
 Eindhoven University of Technology

MASTER

I/O efficient single source shortest path algorithms for massive grid based graphs

van Maanen, W.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a4a03b90-d861-4661-9644-7d19cba190b6

I/O efficient single source shortest path algorithms

for massive grid based graphs

Wilco van Maanen
Supervisor: Herman Haverkort

August 1, 2014

1

Contents

1 Introduction 4
1.1 Model of computation . 5
1.2 Literature study . 6

2 Input 7
2.1 Grid graph . 7
2.2 Storage . 8

2.2.1 Row and column order 9
2.2.2 Z-order . 10

2.3 Regions . 10
2.4 Highway dimension . 11
2.5 Augmented highway dimension 12

3 Algorithms 13
3.1 Priority queue . 13
3.2 Dijkstra’s Algorithm . 14

3.2.1 Description . 14
3.2.2 Running time (CPU) 15
3.2.3 I/O-efficiency in the worst case 15
3.2.4 I/O-efficiency in grids with constant highway dimension 15
3.2.5 I/O-efficiency in grids with constant augmented high-

way dimension . 15
3.3 I/O-efficiency in grids with random weights 16
3.4 Quasi-linear . 20

3.4.1 Description . 20
3.4.2 Running time (CPU) 20
3.4.3 I/O-efficiency in the worst case 20
3.4.4 I/O-efficiency in grids with constant highway dimension 25
3.4.5 I/O-efficiency in grids with constant augmented high-

way dimension . 26
3.5 Square . 27

3.5.1 Description . 29
3.5.2 Running time (CPU) 31
3.5.3 I/O-efficiency in the worst case 32
3.5.4 I/O-efficiency in grids with constant highway dimension 33
3.5.5 I/O-efficiency in grids with constant augmented high-

way dimension . 33
3.6 TerraCost . 34

3.6.1 Description . 34
3.6.2 Running time (CPU) 35
3.6.3 I/O-efficiency in the worst case 35

2

4 Experimental set-up 37
4.1 Implementation details . 38

4.1.1 Grid . 38
4.1.2 Priority queue . 39
4.1.3 Dijkstra’s Algorithm 39
4.1.4 Quasi-linear . 41
4.1.5 Square . 41
4.1.6 Terra-simple . 41
4.1.7 Terra-efficient . 41

4.2 Data-sets . 43
4.2.1 Worst case . 43
4.2.2 Worst case with distortion rate ϕ% 43
4.2.3 Fully random data set 44
4.2.4 Highways and obstacles 44
4.2.5 Real world data sets 45

5 Results 45
5.1 Fully in memory . 45

5.1.1 Machine . 45
5.1.2 Worst case . 46
5.1.3 Worst case data set with 10% distortion 50
5.1.4 Fully random . 53
5.1.5 Highways and obstacles 57
5.1.6 Real world data sets 61
5.1.7 Combined graphs and general thoughts 64

5.2 I/O . 67
5.2.1 Machine . 67
5.2.2 Settings . 68
5.2.3 Worst case . 69
5.2.4 Worst case with 10% distortion 78
5.2.5 Fully random . 82
5.2.6 Highways and obstacles 87
5.2.7 Real world data sets 91
5.2.8 Combined graphs and general thoughts 94

6 Conclusion 97
6.1 In memory . 98
6.2 I/O setting . 98

7 Future work 99

Appendices 100

A Notation 100

3

Abstract

This report addresses the problem of computing single-source short-
est paths for massive grid-based graphs, where n is the number of ver-
tices in the grid and non of the edge-weights are negative. We define
a simple block-based algorithm called Square . Square works well in
practice and has an I/O bound of O(n√

B
). This algorithm is based on a

single-source shortest paths algorithm from Henzinger et al, which runs
in O(n · log log n) time in the RAM model. Both of these algorithms
are compared with Dijkstra’s algorithm and with a separator-based
algorithm from Hazel et al.

The separator-based algorithm from Hazel et al runs in O(n ·
√
R ·

log n) time, where R is the chosen size for the regions. If R = B2 then
the optimal I/O bound is achieved. We introduce two improvements
for Hazel et al’s separator-based algorithm. For the first improvement
a topology tree is used to achieve a running time of O(n·log n). For the
second improvement two levels of priority queues are used to ensure
that the priority queue always fits in memory as long as c ·M > B2

holds for some c > 1.
Our new block-based algorithm and the O(n · log log n)-time al-

gorithm from Henzinger et al work well even if the input data set is
several times larger than available memory. Hazel et al’s separator-
based algorithm scales well and has a better I/O bound of O(sort(n))
or with our improvements O(n

B), but still does not perform nearly as
well as the Square algorithm due to constant factors for data sets up
to 6 Gigabytes on a machine of 384 Megabytes of memory.

We introduce a new property for graphs called the augmented high-
way dimension. This definition is based on the highway dimension,
which is a property that some realistic graphs might have. But even
graphs with a constant highway dimension do not have a better I/O
bound then worst case graphs. For graphs with a constant augmented
highway dimension however we were able to proof an I/O bound of
Θ(n

B) for the Square algorithm. The I/O bounds of the other al-
gorithms were not improved even if the input graph has a constant
augmented highway dimension.

1 Introduction

Efficiently solving single source shortest paths problems on massive data sets
is a key challenge in a wide spectrum of different areas, such as geographic
information systems, finding shortest paths in road networks and as a part
of other algorithms. The standard algorithms for computing single-source
shortest paths are not made to handle massive data sets which do not fit
in memory and thus, for these data sets, the number of hard disk read and
write operations (I/O) becomes the bottleneck.

The single source shortest path problem, SSSP, is the problem where
given a weighted graph G without negative weights and a source vertex s
we would like to find all minimal distances from s to all other vertices in

4

G = (V,E). Let v ∈ V be a vertex and P ⊂ E be a path from s to v then
the distance from s to v along this path is:

d(v) =
∑
e∈P

w(e)

The minimal distance denoted by dmin(v) is defined as the minimal d(v) if
all possible paths, P , from s to v are tried.

In this paper we will deduce theoretically and experimentally why certain
algorithms, Dijkstra’s [5] and Henzinger et al’s [9], do work well in memory,
but fail in the case of massive data. We will deduce when these algorithms do
still work and why this is the case. For all theoretically and experimentally
results we will limit ourselves to the domain of grid graphs with non-negative
edge weights. Moreover we will introduce and analyse a new algorithm,
Square , which we expect to work well for massive data. In order to give
a proper comparison we will also compare all algorithms with a previously
developed I/O optimal algorithm, Terracost, which is defined by Hazel et
al [8].

1.1 Model of computation

Most algorithms are made in such a way that they try to minimize the num-
ber of CPU operations made, but there are other factors to be considered.
Such as the amount of swapping done by the algorithm. This swapping
occurs once the amount of used memory is greater then the amount of avail-
able memory and the hard drive has to be used to store some amount of the
required data. Since the hard drive is relatively slow compared to internal
memory it would be smart to minimize the amount of swapping which is
needed while running an algorithm. This becomes especially a factor once
data sets are much larger then the memory itself and most of the time is
wasted on reading and writing to and from the hard drive. In order to reason
about this we calculate the number of I/O operations in O or Θ notation
needed by the algorithm.

It is important to note here that the standard paging policy applied by
most standard operating systems is the least-recently-used policy (LRU),
which, once a page has to be written back to the hard drive, will always
pick the least-recently-used one. This policy requires at most a factor two
more I/Os and memory then the optimal paging policy, which means that
in O notation there is no difference as long as the total available memory is
also doubled. From a practical viewpoint it seems reasonable. We refer to
Sleator et al [17] for a proof and further information about this subject.

In order to reason about the number of I/Os two variables are introduced:

• M , which defines the total amount of available memory (RAM).

5

• B, which defines the block size on the hard drive. This block size tells
us how much data can be read or written to or from the hard drive
each time it is accessed.

Then there are two I/O models to be considered, where the first is the cache-
oblivious model and the second is the cache-aware model. When using
the cache-oblivious model the values of M and B are not known by the
algorithm, while for the cache-aware model they are. Within this paper
for all our proofs we assume that the cache-aware model is used. Further
information on the cache-oblivious model is found in Frigo et al [6] and for
the cache-aware model we refer to Aggarwal and Vitter [2].

1.2 Literature study

Haverkort [7] introduces several algorithms, which have good I/O bounds.
—In particular for the single source shortest paths problem an algorithm is
presented which requires O(scan(n)+sort(n√

M
)) I/Os, where M is the total

amount of available memory. The algorithms for breadth first search traver-
sal, creating minimum-spanning trees and topological sorting are solved with
O(scan(n)) I/Os for grid graphs.

An in memory optimal algorithm which solves the SSSP problem in
linear time is defined in the paper of Henzinger et al [9], where a theoretical
linear time algorithm is presented for planar graphs and a more practical
O(n · log logn) algorithm is presented as well. But there has been little to no
investigation on how this algorithm described in Henzinger et al [9] works
on massive data sets, while it already creates regions within the graph and
minimizes the number of vertices on the boundary of a region, which is one
of the general ways to tackle I/O.

In Maheshwari and Zeh [11] an I/O optimal separator based algorithm
is presented for solving the single source shortest paths problem on planar
graphs. In order to get a better CPU bound this algorithm uses Henzinger
et al [9] Linear time algorithm for solving SSSP. Besides this they also derive
an I/O optimal breadth-first search and depth-first search algorithms.

The paper of Hazel et al [8] gives us another approach, TerraCost, for
solving single sources shortest paths problems for planar grid based graphs.
The TerraCost algorithm defined in Hazel et al [8] is a separator based
algorithm. This algorithm is I/O optimal, but has a CPU bound of Θ(n ·√
R · log n), where R is the size of regions and in order to have an I/O bound

of O(sort(n)) we need R = B2. Where B is the block size of the hard drive.
It is important to understand here that in order to achieve this I/O bound
we need a rather large R, which thus means that the running time becomes
large. Which in practice means that a balance needs to be found between
having a large R to achieve the proper I/O bound and a small R to have a
smaller CPU bound.

6

In Klein [10] we are introduced to an algorithm, which efficiently solves
the multiple-source shortest paths problem in planar graphs. The algorithm
takes O(n · log n) time to construct a data structure, which supports queries
which solve a distance query between any vertex on the boundary of the
infinite face and any other vertex. The infinite face for a grid graph would
be the vertices on the outside of the grid. Any query takes O(log n) time to
complete. The interesting part for us here is that with this algorithm one
can lower the CPU bound of the TerraCost algorithm defined in Hazel et
al [8] to Θ(n · log n). This data structure which allows this improvement is
an topology tree, which is defined in depth in papers Sleator et al [16] and
Sleator et al [15].

In Arge et al [4] we are revisited to an I/O efficient solution to the single
source shortest paths problem on planar graphs. They present an algorithm
which achieves a O(sort(n)) I/O bound and requires O(n · log n) time to
complete. The algorithm presented in Arge et al [4] uses the framework pre-
sented in Klein [10] in order to give an extension of computing simple cycle
separators that partition the graph into more then two pieces as presented
in Miller [13]. This extension is then used to reduce the running time of the
algorithm, while maintaining the I/O bound of O(sort(n)).

In Meyer and Zeh [12] an I/O efficient single-source shortest paths algo-

rithm for undirected graphs is presented, with an I/O bound ofO(
√

n·m·logL
B +

MST (n,m)), where m is the number of edges and edges have lengths be-
tween 1 and L. MST (n,m) is the I/O cost related to building a minimum
spanning tree.

2 Input

In this section we will explain what graphs are, which graphs are used, how
they are stored, what regions are, what a highway dimension is and what
the augmented highway dimension is.

2.1 Grid graph

A graph, G, is a tuple of a set vertices, V , and a set of edges, E, and is often
denoted as G = (V,E). Each v ∈ V represents a point, while each e ∈ E
represents a connection between two vertices in V . Hence e = (u, v), where
u, v ∈ V and e ∈ E.

If the graph is undirected then (v, u) ∈ E =⇒ (u, v) ∈ E and if the graph
is directed then (v, u) ∈ E does not imply (u, v) ∈ E.

In addition to the standard graph it is possible to have a weighted graph,
where each edge e ∈ E also has a value connected to it. We denote this value
with:

w(e)

7

A path P within a graph is a set of edges in E where (v, u) = Pi and
(u, o) = Pi+1 holds for all 0 ≤ i ≤ |P | − 1.

Grid Graph A regular grid graph, also called grid graph or just grid, is
a graph where all the vertices can be put next to each other with equal
distances and none of the edges in the graph will cross an example of this
can be seen figure 1. As can be seen in figure 1 each vertex has two, three
of four ingoing and outgoing edges. The total number of vertices in the grid
is n. In this paper we also assume that the number of vertices along both
sides of the graph is

√
n and that

√
n is a power of 2. The total number of

edges is 4 · 2 + 3 · (
√
n− 2) + 4 · (

√
n− 2)2 ≤ 4 · n.

Figure 1: A figure of a grid graph, where the rectangular objects are the
vertices and the lines between them are the edges in the regular grid graph.

2.2 Storage

In this section the details on how the grid is stored will be discussed. With a
vertex we will always store all its outgoing edges, but the order in which the
vertices can be stored can be different. This is the case because in memory
there is only one dimension, while in the grid there are two (namely left to
right and top to bottom). Differently put most vertices have four neighbors,
while in memory each element can only have two. We discus three ways to
solve this problem in the following subsections.

8

2.2.1 Row and column order

Row and column order is the standard way of storing the input data and
usually are the way in which the input data is given. Figures 2 and 4 give
an example of two grids where one is stored in row order and the other is
stored in column order.

Figure 2: A grid stored in row order. The edges between the vertices repre-
sent the order in which they are stored.

Figure 3: A grid stored in column order. The edges between the vertices
represent the order in which they are stored.

9

2.2.2 Z-order

Another way of storing the data is in Z-order. An example of this ordering
is giving in figure 4. The idea behind this is that vertices which have a
small number of edges in the graph between them should on often also be
close to each other in the input file. The reason why this is relevant for us is
because we are trying to minimize the number of made I/Os, hence applying
Z-order instead of the standard row or column orderings might be a way to
do this. We refer to Morton [14] for more information on the Z-order curve
and storing data with this ordering.

Figure 4: A grid stored in Z-order. The edges between the vertices represent
the order in which they are stored.

2.3 Regions

In order to properly understand the descriptions of the algorithms presented
below it is important to understand what a region is. A region is sub part
of the total graph. Such a region can be a square containing for example a
4× 4 part of the graph, but it can also take other forms. See figure 5 for a
standard 8 × 8 grid graph. Figure 6 shows a grid graph with several 8 × 1
regions and figure 7 shows a grid graph with several 4× 4 regions.

Each region has some number of boundary vertices, where a boundary
vertex is vertex which has an edge going from its region into another region.
As can be seen in 6 each region here has 8 boundary vertices and in 7 each
region has 7 boundary vertices. In general using a 4 × 4 sized region each
region would have 12 boundary vertices. For our algorithms it is important
to minimize the number of boundary vertices for a given R in order to get
nice I/O bounds and nice CPU bounds. R here denotes the number of

10

vertices inside a region. Since we have regular grid graphs we know that the
minimum number of boundary nodes is Θ(

√
R) given that R is not close to

n or 1. This implies that a square of size
√
R×
√
R is a good way to achieve

this. Figure 7 is an example of this with R = 16.

Figure 5: A grid graph without defined regions.

Figure 6: A grid graph with rectangular regions.

2.4 Highway dimension

From Abraham et al [1] we get the concept of the highway dimension, which
applies to real road networks and other real data sets. We considered using

11

Figure 7: A grid graph with 4× 4 square regions.

the highway dimension to get nice I/O bounds for a sub-set of real world
data sets.

The highway dimension is defined as follows:

∀r ∈ <+, ∀u ∈ V,∃S ⊆ Bu,4·r : |S| ≤ h

such that:

∀v, w ∈ Bu,4·r : (|P (v, w)| > r ∧ P (v, w) ⊆ Bu,4·r)⇒ (P (v, w) ∩ S 6= ∅)

Where:

• P (v, w) is the shortest path from v to w.

• |P (v, w)| is the sum of all edges in P (v, w).

• Bu,r = {v‖ ∈ V ∧ |P (u, v)| ≤ r}

If h is constant then the highway dimension is constant.

2.5 Augmented highway dimension

In section 2.4 we have introduced the concept of highway dimension, but
since this might not be enough to get an improvement on the I/O bound we
introduce the concept of augmented highway dimension.

The augmented highway dimension is defined as follows:

∀r ∈ <+, ∀u ∈ V,∃S ⊆ Bu,4·r : |S| ≤ h

Such that:

∀v, w ∈ Bu,4·r : (|D(v, w)| > r ∧ P (v, w) ⊆ Bu,4·r)⇒ (P (v, w) ∩ S 6= ∅)

12

Where:

• P (v, w) is the shortest path from v to w within the weighed graph.

• D(v, w) is the shortest path from v to w within the unweighed graph.

• |D(v, w)| is the number of edges in path D(v, w).

• Bu,r = {v‖v ∈ V ∧ |D(u, v)| ≤ r}

If h is constant then the augmented highway dimension is constant.

3 Algorithms

We have implemented several algorithms such that several known algorithms
can be tested against new or untested algorithms in the field of I/O and
massive data. The chosen algorithms are listed below:

• Dijkstra’s algorithm, which is a widely used SSSP algorithm, but for
which it is known to have a worst case Θ(n) I/O bound. The running
time of Dijkstra’s algorithm is Θ(n · log n). Dijkstra’s algorithm is
defined in Introduction to Algorithms [5].

• Quasi-linear , which is based on a linear time SSSP algorithm defined
in Henzinger et al [9]. The version which was implemented is more
practical and has an CPU bound of O(n · log(log(n))). We will show
that the worst case I/O bound for this algorithm is Θ(n√

B
).

• Square , which is a newly developed algorithm and is similar to Quasi-
linear , but is made such that it should be optimized for I/O. The CPU
bound of Square is Θ(n ·

√
R · log n) and the I/O bound is O(n√

B
).

• TerraCost, which is a separator based approach developed by Hazel et
al [8] and which has a theoretical near-optimal I/O bound ofO(sort(n)).
The CPU bound of this algorithm is Θ(n ·

√
R · log n). We introduce

two improvements, which lower CPU bound to Θ(n · log n) and the
I/O bound to Θ(n

B).

