tion of an SPPF filter.

Definition 4.2.1 (SPPF filter). An SPPF filter F is a function F : Sin → Sout,
where Sin and SPPF Sout are sets of SPPFs, satisfying the requirement that
the set of SPPF parse tree embeddings in the elements of Sout is a subset
of the set of SPPF parse tree embeddings in the elements of Sin. Stated

25 CHAPTER 4. FILTERING IN THE SPPF

formally, we require that⋃
S′∈Sout

SPTS′ ⊆ SPTSin .

This restriction ensures that an SPPF filter can never introduce new
parse trees. Note that the output of a filter is a set instead of a single SPPF.
This is due to the fact that the SPPF needs to be split if we want to remove
all SPPF parse trees from the SPPF containing some path or subtree. Note
that there are infinitely many SPPF parse trees if the SPPF contains a cycle.

Given a grammar Γ and an input sentence I , the corresponding SPPF
is unique. When this SPPF is altered by means of a filter, some parse trees
in the SPPF are removed, and the SPPF can be split into multiple smaller
SPPFs. A complete SPPF is an SPPF which given a grammar and an in-
put sentence contains all parse trees. After applying a filter, the output set
might contain incomplete SPPFs, where undesired parse trees embedded
in the SPPF have been removed.

4.3 Removing parse trees from the SPPF

Ambiguity reduction in an SPPF can be done by removing parse trees from
the SPPF that are undesired. Removing parse trees from an SPPF means
that at a certain point the structure of the SPPF needs to be changed by
removing edges and nodes.

As an introduction into parse tree removal, consider Grammar Γ4.2 with
two binary operators, addition and multiplication, that can be applied on
single digit numbers. Given input sentence 1 + 1 ∗ 1 there are two deriva-
tions: (1 + (1 ∗ 1)) and ((1 + 1) ∗ 1).

E ::= E + E | E ∗ E | [0 - 9] (Γ4.2)

Since multiplication has precedence over addition, we want to remove
trees where “+” productions are direct children of “*” productions. In order
to remove such trees, we look for paths from a packed node with label
(E ::= E ∗E·, k) to a packed node with label (E ::= E+E·, j) for some k, j.
If there are other packed nodes in between these nodes on the path, then
they must be related to the parent packed node. In our example we have
packed node (E ::= E ∗ ·E, k) that satisfies this criterium. All embedded
parse trees in the SPPF S that contain this path need to be removed from
S. Figure 4.4 shows S and the two SPPF parse trees embedded in S. In S
we have highlighted all paths, in our case just one, where a “+” production
is a direct child of a “*” production. Removing this path p will remove the
parse tree corresponding to ((1 + 1) ∗ 1) from S.

4.3. REMOVING PARSE TREES FROM THE SPPF 26

(E, 0, 5)

(E ::= E * E•,4) (E ::= E + E•,2)

(E ::= E * • E ,0,4)

(E, 4, 5)

(E ::= E + • E ,0,2)

(E, 2, 5)

(E ::= E * • E ,3)

(E ::= [0-9]•,4)

(E, 0, 3)

(*, 3, 4)

(E ::= E + E•,2)

(E, 2, 3)

(E ::= E + • E ,1) (E ::= [0-9]•,2)

(E, 0, 1) (+, 1, 2)

(E ::= [0-9]•,0)

(1, 0, 1)

(1, 2, 3)

(1, 4, 5)

(E ::= E * E•,4)

(E ::= E * • E ,2,4)

(E ::= E * • E ,3)

(a) SPPF

(1, 0, 1)

(E ::= [0-9]•,0)

(E, 0, 1) (+, 1, 2)

(E ::= E + • E ,1)

(E ::= E + • E ,0,2)

(1, 2, 3)

(E ::= [0-9]•,2)

(E, 2, 3) (*, 3, 4)

(E ::= E * • E ,3)

(E ::= E * • E ,2,4)

(1, 4, 5)

(E ::= [0-9]•,4)

(E, 4, 5)

(E ::= E * E•,4)

(E, 2, 5)

(E ::= E + E•,2)

(E, 0, 5)

(b) SPPF tree corresponding
to derivation (1 + (1 ∗ 1))

(1, 0, 1)

(E ::= [0-9]•,0)

(E, 0, 1) (+, 1, 2)

(E ::= E + • E ,1)

(E ::= E + • E ,0,2)

(1, 2, 3)

(E ::= [0-9]•,2)

(E, 2, 3)

(E ::= E + E•,2)

(E, 0, 3) (*, 3, 4)

(E ::= E * • E ,3)

(E ::= E * • E ,0,4)

(1, 4, 5)

(E ::= [0-9]•,4)

(E, 4, 5)

(E ::= E * E•,4)

(E, 0, 5)

(c) SPPF tree corresponding
to derivation ((1 + 1) ∗ 1)

Figure 4.4: SPPF and SPPF tree embeddings for Grammar Γ4.2 and input
sentence 1 + 1 ∗ 1.

27 CHAPTER 4. FILTERING IN THE SPPF

After removing nodes and edges from an SPPF we have to check that
the resulting SPPF is still a valid SPPF. For instance, nodes may become
unreachable if all parents of the node are removed. Another issue is that
as a side effect valid SPPF trees are possibly removed from the SPPF. For
example, suppose that node (E, 0, 3) in S has another incoming edge from
a packed node u with a “+” production. Then removing path p will also
remove any tree that contains path 〈u, (E, 0, 3), (E ::= E + E·, 2)〉, which
should remain in S . To avoid this problem we split the SPPF into multiple
copies and then remove some edges in each of the copies to eliminate all
parse trees containing the specific path.

To deal with these kind of issues, we need algorithms that remove all
parse trees from S that contain some pattern, without removing valid parse
trees. A pattern can be a node, edge, path, or even a certain subtree. Re-
moving all parse trees containing some node results in a single smaller
SPPF. Node removal can for instance be used for prefer-avoid filtering,
where we remove packed nodes below a symbol node.

It turns out that edge removal can be expressed in terms of node re-
moval. When a path needs to be removed, we need to create a number of
copies of the SPPF, and in each copy remove some particular edge. In the
following sections we will describe the algorithms to perform these opera-
tions. At the end of this chapter we will also briefly look at the usefulness
of removing parse trees that contain some subtree.

4.3.1 Removing all parse trees containing some node

Suppose we have an SPPF S, and a node x. Now we want to remove all
parse trees from S that contain node x. The first step in the process is to
remove node x from S, and all its outgoing and incoming edges. After
removing all outgoing edges, nodes that become unreachable in S are no
longer part of any SPPF parse tree in S. These are the descendant nodes of
x that are not part of any other SPPF parse tree not containing x.

After removing x from S , it might be the case that certain ancestors also
need to be removed. Otherwise we might end up with new trees that were
not embedded in the original S. The following lemmas directly follow from
Definition 4.1.1, and are used to reason about ancestor removal. We will use
V (S) and E(S) to define the set of nodes and edges in S respectively.

Lemma 4.3.1. Let t be an SPPF parse tree embedded in an SPPF S , and let u ∈
V (S) be a packed node. If t contains u, then t contains all children of u.

When we remove a child of a packed node, the packed node becomes
invalid and must be removed. Otherwise we would end up with a corrupt
SPPF parse tree embedded in S that misses part of the derivation.

4.3. REMOVING PARSE TREES FROM THE SPPF 28

Lemma 4.3.2. Let t be an SPPF parse tree embedded in an SPPF S, and let u ∈
V (S) be an intermediate or a nonterminal symbol node. If t contains u, it must
include at least one of the children of u.

If we remove a packed node, we must check whether the parent has
multiple children, and remove the parent if this is not the case. This ensures
that we avoid the situation where a nonterminal symbol node or interme-
diate node becomes a leaf.

To illustrate, consider Figure 4.5a. In Figure 4.5a, selecting packed node
(E ::= E + ·E, 2) means selecting its two children. This corresponds to
Lemma 4.3.1. In Figure 4.5b, given node (E, 0, 5) we can select either packed
node (E ::= E ∗ E·, 4) or (E ::= E + E·, 2), corresponding to Lemma 4.3.2.

(E ::= E + • E ,2)

(E ::= E + • E ,0,2) (E, 2, 3)

(a)

(E, 0, 5)

(E ::= E * E•,4) (E ::= E + E•,2)

(b)

Figure 4.5

Now we have all the ingredients necessary to construct an algorithm
that removes all embedded SPPF parse trees in an SPPF containing some
node x.

Algorithm RemoveParseTrees(S, x)
1. S ′ ← S
2. Q = [x]
3. while Q 6= []
4. do node← Dequeue(Q) (∗ remove element from Q ∗)
5. parents← node.parents
6. remove node from S ′, and remove all its incoming and outgoing

edges
7. if node.type = symbol ∨ node.type = intermediate
8. then for parent ∈ parents
9. do Enqueue(Q, parent)
10. else (∗ node.type = packed ∗)
11. for parent ∈ parents
12. do if |parent.children| = 0
13. then Enqueue(Q, parent)
14. return S ′

29 CHAPTER 4. FILTERING IN THE SPPF

Theorem 4.3.3. Given an SPPF S, and node x ∈ V (S), Algorithm RemoveParse-
Trees returns SPPF S ′, where the trees embedded in S ′ are precisely those SPPF
trees from S not containing x.

Proof. Recall Definition 4.1.1 which defines SPTS ; the set of trees encoded
in an SPPF. Each t ∈ SPTS can be obtained by starting at the root node of
S, and walking the tree selecting one packed node below each visited node,
and all the children of a visited packed node recursively.

Let X be the set of all SPPF parse trees in S containing x, and X the set
of all SPPF parse trees in S not containing x.

We need to prove that:

1. there are no invalid SPPF parse trees in S ′ that are not in S;

2. all SPPF parse trees in S not containing x are in S ′.

First note that we only remove nodes from S, so we can not create new
SPPF parse trees by adding nodes. The only way in which we can create
an invalid embedded tree in S ′ is after removing some node. An invalid
embedded tree can be created in two situations:

(i) if a non-leaf node in S becomes a leaf node in S ′;

(ii) if a packed node in S is present in S ′ and has less child nodes.

Whenever we remove a node u, we must ensure that this node is present
in all SPPF parse trees in X and not present in any SPPF parse tree in X .
When we remove u, the descendants of u may become unreachable. In this
case these nodes are not part of any parse tree not containing u. If they stay
reachable, they are present in some SPPF parse tree embedded in S not
containing u. If they stay reachable, they are present in some SPPF parse
tree embedded in S not containing u. Upon removal of u, we need to show
that situations (i) and (ii) are not applicable for the parents of u.

• Consider the case where u is a symbol node or an intermediate node.
Then its parents are packed nodes. By Lemma 4.3.1 we must remove
these parents, because otherwise we would end up with a corrupt
SPPF tree embedded in S. After removing the parents, we need to
check the grandparents for these situations.

• In the case where u is a packed node, a parent of umay have multiple
packed nodes as children. If u has no siblings given a parent v, v
becomes a leaf. This would mean that we introduce a new tree in
SPTS , which is corrupt since v cannot be a terminal symbol node.
Therefore node v must be removed. If v has multiple children, then
v is not removed and situations (i) and (ii) are not applicable. If v is
removed, we need to check the parents for situations (i) and (ii) and
see if these parents must be removed or not.

4.3. REMOVING PARSE TREES FROM THE SPPF 30

On termination of the algorithm, all SPPF parse trees containing node
x are removed from S , resulting in the new SPPF S ′. Note that S ′ contains
unreachable nodes that are no longer part of any SPPF. Using a final step
we can walk S ′ and output just the nodes reachable from the root.

Use cases

To understand the practical use of removing all parse trees containing some
node, recall the precede-follow restriction mechanism. As described in
Chapter 2, each symbol node in the SPPF contains a label (x, i, j), where
x is a terminal, nonterminal, or ε, and 〈i, j〉 is the extent. Using this infor-
mation we can look at the symbols at input positions i − 1 and j + 1 and
see whether a precede or follow restriction applies. In that case we need to
delete all parse trees containing this node. Chapter 5 will describe precede-
follow filters to disambiguate simple expression grammars that use this
node removal.

Preference/Avoid rules can also be implemented using node removal.
Whenever there is a choice for several subderivations, the nonterminal
symbol node has multiple packed nodes as children, each representing
a different alternative. All alternative derivations that have the avoid at-
tribute, each represented by a packed node, are removed by removing the
packed node, but only if other alternative derivations are there that do not
have this attribute. If there are derivations with the prefer attribute, repre-
sented by a packed node, then all derivations not having this attribute are
removed. These derivations can be removed by removing all parse trees
containing the associated packed node. Care has to be taken that the order
of applying the rules could possibly influence the results. For instance if
two prefer rules are applicable, choosing either one might result in a differ-
ent outcome.

4.3.2 Removing all parse trees containing some edge

Suppose that we want to remove all parse trees containing an edge (u, v),
from an SPPF S. Then there are four different edge configurations possi-
ble as shown in Figure 4.6. An edge always connects a packed node with
an intermediate node or symbol node, or the other way round (see also
Section 2.2).

(A, i, j)

(a)

(A ::= α • β , i, k)

(b)

(A, i, j)

(c)

(A ::= α • β , i, k)

(d)

Figure 4.6: Edge configurations in an SPPF

31 CHAPTER 4. FILTERING IN THE SPPF

Removing all parse trees containing edge (u, v) from an SPPF is equiv-
alent to removing the packed node, which is either u or v.

Lemma 4.3.4. Removing all SPPF parse trees containing an edge (u, v) in SPPF
S is equal to removing all SPPF parse trees containing u if u is a packed node, or
v if v is a packed node.

Proof. If we remove a node, all its incoming and outgoing edges are also
removed. What we need to prove is that we do not remove SPPF parse
trees from S not containing edge (u, v).

• Suppose u is a packed node. Then if an SPPF parse tree embedded in
S contains u, it will also include each child v of u by Definition 4.1.1
and edge (u, v) for v ∈ V (S) and (u, v) ∈ E(S).

• Suppose v is a packed node. Then if an SPPF parse tree embedded in
S contains v, it must contain the (unique) parent of v, which is node
u and edge (u, v).

Removing all parse trees containing the packed node will therefore re-
move exactly those SPPF parse trees embedded in S that contain the edge
(u, v).

The algorithm to remove all SPPF parse trees containing an edge in an
SPPF now follows direct from Lemma 4.3.4 and Theorem 4.3.3.

Algorithm RemoveParseTreesE(S, (u, v))
Input: SPPF S with (u, v) ∈ E(S)
1. if u.type = packed
2. then return RemoveParseTrees(S, u)
3. else return RemoveParseTrees(S, v)

Theorem 4.3.5. Algorithm RemoveParseTreesE correctly removes all parse trees
from S containing some invalid edge (u, v).

Proof. Follows directly by Theorem 4.3.3, and Lemma 4.3.4.

Corollary 4.3.6. Removing all SPPF parse trees from an SPPF containing an
edge is equal to removing the packed node attached to the edge.

Use cases

The removal of parse trees containing some edges is not especially useful
by itself. It is however used in the filter of removing all parse trees contain-
ing some path, which will be described next.

4.3. REMOVING PARSE TREES FROM THE SPPF 32

E

Id N

1

vu

(a)

E

Id N

1

vu

(b)

E

Id N

1

vu

(c)

Figure 4.7: The dashed path needs to be removed. The paths shown in (b)
and (c) must still be present in the new SPPF.

4.3.3 Removing all parse trees containing some path

Suppose we want to remove all parse trees containing a path p = 〈u1, . . . , uk〉
from an SPPF S. Then simply removing some nodes and edges in S will no
longer suffice. Consider the example shown in Figure 4.7, where we want
to remove the dashed path, shown in (a). We cannot simply remove the
entire path since a subpath of it may be used by other paths. Removing
the first edge is also not valid, since then the path shown in (b) is removed.
Removing the last edge will remove the right path 〈v,E, ,N, , 1〉 present
in (c).

In order to correctly remove path p from S, we need to split S into sev-
eral smaller SPPFs. We require that the grammar corresponding to the SPPF
does not generate a cycle in the SPPF. Otherwise, we can not always split
the SPPF into several smaller SPPFs to remove all parse trees containing
some path. At the end of this section we will illustrate the problem with
cycle-generating grammars.

Given a path of length k, we need to split S into at most k − 1 smaller
SPPFs as is proven in the next theorem. After proving this theorem we will
improve this bound.

Theorem 4.3.7. Removing path p = 〈u1, . . . , uk〉 from S = (V,E) results in set
C containing at most k − 1 copies with 1 ≤ i < k. Path p must be present in S,
and S may not contain any cycle.

Proof. Let Ci ∈ C be a copy such that SPTCi = SPTS \ SPTS(ui, ui+1),
where SPTS(ui, ui+1) is the set of SPPF parse trees in S where each tree in
this set contains edge (ui, ui+1).

We need to show that all parse trees not containing p are still embedded
in some Ci. For every SPPF tree in S that does not contain p we have that it

33 CHAPTER 4. FILTERING IN THE SPPF

does not contain some edge of p. Let this edge be (ui, ui+1) with 1 ≤ i < k.
Then by definition of Ci, this SPPF tree is embedded in copy Ci.

By correctness of the edge removal algorithm, we do not introduce any
new invalid SPPF parse trees in any created copy.

Theorem 4.3.8. Removing path p = 〈u1, . . . , uk〉 from S, corresponding to a
grammar not generating cycles in S, results in at most dk2e copies Ci with 1 ≤ i <
dk2e.

Proof. Given Theorem 4.3.7, we know that we can create k − 1 copies of S
that contain all SPPF parse trees not containing path p. Given the property
that S is a bipartite graph, any path is of the following shape:

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

j j + 1 j + 2 j + 3 j + 4
.

Each edge connects an intermediate node or symbol node (shown as
a rectangle) with a packed node (shown as a circle). By Corollary 4.3.6
we know that removing an edge removes the same parse trees from S as
removing the packed node attached to the edge. In our example, removing
edge j or edge j + 1 removes the same set of parse trees.

Suppose that path p has length k. Then either p starts with an interme-
diate or symbol node, or with a packed node.

Now the number of copies, |C|, is given by the following equation:

|C| =
{
k div 2 + k mod 2 if u1 is a symbol or intermediate node
k div 2 + 1 otherwise

Since k div 2 + k mod 2 ≤ dk2ewe have proven the theorem.

Theorem 4.3.9. Given Theorem 4.3.7, we know that we can create k − 1 copies
that contain all parse trees which do not contain path p. Removing path p =
〈u1, . . . , uk〉 from S, corresponding to a grammar not generating cycles in S, re-
sults in at most 1 + |W | copies Ci, where

W = {ux | (ux.type = symbol ∨ ux.type = intermediate)
∧ degree(ux) > 2 ∧ 1 < x < k}.

The degree of a node ux is given by the number of incoming edges plus the number
of outgoing edges.

Proof. We will proof the theorem by case distinction on the size of W .

• If |W | = 0, all nodes on path p have a degree of one or two. Con-
sider an intermediate or symbol node u on path p. By Lemma 4.3.2,
each SPPF parse tree containing umust include at least one child of u.

4.3. REMOVING PARSE TREES FROM THE SPPF 34

Since the degree of u is not bigger than 2, there is only one child. For
any packed node v on path p we have that all its children are present
in the same SPPF parse trees by Lemma 4.3.1. Combining these ob-
servations yields that any two nodes of path p are part of the same
set of SPPF parse trees in S . No matter which edge in subpath p we
remove, the resulting copy will be exactly the same.

• If |W | = 1, there is a symbol or intermediate node on path p having
a degree larger than two. This can mean that the node has multi-
ple incoming edges, or multiple outgoing edges. In the first case,
the parent node not on the path is not necessarily present in all SPPF
parse trees in S. Consider Figure 4.8a. Here nodes ui, ui+1 and ui+2
are present on path p, and v is not on the path. Edge (ui+1, ui+2) is
present in all SPPF parse trees having edge (ui, ui+1), but because of
node v this does not hold the other way round. Therefore removing
edge (ui, ui+1) or (ui+1, ui+2) will result in different copies. A simi-
lar argument can be made for a symbol or intermediate node having
multiple outgoing edges (cf. Figure 4.8b).

v

ui+1

ui

ui+2

(a)

v

ui

ui+1

ui+2

(b)

Figure 4.8

• Now consider the case where |W | > 1. Given the property that S is a
bipartite graph, consider subpath p′ = 〈ul, . . . , ur〉 of p, and assume,
degree(ul) > 2, degree(ur) > 2, degree(uj) = 2 for l < j < r:

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

ul ur .

For any two nodes um, un with i < m < n < k we have that they
are present in exactly the same set of SPPF parse trees in S, following
the same reasoning as in the case where |W | = 0. Now consider any
edge (uj , uj+1) with l < j < r. No matter which edge in subpath p′

we remove, the resulting copy will be exactly the same.

35 CHAPTER 4. FILTERING IN THE SPPF

Starting from index 1, each time we encounter a node w ∈ W , we
have that removing edge (uw−1, uw) is not equal to removing edge
(uw, uw+1). This follows from the fact that edge (uw−1, uw) need not
be present in all SPPF parse trees containing (uw, uw+1) and vice versa.
Therefore, in this case we need to add a new copy. Since we have |W |
such nodes, the maximal number of copies will be 1 + |W |.

