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Parse-time Disambiguation in Generalized LL Parsers Using Attributes

by Josh Mengerink

When developing a new Domain Specific Language (DSL), writing a parser for your new

language is either too dull, or too difficult. Parser generation based on grammars greatly

improves the ease and speed with which parsers can be created. However, most parser

generators suffer from deficiencies such as only supporting regular languages or grammars

that are left-recursion free. Generalized LL parsing solves these issues, as the entire class

of context-free grammars are supported. However, as we are dealing with generalized

parsing, ambiguous grammars are also supported an GLL parsers will yield every correct

derivation. Code generators on the other hand, usually require a single derivation to

work on. We thus see the need to be able to reduce the amount of yielded derivations

(i.e. disambiguate). Many different techniques for disambiguation exist, but only few

(such as grammar rewriting) focus on incorporating these techniques in the generated

parser. The downside to many of these techniques is that as a result of their work, the

yielded derivations are often (slightly) different than the original derivation that was

intended. In this thesis, we will attempt to extends grammars with an attribute system,

such that the original structure of the grammar (and thus the derivation) is preserved,

but we are intuitively able to define which derivations should be excluded from our final

result.
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Chapter 1

Introduction

In this thesis, the feasibility of extending Generalized LL (GLL) [2] with support for

attributes will be investigated. The main goal of this extension is to use an attribut-

ing system to provide context for the disambiguation of languages that have ambiguous

expression structures, or use the offside-rule. The primary type of ambiguities that we

will aim to resolve are related to structures, rather than large-scale semantic disam-

biguation (such as type checking). Moreover, this disambiguation is to take place at

parse-time as much as possible. This form of on-parse time disambiguation should serve

as a proof of concept that it is possible for attributes to provide contextual information

inside the GLL algorithm to serve as a disambiguation mechanism. We will start with

a general introduction to parsing (Chapter 1), followed by a thorough explanation of

the GLL algorithm (Chapter 2). Furthermore, the core concepts of the attribute system

are explained (Chapter 3) and a step-by-step explanation is given on how to extend the

data-structures in GLL to support these attributes (Chapter 4). We will wrap up with

a case study that incorporates both expression-grammar and offside elements (Chapter

5).

1.1 Parsing

The first question that one might ask is: what is parsing? Parsing is the action of turning

a sequence of characters into a tree structure that represents the actual meaning of that

sequence. To illustrate the need for parsing, take the example sequence “2+5*3”. Under

normal arithmetical priority rules, this means: add two to the result of multiplying five

and three. However, someone who is not familiar with these rules might understand

this sequence as: add two to five, and multiply the result by three. Depending on

which operation we do first (addition or multiplication), we end up with one of two

derivations, each with a different outcome (17 and 21 respectively). Thus, in order

for someone (or something) to understand the actual meaning of “2+5*3”, we need

additional information (namely that we should multiply before doing addition). We

encode this information in a tree structure, also called a parse tree. Both possible parse

1
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Figure 1.1: A figure showing the two possible parse trees for the sequence “2+5*3”

trees for the sequence “2+5*3” are presented in Figure 1.1. However, we would say the

left one is correct.

Summarizing, the parser adds structure (e.g. perform multiplication before addition) to

the input sequence in the form of a tree structure. This process of transforming an input

sequence into a tree structure, is called parsing and is performed by a so called parser.

A parser may also conclude that no tree structure exists for a given input sequence, in

which case we say that an input is invalid and a descent error (regarding the reason why

there is no tree) should be generated.

When performing these actions, the parser is often assisted by a scanner. A scanner

is a component that transforms the input into a sequence of tokens, based on lexical

patterns. Rather than performing its operations on segments of the input, the parser

can work on tokens (abstracting from the actual characters in the input). This enables

parsers to be more efficient and compact. Scanners may also perform tasks such as

removal of (unnecessary) layout from the input sequence, to simplify the parser further.

Traditionally, parsers would be written by hand, which was a very cumbersome and

mechanical effort. Due to the mechanical nature of this task, research was done into the

automation of the process. Currently, most parsers are generated based on context-free

grammars. These grammars specify the shape of any input sequence that is valid. In the

structure of a grammar, one can immediately encode the additional information (such

as priority) the parser should imply on an input sequence. Grammars will be discussed

in depth in Section 1.2.

1.2 Grammars

A grammar is a set of rewrite rules, with which we may rewrite a sequence of symbols

to another sequence of symbols. To illustrate, assume we want to parse all, non-empty,

sequences of the character “a” followed by exactly that many occurrences of the character

“b”. Take sequence σex = aaabbb as an example. A grammar for this can be seen in

Grammar Γ1. We see that this grammar has two rewrite rules:
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1. We may substitute the symbol S for the sequence of symbols aSb.

2. We may substitute the symbol S for the empty sequence ε. This, in essence, means

we may eliminate S from our sequence at any given point.

If we can rewrite the initial symbol S of a grammar to the input sequence, we say that

the input sequence σex is valid with respect to the grammar. In our example, indeed

“aaabbb” is valid with respect to the input, as (using the first rule) we may rewrite S

to “aSb”, “aaSbb”, “aaaSbbb” to finally eliminate S using the second rule to remain

with the sequence “aaabbb”. Actual parsers rewrite their symbols in a more structured

way. We distinguish two main kinds: LL, which always chooses the left-most symbol,

and LR, which always chooses the right-most symbol [3].

S ::= a S b;(Γ1)

S ::=ε;

As this is all quite informal, let us go into some more details. Formally, a grammar Γ is

a tuple 〈N,T, S, P 〉 where:

• N is a finite set of non-terminal symbols.

• T is a finite set of terminal symbols, including the empty symbol (denoted ε).

Throughout this paper we will assume all terminal symbols to be regular expres-

sions. However, we allow for the shorthand “t”(t ∈ T ), which is to be interpreted

as the actual sequence of characters (e.g. “+” = [+], “test” = “[t][e][s][t]”).

• S ∈ N is the start non-terminal symbol.

• P is a finite set of productions.

Let L(X) denote a list (of an unspecified size) whose elements are from the set X. A

production is of the shape α ::= β, where α, β ∈ L(N ∪ T ). However, we will limit

ourselves to productions where α ∈ N (but still β ∈ L(N ∪ T )). Note that since P is a

set, we ignore duplicate productions.

We say an input sequence σ (of terminal symbols) is valid with respect to a grammar Γ

if and only if there exists a sequence of substitutions such that:

• We start with the sequence σ′= S;

• We repeatedly choose the left-most non-terminal symbol n ∈ N that occurs in

σ′. Note that this is the case for parsers yielding a left-most derivations. Parsers

yielding a right-most derivations choose their right-most non-terminal symbol for

rewriting [3].

• We choose an α ::= β ∈ P such that α = n;
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• We substitute n in σ′ by the sequence of literals β (where a literal is an element

in N ∪ T );

• When there are no remaining non-terminal symbols in σ′, then it must hold that

σ = σ′.

Please consider the example grammar Γ2. This grammar has non-terminal symbols

N = {S,B}, terminal symbols T = {a, b} and start non-terminal S. Moreover, there are

two productions: S ::= a B and B ::= b. To demonstrate an input sequence that

is accepted by this grammar, consider “ab”. This is a valid sequence, as a substitution

exists that meets our specified restrictions as can be seen in Listing 1.1.

1 σ′ = S

2 {S ::= aB}
3 σ′ = aB

4 {B ::= b}
5 σ′ = ab = σ

Listing 1.1: A simple grammar derivation

S ::= a B;(Γ2)

B ::= b;

As was stated before, a grammar specifies additional information to be imposed on an

input sequence (e.g. multiplication must be applied before addition). But this might

not be completely obvious from the example presented. Take the (slightly) more sophis-

ticated example of grammar Γ3.

ASSIGNMENT ::= VARIABLE “ := ” NUMBER;(Γ3)

VARIABLE ::= “x” | “y”;

NUMBER ::= “1” | “2”;

If we parse the sequence “x:=2”, observe the parse tree for this sequence presented

in Figure 1.2. We see that we can substitute the start non-terminal ASSIGNMENT

to “VARIABLE ‘:=’ NUMBER” in which we can substitute VARIABLE for “x” and

“number” for 2. From the resulting tree (in Figure 1.2) we can derive that we should

interpret the sequence “x:=2” as the assignment of the number “2” to variable “x”.

1.3 Grammar classes

There are a number of different classes of grammars each having a different level of

expressiveness [4]. That is, each incrementally greater class of grammars is able to

specify an increasingly greater class of languages. For example, if we want to be able to



Chapter 1. ]An introduction to Parsing 5

ASSIGNMENT

‘:=‘VARIABLE NUMBER

‘x‘ ‘2‘

Figure 1.2: A parse tree for sequence “x:=2” with respect to Γ3

specify all sequences {anbncn | n > 1} in a grammar, we cannot do so using a context-

free grammar. However, a context-sensitive language is able to specify such a sequence.

The two classes that we will consider are context-free and context-sensitive grammars.

The difference between a context-free and a context-sensitive grammar, is that in a

context-free grammar we are always allowed to substitute a non-terminal symbol using

any production with that non-terminal as its left-hand-side (LHS) [5]. These context-free

grammars generate the class of context-free languages.

However, in context-sensitive grammars there may be additional restrictions on the

applicability of a production than just the presence of a non-terminal. For example, a

production in a context-sensitive grammar may be of the form abX ::= c. This means

that we may only substitute X for c, if the two symbols preceding X are terminals a and

b. Context-sensitive grammars generate the class of context-sensitive languages.

Another way of modeling context-sensitive productions is: α × ω ::= β, where ω is a

particular state of an environment. One may then only substitute non-terminal α for

sequence β if and only if the environment matches ω. Attributes are one of mechanisms

used to specify and manipulate these environments.

1.4 Attribute Grammars

A well known mechanism that relies on the general idea of attribute annotation of non-

terminals is Attribute Grammar (AG) [6, 7]. Attribute grammars form an extension

of the context-free grammars and have historically been proven useful for specifying

context-sensitive syntax.

Besides attributes, computational rules on these attributes can be specified. These

rules describes how to evaluate the values of certain attributes with respect to other

attributes. Furthermore, an evaluation method is required to compute the actual values

of the attributes in an efficient way. Whenever calculated values would (post-parse)

conflict a set of specified rules, this would result in an error message. Is a sense, such an

error message can be seen as rejecting the derived parse-tree based on semantic grounds.

We aim to use this last concept in the context of a parse-forest, to reject all undesired

trees based on their attributes. Based on the evaluation method of these attributes, we

can partition the class of attribute grammars into four sub-classes:
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• L-Attribute grammars [8], in which only depth-first left-to-right attribute evalua-

tion is supported .

• S-Attribute grammars [8], in which only bottom-up attribute evaluation is sup-

ported.

• Absolutely non-circular attribute grammars [9], which (in essence) allows for any

attribute-computation as long as their order of computation is non-cyclic. That

is, an attribute-computation is cyclic if the value of an attribute (say A) depends

(recursively) on its own value.

• Ordered Attribute Grammars [10], that require particular partial orders to hold

on the attribute evaluation process.

Checking for cyclic attribute dependencies in an efficient way has been a challenge ever

since AGs were envisioned by Knuth and has lead to many publications by Alblas and

Kastens (among others) [11–14].

Classically , AGs were mainly used in deterministic parsers to annotate parse-trees [15–

17]. Post-parse, such an annotated tree could then be checked for errors with respect

to the specified attribute restriction. More modern work on attribute grammars focuses

on using attribute grammars to generate parse-forest disambiguation filters [18] (i.e.

post-parse disambiguation). Others work on extending specific languages with attribute

grammars for increased extensibility [19], or extended LR parser generators [20].

To illustrate the basic concept of an attribute grammar, consider the context-free expres-

sion grammar Γ4. Note that it is ambiguous, hence we assume that our parser returns

all possible derivations. We extend the grammar with attributes, to represent parent-

child relationships (the attribute “parent”) and enforce that a multiplication (which has

higher priority than addition) must always occur before addition (i.e. occur lower in the

parse-tree). We do so by means of the semantic rule parent != * on the production

for addition. Furthermore, we specify that recursive non-terminals should have their

parent property set to the operator of the current production (e.g. [parent=+] for

the addition-production). All this is presented in attributed grammar Γ5.

Please note that this grammar is ambiguous, so there are multiple correct derivations.

However, as non-general parsers only return a single derivation, the implementation

of the parser regulates which derivation is yielded. For the sake of simplicity we will

assume our parser to be deterministic. Say now we parse input sequence “1+2*3” with

respect to Γ5. Our parser yields the annotated parse-tree presented in Figure 1.3. We

can then evaluate all nodes and their contextual restrictions. In particular, we see that

there is an instance of the production Exp::=Exp "+" Exp being used. This instance

is annotated with parent="*", however, the LHS of the relevant production states

that the parent property should be unequal to "*". Hence, there is a violation in our

parse-tree, and we can disqualify it.

Exp ::= Exp “ + ” Exp;(Γ4)
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*

+ 3

21

parent=?

parent=*parent=*

parent=+ parent=+

Figure 1.3: An annotated parse-tree for sequence “1+2*3” with respect to Γ5

Exp ::= Exp “ ∗ ” Exp;

Exp ::= [1− 9][0− 9]∗;

Exp[parent! = “ ∗ ”] ::= Exp[parent = “ + ”] “ + ” Exp[parent = “ + ”];(Γ5)

Exp ::= Exp[parent := “ ∗ ”] “ ∗ ” Exp[parent = “ ∗ ”];

Exp ::= [1− 9][0− 9]∗;

1.5 Attributing System

The system we propose resembles L-attribute grammars (L-AGs) [8] in the way our

attributes are evaluated. Like in L-AGs, the attributes specified are evaluated in a

depth-first left-to-right manner. We allow the user to add annotated Java code to the

productions of the grammar. This Java code is then able to use an API to retrieve and

pass on attributes, in addition to performing calculations on these attributes. Finally, we

also provide API methods to allow the annotated Java code to prune parse derivations

in case attributes conflict semantic rules. Note that we will only prune derivations, not

remove then (as this might lead to incorrect results). This API will be discussed in

Chapter 3.

The main goal of this research is to incorporate a top-down attribute system into the

generalized LL (GLL) parsing to disambiguate normal expression languages and lan-

guages that use the offside-rule. Using depth-first left-to-right evaluation of attributes

was already deemed feasible for integration in top-down parsers by Müller [21]. Addi-

tionally, there have already been some attempts to allow generalized bottom-up parsers

to maintain a sense of context with respect to layout-sensitive grammars [22] on-parse
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time. However, to our knowledge, no such attempts have been made for generalized

top-down parsing.

More specifically, the desired disambiguation should take place on-parse time. An on-

parse time disambiguation mechanism is desirable as we want to be able to reject invalid

trees as soon as possible, preventing unnecessary work. Furthermore, if we were to

perform post-parse disambiguation, a parse-forest disambiguation filters would be more

powerful and can be generated by means of attribute grammars [18].

In our attribute system, similar to more general attribute grammars, we distinguish

between two distinct types of attributes. The first type of attributes that we will discuss

are inherited attributes. Inherited attributes are received from parent non-terminals. For

instance, whenever a nonterminal N is substituted for a sequence α, attributes that are

passed from N to α are referred to as inherited attributes. Consider again grammar Γ5.

In the right-hand-side (RHS) of the production, the non-terminals have been annotated

with attributes and values (e.g. parent="+"). When we substitute Exp using one of

the productions in Γ5, that instance of the production is annotated with the attribute

parent, which has the value “+”. Support for inherited attributes in GLL will be

discussed in more detail in Section 4.1.

The second type of attributes are synthesized attributes. Synthesized attributes, in

contrast to inherited attributes, travel upwards. To illustrate this, consider grammar Γ6

and do not want both instances of X in S to derive the same terminal (i.e. disallow “bb”

and “cc”). We could do so by passing information on which alternate was chosen to

the production S ::= X X, such that it can check that that they are different. See

grammar Γ7, in which we specify that X ::= "b" and X ::= "c" should annotate

their parent non-terminal with attribute “type” with a value corresponding to their

production (e.g. ↑ type = “b”). At the level of production S ::= X X, we can then

check that the type of the first X and the type of the second X differ (X0.type 6= X1.type).

Support for synthesized attributes in GLL will be discussed in more detail in Chapter

4.3.

S ::= X X;(Γ6)

X ::= “b”;

X ::= “c”;

S[X0.type 6= X1.type] ::= X X;(Γ7)

X ::= “b”[↑ type = “b”];

X ::= “c”[↑ type = “c”];
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1.6 Summarizing

To summarize, there is a vast amount of literature available regarding attribute gram-

mars. However, all applications of attribute grammars described in this literature serve

different purposes than ours. We aim to use attribute grammars to disambiguate parse

forests on-parse time. More specifically, we will attempt to extend GLL parsers such

that they supports an attribute system similar to L-attribute grammars. In doing so,

we aim to prune derivations on-parse time, using the attributes as context to do so.