3.1 Priority queue

Dijkstra’s algorithm and similar algorithms all use a priority queue, which
is a simple data structure which maintains the minimal value among the
values stored inside it. The functions it must support are:

• Push x with key k into pq

13

– k is the key value on which the minimum or maximum is deter-
mined.

– x is the satellite-data which in our case points to the vertex or
region it is related to.

– pq is the priority queue into which (x, k) is inserted.

• x := pq.extract minKey()

– x is the satellite-data which in our case points to the vertex or
region it is related to. The queue guarantees that x has he min-
imal key value among all key values in the queue and that x is
removed from the priority when it is returned.

– pq is the priority queue into which (x, k) is inserted.

Besides this it is required that each vertex or region, denoted in the functions
with x, is only stored once inside the priority queue. Meaning that each
element inside the queue has a unique satellite-data identifier. If an element
is pushed with the same identifier, x, as one already inside the queue, then
only the one with lowest key value is stored.

For more details on how to implement this we refer to Introduction
to Algorithms [5] and for a detailed explanation on how to make such a
structure I/O efficient we refer to Arge et al [3].

3.2 Dijkstra’s Algorithm

Dijkstra’s algorithm, which is explained in Introduction to Algorithms [5].
Dijkstra’s algorithm given a source and a graph with non-negative edge
weights, solves the single source shortest path problem in Θ(n · log n) time.
This CPU bound is good, since it is only a log(n) factor from the optimum
Θ(n). Moreover the algorithm is easy to implement and it is widely used,
but the algorithms I/O behavior is suboptimal. It can be proven that the
I/O bound is Θ(n) even if an I/O efficient priority queue is used.

3.2.1 Description

In this section Dijkstra’s algorithm will be described and the concept of
relaxing edges will be discussed. The pseudo code for Dijkstra’s algorithm:

Dijkstra.Process(G, s)

Comment: G is the input grid.

Comment: s is the source vertex.

P1 For all v ∈ G let d(v) :=∞

P2 Let pq be an I/O efficient priority queue.

14

P3 Push s with key 0 into pq.

P4 While pq is not empty do:

P5 v := pq.extract minKey()

P6 For each outgoing edge (v, w) of v do:

P7 If d(v) + length(v, w) < d(w) then

P8 d(w) := d(v) + length(v, w)

P9 Push w with key d(w) into pq

The algorithm will continue as long as there is an element in the priority
queue, pq. Once pq is empty we know that all vertices have been relaxed
and all v ∈ V have their final lowest value, dmin(v). Lines P7 and P8 entail
the relaxation of an edge (v, w), whereby a new and lower value for d(w)
is found if P7 yields true. It is possible that this new found d(w) is also
dmin(w). Whenever a vertex, x, is extracted from the priority queue, then
we know that d(x) = dmin(x) since there are no non-negative edges and
d(x) is the lowest value in the priority queue. Hence whenever a vertex is
extracted from the priority queue we know it will have its final value and it
won’t be pushed into the priority queue again.

3.2.2 Running time (CPU)

The running time for Dijkstra’s algorithm is Θ(n · log n), where the log n
factor is related to the size of the priority queue. For a proof of this we refer
to Introduction to Algorithms [5].

3.2.3 I/O-efficiency in the worst case

In general Dijkstra’s algorithm is not I/O efficient and it can be proven to
need Θ(n) I/Os even when using an I/O efficient priority queue. There are
data sets however where one would expect Dijkstra’s algorithm to need a
lot less I/Os then Θ(n).

3.2.4 I/O-efficiency in grids with constant highway dimension

The highway dimension will not improve the I/O bound for Dijkstra’s algo-
rithm for a proof of this we refer to 3.4.4. The fact that Dijkstra’s algorithm
does not use regions will not invalidate this proof.

3.2.5 I/O-efficiency in grids with constant augmented highway
dimension

The augmented highway dimension will not improve the I/O bound for
Dijkstra’s algorithm for a proof of this we refer to 3.4.5. The fact that
Dijkstra’s algorithm does not use regions will not invalidate this proof.

15

3.3 I/O-efficiency in grids with random weights

For some graphs the I/O bound of Dijkstra’s algorithm might be better then
Θ(n) I/Os.

Lets assume we have a given grid which is fully random with weights
between zero and one then intuitively we would expect that the algorithm
slowly moves outward from the source vertex, which means that you would
expect the algorithm to go by the vertices as Breadth first search would
(BFS). Figure 8 visualizes several intermediate results for an experiment
with Dijkstra’s algorithm, where all the weights are random. The figure
shows that even though Dijkstra’s algorithm does not behave exactly like
BFS would it still enforces the idea that the number of grey vertices is
limited, where the grey vertices are the vertices in the priority queue. Given
a proper grid and using the idea above we would expect that the number of
vertices in the priority queue should be at the most O(

√
n). In section 4.1.3

we present some additional experimental results which support this idea.

Theorem If the number of vertices in the priority queue is at most O(
√
n),

the grid is stored in Z-order and M = B2 > c ·
√
n ·B holds for a c > 1 then

at the most O(n√
B

) I/Os are used.

Proof Whenever a vertex, v, is taken from the priority queue and its
neighboring vertices are relaxed then we know that the number of edges
between v and its neighbors is at most one.

Since the grid is stored in Z-order it takes at least
√
B Dijkstra steps

to go from any vertex v to a block which is not adjacent to block Qv. In
figure 9 an example of this is given, where v is the black vertex, u is the
grey vertex and the dotted blocks are the blocks adjacent to Qv. Hence as
long as Qv and its adjacent blocks stay in memory then we know that we
can do at least

√
B Dijkstra steps before we need to use an I/O.

Since it is possible to have a maximum of O(
√
n) vertices stored in the

priority queue and we know that Z-order storage is used then loading in any
vertex and its neighbors takes at most O(1) I/Os. Now let a vertex, v, be
taken from the priority queue and let v be on the boundary of block Tv on
disk. If we now assume we try to reach a block which is not adjacent to
Tv then this would require at least

√
B steps from the initial vertex v. So

if the size of the priority queue is at most O(
√
n) and O(

√
n) blocks and

their adjacent blocks fit in memory then we are able to relax at least
√
B

vertices before we need to use one I/O. We also know that once we use one
I/O to load in the next block and its adjacent neighbors that again we will
be able to do at least

√
B Dijkstra steps before we need to use a new I/O.

Thus each I/O yields at least
√
B Dijkstra steps and also

√
B vertices get

their final value.

16

Using the above we can calculate a new I/O bound:

O(1) · n√
B

=

O(1 · n√
B

)

=

O(
n√
B

)

We still need to show that we have enough memory to hold all the blocks
in memory such that O(n√

B
) I/Os are needed at the most. Let c > 1 then

we have:
M > c ·

√
n ·B = O(

√
n ·B)

Let M = B2 then we get:

M = B2 > c ·
√
n ·B = c ·

√
n ·B

=⇒
B

c
>
√
n

We now have an I/O bound of O(n√
B

) I/Os under the assumptions that
B
c >

√
n =⇒ M = B2 > c ·

√
n · B holds and that the grid is stored in

Z-order. This is exactly what the theorem said thus proven.

�

Remarks If the grid is stored in row order then the I/O bound of O(n√
B

)

will not be achieved since:
Given a vertex v which is extracted from the priority and a grid which

is stored in row order, then generally two of the four neighbors of v will
be stored in a different block then v. Let u be one of those two neighbors,
where Bu 6= Bv. Let u be added to the priority queue and d(u) be the
minimal value in the priority queue. Now since d(u) is the lowest value in
the priority queue and u is selected next, then generally at least one neighbor
of u is in a different block on disk then u and then v, which means that each
vertex selected from the priority queue might require an I/O even if vertices
neighboring each other in the grid are selected in order.

If M
c >

√
n ·B ⇐⇒ False then depending on the order in which vertices

are added and extracted from the priority queue we will again use one I/O
per dijkstra step and get an I/O bound of O(n).

Thus all three assumption in the theorem are necessary. For some ex-
tra information and some experimental results related to the assumptions
required to let this theorem work we refer to section 4.1.3

17

(a) Starting situation with the source
vertex top left (b) After five steps of the algorithm

(c) After 16 steps of the algorithm (d) After 29 steps of the algorithm

Figure 8: A way Dijkstra’s algorithm could behave on a grid with random
edge weights between zero and one. The bigger vertex top left is the source.
Grey vertices are currently in the priority queue, black vertices are done and
have their lowest possible value and white vertices have not been accessed
yet.

18

Figure 9: A 16 by 16 grid stored in Z-order with B = 16 = 42.

19

3.4 Quasi-linear

The linear time algorithm is a single source shortest path algorithm which
theocratically achieves a running time of O(n) CPU operations for the
specifics we refer to Henzinger et al [9]. Besides this optimal linear time
algorithm they also propose another more practical algorithm with a run-
ning time of O(n · log(log(n))). This second algorithm is the one we decided
to implement and test against the other algorithms in this paper.

In section 3.4.3 we will explore in depth how I/O efficient the algorithm is
in the worst case. For the CPU bound and the exact description of algorithm
we refer to Henzinger et al [9].

3.4.1 Description

For the specifics on the Quasi-linear algorithm we refer to Henzinger et al [9],
but we will outline the general idea in this section and why we think this
would also work well in an I/O setting.

The idea behind the algorithm is that it chops the grid up into regions,
where each region has at most O(

√
R) boundary vertices and then one pri-

ority queue is maintained for the regions and a set of priority queues is
maintained for the regions (one queue for each region). In each iteration
the region with lowest key value is selected from the main priority queue
and α Dijkstra steps are performed on this region. Every time a Dijkstra
step is performed the related queues are updated and this process continues
until the main queue is empty and thus also all the queues for each region
is empty.

The idea here was that this algorithm creates regions and does some
amount of work within each region before it continues with another region.
Hence when a proper R and α would be chosen, then one would expect it
to be I/O efficient, at least to some extent.

3.4.2 Running time (CPU)

The running time of the Quasi-linear algorithm is O(log log n), which is very
close to the optimum of O(n). For a proof on this we refer to Henzinger et
al [9].

3.4.3 I/O-efficiency in the worst case

In this section we will prove that the I/O bound will be Θ(n√
(B)

) if the

input is stored in Z-order and Θ(n) if the input is stored in column or row
order. This will be done by first proving that an upper bound and secondly
giving an example which yields the lower bound. Hence resulting in the
tight bound given here.

20

Let each region have size R, then there are O(
√
R) boundary vertices and

let α =∞. Meaning that the entire region will always be done completely.
Whenever a lowest element is extracted from the main priority queue and

α Dijkstra steps are performed on the corresponding region (4+1) ·Θ(x+ R
B)

I/Os are used. Θ(x+ R
B) is the number of I/Os needed to read one region and

additional data structures into memory. The total number of regions which
might have to be accessed is the region itself and its 4 adjacent neighboring
regions. The factor x denotes the minimal number of I/Os needed to access
any region. If the grid is stored in row or column order then x =

√
R and if

the grid is stored in Z-order then x = 1.

Theorem (upper bound) Let R = B and M > c · nB for c > 1, then the
I/O upper bound will be O(n√

(B)
) if the input is stored in Z-order and O(n)

if the input is stored in column or row order.

Proof (upper bound) The sub-queues from each of the regions only
contain elements on the boundary of that region. This is the case because
when a region, q, is extracted from the main priority queue, then α Dijkstra
steps are applied to that block. Since α = ∞ all vertices in the block
are relaxed and the sub-queue of q is empty. The sub-queue’s in regions
neighboring q can still contain unrelaxed vertices, but the added or changed
vertices in these sub-queue’s can only be boundary vertices. Hence each sub-
queue only contains boundary vertices of the corresponding region, which
means that each region in the main queue is only in the main queue, because
some boundary vertex of that region has not been relaxed yet.

Besides this in essence the algorithm simply runs Dijkstra and each re-
gion extracted from the main queue has a vertex which is the lowest possible
at that time. Since there are no negative edges we know that vertices cannot
be made any lower, hence once this region is extracted and the lowest vertex
in this region is relaxed we know it will not be relaxed again.

This implies that each region is extracted at most once from the main
queue for each boundary vertex it contains. Resulting in O(

√
R · nR) or less

times that a region is extracted from the main queue.
Let M > O(n

R), meaning that the main priority queue fits in memory at
all times.

We can combine the previous parts to calculate the total number of I/Os
needed to run the algorithm:

O(
√
R · n

R
) ·O(x+

R

B
)

=

O(
√
R · n

R
· (x+

R

B
))

21

=

O(x ·
√
R · n

R
+
√
R · n

B
)

=

O(n · (x√
R

+

√
R

B
))

From this equation it is already visible that if row or column order are used

and x =
√
R that then: O(n · (x√

R
)) = O(n · (

√
R√
R

)) = O(n) I/Os are needed.

Thus we assume Z-order is used and x = 1.

O(n · (1 ·B +R√
R ·B

))

=

O(n · (B +R√
R ·B

))

When B,R > 1, then the minimum for B+R√
R·B is found if B = R.

O(n · (B +B√
B ·B

))

=

O(n · (2√
B

))

=

O(
n · 2√
B

)

=

O(
n√
B

)

Hence the upper bound for a grid which is stored in row and column order
is O(n) I/Os and the upper bound for a grid which is stored in Z-order is
O(n√

B
).

In order to complete this part we still need to show that the assumption
that the main priority queue fits in memory is fair. Since B = R was chosen
we know that the size of the main queue is at most O(n

B), which means that:
M > c · nB must hold for some large enough c > 1. Hence this assumption
should be no problem.

�

Theorem (lower bound) A lower I/O bound will be Ω(n√
(B)

) if the

input is stored in Z-order and Ω(n) if the input is stored in row or column
order.

22

Proof (lower bound) We will proof this lower bound by giving an ex-
ample where the lower bound of Ω(n√

B
) is encountered:

Assume we have an undirected graph where vi,j is vertex i, j in the grid
and w(v, u) the cost to use the edge between v and u:

• For all i and j let w(vi,j , vi+1,j) = 0.

• For i = 0 and j mod 2 = 1 let w(vi,j , vi,j+1) = 0

• For i = 0 and j mod 2 = 0 let w(vi,j , vi,j+1) =∞

• For i =
√
n− 1 and j mod 2 = 0 let w(vi,j , vi,j+1) = 0

• For i =
√
n− 1 and j mod 2 = 1 let w(vi,j , vi,j+1) =∞

• Let the source vertex be v0,0

Figure 10: An undirected grid graph where the missing edges have weight
∞.

This input is very similar to the worst case input data as defined in
section 4.2.1 an example is given in figure 10.

Given this input when a region is accessed at least
√
R vertices are

relaxed to their final value. And given a R < n at most 2 ·
√
R vertices

are relaxed to their final value. Which means that each region has to be
accessed Θ(R√

R
) times.

Remember that whenever a region is accessed at least Θ(x + R
B) I/Os

are used.
Due to the way the algorithm works the path will simply be followed,

hence solving one column of the input will cost the following number of

23

I/Os:

Θ(
R√
R

) ·Θ(x+
R

B
)

Since there are Θ(
√
n) columns, the total I/O bound becomes:

Θ(
n√
R

) ·Θ(x+
R

B
)

=

Θ(
n · x√
R

+
n

B
)

=

n ·Θ(
x√
R

+
1

B
)

From this equation it is already visible that if row order is used and thus

x =
√
R that then: n ·Θ(x√

R
) = Θ(

√
R√
R

) = Θ(n) I/Os are needed. Thus we

assume Z-order is used and x = 1:

n ·Θ(
1 ·B +

√
R√

R ·B
)

=

n ·Θ(
B +

√
R√

R ·B
)

When B,R > 1, then the minimum for B+R√
R·B is found if B = R.

n ·Θ(
B +

√
B√

B ·B
)

=

n ·Θ(

√
B + 1

B
)

=

n · (Θ(

√
B

B
) + Θ(

1

B
))

=

n ·Θ(

√
B

B
)

=

Θ(
n√
B

)

Hence for this example we found that the total number of I/Os used for
accessing the regions is Θ(n√

B
) if Z-order is used and Θ(n) if row or column

is used (a similar example can be constructed for column order). This also
means that these bounds are lower bounds in general.

�

24

Proof (tight bound) Thus in the above two theorems we have proven
an upper and a lower bound which show that the number of I/Os which are
needed is Θ(n) if row or column order are used and Θ(n√

B
) if the grid is

stored in Z-order.
�

3.4.4 I/O-efficiency in grids with constant highway dimension

In this section we will show that if the input data set has a constant highway
dimension h then the I/O bound will not be improved.

Theorem Given an input graph with a constant highway dimension h
then the I/O bound will be O(n√

B
).

Proof We use the following example to show that a constant highway
dimension does not improve the I/O bound given in section 3.4.3.

Let us have an un-directional grid graph where vi,j is vertex i, j in the
graph and w(v, u) the cost to use the edge between v and u:

• For any i, j let w(vi,j , vi+1,j) = 1

• For i = 0 and j mod 2 = 1 let w(vi,j , vi,j+1) = 1

• For i = 0 and j mod 2 = 0 let w(vi,j , vi,j+1) =∞

• For i =
√
n− 1 and j mod 2 = 0 let w(vi,j , vi,j+1) = 1

• For i =
√
n− 1 and j mod 2 = 1 let w(vi,j , vi,j+1) =∞

• For 0 < i <
√
n− 1 and any j let w(vi,j , vi,j+1) =∞

• Let the source vertex be v0,0

Figure 11 shows an example of the graph as it is defined above.
Now given some r and some vertex u, we can build a set S of size 16 or

less where the elements in S are:
Let S0 = u.
Si = x, where: r

2 ≤ |P (x, Si−1)| ≤ r. There are at least two possible
solutions for x, but we choose the x furthest from u. Since it is possible to
go in two directions from u, we assume that this is done. This means that
two times at most 8 elements are added to S. Since r

2 · 8 = 4 · r, which is
the maximum range.

It is not hard to verify now that every r distance or less along the path
from u outward at least one vertex in S is encountered. Which means that
according to the definition of the highway dimension we have a constant
highway dimension of 16 or less for this given data set.

25

Figure 11: An un-directional grid graph where the missing edges have weight
∞ and the other edges have weight 1.

The question which remains is does this improve the I/O bound found
in 3.4.3. No it does not since the data set is practically the same as the
constructed data set that gives a bound of O(n√

B
). The only difference is

that the edges here along the path are 1 instead of 0 and that several vertices
are not connected, but in essence this graph still has one long path which is
only a constant factor smaller then n. Hence the highway dimension does
not help us to find a better I/O bound.