Algorithm RemoveParseTreesP creates the copies resulting of removing a
path 〈u1, . . . , uk〉 from an SPPF.

Algorithm RemoveParseTreesP(S, 〈u1, . . . , uk〉)
Input: an SPPF S with path p = 〈u1, . . . , uk〉
Output: set of SPPFs not containing p, but together containing all other

paths in S
1. L = [(u1, u2)] (∗ list of edges ∗)
2. for j = 2 to k − 1
3. do if degree(uj) > 2 ∧ (ui.type = symbol∨ui.type = intermediate)
4. then L← L++ [(uj , uj+1)]
5. C ← ∅
6. for i = 1 to |L|
7. do Ci ← RemoveParseTreeE(S, L[i])
8. if Ci /∈ C (∗ set of copies ∗)
9. then C ← C ∪ {Ci}
10. return C

The following theorem explains why the method of creating copies and
removing edges does not work when there are cycles in the SPPF.

Theorem 4.3.10. Removing path p = 〈u1, . . . , uk〉 from S = (V,E), correspond-
ing to a cycle generating grammar, cannot be done using Theorem 4.3.7.

Proof. Consider the following subgraph of S, and suppose that we want to
remove the path 〈1, 2, 3, 5, 6, 7〉:

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

1 2 3 5 6 7

4

a b e f g

c d

.
When removing one of the edges of p in S, no Ci ∈ C will contain the

path 〈1, 2, (3, 4)+, 5, 6, 7〉. Intuitively we could add another copy Cj , where
we change the SPPF by expanding the cycle one time. But then we get two
nodes with the same label, resulting in an SPPF that violates the structural
SPPF property of unique labels for symbol nodes and intermediate nodes.

4.3. REMOVING PARSE TREES FROM THE SPPF 36

(E, 0, 5)

(E ::= E + E•,2) (E ::= E + E•,4)

(E ::= E + • E ,0,2)

(E, 2, 5)

(E, 4, 5)

(E ::= E + • E ,0,4)

(E ::= E + • E ,1)

(E ::= E + E•,4)

(E, 0, 1) (+, 1, 2)

(E ::= 1•,0)

(1, 0, 1)

(E ::= E + • E ,2,4)

(E ::= E + • E ,3) (E ::= 1•,4)

(E, 2, 3) (+, 3, 4)

(E ::= 1•,2)

(1, 2, 3)

(1, 4, 5)

(E ::= E + • E ,3)

(E, 0, 3)

(E ::= E + E•,2)

(a) SPPF for input string 1 + 1 + 1,
given grammar E ::= E + E | 1.

(1, 0, 1)

(E ::= 1•,0)

(E, 0, 1) (+, 1, 2)

(E ::= E + • E ,1)

(E ::= E + • E ,0,2)

(1, 2, 3)

(E ::= 1•,2)

(E, 2, 3)

(E ::= E + E•,2)

(E, 0, 3) (+, 3, 4)

(E ::= E + • E ,3)

(E ::= E + • E ,0,4)

(1, 4, 5)

(E ::= 1•,4)

(E, 4, 5)

(E ::= E + E•,4)

(E, 0, 5)

(b) SPPF after removing the dashed path.
The result is a single SPPF parse tree.

Figure 4.9: Path removal example for removing ambiguities introduced by
associativity.

Use cases

Path removal is very generic, and can therefore be used as basis for im-
plementing various kinds of disambiguation methods. For instance ambi-
guities caused by associativity can be disambiguated in a straightforward
manner. The relationship between disambiguation methods and path re-
moval is described in more detail in the next chapter.

As an illustration of path removal, consider the SPPF as shown in Fig-
ure 4.9a. Given are grammar E ::= E + E | 1, input string 1 + 1 + 1,
and the fact that operator + is left-associative. Derivations of the shape
(E) ⇒ (E + E) ⇒ (E + (E + E)), where + is right-associative, need to
be removed. This can be done by removing the dashed path shown in Fig-
ure 4.9a. In this path a packed node with label (E ::= E + E·, 2) has a
packed node (E ::= E + E·, 4) occurring in the right subtree. After remov-
ing all parse trees containing this path, which is just a single parse tree in
this case, we obtain the SPPF shown in Figure 4.9b.

SDF priority and associativity To further illustrate the applicability of
path removal, we show how the priority and associativity constructs of
SDF can be translated to path removal filters.

The following definitions are used in SDF for filtering expression gram-
mars.

Priority Let priority relation > be a partial order between recursive rules
of an expression grammar. If A ::= α1Aα2 > A ::= β1Aβ2, then all

37 CHAPTER 4. FILTERING IN THE SPPF

derivations γAδ ⇒ γ(α1Aα2)δ ⇒ γ(α1(β1Aβ2)α2)δ) are illegal.

Associativity If a recursive rule A ::= AαA is defined left associative, then
any derivation γAδ ⇒ γ(AαA)δ ⇒ γ(Aα(AαA))δ is illegal. If it is
defined right associative, then any derivation γAδ ⇒ γ(AαA)δ ⇒
γ((AαA)αA)δ is illegal.

Note that the priority restriction is too restrictive. Consider the follow-
ing expression grammar, where E ::= E + E > E ::= E ? E ! E:

E ::= E ? E ! E | E + E | a. (Γ4.3)

Then derivation (a?(a+a)!a) is the only valid derivation for input sentence
a?a+a!a, but will be removed by the filter. Another example is the grammar
with both a binary and a unary minus, where E ::= −E > E ::= E − E:

E ::= −E | E − E | 1. (Γ4.4)

Here, input sentence 1 − −1 has only one derivation; (1 − (−1)), but the
filter removes this derivation.

In order to solve these problems, SDF introduces a special construct 〈i〉,
to filter only below the i-th nonterminal in the production rule.

The translation of the priority and associativity construct to a path filter
can be done in the following way.

1. Create a set of forbidden patterns. These patterns can be derived
given a set of concrete production rules with their priorities. For in-
stance, E ::= E ∗ E > E ::= E + E yields a set Q containing two tree
patterns:

Q =

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

E*E

E+E

,

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

E

E+E

*E

.

Note that priorities are applied transitively by default, so E ::= EE >
E ::= E ∗ E > E ::= E + E yields 6 patterns. Each tree pattern is
a two-level tree pattern. This means that we have a production rule
where one of the nonterminals in this rule is expanded into another
rule.

2. Transform each forbidden pattern to an SPPF tree pattern. This means
introducing a packed node below each nonterminal symbol node,
and binarizing the tree by introducing intermediate nodes. The ex-
tent or pivot values in the SPPF nodes are left undefined in order to

4.3. REMOVING PARSE TREES FROM THE SPPF 38

match any value. For our example, we obtain the two SPPF tree pat-
terns shown in Figure 4.10.

(E, _, _) (+, _, _)

(E ::= E + • E ,_)

(E ::= E + • E ,_,_) (E, _, _)

(E ::= E + E•,_)

(E, _, _) (*, _, _)

(E ::= E * • E ,_)

(E ::= E * • E ,_,_) (E, _, _)

(E ::= E * E•,_)

(E, _, _)

(E, _, _) (+, _, _)

(E ::= E + • E ,_)

(E ::= E + • E ,_,_) (E, _, _)

(E ::= E + E•,_)

(E, _, _)

(E, _, _)

(*, _, _)

(E ::= E * • E ,_,_)

(E ::= E * • E ,_)

(E ::= E * E•,_)

(E, _, _)

Figure 4.10: Tree patterns to remove rule E ::= E ∗ E directly below E ::=
E + E in a derivation.

3. Extract the path for each tree pattern. Find the packed nodes for the
two production rules, and find the path between them. Removing
all parse trees containing this path is the same as removing all parse
trees having the corresponding tree pattern.

4. Remove all parse trees from the SPPF that contain any of these paths.

Precede and follow restrictions In Chapter 5 we will see that all Java
expressions can be disambiguated, using SPPF filters expressed in terms of
path removal. These filters are inspired by precede and follow restrictions,
but also use the production rule that corresponds to the precede and follow
symbols.

4.3.4 Removing all parse trees containing some subtree

Most filters that are used for enforcing associativities and priorities of pro-
ductions can be expressed by removing all parse trees containing certain
paths. However, when priorities can no longer be expressed on produc-
tions, we need to remove parse trees containing some subtree.

39 CHAPTER 4. FILTERING IN THE SPPF

(E, 0, 5)

(E ::= E IO E•,2) (E ::= E IO E•,4)

(E ::= E IO • E ,0,2)

(E, 2, 5)

(E, 4, 5)

(E ::= E IO • E ,0,4)

(E ::= E IO • E ,1)

(E ::= E IO E•,4)

(E, 0, 1) (IO, 1, 2)

(E ::= 1•,0) (IO ::= +•,1)

(1, 0, 1) (+, 1, 2)

(E ::= E IO • E ,2,4)

(E ::= E IO • E ,3) (E ::= 1•,4)

(E, 2, 3) (IO, 3, 4)

(E ::= 1•,2) (IO ::= +•,3)

(1, 2, 3) (+, 3, 4)

(1, 4, 5)

(E ::= E IO • E ,3)

(E, 0, 3)

(E ::= E IO E•,2)

Figure 4.11: SPPF for Grammar Γ4.5 and input sentence 1 + 1 + 1

As an example consider Grammar Γ4.5, where the infix operators and
prefix operators are specified using separate nonterminals (IO and PO re-
spectively).

E ::= E IO E | PO E | 1
IO ::= ‘ + ’ | ‘− ’ | ‘ ∗ ’
PO ::= ‘− ’

(Γ4.5)

Now, a packed node will still indicate whether nonterminal E is ex-
panded as a binary infix operator or as an unary prefix operator. However,
in order to find the specific operator, we need to look below the symbol
node for IO or PO in the SPPF. Figure 4.11 shows an example of this.

In order to remove all SPPF parse trees where the binary +-operator is
right-associative, we need to specify a subtree rather than a path. Another
approach would be to integrate the use of attribute grammars in the parser,
and add an attribute to the packed nodes that indicates the operator.

4.3. REMOVING PARSE TREES FROM THE SPPF 40

The design of algorithms for removing all parse trees containing some
subtree is left as future work.

Chapter 5

Disambiguation of Expression
Grammars

5.1 Expression Grammars

Expression grammars with unary and binary operators are an interesting
class of grammars. These kind of grammars are typically used to define
arithmetic expressions, and are present in a wide range of programming
languages. Disambiguation is needed to select the right parse tree using
relative priorities of the productions and associativity information in the
case of binary operators.

Before looking into the disambiguation, we will first formally introduce
the set of expression grammars with unary and binary operators. We will
follow the format introduced by Brink [16], but use a slightly different no-
tation. Let A be a finite set of unary prefix operators, B a finite set of bi-
nary operators, and C a finite set of unary postfix operators. The type of
an operator is either unary prefix, binary infix, or unary postfix. Any ex-
pression grammar Γexpr can be defined as a quadruple 〈T,N, P, S〉, where
T ⊆ A ∪B ∪ C ∪ {�}, N = {E}, S = E, and

P ⊆ {〈E, aiE〉 | ai ∈ A} ∪ {〈E,EbiE〉 | bi ∈ B} ∪ {〈E,Eci〉 | ci ∈ C}.

The symbol � is used to denote a kind of “bottom” terminal such as a
variable name or a value. An example of an expression grammar is shown
in Grammar Γ5.1.

E ::= E + E

E ::= −E
E ::= E ∗ E

(Γ5.1)

Note that there are no productions that include parentheses, e.g. E ::=
(E). These are omitted since they do not introduce additional ambiguities.

41

5.2. PRECEDENCE CORRECT PARSE TREES 42

Note that the filters that will be described in this chapter are able to deal
with these parenthesis productions.

5.2 Precedence correct parse trees

In order to disambiguate expression grammars, we need to have a defini-
tion of the associativities and precedences of the operators in the grammar.
Therefore we will introduce two functions assoc and prio that give the as-
sociativity and precedence of an operator respectively. We will refer to a
grammar together with precedence and associativity rules as a precedence
grammar.

Given a valid input sentence according to a precedence grammar, we
want to throw away parse trees that do not adhere to the precedence and
associativity rules. Parse trees that do adhere to these rules are called prece-
dence correct parse trees.

In Chapter 3 we have seen that precedence correct trees are often de-
fined in terms of a specific parsing method, for example in YACC. In most
cases, only an appeal is made to the precedence of mathematical operators
like multiplication and addition or an unambiguous grammar with inte-
grated precedence levels is given.

A formal definition of precedence correct parse trees is given by Aasa [1],
that introduces a predicate PcΓ. Given a precedence grammar Γ, PcΓ spec-
ifies when a tree t is precedence correct. The predicate is defined in such a
way that the parse trees constructed by an operator precedence parser [22]
are precedence-correct. The definition introduces two different kinds of
precedence weight of a parse tree; a left weight Lw, and a right weight Rw.
Prefix operators have precedence only to the right, and postfix have prece-
dence only to the left. Infix operators have precedences in both directions.

To disambiguate expression grammars we will use a variant of precede
follow filtering. This filter is parser independent and correctly removes the
trees which are not precedence correct, while keeping trees that are prece-
dence correct. It seems that the precedence correct parse trees according to
our precede follow filter are the same as those according to predicate PcΓ.
A formal proof is left as future work.

In the next section we will show that two-level filtering is not sufficient.
With two-level filtering we mean that we remove trees where some produc-
tion occurs directly below another production. To completely disambiguate
expression grammars we will introduce a precede-follow filter. Complete
disambiguation means that we obtain exactly one parse tree for any input
sentence given a precedence grammar.

43 CHAPTER 5. DISAMBIGUATION OF EXPRESSION GRAMMARS

5.3 Why two-level filtering is not sufficient

In Section 4.3.3 we have introduced the semantics of the priority and as-
sociativity rules in SDF. This mechanism uses a type of two-level filtering,
meaning that it looks for a derivation with some production rule where one
nonterminal in this rule is expanded into a new production rule. Two-level
filtering is not sufficient for removing all invalid derivations. The following
counterexample will show why this is the case.

Given is Grammar Γ5.2, with priorities prio(E ::=! E) > prio(E ::=
E + E) > prio(E ::= not E). Production E ::= E + E is left-associative.

E ::= ! E | E + E | not E | 1 (Γ5.2)

Consider input sentence “! not 1 + 1”. For this input sentence it is not
immediately obvious what the correct derivation is given the priorities.
Derivation (!(not(1 + 1))) does not adhere to the high priority of !, whereas
derivation (!(not(1)) + 1), does not adhere to the low priority of +.

We consider (!(not(1 + 1))) to be the correct derivation. This example
has also been described by Aasa [1], where the same derivation is chosen.

Now, consider the parse tree of the incorrect derivation:

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

E

1

+E

E

E

1

not

!

In this parse tree there is no two-level filter applicable. Production
E ::=!E below production E ::= E + E poses no problem since it has a
higher priority. A similar argument applies to production rules E ::=!E
and E ::= not E. Therefore two-level filtering is not able to resolve the
ambiguity in this case. In order to correctly remove these kind of deriva-
tions we will look at precede and follow restrictions. This disambiguation
method allows us to disambiguate all expression grammars with unique
single-character operators.

5.4 Precede and Follow Restrictions

The precede-follow restrictions mechanism has been introduced as a parse
tree filter in Section 3.3.3. This mechanism can also be used as an SPPF
filter to disambiguate any valid expression grammar Γexpr. The precede

5.4. PRECEDE AND FOLLOW RESTRICTIONS 44

restrictions ensure that a production E ::= Eα may not be preceded by
higher-priority operators. For instance, production E ::= E ∗ E is not al-
lowed to precede E ::= E + E, since this would mean that the addition-
operator would bind stronger. Productions of the form E ::= βE may not
be followed by higher-priority operators. The restrictions are also used to
enforce the associativities of the operators.

Brink has given a formal proof for the situation where each operator
has a unique priority, and the same operator does not occur as multiple
types. We will refer to these assumptions as the unique priority assumption,
and the unique operator assumption. Due to these assumptions, using only
the PRECEDE(u) and FOLLOW(u) information of a node u in an SPPF, a de-
cision can be made whether u is valid or invalid. If the node is invalid, all
parse trees containing this node need to be removed from the SPPF. Finally
we have the single character assumption, stating that an operator consists of
a single character. This means that “+”, or “!” is valid operator, but “++”
or ”&&” is not. Since operators cannot have the same priority, we can for
instance not specify that addition and substraction have the same prior-
ity. Therefore after giving the original set of restriction, we will relax the
assumptions to allow these kind of situations.

In order to perform disambiguation we need information about the rel-
ative priorities among the productions, and associativity information for
the binary operators.

Assume a total function assoc from each binary operator to {left, right},
representing an associativity assignment:

assoc : x→ {left, right} with x ∈ B.

Assume a total function prio from each operator to N+, where a higher
priority means that the operator has a higher precedence and hence binds
stronger. Each operator has a unique priority:

prio : x→ N+ with x ∈ A ∪B ∪ C.

The precede and follow restrictions are defined in the following way:

P = {(〈E,EbiE〉, bj) | bi, bj ∈ B : prio(bi) < prio(bj) ∨
(bi = bj ∧ assoc(bi) = left))}

∪ {(〈E,EbiE〉, x) | bi ∈ B, x ∈ A ∪ C : prio(bi) < prio(x)}
∪ {(〈E,Eci〉, x) | ci ∈ C, x ∈ A ∪B : prio(ci) < prio(x)}

F = {(〈E,EbiE〉, bj) | bi, bj ∈ B : prio(bi) < prio(bj) ∨
(bi = bj ∧ assoc(bi) = right))}

∪ {(〈E,EbiE〉, x) | bi ∈ B, x ∈ A ∪ C : prio(bi) < prio(x)}
∪ {(〈E, aiE〉, x) | ai ∈ A, x ∈ B ∪ C : prio(ai) < prio(x)}.

45 CHAPTER 5. DISAMBIGUATION OF EXPRESSION GRAMMARS

Implementation These restrictions can be implemented as an SPPF-filter.
Assume we have an SPPF s with yield(s) = x1 . . . xm. Given the input
sentence, we can retrieve the terminal at position i with 1 ≤ i ≤ m in
constant time. Otherwise we have to determine the yield from the SPPF,
which takes at most O(m3).

Now we can traverse the SPPF in a depth-first of breath-first manner.
When we visit a symbol node u with label (A, i, j), PRECEDE(u) = xi−1 and
FOLLOW(u) = xj+1. In order to check the precede and follow restrictions
for this node, we need the production of A. A symbol node has a packed
node child for each possible alternative. Given a packed node c, which is
a child of u, we extract the grammar slot from c and obtain a production p,
with head(p) = A and body(p) = α. Now we check whether (〈A,α〉, xi−1) ∈
P or (〈A,α〉, xj+1) ∈ F. If a restriction applies, node c becomes invalid and
all parse trees containing c need to be removed from the SPPF. This removal
can be done using the node removal algorithm given in Section 4.3.1. After
removing the parse trees containing c, the result will be a single smaller
SPPF.

5.4.1 Disambiguate all single character operators

In order to support a wider set of expression grammars, we will remove
the unique operator assumption and the unique priority assumption. Because
we relax the assumptions, the precede and follow restrictions have to be
adapted. Before showing the adapted restrictions, we will first show how
to find the precede and follow values in an SPPF, and introduce the con-
cepts of precede production and follow production.

Assume a total function assoc from each binary production to the set
{left, right}, representing an associativity assignment:

assoc : 〈E,EbiE〉 → {left, right} with 〈E,EbiE〉 ∈ P.

Assume a total function prio from each production rule to N+, where a
higher priority means that the operators binds stronger:

prio : 〈E, γ〉 → N+ with 〈E, γ〉 ∈ P.

Figure 5.1 shows how to obtain PRECEDE (x) for some node x in a parse
tree with production E ::= Eα. Suppose x has production E ::= Eβ. Then
we first have to ignore a chain of ancestors of x that also have a production
of the form E ::= Eγi, until we get to a node y with a production of the
formE ::= αE. The value of PRECEDE (x) is given by the rightmost symbol
in α (i.e. LAST(α)), and the precede production of x is y. Note that x is in
the subtree of the rightmost E of y, and in the subtree of the leftmost E for
nodes with a production of the shape E :: Eγi.

5.4. PRECEDE AND FOLLOW RESTRICTIONS 46

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

E

γ1E

γ2E

γ3E

βE

α

Figure 5.1: Example showing that the precede production of E ::= Eβ is
E ::= αE).

As stated before, we allow the same symbol, say +, to occur both as
unary prefix, unary postfix, and binary operator. This means that a sen-
tence of the form � + + + � can be interpreted as (((�+)+) + �), ((�+) +
(+�)), and (� + (+(+�))). In order to correctly disambiguate the addi-
tional ambiguities that might occur now, we need to add additional precede
and follow restrictions.

Suppose we have an input sentence containing substring “++”. Then
we can parse this in two different ways. Either as prefix and binary opera-
tor, or as binary and postfix operator. Figure 5.2 shows these two situations.