1.7 Research questions

The objective of this thesis is to implement attribute grammars inside GLL and use them

to disambiguate expression and offside grammars on-parse. We will first investigate the

feasibility of implementing on-parse time attribute grammars, followed by a number

of case-studies to evaluate the ability of on-parse AGs to disambiguate the ambiguous

concepts in the grammars mentioned.

Question 1

Is it possible to extend the Generalized LL parsers with attribute grammars?

A search for literature with respect to generalized parsing and attribute grammars has

yielded no results. We therefore pose the question is if it is at all feasible to implement

attribute grammars into generalized parsing. Due to the depth-first top-down nature of

GLL, we will restrict ourselves to the L-attribute grammars [21].

Question 2

Is it possible to reject derivations on-parse by using attributes? (in contrast

to post-parse evaluation)

We are interested in evaluating the attributes on-parse in the GLL algorithm. Very

powerful post-parse disambiguation is already available in the form of filters[18, 23].

To improve on this we attempt to evaluate our attributes with respect to their condi-

tions on-parse time.In this way, we hope to prune a number of derivations to prevent

post-parse disambiguation of the resulting parse forest. This in contrast to post-parse

disambiguation, where the parse forest is yielded first, and invalid trees are removed

afterwards. A crucial side-note to this is that during this process of pruning, no trees

should be removed that do not violate attribute properties. This poses a challenge due

to the high amount of sharing inside the data structures used by GLL algorithm.

Question 3

Are attribute grammars suited for practical on-parse time disambiguation?

We want to know if the lack of global information makes on-parse time disambiguation

viable for practical uses. We will conclude this thesis with case studies into disambiguat-

ing two practical grammars: expression grammars and offside grammars. We choose the

expression grammar as this is the cause of ambiguity and are present in most (if not all)

modern programming languages.





Chapter 2

Generalized LL parsing

We will start off by explaining the general idea of GLL before proceeding to extending

the algorithm to support attributes. As GLL consists of several easy-to-understand

components, but with complex interactions, we will incrementally extend an LLRD

parser until it becomes a GLL parser. In the next sections we will continuously refer to

the code and concepts presented as “parsers”. However, in the explanatory examples we

omit actual creation of the parse-tree to keep our examples understandable and compact.

Since we do not generate a parse-tree, formally we are constructing a recognizer. In

Section 2.10 we will then discuss the creation of the parse-tree, thus transforming the

recognizer into a parser.

In an earlier project, an object-oriented Java implementation of the GLL (OOGLL)

algorithm was created [1]. This implementation changes the original GLL algorithm in

the sense that it uses method-calls rather than GOTO-statements, and attempts to use

object-oriented paradigms to clarify the algorithm as much as possible. The code that is

presented here, to explain the workings of the GLL algorithm, is based on this OOGLL

variant of GLL.

2.1 Scanner

Before going into the details of actual LLRD and GLL parsers, we first need to elaborate

on some auxiliary functions, which we will pack into an entity we will be referring to as

a “scanner”. A scanner maintains two pieces of data:

• The input sequence we are working on, say σ;

• A position in the input, say i.

Besides operations to retrieve and modify the input position, the scanner has two inter-

esting functions:

11
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• hasNext(σ : String, i : N, ρ : RegularExpression) : Boolean that, given a reg-

ular expression ρ, will return true if ρ occurs starting at i in σ. For example:

hasNext("world", 0, w) yields true, whereas hasNext("world", 3, w)

and hasNext("world", 0, x) both yield false.

• next(σ : String, i : N, ρ : RegularExpression) : String also takes a regular

expression ρ. if σ contains ρ starting from position i, return the occurrence of ρ

from the input sequence and place the input pointer at the end of this occurrence.

For instance, next("world", 0, w) = "w". This is particularly useful when

dealing with symbols ρ that are defined as regular expressions. For example:

next(‘‘hello world", 6, [a-z]+) = "world".

An example of a scanner in Java can be found in Listing 2.1. Keep in mind that σ

and i are instance variables of the scanner, and are therefore not present in the next

and hasNext method calls. Note that the example implementation provided does not

support regular expression (it uses substring equality). An implementation that does

use regular expressions is more common, but does not add to the illustrative capabilities

of our examples, and hence will be omitted. Note that if a regex implementation is used,

our function next is required to return the sub-sequence from the input sequence, rather

than just the pattern. For instance, hasNext("1234", 0, [0-9]*) = "1234".

1 class Scanner {
2 private int inputPointer;
3 private String sequence;
4
5 public boolean hasNext(String symbol) {
6 return sequence.subSequence(inputPointer).startWith(symbol);
7 }
8 d
9 public String next(String symbol) {

10 if (hasNext(symbol)) {
11 inputPointer = inputPointer + symbol.length();
12 return symbol;
13 }
14 }
15 }

Listing 2.1: A Java implementation of a scanner

One other thing to note is that, for now, the scanner is global, and retains its state

across all parse functions.

2.2 LLRD

Now that we have seen an example of a scanner, we will start looking at a parser. We

will first look at an LLRD parser for grammar Γ8. The generation of such a parser is

relatively straightforward and will be elaborated upon next.

S ::= A “c” | B “c”;(Γ8)

A ::= “a”;
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B ::= “b”;

An LLRD parser usually has a single function per production rule of the grammar,

we call these parse functions. Within an LLRD parse function, every right-hand-side

(RHS) literal of the corresponding production rule is processed in order. If a literal is

a terminal, we call the next function in our scanner, to “consume” the symbol. If this

symbol cannot be consumed, an error is thrown, as (apparently) the input is not valid

with respect to the grammar. If the literal is a non-terminal, we check what symbols the

given non-terminal can start with. If the first symbol of the input sequence corresponds

to one of these symbols, we invoke the parse function corresponding to the non-terminal

(e.g. parseA(), if we encountered the non-terminal A). A possible implementation can

be found in Listing 2.2. There also exists a backtracking variant of the LLRD parser,

which does not require us to check the first symbol of a non-terminal, but returns to an

earlier point in the parse if it fails within a recursive non-terminal. We will not discuss

this variant any further, as GLL is based on the non-backtracking variant of LLRD

parsers.

An LLRD parser strongly relies on the call-stack. That is, whenever a parse function

for production A ::= x Z y invokes the parse function parseZ() for non-terminal

Z, a lot of information is stored implicitly: after completing parseZ(), proceed by

processing y in A.
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1 Scanner scanner;
2 void parse(String i) {
3 scanner = new Scanner(input);
4 parseS();
5 }
6
7 void parseS() {
8 if (scanner.hasNext("a")) {
9 parseA();

10 scanner.next("c");
11 } else if (scanner.hasNext("b")) {
12 parseB();
13 scanner.next("c");
14 } else {
15 error();
16 }
17 }
18
19 void parseA() {
20 consumeInput("a", ptr);
21 ptr++;
22 }
23
24 void parseB() {
25 consumeInput("b", ptr);
26 ptr++;
27 }

Listing 2.2: An implementation of a classic LLRD parser

2.3 LLRD with a higher granularity

Working towards a GLL parser, we will first increase the granularity of our functions and

introduce a concise naming scheme for our parse functions. In a later extension, we will

reduce dependency on the call-stack, as the call-stack limits us to a single derivation.

Therefore, we fragment parse functions such that every point that the call-stack would

return to (e.g. behind each non-terminal) becomes a separate function. When no longer

using the call-stack, these return points are then uniquely addressable by their functions.

For now, consider the higher granularity.

We will first define the concept of a GLL Block. Let head(s) and last(s) denote the first

and last elements of a sequence s respectively. Furthermore, tail(s) is the sequence s

without head(s). Any alternate may be divided into one or more GLL Blocks. A GLL

Block for an alternate α is a sequence σ such that either σ = ε or σ = t ++ last(σ)

(where a++ b denotes the string concatenation of a and b).

• t is a sequence of terminals;

• σ is a sub-sequence of α;

• last(σ) is either:

– a non-terminal;
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– a terminal that is not followed by any literal;

• head(s) is not preceded by a terminal.

To illustrate: given an alternate α = a b C D, would be partitioned into three GLL

Blocks: β1 = a b C, β2= D, and an empty Block β3 (the use of this last Block will be

explained later). The concatenation of β1 through β3 again yields a b C D, which is

equal to α. Observe that we can create a parser equivalent to the one in Listing 2.2 by

calling GLL Blocks in order. That is, if a production consists of n GLL Blocks, at the

end of the first Block, the function for the second Block is called, and so on until the

nth Block.

More formally we create the following functions:

• A function parseP() for every production P ::=Ψ (where Ψ is a set of alternates).

This function will check the applicability of alternates and invoke the correct one.

• A function parsePi,j() for every GLL Block j in alternate i of production P .

The functions for all GLL Blocks of an alternate will, together, be responsible for

parsing that specific alternate.

To improve the conciseness, we will introduce a fixed naming scheme for these Pi,j . We

define the name of a function Pi,j by means of the label function:

label(Pi,j) =

{
i = 0 → Pi

otherwise → Pi j

For example, take production rule P ::= a B C | d | E F g H, we would par-

tition and name it as can be seen in Table 2.1. In our example grammar, this would mean

generating functions A(), A0(), B(), and B0(). However, as A() only schedules

A0 and B() only schedules B0, for the sake of clarity, we combine these functions into

A() and B() respectively. At this stage, this increase in functional granularity might

seem like overhead, but will become of use in later extensions. Note, that the parser

presented in Listing 2.3 performs equal to the parser in Listing 2.2.
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1 Scanner scanner;
2 void parse(String input) {
3 scanner = new Scanner(input);
4 parseS();
5 }
6
7 void parseS() {
8 if (input.has("a")) {
9 parseA();

10 parseS2();
11 } else if (input.has("b")) {
12 parseB();
13 parseS2();
14 }
15 }
16
17 void parseS2() {
18 scanner.next("c");
19 }
20
21 void parseA() {
22 scanner.next("a");
23 }
24
25 void parseB() {
26 consumeInput("b");
27 }

Listing 2.3: LLRD with

increased granularity

1 Scanner scanner;
2 void parse(String input) {
3 scanner = new Scanner(input);
4 parseS();
5 }
6
7 void parseS() {
8 if (input.has("a")) {
9 parseS0();

10 } else if (input.has("b")) {
11 parseS1();
12 }
13 }
14
15 void parseS0() {
16 parseA();
17 parseS0_0();
18 }
19
20 void parseS0_0() {
21 scanner.next("c");
22 }
23
24 void parseS1() {
25 parseB();
26 parseS1_0();
27 }
28
29 void parseS1_0() {
30 scanner.next("c");
31 }
32
33 void parseA() {
34 scanner.next("a");
35 }
36
37 void parseB() {
38 consumeInput("b");
39 }

Listing 2.4:

LLRD with increased granularity

and concise naming scheme

2.4 LLRD with modified control flow

The next modification to our parser will be to its control-flow. Say we have two pro-

ductions φ1 ::= β1β2 and φ2 ::= β3. Say β1 invokes the parse function for φ2. Rather

than having the function for β3 return (via the call-stack) to φ1 and having φ1 invoke

the function for β2, we will have β3 do this job. For a more specific example, consider

input sequence “ac” (still under grammar Γ8). The sequence of function invocations in

the previous is as follows:

• We call parseS();

• parseS checks that we can parse and “a” and invokes S0()
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• S0() invokes A()

• A() consumes “a”

• A() returns to S0()

• S0() invokes S0 0();

• S0 0 consumes “c”

• S0 0 returns to S0, returns to S, which terminates.

In our modified variant, we change this to the behavior mentioned below. This update

will enable us (in a later extension) to reduce dependency on the call-stack. Rather than

have the call-stack dynamically tell us where to continue. We define where to continue

ourselves.

• We call parseS();

• parseS() checks that we can parse “a” and invokes S0()

• S0() invokes A()

• A() consumes “a”

• A() invokes S0 0()

• S0 0() consumes “c”

• S0 0 returns via multiple steps and terminates

To realize this modification, we will move the invocation of S0 0() to the end of A().

Likewise, the last statement of B() will invoke S1 0(). There is however one prob-

lem: consider grammar Γ9. Note that the parse function for non-terminal X can be

invoked from the first GLL Block of both A and B. Thus, after X completes, it is unclear

whether we should jump to the second GLL Block for A or the second GLL Block for B.

Thus, this approach does not work for all grammars. It possible to return to both, or

to store where to return to. This will be included in a later extension, fixing this problem.

S ::= A | B;(Γ9)

A ::= X C;

B ::= X D;

X ::= “a”;

C ::= “b”;

D ::= “b”;
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The main advantage to this functional decomposition is once a single function terminates

and starts popping from the call-stack to resume a previous parse function, there are

no more statements to execute in any of the parse functions that remain on the call-

stack. We will need this observation in our extension with scheduling. An example of

the resulting parser can be found in Listing 2.5.

1 Scanner scanner;
2 void parse(String input) {
3 scanner = new Scanner(input);
4 parseS();
5 }
6
7 void parseS() {
8 if (input.has("a")) {
9 parseS0();

10 } else if (input.has("b")) {
11 parseS1();
12 }
13 }
14
15 void parseS0() {
16 parseA();
17 }
18
19 void parseS0_0() {
20 scanner.next("c");
21 }
22
23 void parseS1() {
24 parseB();
25 }
26
27 void parseS1_0() {
28 scanner.next("c");
29 }
30
31 void parseA() {
32 scanner.next("a");
33 parseS0_0();
34 }
35
36 void parseB() {
37 consumeInput("b");
38 parseS1_0();
39 }

Listing 2.5: LLRD with a modified control-flow

2.5 LLRD with an explicit stack

From this point on, we will omit the initial Parse(input : String) function for the sake

of briefness.

Now that we have modified the control flow of the algorithm, we are ready to decrease

our dependency on the call-stack. Before going into the details, we first declare an

auxiliary function invoke(label : String), that (as the name might suggest) invokes the

function corresponding to the provided label. For our example code in Listing 2.7, this
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function might look as presented in Listing 2.6. This might seem like a work-around

for people used to languages that support function pointers, such as C. However, in

languages that do not, such as Java, options for other constructs are limited.

1 void invoke(String label) {
2 if (label.equals("S")) {
3 S();
4 } else if (label.equals("S1")) {
5 S1();
6 } else if (label.equals("S1_0")) {
7 S1_0();
8 } else if
9 · · ·

10 }
11 }

Listing 2.6: Auxiliary function for method invocation

The next parser, found in Listing 2.7 no longer uses the call-stack to store information

on what literals remain to be processed. Additionally, we observed that after a function

f1 invokes another parse function f2, f1 never processes more literals, even after control

is returned to it. As an effect, we can be more effective and no longer store where we

need to continue (i.e. the successive GLL Block) as opposed to where we came from.

Now we have the same behavior as in our previous parser, with the exception that this

works for any context-free grammar.
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1 Stack<String> stack;
2
3 void parseS() {
4 if (input.has("a")) {
5 parseS0();
6 } else if (input.has("b")) {
7 parseS1();
8 }
9 }

10
11 void parseS0() {
12 stack.push("S0_0");
13 parseA();
14 }
15
16 void parseS0_0() {
17 scanner.next("c");
18 }
19
20 void parseS1() {
21 stack.push("S1_0");
22 parseB();
23 }
24
25 void parseS1_0() {
26 scanner.next("c");
27 }
28
29 void parseA() {
30 scanner.next("a");
31 invoke(stack.pop());
32 }
33
34 void parseB() {
35 consumeInput("b");
36 invoke(stack.pop());
37 }

Listing 2.7: LLRD with an explicit stack

2.6 Scheduled LLRD with an explicit stack

The next extension to our parser will be that of scheduling. We will no longer invoke

parse functions right away, we will schedule them. In this way, we can execute our

parse functions in a more controlled way. This will, in the next extension, provide

us with the power to support multiple derivations. For this scheduling extension, we

use the observation that once a function returns (by means of the call-stack), no more

statements are executed in any of the functions it (recursively) returns to.

1 void schedule(String nonTerminal) {
2 queue.push(nonTerminal);
3 }

Listing 2.8: The auxillary function “schedule”

In the code for scheduled LLRD, we replace calls to non-terminals with invocations of the

“schedule” function (presented in Listing 2.8) with the desired non-terminal as argument.
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To process them, we add a function “main” that continuously process queued items. The

function “parse(input : String)” should invoke this function after it has completed its

work. In more detail:

• The loop inside the function main() invokes a parse function (say f()) corre-

sponding a non-terminal that is in the queue (the queue is initialized to contain

the start non-terminal).

• The parse function (f()) begins execution.

• If the last literal of the production related to the executing parse-function is a

non-terminal, that non-terminal is added to the queue by means of the “schedule”

function.

• By definition our parse functions have no more statements to execute after this

schedule takes place, hence control is passed back to the main function.

• Main invokes the non-terminal that was just scheduled, and the cycle repeats.