�

3.4.5 I/O-efficiency in grids with constant augmented highway
dimension

In this section we will show that a graph with an constant augmented high-
way dimension will not yield an improvement upon the I/O bound for the
Quasi-linear algorithm.

Theorem Given an input graph with a constant augmented highway di-
mension h then the I/O bound will be Θ(n√

B
).

Proof We will proof this by taking some graph, G, which has a constant
augmented highway dimension h and build a new graph, Gnew from G which
also has a constant augmented highway dimension, hnew. Graph Gnew will
have a lower bound on the number of I/Os of Ω(n√

R
+ n√

B
).

Let graph, G, with a constant augmented highway dimension, h, where
all edge weights are in [0..1]. Now we will create a new graph, Gnew, where

26

we replace each vertex in G by a set of 5× 5 vertices as follows:
Generate one 5× 5 region, Qi, for each vertex, vi ∈ V , where the edges

between the 16 boundary vertices in Qi have weight zero. The other 4·3·3 =
36 internal edges in Qi have a random weight greater than 25 ·n and smaller
than 100·n. The weights for all of the five edges from Qi to Qj are w((vi, vj))
for any Qi and Qj where vi and vj are adjacent to each other in the original
grid graph, G. We refer to figure 12 for a visualization of this transformation
for a 3× 3 grid graph.

Since the new grid graph, Gnew, is larger and has new edges with random
weights in it we will choose a new h:

hnew = h · 25

By the definition of the augmented highway dimension we can state that
Gnew must also have a bounded augmented highway dimension of hnew.
This is true because the edges between the boundary vertices of each 5× 5
region are zero.

Because of the fact thatR is always a power of two we can infer that Θ(n
R)

regions are breaking the internal edges within a 5× 5 region Qi. Remember
here that the internal edges are the dotted edges with random weight visible
in figure 12. Since these edges are random and greater then n · 25 we know
that first all vertices on the boundary of each 5×5 region will be relaxed and
given their final value and only after that the internal vertices of each 5× 5
region will be extracted from the priority queue. The order in which these
vertices are extracted form the priority queue is random and since Θ(n

R)
regions are broken by internal edges connected to these internal vertices in
each region we know that most regions might be accessed Θ(

√
R) times.

The reason for this is that because every time when a region boundary is
crossed the region on the other side of that boundary will be added into
the priority queue and this region will be extracted again. Since each access
to a region requires Θ(1 + R

B) I/Os (remember that the order is unknown)

we know that at least Ω(n√
R
· (1 + R

B)) = Ω(n√
R

+ n·
√
R

B) I/Os are needed.

Thus the I/O bound will not be improved by using the augmented highway
dimension. We refer to section 3.4.3 for the general proof which also gives an
upper bound on the number of I/Os for a graph with a constant augmented
highway dimension.

�

3.5 Square

The Square algorithm is similar to the Quasi-linear algorithm defined in
section 3.4, but the α value is always set to be ∞ and instead of only
processing one region at a time a 3 × 3 square of 9 regions is processed in
its entirety. Figure 13 gives an example of this.

27

Figure 12: The resulting grid graph when a 3× 3 grid graph is transformed
by replacing each vertex by 5 × 5 region. The dotted lines have random
weight, the normal lines have weight zero and the lines with arrows have the
weight equal to that in the original graph.

28

Figure 13: In this figure a graph where each small square represents one of
the 36 regions. The filled square represents the region which was extracted
from the main priority queue. The rectangle containing 9 squares shows the
9 regions which will be processed and the rectangle containing 25 squares
shows the 25 regions which might be accessed during the sub procedure
Square.Process(T, pq,main pq, sub pq).

3.5.1 Description

The algorithm is defined with the help of two function in the pseudo code
below. The first function Square.Calc sssp(G, s) is the entry function which
calculates the the shortest distance to each v ∈ V this distance is stored in
d(v). The second function Square.Process(T, pq,main pq, sub pq) is a sub
function and processes a 3 × 3 square of 9 regions within the grid. The
total number of regions accessed is at most 9 + 12 = 21, namely the 3 × 3
square and 3 neighboring regions on each side (if diagonal edges are allowed
then the total number of regions accessed is 25). The result of the second
function is the shortest distance stored in d(v) for all the vertices in T using
paths and known distances within T . Hence these found shortest distance
might not be final.

The function r(v) return the region which contains v.
The pseudo code:

Square.Calc sssp(G, s)

Comment: G is the grid graph.

Comment: s is the source vertex.

A1 Let main pq be the main priority queue.

29

Comment: main pq will accept region id’s such as r(v) with some
key value d(v). Where r(v) is the region of vertex v. If there are
two entries in main pq with the same r(v) value then the one
with the lowest key value is stored and the other is removed (or
not added).

A2 Let sub pq(R) be the priority queue for region R.

Comment: The sub priority queue, sub pq(R), will only contain
vertices from the boundary of R and possible the source.

A3 Let pq be a priority queue which contains vertices and there key
values.

A4 For all v ∈ G let d(v) :=∞
A5 Let d(s) := 0

A6 Push r(s) with key d(s) into main pq

A7 Push s with key d(s) into sub pq(r(s))

A8 While main pq is not empty do:

A9 R := pq.extract minKey()

A10 Let T0..8 be R and its 8 surrounding regions.

A11 For i := 0..8 do:

A12 While sub pq(Ti) is not empty do:

A14 Push v with key d(v) into pq

A15 Square.Process(T, pq,main pq, sub pq)

Square.Process(T, pq,main pq, sub pq)

Comment: T are the 9 regions which are being processed.

Comment: pq is the priority queue which is used.

Comment: main pq is the priority queue to maintain the minimum
among the regions.

Comment: sub pq are the priority queues which contains the minimum
for the vertices within the boundary of a region.

P1 While pq is not empty do:

P2 v := pq.extract minKey()

P3 For each outgoing edge (v, w) of v do:

P4 If d(v) + length(v, w) < d(w) then

P5 d(w) := d(v) + length(v, w)

P6 If r(w) ∈ T then

P7 Push w with key d(w) into pq

P8 Else

P9 Push w with key d(w) into sub pq(r(w))

P10 Push r(w) with key d(w) into main pq(r(w))

30

3.5.2 Running time (CPU)

The CPU bound for this algorithm is Θ(n ·
√
R · logR+n · log n

R). The proof
for this bound will be similar to the I/O bound proven in section 3.4.3. First
we will prove the upper bound of O(n ·

√
R · logR) and then we will give an

example which encounters the Ω(n ·
√
R · logR). Θ(n · log n

R) is the cost to
extract and push regions into the main queue. If R is small or R = 1 then
the CPU bound in essence becomes Θ(n · log n), which is the CPU bound
of Dijkstra’s algorithm

Theorem (upper bound) Let R be the size of a region then the CPU
upper bound for the Square algorithm is

O(
√
R · logR · n)

Proof (upper bound) Given some R and some grid we know that a
region is calculated at most O(

√
R) times. The reason for this is that a

region only has O(
√
R) boundary vertices and each boundary vertex can

only be selected from the main queue once. Since once it has been selected
from the main queue it will have the minimal possible value, this is similar
to the invariant which Dijkstra’s algorithm maintains. The fact that this
algorithm processes a 3×3 block in each sub step does not affect this. Hence
each region is processed at most O(

√
R) times.

Each time when a region is selected from the main queue at most O(R ·
logR) operations are performed. Remember here that the sub queue has
size at most O(R) and each operation on it takes O(logR) time if it is full.

Now adding the previous two parts together and remembering that there
are n

R regions we can calculate an upper bound of:

O(
√
R) ·O(R · logR) ·O(

n

R
)

=

O(
√
R ·R · logR · n

R
)

=

O(
√
R · logR · n)

This is exactly what we were looking for.

�

Theorem (lower bound) Let R be the size of a region then the CPU
upper bound for the Square algorithm is

Ω(
√
R · logR · n)

31

Proof (lower bound) The second part consists of giving an example
which uses at least Ω(

√
R · logR · n) CPU operations. We construct the

following input grid:

• For all i and j let w(vi,j , vi+1,j) = 0.

• For i = 0 and j mod 2 = 1 let w(vi,j , vi,j+1) = 0

• For i = 0 and j mod 2 = 0 let w(vi,j , vi,j+1) = n

• For i =
√
n− 1 and j mod 2 = 0 let w(vi,j , vi,j+1) = 0

• For i =
√
n− 1 and j mod 2 = 1 let w(vi,j , vi,j+1) = n

• Let the source vertex be v0,0

If we assume here that 4 · n > R, then whenever a region is selected in
the main priority queue at the most 2 ·

√
R vertices get their final value.

This means that each region has to selected at least Ω(R√
R

) = Ω(
√
R) times.

Using this we can calculate the minimal required number of CPU operations:

Ω(2 ·
√
R ·R · logR · n

R
)

=

Ω(
√
R · logR · n)

�

Proof (tight bound) Combining the upper and lower bound we get a
tight bound of

Θ(n ·
√
R · logR)

To get the final bound we need to add the cost of using the main priority
queue, which is the main cost for small R. The CPU bound is:

Θ(n ·
√
R · logR+ n · log

n

R
)

�

3.5.3 I/O-efficiency in the worst case

The worst case I/O bound is also Θ(n√
R

). The reasoning behind this is the

same as that for the Quasi-linear algorithm and the fact that this algorithm
processes a 3× 3 square instead of just 1 region in every sub step does not
change this. See section 3.4.3 for the details on this.

32

3.5.4 I/O-efficiency in grids with constant highway dimension

If the input grid has a constant highway dimension then the I/O bound for
the Square algorithm will still be Θ(n√

B
). We refer to section 3.4.4 for an

example which yields the Ω(n√
B

). Note here that this example in section

3.4.4 also works for the Square algorithm.

3.5.5 I/O-efficiency in grids with constant augmented highway
dimension

Using the concept of augmented highway dimension we can proof an im-
proved I/O bound for the Square algorithm.

Let r =
√
R
2 and choose for each Q a set SQ such that:

∀v, w ∈ Bu,4·r : (|D(v, w)| >
√
R

2
∧P (v, w) ⊆ B

u,4·
√
R
2

)⇒ (P (v, w)∩SQ 6= ∅)

Where |SQ| ≤ h
Now let us define Tinner to be the set of vertices of all the boundary

vertices of Q and let Touter be the set of vertices of all the boundary vertices
of the nine region which make up the 3× 3 square region where region Q is
the center region.

By the above chosen values for the augmented highway dimension we
know that any shortest path from u ∈ Tinner to v ∈ Touter and vice versa,
where P (u, v) ⊆ B

u,4·
√
R
2

has to contain a vertex from STinner .

We assume that the source vertex, s, is always in SQ as long as s ∈ Bu,4·r.
This assumption will not change the fact that |SQ| is constant and lower or
equal to h+ 1. Moreover it will ensure that we will not need to consider the
special case where the source is nearby.

Now whenever a region, I0, is selected from the main priority queue then
some vertex, v0, on the boundary of I0 has the lowest value. Let d(v) be the
current value of vertex v. In order for I0 with value d(v0) to be added to
the main priority queue all vertices on a path from s to v0 through vs ∈ SI0
thus have its final value too. The reason why we can say this is because

r =
√
R
2 <

√
R. Thus vs is also set to its final value.

When processing region I0 and its adjacent regions each shortest path
from s to any vertex vi ∈ Tinner containing vs will also be relaxed to its final
value as long as P (vi, vs) ⊆ Bvi,4·

√
R
2

holds.

Due to the above we know that each boundary vertex of Q is only reach-
able by going through a vertex in SQ, which implies that each region is
accessed at most Θ(h) times instead of the standard Θ(

√
R) times. This

means that if h <
√
B then a new I/O bound can be deduced namely:

Θ(
n

B
· h)

33

3.6 TerraCost

The TerraCost algorithm by Hazel et al, with the separators and optimized
topology tree. The definition and analysis can be found in Hazel et al [8].
We do however explain in short how the algorithm works and for the special
case of grid graphs improve the I/O bound to O(n

B) and the CPU bound of
Step 1 (Intra-Tile Dijkstra) to O(n · logR).

3.6.1 Description

The terra-cost algorithm uses the well known concept of separators to limit
the number of required I/Os. The algorithm goes through four steps to
solve the single source shortest path problem and the algorithm is given in
figure 14. Step 2 (Sorting) is not applied, since with a regular grid it is
easy to store all the edges in Step 1 (Intra-Tile Dijkstra) in a sorted manure
(meaning that Step 2 (Sorting) should take no time).

We propose and have implemented two modifications. The first modi-
fication improves on the CPU bound in Step 1 (Intra-Tile Dijkstra) . The
second modification improves on the I/O bound of Step 3 (Inter-Tile Dijk-
stra) .

The modification in Step 1 (Intra-Tile Dijkstra) only replaces the way
in which the shortest distances from and to each boundary vertex within
a region are calculated. Instead of running Dijkstra’s algorithm O(

√
R)

times we implemented a multiple-source shortest path algorithm, which is
explained in Klein [10]. The used topology tree is explained in depth in
Sleator et al [16] and Sleator et al [15]. This modification changes the CPU
bound of Step 1 (Intra-Tile Dijkstra) from O(n ·

√
R · logR) to O(n

R · R ·
logR) = O(n · logR).

The modification in Step 3 (Inter-Tile Dijkstra) is related to the priority
queue. Instead of using one large priority queue of size O(n

R ·
√
R) = O(n√

R
)

we propose to use one main queue of size O(n
R) and a set of sub queue.

Where each sub queue is related to its own region and has size at most
O(
√
R). The reasoning behind this is that if R is large enough then O(n

R)
will fit in memory and thus no I/Os would be wasted on this. This is much
the same as the reasoning presented in 3.4.3.

The new pseudo code for modified Step 3 (Inter-Tile Dijkstra) is given
below:

Terra.Step3(G, s,main pq, sub pq)

Comment: s is the source vertex and G is the modified graph created
in Step 1 (Intra-Tile Dijkstra) and sorted in step 2.

Comment: main pq is the priority queue to maintain the minimum
among the regions.

34

Comment: sub pq are the priority queues which contains the minimum
for the vertices within the boundary of a region.

S3.1 For all v ∈ G let d(v) :=∞
S3.2 Push r(s) with key 0 into main pq

S3.3 Push s with key 0 into sub pq(r(s))

S3.4 While main pq is not empty do:

S3.5 t := main pq.extract minKey()

S3.6 v := sub pq(t).extract minKey()

S3.7 For each outgoing edge (v, w) of v do:

S3.8 If d(v) + length(v, w) < d(w) then

S3.9 d(w) := d(v) + length(v, w)

S3.10 Push r(w) with key d(w) into main pq

S3.11 Push w with key d(w) into sub pq(r(w))

S3.12 If sub pq(t) is not empty then

S3.13 v := sub pq(t).extract minKey()

S3.14 Push r(v) with key d(v) into main pq

S3.15 Push v with key d(v) into sub pq(r(v))

The result of this step is still that for all v ∈ G the shortest distance is
stored in d(v).

3.6.2 Running time (CPU)

The CPU bound for Step 1 (Intra-Tile Dijkstra) using the optimized topol-
ogy tree is O(n · logR). The prove for this new bound is given in Klein [10].

The total CPU bound now becomes O(n · logR) +O(n · log n
R) = O(n ·

logR+n · log n
R) = O(n · log n). O(n · log n

R) is derived from the cost of using
the main priority queue defined used in Step 3 (Inter-Tile Dijkstra) .

3.6.3 I/O-efficiency in the worst case

The bottleneck for the I/O bound is found in Step 3 (Inter-Tile Dijkstra) of
the algorithm. Since Step 1 (Intra-Tile Dijkstra) and Step 4 (Final Dijkstra)
are already optimal with Θ(n

B) I/Os.
The I/O cost for Step 3 (Inter-Tile Dijkstra) given in Hazel et al [8] is

O(sort(n)), which comes from the use of an I/O efficient priority queue. We
propose to remove this I/O efficient priority queue and to replace the queue
with one main queue and a set of sub queues. The main queue would only
hold one key value for each region, which means that it would require O(n

R)
space. The sub queues, one for each region, would hold only keys for vertices
within that region, since only boundary vertices of regions exist in this step
we know that each sub queue has size at most O(

√
R).

35

The different steps of the TerraCost algorithm as given in Hazel et al [8]:

• Step 1 (Intra-Tile Dijkstra) First we partition the grid into tiles of
size R and compute (an edge-list representation of) the substitute graph
S. If there are any sources in a tile, we construct one additional vertex
s in that tile (as in the single-source version); this vertex, however, now
represents all sources inside the tile. We then run Dijkstra’s algorithm
from each of the sources, and for each boundary vertex v of the tile we
construct exactly one edge (v, s) that corresponds to the least-cost path
of that vertex to any one of the sources and is weighted with the cost of
this path. This means that we always output at most 4 ·

√
R source-to-

boundary edges when processing a single tile, irrespective of how many
sources are in that tile. We also run Dijkstra’s starting from each
boundary vertex and reaching out to all other boundary vertices. Each
least-cost path δS(u, v) computed in this step corresponds to an edge
(u, v, δS(u, v)) in the substitute graph. All edges are written to one of
two streams, one for the source-to-boundary edges, the other one for
boundary-to-boundary edges.

• Step 2 (Sorting) We sort the boundary-to-boundary stream created
in Step 1 (Intra-Tile Dijkstra) such that all edges originating from the
same vertex will be contiguous. This allows Step 3 (Inter-Tile Dijkstra)
to efficiently index into this stream and to load the O(

√
R) neighbors

on any vertex using O(
√
R
B) I/Os. We separate this step out because

the substitute graph is large (has O(n) edges), resides on disk, and
sorting it takes a significant amount of time; also this step lends itself
to future improvements.

• Step 3 (Inter-Tile Dijkstra) We compute the least-cost paths to
all the boundary vertices using the substitute graph S. We run Dijk-
stra’s using an I/O-efficient priority queue that is initialized with all
the least-cost paths from sources to the boundary computed in Step 1
(Intra-Tile Dijkstra) . As vertices are settled, we load the edges adja-
cent to the current vertex by indexing into the edge-list representation
of S (sorted boundary-to-boundary stream)

• Step 4 (Final Dijkstra) For each tile, we compute the least-cost
paths to all internal points by running Dijkstra’s starting at the bound-
ary points along with any internal source points.

Figure 14: The different steps in the TerraCost algorithm copied from Ter-
racost: A Versatile and scalable approach to Computing Least-
Cost-Path Surfaces for Massive Grid-Based Terrains. For the origi-
nal paper we refer to Hazel et al [8].