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

E+E

+E

(a) prio(〈E,E+〉) > prio(〈E,+E〉)

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

E

E+

+E

(b) prio(〈E,+E〉) > prio(〈E,E+〉)

Figure 5.2

To disambiguate this ambiguity we introduce the following two addi-
tional precede and follow restrictions, Pop and Fop:

Pop = {(〈E, aiE〉, 〈E,EbiE〉) | ai ∈ A, bi ∈ B : ai = bi ∧
(∃ci : ci ∈ C : ci = ai ∧ prio(〈E, aiE〉) < prio(〈E,Eci〉))}

Fop = {(〈E,Eci, 〉, 〈E,EbiE〉) | bi ∈ B, ci ∈ C : bi = ci ∧
(∃ai : ai ∈ A : ai = bi ∧ prio(〈E,Eci〉) < prio(〈E, aiE〉))}

To get a unique derivation tree we need the requirement that an op-
erator occurring as multiple types in the grammar has a different priority
for each type. We will refer to this assumption as the multiple type unique
priority assumption. Without this assumption, we cannot completely disam-
biguate certain ambiguities, like the one given in Figure 5.2.

47 CHAPTER 5. DISAMBIGUATION OF EXPRESSION GRAMMARS

Another assumption that we need is the same priority same associativity
assumption, stating that productions with the same priority have the same
associativity. Note that associativity only plays a role for productions of the
form 〈E,EbiE〉 with bi ∈ B. To see why we need this assumption consider
two productions p+ = 〈E,E + E〉 and p− = 〈E,E − E〉 with prio(p+) =
prio(p−). Suppose that assoc(p+) = left and assoc(p−) = right. Then
given input sentenceE+E−E, derivation ((E+E)−E) would violate the
right associativity of p−, and derivation (E + (E − E)) would violate the
left associativity of p+. Enforcing the precede and follow restrictions would
mean that we would end up with no tree at all. If we require that these
productions have the same associativity, there is a unique valid derivation
for this input sentence.

For compactness in the definitions of P and F we will use γ to denote
the production 〈E, γ〉 (i.e. we omit the left hand side, which is always equal
to E in the case of expression grammars).

P = {(EbiE,EbjE) | bi, bj ∈ B : prio(EbiE) < prio(EbjE) ∨
(prio(EbiE) = prio(EbjE)
∧ assoc(EbiE) = left))}

∪ {(EbiE, ajE) | bi ∈ B, aj ∈ A : prio(EbiE) < prio(ajE)}
∪ {(Eci, ajE) | ci ∈ C, aj ∈ A : prio(Eci) < prio(ajE)}
∪ {(Eci, EbiE) | ci ∈ C, bj ∈ B : prio(Eci) < prio(EbjE)}
∪ {aiE,EbiE) | ai ∈ A, bi ∈ B : ai = bi ∧

(∃ci : ci ∈ C : ci = ai ∧ prio(aiE) < prio(Eci))}

F = {(EbiE,EbjE) | bi, bj ∈ B : prio(EbiE) < prio(EbjE) ∨
(prio(EbiE) = prio(EbjE)
∧ assoc(EbiE) = right))}

∪ {(EbiE,Ecj) | bi ∈ B, cj ∈ C : prio(EbiE) < prio(Ecj)}
∪ {(aiE,EbiE) | ai ∈ A, bj ∈ B : prio(aiE) < prio(EbjE)}
∪ {(aiE,Eci) | ai ∈ A, cj ∈ C : prio(aiE) < prio(Ecj)}
∪ {(Eci, EbiE) | bi ∈ B, ci ∈ C : bi = ci ∧

(∃ai : ai = bi ∧ ai ∈ A : prio(Eci) < prio(aiE))}

This set of precede and follow restrictions can correctly disambiguate
all valid expression grammars adhering to the required assumptions. To
prove this, we need to show that the relaxing the assumptions does not
introduce new ambiguities.

5.4. PRECEDE AND FOLLOW RESTRICTIONS 48

In the relaxed situation, operators are allowed to occur as various types.
The definitions for P and F can cope with this due to the fact that they
use the precede production, rather than the precede symbol. Therefore a
distinction can be made between operators occurring as different types.
For instance, we can distinguish between a unary minus and binary minus
when the precede symbol is a minus.

The assumption that two operators of the same type have a different
priority is no longer needed. Given two productions p1, p2 ∈ P , all precede
and follow rules look for a violation of p1 < p2, so introducing productions
with the same priority is no problem. We do however need the multiple
type unique priority assumption. Consider for example an operator, say +,
occurring as prefix and binary operator. Then given input sentence +1 + 1
we cannot choose between +(1 + 1) and (+1) + 1. As explained before we
also need the same priority same associativity assumption for productions with
binary operators.

Implementation The precede and follow restrictions that use precede and
follow productions can also be implemented as an SPPF filter. The only dif-
ference is that we need to keep track of the precede and follow productions
when traversing the SPPF. For this reason, we introduce the concept of an
SPPF-walkerW(p, f), with p, f ∈ P , that keeps track of these values while
traversing the SPPF.

Whenever we follow an outgoing edge of a packed node to a symbol
node, we update the precede or follow production. If the edge is the first
child edge, we update f . If the edge is the last child edge, we update p.
Figure 5.3 shows the various scenarios that are possible when considering
expression grammars. For example, Figure 5.3a shows the situation where
we follow the right arrow to nonterminal E. The precede production is
updated to 〈E,+E〉, since the precede value is +.

(E ::= + E•, k)

(+, i, k) (E, k, j)

(a) update p

(E ::= E + E•, k)

(E ::= E + • E ,i, k) (E, k, j)

(b) update p

(E ::= E +•, k)

(E, i, k) (+, k, j)

(c) update f

Figure 5.3: WalkerW(p, f) is updated when traversing the dashed edge.

Since a node can have multiple parents, we have to remember the path
from the precede or follow production to the node. Applying a precede or
follow filter means removing this path from the SPPF. After removing the
path we obtain a new set of SPPFs. Part of the precede-follow violations
will be present in each of these newly created SPPFs. This means that the

49 CHAPTER 5. DISAMBIGUATION OF EXPRESSION GRAMMARS

same path filter can be applied multiple times, one time for each SPPF.
A solution to this problem is to separate the collection of the invalid

paths from the actual path removal. First, the algorithm creates a list of all
invalid paths by traversing the SPPF. Paths that are lower in the SPPF are
appended to the end of the list. In the second step the invalid paths are
removed. Using a list rather than a set improves the performance of the
filter. If a path higher in the SPPF is removed, the part that may become
unreachable can be larger than removing a path lower in the SPPF, which
means that less copying will be needed.

The main bottleneck in the performance of the filter is the copying of
the SPPF. By using persistent data structures, unnecessary copying of edges
can be avoided.

5.4.2 Disambiguate Java expressions

In the previous section we have looked at disambiguating expression gram-
mars with operators consisting of a single character. This assumption is
however too rigid when we consider typical expressions in programming
languages. Consider for instance the binary boolean operators || and &&,
or increment and decrement operators ++ and −− in the C-family of pro-
gramming languages.

InfixOp ::= “||” | “&&” | “|” | “̂” | “&” |
“ == ” | “! = ” | “ < ” | “ > ” | “ <= ” |
“ >= ” | “ << ” | “ >> ” | “ >>> ” | “ + ” |
“− ” | “ ∗ ” | “/” | “%”

PrefixOp ::= “ + +” | “−−” | “!” | “ ∼ ” | “ + ” |
“− ”

PostfixOp ::= “ + +” | “−−”
(Γ5.3)

Grammar Γ5.3 shows the operators that are supported in Java 7, taken
from the Java Language Specification [25]. We can see that + and − oc-
cur as binary and prefix operator, and ++ and −− as prefix and postfix
operator. Allowing an operator to be multiple characters introduces new
ambiguities. Consider as an example the prefix operators + and ++. Then
we can parse an input sentence containing + + + in three ways, namely
+(+ + E), +(+(+E)), and + + (+E).

At this point we still have the multiple type unique priority assumption.
This means that productions 〈E, oE〉, 〈E, ooE〉, 〈E,EoE〉 and 〈E,Eoo〉 all
have unique priorities for o ∈ {+,−}. We will remove the single character

5.4. PRECEDE AND FOLLOW RESTRICTIONS 50

assumption in order to allow disambiguation of Java expressions. The new
ambiguities that arise given the Java operators can be classified into two
different categories. The additional precede and follow restrictions are all
introduced to disambiguate expressions containing EoiE where o1 = o,
and on+1 = oon.

Same type operators Assume we have two operators of the same type.
We consider the case where both operators are postfix. We will use ∗ to
denote any arbitrary production.

• If prio(〈E, ooE〉) > prio(〈E, oE〉), then (〈E, oE〉, 〈E, oE〉) ∈ P.

• If prio(〈E, oE〉) > prio(〈E, ooE〉), then (〈E, ooE〉, ∗) ∈ P.

Different type operators Assume we have two operators, where one is
a prefix and one is a postfix operator. Let |〈A,α〉| denote the number of
symbols in production A ::= α. Then given prio(p) > prio(q) for p, q ∈ P ,
we consider the cases |p| ≤ |q| and |p| > |q|.

• case |p| ≤ |q|:
If prio(〈E,Eoo〉) > prio(〈E, ooE〉), then (〈E, ooE〉, 〈E,EoE〉) ∈ P.
If prio(〈E, ooE〉) > prio(〈E,Eoo〉), then (〈E,Eoo〉, 〈E,EoE〉) ∈ P.

• case |p| > |q|:
Suppose prio(〈E,Eoo〉) > prio(〈E, oE〉. Then we want to remove
parse trees of the form shown in Figure 5.4a. The two o-characters
that are parsed as postfix operators can also be parsed as a single
prefix operator, see Figure 5.4b. Note that between the postfix pro-
ductions there can be an arbitrary number of binary and prefix oper-
ators. If we look at the marked E in Figure 5.4a then we know that we
have a production p = 〈E, oE〉 with precede production 〈E,EoE〉.
Suppose that the o-character of p is at position i of the input string.
Then we can check whether the character at position i+ 1 is an o, but
not to which production it belongs using only the precede and follow
productions of E. This may either be a binary operator or a prefix
operator. Therefore we cannot create a precede-follow restriction that
can handle this case.

In the same way, restriction prio(〈E, ooE〉) > prio(〈E,Eo〉 can also
not be enforced using precede-follow filtering. Note that these two
cases can be filtered using a custom path filter.

51 CHAPTER 5. DISAMBIGUATION OF EXPRESSION GRAMMARS

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

E

E

Eo

o

oE

(a) invalid

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

EoE

ooE

(b) valid

Figure 5.4: Invalid and valid parse trees for prio(〈E,Eoo〉) > prio(〈E, oE〉).

The primary Java compiler, javac [37], uses a hand-written LL parser
for parsing Java code. As stated in the preamble of the parser code, for ef-
ficiency reasons, an operator precedence scheme is used for parsing binary
operation expressions. If we look at expressions of the shape E +i E, then
the Java parser will correctly parse E+E and E+ + +E, where E+ + +E
is parsed as (E + +) + E. For i 6= 1 and i 6= 3, E +i E will result in a
syntax error. So, the precede-follow mechanism with the given restrictions
can parse all valid Java expressions (that is, with respect to by the gram-
mar and the language specification), except E + + +E and E −−−E. As
mentioned before we can introduce a custom filter for these cases using an
SPPF-walker.

Chapter 6

Disambiguation of Mixfix
Expressions

In the previous chapter we have looked at the disambiguation of expression
grammars with unary and binary operators. This chapter illustrates the
applicability of the SPPF filters described in Chapter 4 by applying it on a
more general class of expressions that includes mixfix operators. A mixfix
(also known as distfix) operator can have several name parts, and multiple
operator holes. Each hole is a position in which an argument expression is
expected. For instance, if then else is a prefix mixfix operator.

To illustrate the applicability of the SPPF filters, we will look at ambigu-
ities that arise in a grammar containing mixfix operators. For this purpose
we look at the mCRL2 language [20], a formal specification language for
describing concurrent discrete event systems.

6.1 Mixfix expressions

Before delving into causes of ambiguity in mixfix expressions, we will first
describe our concept of mixfix operators, and the mixfix expressions that
can be formed using these operators. We will follow the definitions given
by Wieland [54].

Definition 6.1.1. Every mixfix operator pattern is a sequence of n separa-
tors, interleaved by n− 1 operand placeholders s0 s1 . . . sn.

Definition 6.1.2. If a separator between two operand placeholders is the
empty sequence, these operands are called adjacent.

As an example consider the following mixfix operator pattern: and .
Here the two operands following and are called adjacent.

Definition 6.1.3. The arity of a mixfix operator pattern is equal to the num-
ber of placeholders in the pattern.

52

53 CHAPTER 6. DISAMBIGUATION OF MIXFIX EXPRESSIONS

Definition 6.1.4. If a separator at the beginning of a pattern is empty, the
operator is called left-open, otherwise it is called left-closed. An operator
with an empty last separator is called right-open. If the last separator is
non-empty, the operator is called left-closed.

Left-closed operators are also called prefix operators, while right-closed
operators are also called postfix operators. Operators which are both prefix
and postfix are called closed operators. Infix operators are both left-open,
and right-open. To illustrate the fixity of operators, consider the following
examples:

• infix: ` : ,

• prefix: if then else ,

• postfix: [] ,

• closed: { }.

In the previous chapter we have seen unary prefix and unary postfix
operators, as well as binary infix operators. In this chapter we will also
look at operators that have a higher arity, which are part of the mCRL2
grammar.

A mixfix expression is a sequence of the separators of the operator pat-
tern, interleaved with operand expressions between the separators.

6.2 Causes of ambiguity in mixfix expressions

In mixfix expressions, there are various causes of ambiguity [54]. In this
section we will look at syntactical ambiguities. Besides syntactical ambigu-
ities, there can also be semantic ambiguities arising from type ambiguities,
for instance when the language allows some form of polymorphism. Since
these ambiguities need to be resolved by a type inference system, we will
not consider them further here.

For the types of ambiguity that occur in mCRL2, we will investigate
how they can be resolved.

6.2.1 Shared separator tokens

The first cause of ambiguity in mixfix expressions is mixfix operators shar-
ing one or more separator tokens. The notorious “dangling else” ambigu-
ity is an example of an ambiguity that falls in this category. This ambiguity
occurs in nested if-then-else expressions, where the inner else can
be interpreted as belonging to either the inner if, or the outer if. Given
mixfix operators if then , and if then else , there are two
derivations for expression if then if then else:

6.2. CAUSES OF AMBIGUITY IN MIXFIX EXPRESSIONS 54

1. (if then (if then) else)

2. (if then (if then else))

Suppose we have two productions p = 〈A,α〉 and q = 〈A,αβ〉 with
α, β 6= ε. Then we can prefer one of the productions over the other by
using a prefer filter. In our example, if we want the second derivation, we
prefer if then over if then else .

6.2.2 Adjacent operands

The second cause of ambiguity can occur when one or more mixfix expres-
sions have adjacent operands. In these situations, it is not clear where the
left operand ends and where the right operand starts. For instance consider
expression abc, with operator a c, where the first and second operand
expressions can be b or ε. Then we have derivations a c ⇒ a b ε c
⇒ a b c, and a c ⇒ a ε b c ⇒ a b c.

In the mCRL2 grammar there are some adjacent operands in produc-
tion rules containing A+ for some A ∈ N . This could potentially lead to
ambiguities. However, for each instance of A we have that the production
rule is right-closed with a semicolon. This means that each occurrence of A
is well separated, and no adjacent operand ambiguity is introduced.

6.2.3 Left-open vs. right-open operators

When both left-open and right-open operators are present, another type of
ambiguity can arise. This type of ambiguity is related to the relative prece-
dence and associativity of the operators. In Chapter 5, we have already seen
various examples of this type of ambiguity. As an example, consider the bi-
nary infix operators + and ∗ , which are both left-open and right-open.
Then expression 1 + 2 ∗ 3 can be derived in two ways, namely (1 + (2 ∗ 3)),
and ((1 + 2) ∗ 3). In the first derivation, the ∗-operator has precedence over
the +-operator, while in the second derivation this is the other way round.

The attentive reader might have noticed a pattern in the set of precede
and follow restrictions given in Chapter 5. If we have two rules, where
one is left-open and the other right-open, we introduce a precede or follow
restriction depending on the relative priorities.

Assume a partial function prio from production rules to N+, where a
higher priority means that the operator binds stronger.

prio : 〈E, γ〉 → N+ with 〈E, γ〉 ∈ P

Assume a partial function assoc from production rules to N+, specifying
the associativity of infix operators.

prio : 〈E, γ〉 → {left, right, non - assoc} with 〈E, γ〉 ∈ P

55 CHAPTER 6. DISAMBIGUATION OF MIXFIX EXPRESSIONS

Associativity Let p and q be production rules (possibly the same) of an
infix operator, satisfying the following properties.

1. p = 〈E,AβB〉, with β 6= ε

2. q = 〈E,CγD〉, with γ 6= ε

3. p and q do not contain adjacent operands

4. prio(p) = prio(q)

5. assoc(p) = assoc(q)

6. A ∗⇒ E, B ∗⇒ E

7. C ∗⇒ E, D ∗⇒ E

Depending on the associativity of p, given by assoc(p), we obtain the
following precede and following restrictions.

1. left: (〈E,AβB〉, 〈E,CγD〉) ∈ P

2. right: (〈E,AβB〉, 〈E,CγD〉) ∈ F

3. non-assoc: (〈E,AβB〉, 〈E,CγD〉) ∈ P, (〈E,AβB〉, 〈E,Cγ +D〉) ∈ F

Note that we do not require that the outer nonterminals are the same
as the head of the production rule. We do however need that they derive
the head of the production rule. By this specification, the filtering will also
apply to injections (or chain rules), where E is derived after a number of
derivation steps. Recall that the associativity of two productions must be
the same if the priority is also the same, otherwise we could end up with
no derivation at all (see Section 5.4.1).

Priority Let p and q be production rules, where p is left-open and q is right
open, satisfying the following properties.

1. p = 〈E,Aα〉, with α 6= ε

2. q = 〈E, βB〉, with β 6= ε

3. A ∗⇒ E

4. B ∗⇒ E

Depending on the relative priorities of the production rules, we obtain
the following precede and follow restrictions.

1. If prio(p) < prio(q), then 〈E,Aα〉, 〈E, βB〉 ∈ P.

6.2. CAUSES OF AMBIGUITY IN MIXFIX EXPRESSIONS 56

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

αA

E

B

E

β

(a) Valid tree when
prio(〈E, βB〉) > prio(〈E,Aα〉)

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

B

E

αA

E

β

(b) Valid tree when
prio(〈E,Aα〉) > prio(〈E, βB〉)

Figure 6.1: Derivation trees when a grammar contains both a left-open and
right-open rule.

2. If prio(p) > prio(q), then 〈E, βB〉, 〈E,Aα〉 ∈ F.

Given two such rules 〈E,Aα〉 and 〈E, βB〉, there are two different deriva-
tion trees, shown in Figure 6.1.

To illustrate the generation of the restrictions, consider the following
grammar:

DataExpr ::= “forall” Id “.” DataExpr {1}
DataExpr ::= DataExpr “==” DataExpr {left, 5}
DataExpr ::= Id

Id ::= [a - z]+

(Γ6.1)

The first production rule is right-open, and the second production rule
is left-open. Since the open nonterminal is DataExpr in both cases, we
need to add a restriction. Because the first production rule has a lower
priority we need a precede restriction.

(〈DataExpr, “forall” Id “.” DataExpr〉,
〈DataExpr,DataExpr “==” DataExpr〉) ∈ P

Since the second production rule is left-associative, we obtain the fol-
lowing precede restriction:

(〈DataExpr,DataExpr “==” DataExpr〉,
〈DataExpr,DataExpr “==” DataExpr〉) ∈ P

Note that the restrictions are only applicable if a priority between the
rules is defined. We do not require that every production rule has a priority.

57 CHAPTER 6. DISAMBIGUATION OF MIXFIX EXPRESSIONS

For instance, closed expressions are not part of any ambiguity and therefore
do not need a priority. In the case of two distinct infix operators, we obtain
two restrictions if their relative priorities are defined.

The precede and follow restrictions are used by a new filter, the left-
open right-open filter (LORO-filter). This filter removes ambiguities related
to the relative precedence and associativity of left- and right-open opera-
tors. The LORO-filter resembles the precede/follow production filter, but
uses an additional check to avoid filtering below closed operators. The im-
plementation of this filter is discussed in Section 6.5. We will now look at
the mCRL2 language in more detail, and the types of ambiguities that occur
in the various parts of the language.

6.3 mCRL2 specification language

As described in the introduction of this chapter, mCRL2 is a formal speci-
fication language that can be used for describing concurrent discrete event
systems. The behavioral part of the language is based on process algebra
(Algebra of Communicating Processes [7]). The specified behavior can be
simulated, visualized or verified against its requirements using the mCRL2
toolkit. In this section we will give a brief introduction of the various com-
ponents present in the mCRL2 language.

The basis for mCRL2 specifications are abstract data types, with opera-
tions defined on them. These abstract data types are present in processes,
and actions that may carry a number of parameters. Processes are the most
important entities in a process specification. They are used to describe the
behavior of some component or system. In the remainder of this section we
will look at data, actions, and processes in more detail.