The parser to implement this scheme for grammar Γ8 can be found in Listing 2.9. Again

note that this code only works because we use a queue. As we still have a global

input pointer, the order in which we process our queued work is relevant. This will be

alleviated in the next extension. As the sequence above is quite abstract, consider the

more illustrative sequence below. In this sequence we walk through a derivation of the

input sequence "ac".

• Inside the function parse(), the queue is initialized to contain the start non-

terminal S ([S]). Our stack at this point in empty (⊥).

• The last statement in parse() invokes main().

• The loop inside main() removes S from the queue and invokes its parse function

parseS(). The function hasNext("a") yields true, as "a" is the first token

in our input sequence. Thus, label S0 is added to the queue via the schedule

function. parseS() returns (by means of the call-stack) and resumes the main

function. Our queue at this point is [S0] and our stack is still ⊥.

• As the queue is not empty, we perform another iteration of our main loop, removing

S0 from the queue and invoking parseS0(). First the label S0 0 is pushed onto

the stack. Next, label A is added to the queue by means of the schedule()

function. This leaves us with queue [A] and stack [⊥, S0 0]. Finally, control is

passed back to main (again by means of the call-stack).

• Inside the main loop, A is removed from the queue, and parseA() is invoked.

An "a" is scanned on the input, advancing the input pointer to position 1 (i.e.

before the "c"). Next we should invoke the label that is on top of the stack. So,

stack.pop() will return S0 0 which will be invoked. This leaves us with an

empty queue and stack. However, control flow is now passed to S0 0().



Chapter 2. Generalized LL Parsing 22

• Function S0 0() will scan a "c" on the input, advancing the input pointer to the

end of the input (position 2). Next, via the call-stack, we return to S0(), which

has no statements left to execute. Thus, we return (again via the call-stack) to

main(). Now, the queue is empty and the loop will terminate. At this point our

scanner has reached the end of the input and thus our derivation was correct.

Please note that the parser we have presented in Listing 2.9 is still equal to the parser

from Listing 2.2. In our next extension, we will step away from this equality and support

multiple derivations.

1 Stack<String> stack;
2 Stack<String> queue;
3
4 void parse(String input) {
5 · · ·
6 schedule("S");
7 main();
8 }
9

10 void main() {
11 while (queue 6= ∅) {
12 invoke(queue.remove());
13 }
14 }
15
16 void parseS() {
17 if (input.has("a")) {
18 schedule("S0");
19 } else if (input.has("b")) {
20 schedule("S1");
21 } else {
22 error();
23 }
24 }
25
26 void parseS0() {
27 stack.push("S0_0");
28 schedule("A");
29 }
30
31 void parseS0_0() {
32 scanner.next("c");
33 }
34
35 void parseS1() {
36 stack.push("S1_0");
37 schedule("B");
38 }
39
40 void parseS1_0() {
41 scanner.next("c");
42 }
43
44 void parseA() {
45 scanner.next("a");
46 invoke(stack.pop());
47 }
48
49 void parseB() {
50 consumeInput("b");
51 invoke(stack.pop());
52 }
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Listing 2.9: LLRD with scheduled method invocation

2.7 Scheduled LLRD with multiple stacks : GLL

We will now step away from LLRD, and into GLL. That is, our algorithm will now yield

all derivations, instead of just one. To do so, we need a couple of different extensions:

• Multiple stacks (one per derivations);

• An input pointer per derivation.

To keep track of each derivation, we will introduce the concept of a descriptor. A

descriptor is a three-tuple containing:

• The label of the next function to parse;

• A stack;

• an input position.

Note that in our previous parser, what kept us from supporting multiple derivations was

that we only had a single stack and a global input pointer. Now, each descriptor has

its own stack and input pointer, we are no longer limited to a single derivation. Each

descriptor now contains the work that has been, and still has to done, on a particular

derivation. We denote a descriptor with label L, stack Σ, and input position i as 〈L,Σ, i〉
(in illustrations, descriptors will always be illustrated by angular brackets or hexagons).

To properly illustrate, we first need a grammar that actually produces multiple deriva-

tions. Consider the input sequence “abc” under Grammar Γ10.

S ::= A “bc” | B “c”;(Γ10)

A ::= “a”;

B ::= “ab”;

With this extension, whenever we encounter an ambiguity (i.e. two alternates that are

applicable for a single non-terminal) we create a descriptor with a duplicate of the stack

for each of these alternates. In this way, we execute both complete derivations. We can

do this because each descriptor has a private stack and input pointer that it (and its

child descriptors) work on. When finished, each descriptor 〈L,⊥, i〉 that has no more

characters in its input sequence which have not been consumed at the end of a parse-

function represents a successful derivation. This is the case because there is no more

work to be performed (as its stack is empty) and the entire input has been consumed.

More implementation oriented: whenever a pop() is executed, the stack of the current

descriptor is ⊥, and the position of the scanner is equal to the length of the input

sequence, our derivation is successful.
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1 Stack<〈Identifier, Stack, Integer〉> queue;
2
3 Stack currentStack;
4 int currentPointer;
5
6 void parse(String input) {
7 queue.add(〈S,⊥, 0〉);
8 while (!queue.isEmpty()) {
9 〈label, stack, ptr〉 ←queue.remove()

10 currentStack = stack;
11 currentPointer = ptr;
12 invoke(label);
13 }
14 }
15
16 void parseS() {
17 if (scanner.has("a", currentPointer)) {
18 currentStack.push("S0\_0");
19 queue.add(〈A, currentStack.copy(), scanner.getPosition(); 〉);
20 }
21 if (scanner.has("a", currentPointer)) {
22 currentStack.push("S1_0");
23 queue.add(〈B, currentStack.copy(), scanner.getPosition(); 〉);
24 }
25 }
26
27 void parseA() {
28 consume("a");
29 Label l = currentStack.pop();
30 queue.add(〈l, currentStack, scanner.getPosition(); 〉);
31 }
32
33 void parseB() {
34 consume("ab");
35 Label l = currentStack.pop();
36 queue.add(〈l, currentStack, scanner.getPosition(); 〉);
37 }
38
39 void parseS0_0() {
40 consume("bc");
41 queue.add(〈l, currentStack, scanner.getPosition(); 〉);
42 }
43
44 void parseS1_0() {
45 consume("c");
46 queue.add(〈l, currentStack, scanner.getPosition(); 〉);
47 }

Listing 2.10: Initial version of GLL that uses stack replication

2.8 The Graph Structured Stack

Note that here we duplicate the stack for every ambiguous alternative that we encounter.

This can become very expensive for highly ambiguous grammars. Something that one

might observe is that whenever we copy a stack, both stacks will have an identical

prefix. The obvious solution to this is to share this common prefix and save on the

copy operations. To accomplish this, GLL uses a slightly modified version of the Graph

Structured Stack by Tomita [24]. The modification is that the GSS in GLL can have
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Figure 2.1: (a) A GSS with 3 descriptors scheduled. (b) 3 stacks with descriptors
scheduled on top of them

self-loops. The use of these self-loops will be used to detect left-recursion (which will be

explained in more detail in our next extension). The ability to deal with left-recursion

allows support of the entire class of context-free grammars.

With the GSS, we are no longer replicating complete stacks only to schedule functions

on top of them (or to push different non-terminals). We use a single centralized data

structure to store all stacks that have been constructed so far. Additionally, these stack

states are persistent. That is, even if there are no derivations currently using a particular

stack state, it is not removed. Because we do not remove this information, we can use it

later on to detect sharing of stacks between derivations. In Figure 2.1 one can see a GSS

with three scheduled descriptors in (a), and the three stacks (with descriptors scheduled

on them) it would require to encode the same information without a GSS in (b).

2.8.1 The pop() function

Now that we have a graph structured stack, we no longer have a unique parent for a

stack head. So, when we perform a pop() on the current stack (which is actually a

stack head) it is possible to end up with multiple new stacks. In order to maintain the

paradigm from stack copying, work has to continue on each of these new stacks. To

handle this in an elegant way, we introduce the pop() method in Listing 2.11.

1 void pop() {
2 for (GSSNode n : currentStack.parents()) {
3 queue.add(〈currentStack.getLabel(), n, scanner.getPosition()〉);
4 }
5 }

Listing 2.11: The pop method for GLL
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To illustrate the workings of this method, consider the following example: Say we have

a descriptor d = 〈X,Y, Z〉, where stack-pointer Y = (ly, iy) has three parenting GSS

nodes W1,W2,W3. Following our analogy, after completion of d (resulting in an input

position id), we need to continue parsing of ly at position li. After ly has finished, we

see that there are three stacks (derivations) that we need to continue working on W1,

W2, and W3. Thus we need to create three descriptors to accomplish this:

• 〈ly,W1, id〉

• 〈ly,W2, id〉

• 〈ly,W3, id〉

Such a pop() is performed whenever we finish parsing a production, and perform a

pop() to continue parsing the parent production (i.e. the production that invoked the

production we just finished). In general we can say that,all these descriptors now derive

a single non-terminal X4 at the same input position Z4.

2.8.2 The push function

Now that we have a special method for performing pops, lets also make an additional

method for pushing (Listing 2.12).

1 void push(Label label, int pointer) {
2 GSSNode newStack;
3 if (gss.has((label, pointer))) {
4 newStack = gss.get((label, pointer));
5 } else {
6 newStack = gss.create((label, pointer));
7 }
8 gss.addEdge(newStack, currentStack)
9 }

Listing 2.12: The push functon
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2.9 Efficient GLL

Now that we have our efficient stack and the pop() method to accompany it, we add

one more function: namely one for scheduling. This new scheduling function will check

if a particular descriptor has already been created before (Listing 2.13). This is allowed,

because if a particular descriptor already exists, the descriptor(s) responsible for the sub-

sequent parts of the derivation have already been scheduled. Correctness of this follows

directly from the fact that we are dealing with a context-free grammar. Consider the

GLL parser presented in Listing 2.14. Additionally, not checking for duplicate descrip-

tors will cause the algorithm to break on left-recursive grammars, as will be explained

later in this section.

1 void schedule( Label label) {
2 d = 〈label, currentStack, currentPointer〉
3 if (!processedDescriptors.contains(d) && !queue.contains(d)) {
4 queue.add(d);
5 }
6 }

Listing 2.13: The schedule functon

1 Stack<〈Identifier, Stack, Integer〉> queue;
2 Set<〈Identifier, Stack, Integer〉> processedDescriptors;
3
4 GSSNode currentStack;
5 int currentPointer;
6
7 void parse(String input) {
8 queue.add(〈S,⊥, 0〉);
9 while (!queue.isEmpty()) {

10 〈label, stack, ptr〉 ←queue.remove()
11 processedDescriptors.add(〈label, stack, ptr〉);
12 currentStack = stack;
13 currentPointer = ptr;
14 invoke(label);
15 }
16 }
17
18 void parseS() {
19 if (scanner.hasNext("a", currentPointer)) {
20 currentStack = push("S0_0");
21 schedule("A");
22 }
23 if (scanner.hasNext("a", currentPointer)) {
24 push("S1_0");
25 schedule("B");
26 }
27 }
28
29 void parseA() {
30 scanner.next("a");
31 pop();
32 }
33
34 void parseB() {
35 scanner.next("ab");
36 pop();
37 }
38
39 void parseS0_0() {
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40 scanner.next("bc");
41 pop();
42 }
43
44 void parseS1_0() {
45 scanner.next("c");
46 pop();
47 }

Listing 2.14: A GLL recognizer

The version of GLL we have presented includes an implicit mechanism for handling

left-recursion. The handling of left-recursion is hidden in the tight collaboration of the

self-loops of the GSS, together with the fact that we do not create duplicate descriptors

or GSS nodes. Whenever we would push a left-recursive non-terminal, we instead create

a self-loop at that stack-head. This encodes all possible levels of left-recursion. This

can be seen more clearly in Figures 2.3 (a) and (b). (a) Shows an example of a GSS

with a self-loop where three descriptors have been scheduled on various stack heads.

(b) Shows the same information, encoded in regular stacks. Lets now take a look at an

actual example. Assume we have a production P with left-recursive alternate P0 ::=

P "a" and an non-left-recursive alternate P1 ::= "a". Consider the workings of

the GLL algorithm illustrated in Figure 2.2.

1. Non-terminal P is scheduled on the empty stack. The input position at thus point

is 0, thus the descriptor scheduled is 〈P,⊥, 0〉

2. Both alternates of P (i.e. P0 and P1) are applicable and are thus scheduled on

the same stack as P (the input position is still 0).

3. P0 is processed, its first GLL Block consists of non-terminal P. The succeeding

GLL Block (P0 0) and input position (0) is pushed, and the corresponding non-

terminal (P) is scheduled on top.

4. The P0 descriptor scheduled on stack-head (P0, 0) is processed. Again we need to

push the corresponding non-terminal and input position (P0 0, 0). However, this

node already exists, hence we reference it. Next an edge should be created from

the “new” node to its parent. However, these nodes are the same, thus a self-loop

is added. P is not scheduled on this stack top, as the descriptor 〈P, P0 0, 0〉 was

already scheduled at some point. The state after this step has been illustrated in

(5).

5. Here we see the state after the self-loop has been created.

6. Now, the non-left-recursive alternate P1, 0 (〈P1, P0 0, 1〉) is processed on the stack-

head (P0 0, 0) two new descriptors are created:

• 〈P0 0,⊥, 1〉, representing that this is the correct amount of recursive calls,

and we should continue.

• 〈P0 0, P0 0, 1〉, representing that we want to parse another recursive invoca-

tion.
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Figure 2.2: Illustration of the workings in GLL w.r.t. left recursion. GSS nodes are
represented by circles, and descriptors by hexagons.

Note that these new descriptors may be created (and are not duplicates) because

in step 5, P1 advanced the input pointer.

2.10 GLL with SPPF

Finally, we will present an actual GLL parser (i.e. including parse tree creation). We

will also pinpoint locations where parse-forest data is being handled. However, we will

abstract from actual calls, as the specific calls add little to the didactic value of the

example and may be found in the original paper on GLL [2].

2.10.1 The concept behind the SPPF

But before we can begin looking into the actual parser, lets take a closer look at how the

shared packed parse forest (SPPF) is actually constructed. Take the example grammar

Γ11. We illustrate the parse of input sequence “abc” using this grammar in Figure 2.4.
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Figure 2.3: (a) A GSS with a self-loop on which a descriptor with function E1 has
been scheduled. (b) The data from the GSS represented by normal stacks

The core idea for SPPF creation is that consecutive descriptors in a production pass

incrementally bigger trees along via their descriptors. If intermediate non-terminals

are invoked, references to these trees are stored on the stack. When the non-terminal

finishes, its partial SPPF can then be combined with the partial SPPF that exists on

the stack. Let B ::= α · β denote a point in a derivation, where α has been successfully

processed, but β has not. The construction of an SPPF has been illustrated in Figure

2.4 and described in the enumeration below.

1. Figure 2.4 (a) shows the normal start of the algorithm. Our start non-terminal is

scheduled on the empty stack. If we process this descriptor, we will create a node

in our parse forest for the terminal symbol a, push return location E0 0 onto the

stack, and schedule the descriptor for B on this stack. The parse-forest-node for a

is placed on the GSS edge. The resulting state is visible in 2.4 (b).

2. When processing b from the production B ::= b, we create SPPF nodes for the

terminal and non-terminal. Next, we see we have finished the production and we

create additional nodes B ::= b· and B to specify that b was recognized as part of the

production B ::= b (appending b as a child). As we are at the end of a production,

the pop() statement is executed. In this pop() statement, the a node is retrieved

(since we are traversing back along this edge to the empty stack, this is possible)

and combine our partial trees. Now, when scheduling the descriptor for E0 0(), we

pass a reference to this new tree along in our new descriptor. This can be seen in

2.4 (c).

3. E0 0 parses the c and is joined, via a new node, to the SPPF that was passed along

in the descriptor for E0 0. Some additional nodes are attached for administrative

purposes, and our SPPF is complete. The resulting SPPF can be seen in Figure

2.4 (d).

E ::= “a” B “c”;(Γ11)
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Figure 2.4: Illustration of parse forest construction in GLL, extents have been omitted
for clarity.

B ::= “b”;

2.10.2 Implementation

So now that we have described the concepts of the SPPF, let us look at where the

various steps are taken. We abstract from the actual SPPF methods, by replacing them

by Ψ to indicate that at this position in the code, work on the SPPF is performed. The

grammar for this parser is grammar Γ12 and the result may be found in Listing 2.15.