36

Remember that each vertex in Step 3 (Inter-Tile Dijkstra) has O(
√
R)

outgoing edges. Hence whenever a vertex in Step 3 (Inter-Tile Dijkstra) is

chosen to be relaxed we know that this requires O(1 +
√
R
B) I/Os, which

means that accessing the sub queue only increases the number of I/Os with
a constant factor.

As long as c ·M > n
R holds for some c > 1 we know that the main queue

fits in memory and thus no I/Os are needed for using the main priority
queue.

Theorem If c ·M > n
R holds for some c > 1 and sub and main priority

queues are used then the I/O bound for grid graphs will be Θ(n
B)

Proof There are O(n·
√
R

R) vertices in Step 3 (Inter-Tile Dijkstra) . Thus

using this and using that each vertex has at the most O(
√
R) outgoing edges

needing O(1 +
√
R
B) I/Os whenever a vertex is selected to be relaxed we get:

O(
n ·
√
R

R
) ·O(1 +

√
R

B
)

=

O(
n ·
√
R

R
+
n ·
√
R

R
·
√
R

B
)

=

O(
n ·
√
R

R
+

n√
R
·
√
R

B
)

=

O(
n√
R

+
n

B
)

Which means if R = B2 then we get an optimal I/O bound of:

Θ(
n√
B2

+
n

B
) = Θ(

n

B
)

�

Remarks Its interesting to note here that no assumptions on the data
storage are made, hence it not only works for Z-order, but also for row and
column order.

4 Experimental set-up

In this section we will explain the different grid graphs which will be gener-
ated and we will point out the relevant implementation details, which might
effect the running time of our algorithms.

37

4.1 Implementation details

In order to verify and properly understand some of the numbers which are
used in the calculations in this paper we need to say a bit more about the
actual implementation. Firstly we will explain the sizes of different types of
variables, then we will explain how the grid is implemented and what details
should be known about the priority queue.

The main different variable types with their sizes are listed below:

• An integer is 32 bits.

• A pointer to another variable or array is 64 bits.

• Floating point numbers are 32 bits when they are stored in data struc-
tures which are swapped in out of memory. Otherwise they are 32 or
64 bits depending on the task which is performed.

Its important to note that in some cases its better to use 64 bits for floating
point numbers, especially if precision is important.

4.1.1 Grid

As explained in section 2.2 there are several orderings in which the vertices
of the grid can be stored, but this doesn’t explain how a vertex is stored
exactly. The structure which is used to store one vertex, v, is given below:

• wleft, a floating point number which defines the weight from v to the
vertex left of it within the grid.

• wright, a floating point number which defines the weight from v to the
vertex to the right of it within the grid.

• wabove, a floating point number which defines the weight from v to the
vertex above it within the grid.

• wbelow, a floating point number which defines the weight from v to the
vertex below it within the grid.

• dmin(v), a floating point number which stores the minimal shortest
distance from s to v.

If for instance v has no left neighbor within the grid, then wleft =∞. The
same holds for wright, wabove and wbelow. If v would be unreachable then
dmin(v) =∞.

The total size of this structure is 4 · 5 = 20 bytes.

38

4.1.2 Priority queue

Elements which are added to the priority queue have the following form:

• v, an integer which identifies the vertex within the grid related to d(v).

• Rv, an integer which identifies in which region vertex v resides. This
field is omitted if it has no meaning.

• d(v), the current shortest known distance from s to v. d(v) is also
used as the key where we minimize the priority queue on.

This means that each element in the priority queue is 3 ·4 = 12 bytes general
and 2 · 4 = 8 bytes in other cases such as if there is no region identifier or if
the entire queue is associated with one particular region.

4.1.3 Dijkstra’s Algorithm

Dijkstra’s algorithm was implemented in accordance with the pseudo code
given in section 3.2.1. For the experiments which run fully in memory we
used our own standard implement priority queue as explained in section
4.1.2. In the I/O case we choose to use the I/O efficient priority queue from
the Standard Template Library for Extra Large Data Sets (STXXL). This
way we can ensure that if Dijksra’s algorithm fails to run properly when
running large data sets in an I/O setting we know that it is not the priority
queue which is failing. This is important since the priority queue given a
proper data set has size Θ(n).

Size of the Priority queue In section 3.2.3 we state that the theoretical
I/O bound of Dijkstra’s algorithm is Θ(n√

B
) if the number of vertices in the

priority queue is at most O(
√
n), Z-order storage is used and M = B2 >

c ·
√
n ·B holds for a c > 1.

Figures 15 and 16 show the number of vertices in the priority queue for
an experiment of the worst case data set with 10% distortion and the fully
random data set. It is visible that it is never greater then c ·

√
n = 3 ·

√
n.

Tables 15 and 16 also show that the difference between the number of vertices
in the priority queue and the number of blocks in which these vertices reside
is approximately O(

√
B) (for example 1129 ·

√
B = 1129 ·

√
256 = 1129 ·16 =

18064 ≈ 17241).
In figure 17 we show for several different B the amount of memory which

would be needed to achieve the I/O bound ofO(n√
B

) for Dijkstra’s algorithm.

If we would take B = 262144 bytes then we would need 195.82 MB to get
the I/O bound of O(n√

B
). As can be seen in figures 15 and 16 it is expected

that a grid which is four times as big only needs two times as much memory
to get the I/O bound of c · n√

B
= c · n√

262144
= c · n

512 , where c > 1 is some

39

reasonable constant. This would mean that a grid of 32768 × 32768 only
needs 4 · 195.82 MB = 783.28 MB of memory, which is a lot less then the
327682 · 20 = 20 Gigabytes needed to store the grid itself. Also the constant
factor of nine in table 17 might be to pessimistic in practice and it might be
closer to three or four.

Number of blocks which have a vertex in the priority queue for:
Block size (B) in vertices Worst case with 10% distortion and grid size:

1024 × 1024 2048 × 2048 4096 × 4096 8192 × 8192

Dijkstra[Z-order,B = 1] 5415 7106 12301 22410
Dijkstra[Z-order,B = 256] 173 384 505 892

Dijkstra[Z-order,B = 1024] 67 149 211 383
Dijkstra[Z-order,B = 4096] 32 65 96 174

Dijkstra[Z-order,B = 16384] 16 25 46 83
Dijkstra[Z-order,B = 65536] 8 11 23 41

Figure 15: The maximum number of different blocks which represent one
or more vertices in the priority queue during the execution of Dijkstra’s
algorithm on the worst case with 10% distortion data set defined in section
4.2.2. The source vertex is chosen to be in the top left corner. The first line
with B = 1 represents the number of vertices in the priority queue.

Number of blocks which have a vertex in the priority queue for:
Block size (B) in vertices Fully random and grid size:

1024 × 1024 2048 × 2048 4096 × 4096 8192 × 8192

Dijkstra[Z-order,B = 1] 2053 3725 7448 17241
Dijkstra[Z-order,B = 256] 147 281 538 1129

Dijkstra[Z-order,B = 1024] 71 137 262 541
Dijkstra[Z-order,B = 4096] 34 66 130 264

Dijkstra[Z-order,B = 16384] 16 34 65 131
Dijkstra[Z-order,B = 65536] 8 17 33 66

Figure 16: The maximum number of different blocks which represent one
or more vertices in the priority queue during the execution of Dijkstra’s
algorithm on the fully random data set defined in section 4.2.3. The source
vertex is chosen to be in the top left corner. The first line with B = 1
represents the number of vertices in the priority queue.

40

Maximum total required memory size:

Block size (B) in bytes Worst case with Fully random
10% distortion

Dijkstra[Z-order,B = 256 · 16 = 4096] 892 ·B · 9 ≤ 32.9 MB 1129 ·B · 9 ≤ 41.7 MB
Dijkstra[Z-order,B = 1024 · 16 = 16384] 383 ·B · 9 ≤ 56.5 MB 541 ·B · 9 ≤ 79.8 MB
Dijkstra[Z-order,B = 4096 · 16 = 65536] 174 ·B · 9 ≤ 102.7 MB 264 ·B · 9 ≤ 155.8 MB

Dijkstra[Z-order,B = 16384 · 16 = 262144] 83 ·B · 9 ≤ 195.9 MB 131 ·B · 9 ≤ 309.1 MB
Dijkstra[Z-order,B = 65536 · 16 = 1048576] 41 ·B · 9 ≤ 387.0 MB 66 ·B · 9 ≤ 622.9 MB

Figure 17: The required memory size to achieve the O(n√
B

) I/O bound for

Dijkstra’s algorithm on 10% distortion 4.2.2 and the fully random 4.2.3 data
set. The size of the grid was 8192 × 8192. The source vertex chosen to be
in the top left corner.

4.1.4 Quasi-linear

The Quasi-linear algorithm is implemented as it is explained in section 3.4.1.
The priority queues which are used are not I/O efficient, but the main queue
will always fit in memory and if the sub queues are needed then an entire
region is also loaded in from disk. Thus this does not asymptotically add
any I/Os.

4.1.5 Square

The Square algorithm is implemented as it is explained in section 3.5.1. The
priority queues which are used are not I/O efficient, but the main queue will
always fit in memory and if the sub queues are needed then an entire region
is also loaded in from disk. Thus this does not asymptotically add any I/Os.

4.1.6 Terra-simple

The Terra-simple algorithm is implemented in accordance with the Terracost
algorithm as explained Hazel et al [8]. This algorithm is not used in the I/O
case, hence we choose not to use an I/O efficient priority queue, but just the
normal queue which is explained in section 3.2.1.

4.1.7 Terra-efficient

The Terra-efficient algorithm is implemented in accordance with the modifi-
cations to the Terracost algorithm as defined in section 3.6.1. The topology
tree is implemented as defined in Sleator et al [16] and Sleator et al [15]. It

41

is important to note here that the topology tree requires a lot of memory
in order to be used. For example if R = 65536 then the topology tree uses
80 Megabytes of memory. This relation is linear hence double R then the
amount of memory needed is also doubled. This also means that each vertex
in R needs approximately 1280 bytes to information about it, which seems
to be a very large number if you consider what is actually stored. This is
also a place where further improvements should be possible.

Topology tree In order to run the multiple-source shortest path algo-
rithm, which is explained in Klein [10] we also had to transform all the
weights from floating point numbers to integers. The reason for this is that
floating point numbers are imprecise and might give a different result to
an equation if numbers are added together in a different order. This fact
might seem trivial, but when working with a complex concept of topology
trees in the area of multiple-source shortest path algorithms as explained
in Klein [10] it can give rise to problems. Such as wrongly adding edges to
the topology tree and since the topology tree is rather complex by itself it
is not easy to generally fix this. Hence we choose to do it the easy way and
just drop the concept of floats while inside the multiple-source shortest path
algorithm.

Since there is always the question about loss of precision when trans-
forming a value from a floating point number to an integer we experimented
a bit and came to the conclusion that 64 bit integers would be good enough
for the grid graphs on which we where running experiments. In order to
convince ourselves that this precision will not give a problem at some point
we also tried to use larger integers, which yielded that larger integers gave
better and better precision. Hence in essence using integers is not a problem
even though it might require slightly more memory, but since floating point
numbers are 32 bits then an increase to 64 bit integers is hardly the problem.
Besides this these 64 bits where only used in Step 1 (Intra-Tile Dijkstra) of
the Terra-efficient algorithm, which runs completely in memory.

The S∗ graph created in Step 1 (Intra-Tile Dijkstra) The Terracost
algorithm creates a new graph, S∗ from the input graph and uses it to get
a nice I/O bound in Step 3 (Inter-Tile Dijkstra) of the algorithm. This S∗

graph is stored in a way which is as compact as possible, namely each internal
vertex, v, in S∗ has approximately 4 ·

√
R outgoing edges. These edges are

stored in a list where each weight has size of the floating point number.
Thus this means that each vertex in S∗ will need 4 · 4 ·

√
R = 16 ·

√
R bytes

of memory. The source and destination vertices of these edges are retrieved
using a simple table of size O(

√
R) and for all vertices the same table is

used.

42

4.2 Data-sets

In the following subsections the data sets which were used to test the im-
plemented algorithms are defined. The total size of a data set is always
denoted in the number of vertices within the grid, n, and each grid always
is a square where each row and column contain

√
n vertices. To make make

the implementation and storage of the grid easier we assume that
√
n is

always a power of 2. Besides this the grid graph is directed and each vertex
has two, three or four ingoing and outgoing edges, namely one edge for each
vertex above, below, right or left of it.

4.2.1 Worst case

The worst case data set is made in such a way such that all algorithms we
test perform asymptotically worst on it. We define the data set as follows:

• For all i and j mod 3 ∈ {0, 2} let w(vi,j , vi+1,j) = 0 and w(vi+1,j , vi,j) =
0.

• For all i and j mod 3 = 1 let w(vi,j , vi+1,j) = x and w(vi+1,j , vi,j) = y
where x and y are two random values between 0 and 1

• For i = 0 and j mod 4 ∈ {0, 1} let w(vi,j , vi,j+1) = x and w(vi,j+1, vi,j) =
y where x and y are two random values between 0 and 1

• For i = 0 and j mod 4 ∈ {2, 3} let w(vi,j , vi,j+1) = 0 and w(vi,j+1, vi,j) =
0

• For i =
√
n − 1 and j mod 4 ∈ {2, 3} let w(vi,j , vi,j+1) = x and

w(vi,j+1, vi,j) = y where x and y are two random values between 0
and 1

• For i =
√
n − 1 and j mod 4 ∈ {0, 1} let w(vi,j , vi,j+1) = 0 and

w(vi,j+1, vi,j) = 0

A visual representation of the above data set is given in figure 18.

4.2.2 Worst case with distortion rate ϕ%

Because the worst case data set defined in 4.2.1 might not be very realistic
we thought of taking a worst case data set and adding some amount of
random distortion to it.

The way how this was implemented is that first a worst case grid graph
is calculated after which ϕ% of the edges within the graph are chosen at
random and their value is changed to a random value x ∈ [0, 1] where x is
independently and randomly chosen.

43

Figure 18: A 8 × 8 grid graph is shown here where the thick edges have
weight 0 and the dotted edges have a random weight between 0 and 1.

4.2.3 Fully random data set

The fully random data set is defined as a graph where all edges have some
value x ∈ [0, 1] where x is independently and randomly chosen.

4.2.4 Highways and obstacles

The highways and obstacles data set is an other approach to try to get a
random grid, which is expected to be closer to input data sets which are
seen in practice. In this case we take a fully random grid graph as defined
in section 4.2.3 and then modify it as follows:

• Generate δ ·
√
n random highways, where each highway is constructed

by selecting two random vertices u and v and setting all outgoing
weights on all vertices on a path from u to v with the minimal number
of edges to a very low value γ.

• Generate δ ·
√
n random obstacles, where each obstacle is constructed

by selecting two random vertices u and v and setting all outgoing
weights on all vertices on a path from u to v with the minimal number
of edges to a very high value β.

44

4.2.5 Real world data sets

The real data sets are derived from height maps, where a map is subdivided
in equal-sized squares of some size and each square has a certain value (its
height).

In order to create grid graphs from these height maps we use the following
function:

length(v(i,j), v(k,l)) =
cost(v(i,j)) + cost(v(k,l))

2

Where length(v(i,j), v(k,l)) is the weight of the edge between vertices v(i,j)
and v(k,l). cost(v(i,j)) is the height value at row i and column j within the
height map.

Hence each square in the height map is transformed into a vertex and
added to G and for each edge to a neighboring square in the height map
a weight is calculated. Neighboring squares are either above, below, left or
right of the current square (resulting in the fact that each vertex has at most
four neighbors).

In order to finally use the resulting grid we clipped a part of the graph
to make it a square, such that both sides have the same length, and to
ensure that no height values which have an unknown value are represented
in the final regular grid graph. This data set is stored as a directed grid
even though w((v, u)) = w((u, v)) for all u, v ∈ V .

5 Results

In this section we will present the results for the different data sets as defined
in section 4.2 for the case where the amount of memory is limited and when
it is not limited.

5.1 Fully in memory

In the following sections we will go through the results for the different data
sets as defined in section 4.2, with an unlimited amount of memory.

5.1.1 Machine

The hardware which was used to run the in memory experiments was:

• Intel i7-3770 CPU running at 3.40 GHz.

• 16 Gigabytes of internal memory.

• 64-bit operating system and executables.

It is made sure that in these experiments the hard drive is not used and
that more then enough memory is available for the experiments, such that
the hard drive is not needed.

45

5.1.2 Worst case

In this section we will present the results for the worst case data set as
defined in section 4.2.1, where the entire grid and data structures fit in
memory.

In figure 19 we see that Quasi-linear , Square and dijkstra’s algorithm
perform best and that Terra-simple and Terra-efficient perform worst in
memory.

For algorithms Terra-simple and Terra-efficient we see that the minimal
region size of R = 4 is chosen, which can be explained by looking at figures 22
and 23, since Step 1 (Intra-Tile Dijkstra) clearly requires the most execution
time and the time taken for Step 1 (Intra-Tile Dijkstra) increases when R
gets bigger.

For the Square algorithm we also see that the smallest R is chosen, which
is supported by the CPU bound of the algorithm of Θ(n ·

√
R · log(R) + n ·

log(n
R)) and shown in figure 20.
The Quasi-linear algorithm performs best and unlike the other algo-

rithms performs better with a somewhat larger region size, with a small α.
This is to be expected when reading paper Henzinger et al [9]. Figure 21
shows the different running times for different R and α values.

Dijkstra’s algorithm as seen in 19 doesn’t perform badly, but one can
see that Quasi-linear and Square are a bit better this is probably due to
the fact that Dijkstra’s algorithm does not have to have spacial or temporal
locality when accessing different vertices in each Dijkstra step, while Square
and Quasi-linear do a certain amount of work on vertices within the same
region. Hence they do have a form of spacial and temporal locality. Besides
this the priority queue of Dijkstra’s algorithm has size O(n), while for the
other two algorithms this is at most O(n

R +R).

46

105.42 106.02 106.62 107.22

10−1

100

101

102

Number of vertices in the grid

T
im

e
in

se
co

n
d

s

Dijkstra[row order]

Quasi-linear [row order; R = 256; α = R
16]

Square [row order; R = 4]

Terra-simple[row order; R = 4]

Terra-efficient[row order; R = 4]

Figure 19: Best running time results for worst case data set in memory.
For the experiments all the data structures and the input grid graph fit in
memory.