6.3.1 Data types

The underlying theory of mCRL2 data types is abstract data types. These
types consists of:

• sorts and operations on these sorts;

• equations on terms, composed from operations and variables, where
the terms are of the same sort.

New sorts are declared using the keyword sort. For a sort, constructor
functions can be defined using the keyword cons. These functions specify
exactly all elements in the sort. For instance, we can construct the sort Nat
representing the natural numbers in the following way:
sort Nat;
cons zero : Nat;

successor : Nat→ Nat;

6.4. PARSING MCRL2 SPECIFICATIONS 58

Any natural number can now be denoted by an expression of the form:

successor(successor(. . . successor(zero) . . .)).

Auxilary functions can be defined using the keywords map and eqn.
Using map, we can define the typing of the functions, and the actual equa-
tions are given using eqn. Variables are introduced by the keyword var, or
keyword glob for global variables. To illustrate this, we extend our defini-
tion of the natural numbers with a plus operator:

map plus, times : Nat×Nat→ Nat;
var n, m : Nat;
eqn plus(n, zero) = n;

plus(n, successor(m)) = successor(plus(n, m));

6.3.2 Processes and Actions

The data types and their equations can be used in the specifications of pro-
cesses. A process is defined using the keyword proc. Processes can per-
form actions, which are defined using the keyword act. Processes can be
composed to form new processes. A system usually consists of several pro-
cesses in parallel.

As an example, consider the specification of a clock that counts its ticks:

act tick;
proc Clock(n : Nat) = tick.Clock(n + 1);
init Clock(0);

Here, init is used to denote the initial state of the clock.

6.4 Parsing mCRL2 specifications

When looking at the mCRL2 grammar, one of the first observations is that
the grammar actually consists of various components. The grammar con-
tains the mCRL2 specification grammar, but also the grammar for specify-
ing requirements on the modeled system. The requirements can be formu-
lated using an action formula (ActFrm in the grammar), a Boolean equa-
tion system (BesSpec), or a Parametrized boolean equation system
(PbesSpec). We will focus our attention only on the mCRL2 specifica-
tions. This corresponds to lines 1-258 and 390-400 in the DParser grammar
for mCRL2.

At several points, the grammar has been modified over time in order
to remove certain ambiguities. To find the intended meaning behind the
grammar with respect to precedences and associativities, we use the orig-
inal syntax definition given by Groote and Mousavi [26] and the mCRL2

59 CHAPTER 6. DISAMBIGUATION OF MIXFIX EXPRESSIONS

SVN repository 1.
The current toolset of mCRL2 uses DParser [38] for parsing specifica-

tions. DParser is a scannerless GLR parser based on the Tomita algorithm.
It allows specification of priorities and associativities. Operator priorities
and associativities in DParser are specified on the reduction which creates
the token. Besides operator priorities, rule priorities can be specified. Rule
priorities specify the priority of the reduction itself. The actual implemen-
tation of the disambiguation method for these disambiguation rules is not
very clear. According to the manual it is a combination of shift/reduce con-
flict resolving, stack comparisons, and heuristics. Appendix A contains the
full DParser grammar for mCRL2.

Because the mCRL2 grammar is in EBNF format and the GLL imple-
mentation we are using requires BNF, we transform the grammar to BNF.
The following rules describe this transformation.

1. Replace a group (α), where α denotes a sequence of symbols, by a
nonterminal X , and add the production rule 〈X,α〉 to the set of pro-
duction rules.

2. Replace a symbol X? by a nonterminal Y , and add production rules
〈Y,X〉 and 〈Y, ε〉 to the set of production rules.

3. Replace a symbol X∗ by a nonterminal Y , and add production rules
〈Y,XY 〉 and 〈Y, ε〉 to the set of production rules.

4. Replace a symbol X+ by a nonterminal Y , and add production rules
〈Y,XY 〉 and 〈Y,X〉 to the set of production rules.

By replacingX∗ by a nonterminal Y , and production rules 〈Y,XY 〉 and
〈Y, ε〉 we have made the choice for right recursion. Another option would
be to replace X∗ by a nonterminal Y and production rules 〈Y, Y X〉 and
〈Y, ε〉. This decision might have influence on whether precede or follow
restrictions will be generated containing the newly introduced production
rules.

The BNF grammar can be found in Appendix B.
In the remainder of this section, we will look at the various types of am-

biguities that occur in mCRL2 specifications, and how they can be resolved.
It is important to keep in mind that the order of applying the filters to re-
solve the ambiguities might yield different results. This will be described
in more detail in Section 6.6.

1https://svn.win.tue.nl/trac/MCRL2/browser/trunk/doc/specs/
mcrl2-syntax.g

https://svn.win.tue.nl/trac/MCRL2/browser/trunk/doc/specs/mcrl2-syntax.g
https://svn.win.tue.nl/trac/MCRL2/browser/trunk/doc/specs/mcrl2-syntax.g

6.4. PARSING MCRL2 SPECIFICATIONS 60

6.4.1 Restricted keywords

The following set K contains all predefined keywords in the mCRL2 lan-
guage. These keywords cannot be used as identifiers.

K = {sort, cons, map, var, eqn, act, proc, init, nil,

delta, tau, sum, block, allow, hide, rename, comm,

struct, Bool, Pos, Nat, Int, Real, List, Set, Bag,

FSet, FBag, true, false, whr, end, lambda, forall,

exists, div, mod, in}

In the mCRL2 grammar all identifiers are derived from Id, which is
defined by the following production:

Id ::= [A -Za - z][A -Za - z 0− 9′]∗ (Γ6.2)

All parse trees where a restricted keyword is derived from an identifier
must to be removed. This can be done by removing all parse trees having
the path 〈(Id, i, j), (Id ::= [A -Za - z][A -Za - z 0 − 9′] ∗ ·, k), (keyw, i, j)〉
with keyw ∈ K. In our GLL parser for mCRL2 we filter these trees during
parsing, by not executing the pop if the next terminal is present in set K.

6.4.2 Ambiguities in sort expressions

Sort expressions are used to declare new sorts. In the grammar, SortSpec
is used for specifying the typing of a sort. Consider the following example:
sort A = Nat×Nat→ Nat→ Nat;

In mCRL2,→ operator is right-associative and has a lower priority than
the × operator. Therefore, brackets in the example should be added in the
following way:
sort A = (Nat×Nat)→ (Nat→ Nat);

The ambiguities that occur in sort expressions relate to the precedences
and associativities of these two operators. Since the ambiguity occurs in-
side SortExpr, we will focus only on this part of the grammar. In our
example, SortExpr derives the part Nat×Nat→ Nat→ Nat.

We have distilled the essentials needed from the grammar to allow a
compact description of the ambiguity related to the precedence of the →
and × operator. The compact grammar is shown in Grammar Γ6.3.

SortExpr ::= ‘Nat’ | Domain ‘→ ’ SortExpr
Domain ::= SortExprList

SortExprList ::= SortExpr (‘#’ SortExpr)∗
(Γ6.3)

61 CHAPTER 6. DISAMBIGUATION OF MIXFIX EXPRESSIONS

After conversion to BNF we obtain the following grammar:

SortExpr ::= ‘Nat’ | Domain ‘→ ’ SortExpr
Domain ::= SortExprList

SortExprList ::= SortExpr SortExprStar

SortExprStar ::= ‘#’ SortExpr SortExprStar | ε

(Γ6.4)

In order to correctly disambiguate sort expressions, we need filters that
enforce the precedence of # over→ and the right-associativity of→. Fig-
ure 6.2 shows the invalid parse trees for our example. We can make the
following observations:

• Production 〈SortExpr,Domain ‘ → ’ SortExpr〉 may never have a
precede production containing the #-operator
(i.e. 〈SortExprStar, ‘#’ SortExpr SortExprStar〉 in our BNF gram-
mar). This case corresponds to the higher precedence of # over →,
filtering trees where → is nested below a #. Furthermore, produc-
tion 〈SortExpr,Domain ‘→ ’ SortExpr〉may not have a follow pro-
duction containing the #-operator, since this would also violate the
higher precedence of # over→.

• Production 〈SortExpr,Domain ‘ → ’ SortExpr〉 may never have a
follow production equal to 〈SortExpr,Domain ‘→ ’ SortExpr〉. This
case corresponds to the right-associativity of→, filtering trees where
→ is left-associative.

Figures 6.2a and 6.2b show parse trees corresponding to these cases in
our example. There are no other ambiguities in sort expressions. So, in or-
der to remove all invalid parse trees that have an incorrect sort expression
we can use the left-open right-open filter that uses these following restric-
tions.

(〈SortExpr,Domain ‘→ ’ SortExpr〉,
〈SortExprStar, ‘#’ SortExpr SortExprStar〉) ∈ P

(〈SortExpr,Domain ‘→ ’ SortExpr〉,
〈SortExprStar, ‘#’ SortExpr SortExprStar〉) ∈ F

(〈SortExpr,Domain ‘→ ’ SortExpr〉,
〈SortExpr,Domain ‘→ ’ SortExpr〉) ∈ F

Note: In our definition of precede and follow productions we will ig-
nore productions that derive ε. The ε-productions are introduced by our
conversion to BNF. Ignoring these productions can be done by looking at
the extent or pivot of the nodes in the path. Figure 6.3 shows an example
of this.

6.4. PARSING MCRL2 SPECIFICATIONS 62

Nat

SortExpr

SortExprList

SortExprStar

SortExpr SortExprStar

Nat

SortExpr

SortExprList

SortExprStar

ε

Domain -> SortExpr

Nat

ε

Domain

SortExpr

-> SortExpr

Nat

(a) Parse tree corresponding to deriva-
tion ((Nat # (Nat→ Nat))→ Nat)

Nat

SortExpr

SortExprList

SortExprStar

SortExpr SortExprStar

Nat ε

Domain

SortExpr

-> SortExpr

Nat

SortExprList

SortExprStar

ε

Domain

SortExpr

-> SortExpr

Nat

(b) Parse tree corresponding to deriva-
tion ((Nat # Nat)→ Nat)→ Nat)

Figure 6.2: Two invalid parse trees corresponding to input Nat × Nat →
Nat→ Nat.

(SortExprList, 0, 12)

(SortExprList ::= SortExpr SortExprStar•,12)

(SortExprStar, 12, 12)(SortExpr, 0, 12)

(SortExprStar ::= ε•,12)

(ε, 12, 12)

Figure 6.3: Symbol node (SortExprStar,12,12) derives ε, which can be in-
ferred from the extend of node (SortExprList, 0, 12) and the pivot of
(SortExprList ::= SortExprSortExprStar·, 12).

63 CHAPTER 6. DISAMBIGUATION OF MIXFIX EXPRESSIONS

6.4.3 Ambiguities in data expressions

Data expressions are used to describe data types with their associated func-
tions and operators. The developer documentation of mCRL2 gives the
priorities and associativities of the operators used in data expressions [34]:

The prefix operators have the highest priority, followed by in-
fix operators, followed by the lambda operator together with
universal and existential quantification, followed by the where
clause.

The precedences and associativities of the infix operators are shown in
Table 6.1.

operators associativity
*, . left
/, div, mod left
+, - left
|> right
<| left
++ left
<, >, <=, >=, in none
==, != right
&&, || right
=> right

Table 6.1: Precedence of infix operators

Given this information and the DParser grammar of mCRL2, we can
derive a set of precede and follow production restrictions. Using these re-
strictions we can remove all parse trees from the SPPF that violate one of
the precedence or associativity rules, again by using the left-open right-
open filter. There are no ambiguities arising from shared separator tokens.

6.4.4 Ambiguities in process expressions

Processes are used to describe the behavior of some system or component.
Process expressions allow the description of these processes. In these ex-
pressions data expressions and action expressions are used.

The process expressions also have ambiguities related to the associa-
tivity and priority of operators. They can be resolved by generating the
precede and follow restrictions as described in Section 6.2.3 and using a
left-open right-open filter for removing undesired derivations.

In process expressions, we also have an ambiguity arising from shared
separator tokens. More specifically, it is an instance of the dangling else
ambiguity. The ambiguity arises because of the following two rules:

6.5. LEFT-OPEN RIGHT-OPEN FILTER 64

1. ProcExpr ::= DataExpr → ProcExpr � ProcExpr

2. ProcExpr ::= DataExpr → ProcExpr

According to the semantics of mCRL2, the dangling else should be at-
tached to the nearest by → operator. Therefore, we add a prefer attribute
to the production without the else (in our case the diamond), and a avoid
attribute to the production with the else. The prefer filter looks for a sym-
bol node with label (ProcExpr, i, j) for some i, j, that has a packed node
child with label (ProcExpr ::= DataExpr → ProcExpr, l) for some k. All
other packed node children will be removed, which have labels of the form
(ProcExpr ::= DataExpr → ProcExpr � ProcExpr, k) for some l.

6.5 Left-open right-open filter

Associativity and priority ambiguities occurring in mCRL2 are resolved by
using a left-open right-open (LORO) filter. This filter is implemented by an
SPPF-walker (cf. Section 5.4.1). SPPF-walker W(node, p, f, rightNullable)
keeps track of four variables:

• node ∈ V : current node in SPPF S(V,E)

• p: path to precede production

• f : path to follow production

• rightNullable ∈ B: indicates whether the current nonterminal in a
production is right-open. The purpose of this variable is explained in
more detail below.

6.5.1 Hidden openness with nullable nonterminals

In Section 6.4.2 we have seen a situation where nonterminals that derive ε
may introduce new ambiguities. If we have a rule of the shape 〈E,αAB〉,
and B

∗⇒ ε, then the production rule becomes right-open. In our EBNF to
BNF conversion there are several cases of this. For instance

SortExprList ::= SortExpr(‘#’ SortExpr SortExprStar)∗ (Γ6.5)

is translated into

SortExprList ::= SortExpr SortExprStar

SortExprStar ::= ‘#’ SortExpr SortExprStar | ε.
(Γ6.6)

If nonterminal SortExprStar derives ε, SortExprList becomes right-open
(besides being already left-open). Furthermore, nonterminal SortExpr in

65 CHAPTER 6. DISAMBIGUATION OF MIXFIX EXPRESSIONS

SortExprList will have the same follow production as SortExprList in-
stead of SortExprList itself.

During the traversal of the SPPF we keep track of variable rightNullable.
If we visit a nonterminal symbol node A, the value of rightNullable in-
dicates whether the part of the production rule right from A derives ep-
silon. If this is the case, A becomes right-open. We do not need a variable
leftNullable, since the binarization of the production is done from the left.
Whenever a nonterminal symbol node is the left child, it is left-open. If it
is the right child, we can look at the extent of the left symbol node child. If
the left extent is equal to the right extent, then it derives ε.

To show how the variable rightNullable is updated, consider a produc-
tion rule of the shape 〈E,αγδβ〉 with γ, δ ∈ T ∪ N . Assume that we have
a packed node with two children, shown in Figure 6.4. If the packed node
has only one child, the value of rightNullable does not change.

(E ::= α γ δ • β, k)

(E ::= α γ • δ β ,i, k) (δ, k, j)

(E ::= γ δ • β, k)

(γ, i, k) (δ, k, j)

Figure 6.4: A packed node with two children.

The packed node has a pivot between δ and β. Variable rightNullable
indicates whether β is nullable. If we now go down to the left child, we
have to check whether δβ ∗⇒ ε:

δβ
∗⇒ ε ⇐⇒ δ

∗⇒ ε ∧ β ∗⇒ ε ⇐⇒ k = j ∧ rightNullable.

If we go down to the right child, rightNullable indicates whether β is nul-
lable.

To see whether αγ is nullable, we only have to look whether i = k.

6.5.2 Applicability of restrictions

Compared to the expression grammars discussed in Chapter 5, we will use
the precede and follow restrictions in a slightly different way. This is due to
the fact that mCRL2 has operators of higher arity, where a production rule
can have both an open and closed nonterminal. An example of this is the
function application operator; DataExpr ::= DataExpr(DataExprList).
Here DataExpr is open, but DataExprList is guarded by braces.

Now consider the following grammar, where the associativity and pri-

6.5. LEFT-OPEN RIGHT-OPEN FILTER 66

ority of the operator is given between curly brackets:

E ::= E(E) {left, 13}
E ::= E + E {left, 10}
E ::= 1

(Γ6.7)

Given this grammar, we would generate two restrictions:

(〈E,E + E〉, 〈E,E(E)〉) ∈ F, (〈E,E + E〉, 〈E,E + E〉) ∈ P.

Implementing the filter in the same way as in Chapter 5 removes all invalid
parse trees. However, it will also remove valid parse trees. Consider the
input 1(1 + 1). Clearly this input has only one left-most derivation (E ⇒
E(E) ⇒ 1(E) ⇒ 1(E + E) +⇒ 1(1 + 1)). However, the follow production
of 〈E,E + E〉 in the tree is 〈E,E(E)〉 due to the closing brace. This means
that the tree corresponding to 1(1 + 1) will be incorrectly removed.

The reason that the restriction should not be applied is that the sec-
ond E in 〈E,E(E)〉 is guarded by braces. In the case that a nonterminal is
guarded, we do not want to enforce the restrictions. If both leftNullable
and rightNullable are false, the nonterminal is guarded and the precede
and follow production paths need to be reset. This ensures that valid trees
are not removed by the filter.

6.5.3 Updating the walker

During the traversal of the SPPF we have a function UpdateWalker that up-
dates the SPPF-walker given the current edge that is taken.

Algorithm UpdateWalker(W, u, v)
Input: walkerW , packed node u, node v with (u, v) ∈ E (in SPPF S(V,E))
1. W ′←W
2. if |parent.children| = 1 (∗ precede/follow productions do not change ∗)
3. then returnW ′
4. else
5. determine leftNullable and rightNullable
6. if v.type = symbol
7. then if ¬leftNullable ∧ ¬rightNullable
8. then (∗ guarded literal ∗)
9. W ′.p = [];W ′.f = []
10. else if ¬leftNullable
11. thenW ′.p = [u];
12. if ¬rightNullable
13. thenW ′.f = [u];
14. ifW ′.p 6= []

67 CHAPTER 6. DISAMBIGUATION OF MIXFIX EXPRESSIONS

15. thenW ′.p←W ′.p++ v
16. ifW ′.f 6= []
17. thenW ′.f ←W ′.f ++ v
18. updateW ′.rightNullable
19. returnW ′

Note: For the left-open right-open filter we have made the decision that
a production not having any terminals can be a precede or follow pro-
duction of a symbol node. In the following tree, A has follow production
〈E,AN〉 under the condition that N 6 ∗⇒ ε:

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

NA

This is what one would expect, since given the extent of A in the input
string, the next character in the input string is derived from N .

6.5.4 Left-open right-open filter pseudo code

The left-open right-open filter consists of two parts. Algorithm Remove-
FirstInvalidPath traverses the SPPF with an SPPF-walker to find paths that
need to be removed. As soon as such a path is found, the algorithm invokes
Algorithm RemoveParseTreesP to remove all parse trees containing this path,
and returns the set of resulting SPPFs. Algorithm LeftOpenRightOpenFilter
iteratively invokes Algorithm RemoveFirstInvalidPath until the set of result-
ing SPPFs does not change anymore.

Algorithm LeftOpenRightOpenFilter(S,P,F)
Input: S: SPPF to be filtered
1. Q← [S] (∗ queue of SPPFs to be filtered ∗)
2. outputSet← ∅
3. S ←{S}
4. while Q 6= []
5. do Sx ← Dequeue(Q)
6. resultSet← RemoveFirstInvalidPath(Sx,P,F)
7. if resultSet = {Sx}
8. then (∗ filter did not change the SPPF ∗)
9. outputSet← outputSet ∪ Sx
10. else for Si in resultSet
11. do Enqueue(Q,Si)
12. return outputSet

Algorithm RemoveFirstInvalidPath finds the first invalid path in the SPPF
S given a set of precede restrictions P and a set of follow restrictions F. As

6.5. LEFT-OPEN RIGHT-OPEN FILTER 68

soon as such a path is found, all parse trees containing this path are re-
moved from the SPPF and the resulting set of SPPFs is returned. In this
way invalid paths can be removed as soon as possible, and exploring parts
of the SPPF that will be removed anyway is avoided. Each walker is han-
dled at most once by using a set visited. When a packed node is visited, a
check is done whether a precede or follow restriction applies. If this is the
case, the path removal algorithm is invoked and return the set of resulting
SPPFs. After visiting a node the walker is updated using Algorithm Up-
dateWalker to update the SPPF-walker. Recall that an SPPF-walker contains
four fields: W(node, p, f, rightNullable).

Algorithm RemoveFirstInvalidPath(S,P,F)
Input: S : SPPF to be filtered
1. w ←W(S.root, ∅, ∅, true)
2. visited← {w}
3. Q← [w] (∗ queue with SPPF walkers ∗)
4. while q 6= []
5. do w←Dequeue(Q) (∗ remove element from Q ∗)
6. node = w.node
7. if node.type = packed
8. then if (node, w.p[0]) ∈ P

9. then return RemoveParseTreesP(S, w.p)
10. if (node, w.f [0]) ∈ F

11. then return RemoveParseTreesP(S, w.f)
12. for (node, child) ∈ E
13. do newWalker←UpdateWalker(w, node, child)
14. if newWalker /∈ visited
15. then Enqueue(Q,newWalker)
16. visited← visited ∪ {newWalker}
17. return S

Another strategy to apply left-open right-open filtering is to perform
the two parts consecutively. Then, we first find all invalid paths, and then
iteratively removing all invalid paths in each of the SPPFs that is outputted
by the filter. In this strategy each path handled only once. In the variant
discussed above, the same path may need to be removed multiple times.