S ::= A S “d” | “a” S | ;(Γ12)

A ::= “a”;

Please note that the code presented is a simplified version of actual generated code, and

might thus differ in shape slightly from the other examples. This choice was made to

bridge the gap between the examples and actual generated parsers.
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1 void S() {
2 if (scanner.hasNext("a")) {
3 schedule("S0");
4 }
5 if (scanner.hasNext("a")) {
6 schedule("S1");
7 }
8 if (scanner.hasNext("")) {
9 schedule("S1");

10 }
11 }
12 void A() {
13 if (scanner.hasNext("a")) {
14 schedule("A0");
15 }
16 }
17
18 void S0() {
19 push("S0_0");
20 A();
21 }
22
23 void S0_1() {
24 push("S0_2");
25 S();
26 }
27
28 void S0_2() {
29 if (scanner.hasNext("d")) {
30 Ψ

31 scanner.next("d");
32 Ψ

33 } else {
34 return;
35 }
36 pop();
37 }
38
39 void S1() {

40 if (scanner.hasNext("a")) {
41 Ψ

42 scanner.next("a");
43 } else {
44 return;
45 }
46 push("S1_0");
47 S();
48 }
49
50 void S1_1() {
51 pop();
52 }
53
54 void S2() {
55 if (scanner.hasNext("")) {
56 Ψ

57 scanner.next("");
58 Ψ

59 } else {
60 return;
61 }
62 pop();
63 }
64
65 void A0() {
66 if (scanner.hasNext("a")) {
67 Ψ

68 scanner.next("a");
69 Ψ

70 } else {
71 return;
72 }
73 pop();
74 }
75

Listing 2.15: A GLL parser
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Production Alternate GLL Block Label

P ::= a B C | d | E F g H

aBC
a B P0
C P0 0

P0 1
d d P1

E F g H

E P2
F P2 0
g H P2 1

P2 2

Table 2.1: An example of the labeling scheme for GLL Blocks





Chapter 3

Using the attribute system

In Chapter 2 we have explained GLL and the construction of the SPPF in detail. We will

continue with explaining how we can integrate attributes into our GLL implementation.

Before we do this, we will explain our notion of attributes in more detail.

3.1 What can attributes do?

The main goal for the implementation of attributes into GLL is to use them as a frame-

work for disambiguation. More specifically, we will focus on pruning sub-trees whenever

the attributes conflict a set of parameters specified for a production. This leaves a few

questions to be answered:

• How do we specify these attributes?

• How do we specify calculations on these attributes?

• How do we modify GLL to actually prune sub-trees?

All these questions will be answered in this section, starting with the latter.

3.2 Where to disambiguate?

First we need to make a decision on where the application can decide if the current

derivation should be pruned. Consider inherited attributes. As these attributes are only

passed down, the only relevant place to disambiguate is before we start processing any

literals of a production. This is possible because processing additional literals yields no

additional information. All information is passed down, and is thus already available

before we have processed even the first literal.

35
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Synthesized attributes are only available after processing a particular non-terminal.

Therefore we only disambiguate when all non-terminals have been evaluated. To ac-

complish this, note that a production is always of the shape X ::=α ↑, where α is a

sequence of literals and ↑ is the pop() statement. Just before ↑ would thus seems like

an appropriate place to disambiguate, as all literals have been processed.

We might not need all non-terminals to make our decision. Therefore we also want

to be able to disambiguate after every non-terminal. However, we only know that a

non-terminal has completely been processed in the successive GLL Block of that non-

terminal. For example: assume presence of a production X ::=β1β2, where β1 and β2 are

successive GLL Blocks and β1 ≡ abC. We can only be certain of the full completion of

C at the start of β2, as (recursive) GLL Blocks scheduled by β1 might cause a failure

before we reach β2 (i.e. C was not parsed successfully).

To illustrate, consider the following productions, where every disambiguation moment

has been marked by a ↓.

• X ::=↓ a ↓ B ↓ C ↓↑ (a ∈ T ; B,C ∈ N)

• X ::=↓ abc ↓↑ (a, b, c ∈ T )

In order to be able to address these moments of disambiguation we introduce a naming

scheme. The disambiguation point at the start of a productions LHS will be addressed

as “@pre(all)”, whereas the point at the end of a production (before popping) is

addressed as @post(all). To address the disambiguation point preceding the ith non-

terminal in a productions RHS, the corresponding address is “@pre(i)” (e.g. @pre(0)

or @pre(7)).

3.3 Addition to BNF

We propose an extension to BNF. In this Attributed-BNF, one may specify attribute

synthesis, inheritance, or deny statements annotated with disambiguation point specifi-

cations. A specification of this attributed BNF will be provided shortly, but to illustrate

the idea, please consider:

@pre(all): attributes.put("priority", 5);

@pre(3): deny;

@post(all): synthesize("expressionType", "Integer");

As we are using a Java implementation of GLL [1] (as described in Chapter 2), we allow

annotation of arbitrary Java code to be inserted and we define our attribute system on

top of this. This approach saves a great deal of time, as we need not develop our own

support for evaluation of attributes such as integers, doubles, or strings (we just use the

native Java expressions). Additionally, we get higher order types for free, in the shape of
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Java objects. This greatly increases expressiveness and ease of use as was also described

by Hedin et.al. [25]. Additionally, we allow access to some parser-specific variables by

means of an API, to further increase the usability of our attribute system. The most

important methods in our API can be found below:

• attributes.put(attributeName : String, value : Object) : void.

This function is used to specify inherited context for a specific non-terminal. When

called in the @pre of a non-terminal, will pass down given attribute-value pair to

the specified non-terminal. This implements inherited context, which will be dis-

cussed in Section 4.1.

• attribute(non-terminal : Integer, String: attributeName) :

Object. This function, when called on the 0th non-terminal, will yield the the

value for the attribute with the corresponding attribute name that was inherited

from the parent non-terminal. When called with a value greater than 0 for its

argument “non-terminal”, will yield the value of the synthesized attribute with

the specified name (provided by argument “attributeName”) on the correspond-

ing non-terminal. Note that this function is used for reading both inherited and

synthesized attributes.

• synthesize(attributeName: String, value : Object) : void.

This function is used to specify synthesized context for a specific non-terminal.

When called, pass up the providid attribute-value pair to the parent non-terminal.

This implements synthesized attributes, which will be discussed in more detail in

Section 4.3.

There are some additional functions in our API that allow us to easily access parts of our

input, and read values of input pointers used in the algorithm. These are particularity

useful when one is concerned with the actual input that was parsed by a terminal.

• currentInputPosition, which yields the position of the input before we started

processing the current non-terminal.

• scanner.position(), which yields the current position of the scanner.

The fact that we allow execution of arbitrary Java immediately allows us to use all Java

control-flow constructs and expressions (e.g. if-else constructs, boolean expressions etc.).

Moreover, instead of regular primitive types as attributes we can pass along pointers to

objects, enriching the sorts of data we can pass (e.g. lists and sets) [25].

The general idea is to allow users to write pieces of Java code that use the API specified

earlier to access attributes of the current non-terminal and set attributes for child and

parent non-terminals. As mentioned before, there are a few points in a production at

which is it sensible to prune:
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• Before having parsed any literal. The block of Java code that is to be executed

at this point should be annotated with @pre(all):’ (as that code is executed

before any literal is parsed).

• After each non-terminal. The block of java code that is to be executed after

completion of the ith terminal on the RHS of a production should by annotated

with “@pre(i)” (where is is to be substituted).

• After having parsed every literal of the production (before performing the pop()).

The block of java code that is to be executed at this point should be annotated

with “@post(all):” (as this code is performed after we have parsed all literals).

Note that the points of disambiguation are presented at the level of a production. It is

thus no more than logical that such a set of annotated blocks of Java code can be present

for every production. Note that formally, we have assumed that every production can

only contain a single alternate. Thus in a more realistic setting, every alternate should

have such a set of annotated Java blocks.

Finally, to clearly separate BNF from annotated Java we require that all annotated Java

code be put between tildes (∼) at the end of every alternate as can be seen in Listing

3.1. Note that we need these annotations to discriminate between the semicolons of Java

and the semicolons of BNF. A BNF specification of the Attributed BNF scheme that

allows for these types of annotations can be found in Listing 3.2.

1 S ::= A ∼ @pre(0):attributes.put("p", "1") ∼ | B ∼ @pre(0):attributes.put("p","2")
∼;

2 A ::= "a" ∼ @pre(all): if (attribute(0, "p").equals(1)) \{ deny; \}∼;
3 B ::= "a";

Listing 3.1: A production with annotated Java

1 GRAMMAR ::= RULE RULES | RULE;
2 RULE ::= LHS ’::=’ ALTERNATES;
3 ALTERNATES ::= ALTERNATE | ALTERNATE ALTERNATES;
4 ALTERNATE ::= LITERALSEQUENCE | LITERALSEQUENCE ’˜’ CONTEXT ’˜’;
5
6 LITERALSEQUNECE ::= LITERAL | LITERAL LITERALSEQUENCE;
7 LITERAL ::= TERMINAL | NONTERMINAL;
8
9 NONTERMINAL ::= ’[a-zA-Z]*([0-9]*[a-zA-Z]*)*’

10 TERMINAL ::= ’\’[ˆ’]*\’’;
11
12 CONTEXT ::= CONTEXTDECL | CONTEXTDECL CONTEXT;
13 CONTEXTDECL ::= ’@pre\(all\):[ˆ@]*’;
14 CONTEXTDECL ::= ’@post\(all\):[ˆ@]*’;
15 CONTEXTDECL ::= ’@pre\([1-9][0-9]*\):[ˆ@]*’;
16 CONTEXTDECL ::= ’@pre\(0\):[ˆ@]*’;

Listing 3.2: attributed BNF specification in BNF (omitted layout)
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3.4 Extending GLL

Now that we have seen where to disambiguate in theory, let us look at how to put this

into practice. Recall the parser presented in Listing 2.15. We will show a number of

code-fragments from this parser extended with the attribute system.

To show every position at which code can be injected, we abstract from a specific set of

annotated Java code to. Rather we show the symbol Ω with a specific subscript at every

location at which code may be injected . That is, ΩS0.pre(0) means that at that position

in the code, the context of the 1st alternate of production S annotated by @pre(0)

should be inserted.
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1 void S0() {
2 ΩS0.pre(all)

3 ΩS0.pre(0)

4 push("S0_0");
5 A();
6 }
7
8 void S0_1() {
9 ΩS0.pre(1)

10 push("S0_2");
11 S();
12 }
13
14 void S0_2() {
15 if (scanner.hasNext("d")) {
16 Ψ

17 scanner.next("d");
18 Ψ

19 } else { return; }
20 ΩS0.post(all)

21 pop();
22 }
23
24 void S1() {
25 ΩS1.pre(all)

26 if (scanner.hasNext("a")) {
27 Ψ

28 scanner.next("a");
29 }
30 else
31 {
32 return;
33 }
34 ΩS1.pre(0)

35 push("S1_0");
36 S();
37 }

38 void S1_1() {
39 ΩS1.post(all)

40 pop();
41 }
42
43 void S2() {
44 ΩS2.pre(all)

45 if (scanner.hasNext("")) {
46 Ψ

47 scanner.next("");
48 Ψ

49 }
50 else
51 {
52 return;
53 }
54 ΩS2.post(all)

55 pop();
56 }
57
58 void A0() {
59 ΩA.pre(all)

60 if (scanner.hasNext("a")) {
61 Ψ

62 scanner.next("a");
63 Ψ

64 }
65 else
66 {
67 return;
68 }
69 ΩA.post(all)

70 pop();
71 }

Listing 3.3: A GLL parser that

support attributes

3.5 Rejecting derivations

Now that we have seen where context is implemented, let us see how to actually reject

derivations. To do so, let us see how derivations are rejected normally. A derivation in

GLL without attributes is rejected whenever the next token that should be recognized,

is not present in the input sequence. This check is performed by the hasNext function of

the scanner. In Listing 3.3 we see that if this is the case, a return statement is executed.

This halts further creation of derivation and thus stops the current derivation. For our

disambiguation we will do the same thing. If at any point in our parse function, based on

our attributes we conclude that we should reject the derivation, we perform a return.

Note that the last moment in the algorithm at which we can reject a derivation is before

the pop() or push() statements are executed. That is, if we were to allow a push() or

pop() statement to be executed, new descriptors would already be created to continue

the current derivation.

To illustrate, consider function S1() from Listing 3.3 in which ΩS1.pre(0) is equal to the

content of Listing 3.4 (i.e. the code is annotated with @pre(0)). The resulting code
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for S1() (after code injection) is presented in Listing 3.5. Note that the deny from the

annotated Java code has been translated into a return. In this way, it mimics the

behavior that would occur if the input did not meet the presented requirements. After

the input has been deemed correct, the specified attributes are calculated to determine

whether they lead to inconsistencies. If this is not the case, an identical course of action

is taken, as if the input was incorrect. In this way, we extend GLL with a mechanisms

for pruning derivations in a way that is as close to the mechanisms already in use.

1 if (attribute(0, "p").equal(true)) {
2 return;
3 }

Listing 3.4: Java code that uses the attribute system API

1 void S1() {
2 if (scanner.hasNext("a")) {
3 scanner.next("a");
4 } else {
5 return;
6 }
7
8 if (attribute(0, "o").equal(true)) {
9 return;

10 }
11
12 push("S1_0");
13 S();
14 }

Listing 3.5: Part of a parser in which annotated Java code has been injected





Chapter 4

Implementing attributes in GLL

Now that we have a way of assigning and modifying attributes, let us find out how to

actually implement them. In this chapter, we will look at the different types of attributes

and how to implement them in GLL.

4.1 Implementing inherited attributes

4.1.1 Classic LLRD

In classic LLRD, often the stack would be used to propagate context (attributes) from

one parse function to the other. Simply passing the context for a production as parame-

ters to its parse function is very simple, but a clean solution to the challenge. However,

in GLL this is a more challenging problem, because of a number of factors:

• Multiple functions represent a single production, in contrast to the single func-

tion per production in LLRD. Each of these functions should receive the identical

context;

• GLL allows for multiple derivations, hence we have parallel stacks, each with a

potentially different context;

• The GSS is used, which allows for the sharing of stacks. This further increases

complexity.

In this chapter we will explore the ways to overcome these difficulties and implement

attributes into GLL parsers.

4.1.2 Different approaches

Possible solutions for enabling parse functions to work with attributes may come along

three reasonable lines of thought.

43
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1. Emulate the behavior of a classical call-stack onto the GSS;

2. Pass attributes along via descriptors;

3. Store all contextual information in a globally accessible location.

Note that extending the SPPF is not viable, as we require a top-down mechanism for

inherited context, where the SPPF is built bottom-

Passing attributes along via descriptors is not a feasible solution. To illustrate: given

a production N ::=β1β2 (where β1 and ↓2 are GLL Blocks). The attributes passed to

N should also be available to β1 and β2. For β1 this is not so much an issue as it is

invoked directly by the descriptor for N. However, β2 poses a challenge. Recall that β2

is invoked by the last recursive GLL Block of the non-terminal in β1 (say βr). If we were

to pass attributes along via descriptors, and β2 is invoked by βr, then those attributes

need to be recursively passed along from β1 all the way to βr. This recursive passing

of attributes involves an large amount of copying and thus overhead, which we wish to

avoid.

A solution to this problem would be to make this context immutable and either store

it globally or just pass around pointers. This would be a better solution, however we

would have to create another secondary data structure that would further complicate

the already complex interactions in GLL. We are looking for a more natural way to

incorporate attributes into the algorithm.

An attempt to emulate workings of a normal stack onto the GSS seems to be the most

logical variant to explore. Passing attributes along on stacks is something that is well

known for classic LLRD variants. Additionally, GSS states are already immutable thus

we have the same advantages as globally stored attributes (not having to copy attributes

all the time). Thus, the choice is made to augment GLL by emulating LLRD attribute

grammar behavior (with respect to the call-stack) onto the GSS. Note that we cannot use

the SPPF for inherited context, as the SPPF is constructed bottom-up, and inherited

context works top-down.

4.1.3 Extension of the GSS

The approach we will take is to attempt to emulate the behavior of an LLRD stack, with

respect to context, onto the graph structured stack used in GLL. But before considering

the GLL approach, lets us first look at an example from LLRD. Since LLRD uses the

call-stack, attributes can be passed along to parse functions as parameters to these

parse functions. When a parse function recursively invokes another parse function, the

inherited attributes that are relevant in that parse function will be stored onto the call-

stack to be restored when we return to this function. To fully understand, we will look

into this process in more detail. Say we are in a production of the shape X ::=α Y β.

Say the stack after processing α is Σ. Consider the sequence presented in Figure 4.1

a The situation after completing Xα (i.e. α in X).
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Figure 4.1: Visualization of the call-stack for method invocation in an LLRD attribute
parser

b We store our current context, γX , onto the stack, to be restored after returning

from Y . These are the attributes that X has been annotated with and that should

be available throughout X.

c We store information on where to continue after finishing Y on the stack. In our

case, Xβ (that is, β in X).

d We push the function parameters (context) of Y onto the stack (γY ).

e We invoke Y, which consumes its function parameters from the stack.

f After Y completes its execution (possibly containing recursive invocations of non-

terminals), the return location and previous context is retrieved from the stack

and restored. We can now continue with β.