10
0
.6

10
1
.2

10
1
.8
1

10
2
.4
1

1
0
3
.0
1

1
0
3
.6
1

1
0
4
.2
1

1
04

.8
2

1
05

.4
2

101

102

103

T
im

e
in

se
co

n
d

s

Quasi-linear [row order; α = R
16]

Square [row order]

Terra-simple[row order]

Terra-efficient[row order]

Size of regions

Figure 20: Running time results for the worst case data set in a 4096 ×
4096 grid graph, where the region sizes are varied. For the experiments all
the data structures and the input grid graph fit in memory.

47

10
0
.6

10
1
.2

10
1
.8
1

10
2
.4
1

10
3
.0
1

10
3
.6
1

10
4
.2
1

10
4
.8
2

10
5
.4
2

10
6
.0
2

101

102

T
im

e
in

se
co

n
d

s
Quasi-linear [row order;α = R]

Quasi-linear [row order;α = R
4]

Quasi-linear [row order;α = R
16]

Quasi-linear [row order;α = R
64]

Quasi-linear [row order;α = R
256]

Size of regions

Figure 21: Running time results for the worst case data set in a 4096 × 4096
grid graph, where the region sizes and α values are varied for the Quasi-linear
algorithm. For the experiments all the data structures and the input grid
graph fit in memory.

101.2 101.81102.41103.01103.61104.21104.82105.42

0

200

400

600

Region size

T
im

e
in

se
co

n
d

s

Step 1 (Intra-Tile Dijkstra) Step 3 (Inter-Tile Dijkstra) Step 4 (Final Dijkstra)

Figure 22: Running time results for the worst case data set in a 4096 × 4096
grid graph, where the region sizes are varied for the Terra-efficient algorithm.
The running times for the different sub steps of the Terra-efficient algorithm
are also given. For the experiments all the data structures and the input
grid graph fit in memory.

48

101.2 101.81 102.41 103.01 103.61 104.21

0

1,000

2,000

3,000

4,000

5,000

Region size

T
im

e
in

se
co

n
d

s

Step 1 (Intra-Tile Dijkstra) Step 3 (Inter-Tile Dijkstra) Step 4 (Final Dijkstra)

Figure 23: Running time results for the worst case data set in a 4096 × 4096
grid graph, where the region sizes are varied for the Terra-simple algorithm.
The running times for the different sub steps of the Terra-simple algorithm
are also given. For the experiments all the data structures and the input
grid graph fit in memory.

49

5.1.3 Worst case data set with 10% distortion

In this section we will present the results for the worst case data set with
10% distortion as defined in section 4.2.2, where the entire grid and data
structures fit in memory.

In figure 24 we see that Quasi-linear , Square and Dijkstra’s algorithm
perform much better then Terra-simple and Terra-efficient . This is simply
due to the fact that Step 1 (Intra-Tile Dijkstra) of Terra-simple and Terra-
efficient is costly for larger R as seen in figures 27 and 28.

Figure 25 shows that the Square algorithm always performs about the
same for any R, but for Quasi-linear there does seem to be a difference.
The difference for Quasi-linear for different values of R and α is also clearly
perceived in figure 26, where we see that R = 103.01 ≈ 1024 and α = R

16 =
1024
16 = 64 gives the best performance.

Comparison with the worst case data set If we compare this data
set with the worst case data set, then we notice from figures 19 and 24 that
Dijkstra’s, Quasi-linear and Square perform slightly better for a data set
with some distortion added, while for Terra-efficient and Terra-simple there
is little to no difference noticeable. Besides this it is interesting to note that
for Quasi-linear and Square larger value for R also perform well and for
Quasi-linear we notice that a smaller α is still preferred. For Terra-efficient
we notice in figures 27 and 22 that Step 1 (Intra-Tile Dijkstra) requires
more time in the worst case with distortion then without. This difference
is probably due to the fact that more mutations on the topology tree are
required.

50

105.42 106.02 106.62 107.22

10−1

100

101

102

Number of vertices in the grid

T
im

e
in

se
co

n
d

s

Dijkstra[row order]

Quasi-linear [row order; R = 1024; α = R
16]

Square [row order; R = 16384]

Terra-simple[row order; R = 4]

Terra-efficient[row order; R = 4]

Figure 24: Best running time results for the worst case data with set 10%
random distortion. For the experiments all the data structures and the input
grid graph fit in memory.

101.2 101.81 102.41 103.01 103.61 104.21 104.82 105.42

101

102

103

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [row order; α = R
16]

Square [row order]

Terra-simple[row order]

Terra-efficient[row order]

Figure 25: Running time results for the worst case data set with 10% dis-
tortion in a 4096 × 4096 grid graph, where region size are varied. For the
experiments all the data structures and the input grid graph fit in memory.

51

101.2 101.81 102.41 103.01 103.61 104.21 104.82 105.42

100.6

100.7

100.8

100.9

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [row order;α = R]

Quasi-linear [row order;α = R
2]

Quasi-linear [row order;α = R
4]

Quasi-linear [row order;α = R
8]

Quasi-linear [row order;α = R
16]

Figure 26: Running time results for the worst case data set with 10% distor-
tion in a 4096 × 4096 grid graph, where region sizes and α values are varied
for the Quasi-linear algorithm. For the experiments all the data structures
and the input grid graph fit in memory.

101.2 101.81 102.41 103.01 103.61 104.21 104.82 105.42

0

200

400

600

800

1,000

Region size

T
im

e
in

se
co

n
d

s

Step 1 (Intra-Tile Dijkstra) Step 3 (Inter-Tile Dijkstra) Step 4 (Final Dijkstra)

Figure 27: Running time results for the worst case data set with 10% dis-
tortion in a 4096 × 4096 grid graph, where the region sizes are varied for
the Terra-efficient algorithm. The running times for the different sub steps
of the Terra-efficient algorithm are also given. For the experiments all the
data structures and the input grid graph fit in memory.

52

101.2 101.81 102.41 103.01 103.61 104.21

0

1,000

2,000

3,000

4,000

Region size

T
im

e
in

se
co

n
d

s

Step 1 (Intra-Tile Dijkstra) Step 3 (Inter-Tile Dijkstra) Step 4 (Final Dijkstra)

Figure 28: Running time results for the worst case data set with 10% dis-
tortion in a 4096 × 4096 grid graph, where the region sizes are varied for
the Terra-simple algorithm. The running times for the different sub steps of
the Terra-simple algorithm are also given. For the experiments all the data
structures and the input grid graph fit in memory.

5.1.4 Fully random

In this section we will present the results for the fully random data set as
defined in section 4.2.3, where the entire grid and data structures fit in
memory.

In figure 29 we see that Quasi-linear , Square and Dijkstra’s algorithm
perform much better then Terra-simple and Terra-efficient . This is simply
due to the fact that Step 1 (Intra-Tile Dijkstra) of Terra-simple and Terra-
efficient is costly for larger R as seen in 32 and 33.

Figure 30 shows that the Square and Quasi-linear algorithm always per-
form about the same for any R given a proper α. In 31 we see that larger
R is preferred.

Comparison with the worst case data set with and without dis-
tortion As with the worst case data set with 10% distortion we see in 19
and 29 that the random graph is completed in less time then the worst case
graph for Dijkstra’s, Quasi-linear and Square , while for Terra-efficient and
Terra-simple no real difference is seen. As with a worst case data set with
10% distortion we notice that larger R perform even better for Quasi-linear
and Square for the fully random graphs. It is interesting to note here that
for Quasi-linear a large α is now preferred over a smaller one for the other
two data sets. For Terra-efficient we notice in figures 22, 27 and 32 that

53

Step 3 (Inter-Tile Dijkstra) takes even more time for fully random graphs,
we again suspect that this is due to the number of modifications to the
topology tree, which must be greater for fully random graphs.

105.42 106.02 106.62 107.22

10−1

100

101

102

Number of vertices in the grid

T
im

e
in

se
co

n
d

s

Dijkstra[row order]

Quasi-linear [row order; R = 256; α = R
2]

Square [row order; R = 256]

Terra-simple[row order; R = 4]

Terra-efficient[row order; R = 4]

Figure 29: Best running time results for the fully random data set. For the
experiments all the data structures and the input grid graph fit in memory.

54

101.2 101.81 102.41 103.01 103.61 104.21 104.82 105.42

101

102

103

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [row order; α = R]

Square [row order]

Terra-simple[row order]

Terra-efficient[row order]

Figure 30: Running time results for the fully random data set in a 4096 ×
4096 grid graph, where region sizes are varied. For the experiments all the
data structures and the input grid graph fit in memory.

101.2 101.81 102.41 103.01 103.61 104.21 104.82 105.42
100.5

100.6

100.7

100.8

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [row order;α = R]

Quasi-linear [row order;α = R
2]

Quasi-linear [row order;α = R
4]

Quasi-linear [row order;α = R
8]

Quasi-linear [row order;α = R
16]

Figure 31: Running time results for the fully random data set in a 4096 ×
4096 grid graph, where region sizes and α values are varied for the Quasi-
linear algorithm. For the experiments all the data structures and the input
grid graph fit in memory.

55

101.2 101.81 102.41 103.01 103.61 104.21 104.82 105.42

0

500

1,000

1,500

Region size

T
im

e
in

se
co

n
d

s

Step 1 (Intra-Tile Dijkstra) Step 3 (Inter-Tile Dijkstra) Step 4 (Final Dijkstra)

Figure 32: Running time results for the worst case data set with 10% dis-
tortion in a 4096 × 4096 grid graph, where the region sizes are varied for
the Terra-efficient algorithm. The running times for the different sub steps
of the Terra-efficient algorithm are also given. For the experiments all the
data structures and the input grid graph fit in memory.

101.2 101.81 102.41 103.01 103.61 104.21

0

1,000

2,000

3,000

Region size

T
im

e
in

se
co

n
d

s

Step 1 (Intra-Tile Dijkstra) Step 3 (Inter-Tile Dijkstra) Step 4 (Final Dijkstra)

Figure 33: Running time results for the worst case data set with 10% dis-
tortion in a 4096 × 4096 grid graph, where the region sizes are varied for
the Terra-simple algorithm. The running times for the different sub steps of
the Terra-simple algorithm are also given. For the experiments all the data
structures and the input grid graph fit in memory.

56

5.1.5 Highways and obstacles

In this section we present the results for the highways and obstacles data
set, where all input data and data structures fit in memory. Figure 34 shows
for each of the algorithms the best found running time. What we mainly
notice is that the Square algorithm is slower then Dijkstra’s and Quasi-linear
, besides this we see that Dijkstra’s algorithm is more vulnerable then the
other two algorithm. With vulnerable we mean that a different δ value has
a clear effect on the running time.

For the Quasi-linear algorithm there are very small differences between
the different settings for R and α as can be seen in figures 35 and 36, but
what we do notice is that with a larger R the running time increases by a
seemingly constant factor and the same holds for a change in α even the
difference between the lines is more vulnerable.

In figure 37 we see that for the Square algorithm the running times for
the different δ and different R are small and nothing can really be deduced
from this graph, besides the fact that a proper R must be chosen for a
certain input graph.

57

10
−
3
.3
1

10
−
3
.0
1

10
−
2
.7
1

10
−
2
.4
1

10
−
2
.1
1

10
−
1
.8
1

10
−
1
.5
1

10
−
1
.2

10
−
0
.9

10
−
0
.6

10
−
0
.3

10
0

100.5

101

101.5

T
im

e
in

se
co

n
d

s

Dijkstra[Row-order]

Quasi-linear [Row-order;R = 256;α = R]

Square [Row-order]

Terra-efficient[Row-order;R = 4]

Terra-simple[Row-order;R = 4]

Highway δ-value

Figure 34: Best running time results for the highways and obstacles data
set in a grid with 2048 × 2048 vertices. For the experiments all the data
structures and the input grid graph fit in memory.

58

10
−
3
.3
1

10
−
3
.0
1

10
−
2
.7
1

10
−
2
.4
1

10
−
2
.1
1

10
−
1
.8
1

10
−
1
.5
1

10
−
1
.2

10
−
0
.9

10
−
0
.6

10
−
0
.3

10
0

100.3

100.35

100.4

T
im

e
in

se
co

n
d

s

Quasi-linear [Row-order;R = 28;α = R]

Quasi-linear [Row-order;R = 210;α = R]

Quasi-linear [Row-order;R = 212;α = R]

Quasi-linear [Row-order;R = 214;α = R]

Quasi-linear [Row-order;R = 216;α = R]

Highway δ-value

Figure 35: Best running time results for the highways and obstacles data
set in a grid with 2048 × 2048 vertices for the Quasi-linear algorithm where
R is varied. For the experiments all the data structures and the input grid
graph fit in memory.

59

10
−
3
.3
1

10
−
3
.0
1

10
−
2
.7
1

10
−
2
.4
1

10
−
2
.1
1

10
−
1
.8
1

1
0
−
1
.5
1

1
0−

1
.2

1
0
−
0
.9

1
0−

0
.6

1
0−

0
.3

10
0

100.3

100.4

T
im

e
in

se
co

n
d

s

Quasi-linear [Row-order;R = 28;α = R]

Quasi-linear [Row-order;R = 28;α = R
4]

Quasi-linear [Row-order;R = 28;α = R
16]

Quasi-linear [Row-order;R = 28;α = R
64]

Highway δ-value

Figure 36: Best running time results for the highways and obstacles data
set in a grid with 2048 × 2048 vertices for the Quasi-linear algorithm where
α is varied. For the experiments all the data structures and the input grid
graph fit in memory.

10
−
3
.3
1

10
−
3
.0
1

10
−
2
.7
1

10
−
2
.4
1

1
0−

2
.1
1

1
0−

1
.8
1

1
0−

1
.5
1

1
0−

1
.2

1
0−

0
.9

1
0−

0
.6

1
0−

0
.3

1
00

100.82

100.84

100.86

100.88

100.9

T
im

e
in

se
co

n
d

s

Square [Z-order;R = 256]

Square [Row-order;R = 1024]

Square [Row-order;R = 4096]

Square [Row-order;R = 16384]

Square [Row-order;R = 65536]

Highway δ-value

Figure 37: Best running time results for the highways and obstacles data
set in a grid with 2048 × 2048 vertices for the Square algorithm where R is
varied. For the experiments all the data structures and the input grid graph
fit in memory.

60

5.1.6 Real world data sets

In this section we present the results for the real world data set, where all
input data and data structures fit in memory. Figure 38 shows for each
of the algorithms the best running times for the different data sets. We
notice here that Dijkstra’s and Quasi-linear perform best, while Square ,
Terra-efficient and Terra-simple perform worse.

From figure 39 we conclude that a large α and a small R is preferred.
For the α we notice that there is little difference between all R

64 ≤ α ≤ R
4 .

In figure 40 we notice that the region size for the Square algorithm does
not seem to matter as much, while for Terra-efficient and Terra-simple it
does, but for Terra-efficient and Terra-simple this is mainly due to Step 3
(Inter-Tile Dijkstra) of the algorithm as seen in figures 41 and 42.

105.42 106.02 106.62

10−1

100

101

Number of vertices in the grid

T
im

e
in

se
co

n
d

s

Dijkstra[Row-order]

Quasi-linear [Row-order;R = 64;α = R]

Square [Row-order;R = 256]

Terra-Efficient[Row-order;R = 4]

Terra-Simple[Row-order;R = 4]

Figure 38: Best running time results for the real world data set. For the
experiments all the data structures and the input grid graph fit in memory.

61

100.6 101.2101.81102.41103.01103.61104.21104.82105.42
100

100.1

100.2

100.3

100.4

100.5

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [Row-order;α = R]

Quasi-linear [Row-order;α = R
4]

Quasi-linear [Row-order;α = R
16]

Quasi-linear [Row-order;α = R
64]

Figure 39: Best running time results for the real world data set in a grid
with 2048× 2048 vertices for the Quasi-linear algorithm where R is varied.
For the experiments all the data structures and the input grid graph fit in
memory.

100.6 101.2101.81102.41103.01103.61104.21104.82105.42

100

101

102

103

Size of Regions

T
im

e
in

se
co

n
d

s

Quasi-linear [Row-order;α = R]

Square [Row-order]

Terra-efficient[Row-order]

Terra-simple[Row-order]

Figure 40: Best running time results for the real world data set in a grid
with 2048 × 2048 vertices where R is varied. For the experiments all the
data structures and the input grid graph fit in memory.

62

100.6 101.2 101.81 102.41 103.01 103.61
100

101

102

103

Size of regions

T
im

e
in

se
co

n
d

s

Terra-efficient[Row-order;Step 1]

Terra-efficient[Row-order;Step 3]

Terra-efficient[Row-order;Step 4]

Terra-efficient[Row-order;Total]

Figure 41: Best running time results for the real world data set in a grid with
2048 × 2048 vertices for the Terra-efficient algorithm. For the experiments
all the data structures and the input grid graph fit in memory.

100.6 101.2 101.81 102.41 103.01 103.61
100

101

102

103

Size of regions

T
im

e
in

se
co

n
d

s

Terra-simple[Row-order;Step 1]

Terra-simple[Row-order;Step 3]

Terra-simple[Row-order;Step 4]

Terra-simple[Row-order;Total]

Figure 42: Best running time results for the real world data set in a grid with
2048 × 2048 vertices for the Terra-simple algorithm. For the experiments
all the data structures and the input grid graph fit in memory.

63

5.1.7 Combined graphs and general thoughts

In figure 43 we see that for Square , Quasi-linear and Dijkstra’s algorithm
the worst case data set is the hardest to solve, while it does not seem to
matter much for Terra-simple and Terra-efficient . The reason why the data
set has little affect on Terra-simple and Terra-efficient is because Step 1
(Intra-Tile Dijkstra) takes by far the most time for both algorithms and
since R = 4 is chosen the time to compute the SSSP for a 2 × 2 graph is
practically constant. This observation is also supported by figures 22, 23 ,
27, 28, 32 and 33, which are pretty much the same even if the data set is
very different.

For the Square algorithm we see in figures 20, 25 and 30 that for the
worst case data set a smaller region size performs better, while even if only
10% distortion is added the running time is seemingly independent from the
chosen region size, which supports the idea that the worst case CPU bound
for the Square algorithm should not be encountered for more practical data
sets.

For the Quasi-linear algorithm we see three very different results for
different R and α values as seen in figures 21, 26 and 31, but the best
chosen R is always in the range of 256 ≤ R ≤ 1024.