6.5.5 Apply left-open right-open filtering on parse time

It is possible to partially apply left-open right-open filtering on parse time
in GLL parsing. Consider a production of the formE ::= α1 | . . . | αn. Then
the corresponding lines of the algorithm will look as follows:

LE : if (test(I[cI], E, α1)) { add(LE1 , cU , cI , $) }
. . .

69 CHAPTER 6. DISAMBIGUATION OF MIXFIX EXPRESSIONS

if (test(I[cI], E, αn)) { add(LEn , cU , cI , $) }
goto L0

Given GSS node cU , with some label (RX , i), we know the return label
RX , which corresponds to a grammar slot directly after some nonterminal.
Given this return label, it is possible to infer the parent production, and
which nonterminal we try to expand in the derivation. For instance, if the
parent production is E ::= E + E, label RX could correspond to grammar
slot E ::= E ·+E or E ::= E + E·.

Now, in the code corresponding to label LE , we are adding descrip-
tors to schedule work for each applicable alternate αi by executing the add
method. Before executing this method, we can check whether the nonter-
minal that we try to expand is left-open or right-open given the grammar
and the grammar slot corresponding to label RX . Furthermore, we have
the label corresponding to each alternate αi, namely Lαi .

Before executing the add function, we invoke Algorithm CheckRestric-
tions. This algorithm returns whether a restriction applies. If the algorithm
returns true, we do not execute the add function.

Algorithm CheckRestrictions(LEi , cU)
Output: returns true if and only if a restriction applies
1. Assume (cU) ≡ (RX , i)
2. if RX corresponds to a grammar slot E ::= E · α
3. then if LEi corresponds to an grammar slot E ::= βE·
4. then return (〈βE〉, 〈Eα〉) ∈ F

5. if RX corresponds to a grammar slot E ::= βE·
6. then if LEi corresponds to an grammar slot E ::= E · α
7. then return (〈Eα〉, 〈βE〉) ∈ P return false

To show the relation between the LORO parse forest filter and the parse
time filter, consider Figure 6.5. In this figure we have that RX corresponds
to E ::= E + E· (packed node below (E, i, j), and LEi corresponds to
(E ::= E + E·) (packed node below (E, k, j). Given these grammar slots,
we can infer that the parser is about to add a left-open rule directly be-
low a right-open rule. Therefore we have to check the precede restric-
tions to check whether this action of the parser will result in a parse tree
where a precede violation would result. Since the addition operator is left-
associative, there is indeed a precede restriction that applies. The result is
that the add function will not be executed by the parser, and prevents the
right-associative derivation of the addition operator. This mechanism also
works in a similar way for follow restrictions.

Note that we are pruning the parse forest that is being generated. We
check the direct nesting of a left-open rule below a right-open rule, where
the parent nonterminal is open. Figure 6.6 shows the two situations in
which we check the restrictions. These situations are simplified variants

6.6. ORDER OF FILTERING IS OF IMPORTANCE 70

(E, i, j)

(E ::= E + E •, k)

(E ::= E + • E ,i,k) (E, k, j)

(E ::= E + E •, l)

Figure 6.5: Case whenRX corresponds toE ::= E+E· (packed node below
(E, i, j), and LEi corresponds to (E ::= E + E·.

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

αE

Eβ

(a) Valid tree when
prio(〈E, βE〉) > prio(〈E,Eα〉)

Parse Forest
Disambiguation

Master’s Thesis

Bram van der Sanden

E

E

αE

β

(b) Valid tree when
prio(〈E,Eα〉) > prio(〈E, βE〉)

Figure 6.6: Derivation trees when a grammar contains both a left-open and
right-open rule.

of the situations shown in Figure 6.1. By not executing the add function,
we prevent undesired parse trees from being generated. We do not remove
any node or edge that is already present in the SPPF.

6.6 Order of filtering is of importance

Given the prefer filter and left-open right-open filter, one might wonder
whether the order of application of these filters on an SPPF can yield to
different results. This indeed turns out to be the case. To illustrate this,
consider Grammar Γ6.8 and input string a → b + c → d � e. Recall that the

71 CHAPTER 6. DISAMBIGUATION OF MIXFIX EXPRESSIONS

a

DataExprUnit

ProcExpr

-> ProcExpr <> ProcExpr

b

ProcExpr + ProcExpr

c

DataExprUnit -> ProcExpr

d

e

(a)

a

DataExprUnit

ProcExpr

-> ProcExpr

b

ProcExpr + ProcExpr

c

DataExprUnit -> ProcExpr <> ProcExpr

d e

(b)

a

DataExprUnit

ProcExpr

-> ProcExpr

b

ProcExpr

+ ProcExpr

c

DataExprUnit -> ProcExpr <> ProcExpr

d e

(c)

Figure 6.7: Parse trees for input string a→ b+ c→ d � e and Grammar Γ6.8.

+-operator has the lowest priority.

ProcExpr ::= DataExprUnit→ ProcExpr

ProcExpr ::= DataExprUnit→ ProcExpr � ProcExpr
ProcExpr ::= ProcExpr + ProcExpr

ProcExpr ::= a | b | c | d | e
DataExprUnit ::= a | b | c | d | e

(Γ6.8)

For our example, there are three possible parse trees, given in Figure 6.7.
In the resulting SPPF, the top productions for each of these trees are added
as packed nodes below the root node.

Suppose that we first apply the prefer filter and consecutively the left-
open right-open filter. The prefer filter will prefer trees starting with
DataExprUnit → ProcExpr over trees starting with DataExprUnit →
ProcExpr �ProcExpr. This means that the parse tree shown in Figure 6.7a
will be removed. The left-open right-open filter will discard the parse tree
shown in Figure 6.7b, since

(〈ProcExpr + ProcExpr〉, 〈DataExprUnit→ ProcExpr〉) ∈ P.

After applying both filters we are left with the parse tree shown in Fig-
ure 6.7c.

6.6. ORDER OF FILTERING IS OF IMPORTANCE 72

Now suppose that we first apply the left-open right-open filter. Then
we will again remove the parse tree shown in Figure 6.7b. Next, we ap-
ply the prefer filter which will not remove any tree. This results from
the observation, that we cannot prefer DataExprUnit → ProcExpr over
DataExprUnit → ProcExpr � ProcExpr since the tree corresponding to
the former has already been removed. In the resulting SPPF, there will
therefore be two embedded parse trees, where one tree is undesired.

In our example we can solve this problem by postponing enforcing
the restrictions related to productions DataExprUnit → ProcExpr and
DataExprUnit → ProcExpr � ProcExpr, until after prefer filtering in the
left-open right-open post-parse filter.

Chapter 7

Experimental Evaluation

7.1 Experimental Setup

All disambiguation filters that are described in Chapters 5 and 6 have been
implemented in Java. The generation of the SPPF is done by a general-
ized LL parser that has also been implemented in Java. The original im-
plementation originates from previous work [17], but has been improved
substantially in order to obtain better running times and add support for
disambiguation filters. We have chosen to use GLL as parsing algorithm
because in this algorithm it is relatively easy to add parse-time filters. The
GLL parsers generated by our implementation support a restricted form of
left-open right-open filtering on parse-time. The restricted keywords filter
has also been implemented as a parse-time filter. Chapter 8 describes the
implementation of the parser and filters in more detail.

For the experimental evaluation of our disambiguation filters, we use
the set of example mCRL2 files available in the source release 1. In our
analysis, we have excluded files that have less than 200 tokens. The num-
ber of tokens is determined by parsing the file and counting the number
of leaves in the SPPF. Furthermore some files differ in only one token.
Therefore we have also excluded files fischer-100, fischer-1000, and
fischer-10000.

The experiments have been run on an Intel c© Core i7-3630QM processor
(2.4GHz, 6-MB L3), with 8GB 1600 DDR3 memory. The following Java VM
settings have been used:

-Xms4048m -Xmx4048m

The set of example mCRL2 files are very heterogeneous, both in size
as in the level of ambiguity. In order to evaluate the performance of our
disambiguation filters on files with lots of ambiguities, we need a measure

1http://www.mcrl2.org/release/user_manual/download.html (mCRL2
toolkit version 201310.0)

73

http://www.mcrl2.org/release/user_manual/download.html

7.1. EXPERIMENTAL SETUP 74

to express the level of ambiguity in an SPPF. As a measure we could for
instance use:

• The number of embedded parse trees, given by function embS(r) where r is
the root of SPPF S. Define embS(u) for u ∈ V (S) as follows:

embS(u) =

1 if |u.children| = 0∏
c∈u.children

embS(c) if |u.children| > 0 ∧ u.type = packed∑
c∈u.children

embS(c) if |u.children| > 0 ∧ (u.type = symbol

∨ u.type = intermediate)

The main problem with this metric is that the number of embed-
ded parse trees becomes very large as the number of ambiguities in-
creases. For instance, if a packed node v has two children which each
have 100 possible subtrees, then there are 10,000 subtrees with v as
root.

• The disambiguation time divided by the parse time.

If the disambiguation time is very long compared to the parse time,
the number of ambiguities is typically also large. However, the size of
the SPPF indirectly influences this metric since the amount of book-
keeping becomes bigger when the SPPF grows.

• The number of packed node children below ambiguous nodes versus the to-
tal number of packed nodes. Let NS and IS be the set of nonterminal
symbol nodes and intermediate nodes in S. Define Ξ(S) as follows:

Ξ(S) =
∑
u∈NS∪IS

|children(u)|
|NS |+ |IS |

If there are no ambiguities in S, Ξ(S) will be equal to 0. If the number
of ambiguities increases, the value of Ξ(S) will grow. If each packed
node in S is part of an ambiguity, Ξ(S) will be equal to 1. A disad-
vantage of this metric is that it does not take the relative depths of the
ambiguities into account. Ambiguities that occur close to the root will
be found earlier during filtering, than ambiguities occurring deep in
the SPPF if we use a top-down filtering strategy.

We have chosen to use the last two metrics, and select the 10 files with
the highest values. This gives us the input files that have the most ambigu-
ous SPPFs and where disambiguation takes a lot of time.

75 CHAPTER 7. EXPERIMENTAL EVALUATION

7.2 Hypotheses

For the experimental evaluation of the algorithms, we have constructed the
following hypotheses to be tested.

(H1) Prefer filtering is significantly faster than left-open right-open filtering.

The left-open right-open (LORO) filter uses an SPPF-walker to keep a
number of variables. Prefer filter on the other hand does not need to
keep track of any variables, and can make a decision based on local
information. So, prefer filtering should be much faster than left-open
right-open filtering.

(H2) Post-parse filtering will not have a higher running time than the parse time.

The generalized parser will construct an SPPF containing all deriva-
tions. Filtering this SPPF can be done in a top-down fashion, disre-
garding invalid subtrees as early as possible. Only in the worst case
do we need to traverse the whole SPPF to find ambiguities that lie
far from the root of the SPPF. Therefore we assume that post-parse
filtering will not take longer than the parse time.

(H3) Parsing with parse-time filtering will on average lead to a slightly higher
running time compared to the parsing without parse-time filtering.

By augmenting the parser with parse-time filters, a little extra work
needs to be done on parse-time. Therefore the parse time with parse-
time filtering will be slightly higher.

(H4) Parse-time filtering will resolve most of the ambiguities related to associativ-
ities and ambiguities.

On parse-time we have only local information that can be used by
the filter. For instance the parent of a production is known by a GLL
parser. For many left-open right-open ambiguities this information is
sufficient.

(H5) Parsing ambiguous files with parse-time and post-parse time filtering will
be faster than parsing with only post-parse time filtering.

If the input file is ambigous, filtering is needed to remove undesired
derivations. On parse-time part of invalid derivations can be avoided
by keeping them out of to the SPPF.

7.3 Results and Discussion

7.3.1 Results

Table C.1 in Appendix C contains the number of tokens and value of ambi-
guity metric Ξ for each file in our data set. This table also shows the total

7.3. RESULTS AND DISCUSSION 76

gp
a-

10
-1

bl
oc

k
gp

a-
10

-2
di

ni
ng

8
al

lo
w

di
ni

ng
-1

0
w

ol
f-

go
at

-c
ab

ba
ge

-1
di

ni
ng

3-
ns

-s
eq

di
ni

ng
3-

ns
ba

ke
ry

di
ni

ng
3-

se
q

di
ni

ng
3-

cs
di

ni
ng

3-
cs

-s
eq

le
ad

er
di

ni
ng

3
sc

he
du

le
r

di
ni

ng
3-

sc
he

du
le

-s
eq

ab
p

fis
ch

er
tr

ai
ns

di
ni

ng
3-

sc
he

du
le

w
ol

f-
go

at
-c

ab
ba

ge
ab

p-
bw

0

2,000

4,000

6,000

Parsing Prefer filter
Parsing with filter Left-open Right-open filter

Figure 7.1: Post-parse filtering versus filtering while parsing for small
mCRL2 files (time in ms).

parsing time versus the parse time with parse-time and post-parse time fil-
tering. The longest parsing time, 27377 ms, is needed for garage-ver,
which also has the largest number of tokens. On average the total execu-
tion time of parsing with parse-time LORO filtering versus parsing without
LORO filtering is 9.4% higher. However, the standard deviation is 16.2%.
For highly ambiguous files, parse-time filtering is faster because many in-
valid derivations are not explored in the first place.

Figure 7.1 shows the execution time of parsing with post-parse filtering
versus parse-time filtering for small files. For larger input files, post-parse
filtering leads to an out of memory exception due to an excessive amount
of garbage collection. Table 7.1 also shows the number of tokens and the
value of Ξ for these files. Files magic-square, bakery, rational are omitted
because they lead to an out of memory exception, as did files fischer-10 and
cellular-automata.

Table 7.2 shows the execution time of parsing with and without parse-
time filtering for the most ambiguous files, having the highest Ξ-values, in
our dataset.

77 CHAPTER 7. EXPERIMENTAL EVALUATION

Post-Parse Time Parse Time

Input File Tokens Ξ(S) Parsing PR+LORO Total Parsing Difference

gpa-10-1 206 0.091 170 0 + 11 181 202 0.116
block 222 0.189 231 0 + 264 495 270 -0.455
gpa-10-2 222 0.095 213 0 + 20 233 259 0.112
dining8 275 0.180 295 0 + 18 313 341 0.089
allow 277 0.216 250 0 + 360 610 270 -0.557
dining-10 287 0.257 391 0 + 31 422 458 0.085
wolf-goat-cabbage-1 291 0.148 544 1 + 253 798 639 -0.199
dining3-ns-seq 300 0.103 436 1 + 10 447 451 0.009
dining3-ns 300 0.104 454 0 + 8 462 395 -0.145
bakery 328 0.058 386 0 + 7 393 537 0.366
dining3-seq 352 0.079 685 1 + 11 697 739 0.060
dining3-cs 366 0.141 496 0 + 22 518 585 0.129
dining3-cs-seq 366 0.140 482 1 + 23 506 557 0.101
leader 399 0.187 552 1 + 27 580 585 0.009
dining3 400 0.119 758 2 + 248 1008 843 -0.164
scheduler 424 0.133 438 1 + 20 459 503 0.096
dining3-schedule-seq 434 0.132 725 1 + 37 763 790 0.035
abp 439 0.133 446 1 + 1342 1789 471 -0.737
fischer 439 0.109 451 0 + 6178 6629 484 -0.927
trains 459 0.184 284 0 + 2506 2790 335 -0.880
dining3-schedule 482 0.155 796 1 + 415 1212 933 -0.230
wolf-goat-cabbage 490 0.094 1499 9 + 875 2383 1554 -0.348
abp-bw 496 0.079 486 1 + 66 553 564 0.020

Table 7.1: Parsing and filtering times for small mCRL2 files with post-parse
time filtering or both parse-time and post-parse time filtering.

Input File Tokens Ξ(S) Parsing Parsing & Parse-time Filtering Difference

SMS 4206 0.453 5371 6350 0.182
food-package 657 0.458 1898 1928 0.016
sets-bags 764 0.568 1069 1124 0.051
garage-ver 11545 0.669 27377 29114 0.063
11073 4428 0.674 8321 9142 0.099
mpsu 325 0.701 672 692 0.030
magic-square 227 0.870 1197 655 -0.453
chatbox 3840 0.912 18786 14105 -0.249
WMS 5987 0.925 15512 10927 -0.296
numbers 882 0.971 8143 1776 -0.782

Table 7.2: Parsing and filtering times for ambiguous mCRL2 files with post-
parse time filtering or both parse-time and post-parse time filtering.

7.3. RESULTS AND DISCUSSION 78

7.3.2 Discussion

In this section we will analyze the performance of the disambiguation fil-
ters, and see whether our hypotheses are correct. Figure 7.1 shows the
results for post-parse filtering versus parse-time filtering. Several highly
ambiguous input files are omitted because they gave an out-of-memory ex-
ception. From the results for the small files we can see that prefer filtering is
significantly faster than left-open right-open filtering. This stems in accor-
dance with hypothesis H1. For ambiguous input files, the time needed for
post-parse filtering becomes much larger than for parsing. Therefore, we
must reject hypothesis H2. The bottleneck in our implementation is caused
by cloning SPPFs. As future work, an efficient persistent data structure is
desired for storing and modifying the SPPFs.

If we look at the performance of the parser with parse-time filtering,
we see that for almost all input files parse-time filtering leads to a higher
running time. If the input file is not ambiguous, many of the checks done
by the parse-time filter are redundant. By checking only in those cases
where an ambiguity might arise, the overhead of the parse-time filter can
be significantly reduced. Concluding, we can say that hypothesis H3 is
only true for files that are not ambiguous. For ambiguous files, the parse
time with parse-time filtering is lower than parsing and post-parse filtering.
This observation stems in accordance with hypothesis H5. For input files
with many ambiguities, parse-time filtering is much faster than post-parse
filtering.

From Table C.1 we can see that parse-time filtering in most cases re-
solves all ambiguities. In the entire dataset, there are only two files where
post-parse filtering is needed to remove the remaining ambiguities. In file
onebit, there is an ambiguity in a sort expression described in Section 6.4.2.
File game-of-goose, contains an ambiguity in an process expression (see Sec-
tion 6.4.4) that requires post-parse filtering. Most ambiguities can be re-
solved, or better put avoided, on parse-time, which is in accordance with
hypothesis H4. Many ambiguities that are present in mCRL2 files are be-
tween binary operators. These kind of ambiguities can often be resolved
by looking at the direct nesting of parent and child productions in a deriva-
tion.

To check the correctness of the filtering we perform the following steps.
Firstly, we create a set of ambigous mCRL2 files containing specific types of
ambiguities. Then we feed each mCRL2 file into the parser currently used
by mCRL2 to obtain a correctly bracketed expression. Given the ambiguous
and bracketed files, we generate three SPPFs using the following setup:

1. parse bracketed file without filtering;

2. parse ambigous file with parse-time and post-parse time filtering;

3. parse ambigous file with post-parse time filtering.

79 CHAPTER 7. EXPERIMENTAL EVALUATION

Then we have to compare the resulting SPPFs and check whether they have
the same structure.

Concluding, we can say that the combination of parse-time filtering and
post-parse filtering is preferable over filtering all ambiguities after pars-
ing. Compared to parsing, the total execution time increases on average
for about 10%, while ambiguous files are processed much faster. By check-
ing the LORO restrictions only if a restriction might apply, the overhead of
parse-time filtering can be reduced.

Chapter 8

Implementation

For the experimental evaluation of our disambiguation filters, we have im-
plemented a parser generator for generating GLL-based Java parsers in
previous work [17]. We have improved upon this implementation to ob-
tain better running times. Furthermore different data structures are used
for representing SPPFs, to allow the copying of SPPFs. The disambiguation
filters are also implemented in Java and are compatible with the SPPF that
is constructed by the generated parsers. In this chapter we describe the
parser generator, and implementation notes on the disambiguation filters.

8.1 GLL parser generator

The parser generator that we have implemented generates object-oriented
GLL-based Java parsers. Instead of using labels and goto-statements, we
use a functional decomposition. In GLL, there are two types of functions:
match functions, and alternate functions.

Match functions are responsible for actual parsing of the input string
with respect to parts of the grammar. Given an alternate in the grammar,
we parse this alternate in parts. We refer to these parts as GLL blocks. Before
parsing a nonterminal occurring in an alternate, say the first E in E ::=
abEEeF , we create a descriptor with the return location corresponding to
the grammar slot directly after the nonterminal, i.e. E ::= abE · EeF . This
descriptor continues parsing the rest of the alternate after the first E has
been parsed. After parsing the entire alternate, the GLL algorithm invokes
the pop routine.