Now that we have seen the workings of inherited attributes in a classic LLRD setting,

let us look at the general idea for GLL. The sequence is similar to that in Figure 4.1,

but now with a GSS instead of a stack. The sequence has been explained below and is

illustrated in Figure 4.2. One important thing to notice is that our stacks are persistent.

That is, the stack state is preserved when popping, our descriptors just reference a

different stack, and the old stack head will remain in existence for future use. As a

consequence of our stack states being persistent, we need not continuously write back

context to the stack after retrieving it.
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Figure 4.2: Visualization of the GSS for method invocation in an GLL attribute
parser. Processed descriptors are visualized by dotted outlines.

a Again the situation after completing Xα.

b Before scheduling Y, we push the next GLL Block (say Xβ) onto the stack, lets call

the stack descriptor needed for this δβ.

c We now push the context for Y (γY ) onto the stack. Note that our stack is actually

in the shape of a stack descriptor (a GSS node). Hence we store our context at

that node.

d We schedule Y on top of δβ.

e Every GLL Block of Y executes, possibly with recursive non-terminals (which have

been committed for clarity). Note that all of the GLL Blocks of Y have access to

the context of Y through the stack descriptor δβ. This statement is discussed more

thoroughly in Section 4.2.3.

f Lastly, we continue with β of X (Xβ).
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Figure 4.3: An example of a context environment

4.2 Issues with this approach

Unfortunately, this approach will not work in all cases. We need a slight modification

of GLL data structures in order to cover all cases. We will discuss the issues that arise,

and their solutions in the coming sections.

4.2.1 Attribute collisions

The first problem we encounter has to do with the sharing of stack heads between

multiple non-terminals with equivalent property names.

Context, as used in a particular production, is not restricted in the use of attribute

names. It can be the case that two alternates are annotated with different values for the

same properties. In such a case one might overwrite an existing value, thus causing an

alternate to operate on the wrong attributes. Consider, for example, partial grammar

Γ13. When storing the specified attributes for X and Y in the node for S, property p1

would be specified twice (causing an overwrite). To this extent, each instance of a non-

terminal working on a particular stack-head will receive its own set of variables. We call

such a collection of sets of variables a Context Environment. An illustration of such an

environment added to a GSS node can be found in Figure 4.3.

S ::= X ∼ @pre(0) : attributes.put(“p1”, 12) ∼;(Γ13)

S ::= Y ∼ @pre(0) : attributes.put(“p1”, 14) ∼;

Note that by the labeling scheme in GLL, each alternate is assigned a unique name. This

fact, in addition to the fact that two instances of the same alternate are never scheduled

on the same stack-head, means attribute collisions will no longer occur.
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4.2.2 Stack sharing

The next issue is also caused by stack sharing. One of the main assumptions in context-

free grammars, as mentioned before, is that we may substitute a non-terminal by every

production with that non-terminal as its LHS. Thus, the GSS will share identical stack

heads, not stacks. That is, if we have two stacks Σ1 = αX and Σ2 = βX, in the GSS they

will both be presented by the stack head X. Observe that the context for both these

stack heads might be different, based on the attributes passed in α and β. To illustrate

consider grammar Γ14. This attribute grammar expressed that the non-terminal A may

never derive a D, and that B may never derive a C. Consider now the workings of the

GSS, illustrated in Figure 4.4. For completeness, note that all GSS nodes in this figure

have an input position of 0.

S ::= A;(Γ14)

S ::= B;

A ::= E ∼ @pre(0) : attributes.put(“p”, “a”);∼;

B ::= E ∼ @pre(0) : attributes.put(“p”, “b”);∼;

E ::= C ∼ @pre(all) : if(attribute(0, “p”).equals(“b”)){deny; } ∼;

E ::= D ∼ @pre(all) : if(attribute(0, “p”).equals(“a”)){deny; } ∼;

C ::= “1”;

D ::= “1”;

a Non-terminal A has been substituted for both its alternates A and B.

b E can be substituted for A, hence E is pushed onto the stack of A and the attributes

specified are pushed (i.e. property p is set to “a”).

c E can be substituted for B. The GSS realizes it can share the stack-head E created

by A. It then pushes property p is set to b, which overwrites p having been set to

a. This is clearly an issue as the information pushed by A is lost.

The solution is based on the observation that the stacks Σ1 = [S;A;E] and Σ2 =

[S;B;E] are different (even though their stack heads are the same), and can thus not

share their stack heads. We thus propose the following modification: Let two GSS nodes

be equal if and only if their labels, input positions, and context environments are equal

(rather than just their labels and input positions). By updating GSS Node equality in

this way, we obtain the modified working illustrated in Figure 4.5 and described below:

a Non-terminal A has been substituted for both its alternates A and B.

b E can be substituted for A, hence E is pushed onto the stack of A and the attributes

specified are pushed (i.e. p is set to a)
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Figure 4.4: Partial working of the GSS for grammar Γ14 on input sequence “1”
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Figure 4.5: Updated working of the GSS for grammar Γ14 on input sequence “1”

c E can be substituted for B. The GSS might be able to share the stack-head E

created by A. However, E → {p = b} 6= E → {p = a} thus the stack head is not

re-usable by the current stack. A new stack is created with symbol E’ and the

context environment is pushed to that stack.

The only thing that remains is to properly define the equality of two environments.

Definition:

Context environment e1 is equal to environment e2 if and only if:

∀x∈e1 [∀v∈x [∃y∈e2 [∃w∈y [x = y ∧ v = w]]]] ∧ ∀x∈e2 [∀v∈x [∃y∈e1 [∃w∈y [x = y ∧ v = w]]]]

Where x, y are sets of attributes(with values) and v, w are attributes inside these sets.

Put more informally, every set of properties for every non-terminal in e1 should also be

present in e2 (with equal values) and vice-versa.

The elegance of this solution is that it ensure that stacks have full freedom to diverge (as

is required based on context), but that they may only converge (share) if they have the

same context. Thus sharing is not eliminated, it is only reduced. Note that the operation

of GLL is not harmed, as stack splitting is nothing new to GLL, we just increase the

frequency with which it occurs.
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The one disadvantage that this approach entails is that is allows context to destroy

the left-recursion handling mechanisms in GLL. Recall the left-recursion mechanisms

presented in section 2.9. Now imagine a left-recursive production, that inherits an

incremental attribute to the left-recursive non-terminal. For example:

E ::= E “x” ∼ @pre(0) : attributes.put(“p”, attribute(0, “p”) + 1);∼

Now, whenever the descriptor for E with p = 0 scheduled a recursive E it will annotate

that E with p = 1 (say Ep=1). Next, Ep=1 recursively schedules Ep=2 (which is different

than Ep=1). This process continues, and as each next invocation of E is annotated

with a different value. As all these GSS nodes are pairwise unequal, the left-recursion

mechanisms in GLL will not work. However, this is an artificial example.

4.2.3 Availability of attributes

Now that we have updated the stack, it is crucial we ensure that descriptors on our

stack heads are still able to access the correct attributes. Consider the reasoning below,

showing that descriptors indeed have access for all attributes they should have access

to.

Lemma:

All executions of functions Pi (i.e. the GLL Blocks) for a particular production P ::=α,

have access to a single GSS node. (This is excluding recursive schedules for other

productions). This single GSS node can then be used to store the context that all these

Pi should have access to (i.e. the inherited context for P).

Proof:

Given a function that is about to schedule our production P, with a current GSS node ∆

and input position i. The descriptor 〈P,∆, i〉 is created to encode this fact. We will now

prove that ∆ is the GSS node accessible to all executions of Pi. There are two cases:

• P ≡ P0 (where P0 is a GLL Block)

In this case, P will schedule 〈P0,∆, i〉. Execution of this descriptor trivially implies

that the execution of the P0 with respect to this P has access to ∆. Note that

there are no further executions of functions for P, as there are none and thus P0

will perform a pop.

• P ≡ P0 · · · P0 n (where P0, ..., P0 n are GLL Blocks)

In this case, P will first schedule P0. As in the previous case, we see that P0

has access to ∆. Next, as there are multiple GLL Blocks, P0 must end with a

non-terminal, say X. P0 will create a GSS node ∆X = (P0 0,∆, i) and schedule

〈X,∆X , j〉. Subsequently, work for X will be done. After all (recursive) work has

finished, a pop will be invoked targeted to ∆x. This pop will create (at least) a

descriptor 〈P0 0,∆, k〉. And thus also the subsequent function of P , P0 0, has

access to ∆. This reasoning can be repeated until the function for the final GLL

Block, which does not end in a non-terminal. However, as this is the last function,
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and it has access to ∆, all functions regarding the processing of P have had access

to ∆.

Taking this lemma into account, it is only logical that the ideal place to store the

context of P, is ∆. Combining this with the context environment to avoid attribute-

name collisions between non-terminals and the new GSS node equivalency definition

ensures that our stack indeed works.

4.2.4 Correctness argument

A major issue with the correctness of any disambiguation comes from the sharing. If a

derivation is rejected, no derivations should be lost implicitly. For our attribute system,

this is not the case. We will now present the reasoning why. In Section 4.2.3 we rea-

soned that descriptors always have access to the correct context. Any possible collisions

of context is handled by restricting stack merges as described in Section 4.2.2. Note that

these splits are necessary, as we are making local decisions. Not splitting the stacks may

lead to conflicts further down the road.

Assume now, towards a contradiction that a derivation was rejected (based on attributes)

that should not have been rejected. This means that a descriptor that was working on

this derivation was pruned (i.e. did not produce new descriptors). However, if a deriva-

tion was pruned, then it must be the case that there is a violation in its attributes. If

there is a violation in the attributes of a derivation, then the derivation is (by defini-

tion) incorrect. This is a contradiction, hence it cannot be the case that a derivation is

removed that should not have been removed.

A second important part is that we prune derivations, not remove them. That is, we

may not allow derivation trees to come into existence and then remove them. We must

prevent creation, in order to maintain consistency in the internal data structures. There

are two possibilities to consider:

• The sub-tree already exists. A correct derivation has already constructed a sub-

tree, however our current derivation is incorrect. The incorrect derivation that

shares the sub-tree will simply not continue its derivation (by not creating new

descriptors), but will not remove the existing derivation.

• The sub-tree does not exist. Our current derivation may not derive the sub-tree

in question, but there might be a correct derivation that may derive the sub-tree.

Note that the current (incorrect) derivation may create partial sub-trees. Note,

as it is an incorrect derivation, this derivation will not yield an SPPF containing

this partial sub-tree. However, any subsequent correct derivation may re-use the

created sub-tree (as we do not remove it). Hence, if there is a correct derivation

that uses the tree (even though an incorrect derivation was there before), the

sub-tree will be constructed correctly.

We conclude that in both cases the sub-tree will be constructed correctly. Finally,

note that once a derivation has been created, they cannot be rejected. At time of
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creation, if there were no attribute conflicts, no future derivations can invalidate this

fact. Correctness of this statement follows directly from the depth-first left-to-right

nature of our attribute evaluation. As a consequence, it is evident that this approach is

not capable of eliminating all ambiguities, only ones that are locally detectable.

4.3 Implementing synthesized attributes

Just as we support inherited attributes, we also want to support synthesized attributes.

Synthesized attributes allow us to pass context upwards (i.e to parent non-terminals).

Recall the example in Section 1.5 related to grammar Γ6 and Γ7. In this example, we

used synthesized attributes to restrict two instances of the non-terminal X from deriv-

ing the same terminal symbol. This has been expressed using the syntax introduced in

Chapter 3 in grammar Γ15.

S ::= X X ∼(Γ15)

@post(all) : if(attribute(1, “type”).equals(attribute(2, “type”)){return; }
∼;

X ::= “b” ∼
@post(all) : synthesize.put(“type”, “b”) ∼;

X ::= “c” ∼
@post(all) : synthesize.put(“type”, “c”) ∼;

In an LLRD setting, a viable approach is to pass synthesized attributes along as return

values of our parse functions. However, in GLL this is not feasible, as all functions

operate under the main loop. Again we require an alternative solution. A solution could

again come in three different forms:

1. Extend the modifications previously made to the GSS to support synthesized at-

tributes;

2. Pass the synthesized context upwards using descriptors;

3. Use the SPPF to store the context, in a similar way as we store it in the GSS.

We will first explore the approach that further augments the GSS, but conclude that

this approach is not feasible in all cases. We then present an SPPF-oriented solution,

that does provides synthesized attributes in a correct fashion. One thing to recall before

starting this chapter is the synthesize API presented in Section 3.3. This API will

be used to pass attributes upwards (synthesize) inside our annotated Java.
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Figure 4.6: Illustration of synthesized context

4.3.1 GSS Approach

The GSS approach uses the context environments of augmented GSS to store synthesized

attributes. The main idea is, just as in an LLRD call-stack, to traverse back the path

on the stack, and annotate upwards. To understand the GSS approach, consider the

following pattern that occurs during a synthesize() call. Say we are processing a

descriptor (δ0) that operates under stack-head Σ0 = (L0, I0) as illustrated in Figure

4.6 (a). Σ0 has a number of parenting GSS Nodes, Σ1 through Σn. Descriptor δ0 is

one of the descriptors responsible for parsing a specific alternate α0. Now say either

δ0 or one of its successors for α0 performs a pop() (marking that the entire alternate

has been processed). Descriptors will be created for every parent of Σ0 as illustrated

in Figure 4.6 (b). That is, we have finished the non-terminal (say X) that is specified

by the GLL Block preceding GLL Block L0. So, δ1 through δn continue to work on

the alternate (α1) that previously invoked X. Thus, they need access to the synthesized

attributes from X . As was the case for the inherited context, we make these available

to them through their parenting GSS Node. The core observation to make is that when

synthesizing a property, it suffices to provide all parents of the current GSS node with

the property (i.e. we go up two GSS levels).

For a more complicated example, consider grammar Γ16 and input sequence σ = ab.

The entire sequence has been illustrated in Figure 4.7. Note that input positions have

been omitted in the illustration for the sake of readability. When processing, after

executing the aprse function for our first non-terminal, the pattern illustrated in Figure

4.6 emerges. Now δ0 = 〈A0, 0〉, Σ0 = (X0 0, 0) with only one parent Σ1 = ⊥. This

situation is illustrated in (a) of Figure 4.7. A0 processes the terminal symbol “a” and

synthesizes property φ up two levels as was explained. Next, the function for the next

GLL Block (A ′ ′) is scheduled, as can be seen in (b) of Figure 4.7. Lastly, after A ′ ′
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Figure 4.7: An instantiated example of attribute synthesis

has performed a pop(), and work continues on X , we see that X ′ ′ has access to φ in

the same way as it has access to its inherited attributes.

X ::= A “b”;(Γ16)

A ::= “a” ∼ synthesize(“v”, “a”);∼;

Now that we have seen where to store synthesize attributes, let us look at how to

store them. As explained in Section 4.2.1, we might have collisions in our attribute

names. This problem replicates itself for synthesized attributes. For example, there is

an inherited attribute named “p” and a synthesized attribute named “p”. To resolve

this, we will put synthesized attributes in separate context environments. To be precise,

we construct an environment per non-terminal in the RHS of a production. Rather than

storing them by non-terminal (as we did for inherited attributes), they are stored by

label (i.e. the label of their GLL Block). this is necessary, as a single RHS might have

multiple non-terminals with the same name. Using GLL Block names for storage is

ideal, as there is precisely one non-terminal per Block and we are able to address them

in a concise way (as defined in Section 2.3).

We address synthesized attributes using the same function attribute we described in the

chapter on inherited attributes. Using the descriptor label, we can reconstruct the label

of the GSS. Let L be the label of the descriptor we are currently processing. Either

L ≡ P++ A++ “ ”++ B or L ≡ P++ A. Here A represents the number of the alternate of P,

and B the GLL Block of A, as defined in Section 2.3. The function works by extracting

the labels of the production (P) and alternate A and combining that with information
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on the current GLL Block (by means of the current descriptor) to re-create labels of the

different context environments (e.g. P+A or P+A+" "+(nonTerminalNumber-1)).

1 void attribute(int nonTerminalNumber, String attributeName) {
2 Let P, A be the values described before.
3 if (nonTerminalNumber == 0) {
4 /*case we want to get inherited attributes, we only need the production (P), as

the attributes are for that entire production*/
5 return currentGSSNode.getContext().get(P).get(attributeName);
6 } else if (nonTerminalNumber == 1) {
7 /*case we want to get content form the first GLL Block, we just need the

alternate (A) of the production (P)*/
8 return currentGSSNode.getContext().get(P+A).get(attributeName);
9 } else {

10 /*case we want to get content from a specific GLL Block, we need the production
(P), alternate (A), and Block number (non-terminal -1)

11 -1 becase the 2nd non-terminal is in Block PA_1*/
12 return currentGSSNode.getContext().get(P+A+"_"+nonTerminalNumber-1).get(

attributeName);
13 }
14 }

Listing 4.1: Augmented attribute fetch function for synthesized context

Now, using this function we are able to address attributes that correspond to a given

non-terminal, by the index of that non-terminal in the production. For instance, take

production F ::= Q R. We are able to use:

• attribute(0, p) to fetch the value of inherited attribute p, as these are attached to

the LHS non-terminal (F). Which is the 0th non-terminal in our production.