Dijkstra’s algorithm performance suffers most from the worst case data
set as seen in 43. This is in line with the argument made in section 5.1.2.

For the Quasi-linear and Square algorithm the chosen R and α for the
real world and highways and obstacles data sets are similar to those of the
worst case data set with 10% distortion and the fully random data set.
Besides this we notice that Terra-efficient and Terra-simple still use up most
of their time in Step 1 (Intra-Tile Dijkstra) for the real world and highways
and obstacles data sets.

Z order versus row order In order to justify using Z order storage of
the grid in an I/O setting we decided to add an experiment which shows
the difference in running times for grid stored in Z order and grids stored
in row order. Figures 44, 45 and 46 visualize several experiments where
both grids in stored in row and Z order where tried out. We clearly see
that for the worst case data set, seen in figure 44, there is very little to no
difference between Z and row order for all algorithms. In figures 45 and 46
we see that for Dijkstra’s algorithm there is no difference between storage
in row or Z order and for Quasi-linear there is only little difference in most
cases. For Square there is a clear cost of using Z order storage over that
of row order, but this is just a small factor of the total running time. It is
interesting to note here that for the Square algorithm a worst case data set
with 10% distortion shows less difference between row and Z order then for
a fully random data set. The reason for this is probably since the worst case
data set with 10% distortion has vertical paths, while the fully random data

64

set does not, hence probably Square with a Z order stored graph has more
locality then Square with row order stored graph.

Figure 43: Best running time results for the worst case data set with 0%,
10% and 100% distortion (fully random) on a grid of size 4096 × 4096 grid.
For the experiments all the data structures and the input grid graph fit in
memory.

65

100.6 101.2 102.41 103.61 104.82
100

101

102

Size of Regions

T
im

e
in

se
co

n
d

s

Dijkstra[Z-order]

Quasi-linear [Z-order;α = R
16]

Square [Z-order]

Dijkstra[Row-order]

Quasi-linear [Row-order;α = R
16]

Square [Row-order]

Figure 44: Running time results for the worst case data set in a grid with
2048 × 2048 vertices where R is varied. For the experiments all the data
structures and the input grid graph fit in memory.

100.6 101.2 102.41 103.61 104.82
100

100.1

100.2

100.3

Size of Regions

T
im

e
in

se
co

n
d

s

Dijkstra[Z-order]

Quasi-linear [Z-order;α = R
16]

Square [Z-order]

Dijkstra[Row-order]

Quasi-linear [Row-order;α = R
16]

Square [Row-order]

Figure 45: Running time results for the worst case data set with 10% dis-
tortion in a grid with 2048 × 2048 vertices where R is varied. For the
experiments all the data structures and the input grid graph fit in memory.

66

100.6 101.2 102.41 103.61 104.82

10−0.05

100

100.05

100.1

100.15

100.2

Size of Regions

T
im

e
in

se
co

n
d

s
Dijkstra[Z-order]

Quasi-linear [Z-order;α = R
16]

Square [Z-order]

Dijkstra[Row-order]

Quasi-linear [Row-order;α = R
16]

Square [Row-order]

Figure 46: Running time results for the fully random data set in a grid with
2048 × 2048 vertices where R is varied. For the experiments all the data
structures and the input grid graph fit in memory.

5.2 I/O

In the following sections we will present the results for the different data
sets as defined in section 4.2, when the amount of available memory is lim-
ited. We have chosen to set the total amount of available memory to 384
Megabytes, which should be small enough if you consider the memory needed
to store a grid as seen in figure 47. Figure 47 also clearly shows that swap-
ping will occur at a grid of size 4096 × 4096 and should be clearly visible
at a grid of size 8192 × 8192, since the amount of memory needed to store
the grid is 1280

384 > 3 times greater than the amount of available memory.

5.2.1 Machine

The hardware which was used to run the I/O experiments presented in
sections 5.2.3, 5.2.4 and 5.2.5 was:

• Unknown CPU ?

• 384 Megabytes of internal memory.

• 64-bit Linux operating system and executables.

67

Number of vertices (n) Size in memory
in Megabytes

n = 105.42 or 512 × 512 n·20
1024·1024 = 5 MB

n = 106.02 or 1024 × 1024 n·20
1024·1024 = 20 MB

n = 106.62 or 2048 × 2048 n·20
1024·1024 = 80 MB

n = 107.22 or 4096 × 4096 n·20
1024·1024 = 320 MB

n = 107.83 or 8192 × 8192 n·20
1024·1024 = 1280 MB

n = 108.43 or 16384× 16384 n·20
1024·1024 = 5120 MB

n = 109.03 or 32768 × 32768 n·20
1024·1024 = 20480 MB

Figure 47: Amount of memory which is needed to store the grid graph. Each
vertex requires 20 bytes of storage.

The hardware which was used to run the I/O experiments presented in
sections 5.2.6 and 5.2.7 was:

• Intel core 2 E6600 at 2400 MHz.

• 384 Megabytes of internal memory.

• 64-bit Linux operating system and executables.

The reason for using two different systems for these different data sets was to
be able to run all the experiments within the limited amount of time which
was available. Just a note for the reader non of the experimental results
between these two machines will be compared with each other.

5.2.2 Settings

In order to run the I/O experiments within the limited time we have we
have chosen to run all I/O experiments on grid graphs which are stored in
Z-order. As shown in section 5.1.7 we know that using Z-order only adds a
little bit of extra computation cost in the worst case, while in our theoretical
analysis we have concluded that Z-order storage has in most cases a better
I/O bound then row order stored grid graphs.

68

For the Terracost algorithm we have chosen to only run Terra-efficient
and not Terra-simple . We have done this because as we will show in the
I/O experiments larger values for R are preferred in which case as we have
seen in the in memory experiments Terra-efficient outperforms Terra-simple
. Moreover we will show that this preference of larger R is due to Step 3
(Inter-Tile Dijkstra) of the algorithm, which means that the choice between
Terra-simple and Terra-efficient does not affect this preference for larger R.

5.2.3 Worst case

In this section we will present the results for the worst case data set as
defined in section 4.2.1. Figure 48 visualizes the best results for each of the
algorithms for different grid sizes.

Dijkstra’s algorithm One of the things which is noticeable is that Di-
jkstra’s algorithm performs better for n = 106.62 then the Quasi-linear and
Square algorithms, but blows up for n = 107.22. The reason why Dijkstra’s
algorithm first performs better is because for n = 106.62 the grid is about
80 Megabytes in memory and depending on the implementation the priority
queue should not be much more then 16 · n = 16 · 106.62 ≈ 64 Megabytes.
This means that a total of 64 + 80 = 144 Megabytes should be small enough
to still be fully in memory, since the total available memory size is 384
Megabytes. While for n = 107.22 the grid itself already is 320 Megabytes,
hence with the added priority queue I/Os will be needed to complete the
algorithm and since the worst case data set ensures that after all the edges
with weight zero have been relaxed there will be O(n) vertices in the priority
queue, which all might need an I/O to relax. They might need an I/O since
the entire grid does not fit in memory and since the order in which they are
relaxed is random and is not related with the order in which they are stored
on disk.

Quasi-linear and Square For the Square and the Quasi-linear algo-
rithms a small jump in running times is visible between n = 106.02 and
n = 106.62 the reason for this is because if n = 106.02 then the grid is only 20
Megabytes in memory, while for n = 106.62 the grid is 80 Megabytes. Both
of these values still fit in memory, but the additional data structures increase
the total needed memory size slightly above the 384 Megabytes boundary,
which means that some I/Os are needed for n ≥ 106.62. The graph visualizes
this clearly.

For the Quasi-linear algorithm a region size of R = 214 = 16384 seems
to yield the best results for larger grids. Besides this a small α is preferred.
This is also confirmed by figure 49 in which we clearly see the sweet spot
being at 212 = 103.61 ≤ R ≤ 104.82 = 216.

69

For the Square algorithm a best region size of R = 210 = 23.01 is found
for larger n. This is also confirmed by figure 50, where we see that smaller
region sizes perform better then larger ones. The reason why smaller regions
are preferred is probably because this decreases CPU bound, but also since
this data set at the most sets 4 ·

√
R vertices to their final value, hence

larger R means that more vertices are read in which are not relaxed to their
final value and thus have to be relaxed again at a later stage. Besides that
Θ(R) = Θ(

√
B) was suppose to give the best I/O bound as explained in

3.4.3. If we now forget about the constants and fill in 20 · R = 20 · 1024 =
20480 ≈

√
B ⇒ B = 204802 then we see that this makes no sense since B

can’t be that large. But this is not the only factor to take into account,
since if

√
B ·
√
n fits in memory, then because of the way the worst case data

set is constructed we know that O(n
B) I/Os are needed at the most. This is

because the path of edges with value zero are relaxed first and once this is
done everything else is relaxed, but these zero edges are one long line going
up and down, hence if the height of the grid and the width of a block of
vertices on disk fit in memory we get the optimal access pattern. If we now
fill in the numbers we get:

√
n ·
√
B ≤

√
108.43 ·

√
B ≤ 16384 ·

√
B

Hence if 16384 ·
√
B < M = 384 Megabytes holds then O(n

B) I/Os should
be needed. For if we assume some large B = 220 then we get:

16384 ·
√
B = 16384 ·

√
220 = 16384 · 210 = 16 · 220 < M = 384 · 220

=⇒

16 < M = 384

Hence everything should easily fit in memory to achieve the O(n
B) I/O

bound. This same idea also holds for the Quasi-linear algorithm. The reason
why Quasi-linear block size is about a factor 24 = 16 larger then that of the
Square algorithm is because Square always accesses from 9 up to 21 regions
while Quasi-linear only accesses from 1 up to 5.

Terra-efficient The Terra-efficient algorithm as seen in figure 48 per-
forms best for a large block size of R = 65536, this is because R = B2

should give the optimal I/O bound of O(n
B) unfortunately it is doubtful

that B = 256, even when adding a constant factor the B, is large enough to
come close to the operating system block size on disk, which usually is at
least 32 kilobytes. To get a nice running time you might even need larger
block sizes then 32 kilobytes, but the problem is that a larger R is not possi-
ble since Step 1 (Intra-Tile Dijkstra) would not fit in memory any more and
since the boundary to boundary calculation is not I/O efficient we would
again get O(n) I/Os from Step 1 (Intra-Tile Dijkstra) alone. The problem

70

here is the same as with Dijkstra’s algorithm, since R < B2 we get that Step
3 (Inter-Tile Dijkstra) is not totally I/O efficient, since each vertex which is
relaxed reads a total of 256 ·4 outgoing edges from this vertex. But since the
next vertex which will be extracted from the priority queue can be anywhere
inside the grid we get that for each vertex which is extracted we might need
one I/O, which means that instead of a division by B we get a division by
some amount significantly smaller then B (namely 256 · 4 · 4).

For the Terra-efficient algorithm we see in figure 52 that the running
time of Step 3 (Inter-Tile Dijkstra) is dependent on the region size, which
is exactly what we would expect since how larger R is the closer it will get
to B2 (as we argued above). Note here that figure 52 are results for a 4096
× 4096 grid graph, while figure 53 are the results for a 16384 × 16384 grid
graph. Step 1 (Intra-Tile Dijkstra) in figure 52 seems to not mind which
region size is chosen. Figure 53 clearly shows where the most time is lost for
Step 3 (Inter-Tile Dijkstra) of the Terra-efficient algorithm. To completely
understand this we calculate how many vertices are part of the path with
edge weight zero between them:

n

R
· 4 ·
√
R

3

=

163842

65536
· 4 ·
√

65536

3
=

4096 · 1024

3
=

4096 · 1024

3
=

1398101

≈

5.33 · 105.418

Where n
R is the number of regions and 4·

√
R

3 is about the number of vertices
in each region which are part of this zero weight path. What is interesting to
note here is that exactly between 5 · 105.418 and 6 · 105.418 the time required
to calculate the next 105.418 goes up drastically. If we assume that the
algorithm won’t just speed up and take the last couple of lines from figure
53 to be the trend which is followed until the program is done, then we
can calculate the total running time for Step 3 (Inter-Tile Dijkstra) (as

71

calculated in the description of figure 53 the total number of vertices to be
relaxed is 16 · 105.418):

(16− 9) · (87511− 64182) + 87511 = 163303 + 87511 = 250814 ≈ 3600 · 69.67

Hence if the last couple of lines in figure 53 are correct, then it would take
69 days total to finish Step 3 (Inter-Tile Dijkstra) of the algorithm.

In order to further show that the problem for the Terra-efficient is the
region size, which is limited by the amount of memory available to run
Step 1 (Intra-Tile Dijkstra) we have done an additional experiment where
we increased the memory to 2048 Megabytes. Figure 54 shows the time
required to relax x vertices in a 16384× 16384 grid graph in Step 3 (Inter-
Tile Dijkstra) of the Terra-efficient algorithm. What is clearly noticed in
this graph is that whichever value for R is chosen the time required to relax
106 · 0.27 vertices takes about the same amount of time once the first 1

3
vertices have been relaxed. Figure 55 shows the same thing, but the x-axis
is now the percentage of vertices done. The exact numbers for the speed up
are given in figure 56 and clearly show what we saw in figure 55.

Due this we can conclude that in a normal setting where more memory
would be available for Step 1 (Intra-Tile Dijkstra) of the Terra-efficient al-
gorithm a larger region size could be chosen and the running time of Step 3
(Inter-Tile Dijkstra) of the algorithm will go down. Besides this we clearly
see in 56 that a larger region size is far less costly for Step 1 (Intra-Tile
Dijkstra) than the amount of time which is gained in Step 3 (Inter-Tile Di-
jkstra) of the Terra-efficient algorithm. Thus this also clearly shows that in
order for the Terra-efficient algorithm to properly work for worst case data
sets a topology tree must be used in order to reach the B2 = R.

72

105.42 106.02 106.62 107.22 107.83 108.43

10−1

100

101

102

103

104

105

Number of vertices in the grid

T
im

e
in

se
co

n
d

s

Dijkstra[Z-order]

Quasi-linear [Z-order]

Square [Z-order]

Terra-efficient[Z-order]

Number of vertices (n) 105.42 106.02 106.62 107.22 107.83 108.43

Quasi-linear [Z-order](R,α) (26, R4) (26, R4) (212, R2) (214, R8) (216, R
32) (216, R

16)
Square [Z-order](R) 216 218 28 28 210 210

Terra-eff[Z-order](R) 26 216 216 216 216

Figure 48: Best running time results for worst case data set with 384 MB
available memory.

73

103.01 103.61 104.21 104.82 105.42 106.02

103

104

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [Z-order;α = R]

Quasi-linear [Z-order;α = R
2]

Quasi-linear [Z-order;α = R
4]

Quasi-linear [Z-order;α = R
8]

Quasi-linear [Z-order;α = R
16]

Quasi-linear [Z-order;α = R
32]

Quasi-linear [Z-order;α = R
64]

Figure 49: Running time results for the worst case data set in a 8192 × 8192
grid graph with only 384 MB memory available, where the region size and α
values are varied for the Quasi-linear algorithm. For α = R

64 and R = 104.82

the experiment did not finish within 1 hour or 3600 = 103.55 seconds.

103.01 103.61 104.21 104.82 105.42 106.02

103

104

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [Z-order; α = R
8]

Square [Z-order]

Figure 50: Running time results for the worst case data set in a 8192 ×
8192 grid graph with only 384 MB memory available, where the region size
is varied. Process is cut off at 3 hours = 104.03 seconds.

74

105.42 106.02 106.62 107.22 107.83

100

101

102

103

104

Number of vertices in the grid

T
im

e
in

se
co

n
d

s

Terra-efficient[Z-order;R = 65536;Step 1]

Terra-efficient[Z-order;R = 65536;Step 3]

Terra-efficient[Z-order;R = 65536;Step 4]

Figure 51: Running time results for the worst case data set in a 4096 × 4096
grid graph with only 384 MB of memory available, where the region sizes
are varied for the different steps of the Terra-efficient algorithm.

Region size (R) 102.41 103.01 103.61 104.21 104.82 105.42

Terra-eff[Z-order,Step 1] 1497 1830 1644 1697 1697 ∞
Terra-eff[Z-order,Step 3] ∞ ∞ ∞ 11763 7665 -
Terra-eff[Z-order,Step 4] - - - 110 121 -

Terra-eff[Z-order,Total] ∞ ∞ ∞ 13570 9484 ∞

Figure 52: Running time results in seconds for the worst case data set in a
4096 × 4096 grid graph, with only 384 MB memory available, when running
the Terra-efficient algorithm. A ∞ denotes that the algorithm did not end
within 4 hours or 14400 seconds. A − denotes that a previous step didn’t
end within 4 hours, hence its unknown what running time it has.

75

Number of vertices extracted from priority queue Total running time
(Meaning number of vertices which received their final value) in seconds for

� Step 3 (Inter-Tile Dijkstra)

1 · 105.418 1322
2 · 105.418 2650
3 · 105.418 4000
4 · 105.418 5337
5 · 105.418 6670

6 · 105.418 19667
7 · 105.418 42029
8 · 105.418 64182
9 · 105.418 87511

10 · 105.418 ∞

Figure 53: Running time results in seconds for the worst case data set in a
16384 × 16384 grid graph, with only 384 MB memory available, when run-
ning the Terra-efficient algorithm. The region size, R, was set to 65536. It
shows the progression of Step 3 (Inter-Tile Dijkstra) of the algorithm. The
algorithm was stopped at 10 · 105.418 = 2618183, since Step 3 (Inter-Tile Di-
jkstra) alone was already running for 1 day and the total number of vertices
which had to be given a final value was:
163842

R · (2 ·
√
R+ 2 · (

√
R− 2) = 163842

65536 · (2 ·
√

65536 + 2 · (
√

65536− 2)

≈ 163842

65536 · (4 ·
√

65536) = 163842

65536 · (4 ·
√

65536) = 4194304
≈ 106.62 ≈ 16 · 105.418.
Step 1 (Intra-Tile Dijkstra) took 24889 seconds or nearly 7 hours to com-
plete.

76

0
.2

6
0
.5

2
0.

7
9

1
.0

5
1
.3

1
1.

57
1.

8
4

2
.1

2
.3

6
2.

6
2

2
.8

8
3
.1

5
3.

4
1

3.
6
7

3
.9

3
4
.1

9
4.

4
6

4
.7

2
4
.9

8
5.