To illustrate the concept of GLL blocks in more detail, consider the al-
ternate E ::= abEEeF and the corresponding GLL blocks:
E ::= abE E eF

0 1 2 3 .
The alternate consists of four GLL blocks, namely “abE”, “F”, “eE”, and

“ ”. Note the empty GLL block at the end, that performs a pop statement.

80

81 CHAPTER 8. IMPLEMENTATION

Definition 8.1.1 gives a formal definition of a GLL block.

Definition 8.1.1. A GLL block b in alternate α is a sequence of literals s,
such that s is of the shape t++ [last(s)]. If s is ε, the GLL block is also ε.

• s is a subsequence of α
• head(s) is not preceded by a terminal.
• last(s) is either:

- a nonterminal symbol, or
- a terminal symbol that is not followed by any literal
• t is a sequence of terminal symbols

Alternate functions are used to determine which alternates to parse next.
Given a nonterminal in the grammar, we have a set of alternates that corre-
spond to this nonterminal. For each alternate, we invoke the test-function.
The test-function looks at the current input position, and the FIRST and FOL-
LOW sets to determine whether the alternate is applicable. If an alternate
is applicable, a descriptor is created scheduling the function corresponding
to the first GLL block of the alternate.

8.1.1 Abstract parser

The GLL algorithm contains a set of functions that are grammar-independent,
for instance the pop, create, add, test, getNodeP, and getNodeT functions. There-
fore, each parser that is generated inherits from an abstract parser. This
abstract parser also contains functions to interact with the data structures
used by GLL.

8.1.2 Scanner

In our GLL implementation are separate lexer is used, which is driven by
the parser. Each time the test-function is invoked, the parser gives a set of
tokens to the scanner to check whether one of the tokens can be matched
against the substring starting from the current input pointer. These tokens
can be character-level tokens, but it is also possible to be a regular expres-
sion. In this way the grammar can be specified at the character-level, or
by using a combination of terminals and lexical rules containing a regular
expression. Using regular expressions can be used to implement a longest-
match rule while parsing.

Another advantage of using a separate scanner is that a white space
scanner can be used that skips white space in the input string. This avoids
the need to augment the grammar with lots of nonterminals for match-
ing layout between terminals. When matching a token, we skip the white
space occurring after this token. In the create statement, the GLL algorithm

8.2. PARSE TREE REMOVAL 82

retrieves the right extent of a node and uses this position when creating de-
scriptors. Before creating this descriptor, we need to skip the white space
and give this input position to the descriptor.

For the matching of the tokens against the input string, the dk.brics.
automaton [36] regular expression library is used. This library is based
on deterministic finite automatons (DFA), rather than nondeterministic fi-
nite automatons (NFA). Using DFA-based matching rather than NFA-based
matching means that features like capturing groups are not available, but
these kind of features are not needed for a lexer. The advantage of using
DFAs compared to NFAs is that for each state and alphabet the transition
relation has exactly one state, meaning that DFAs can match patterns linear
in the length of the input string, independently of the complexity of the
pattern. By using the dk.brics.automaton library, instead of the Java
NFA-based library, the performance gain has been increased significantly.

8.2 Parse tree removal

In Chapter 4 we have described a set of algorithms for removing parse trees
from an SPPF. When all parse trees are removed from the SPPF that contain
some path, the result might be a set of SPPFs rather than a single smaller
SPPF. To avoid deep copying of the entire SPPF, we represent each SPPF by
two adjacency lists; one for the incoming edges, and one for the outgoing
edges to allow fast edge lookups. A persistent hash table is used to keep
references from each node to its list of outgoing or incoming edges. In our
implementation we use the persistent hash map provided by the CLOJURE

language [28], which can be imported in Java. Another persistent hash map
that can be used in Java is included in the PCOLLECTIONS library [47]. This
variant unfortunately gave even worse results than deep cloning. After
testing the performance of the persistent hash map we found that the hash
code proved to be a bottleneck. Therefore we use a Java BitSet that in-
dicates whether a certain edge is present in the SPPF. Equality of SPPFs is
checked by comparing the corresponding BitSets, which is very fast.

Because the set of SPPF nodes cannot grow after parsing, we never need
to copy SPPF nodes. To create a smaller copy of the SPPF, we give a setEr of
edges to remove. If the list for a certain node changes because one or more
edges are removed, we make a deep copy of the list without these edges.
Otherwise we just use a reference to the old list. If one or more edges are
altered, the hash table must also be updated. After creation of the SPPF, it
can not be altered anymore, meaning that it becomes immutable.

Chapter 9

Conclusions

In this thesis we have looked into disambiguation in shared packed parse
forests that are generated by generalized parsing algorithms like GLL and
GLR. We have looked at filters that allow the removal of parse trees from
the parse forest containing some invalid construct, like an invalid node or
path. Invalid constructs are specified by filters that address certain kinds of
ambiguity. For instance the restriction keyword filter specifies that certain
nonterminals may never yield a word that is contained in a set of restricted
keywords.

In Chapter 2 we have introduced the SPPF that is generated by parsing
algorithms like GLL. The current practices of disambiguation have been
described in Chapter 3. Chapters 4 and 5 in this thesis deal with the re-
search questions posed in the introduction. Chapter 8 gives some notes on
the implementation that we have used for testing our filters. This chapter
concludes the thesis by summarizing our contributions to these questions,
and gives directions for future work.

9.1 Contributions to Research Questions

Research Question 1 How can we remove undesired parse trees from an
SPPF while keeping desired parse trees?

One of the main challenges in SPPF filtering is the fact that two types
of sharing are used; subtree sharing and local ambiguity packing. When
removing certain nodes or edges in the SPPF, one must be very cautious
not to remove valid parse trees. In Chapter 4 we have described a set of
SPPF filters that allows the removal of embedded parse trees in an SPPF
containing some node, edge, or path. It turns out that removing all parse
trees from an SPPF containing some invalid path can be done by first split-
ting the SPPF into multiple copies, and then apply the edge removal filter
on these copies. One of the consequences of this is that path removal can-

83

9.1. CONTRIBUTIONS TO RESEARCH QUESTIONS 84

not be done on parse time in generalized-parsing, without using a different
structure to store all parse trees. Otherwise, valid parse trees might be re-
moved unintentionally.

Research Question 2 What kind of ambiguities occur in expression gram-
mars and how to implement parse forest filters to resolve these ambi-
guities?

In Chapter 5 we have looked into ambiguities that occur in expression
grammars. The kind of ambiguities that occur are caused by the associativ-
ity and precedence of operators. For resolving these ambiguities, we have
developed the precede/follow production filter. This filter looks at the pre-
cede and follow productions given some production, and specifies a set of
restrictions that describe which combinations lead to invalid derivations.
The filter has been implemented as a parse-forest filter, and uses the filters
described in Chapter 4 to remove all parse trees where one or more restric-
tions apply.

Research Question 3 Are the parse forest filters able to resolve all ambigu-
ities occurring in mixfix grammars?

When extending the class of expression grammar with mixfix expres-
sions, there are additional types of ambiguities that might occur. These
types of ambiguities are described in Chapter 6. As a case study of ambigu-
ity resolving in mixfix expressions, we have looked into the disambiguation
of the mCRL2 grammar. In order to completely and correctly disambiguate
mCRL2 input files, we need several filters. For resolving an instance of
the dangling-else ambiguity we use a prefer filter and a not-follow filter.
Restricted keywords are enforced by applying a restricted keywords fil-
ter, which can be efficiently implemented as a parse-time filter. The prece-
dences and associativities are enforced by the left-open right-open filter,
which is generalization of the precede/follow production filter. This gen-
eralized variant is needed to prevent filtering below closed operands, and
to ignore nonterminals that derive epsilon.

The left-open right-open filter and prefer filter have been implemented
as parse forest filters, and use the SPPF filters described in Chapter 4 to re-
move all invalid parse trees. Furthermore, we have implemented the left-
open right-open filter in a restricted form as a parse-time filter in GLL. This
filter avoids expanding a nonterminal in a derivation, if a precede/follow
restriction applies to the parent production and the production of the ex-
panded nonterminal.

Chapter 7 contains an experimental evaluation of the filters used for fil-
tering the mCRL2 grammar. The parse-time filter is able to resolve almost
all ambiguities arising from left-open and right-open operators, which means

85 CHAPTER 9. CONCLUSIONS

that the resulting parse forest is much smaller. Furthermore, by using
parse-time filtering in addition to post-parse filtering on ambiguous sen-
tences, the total execution time for parsing and disambiguation can be dra-
matically reduced compared to post-parse filtering.

For mCRL2 we have been able to resolve all ambiguities that occur in
the grammar. However, as described in Section 6.4.4, ambiguities that arise
from shared separator tokens require other filters. These kind of filters are
left as future work.

9.2 Future work

This thesis provides a set of filters that allow disambiguation on SPPFs.
While the filters are sufficiently expressive to disambiguate the set of ex-
pression grammars, and simple mixfix grammars, there are still a number
of open questions. In this section we will pose some directions for future
work.

Removing all parse trees containing some subtree

If a generic production for binary operators is used, path filtering is no
longer sufficient. To illustrate this, consider the following example.

E ::= EOE

O ::= + | ∗ | · · ·
(Γ9.1)

In order to check whether a nesting of two productions of the form EOE
is allowed, we need information about the specific operators that are spec-
ified by nonterminal O. Therefore we need an algorithm that can remove
all parse trees containing a specific subtree.

Filtering ambiguities caused by shared separator tokens

In Section 6.4.4, we have seen an example of an ambiguity that is caused by
operators sharing one or more separator tokens. For this specific instance,
the ambiguities could be resolved by using a prefer-filter, and a follow re-
striction filter. In general however, a more generic filter is desired that is
specifically aimed at resolving these kind of ambiguities. Ideally, first an
investigation is done when such ambiguities might occur, and then a filter
must be specified resolving the ambiguities.

Persistent data structure for SPPFs

As described in Section 8.2, the current data structure used to represent
SPPFs needs to be improved. At the moment the bottleneck in parse-forest

9.2. FUTURE WORK 86

filtering is the copying of SPPFs and removing some edges in the copy.
By using a persistent data structure, parts that are not changed in the new
SPPF can be shared, because after creation the SPPF becomes immutable.
Current implementations of persistent hash maps proved to be inadequate
at solving the problem. A persistent data structure is needed that improves
the amount of sharing. This data structure must be efficient to update,
and it must be efficient to query the incoming and outgoing edges of some
node. An observation that might be useful in the design process is that the
removal of edges in a graph is always local, and that the set of edges that is
removed are always connected.

Parsing language embeddings

Context-free languages that are combined again form a context-free lan-
guage. This allows languages to be embedded in other languages. For each
language there might be a unique set of disambiguation rules. In order to
correctly disambiguate the entire input sentence, various parts of the SPPF
have to be disambiguated by different disambiguation rules. A topic of fu-
ture research is how to apply parse forest filtering in an SPPF containing
different languages, and which kind of filters are needed.

SPPF Visualization

If the SPPF for a certain input sentence contains ambiguities, it is often
desired to give feedback about these ambiguities to the user. This is for in-
stance useful when designing a language, to see which kind of ambiguities
can occur and need to be disambiguated. At the moment we use GraphViz
dot [23] for visualizing SPPFs, but for large SPPFs (for instance the large
mCRL2 files in our data set), the time needed to visualize the SPPF becomes
impractical (more than 10 minutes). Ideally, one would like an interactive
environment where parts of the SPPF can be collapsed, and places where
ambiguities occur can be highlighted.

GLL Production Parser

Although our GLL implementation is usable for files of reasonable size, a
production parser needs to be a whole lot faster to be usable in a real-life
setting. The parse time of GLL can be improved in several ways. In the GLL
algorithm, many checks are done whether a certain descriptor has already
been handled, or is present in the set of pending descriptors. By improv-
ing the hash codes, an increase in parsing speed can be obtained. Further-
more, before starting the parser the FIRST and FOLLOW sets are determined.
By generating this information during parser generation, this information
does not need to be recomputed each time the parser is started.

Bibliography

[1] Aasa, A.: Precedences in specifications and implementations of pro-
gramming languages. In: Maluszynski, J., Wirsing, M. (eds.) PLILP’91,
Lecture Notes in Computer Science, vol. 528, pp. 183–194 (1991)

[2] Afroozeh, A.: Gtext: A Language Workbench based on GLL and Term
Rewriting. Master’s thesis, Eindhoven University of Technology, the
Netherlands (2012)

[3] Afroozeh, A., Bach, J.C., van den Brand, M., Johnstone, A., Man-
ders, M., Moreau, P.E., Scott, E.: Island Grammar-Based Parsing Us-
ing GLL and Tom. In: Czarnecki, K., Hedin, G. (eds.) Software Lan-
guage Engineering, 5th International Conference, SLE 2012. Lecture
Notes in Computer Science, vol. 7745, pp. 224–243. Springer Berlin
Heidelberg, Dresden, Germany (Sep 2012), http://dx.doi.org/
10.1007/978-3-642-36089-3_13

[4] Aho, A.V., Johnson, S.C., Ullman, J.D.: Deterministic parsing of am-
biguous grammars. Commun. ACM 18(8), 441–452 (1975)

[5] Arnoldus, B.J.: An Illumination of the Template Enigma: Software
Code Generation with Templates. Ph.D. thesis, Technische Universiteit
Eindhoven (2010)

[6] Aycock, J.: Why bison is becoming extinct. Crossroads 7(5), 3–3 (2001)

[7] Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge University
Press, New York, NY, USA (1990)

[8] Basten, H.: Ambiguity Detection for Programming Language Gram-
mars. Ph.D. thesis, University of Amsterdam (2011)

[9] Blasband, D.: Parsing in a hostile world. In: WCRE’01. pp. 291–300.
IEEE Computer Society (2001)

[10] Bouwers, E., Bravenboer, M., Visser, E.: Grammar engineering
support for precedence rule recovery and compatibility checking.
Electronic Notes in Theoretical Computer Science 203(2), 85 – 101

87

http://dx.doi.org/10.1007/978-3-642-36089-3_13
http://dx.doi.org/10.1007/978-3-642-36089-3_13

BIBLIOGRAPHY 88

(2008), http://www.sciencedirect.com/science/article/
pii/S1571066108001515, proceedings of the Seventh Workshop
on Language Descriptions, Tools, and Applications (LDTA 2007)

[11] Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity
of context-free grammars. Tech. Rep. RS-06-09, BRICS, Univer-
sity of Aarhus (May 2006), http://www.brics.dk/˜brabrand/
grambiguity/

[12] van den Brand, M.G.J., de Jong, H.A., Klint, P., Olivier, P.A.:
Efficient annotated terms. Software: Practice and Experience
30(3), 259–291 (2000), http://dx.doi.org/10.1002/(SICI)
1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y

[13] van den Brand, M., Klusener, S., Moonen, L., Vinju, J.J.: Generalized
parsing and term rewriting: Semantics driven disambiguation. Elec-
tronic Notes in Theoretical Computer Science 82(3), 575–591 (2003)

[14] van den Brand, M., Scheerder, J., Vinju, J.J., Visser, E.: Disambigua-
tion filters for scannerless generalized LR parsers. In: Horspool, R.N.
(ed.) CC’02. Lecture Notes in Computer Science, vol. 2304, pp. 143–
158. Springer (2002), http://www.springerlink.com/content/
03359k0cerupftfh/

[15] van den Brand, M.G.J., Sellink, A., Verhoef, C.: Current parsing tech-
niques in software renovation considered harmful. In: IWPC ’98. pp.
108–117. IEEE Computer Society (1998)

[16] ten Brink, A.: Disambiguation mechanisms and disambiguation
strategies. Master’s thesis, Eindhoven University of Technology, the
Netherlands (2013)

[17] Cappers, B., Mengerink, J., van der Sanden, B.: Object Oriented GLL
with Error Handling. Tech. rep., University of Eindhoven - Depart-
ment of Mathematics and Computer Science (2014)

[18] Cheung, B.S.N., Uzgalis, R.C.: Ambiguity in context-free grammars.
In: SAC’95. pp. 272–276. ACM Press (1995)

[19] Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-
free languages. In: Braffort, P., Hirshberg, D. (eds.) Computer Pro-
gramming and Formal Systems, pp. 118–161. Studies in Logic, North-
Holland Publishing (1963)

[20] Cranen, S., Groote, J., Keiren, J., Stappers, F., Vink, E., Wesselink, W.,
Willemse, T.: An overview of the mCRL2 toolset and its recent ad-
vances. In: Piterman, N., Smolka, S. (eds.) Tools and Algorithms for

http://www.sciencedirect.com/science/article/pii/S1571066108001515
http://www.sciencedirect.com/science/article/pii/S1571066108001515
http://www.brics.dk/~brabrand/grambiguity/
http://www.brics.dk/~brabrand/grambiguity/
http://dx.doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
http://dx.doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
http://www.springerlink.com/content/03359k0cerupftfh/
http://www.springerlink.com/content/03359k0cerupftfh/

89 BIBLIOGRAPHY

the Construction and Analysis of Systems, Lecture Notes in Computer
Science, vol. 7795, pp. 199–213. Springer Berlin Heidelberg (2013)

[21] Earley, J.: An efficient context-free parsing algorithm. Commun. ACM
13(2), 94–102 (1970)

[22] Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3),
316–333 (1963)

[23] Gansner, E.R., North, S.C.: An open graph visualization sys-
tem and its applications to software engineering. Softw. Pract. Ex-
per. 30(11), 1203–1233 (Sep 2000), http://dx.doi.org/10.1002/
1097-024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E

[24] Ginsburg, S., Harrison, M.A.: Bracketed context-free languages.
J. Comput. Syst. Sci. 1, 1–23 (1967)

[25] Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Lan-
guage Specification, Java SE 7 Edition. Java Series, Pearson Education
(2013)

[26] Groote, J., Mousavi, M.: Modelling and Analysis of Communicating
Systems (2013), lecture notes for System Validation course

[27] Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition
formalism SDF–Reference Manual—. ACM SIGPLAN Notices 24(11),
43–75 (1989)

[28] Hickey, R.: Clojure. http://clojure.org/, [Online; accessed 10-
June-2014]

[29] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation. Series in Computer Science, Addison-
Wesley (1979)

[30] Johnson, S.C.: YACC — yet another compiler compiler. Computing
science technical report 32, AT&T Bell Laboratories, Murray Hill, New
Jersey (July 1975)

[31] Kats, L.C., Visser, E., Wachsmuth, G.: Pure and declarative syntax def-
inition: paradise lost and regained. In: ACM Sigplan Notices. vol. 45,
pp. 918–932. ACM (2010)

[32] Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceed-
ings of the 41st Annual Meeting on Association for Computational
Linguistics - Volume 1. pp. 423–430. ACL ’03, Association for Compu-
tational Linguistics, Stroudsburg, PA, USA (2003), http://dx.doi.
org/10.3115/1075096.1075150

http://dx.doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.3.CO;2-E
http://clojure.org/
http://dx.doi.org/10.3115/1075096.1075150
http://dx.doi.org/10.3115/1075096.1075150

BIBLIOGRAPHY 90

[33] Klint, P., Visser, E.: Using filters for the disambiguation of context-free
grammars. In: Pighizzini, G., San Pietro, P. (eds.) ASMICS Workshop
on Parsing Theory. pp. 89–100. Technical Report 126-1994, Università
di Milano (1994)

[34] Mathijssen, A.: Data types for mCRL2. http://www.mcrl2.org/
dev/developer_manual/_downloads/mcrl2data.pdf (2014),
[Online; accessed 18-April-2014]

[35] McPeak, S., Necula, G.C.: Elkhound: A fast, practical GLR parser gen-
erator. In: Duesterwald, E. (ed.) CC’04. Lecture Notes in Computer
Science, vol. 2985, pp. 73–88. Springer (2004)

[36] Møller, A.: dk.brics.automaton – finite-state automata and regular ex-
pressions for Java (2010), http://www.brics.dk/automaton/

[37] Oracle: javac - Java Programming Language Compiler.
http://docs.oracle.com/javase/7/docs/technotes/
tools/windows/javac.html, [Online; accessed 11-April-2014]

[38] Plevyak, J.: DParser. http://dparser.sourceforge.net/, [On-
line; accessed 18-April-2014]

[39] Rekers, J.: Parser Generation for Interactive Environments. Ph.D. the-
sis, University of Amsterdam (1992), http://homepages.cwi.nl/
˜paulk/dissertations/Rekers.pdf

[40] Salomon, D.J., Cormack, G.V.: Scannerless NSLR(1) parsing of pro-
gramming languages. In: PLDI’89. pp. 170–178. ACM Press (1989)

[41] Salomon, D., Cormack, G.: The disambiguation and scannerless
parsing of complete character-level grammars for programming lan-
guages. Tech. Rep. 95/06, Department of Computer Science, Univer-
sity of Manitoba, Winnipeg, Canada (1995)

[42] Schröer, F.W.: AMBER, an ambiguity checker for context-free
grammars. Tech. rep., compilertools.net (2001), http://accent.
compilertools.net/Amber.html

[43] Scott, E., Johnstone, A.: Right nulled glr parsers. ACM Trans. Pro-
gram. Lang. Syst. 28(4), 577–618 (Jul 2006), http://doi.acm.org/
10.1145/1146809.1146810