• attibute(1,p) to fetch the value of attribute p that was synthesized by Q (as this is

the 1st non-terminal in the production)

• attibute(2,p) to fetch the value of attribute p that was synthesized by R (as this is

the 2nd non-terminal in the production)

This pattern evidently extends to productions with more than 2 RHS non-terminals.

4.3.2 Issues with the GSS approach

The first downside to the GSS approach is that we can only pass attributes back up along

existing trees. We cannot create new trees, as this would require replication of trees.

To illustrate, consider two descriptors δ1 and δ2, both operating on the same stack-head

(Σ = (L0, I0)). These descriptors correspond to two alternates of a production that are

both applicable (e.g. “abc” and “[a-c]+”). Say δ1 synthesized property p = 1 and δ2

synthesized p = 2. Depending on the order of execution of these descriptors, a different

value will be available to descriptor δL0 . The behavior that we want is that we synthesize

two different values, and that this leads to two different subtrees. This thought leads us

to re-consider the SPPF approach for synthesized attributes.

The second issue concerns itself with the sharing properties in a normal SPPF. Start

by noting that the SPPF is a data structure used for representing parse forests. As
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the majority of the parsing world focuses on context-free parsing, it should come to no

surprise, that some assumptions with respect to context-free grammars are present in

the SPPF. This could, and indeed is, an issue in the case of attribute grammars, as

these languages form a super-class of the class of context-free grammars. The SPPF is

a data structure that has sharing as one of its main priorities. This is usually a good

thing, however for representing context-sensitive parse forests, this can be a problem.

To illustrate, please consider Grammar Γ17.

S ::= A | B;(Γ17)

A ::= E;

B ::= E;

E ::= C|D;

C ::= ”1”;

D ::= ”1”;

These the four possible parse trees for the input sequence "1" shown in Figure 4.8.

Next, consider the SPPF for these parse trees in Figure 4.9. The SPPF shares symbols

with equal non-terminal symbol, left extent, and right extent. This is logical, taking

the assumption of a context-free grammar into account. That is, parsing of a non-

terminal is not influenced by the history (context) of a derivation. For a context-sensitive

grammar (and thus also for an attribute grammar), this is obviously not the case. As

per definition of context-sensitive grammar, the context of a parse can influence the

resulting derivation. This observation is a strong indicator that the SPPF approach

(mentioned in the beginning of this chapter) is the only viable approach for solving this

problem.

For example, say we want to restrict derivations containing an A, may not use the

alternate E ::= D and productions containing a B may not use the alternate E ::= C. This

results in the two parse trees in Figure 4.10. However, classical SPPF sharing would still

yield the same SPPF in Figure 4.9. To solve this, we pose a very obvious solution: only

share symbols that have identical context. As we assumed determinism of our declared

context, two identical symbols (at the same position) with identical context must have

identical derivations.

4.3.3 SPPF Approach

As we have concluded, the GSS approach is not suitable for solving the problem at

hand, we consider augmenting the SPPF to incorporate synthesized attributes. The

main idea behind the SPPF approach is to augment SPPF nodes in the same way that

we augmented GSS nodes: we add attributes and require equality of these attributes

for equality of SPPF nodes. With this extension, GLL automatically creates new SPPF

trees for derivations that have different synthesized attributes (analogous to the GSS).

To understand this process better, first consider the normal workings of the SPPF pre-

sented in Figures 4.11 and 4.12. Figure 4.11 shows how, when a pop() is performed,
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Figure 4.8: All four possible parse trees for input sequence “1” with respect to Gram-
mar Γ17
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Figure 4.9: SPPF for input sequence “1” with respect to Grammar Γ17
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Figure 4.10: Disambiguated parse trees for input sequence “1” with respect to Gram-
mar Γ17

.
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the partial SPPF is retrieved from the stack (a), and combined with the current branch

using a packed and a symbol node (b). Figure 4.12(a) illustrates an ambiguous branch.

Another derivation for X has been found, namely via X ::= Z, rather than the existing

X ::= Y. This extra derivation is then attached to the existing packed node as shown in

Figure 4.12(b).

The extension we propose, is to keep a variable synthesize (which is a context envi-

ronment as described in Section 4.2.1), to which users may append custom attributes

using our API. When actual synthesis takes place, the attributes will be attached to the

corresponding SPPF node using a naming scheme similar to that in GSS environments

(i.e. using GLL Blocks to address non-terminals). The advantage of this approach is

that:

• For different alternates that derive the same non-terminal, normally their top-level

symbol nodes would be equal;

• As they now have different context they will not be shared (as their SPPF nodes

are now unequal);

• Corresponding descriptors will be created automatically, as SPPF data for the

different descriptors are no longer equal. Thus, we obtain multiple derivations for

free.

The issue that remains is in combining ambiguous derivations of the same alternate.

This has been abstractly illustrated in Figure 4.13(a). Normally, we would attach a

second derivation to the corresponding packed node. However, as the alternates for the

derivation are the same, by default the GLL algorithm will ignore the second derivation.

We thus extend the algorithm (more specifically the getNodeP method) to check the

context of the children of the packed node. If there is no child present with the same

context, we add it to the packed node. This has been illustrated in 4.13(b).

For a more instantiated example, consider grammar Γ18 and input sequence “aaa” (ig-

nore context). The SPPF for this sequence can be found in Figure 4.14. Say now we

want to synthesize which terminal we processed in A, and deny branches in which the

first A is “aa”, we can encode this using attributes as presented in Γ19. Not considering

the rejection of rules, an annotated SPPF is yielded as illustrated in Figure 4.15. The

instance of X can then reject a branch that does not meet the requirements, yielding the

disamibugated parse forest illustrated in Figure 4.16.

S ::= X;(Γ18)

X ::= A A;

A ::= “a”;

A ::= “aa”;
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(S, 0, 3)

(S::=X•, 0)

(X, 0, 3)

(X::=AA•, 1) (X::=AA•, 2)

(A, 0, 1) (A, 1, 3)

(A::=a•, 0)

(a, 0, 1)

(A::=aa•, 1)

(aa, 1, 3)

(A, 0, 2) (A, 2, 3)

(A::=aa•, 0)

(aa, 0, 2)

(A::=a•, 2)

(a, 2, 3)

Figure 4.14: The original SPPF for sequence “aaa” with respect to Γ18

S ::= X;(Γ19)

X ::= A A ∼
@post(all) : if(attribute(1, “type”).equals(2)){deny; }

∼;

A ::= “a” ∼
@post(all) : synthesize.put(”type”, 1”);

∼;

A ::= “aa” ∼
@post(all) : synthesize.put(”type”, 2”);

∼;
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(S, 0, 3)~~

(S::=X•, 0) ~{}~ (S::=X•, 0) ~{}~

(X, 0, 3)~, X0_1 -> {type=1}, X0_2 -> {type=2}~

(X::=AA•, 1) ~{}~

(A, 0, 1)~, X0_1 -> {type=1}~ (A, 1, 3)~, X0_2 -> {type=2}~

(A::=a•, 0) ~{}~

(a, 0, 1)~~

(A::=aa•, 1) ~{}~

(aa, 1, 3)~~

(X, 0, 3)~, X0_1 -> {type=2}, X0_2 -> {type=1}~

(X::=AA•, 2) ~{}~

(A, 0, 2)~, X0_1 -> {type=2}~ (A, 2, 3)~, X0_2 -> {type=1}~

(A::=aa•, 0) ~{}~

(aa, 0, 2)~~

(A::=a•, 2) ~{}~

(a, 2, 3)~~

Figure 4.15: Attribute-annotated SPPF for sequence “aaa” with respect to Γ18
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(S, 0, 3)~~

(S::=X•, 0) ~{}~

(X, 0, 3)~, X0_1 -> {type=1}, X0_2 -> {type=2}~

(X::=AA•, 1) ~{}~

(A, 0, 1)~, X0_1 -> {type=1}~ (A, 1, 3)~, X0_2 -> {type=2}~

(A::=a•, 0) ~{}~

(a, 0, 1)~~

(A::=aa•, 1) ~{}~

(aa, 1, 3)~~

Figure 4.16: Disambiguated SPPF for sequence “aaa” with respect to Γ18

An additional upside to this method of handling synthesized context is that we yield

an annotated SPPF, suited for post-parse attribute evaluation. The downside to this

approach is that we modify the structural properties of the SPPF. In a normal SPPF,

any given symbol node is unique. There are no two symbol nodes that have the same

symbol and input-range. In the SPPF we suggest this can be the case, although the

context of these nodes differs. Although this may appear to be a heavy modification

to make, it is inherent in the character of context-sensitive parsing. Post-parse sharing

may introduce invalid derivations in the parse forest, as was illustrated in Figures 4.9

and 4.10. Thus, to provide a generic solutions, this elimination of sharing in the SPPF

is necessary

4.4 Inherited and synthesized attribute mixing

Now that we have seen both inherited and synthesized attributes, let us look closer at

their co-existence. Recall the API for their use specified in Section 3.3.

The way we allow attributes to be specified and modified is limited. That is, our at-

tribute evaluation takes place on a depth-first, left-to-right basis (a so called L-attribute

grammar). Due to the on-parse time nature of our implementation, and GLL being a

top-down algorithm, this is only natural. We can thus pose two questions:

• Can we use synthesized attributes in calculations on inherited attributes?

• Can we use inherited attributes in calculations on synthesized attributes?

First, we can indeed use synthesized attributes in dealing with inherited attributes.

However, we can only use attributes that are available at that point in time. To illustate,
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consider grammar Γ20. In this grammar, we see the start non-terminal passing down

property v with value 1 to A. The production for A, once finished takes this inherited

attribute, adds 1 to it, and synthesizes it back to S (v now has value 2). The same

pattern is repeated for B and C, resulting in non-terminal S being annotated with

v = 6. Note that indexing schemes may be confusing here, as @pre(1) refers to the

moment in time before the B, but attribute(1, "v") refers to property v of A.

At any given time, only attributes from processed non-terminals are available. In

@pre(0), we could not use attributes from C, as these have not been evaluated yet. Fur-

thermore, attributes inherited to A (i.e. in @pre(0)) cannot be accessed in @pre(1)

but only to GLL Blocks inside the production for A. If one wishes to make these at-

tributes accessible, they should be synthesized back up by hand. However, if one can

compute an inherited value in @pre(0), one can certainly compute it in @pre(1), as

all the same information is available.

Likewise, we can use inherited attributes in the calculation of synthesized attributes.

Note that we are only able to use the inherited attributes from the LHS non-terminal of

our production. That is, given a production A ::= BC, synthesized attributes may only

depend on the inherited attributes of A, and the synthesized attributes of B and C. As

was the case before, we can only use attributes that have already been derived. So, in the

entire production, we may always use the inherited attributes of A. However, we cannot

use the synthesized attributes of C in the @pre of B or C as C has not been completed

at that time. In the @pre of C we are only able to use the inherited attributes of A and

the synthesized attributes of B. The synthesized attributes of C are only available in the

@post(all) of this production.

S ::= A B C ∼(Γ20)

@pre(0) : attributes.put(”v”, 1);

@pre(1) : attributes.put(attribute(1, ”v”), 1);

@pre(2) : attributes.put(”v”, attribute(2, ”v”) + 1);

@post(all) : synthesize(”v”, attribute(3, ”v”) + 1);

∼;

A ::= “a” ∼;

@post(all) : synthesize(”v”, attribute(0, ”v”) + 1);

∼;

@post(all) : synthesize(”v”, attribute(0, ”v”) + 1);

B ::= “b” ∼;

@post(all) : synthesize(”v”, attribute(0, ”v”) + 1);

∼;

C ::= “c” ∼;

@post(all) : synthesize(”v”, attribute(0, ”v”) + 1);

∼;
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We thus conclude that it is possible to mix inherited and synthesized attributes, but

that we enforce a strict ordering on the attributes to avoid ending up with a complicated

evaluation scheme. Due to the depth-first left-to-right evaluation of our attributes (and

of the GLL algorithm), only attributes from the “past” are available. We cannot use

attributes in a computation if those attributes still have to be evaluated.

4.5 Implementation effort

Using the mechanisms we have seen in this chapter, we have created an implementation

that allows us to generate GLL parsers based on L-attribute grammar specifications. In

Figure 4.17, the initial screen of our implementation (inside netbeans) can be seen. Fig-

ure 4.18 shows the specification of a grammar file, from which a parser can be generated

(Figure 4.19). When providing an input sequence (visible in Figure 4.20), one can run

the parser, which will (provided the input sequence is correct) yield an SPPF, as can be

seen in Figure 4.21. Lastly, providing an invalid input sequence (Figure 4.22) will yield

to an error message, as can be seen in Figure 4.23.

Figure 4.17: A screenshot of the home screen of our implementation

4.6 Conclusion

We have successfully extended GLL with support for an attribute system. More specif-

ically, an attribute system that accepts L-attribute grammars. This attribute system

is able to provide a context for disambiguation, as we will demonstrate in Chapter 5.

However, there are some downsides, the system for inherited attributes can (potentially)

destroy the left-recursion handling in GLL. Furthermore, the system that supports syn-

thesized attributes modifies the SPPF so that its sharing is reduced. In this reduction,
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Figure 4.18: A grammar file can be created, in which an attributed BNF grammar
may be specified

Figure 4.19: Using the provided generator, a parser is generated for a grammar

some structural properties on the SPPF are lost. However, these structural modifica-

tions are in the nature of context-sensitive parsing, as we have explained.

Finally, we were able to create an implementation that supports these L-attribute gram-

mars in practice. We have used this implementation to tackle the case-study we will

present in Chapter 5.
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Figure 4.20: An input file is created for a grammar

Figure 4.21: The parser can be run on a specified input file, yielding an SPPF
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Figure 4.22: Providing a work input sequence

Figure 4.23: Leads to an incorrect parse





Chapter 5

Case Study : Python

To illustrate the expressive powers of GLL with attributes, we will present two grammars

related to Python. First, we will discuss Python expressions in detail. Secondly, we will

take Python control structures, and embed the expression grammar in them.

5.1 Expression Grammar

The first type of grammar that we will investigate are expression grammars. An expres-

sion grammar is a highly recursive grammar, in which each production represents the

application of an operator. The operator is usually a terminal symbol, whilst recursive

non-terminals for other (sub-)expressions. We distinct prefix (e.g. aO where a ∈ T and

O ∈ N), infix (e.g. OaP where a ∈ T and O,P ∈ N), postfix operators (e.g. Oa

where a ∈ T and O ∈ N), and closed expression (e.g. aOb where a, b ∈ T and O ∈ N).

We chose the Python expressions as a real-life example to illustrate the power of our

attribute system. However, before going into the actual grammar we will first discuss

the patterns and structures that introduce ambiguities in the first place. Then, we will

discuss some theoretical difficulties, after which we will present a scheme in which we

may automatically generate disambiguation mechanisms for an expression grammar. We

will use this automated way of generating attributes to extend the Python expression

grammar for disambiguation.

5.1.1 Causes of ambiguity

In expression grammars, ambiguities are mainly caused by two properties: associativity

and priority. Priority entails in what order operators are processed. To illustrate, take

the sequence 1 + 2 ∗ 3. Do we process this as 1 + (2 ∗ 3) or (1 + 2) ∗ 3? This example

was already discussed in section 1.1.

Associativity is slightly different. It does not have to do with the difference between op-

erators, but with the equality of operators (or equality of their priorities). If a number

69
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of operators have the same priority, it is unclear which to evaluate first. Normal math-

ematical operators with equal priority are evaluated from left-to-right, but this might

not be the case for every operator in every language (e.g. some languages group their

else to the closest if). For instance, if we are presented with the sequence “1+2+3”.

Should we interpret this as “(1+2)+3” or “1+(2+3)”. In this case, the result is equal,

but one might consider operations such as raising to power, in which this is definitely

not the case.

5.1.2 Difficulties

Disambiguation of the expression grammar brings with it a theoretical problem. What

are the semantics of a unary operator with a lower priority than a binary operator.

How does it bind? To illustrate, consider grammar Γ21 with respect to input sequence

“not!a | b”.

E ::= E “|” E;(Γ21)

E ::= “! ” E;

E ::= “not” E;

E ::= “a” | “b”;

Convince yourself of the three possible derivations:

1. not(! (a | b))

2. not((! a) | b)

3. (not! a) | b

Say now we want to enforce the following priority restrictions: !>|> not

We may disqualify tree (1) and (2), due to the fact that we are performing a not after

the |, which violates the priority constraint | > not. We may disqualify tree (3), due

to the fact that we are performing a | before the !, which violates the priority constraint

!>|. The opinions on which tree is correct are argued in existing literature [26–28]. One

can argue that their reasoning is not sound as trees are returned that contain indirect

violations. We will simply say that none are valid, and leave this issue for future work.