2
4

5.
5
1

5
.7

7

·1
06

0

20

40

T
im

e
in

th
ou

sa
n

d
s

of
se

co
n

d
s Terra-efficient[Z-order;R = 214]

Terra-efficient[Z-order;R = 216]

Terra-efficient[Z-order;R = 218]

Terra-efficient[Z-order;R = 220]

Number of vertices relaxed

Figure 54: Time required to relax x vertices in a 16384 × 16384 grid for
Step 3 (Inter-Tile Dijkstra) of the Terra-efficient algorithm, with only 2048
MB of memory available. The cut off time was 55000 seconds, meaning that
Terra-efficient[Z-order;R = 214] is not done after it has relaxed 5.77 · 106

vertices.

0

0
.1

3

0.
2
5

0.
38 0
.5

0
.6

3

0.
7
5

0
.8

8 1

0

20

40

T
im

e
in

th
ou

sa
n

d
s

of
se

co
n

d
s Terra-efficient[Z-order;R = 214]

Terra-efficient[Z-order;R = 216]

Terra-efficient[Z-order;R = 218]

Terra-efficient[Z-order;R = 220]

Percentage of total number of vertices relaxed

Figure 55: Time required to relax a percentage of the total number of vertices
which have to be relaxed for Step 3 (Inter-Tile Dijkstra) the Terra-efficient
algorithm in a 16384 × 16384 grid, with only 2048 MB of memory available.
Note here that Terra-efficient[Z-order;R = 214] only relaxes 70% of all its
vertices and thus not finish within the required amount of time.

77

Region size (R) 16384 65536 262144 1048576

Terra-eff[Z-order,Step 1] 27497 28059 29416 32236
Terra-eff[Z-order,Step 3] ∞ 46150 22801 11030
Terra-eff[Z-order,Step 4] - 916 1047 1333

Terra-eff[Z-order,Total] ∞ 75125 53264 44599

Figure 56: Running time results for the worst case data set in a grid with
16384 × 16384 vertices for the Terra-efficient algorithm when R is varied,
with 2048 MB memory available.

5.2.4 Worst case with 10% distortion

In this section we will present the results for the worst case data set with
10% distortion. Figure 57 shows the best results for each of the algorithms
given different values of n.

Dijkstra’s algorithm The first thing we notice when looking at figures
48 and 57 is that Dijkstra’s algorithm does not fail and is just slightly worse
then Quasi-linear and Square , while it is better then the Terra-efficient
algorithm.

Quasi-linear and Square We see figure 57 that Quasi-linear likes to
have region size of 212 and prefers α to be large. In contrary to what we
see for the worst case data set in figure 48, where a smaller α is preferred.
The Square algorithm prefers a region size of R = 210 which is little bit less
then Quasi-linear , whereby the reasoning behind this is the same as that in
section 5.2.3. It is also interesting to note that Quasi-linear performs a little
bit worse then Square for the largest grid of 32768 × 32768 nodes. What we
also notice is the for the worst case data set and the worst case data with
10% distortion the same region sizes are preferred.

Figure 58 clearly shows that a larger α is preferred for the Quasi-linear
algorithm and that R = 105.42 performs best for a grid of n = 226 vertices.

Figure 59 shows that the trend for the different R for the Quasi-linear
and the Square algorithm is the about the same it is just shifted somewhat
in the X-axis direction.

Terra-efficient Figure 60 shows that Step 1 (Intra-Tile Dijkstra) of the
Terra-efficient algorithm still takes up most time and that Step 3 (Inter-Tile
Dijkstra) explodes far less then for the worst case data set without distortion
as seen in section 5.2.3, but it still seems to be increasing for larger grids.
In figure 61 we see that the region size has little effect on the total running

78

time and on the running time of Step 1 (Intra-Tile Dijkstra) . Step 4 (Final
Dijkstra) and mainly Step 3 (Inter-Tile Dijkstra) do seem to be affected
significantly.

105.42 106.02 106.62 107.22 107.83 108.43 109.03

10−1

100

101

102

103

104

105

Number of vertices in the grid

T
im

e
in

se
co

n
d

s

Dijkstra[Z-order]

Quasi-linear [Z-order]

Square [Z-order]

Terra-efficient[Z-order]

Number of vertices (n) 105.42 106.02 106.62 107.22 107.83 108.43 109.03

Quasi-linear [Z-order](R,α) (26, R) (26, R) (212, R2) (218, R) (218, R) (212, R) (212, R)
Square [Z-order](R) 216 218 212 212 212 210 210

Terra-eff[Z-order](R) 26 216 216 216 216 216

Figure 57: Best running time results for worst case data set with 10% dis-
tortion with 384 MB available memory.

79

103.01 103.61 104.21 104.82 105.42 106.02

102.3

102.4

102.5

102.6

102.7

102.8

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [row order;α = R]

Quasi-linear [row order;α = R
2]

Quasi-linear [row order;α = R
4]

Quasi-linear [row order;α = R
8]

Figure 58: Running times results for the worst case data set with 10%
distortion in a 8192 × 8192 grid graph, with 384 MB memory available,
where the region size and α values are varied for the Quasi-linear algorithm.

103.01 103.61 104.21 104.82 105.42 106.02

102.3

102.4

102.5

102.6

102.7

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [Z-order; α = R]

Square [Z-order]

Figure 59: Running time results for the worst case data set with 10% dis-
tortion in a 8192× 8192 grid graph, with 384 MB memory available, where
the region size is varied.

80

105.42 106.02 106.62 107.22 107.83 108.43

100

101

102

103

104

105

Number of vertices in the grid

T
im

e
in

se
co

n
d

s

Terra-efficient[Z-order;R = 65536;Step 1]

Terra-efficient[Z-order;R = 65536;Step 3]

Terra-efficient[Z-order;R = 65536;Step 4]

Figure 60: Running time results for a worst case data set with 10% distor-
tion, with only 384 MB of memory available for the different steps of the
Terra-efficient algorithm.

102.41 103.01 103.61 104.21 104.82
102

103

Size of regions

T
im

e
in

se
co

n
d

s

Terra-efficient[Z-order;Step 1]

Terra-efficient[Z-order;Step 3]

Terra-efficient[Z-order;Step 4]

Terra-efficient[Z-order;Total]

Figure 61: Running time results for a worst case data set with 10% distortion
in a 4096 × 4096 grid graph, with only 384 MB of memory available, where
the region sizes are varied for the Terra-efficient algorithm.

81

5.2.5 Fully random

In this section we will present the results for the fully random data set for
which the best results are given in figure 62.

Dijkstra As seen in figures 48, 57 and 62 we notice that Dijkstra’s al-
gorithm performs similarly for a random graph as it does for a worst case
graph with 10% distortion. This is not as bad as one might initially have
thought it would be even for n = 109.23, which means that the grid is about
20 Gigabytes on disk. This is a lot more then the 384 Megabytes of memory
which are available.

Quasi-linear and Square In figure 62 we see that the Quasi-linear and
Square algorithms performs similarly for grids with up to 32768 × 32768
vertices.

In figure 63 we see that for the Quasi-linear algorithm large α are pre-
ferred and R = 105.42 works best for this grid size. This is in line with what
we see in worst case data set with 10% distortion as presented in figure 58.

Figure 64 shows that Quasi-linear and Square perform about as well as
the other.

Terra-efficient Figure 65 shows that Step 1 (Intra-Tile Dijkstra) takes
the most time and that Step 3 (Inter-Tile Dijkstra) requires some amount
of I/Os for n ≥ 106.62, but after this point increases linearly with n until
107.83 ≤ n and for n = 108.43 it increases further again. The reason why this
further increase in Step 3 (Inter-Tile Dijkstra) is made might be explained
by looking at figure 77 where we can see that the total number of regions
which are represented by vertices in the priority queue is 133, when now
calculating how much memory would be needed to keep these 133 regions
and their related data structures in memory then we get:

133 · (4 · 256) · (4 · 256) ≈ 133 · 220

Where (4·256) is approximately the number of vertices around the boundary
of one region. The second (4 · 256) represents the number of outgoing edges
from any vertex along the boundary to any other vertex along the boundary
in that same region. If we now assume each edge weight has the size of one
float then we get:

133 · 220 · 4 = 532 · 220 > 384 · 220

Which means there is a good chance that everything won’t fit in memory (we
can’t know this for sure since it depends on the order in which the vertices
are selected from the priority queue). If we on the other hand take the grid

82

of size n = 107.83, then we see a total of 65 different regions with vertices in
the priority queue, which calculates to:

65 · (4 · 256) · (4 · 256) ≈ 65 · 220

Thus we need about 65 · 220 · 4 ≈ 260 Megabytes to hold all the outgoing
edges from vertices in the priority queue. Next to this we also need some
amount of memory to hold the other information related to each region, but
this is far less then the amount of memory needed to store the edge lists.
Hence we can say that for 107.83 = n we need less then 384 MB, thus we
would expect to see something which is close to O(n

B).
Figure 66 shows the progression of the Terra-efficient algorithm for the

different sub steps on a grid of size 4096 × 4096.
Besides this we notice that the Terra-efficient algorithm performs the

same for worst case graphs with 10% distortion as it does for fully random
graphs and also prefers large R over smaller ones. Even though the cost for
choosing a smaller R for Step 3 (Inter-Tile Dijkstra) is far less steep then
for the worst case data set.

83

105.42 106.02 106.62 107.22 107.83 108.43 109.03

10−1

100

101

102

103

104

105

Number of vertices in the grid

T
im

e
in

se
co

n
d

s

Dijkstra[Z-order]

Quasi-linear [Z-order]

Square [Z-order;R = 4096]

Terra-efficient[Z-order]

Number of vertices (n) 105.42 106.02 106.62 107.22 107.83 108.43 109.03

Quasi-linear [Z-order](R,α) (28, R) (28, R) (214, R) (216, R2) (218, R) (210, R) (210, R)
Square [Z-order](R) 212 212 212 212 212 212 212

Terra-eff[Z-order](R) 26 26 26 28 216 216 216

Figure 62: Best running time results for the fully random data set with 384
MB memory available.

84

102.41 103.01 103.61 104.21 104.82 105.42 106.02 106.62

102.4

102.6

102.8

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [Z-Order;α = R]

Quasi-linear [Z-Order;α = R
4]

Quasi-linear [Z-Order;α = R
16]

Quasi-linear [Z-Order;α = R
64]

Figure 63: Running time results for the fully random data set in a 8192×8192
grid graph, with only 384 MB memory available, where the region size and
α values are varied for the Quasi-linear algorithm.

102.41 103.01 103.61 104.21 104.82 105.42 106.02 106.62

102.4

102.6

102.8

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [Z-order; α = R]

Square [Z-order]

Figure 64: Running time results for the fully random data set in a 8192×8192
grid graph, with only 384 MB memory available, where the region size is
varied.

85

105.42 106.02 106.62 107.22 107.83 108.43

100

101

102

103

104

105

Number of vertices

T
im

e
in

se
co

n
d

s

Terra-efficient[Z-order;R = 65536;Step 1]

Terra-efficient[Z-order;R = 65536;Step 3]

Terra-efficient[Z-order;R = 65536;Step 4]

Figure 65: Running time results for the fully random data set, with only
384 MB memory available for the Terra-efficient algorithm.

102.41 103.01 103.61 104.21 104.82

102.5

103

103.5

Size of regions

T
im

e
in

se
co

n
d

s

Terra-efficient[Z-order;Step 1]

Terra-efficient[Z-order;Step 3]

Terra-efficient[Z-order;Step 4]

Terra-efficient[Z-order;Total]

Figure 66: Running time results for the fully random data set in a grid of
4096 × 4096 vertices, with only 384 MB memory available for the Terra-
efficient algorithm, where the running times of the different sub steps of the
algorithm are given.

86

5.2.6 Highways and obstacles

In this section we present the results for the highways and obstacles data
set, where figure 67 visualizes the best results for each algorithm. What
we mainly see here is that Quasi-linear and Square perform similarly, while
Dijkstra performs worse, but it seems to be purely a constant factor. The
Terra-efficient performs worst.

Figure 68 and 69 show the different running times for different δ and
different R for the Square and Quasi-linear algorithms. Both figures show
the same trends and only δ = 10−4.52 is somewhat strange for the Square
algorithm the reason for this is unknown.

Figure 70 shows that the total running time of the Terra-efficient algo-
rithm is mainly dependent on the Step 1 (Intra-Tile Dijkstra) of the algo-
rithm, but that Step 3 (Inter-Tile Dijkstra) is also relevant.

Figure 71 shows for δ = 1.0 that for the Terra-efficient algorithm there
is very little difference in running time between different values for R. This
is mainly the case because when Step 1 (Intra-Tile Dijkstra) takes longer
and R is larger Step 3 (Inter-Tile Dijkstra) will take less time.

In general when looking at these different figures we notice that larger
δ require a bit more time to calculate, while small δ seem more random as
in sometimes it takes more time and sometimes it takes less this might be
related to the fact for small δ we are closer to the fully random graph and
thus anything can happen.

87

10
−
5
.4
2

10
−
5
.1
2

10
−
4
.8
2

10
−
4
.5
2

10
−
4
.2
1

10
−
3
.9
1

10
−
3
.6
1

10
−
3
.3
1

10
−
3
.0
1

10
−
2
.7
1

10
−
2
.4
1

10
−
2
.1
1

10
−
1
.8
1

10
−
1
.5
1

10
−
1
.2

10
−
0
.9

10
−
0
.6

10
−
0
.3

10
0

103

104

T
im

e
in

se
co

n
d

s
Dijkstra[Z-order]

Quasi-linear [Z-order]

Square [Z-order]

Terra-efficient[Z-order;R = 216]

Highway δ-value

Highway δ-value 10−5.42 10−5.12 10−4.82 10−4.52 10−4.21 10−3.91

Quasi-linear (R,α) (214, R) (218, R) (218, R) (214, R) (218, R) (218, R)
Square (R) (216) (216) (216) (216) (216) (216)

Highway δ-value 10−3.61 10−3.31 10−3.01 10−2.71 10−2.41 10−2.11 10−1.81

Quasi-linear (R,α) (218, R) (218, R) (216, R) (218, R) (218, R) (218, R) (218, R)
Square (R) (216) (216) (216) (216) (216) (216) (216)

Highway δ-value 10−1.51 10−1.2 10−0.9 10−0.6 10−0.3 100

Quasi-linear (R,α) (218, R) (218, R) (216, R) (218, R) (218, R) (218, R)
Square (R) (216) (216) (214) (216) (216) (216)

Figure 67: Best running time results for the highways and obstacles data
set in a grid with 8192× 8192 vertices, with 384 MB memory available.

88

10
−
5
.4
2

10
−
5
.1
2

10
−
4
.8
2

10
−
4
.5
2

10
−
4
.2
1

10
−
3
.9
1

10
−
3
.6
1

10
−
3
.3
1

10
−
3
.0
1

10
−
2
.7
1

10
−
2
.4
1

10
−
2
.1
1

10
−
1
.8
1

10
−
1
.5
1

10
−
1
.2

10
−
0
.9

10
−
0
.6

10
−
0
.3

1
00

102.5

103

T
im

e
in

se
co

n
d

s

Quasi-linear [Z-order;R = 210;α = R]

Quasi-linear [Z-order;R = 212;α = R]

Quasi-linear [Z-order;R = 214;α = R]

Quasi-linear [Z-order;R = 216;α = R]

Quasi-linear [Z-order;R = 218;α = R]

Highway δ-value

Figure 68: Best running time results for the highways and obstacles data
set in a grid with 8192× 8192 vertices for the Quasi-linear algorithm where
R is varied, with 384 MB memory available.

10
−
5
.4
2

10
−
5
.1
2

10
−
4
.8
2

10
−
4
.5
2

10
−
4
.2
1

10
−
3
.9
1

10
−
3
.6
1

10
−
3
.3
1

10
−
3
.0
1

10
−
2
.7
1

10
−
2
.4
1

10
−
2
.1
1

10
−
1
.8
1

10
−
1
.5
1

1
0−

1
.2

1
0−

0
.9

1
0−

0
.6

1
0−

0
.3

10
0

102.5

103

T
im

e
in

se
co

n
d

s

Square [Z-order;R = 1024]

Square [Z-order;R = 4096]

Square [Z-order;R = 16384]

Square [Z-order;R = 65536]

Highway δ-value

Figure 69: Best running time results for the highways and obstacles data
set in a grid with 8192 × 8192 vertices for the Square algorithm where R is
varied, with 384 MB memory available.

89

10
−
5
.4
2

10
−
5
.1
2

10
−
4
.8
2

10
−
4
.5
2

10
−
4
.2
1

10
−
3
.9
1

10
−
3
.6
1

10
−
3
.3
1

10
−
3
.0
1

10
−
2
.7
1

10
−
2
.4
1

10
−
2
.1
1

10
−
1
.8
1

10
−
1
.5
1

10
−
1
.2

10
−
0
.9

10
−
0
.6

10
−
0
.3

10
0

102

103

104

T
im

e
in

se
co

n
d

s

Terra-efficient[Z-order;Step 1]

Terra-efficient[Z-order;Step 3]

Terra-efficient[Z-order;Step 4]

Terra-efficient[Z-order;Total]

Highway δ-value

Figure 70: Best running time results for the highways and obstacles data set
in a grid with 8192 × 8192 vertices for the Terra-efficient algorithm, with
384 MB memory available.

Region size (R) 4096 16384 65536

Terra-eff[Z-order,Step 1] 11618 12875 14380
Terra-eff[Z-order,Step 3] 3625 2313 1572
Terra-eff[Z-order,Step 4] 211 169 152

Terra-eff[Z-order,Total] 15455 15354 16104

Figure 71: Running time results for the highways and obstacles data set in
a grid with 8192 × 8192 vertices for the Terra-efficient algorithm when R is
varied and δ = 1.0, with 384 MB memory available.

90

5.2.7 Real world data sets

In this section we present the results for the real world data set, where figure
72 visualizes the best results for each algorithm. We clearly notice here that
Dijkstra’s algorithm performs about as well as Quasi-linear and Square ,
while Terra-efficient is worse.

Quasi-linear and Square From figure 73 we notice for the Quasi-linear
algorithm that a large region size is preferred and α = R performs best,
while in 74 for Square a much smaller R of 16384 is preferred. This is also
as expected since Square always finishes 9 regions while Quasi-linear only
does one. Notice here that 16384 · 9 = 147456 and 217 < 147456 < 218.