[44] Scott, E., Johnstone, A.: GLL parsing. Electronic Notes in
Theoretical Computer Science 253(7), 177–189 (2010), http:
//dblp.uni-trier.de/db/journals/entcs/entcs253.
html#ScottJ10

http://www.mcrl2.org/dev/developer_manual/_downloads/mcrl2data.pdf
http://www.mcrl2.org/dev/developer_manual/_downloads/mcrl2data.pdf
http://www.brics.dk/automaton/
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html
http://dparser.sourceforge.net/
http://homepages.cwi.nl/~paulk/dissertations/Rekers.pdf
http://homepages.cwi.nl/~paulk/dissertations/Rekers.pdf
http://accent.compilertools.net/Amber.html
http://accent.compilertools.net/Amber.html
http://doi.acm.org/10.1145/1146809.1146810
http://doi.acm.org/10.1145/1146809.1146810
http://dblp.uni-trier.de/db/journals/entcs/entcs253.html#ScottJ10
http://dblp.uni-trier.de/db/journals/entcs/entcs253.html#ScottJ10
http://dblp.uni-trier.de/db/journals/entcs/entcs253.html#ScottJ10

91 BIBLIOGRAPHY

[45] Scott, E., Johnstone, A.: Recognition is not parsing - SPPF-style pars-
ing from cubic recognisers. Science of Computer Programming 75(1-
2), 55 – 70 (2010), http://www.sciencedirect.com/science/
article/pii/S0167642309000951, special issue on {ETAPS}
2006 and 2007 Workshops on Language Descriptions, Tools, and Ap-
plications (LDTA ’06 and ’07)

[46] Scott, E., Johnstone, A.: GLL parse-tree generation. Sci. Comput.
Program. 78(10), 1828–1844 (Oct 2013), http://dx.doi.org/10.
1016/j.scico.2012.03.005

[47] Theodorou, J.: pcollections. http://pcollections.org/, [Online;
accessed 10-June-2014]

[48] Thorup, M.: Controlled grammatic ambiguity. ACM Trans. Progr.
Lang. Syst. 16(3), 1024–1050 (1994)

[49] Thorup, M.: Disambiguating grammars by exclusion of sub-parse
trees. Acta Informatica 33(5), 511–522 (1996), http://dx.doi.org/
10.1007/BF03036460

[50] Tomita, M.: Graph-structured stack and natural language parsing. In:
Hobbs, J.R. (ed.) ACL. pp. 249–257

[51] Tomita, M.: Efficient Parsing for Natural Language. Kluwer Academic
Publishers (1986)

[52] Visser, E.: Scannerless generalized-LR parsing. Tech. Rep. P9707,
University of Amsterdam (Jul 1997), http://citeseer.ist.psu.
edu/visser97scannerles.html

[53] Visser, E.: Syntax Definition for Language Prototyping. Ph.D. the-
sis (1997), http://citeseer.ist.psu.edu/visser97syntax.
html

[54] Wieland, J.: Parsing Mixfix Expressions. Ph.D. thesis, Technische Uni-
versitat Berlin (2009)

http://www.sciencedirect.com/science/article/pii/S0167642309000951
http://www.sciencedirect.com/science/article/pii/S0167642309000951
http://dx.doi.org/10.1016/j.scico.2012.03.005
http://dx.doi.org/10.1016/j.scico.2012.03.005
http://pcollections.org/
http://dx.doi.org/10.1007/BF03036460
http://dx.doi.org/10.1007/BF03036460
http://citeseer.ist.psu.edu/visser97scannerles.html
http://citeseer.ist.psu.edu/visser97scannerles.html
http://citeseer.ist.psu.edu/visser97syntax.html
http://citeseer.ist.psu.edu/visser97syntax.html

Appendix A

DParser grammar for mCRL2

Source: https://svn.win.tue.nl/trac/MCRL2/browser/trunk/doc/
specs/mcrl2-syntax.g, revision 12508.

1 // Author(s): Wieger Wesselink
2 // Copyright: see the accompanying file COPYING or copy at
3 // https :// svn.win.tue.nl / trac /MCRL2/browser/trunk/COPYING
4 //
5 // Distributed under the Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE 1 0.txt or copy at
7 // http :// www.boost.org/LICENSE 1 0.txt)
8 //
9 /// \ file mcrl2−syntax.g

10 /// \brief dparser grammar of the mCRL2 language
11
12 ${declare tokenize}
13 ${declare longest match}
14
15 //−−− Sort expressions and sort declarations
16
17 SimpleSortExpr
18 : ’Bool’ // Booleans
19 | ’Pos’ // Positive numbers
20 | ’Nat’ // Natural numbers
21 | ’ Int ’ // Integers
22 | ’Real’ // Reals
23 | ’ List ’ ’(’ SortExpr ’)’ // List sort
24 | ’Set’ ’(’ SortExpr ’)’ // Set sort
25 | ’Bag’ ’(’ SortExpr ’)’ // Bag sort
26 | ’FSet’ ’(’ SortExpr ’)’ // Finite set sort
27 | ’FBag’ ’(’ SortExpr ’)’ // Finite bag sort
28 | Id // Sort reference
29 | ’(’ SortExpr ’)’ // Sort expression with parentheses
30 | ’ struct ’ ConstrDeclList // Structured sort
31 ;
32
33 SortExpr
34 : SimpleSortExpr
35 | HashArgs ’−>’ SortExpr ; // Function sort
36
37 SortExprList: (SortExpr ’#’)∗ SortExpr ; // Product sort
38
39 HashArgs: SimpleSortExpr (’#’ SimpleSortExpr)∗ ; // Simple product sort

92

https://svn.win.tue.nl/trac/MCRL2/browser/trunk/doc/specs/mcrl2-syntax.g
https://svn.win.tue.nl/trac/MCRL2/browser/trunk/doc/specs/mcrl2-syntax.g

93 APPENDIX A. DPARSER GRAMMAR FOR MCRL2

40
41 SortSpec: ’sort ’ SortDecl+ ; // Sort specification
42
43 SortDecl
44 : IdList ’;’ // List of sort identifiers
45 | Id ’=’ SortExpr ’;’ // Sort alias
46 ;
47
48 ConstrDecl: Id (’(’ ProjDeclList ’)’)? (’?’ Id)? ; // Constructor declaration
49
50 ConstrDeclList: ConstrDecl (’|’ ConstrDecl)∗ ; // Constructor declaration list
51
52 ProjDecl: (Id ’:’)? SortExpr ; // Domain with optional projection
53
54 ProjDeclList : ProjDecl (’,’ ProjDecl)∗ ; // Declaration of projection functions
55
56 //−−− Constructors and mappings
57
58 IdsDecl: IdList ’:’ SortExpr ; // Typed parameters
59
60 ConsSpec: ’cons’ (IdsDecl ’;’)+ ; // Declaration of constructors
61
62 MapSpec: ’map’ (IdsDecl ’;’)+ ; // Declaration of mappings
63
64 //−−− Equations
65
66 GlobVarSpec: ’glob’ (VarsDeclList ’;’)+ ; // Declaration of global variables
67
68 VarSpec: ’var’ (VarsDeclList ’;’)+ ; // Declaration of variables
69
70 EqnSpec: VarSpec? ’eqn’ EqnDecl+ ; // Definition of equations
71
72 EqnDecl: (DataExpr ’−>’)? DataExpr ’=’ DataExpr ’;’ ; // Conditional equation
73
74 //−−− Data expressions
75
76 VarDecl: Id ’:’ SortExpr ; // Typed variable
77
78 VarsDecl: IdList ’:’ SortExpr ; // Typed variables
79
80 VarsDeclList: VarsDecl (’,’ VarsDecl)∗ ; // Individually typed variables
81
82 DataExpr
83 : Id // Identifier
84 | Number // Number
85 | ’ true ’ // True
86 | ’ false ’ // False
87 | ’[’ ’]’ // Empty list
88 | ’{’ ’}’ // Empty set
89 | ’{’’:’’}’ // Empty bag
90 | ’[’ DataExprList ’]’ // List enumeration
91 | ’{’ BagEnumEltList ’}’ // Bag enumeration
92 | ’{’ VarDecl ’|’ DataExpr ’}’ // Set/bag comprehension
93 | ’{’ DataExprList ’}’ // Set enumeration
94 | ’(’ DataExpr ’)’ // Brackets
95 | DataExpr ’[’ DataExpr ’−>’ DataExpr ’]’ $unary left 13 // Function update
96 | DataExpr ’(’ DataExprList ’)’ $unary left 13 // Function application
97 | ’!’ DataExpr $unary right 12 // Negation, set complement
98 | ’−’ DataExpr $unary right 12 // Unary minus
99 | ’#’ DataExpr $unary right 12 // Size of a list

100 | ’ forall ’ VarsDeclList ’.’ DataExpr $unary right 1 // Universal quantifier
101 | ’ exists ’ VarsDeclList ’.’ DataExpr $unary right 1 // Existential quantifier

94

102 | ’ lambda’ VarsDeclList ’.’ DataExpr $unary right 1 // Lambda abstraction
103 | DataExpr (’=>’ $binary op right 2) DataExpr // Implication
104 | DataExpr (’||’ $binary op right 3) DataExpr // Conjunction
105 | DataExpr (’&&’ $binary op right 4) DataExpr // Disjunction
106 | DataExpr (’==’ $binary op left 5) DataExpr // Equality
107 | DataExpr (’!=’ $binary op left 5) DataExpr // Inequality
108 | DataExpr (’<’ $binary op left 6) DataExpr // Smaller
109 | DataExpr (’<=’ $binary op left 6) DataExpr // Smaller equal
110 | DataExpr (’>=’ $binary op left 6) DataExpr // Larger equal
111 | DataExpr (’>’ $binary op left 6) DataExpr // Larger
112 | DataExpr (’in ’ $binary op left 6) DataExpr // Set, bag, list membership
113 | DataExpr (’|>’ $binary op right 7) DataExpr // List cons
114 | DataExpr (’<|’ $binary op left 8) DataExpr // List snoc
115 | DataExpr (’++’ $binary op left 9) DataExpr // List concatenation
116 | DataExpr (’+’ $binary op left 10) DataExpr // Addition, set/bag union
117 | DataExpr (’−’ $binary op left 10) DataExpr // Subtraction, set/bag difference
118 | DataExpr (’/’ $binary op left 11) DataExpr // Division
119 | DataExpr (’div ’ $binary op left 11) DataExpr // Integer div
120 | DataExpr (’mod’ $binary op left 11) DataExpr // Integer mod
121 | DataExpr (’∗’ $binary op left 12) DataExpr // Multiplication , set/bag intersection
122 | DataExpr (’.’ $binary op left 12) DataExpr // List element at position
123 | DataExpr ’whr’ AssignmentList ’end’ $unary left 0 // Where clause
124 ;
125
126 DataExprUnit
127 : Id // Identifier
128 | Number // Number
129 | ’ true ’ // True
130 | ’ false ’ // False
131 | ’(’ DataExpr ’)’ // Bracket
132 | DataExprUnit ’(’ DataExprList ’)’ $unary left 14 // Function application
133 | ’!’ DataExprUnit $unary right 13 // Negation, set complement
134 | ’−’ DataExprUnit $unary right 13 // Unary minus
135 | ’#’ DataExprUnit $unary right 13 // Size of a list
136 ;
137
138 Assignment: Id ’=’ DataExpr ; // Assignment
139
140 AssignmentList: Assignment (’,’ Assignment)∗ ; // Assignment list
141
142 DataExprList: DataExpr (’,’ DataExpr)∗ ; // Data expression list
143
144 BagEnumElt: DataExpr ’:’ DataExpr ; // Bag element with multiplicity
145
146 BagEnumEltList: BagEnumElt (’,’ BagEnumElt)∗ ; // Elements in a finite bag
147
148 //−−− Communication and renaming sets
149
150 ActIdSet: ’{’ IdList ’}’ ; // Action set
151
152 MultActId: Id (’|’ Id)∗ ; // Multi−action label
153
154 MultActIdList : MultActId (’,’ MultActId)∗ ; // Multi−action labels
155
156 MultActIdSet: ’{’ MultActIdList? ’}’ ; // Multi−action label set
157
158 CommExpr: Id ’|’ MultActId ’−>’ Id ; // Action synchronization
159
160 CommExprList: CommExpr (’,’ CommExpr)∗ ; // Action synchronizations
161
162 CommExprSet: ’{’ CommExprList? ’}’ ; // Action synchronization set
163

95 APPENDIX A. DPARSER GRAMMAR FOR MCRL2

164 RenExpr: Id ’−>’ Id ; // Action renaming
165
166 RenExprList: RenExpr (’,’ RenExpr)∗ ; // Action renamings
167
168 RenExprSet: ’{’ RenExprList? ’}’ ; // Action renaming set
169
170 //−−− Process expressions
171
172 ProcExpr
173 : Action // Action or process instantiation
174 | Id ’(’ AssignmentList? ’)’ // Process assignment
175 | ’ delta ’ // Delta, deadlock, inaction
176 | ’ tau’ // Tau, hidden action, empty multi−action
177 | ’block’ ’(’ ActIdSet ’,’ ProcExpr ’)’ // Block or encapsulation operator
178 | ’allow’ ’(’ MultActIdSet ’,’ ProcExpr ’)’ // Allow operator
179 | ’hide’ ’(’ ActIdSet ’,’ ProcExpr ’)’ // Hiding operator
180 | ’ rename’ ’(’ RenExprSet ’,’ ProcExpr ’)’ // Action renaming operator
181 | ’ comm’ ’(’ CommExprSet ’,’ ProcExpr ’)’ // Communication operator
182 | ’(’ ProcExpr ’)’ // Brackets
183 | ProcExpr (’+’ $binary op left 1) ProcExpr // Choice operator
184 | (’ sum’ VarsDeclList ’.’ $unary op right 2) ProcExpr // Sum operator
185 | ProcExpr (’||’ $binary op right 3) ProcExpr // Parallel operator
186 | ProcExpr (’|| ’ $binary op right 4) ProcExpr // Leftmerge operator
187 | (DataExprUnit ’−>’ $unary op right 5) ProcExpr // If−then operator
188 | (DataExprUnit IfThen $unary op right 5) ProcExpr // If−then−else operator
189 | ProcExpr (’<<’ $binary op left 6) ProcExpr // Until operator
190 | ProcExpr (’.’ $binary op right 7) ProcExpr // Sequential composition operator
191 | ProcExpr (’@’ $binary op left 8) DataExprUnit // At operator
192 | ProcExpr (’|’ $binary op left 9) ProcExpr // Communication merge
193 ;
194
195 ProcExprNoIf
196 : Action // Action or process instantiation
197 | Id ’(’ AssignmentList? ’)’ // Process assignment
198 | ’ delta ’ // Delta, deadlock, inaction
199 | ’ tau’ // Tau, hidden action, empty multi−action
200 | ’block’ ’(’ ActIdSet ’,’ ProcExpr ’)’ // Block or encapsulation operator
201 | ’allow’ ’(’ MultActIdSet ’,’ ProcExpr ’)’ // Allow operator
202 | ’hide’ ’(’ ActIdSet ’,’ ProcExpr ’)’ // Hiding operator
203 | ’ rename’ ’(’ RenExprSet ’,’ ProcExpr ’)’ // Action renaming operator
204 | ’ comm’ ’(’ CommExprSet ’,’ ProcExpr ’)’ // Communication operator
205 | ’(’ ProcExpr ’)’ // Brackets
206 | ProcExprNoIf (’+’ $binary op left 1) ProcExprNoIf // Choice operator
207 | (’ sum’ VarsDeclList ’.’ $unary op right 2) ProcExprNoIf // Sum operator
208 | ProcExprNoIf (’||’ $binary op right 3) ProcExprNoIf // Parallel operator
209 | ProcExprNoIf (’|| ’ $binary op right 3) ProcExprNoIf // Leftmerge operator
210 | (DataExprUnit IfThen $unary op right 4) ProcExprNoIf // If−then−else operator
211 | ProcExprNoIf (’<<’ $binary op left 5) ProcExprNoIf // Until operator
212 | ProcExprNoIf (’.’ $binary op right 6) ProcExprNoIf // Sequential composition operator
213 | ProcExprNoIf (’@’ $binary op left 7) DataExprUnit // At operator
214 | ProcExprNoIf (’|’ $binary op left 8) ProcExprNoIf // Communication merge
215 ;
216
217 IfThen: ’−>’ ProcExprNoIf ’<>’ $left 0 ; // Auxiliary if−then−else
218
219 //−−− Actions
220
221 Action: Id (’(’ DataExprList ’)’)? ; // Action, process instantiation
222
223 ActDecl: IdList (’:’ SortExprList)? ’;’ ; // Declarations of actions
224
225 ActSpec: ’act ’ ActDecl+ ; // Action specification

96

226
227 MultAct
228 : ’ tau’ // Tau, hidden action, empty multi−action
229 | ActionList // Multi−action
230 ;
231
232 ActionList : Action (’|’ Action)∗ ; // List of actions
233
234 //−−− Process and initial state declaration
235
236 ProcDecl: Id (’(’ VarsDeclList ’)’)? ’=’ ProcExpr ’;’ ; // Process declaration
237
238 ProcSpec: ’proc’ ProcDecl+ ; // Process specification
239
240 Init : ’ init ’ ProcExpr ’;’ ; // Initial process
241
242 //−−− Data specification
243
244 DataSpec: (SortSpec | ConsSpec | MapSpec | EqnSpec)+ ; // Data specification
245
246 //−−− mCRL2 specification
247
248 mCRL2Spec: mCRL2SpecElt∗ Init mCRL2SpecElt∗ ; // MCRL2 specification
249
250 mCRL2SpecElt
251 : SortSpec // Sort specification
252 | ConsSpec // Constructor specification
253 | MapSpec // Map specification
254 | EqnSpec // Equation specification
255 | GlobVarSpec // Global variable specification
256 | ActSpec // Action specification
257 | ProcSpec // Process specification
258 ;
259
260 //−−− Boolean equation system
261
262 BesSpec: BesEqnSpec BesInit ; // Boolean equation system
263
264 BesEqnSpec: ’bes’ BesEqnDecl+ ; // Boolean equation declaration
265
266 BesEqnDecl: FixedPointOperator BesVar ’=’ BesExpr ’;’ ; // Boolean fixed point equation
267
268 BesVar: Id ; // BES variable
269
270 BesExpr
271 : ’ true ’ // True
272 | ’ false ’ // False
273 | BesExpr (’=>’ $binary op right 2) BesExpr // Implication
274 | BesExpr (’||’ $binary op right 3) BesExpr // Disjunction
275 | BesExpr (’&&’ $binary op right 4) BesExpr // Conjunction
276 | ’!’ BesExpr $unary right 5 // Negation
277 | ’(’ BesExpr ’)’ // Brackets
278 | BesVar // Boolean variable
279 ;
280
281 BesInit : ’ init ’ BesVar ’;’ ; // Initial BES variable
282
283 //−−− Parameterized Boolean equation systems
284
285 PbesSpec: DataSpec? GlobVarSpec? PbesEqnSpec PbesInit ; // PBES specification
286
287 PbesEqnSpec: ’pbes’ PbesEqnDecl+ ; // Declaration of PBES equations

97 APPENDIX A. DPARSER GRAMMAR FOR MCRL2

288
289 PbesEqnDecl: FixedPointOperator PropVarDecl ’=’ PbesExpr ’;’ ; // PBES equation
290
291 FixedPointOperator
292 : ’mu’ // Minimal fixed point operator
293 | ’nu’ // Maximal fixed point operator
294 ;
295
296 PropVarDecl: Id (’(’ VarsDeclList ’)’)? ; // PBES variable declaration
297
298 PropVarInst: Id (’(’ DataExprList ’)’)? ; // Instantiated PBES variable
299
300 PbesInit: ’ init ’ PropVarInst ’;’ ; // Initial PBES variable
301
302 DataValExpr: ’val ’ ’(’ DataExpr ’)’; // Marked data expression
303
304 PbesExpr
305 : DataValExpr // Data expression
306 | ’ true ’ // True
307 | ’ false ’ // False
308 | ’ forall ’ VarsDeclList ’.’ PbesExpr $unary right 0 // Universal quantifier
309 | ’ exists ’ VarsDeclList ’.’ PbesExpr $unary right 0 // Existential quantifier
310 | PbesExpr (’=>’ $binary op right 2) PbesExpr // Implication
311 | PbesExpr (’||’ $binary op right 3) PbesExpr // Disjunction
312 | PbesExpr (’&&’ $binary op right 4) PbesExpr // Conjunction
313 | ’!’ PbesExpr $unary right 5 // Negation
314 | ’(’ PbesExpr ’)’ // Brackets
315 | PropVarInst // Propositional variable
316 ;
317
318 //−−− Action formulas
319
320 ActFrm
321 : MultAct $left 10 // Multi−action
322 | ’(’ ActFrm ’)’ $left 11 // Brackets
323 | DataValExpr $left 20 // Boolean data expression
324 | ’ true ’ // True
325 | ’ false ’ // False
326 | ’!’ ActFrm $unary right 6 // Negation
327 | ’ forall ’ VarsDeclList ’.’ ActFrm $unary right 0 // Universal quantifier
328 | ’ exists ’ VarsDeclList ’.’ ActFrm $unary right 0 // Existential quantifier
329 | ActFrm (’@’ $binary op left 5) DataExpr // At operator
330 | ActFrm (’&&’ $binary op right 4) ActFrm // Intersection of actions
331 | ActFrm (’||’ $binary op right 3) ActFrm // Union actions
332 | ActFrm (’=>’ $binary op right 2) ActFrm // Implication
333 ;
334
335 //−−− Regular formulas
336
337 RegFrm
338 : ActFrm $left 20 // Action formula
339 | ’(’ RegFrm ’)’ $left 21 // Brackets
340 | ’ nil ’ // Empty regular formula
341 | RegFrm (’+’ $binary op left 1) RegFrm // Alternative composition
342 | RegFrm (’.’ $binary op right 2) RegFrm // Sequential composition
343 | RegFrm ’∗’ $unary right 3 // Iteration
344 | RegFrm ’+’ $unary right 3 // Nonempty iteration
345 ;
346
347 //−−− State formulas
348
349 StateFrm