Throughout the rest of this thesis, we will assume that all unary operators have higher

priority than all binary operators. This assumption excludes this issue from occurring.

5.1.3 Automatic attributes for priority and associativity

As we have seen before, disambiguation of the expression grammar can be divided into

two main concerns: priority and associations. We will investigate how to automatically

encode both into attribute grammars.
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5.1.3.1 Priority

The concept of priority is that, given two operators, the operator with the higher priority

should be processed first. We thus need a way of telling our parser which choices to make

(i.e. which operators to put lower in the tree). Taking a closer look, GLL has a top-down

approach. Hence, if we encounter two possible operators, we should favor the one with

the lowest priority. In this way, the operator with the higher priority is pushed deeper

into the tree. If we exclude unary operators with lower priority than binary operators,

then we can encode this in the following way:

• Assign every operator a priority φ.

• To the @pre(all) for every production of operator ⊕ add the following code:

1 if ((int)attribute(0, "priority") > φ) {
2 DENY;
3 }
4

• To the @pre(i) for every production of operator ⊕ (where 1 ≤ i ≤ # gllBlocks)

add: “attributes.put(”priority”, φ)”.

In this way, we know that priorities may only increase or remain equal, but never de-

crease. Using a transitive argument, one can thus say that a production with higher

priority will always be lower in the tree than a production of lower priority. Closed oper-

ators on the other hand require a different approach as they do not introduce ambiguity.

A closed expression resets the priority of its contained sub-expression by inheriting the

priority attribute with value 0. However, we are still left with associativity conflicts,

which will be discussed next.

5.1.3.2 Associatiativity

Note that just adding priority will still not disambiguate some forests completely. The

expression “1+1+1” will still have two derivations:

• (1+1)+1

• 1+ (1+1)

This example can be further generalized to any set of operators with equal priority.

Hence when we are dealing with ambiguities of operators with equal priority, we have

to take their associativity into account. In general associativity describes the side from

which we group operators. Either left-to-right (as is usual in normal arithmetic) or

right-to-left. For example: sequence σ = 1 ⊕ 1 ⊕ 1, where ⊕ is an arbitrary binary

operator, may be interpreted in two ways.

• If ⊕ is left-associative, we should read σ as (1⊕ 1)⊕ 1



Chapter 5. Case Study : Python 72

• If ⊕ is right-associative, we should read σ as 1⊕ (1⊕ 1)

We will extend the priority-based disambiguation code with a mechanism to filter asso-

ciativities. Note that the associativity code alone is not sufficient, as we require priorities

to be passed down to see if we should filter based on associativity at all.

Taking the code for priority as read. For every production of left-binding operator ⊕
with priority φ add to the @pre(all):

1 if (attribute(0, "priority").equals(φ) && attribute(0,"branch").equals("right")) {
2 DENY;
3 }

For every production of right-binding operator ⊕ with priority φ add to the @pre(all):

1 if (attribute(0, "priority").equals(φ) && attribute(0,"branch").equals("left")) {
2 DENY;
3 }

This ensures that for left-binding operators, we never have applications of the production

in the rightmost non-terminal, and for right-binding operators the same for the leftmost

non-terminal. All that remains is to pass down the correct branch to each non-terminal.

To the @pre of the left recursive non-terminal, we add attributes.put ("branch",

"left"). Analogously, to the left recursive non-terminal, we add attributes.put

("branch", "right") to the right non-terminal. Note that this approach is easily

generalized to n-ary operators, by simple numbering each branch (i.e instead of “left”

and “right”, use “branch1” etc.) and restricting all branches that are not the desired

branch (i.e. instead of “if(branch 6= “left”)” : “if (branch 6= “branch4”)”). Additionally

the check for equal priority is essential, because for two operators of different priority,

associativity is not defined. We thus need the priority attributes as defined in Section

5.1.3.1 for associativity to work.

5.1.3.3 Remaining conflicts

We have discussed how to solve associativity conflicts with respect to binary (and higher

arity) operators. But we have failed to do so for unary operators. One might wonder

why this is necessary. Consider the example of two productions for unary operators with

equal priority in Grammar Γ22.

E ::=⊕ E;(Γ22)

E ::= E⊗ ;

E ::= [1− 9][0− 9]∗;

Take, for example, input sequence ⊕12⊗. As mentioned before, neither operator takes

precedence over the other. This infers that the sequence may be interpreted as (⊕12)⊗ or

⊕(12⊗). We cannot use our normal associativity attribute generation to assign a branch,

as there is only one. The usual interpretation for operators of an equal precedence level

is to evaluate them left-to-right. The key observation for encoding this into an attribute
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Table 5.1: Description of the Python expressions taken from [29]

Operator Description

If-else Conditional Expression

or Boolean OR

and Boolean AND

not x Boolean NOT

in, not in, is, is not,
<, <=, >, >=. <>, !=, ==

Comparisons (including membership and identity tests)

— Bitwise OR

ˆ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and subtraction

*, /, //, % Multiplication, Division, Floor division, remainer

+x, -x, Positive, Negative

x[index], x[index:index],
x(arguments...), x.attribute

Subscription, Slicing, call, attribute reference

(expressions...), [expressions...],
{key:value...} Binding or tuple display, list display, dictionary display

grammar is that, interpreting from left-to-right, we will always read prefix operator

symbols before post-fix symbols. We can thus suffice by increasing the priority level of

all unary prefix operators such that they are greater than all unary postfix operators in

their class.

· · · > ⊕,⊗ > · · · ⇒ · · · ⊕ > ⊗ > · · ·

If right-to-left evaluation is desirable, all postfix operators should receive an increased

priority, rather than all prefix operators.

5.1.4 Python Expressions

Now that we have seen a means of generating rules that resolve priority and associa-

tivity conflicts, let us look at them in a real-life example. As a case study, the Python

expressions have been chosen (more specifically Python2) [29]. The operators incorpo-

rated in the Python grammar are described in Table 5.1. For simplicity we have omitted

the lambda operator. Furthermore, the parser for our attribute specification is very

simplistic, hence we omit bitwise NOT (∼) to avoid conflicts. Operators are presented

in increasing order. That is, if-else has lowest priority and is orsbinds weakest,

bindingt (which is a construct in the python language) has the highest priority and

binds strongest. Furthermore, the priorities of operators in the same row are equal and

all operat bind left-to-righ. The context-free grammar for these expressions is presented

in grammar Γ23. Note that an empty alternate (i.e. |;) represents ε.

EXPRESSION ::= EXPR;(Γ23)
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EXPR ::= “if” EXPR “ : ” EXPR ELSEIFEXPR ELSEEXPR;

ELSEIFEXPR ::= “elseif : ” EXPR ELSEIFEXPR |;
ELSEEXPR ::= “else : ” EXPR ELSEEXPR | ;

EXPR ::= EXPR “or” EXPR ;

EXPR ::= EXPR “and” EXPR;

EXPR ::= “not” EXPR;

EXPR ::= EXPR “in” EXPR;

EXPR ::= EXPR “not in” EXPR;

EXPR ::= EXPR “is” EXPR;

EXPR ::= EXPR “is not” EXPR;

EXPR ::= EXPR “ < ” EXPR;

EXPR ::= EXPR “ <= ” EXPR;

EXPR ::= EXPR “ >= ” EXPR;

EXPR ::= EXPR “ <> ” EXPR;

EXPR ::= EXPR “! = ” EXPR;

EXPR ::= EXPR “ == ” EXPR;

EXPR ::= EXPR “ | ” EXPR;

EXPR ::= EXPR “ ∧ ” EXPR;

EXPR ::= EXPR “ & ” EXPR;

EXPR ::= EXPR “ << ” EXPR;

EXPR ::= EXPR “ >> ” EXPR;

EXPR ::= EXPR “ + ” EXPR;

EXPR ::= EXPR “ − ” EXPR;

EXPR ::= EXPR “/” EXPR;

EXPR ::= EXPR “//” EXPR;

EXPR ::= EXPR “ ∗ ” EXPR;

EXPR ::= EXPR “%” EXPR;

EXPR ::= “ + ” EXPR;

EXPR ::= “− ” EXPR;

EXPR ::= EXPR “ ∗ ∗” EXPR;

EXPR ::= ATOM “.” IDENTIFIER;

EXPR ::= EXPR “[” EXPR “ : ” EXPR “]” ;

EXPR ::= EXPR “[” EXPR “]” ;

EXPR ::= EXPR “(” EXPR EXPRS “)” | EXPR “()”;

EXPR ::= “(” EXPR EXPRS “)” | “()” ;

EXPR ::= “[” EXPR EXPRS “]” | “[]”;

EXPR ::= “{” KVP KVPS “}” | “{}”;

EXPRS ::= “, ” EXPR EXPRS | ;
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KVP ::= ATOM “ : ” EXPRESSION;

KVPS ::= “, ” KVP KVPS |;
IDENTIFIER ::= [a− zA− Z][a− zA− Z0− 9]∗;

EXPR ::= ATOM;

ATOM ::= NAT | BOOLEAN | STRING | IDENTIFIER;

NAT ::= [1− 9][0− 9]∗ | “0”;

BOOLEAN ::= “True” | “False”;

STRING ::= [\”][a− zA− Z] ∗ [\”]

Now that we have the normal BNF grammar, we can begin extending it with respect

to the schemes presented in Sections 5.1.3.1 and 5.1.3.2. There are a few non-standard

disambiguations need for grammar Γ27. One is the reserved keyword mechanism im-

plemented on the production for IDENTIFIER. We reject the current derivation if the

identifier derives a keyword from the set of restricted keywords. Furthermore, the high-

est priority operators (Binding, tuple display etc.) do not cause ambiguity, hence we

have omitted annotating them with attributes and disambiguation mechanisms. How-

ever, as mentioned in Section 5.1.3.1, they reset the priority attribute to 0, to correctly

support fresh sub-expressions. These extension rules together ensure that one can write

an ambiguity free syntactically correct Python expression. In addition the the non-

standard mechanisms (keyword restrictions and priority resets) mentioned before, also

the standard generated attributes have been added to prevent priority and associativity

conflicts. The result of this can be found in appendix A.

With the addition of these attributes, we are able to resolve all local ambiguities related

to associativity and priority. We consider an ambiguity local, if we can decide that a

derivation is incorrect without knowledge of other derivations. Using these attributes,

we are able to disambiguate all ambiguities related to priority and associativity. We will

provide correctness arguments for these statements next.

Assume towards a contradiction, that there is an ambiguity related to priorities. This

means that there must be two derivations in which two operators of different priority

levels occur above and below each other. In other words, we have a derivation δ1 in

which ⊕ is higher in the tree than ⊗, and δ2 in which ⊗ is higher in the tree than ⊕.

As these operators have different priorities (otherwise it would not be a priority-based

ambiguity) and we have encoded our priority attribute to be non-decreasing, one of these

derivations must be incorrect. For if they are not, we can derive a contradiction (i.e.

it cannot be the case that priority (⊕) > priority (⊗) and priority (⊗) > priority (⊕)

both hold).

For associativity, assume towards a contradiction that there is an associativity-based

ambiguity. This means we have two (possibly the same) operators of equal priority.

Note that this pattern can also occur for two operators of equal priority. For these

operators there must be two derivations, in which one of the operators is embedded

in a subbranch of the other (e.g. ( ⊕ ) ⊗ or ⊕ ( ⊗ )). If operators of equal
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Figure 5.1: The SPPF for sequence 1+2+3*4**7 under the Attributes Python ex-
pression grammar

priority then group towards a single direction (either left, right, or an arbitrary branch

that is fixed), something that holds for our Python grammar, this ambiguty leads to a

contradiction. Note that the ambiguity described arises because both derivations choose

a different branch to continue their derivation. This is a clear contradiction to the single

grouping direction we have assumed. Note that if operators of a given priority group

to different sides, this encoding does not work. To illustrate, assume ⊕ is right-binding

(i.e. ⊕ ⊕ = ⊕ ( ⊕ )) and ⊗ is left-binding (i.e. ⊗ ⊗ = ( ⊗ ) ⊗ ). If both

are of equal priority then both ⊗ ( ⊕ ) and ⊕ ( ⊗ ) are valid derivations. (i.e. the

ambiguity described is inherent in the language).

For a more practical proof, consider sequence 1+2+3*4**7, for which the SPPF can be

found in Figure 5.1. As this SPPF is quite large, it is probably not readable. However,

note that we have obtained a nice tree structure, in which no ambiguities are present.

5.2 Offside rule

The offside rule is used in programming languages to denote the block structure of

that language. Rather than the classic braces ({}) used in languages such as C or Java,

languages using the offside rule use indentation to specify the nesting of block structures.

That is, statements are part of the block structure of construct if their indenting is equal.

Furthermore, the indenting of statements inside a control-structure must be greater than

the indenting of the control itself. To illustrate, consider Listing 5.1. Note that x=4 and



Chapter 5. Case Study : Python 77

k=7 belong to the same block structure, namely to that of if (x == True). Also

note that indeed the indenting of the assignments is greater than that of the if. In

normal python, the amount of extra indenting for statements in a control structure is

arbitrary (as long as it is more than that of the control structure). For simplicity, we

will consider the case where there is only one extra level of indenting. Also note, that

the assignments x = 5 and x = 7 are no longer part of that control structure, as the

level of indenting is interrupted by the lower-indented if (x == False). In Listing

5.2 an exampple of incorrect indenting is given, as the x=4 should have an indenting

greater than that of the if (x == True).

1 if (x == True)
2 x = 4
3 y = 6
4 if (x == False)
5 x = 5
6 y = 7

Listing 5.1: An example of block structure using indenting

1 if (x == True)
2 x = 4

Listing 5.2: An example of incorrect indenting

This indenting can be used to solve problems related to control-structure such as the

dangling else problem. To illustrate, in the code in Listing 5.3 the else statement

belongs to the second if, rather than the first if, because its indenting is equal to that

of the second if. The performC() belongs to the block of the first if, rather than that

of the else, because its indenting is equal to that of the first if.

1 begin
2 if (condition1)
3 if (condition2)
4 performA();
5 else
6 perfromB();
7 performC();
8 end

Listing 5.3: A piece of code using the offside rule

5.2.1 Causes of ambiguity

Ambiguity in in languages that support the offside rule is mainly caused by the lack of

knowledge with respect to the actual indenting. That is, via a context-free production

one cannot (by definition) express how much indenting any of the previous block struc-

tures have (because this is context-sensitive). We can thus conclude that the offside-rule

cannot be expressed by a pure context-free grammar (i.e. the offside-rule is not context-

free). If we would try and specify the syntax of the Python language in a context-free

grammar, many ambiguities would arise due to the many possible block structures a

statement can be in. Consider the following example.
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In grammar Γ24 a small language that uses the offside rule has been specified. The

language consists of an if statement and two callFunction() statements. Con-

sider Listing 5.4 that shows a small fragment of code using the offside-rule. Note that

callFunctionA is inside the scope of the if, while callFunctionB is not. How-

ever, if we were to look at all possible derivations for the sequence, we could derive

callFunctionB to be inside the scope of the if. This is due to the production for

callFunctionB not being aware that the indenting does not correspond to the desired

indenting.

Here, the attribute system could be applied to annotate the indenting of all state-

ments inside a block structure with the desired depth. Then, if the indenting is not of

the correct depth, the derivation can be prunes, potentially decreasing the number of

derivations. Consider an input in which we have a number of consecutive statements. If

the indenting of the first statement is found to be incorrect, the rest of the statements

do not need to be parsed in that derivation. We will see a larger example of this this in

Section 5.2.2.

P ::= STATEMENTS;(Γ24)

STATEMENTS ::= STATEMENT STATEMENTS | STATEMENT;

STATEMENT ::= INDENTING “if\n” STATEMENTS;

STATEMENT ::= INDENTING “callFunctionA(); ”

STATEMENT ::= INDENTING “callFunctionB(); ”

INDENTING ::= “[\t] ∗ ”;

1 if
2 callFunctionA();
3 callFunctionB();

Listing 5.4: An example of offside code

5.2.2 Python constructs

In this section, we will discuss a grammar that uses a subset of the Python control-flow

constructs in an offside-setting. We will proceed to extend this grammar with attributes

to eliminate ambiguities. Inside the grammars presented in this section, we will use the

non-terminal EXPRESSION, as we have defined it in grammar Γ27. We consider the

following additional structures:

• for-loops

• while-loops

• if-statements

• if-else statements
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5.2.3 Generating attributes for the offside rule

Before actually extend the grammar, we will first see how to do it in general. The issue

we aim to solve is that entities inside a block structure of the language are aware of

their expected indenting. To this extent, we will recursively annotate each entity with

their expected amount of indenting, and enforcing this at the lowest level. The control

structures that require indenting will then modify the expected depth for the statements

that it contains. More specifically, every control structure adds a piece of annotated Java

to the @pre of their recursive statements as presented in Listing 5.5.