Terra-efficient In figure 75 we see that the cost in Step 1 (Intra-Tile
Dijkstra) for a larger region size is small, while the benefit is greater in Step
3 (Inter-Tile Dijkstra) of the algorithm. One must note here that since the
figure has logarithmic scale the benefit in Step 3 (Inter-Tile Dijkstra) might
look larger then the cost in Step 1 (Intra-Tile Dijkstra) , but in essence its
about the same as we can see by looking at the line which represents the
total cost.

91

105.42 106.02 106.62 107.22 107.83

10−1

100

101

102

103

104

Number of vertices in the grid

T
im

e
in

se
co

n
d

s

Dijkstra[Z-order]

Quasi-linear [Z-order]

Square [Z-order]

Terra-efficient[Z-order;R = 65536]

n 105.42 106.02 106.62 107.22 107.82

Quasi-linear (R,α) (4096,α = R) (4096,α = R) (4096,α = R) (218,α = R) (218,α = R)
Square (R) 16384 65536 256 262144 16384

Terra(R) 4096 4096 4096 4096 4096

Figure 72: Best running time results for the real world data set, with 384
MB memory available.

92

103.61 104.21 104.82 105.42
102.3

102.4

102.5

102.6

102.7

102.8

Size of regions

T
im

e
in

se
co

n
d

s

Quasi-linear [Z-order;α = R]

Quasi-linear [Z-order;α = R
4]

Quasi-linear [Z-order;α = R
16]

Quasi-linear [Z-order;α = R
64]

Figure 73: Best running time results for the real world data set in a grid
with 8192 × 8192 vertices for the Quasi-linear algorithm where R is varied,
with 384 MB memory available.

102.41 103.01 103.61 104.21 104.82 105.42

103

104

Size of Regions

T
im

e
in

se
co

n
d

s

Quasi-linear [Z-order;α = R]

Square [Z-order]

Terra[Z-order]

Figure 74: Best running time results for the real world data set in a grid
with 8192 × 8192 vertices where R is varied, with 384 MB memory available.

93

103.61 104.21 104.82

103

104

Size of regions

T
im

e
in

se
co

n
d

s
Terra-efficient[Z-order;Step 1]

Terra-efficient[Z-order;Step 3]

Terra-efficient[Z-order;Step 4]

Terra-efficient[Z-order;Total]

Figure 75: Best running time results for the real world data set in a grid
with 8192 × 8192 vertices for the Terra-efficient algorithm, with 384 MB
memory available.

5.2.8 Combined graphs and general thoughts

In this section we will present the differences in results between the worst
case, worst case with 10% distortion and fully random data sets. Figure
76 visualizes these results and what we notice is that Dijkstra’s and Terra-
efficient algorithms don’t finish within time for the worst case data structure.
Besides this we see that Terra-efficient is always worse then all the other
algorithms and that Dijkstra’s algorithm is comparable with Quasi-linear
and Square for the worst case with 10% distortion and fully random data
sets.

The reason why the Square algorithm performs better for the worst case
data set with 10% distortion then for the fully random data set is hard to
properly explain, but it might have something to do with the fact that the
worst case data set with 10% distortion still has some structure in side it,
while the fully random data set does not. With structure we refer to the
vertices with zero edge weights between them.

Figure 77 shows the number of vertices from different regions which are
in the priority queue for the Terra-efficient algorithm.

Highways and obstacles For the highways and obstacles data sets we
notice that Quasi-linear performs best with large R = 218 and α = R and
for Square we see the same behavior since R = 216 is best. For the Terra-
efficient algorithm we notice that Step 1 (Intra-Tile Dijkstra) still takes up

94

most time and the δ value hardly effects the running time of Step 1 (Intra-
Tile Dijkstra) of the algorithm. Moreover the chosen δ does effect Step
3 (Inter-Tile Dijkstra) and Step 4 (Final Dijkstra) of the Terra-efficient
algorithm.

Real world For the real world data sets we notice that Dijkstra’s al-
gorithm performs about as well as Quasi-linear and Square , while Terra-
efficient performs worst. For Quasi-linear we see that a larger R of 218 and
R = α work well. While Square we see that a region size of R = 214 works
well. Just as with the highways and obstacles data set we notice that the
Terra-efficient algorithm uses up most of its time in Step 1 (Intra-Tile Di-
jkstra) of the algorithm and we notice that a larger R is improves the time
required for Step 3 (Inter-Tile Dijkstra) and Step 4 (Final Dijkstra) , while
it slightly increases time running time of Step 1 (Intra-Tile Dijkstra) of the
Terra-efficient algorithm.

95

Figure 76: Best running time results for the worst case data set, with 0%,
10% and 100% distortion (fully random) in a grid of size 16384 × 16384
grid, with only 384 MB of memory available. Dijkstra’s and Terra-efficient
running time for the worst case data set is ∞ (more then three days).

96

Worst case Worst case With Fully random
10% distortion

Amount of distortion 0% 10% 100%

Terra[Z-order;R = 65536](n = 105.42) 4 3 4
Terra[Z-order;R = 65536](n = 106.02) 16 8 7
Terra[Z-order;R = 65536](n = 106.62) 64 12 18
Terra[Z-order;R = 65536](n = 107.23) 256 22 32
Terra[Z-order;R = 65536](n = 107.83) 1024 40 65
Terra[Z-order;R = 65536](n = 108.43) 4096 80 133

Figure 77: The maximum size of the priority queue in Step 3 (Inter-Tile Di-
jkstra) of the Terra-efficient algorithm, where the size is counted in different
regions. Hence if two vertices from the same region are in the priority queue
then it still only counts as one.

6 Conclusion

In this paper we have presented several known and a new algorithm to solve
the single source shortest path problem within massive grid-based graphs.

We have proven that storing the grid-graph in Z-order instead of the
standard row or column order pays off for Dijkstra’s, Quasi-linear and Square
algorithms. For Dijkstra’s algorithm we prove that the I/O bound is not
always O(n), but if the number of vertices in the priority queue stays small,
O(
√
n), and if the grid is stored in Z-order, then if O(M) > O(

√
n ·
√
B)

then the I/O bound will be O(n√
B

). For Quasi-linear and Square algorithms

we prove that the I/O bound is O(n√
B

), when the grid is stored in Z-order

and (R,α) = (
√
B,∞).

For the TerraCost algorithm we show that a slightly better I/O bound
of O(n

B) can be achieved for grid-graphs. Besides this we have implemented
a new version of the the Terracost algorithm, Terra-efficient , which has a
CPU bound of O(n · logR + n · log n

R) this is a significant improvement to

the prior CPU bound of O(n · logR ·
√
R+n · log n). In our experiments we

also see that for the worst case data set we need this new cpu bound to get
the largest possible region in order to get the I/O bound of O(n

B).
We have theoretically proven that a constant highway dimension does

not improve the I/O bound for any of our algorithms. For the augmented
highway dimension we have shown that only for the Square algorithm an
optimal I/O bound of Θ(n

B) can be achieved, while Dijkstra’s and Quasi-
linear hold the same I/O bound as for worst case graphs.

97

6.1 In memory

In this section we will discuss the conclusion for the case where the grid and
all data structures fit in memory we see little difference in running times be-
tween Dijkstra’s, Quasi-linear and Square algorithms assuming that proper
R and α are chosen. The general trend here is though that Quasi-linear
performs best (with proper R,α) and that the running time for Dijkstra’s
algorithm grows faster then the Square algorithm for most data sets. The
Terracost algorithm performs far worse, but this mainly since Step 1 (Intra-
Tile Dijkstra) of the algorithm takes up most time. For the Terra-simple
algorithm we know that the CPU bound is O(n · logR ·

√
R + n · log n

R),
which explains it, while for the Terra-efficient algorithm it are the constant
factors, which are to blame. To give an idea what i mean with these constant
factors the Terra-efficient algorithm consists of about 6000 lines of program-
ming code, while the Quasi-linear algorithm consists of less then 800 lines
of programming code. Besides this maintaining a topology tree might be
asymptotically optimal with a CPU bound of O(R logR), but in practice
its worse. On the other hand if we compare Terra-efficient and Terra-simple
for different values of R, then we notice that Terra-simple running doubles
for every four times increase in R, while the Terra-efficient also requires
more time when R gets larger, but this difference is closer to 10% whenever
R gets four times larger (we refer to figures 22, 23, 27, 28, 32 and 33 for
experimental results which support this).

6.2 I/O setting

In this section we will discuss the conclusion for the case where the grid does
not fit in memory and the algorithm needs to use I/Os to solve the single
source shortest path problem.

In general we notice that the Square and Quasi-linear algorithms both
perform well for all data sets, where Quasi-linear is usually a bit better then
Square .

Besides this Dijkstra’s algorithm usually performs comparable to Quasi-
linear and Square it just fails for the worst case data set. For the Terra-
efficient algorithm we see that it is always slower then the other algorithms
and that it also fails for the worst case data set. The reason why both
Dijkstra and Terra-efficient fail for this data set is because the worst case
data set after all the zero weight edges have been relaxed will always pick a
random vertex in the graph to be relaxed.

For Quasi-linear we found that the best α is equal to R for all but the
worst case data set, meaning that it performs best if the entire region is
finished. The size of R is 16384 for the worst case data set and 4096 for
the worst case with 10% distortion and the fully random data sets, while
for the highway and obstacles data set an R of 218 is usually preferred. The

98

same trend we see for the Square algorithm where for the worst case, the
worst case with 10% distortion and the fully random data sets a region size
of 1024 is preferred, while for the highway and obstacles data set a much
larger region size of 216 is preferred.

Terra-efficient For the Terra-efficient algorithm we see very little differ-
ence between different values of R for all but the worst case data set, this
is mainly since Step 1 (Intra-Tile Dijkstra) takes up most time and since if
R is bigger then Step 1 (Intra-Tile Dijkstra) takes more time, while Step 3
(Inter-Tile Dijkstra) takes less time.

Moreover we have shown that the reason why Terra-efficient fails to work
for the worst case data set is related to having to choose R = 65536. From
the theoretical analysis of the TerraCost algorithm we know that R = B2

gives the I/O bound of Θ(n
B), but in practical setting we know that when

R = 65536 then B = 256 can’t be true. With an additional experiment we
have shown that larger region sizes does significantly decrease the running
time of Step 3 (Inter-Tile Dijkstra) of the Terra-efficient algorithm, while
only slightly increasing the running time of Step 1 (Intra-Tile Dijkstra) of
the Terra-efficient algorithm.

Thereby we must conclude that in order to run the TerraCost algorithm
efficiently on a the worst case data a topology tree must be used. This
conclusion extends to other data sets which have Θ(n√

R
) vertices in the

priority queue and extract them in random order.
Within the paper of Hazel et al [8] it is concluded that Dijkstra’s al-

gorithm fails for real world data sets and even though our experiments are
slightly different we must note that we notice nothing of the sort. The reason
why it is expected for Dijkstra’s algorithm to fail for the experiments in the
paper of Hazel et al [8] is that these experiments are done on a graph with
multiple sources. Let m be the number sources randomly distributed over
a grid graph of sufficient size then we would expect that at least Ω(m ·

√
n)

vertices will be in the priority queue most of the time. Hence even if a ran-
dom graph is used then our analysis of Dijkstra’s algorithm would require a
factor m more memory. If m is sufficiently large for a large graph then it is
expected that Dijkstra’s algorithm would always fail.

7 Future work

In general this document contains a large number of experimental results
and perhaps not all implications of these experimental results are known at
this point, hence this would be nice a starting point for a further in depth
study. Moreover there are several questions which are still unanswered.

99

In memory For all algorithms it would be nice to see if the I/O setting
and theoretical bounds could be applied to the memory and cache model.
Moreover how does Z-order versus row order storage factor in?

I/O setting For Dijkstra’s algorithm we wonder if we can show the break-
ing point in the experimental setting from graphs which have priority queues
of size Θ(

√
n).

For Quasi-linear and Square we wonder if Quasi-linear will stay about
as good as Square or does Quasi-linear fail for even larger graphs as we
somewhat see a glimpse of in the fully random graph of size 32786× 32786.
Moreover when does Square fail to work or is it always pretty good?

In addition to these experiments we wonder how Quasi-linear and Square
perform in the case that multiple sources are added to a graph. For Quasi-
linear and Square we would expect to still maintain the I/O bound of θ(n√

B
),

but it would be nice to see some experimental results which support this
expectation. For Dijkstra’s algorithm as stated before we would expect it
to fail for a sufficiently large number of sources, but it would still be nice
to know when this happens and that it can be explained theoretically in
combination with experimental results.

Moreover it would be nice to tailor a data set with constant augmented
highway dimension, which fails for Dijkstra’s, Quasi-linear and Terra-efficient
with small region size, but still works for the Square algorithm. This would
therefor show experimentally that in an I/O setting Square really adds sta-
bility over Quasi-linear .

For the TerraCost algorithm we wonder how well it will perform if the
topology tree is further optimized, since as stated in the paper a region
size of 65536 means approximately 80 Megabytes of memory is needed to
complete Step 1 (Intra-Tile Dijkstra) of the Terra-efficient algorithm. 1280
bytes of memory per vertex seems somewhat unreasonable even if a complex
data structure is used and also will such an optimized topology tree also
significantly decrease the running time in the case where Terra-efficient runs
fully in memory.

Appendices

A Notation

In this appendix some notation is defined which is used throughout the
paper.

• M is the total available memory size.

• B is the size of one block on the hard drive.

100

• v is a vertex.

• vi,j is vertex with at location row i and column j within the grid.

• d(v) is the current shortest distance from the source to vertex v.

• r(v) is the region which contains v. Regions never overlap, hence only
one region identifier is returned.

• n is the size of grid graph.

• length(v, u) is the weight of the edge between v and u.

• R is the number of vertices contained in each region.

• Θ(
√
R) is the number of boundary vertices for each region.

• α is the number of operations which are done in each sub step of the
Quasi-linear algorithm.

• Bv is the block on disk which contains vertex v.

• Rv is the identifier for the region containing vertex v.

101

References

[1] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Wer-
neck. Highway dimension, shortest paths, and provably efficient algo-
rithms. In Proceedings of the Twenty-first Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’10, pages 782–793, Philadelphia,
PA, USA, 2010.

[2] A. Aggarwal and J. S. Vitter. The I/O complexity of sorting and re-
lated problems. In 14th International Colloquium on Automata, Lan-
guages and Programming, pages 467–478, London, UK, 1987. ACM vol
31 (1988).

[3] Lars Arge, Laura Toma, and Jeffrey Scott Vitter. I/O-efficient algo-
rithms for problems on grid-based terrains. J. Exp. Algorithmics, 6,
2001.

[4] Lars Arge, Freek van Walderveen, and Norbert Zeh. Multiway sim-
ple cycle separators and i/o-efficient algorithms for planar graphs. In
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’13, pages 901–918. SIAM, 2013.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Third Edition. The MIT Press,
3rd edition, 2009.

[6] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ra-
machandran. Cache-oblivious algorithms. ACM Trans. Algorithms,
8(1):4:1–4:22, January 2012.

[7] Herman J. Haverkort. I/O-optimal algorithms on grid graphs. CoRR,
abs/1211.2066, 2012.

[8] Tom Hazel, Laura Toma, Jan Vahrenhold, and Rajiv Wickremesinghe.
Terracost: A versatile and scalable approach to computing least-cost-
path surfaces for massive grid-based terrains.

[9] Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subrama-
nian. Faster shortest-path algorithms for planar graphs. Journal of
Computer and System Sciences, 55(1):3 – 23, 1997.

[10] Philip N. Klein. Multiple-source shortest paths in planar graphs. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’05, pages 146–155, Philadelphia, PA, USA,
2005.

102

[11] Anil Maheshwari and Norbert Zeh. I/O-optimal algorithms for pla-
nar graphs using separators. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’02, pages 372–
381, Philadelphia, PA, USA, 2002. Society for Industrial and Applied
Mathematics.

[12] Ulrich Meyer and Norbert Zeh. I/O-efficient shortest path algorithms
for undirected graphs with random or bounded edge lengths. ACM
Trans. Algorithms, 8(3):22:1–22:28, July 2012.

[13] Gary L. Miller. Finding small simple cycle separators for 2-connected
planar graphs. In Proceedings of the Sixteenth Annual ACM Symposium
on Theory of Computing, STOC ’84, pages 376–382, New York, NY,
USA, 1984. ACM.

[14] G. M. Morton. A computer oriented geodetic data base; and a new
technique in file sequencing. 1966.

[15] Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic
trees. J. Comput. Syst. Sci., 26(3):362–391, June 1983.

[16] Daniel D. Sleator and Robert E. Tarjan. Self-adjusting binary search
trees. J. ACM, 32(3):652–686, July 1985.

[17] Daniel Dominic Sleator and Robert E. Tarjan. Amortized efficiency of
list update rules. In Proceedings of the Sixteenth Annual ACM Sympo-
sium on Theory of Computing, STOC ’84, pages 488–492, New York,
NY, USA, 1984.

103

	Introduction
	Model of computation
	Literature study

	Input
	Grid graph
	Storage
	Row and column order
	Z-order

	Regions
	Highway dimension
	Augmented highway dimension

	Algorithms
	Priority queue
	Dijkstra's Algorithm
	Description
	Running time (CPU)
	I/O-efficiency in the worst case
	I/O-efficiency in grids with constant highway dimension
	I/O-efficiency in grids with constant augmented highway dimension

	I/O-efficiency in grids with random weights
	Quasi-linear
	Description
	Running time (CPU)
	I/O-efficiency in the worst case
	I/O-efficiency in grids with constant highway dimension
	I/O-efficiency in grids with constant augmented highway dimension

	Square
	Description
	Running time (CPU)
	I/O-efficiency in the worst case
	I/O-efficiency in grids with constant highway dimension
	I/O-efficiency in grids with constant augmented highway dimension

	TerraCost
	Description
	Running time (CPU)
	I/O-efficiency in the worst case

	Experimental set-up
	Implementation details
	Grid
	Priority queue
	Dijkstra's Algorithm
	Quasi-linear
	Square
	Terra-simple
	Terra-efficient

	Data-sets
	Worst case
	Worst case with distortion rate %
	Fully random data set
	Highways and obstacles
	Real world data sets

	Results
	Fully in memory
	Machine
	Worst case
	Worst case data set with 10% distortion
	Fully random
	Highways and obstacles
	Real world data sets
	Combined graphs and general thoughts

	I/O
	Machine
	Settings
	Worst case
	Worst case with 10% distortion
	Fully random
	Highways and obstacles
	Real world data sets
	Combined graphs and general thoughts

	Conclusion
	In memory
	I/O setting

	Future work
	Appendices
	Notation