98

350 : DataValExpr $left 20 // Data expression
351 | ’(’ StateFrm ’)’ $left 20 // Brackets
352 | ’ true ’ // True
353 | ’ false ’ // False
354 | ’mu’ StateVarDecl ’.’ StateFrm $unary right 1 // Minimal fixed point
355 | ’nu’ StateVarDecl ’.’ StateFrm $unary right 1 // Maximal fixed point
356 | ’ forall ’ VarsDeclList ’.’ StateFrm $unary right 2 // Universal quantification
357 | ’ exists ’ VarsDeclList ’.’ StateFrm $unary right 2 // Existential quantification
358 | StateFrm (’=>’ $binary op right 3) StateFrm // Implication
359 | StateFrm (’||’ $binary op right 4) StateFrm // Disjunction
360 | StateFrm (’&&’ $binary op right 5) StateFrm // Conjunction
361 | ’[’ RegFrm ’]’ StateFrm $unary right 6 // Box modality
362 | ’<’ RegFrm ’>’ StateFrm $unary right 6 // Diamond modality
363 | ’!’ StateFrm $unary right 7 // Negation
364 | Id (’(’ DataExprList ’)’)? // Instantiated PBES variable
365 | ’delay’ (’@’ DataExpr)? // Delay
366 | ’ yaled’ (’@’ DataExpr)? // Yaled
367 ;
368
369 StateVarDecl: Id (’(’ StateVarAssignmentList ’)’)? ; // PBES variable declaration
370
371 StateVarAssignment: Id ’:’ SortExpr ’=’ DataExpr ; // Typed variable with initial value
372
373 StateVarAssignmentList: StateVarAssignment (’,’ StateVarAssignment)∗ ; // Typed variable list
374
375 //−−− Action Rename Specifications
376
377 ActionRenameSpec: (SortSpec | ConsSpec | MapSpec | EqnSpec | ActSpec | ActionRenameRuleSpec)+ ;
378 // Action rename specification
379
380 ActionRenameRuleSpec: VarSpec? ’rename’ ActionRenameRule+ ; // Action rename rule section
381
382 ActionRenameRule: (DataExpr ’−>’)? Action ’=>’ ActionRenameRuleRHS ’;’ ; // Conditional action renaming
383
384 ActionRenameRuleRHS
385 : Action // Action
386 | ’ tau’ // Tau, hidden action, empty multi−action
387 | ’ delta ’ // Delta, deadlock, inaction
388 ;
389
390 //−−− Identifiers
391
392 IdList : Id (’,’ Id)∗ ; // List of identifiers
393
394 Id : ”[A−Za−z][A−Za−z 0−9’]∗” $term −1 ; // Identifier
395
396 Number: ”0|([1−9][0−9]∗)” $term −1 ; // Number
397
398 //−−−Whitespace
399
400 whitespace: ”([\t\n\r]|(%[ˆ\n\r]∗))∗” ; // Whitespace

Appendix B

BNF grammar for mCRL2

The GLL implementation used for this thesis only supports BNF. This ap-
pendix contains the BNF variant of the EBNF grammar of mCRL2. Parts
of the grammar that were introduced to avoid ambiguities have been re-
moved. For instance, this grammar does not contain the nonterminals
ProcExprNoIf and IfThen, because a precede/follow filter is used to re-
solve the dangling else ambiguity. The translation from EBNF to BNF is
done according to the rules described in Section 6.2.3. In the BNF gram-
mar, ε is denoted by an empty alternate.

1 mCRL2Spec ::= mCRL2SpecStar Init mCRL2SpecStar;
2
3 mCRL2SpecStar ::= mCRL2SpecElt mCRL2SpecStar | ;
4
5 mCRL2SpecElt
6 ::= SortSpec
7 | ConsSpec
8 | MapSpec
9 | EqnSpec

10 | GlobVarSpec
11 | ActSpec
12 | ProcSpec
13 ;
14
15 SortExpr
16 ::= ”Bool”
17 | ”Pos”
18 | ”Nat”
19 | ” Int ”
20 | ”Real”
21 | ” List ” ”(” SortExpr ”)”
22 | ”Set” ”(” SortExpr ”)”
23 | ”Bag” ”(” SortExpr ”)”
24 | ”FSet” ”(” SortExpr ”)”
25 | ”FBag” ”(” SortExpr ”)”
26 | Id
27 | ”(” SortExpr ”)”
28 | Domain ”−>” SortExpr
29 | ” struct ” ConstrDeclList
30 ;
31

99

100

32 Domain ::= SortExprList;
33
34 SortExprList ::= SortExpr SortExprStar;
35 SortExprStar ::= ”#” SortExpr SortExprStar | ;
36
37 SortSpec ::= ”sort ” SortSpecPlus;
38
39 SortSpecPlus
40 ::= SortDecl
41 | SortSpecPlus SortDecl
42 ;
43
44 SortDecl
45 ::= IdList ”;”
46 | IdList ”=” SortExpr ”;”
47 ;
48
49 ConstrDecl ::= Id ConstrDeclOptOne ConstrDeclOptTwo;
50 ConstrDeclOptOne ::= ”(” ProjDeclList ”)” | ;
51 ConstrDeclOptTwo ::= ”?” Id | ;
52
53 ConstrDeclList ::= ConstrDecl ConstrDeclListStar;
54 ConstrDeclListStar ::= ”|” ConstrDecl ConstrDeclListStar | ;
55
56 ProjDecl ::= ProjDeclOpt SortExpr;
57 ProjDeclOpt ::= Id ”:” | ;
58
59 ProjDeclList ::= ProjDecl ProjDeclListStar;
60 ProjDeclListStar ::= ”,” ProjDecl ProjDeclListStar | ;
61
62
63
64
65 IdsDecl ::= IdList ”:” SortExpr;
66
67 ConsSpec ::= ”cons” ConsSpecPlus;
68 ConsSpecPlus ::= IdsDecl ”;” ConsSpecPlus | IdsDecl ”;” ;
69
70 MapSpec ::= ”map” MapSpecPlus;
71 MapSpecPlus ::= IdsDecl ”;” MapSpecPlus | IdsDecl ”;” ;
72
73
74 GlobVarSpec ::= ”glob” GlobVarSpecPlus ;
75
76 GlobVarSpecPlus ::= VarsDeclList ”;” GlobVarSpec | VarsDeclList ”;”;
77
78 VarSpec ::= ”var” VarSpecPlus;
79 VarSpecPlus ::= VarsDeclList ”;” VarSpecPlus | VarsDeclList ”;”;
80
81 EqnSpec ::= EqnSpecOpt ”eqn” EqnSpecPlus;
82 EqnSpecOpt ::= VarSpec | ;
83 EqnSpecPlus ::= EqnDecl EqnSpecPlus | EqnDecl;
84
85 EqnDecl ::= EqnDeclOpt DataExpr ”=” DataExpr ”;”;
86 EqnDeclOpt ::= DataExpr ”−>” | ;
87
88
89 VarDecl ::= Id ”:” SortExpr;
90 VarsDecl ::= IdList ”:” SortExpr;
91 VarsDeclList ::= VarsDecl VDLStar;
92 VDLStar ::= ”,” VarsDecl VDLStar | ;
93

101 APPENDIX B. BNF GRAMMAR FOR MCRL2

94 DataExpr ::= Id
95 | Number
96 | ”true”
97 | ” false ”
98 | ”[” ”]”
99 | ”{” ”}”

100 | ”{” ”:” ”]”
101 | ”[” DataExprList ”]”
102 | ”{” BagEnumEltList ”}”
103 | ”{” VarDecl ”|” DataExpr ”}”
104 | ”{” DataExprList ”}”
105 | ”(” DataExpr ”)”
106 | DataExpr ”[” DataExpr ”−>” DataExpr ”]”
107 | DataExpr ”(” DataExprList ”)”
108 | ”!” DataExpr
109 | ”−” DataExpr
110 | ”#” DataExpr
111 | ” forall ” VarsDeclList ”.” DataExpr
112 | ” exists ” VarsDeclList ”.” DataExpr
113 | ”lambda” VarsDeclList ”.” DataExpr
114 | DataExpr ”=>” DataExpr
115 | DataExpr ”||” DataExpr
116 | DataExpr ”&&” DataExpr
117 | DataExpr ”==” DataExpr
118 | DataExpr ”!=” DataExpr
119 | DataExpr ”<” DataExpr
120 | DataExpr ”<=” DataExpr
121 | DataExpr ”>=” DataExpr
122 | DataExpr ”>” DataExpr
123 | DataExpr ”in” DataExpr
124 | DataExpr ”|>” DataExpr
125 | DataExpr ”<|” DataExpr
126 | DataExpr ”++” DataExpr
127 | DataExpr ”+” DataExpr
128 | DataExpr ”−” DataExpr
129 | DataExpr ”/” DataExpr
130 | DataExpr ”div” DataExpr
131 | DataExpr ”mod” DataExpr
132 | DataExpr ”∗” DataExpr
133 | DataExpr ”.” DataExpr
134 | DataExpr ”whr” AssignmentList ”end”
135 ;
136
137 DataExprUnit ::= Id
138 | Number
139 | ”true”
140 | ” false ”
141 | ”(” DataExpr ”)”
142 | DataExprUnit ”(” DataExprList ”)”
143 | ”!” DataExprUnit
144 | ”−” DataExprUnit
145 | ”#” DataExprUnit
146 ;
147
148 Assignment ::= Id ”=” DataExpr ;
149
150 AssignmentList ::= Assignment ALS;
151 ALS ::= ”,” Assignment ALS | ;
152
153 DataExprList ::= DataExpr DELS;
154 DELS ::= ”,” DataExpr DELS | ;
155

102

156 BagEnumElt ::= DataExpr ”:” DataExpr;
157 BagEnumEltList ::= BagEnumElt BEELS;
158 BEELS ::= ”,” BagEnumElt BEELS | ;
159
160
161 ActIdSet ::= ”{” IdList ”}” ;
162
163 MultActId ::= Id MultActIdStar;
164 MultActIdStar ::= ”|” Id MultActIdStar | ;
165
166 MultActIdList ::= MultActId MultActIdListStar ;
167 MultActIdListStar ::= ”,” MultActId MultActIdListStar | ;
168
169
170 MultActIdSet ::= ”{” MultActIdSetOpt ”}” ;
171 MultActIdSetOpt ::= MultActIdList | ;
172
173 CommExpr ::= Id ”|” MultActId ”−>” Id;
174
175 CommExprList ::= CommExpr CommExprListStar;
176 CommExprListStar ::= ”,” CommExpr CommExprListStar | ;
177
178 CommExprSet ::= ”{” CommExprSetOpt ”}”;
179 CommExprSetOpt ::= CommExprList | ;
180
181 RenExpr ::= Id ”−>” Id ;
182 RenExprList ::= RenExpr RenExprListStar;
183 RenExprListStar ::= ”,” RenExpr RenExprListStar | ;
184
185 RenExprSet ::= ”{” RenExprSetOpt ”}” ;
186 RenExprSetOpt ::= RenExprList | ;
187
188
189
190
191 ProcExpr
192 ::= Action
193 | Id ”(” AssignmentList ”)”
194 | Id ”(” ”)”
195 | ”delta”
196 | ”tau”
197 | ”block” ”(” ActIdSet ”,” ProcExpr ”)”
198 | ”allow” ”(” MultActIdSet ”,” ProcExpr ”)”
199 | ”hide” ”(” ActIdSet ”,” ProcExpr ”)”
200 | ”rename” ”(” RenExprSet ”,” ProcExpr ”)”
201 | ”comm” ”(” CommExprSet ”,” ProcExpr ”)”
202 | ”(” ProcExpr ”)”
203 | ProcExpr ”+” ProcExpr
204 | ”sum” VarsDeclList ”.” ProcExpr
205 | ProcExpr ”||” ProcExpr
206 | ProcExpr ”|| ” ProcExpr
207 | DataExprUnit ”−>” ProcExpr
208 | DataExprUnit ”−>” ProcExpr ”<>” ProcExpr
209 | ProcExpr ”<<” ProcExpr
210 | ProcExpr ”.” ProcExpr
211 | ProcExpr ”@” DataExprUnit
212 | ProcExpr ”|” ProcExpr
213 ;
214
215
216
217 Action ::= Id ”(” DataExprList ”)” | Id ;

103 APPENDIX B. BNF GRAMMAR FOR MCRL2

218
219 ActDecl ::= IdList ”:” SortExprList ”;” | IdList ”;” ;
220
221 ActSpec ::= ”act” ActSpecPlus ;
222
223 ActSpecPlus ::= ActDecl ActSpecPlus | ActDecl;
224
225 MultAct ::= ”tau” | ActionList ;
226
227 ActionList ::= Action ActionListStar ;
228 ActionListStar ::= ”|” Action ActionListStar | ;
229
230 ProcDecl ::= Id ”(” VarsDeclList ”)” ”=” ProcExpr ”;” | Id ”=” ProcExpr ”;” ;
231
232 ProcSpec ::= ”proc” ProcSpecPlus ;
233
234 ProcSpecPlus ::= ProcDecl ProcSpecPlus | ProcDecl;
235
236 Init ::= ” init ” ProcExpr ”;” ;
237
238 Id ::= ’[A−Za−z][A−Za−z 0−9]∗’;
239
240 IdList ::= Id IdListStar ;
241 IdListStar ::= ”,” Id IdListStar | ;
242
243 Number ::= ’0|([1−9][0−9]∗)’;

Appendix C

Experimental data

Table C.1 contains the data that we obtained after running the parser with-
out filtering, and the parser with parse-time filtering and post-parse time
filtering. All execution times are in milliseconds. Column Parsing & Filters
contains the running time of the parser with parse-time filtering. The to-
tal execution time of parsing and parse-time filtering versus only parsing
is shown in column Difference. Note that the Prefer and LORO filters are
used for post-parse filtering, and are only run if the ambiguity cannot be
resolved on parse-time. If all ambiguities are resolved on parse time, the
running time of the post-parse filters is zero.

Table C.1: Experimental data.

Input file Tokens Ξ(S) Parsing Parsing
& filters

Prefer LORO Difference

gpa-10-1 206 0.091 170 202 0 0 0.188
block 222 0.189 231 270 0 0 0.169
gpa-10-2 222 0.095 213 259 0 0 0.216
magic-square 227 0.870 1197 655 0 0 -0.453
dining8 275 0.180 295 341 0 0 0.156
allow 277 0.216 250 270 0 0 0.080
dining-10 287 0.257 391 458 0 0 0.171
wolf-goat-cabbage-1 291 0.148 544 639 0 0 0.175
dining3-ns-seq 300 0.103 436 451 0 0 0.034
dining3-ns 300 0.104 454 395 0 0 -0.130
mpsu 325 0.701 672 692 0 0 0.030
bakery 328 0.058 386 537 0 0 0.391
dining3-seq 352 0.079 685 739 0 0 0.079
dining3-cs 366 0.141 496 585 0 0 0.179
dining3-cs-seq 366 0.140 482 557 0 0 0.156
leader 399 0.187 552 585 0 0 0.060
dining3 400 0.119 758 843 0 0 0.112
rational 406 0.411 835 931 0 0 0.115
scheduler 424 0.133 438 503 0 0 0.148
dining3-schedule-seq 434 0.132 725 790 0 0 0.090

Continued on next page

104

105 APPENDIX C. EXPERIMENTAL DATA

Table C.1 – continued from previous page

Input file Tokens Ξ(S) Parsing Parsing
& filters

Prefer LORO Difference

abp 439 0.133 446 471 0 0 0.056
fischer 439 0.109 451 484 0 0 0.073
trains 459 0.184 284 335 0 0 0.180
dining3-schedule 482 0.155 796 933 0 0 0.172
wolf-goat-cabbage 490 0.094 1499 1554 0 0 0.037
abp-bw 496 0.079 486 564 0 0 0.160
fischer-10 519 0.115 568 648 0 0 0.141
cellular-automata 622 0.257 1311 1536 0 0 0.172
food-package 657 0.458 1898 1928 0 0 0.016
cabp 674 0.146 617 655 0 0 0.062
swp-func 733 0.078 1116 1397 0 0 0.252
par 734 0.083 591 690 0 0 0.168
onebit 760 0.253 835 939 1 4 0.131
sets-bags 764 0.568 1069 1124 0 0 0.051
numbers 882 0.971 8143 1776 0 0 -0.782
swp-lists 899 0.074 1913 2110 0 0 0.103
swp-fgpbp 921 0.107 1643 1747 0 0 0.063
domineering 999 0.265 2561 2847 0 0 0.112
game-of-goose 1019 0.203 2303 2566 2 28 0.127
hex 1248 0.264 3186 3624 0 0 0.137
brp 1259 0.069 1685 1936 0 0 0.149
clobber 1362 0.239 3504 3994 0 0 0.140
snake 1419 0.125 3497 4175 0 0 0.194
knights 1426 0.313 3403 3759 0 0 0.105
othello 1496 0.110 3256 3753 0 0 0.153
wafer-stepper 1508 0.121 2602 3036 0 0 0.167
rubiks-cube 1811 0.075 3702 4293 0 0 0.160
alma 1843 0.178 2652 3004 0 0 0.133
lift3-init 1847 0.058 3227 3666 0 0 0.136
lift3-final 2105 0.059 3588 4259 0 0 0.187
four-in-a-row 2121 0.131 5519 6106 0 0 0.106
peg-solitaire 2525 0.157 6870 7626 0 0 0.110
swp-with-tanenbaums-bug 2739 0.280 4768 5159 0 0 0.082
bke 3255 0.100 5636 6227 0 0 0.105
chatbox 3840 0.912 18786 14105 0 0 -0.249
commprot 4019 0.109 6939 7557 0 0 0.089
SMS 4206 0.453 5371 6350 0 0 0.182
11073 4428 0.674 8321 9142 0 0 0.099
1394-fin 4452 0.111 6863 8092 0 0 0.179
WMS 5987 0.925 15512 10927 0 0 -0.296
garage-r3 9323 0.040 19592 24071 0 0 0.229
garage-r2-error 9405 0.038 20944 23718 0 0 0.132
garage-r2 9459 0.040 19991 23654 0 0 0.183
garage 9815 0.049 21401 24380 0 0 0.139
garage-r1 9818 0.049 21792 24648 0 0 0.131
garage-ver 11545 0.669 27377 29114 0 0 0.063

	Introduction
	Motivation
	Research Questions
	Scope
	Outline

	Preliminaries
	Generalized LL Parsing
	Shared Packed Parse Forest (SPPF)

	Disambiguation
	Disambiguation Rules
	Moment of disambiguation
	Disambiguation Filters
	Subtree Exclusion
	Reject rules
	Precede-follow restrictions

	Filtering in the SPPF
	Parse Trees in an SPPF
	SPPF Filters
	Removing parse trees from the SPPF
	Removing all parse trees containing some node
	Removing all parse trees containing some edge
	Removing all parse trees containing some path
	Removing all parse trees containing some subtree

	Disambiguation of Expression Grammars
	Expression Grammars
	Precedence correct parse trees
	Why two-level filtering is not sufficient
	Precede and Follow Restrictions
	Disambiguate all single character operators
	Disambiguate Java expressions

	Disambiguation of Mixfix Expressions
	Mixfix expressions
	Causes of ambiguity in mixfix expressions
	Shared separator tokens
	Adjacent operands
	Left-open vs. right-open operators

	mCRL2 specification language
	Data types
	Processes and Actions

	Parsing mCRL2 specifications
	Restricted keywords
	Ambiguities in sort expressions
	Ambiguities in data expressions
	Ambiguities in process expressions

	Left-open right-open filter
	Hidden openness with nullable nonterminals
	Applicability of restrictions
	Updating the walker
	Left-open right-open filter pseudo code
	Apply left-open right-open filtering on parse time

	Order of filtering is of importance

	Experimental Evaluation
	Experimental Setup
	Hypotheses
	Results and Discussion
	Results
	Discussion

	Implementation
	GLL parser generator
	Abstract parser
	Scanner

	Parse tree removal

	Conclusions
	Contributions to Research Questions
	Future work

	DParser grammar for mCRL2
	BNF grammar for mCRL2
	Experimental data