1 int expected = attribute(0, "expected");
2 attributes.put("expected", expected+1);

Listing 5.5: Java code for the indenting attribute

Furthermore, the non-terminal that handles the indenting should then enforce the ex-

pected indenting. In this example we enforce the level of indenting in the production

INDENTING ::= [\t]∗ using API calls to find out how many indents were consumed. If

the actual amount of indenting does not match the expected amount of indenting, the

derivation will be rejected. Note again the we restrict ourselves to preciously one level

of extra indentation. The result has been presented in Listing 5.6.

1 int start = currentInputPosition;
2 int end = scanner.getPosition();
3 int indenting = end - start;
4 if ((int)attribute(0, "exepcted") != indenting) {
5 DENY;
6 }

Listing 5.6: Enforcing of expected indenting

5.2.4 The grammar

Now that we have seen how to generate attributes for our productions, let us look at some

actual productions. As mentioned earlier, we use non-terminal EXPRESSION as defined

in Γ27. In our grammar, we specify a program padded by “begin” and “end” terminals.

Furthermore, the program consists of statements. The structure of our attributes will

be such that we require each of these statement to have an expected indenting, which

we will then enforce. We require our program to have at least one statement. We

support a number of different types of statements, namely the statements mentioned at

the beginning of this chapter and assignments. Additionally, we regard an expression

as a statement, as is the case in the Python interpreter. The result can be found in

Grammar Γ25.

PROGRAM ::= “begin\n” STATEMENTS “end”;(Γ25)

STATEMENTS ::= STATEMENT | STATEMENT STATEMENTS;

STATEMENT ::= INDENTING EXPRESSION “\n”;
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STATEMENT ::= INDENTING IDENTIFIER “ = ” EXPRESSION “\n”;

STATEMENT ::= INDENTING “for” EXPRESSION “in” EXPRESSION

“ : \n” STATEMENTS;

STATEMENT ::= INDENTING “while” EXPRESSION “ : \n” STATEMENTS;

STATEMENT ::= IF STATEMENTS ELSE STATEMENTS;

STATEMENT ::= IF STATEMENTS;

STATEMENT ::= IDENTIFIER “ = ” EXPRESSION;

IF ::= INDENTING “if(” EXPRESSION “) : \n”;

ELSE ::= INDENTING “else : \n”;

INDENTING ::= “[\t] ∗ ”;

Now that we have a basic grammar, we can continue with extending it. In grammar

Γ26, generated attributes have been added to the control structure, and the production

for INDENTING has been extended to enforce indenting levels. Additionally, we have

incorporated the expression grammar developed in Section 5.1.4 and incorporated them

into the guards of our control structures. The resulting grammar allows us to parse

Python programs without any ambiguities. We are now able to disambiguate offside

constructs, and as we were already able to disambiguate expressions, we can now write

small Python programs that are ambiguity free. For example, consider the small Python

program in Listing 5.7 for which the SPPF has been illustrated in Figure 5.2. Again we

note that there are no ambiguities and that we have obtained a single tree.

1 begin
2 for x in [1,2,3,4,5]:
3 if (x<=5):
4 y=if x<2:0 else : 1
5 else:
6 y=2
7 end

Listing 5.7: A small Python program
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PROGRAM ::= “begin\n”STATEMENTS“end” ∼(Γ26)

@pre(0) : attributes.put(“expected”, 1);

∼;

STATEMENTS ::= STATEMENT | STATEMENT STATEMENTS;

STATEMENT ::= INDENTING EXPRESSION“\n”;

STATEMENT ::= INDENTING IDENTIFIER“ = ”EXPRESSION“\n”;

STATEMENT ::= INDENTING “for” EXPRESSION “in” EXPRESSION

“ : \n” STATEMENTS ∼
@pre(3) :

int e = (int)attribute(0, “expected”);

attributes.put(“expected”, e + 1);

∼;

STATEMENT ::= INDENTING “while” EXPRESSION

“ : \n” STATEMENTS ∼
@pre(2) :

int e = (int)attribute(0, “expected”);

attributes.put(“expected”, e + 1);

∼;

STATEMENT ::= IF STATEMENTS ELSE STATEMENTS ∼
@pre(1) :

int e = (int)attribute(0, “expected”);

attributes.put(“expected”, e + 1);

@pre(3) :

int e = (int)attribute(0, “expected”);

attributes.put(“expected”, e + 1);

∼;

STATEMENT ::= IF STATEMENTS ∼
@pre(1) :

int e = (int)attribute(0, “expected”);

attributes.put(“expected”, e + 1);

∼;

STATEMENT ::= IDENTIFIER “ = ” EXPRESSION;

IF ::= INDENTING “if(” EXPRESSION “) : \n”;

ELSE ::= INDENTING “else : n”;

INDENTING ::= [\t]∗ ∼
@post(all) :

int before = currentInputPosition;
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int after = scanner.getPosition();

int expected = (int)attribute(0, “expected”);

if(after− before ! = expected){
return;

}
∼;

5.3 Conclusions

Having added attributes to the python grammar, we can now resolve all ambiguities.

Related to the offside rule, this is the case because every statement now has information

on which depth it should reside, and this depth is also enforced. Assume (towards

a contradiction) an offside-related ambiguity does exist. This means a statement can

be parsed to conform to two block structures. That is, it can be parsed to have two

different levels of indenting. This cannot be the case, as each statement is annotated

with a specific value for its expected indenting. If a different indenting than the expected

indenting is parsed, the derivation is rejected. A statement can therefore not be parsed

with two different levels of indenting. Trough this disambiguation, we have obtained a

great increase. Rather than yield every possible derivation, if a conflict with respect to

indenting is rejected in a statement, we can prune work on all other statements in that

derivation.





Chapter 6

Conclusions and Future work

In this thesis, we have looked at augmenting the GLL algorithm with an attribute

system (Chapters 2 and 4). We have investigated the ability to, on-parse time, reject

derivations of the generated parser based on these attributes. To be able to implement

the attribute system, we have had to gain a deep understanding of the data structures

and their interaction in the algorithm. The sharing that is implemented in the various

data-structures of the GLL algorithm are very powerful. In some instances, a little too

powerful, as they cause issues. After having relaxed the sharing to a level that is suitable,

we find that the mechanisms are very generic and elegant and support our augments

without difficulties. We have seen ways to disambiguate actual grammars using the

attribute system without having to modify the shape of the grammer (with respect to

production rules). We conclude that attribute grammars are feasible for GLL, and that

they are a very nice way of efficient disambiguation, as disambiguation is performed as

early as possible (on-parse time).

However, the attribute system does come with some downsides that should be considered.

The attribute system requires relaxation of sharing from the original GLL algorithm.

If used in a very naive way, the attribute system can destroy left-recursion (as was

mentioned in Section 4.2.2). Note that this concerns highly artificial cases, as for most

grammars, this is not the case. Additionally, the attribute system we have presented

allow for higher order attributes (i.e. objects). This can make comparing attributes very

expensive, voiding the time-gain of the on-parse time pruning of derivations.

6.1 Contribution to research questions

6.1.1 Question 1

Is it possible to extend the Generalized LL parsers with attribute grammars?

Yes, in Sections 4.1 and 4.3 we have seen how we can pass along attributes to non-

terminals. In particular, in Section 4.3 we have shown that we can annotate parse

forests with attributes, suited for post-parser filtering.

85
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6.1.2 Question 2

Is it possible to push evaluation of the attributes with respect to their re-

strictions into the parsers (in contrast to post-parse evaluation)?

To a large extent, evaluation of attributes on-parse time is possible. We have considered

pruning derivations if a conflict in attributes was found. As a consequence, we cannot

reject derivations in a more global scope. That is, if we have obtained a derivation d1,

the presence of a derivation d2 cannot invalidate d1. This is something that might be

desirable, as we have seen in, for example, Section 5.2.2. Altogether, almost all useful

disambiguation can be pushed into the parser, thus drastically decreasing disambigua-

tion and parse time.

6.1.3 Question 3

Are attribute grammars suited for practical on-parse time disambiguation?

As we have seen in Chapter 5, we are able to disambiguate both realistic expression and

offside grammars. Additionally, time is increased as we are pruning unwanted derivation

as soon as possible. Moreover, we have shown that attribute grammars are excelent in

combination with the grammar modularity, which is one of the highlights of GLL.

6.2 Future Work

In this work we have encountered a few areas in which future work may be conducted.

6.2.1 Precedence of unary operators

As was noted in Section 5.1.2, when one is dealing with unary operators that have lower

priority than binary operators, there are some unclear edge cases. Further research is

needed in order to ascertain which derivations are desired and why, before we can encode

such precedence relations in an attribute grammar.

6.2.2 Production parser

The OOGL parser that was used as a basis for the attribute system is already quite fast,

compared to the original academic OOGL parser [1]. However, performance increases

are still available and should be explored further in order for GLL to become a viable

option for language engineering (with or without attribute grammars).

6.2.3 EBNF

Both the OOGLL parser and this attribute extension were performed on BNF-based

GLL. However, most production grammars these days are in EBNF, requiring grammar
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rewriting to allow them to be used with the system we have defined. It thus seems very

interesting to repeat the current studies for EBNF grammar, rather than BNF.

6.2.4 Non-local disambiguation

Lastly, the research that has been done on non-local disambiguation using SPPF path

removal [30] is very powerful. Experiments have already been conducted to incorporate

these filters on-parse time. A fruitful area of research would be to see if these techniques

can be incorporated in the attribute grammar approach, seeing if we can do more than

just local pruning. With these non-local decisions, the ambiguities mentioned in Section

5.2.2 could be handled in a more elegant fashion.

6.3 Thanks to the reader

I would like to conclude by thanking the reader for taking the time to read through this

thesis. I hope this work serves as a fruitful base for many more investigations into GLL

to come, and wish to inspire those that will continue in this fields with the words:

“The competent programmer is fully aware of the limited size of his own

skull. He therefore approaches his task with full humility, and avoids clever

tricks like the plague.”

-Edsger W. Dijkstra
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Appendix A

EXPRESSION ::= EXPR ∼(Γ27)

@pre(0) : attributes.put(“priority”, 0);

∼;

EXPR ::= “if” EXPR “ : ” EXPR ELSEIFEXPR ELSEEXPR ∼
@pre(all) : if((int)attribute(0, “priority”) > 10){return; }

@pre(0) : attributes.put(“priority”, 10);

@pre(1) : attributes.put(“priority”, 10);

@pre(2) : attributes.put(“priority”, 10);

@pre(3) : attributes.put(“priority”, 10);

∼;

ELSEIFEXPR ::= “elseif : ” EXPR ELSEIFEXPR |;
ELSEEXPR ::= “else : ” EXPR ELSEEXPR |;

EXPR ::= EXPR “or” EXPR ∼
@pre(all) : if((int)attribute(0, “priority”) > 20){return; }

@pre(0) : attributes.put(“priority”, 20);

@pre(1) : attributes.put(“priority”, 20);

∼;

EXPR ::= EXPR “and” EXPR ∼
@pre(all) : if((int)attribute(0, “priority”) > 30){return; }

@pre(0) : attributes.put(“priority”, 30);

@pre(1) : attributes.put(“priority”, 30);

math∼;

EXPR ::= “not” EXPR ∼
@pre(all) : if((int)attribute(0, “priority”) > 30){return; }

@pre(0) : attributes.put(“priority”, 30);

∼;

EXPR ::= EXPR “in” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 40){return; }

95
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if((int)attribute(0, “priority”) == 40&&attribute(0, “branch”).equals(“r”)){return; }
@pre(0) : attributes.put(“priority”, 40); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 40); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “notin” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 40){return; }
if((int)attribute(0, “priority”) == 40&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 40); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 40); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “is” [EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 40){return; }
if((int)attribute(0, “priority”) == 40&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 40); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 40); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “isnot” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 40){return; }
if((int)attribute(0, “priority”) == 40&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 40); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 40); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “ < ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 40){return; }
if((int)attribute(0, “priority”) == 40&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 40); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 40); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “ <= ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 40){return; }
if((int)attribute(0, “priority”) == 40&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 40); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 40); attributes.put(“branch”, “r”);
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∼;

EXPR ::= EXPR “ >= ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 40){return; }
if((int)attribute(0, “priority”) == 40&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 40); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 40); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “ <> ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 40){return; }
if(attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 40); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 40); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “! = ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 40){return; }
if((int)attribute(0, “priority”) == 40&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 40); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 40); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “ == ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 40){return; }
if((int)attribute(0, “priority”) == 40&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 40); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 40); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “ | ” EXPR ∼
@pre(all) : if((int)attribute(0, “priority”) > 50){return; }

@pre(0) : attributes.put(“priority”, 50);

@pre(1) : attributes.put(“priority”, 50);

∼;

EXPR ::= EXPR “ ∧ ” EXPR ∼
@pre(all) : if((int)attribute(0, “priority”) > 60){return; }

@pre(0) : attributes.put(“priority”, 60);

@pre(1) : attributes.put(“priority”, 60);
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∼;

EXPR ::= EXPR “&” EXPR ∼
@pre(all) : if((int)attribute(0, “priority”) > 70){return; }

@pre(0) : attributes.put(“priority”, 70);

@pre(1) : attributes.put(“priority”, 70);

∼;

EXPR ::= EXPR “ << ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 80){return; }
if((int)attribute(0, “priority”) == 80&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 80); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 80); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “ >> ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 80){return; }
if((int)attribute(0, “priority”) == 80&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 80); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 80); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “ + ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 90){return; }
if((int)attribute(0, “priority”) == 90&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 90); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 90); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “− ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 90){return; }
if((int)attribute(0, “priority”) == 90&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 90); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 90); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “/” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 100){return; }
if((int)attribute(0, “priority”) == 100&&attribute(0, “branch”).equals(“r”)){return; }



Appendices 99

@pre(0) : attributes.put(“priority”, 100); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 100); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “//” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 100){return; }
if((int)attribute(0, “priority”) == 100&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 100); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 100); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “ ∗ ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 100){return; }
if((int)attribute(0, “priority”) == 100&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 100); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 100); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “%” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 100){return; }
if((int)attribute(0, “priority”) == 100&&attribute(0, “branch”).equals(“r”)){return; }

@pre(0) : attributes.put(“priority”, 100); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 100); attributes.put(“branch”, “r”);

∼;

EXPR ::= “ + ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 110){return; }
@pre(0) : attributes.put(“priority”, 110);

∼;

EXPR ::= “− ” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 110){return; }
@pre(0) : attributes.put(“priority”, 110);

∼;

EXPR ::= EXPR “ ∗ ∗” EXPR ∼
@pre(all) :

if((int)attribute(0, “priority”) > 120){return; }
if((int)attribute(0, “priority”) == 120&&attribute(0, “branch”).equals(“r”)){return; }
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@pre(0) : attributes.put(“priority”, 120); attributes.put(“branch”, “l”);

@pre(1) : attributes.put(“priority”, 120); attributes.put(“branch”, “r”);

∼;

EXPR ::= EXPR “[” EXPR “ : ” EXPR “]” ∼
@pre(0) : attributes.put(“priority”, 0);

@pre(1) : attributes.put(“priority”, 0);

@pre(2) : attributes.put(“priority”, 0);

∼;

EXPR ::= EXPR“[”EXPR“]” ∼
∼;

EXPR ::= EXPR “(” EXPR EXPRS “)” ∼
@pre(0) : attributes.put(“priority”, 0);

@pre(1) : attributes.put(“priority”, 0);

∼| EXPR“(”“)”;

EXPR ::= “(” EXPR EXPRS “)” ∼
@pre(0) : attributes.put(“priority”, 0);

@pre(1) : attributes.put(“priority”, 0);

∼| “()”;

EXPR ::= “[” EXPR EXPRS “]” ∼
@pre(0) : attributes.put(“priority”, 0);

@pre(1) : attributes.put(“priority”, 0);

∼| “[]”;

EXPR ::= “” KVP KVPS “” ∼
@pre(0) : attributes.put(“priority”, 0);

@pre(1) : attributes.put(“priority”, 0);

∼| “”;

EXPRS ::= “, ”EXPR EXPRS |;
KVP ::= ATOM“ : ”ATOM;

KVPS ::= “, ”KVP KVPS |;
EXPR ::= ATOM “[.]” IDENTIFIER;

IDENTIFIER ::= [a− zA− Z][a− zA− Z0− 9]∗ ∼
@post(all) :

int before = currentInputPosition;

int after = scanner.getPosition();

String parsed = scanner.subSequence(before, after);

if(parsed.equals(”True”)){return; }
if(parsed.equals(”False”)){return; }
if(parsed.equals(”for”)){return; }
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if(parsed.equals(”while”)){return; }
∼;

EXPR ::= ATOM;

ATOM ::= NAT | BOOLEAN | STRING | IDENTIFIER;

NAT ::= [1− 9][0− 9]∗ | “0”;

BOOLEAN ::= “True” | “False”;

STRING ::= [\”][a− zA− Z] ∗ [\”];
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