
 Eindhoven University of Technology

MASTER

Kinetic conflict-free coloring

Leijssen, T.N.P.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/900958d4-be5f-4c97-8d91-7bbd6c5c8719

Eindhoven University of Technology

Master thesis

Kinetic Conflict-Free Coloring

Author:
Tim Leijssen

Supervisors:
Mark de Berg

Marcel Roeloffzen

Publishing date: November 24, 2014

Abstract

A conflict-free coloring (CF-coloring) of a set of disks D in the plane is an assignment of
colors to each disk such that for every point p in the plane covered by a non-empty subset
D′ ⊆ D of disks, we have that D′ contains at least one disk with an unique color among the
colors in D′. The problem arises in frequency assignment in cellular networks. Base stations
with the same frequency might interfere, so we try to assign frequencies to each base station
such that a client can always access a base station with a unique frequency.

In this thesis we study kinetic CF-coloring. We try to maintain a CF-coloring as the
objects move, and doing so while limiting both the total number of colors used and the
number of recolorings needed. We initially focus on the one-dimensional case, namely the
CF-coloring of a set of moving intervals. We find a solution using the KDS model which
efficiently maintains the CF-coloring using four colors and O(1) recolorings per event.

We then study the problem of maintaining a CF-coloring of moving points with respect
to disks, using O(log n) colors. We present two methods, both modified from a known CF-
coloring algorithm for the static problem. First, the Bounded IS algorithm which usually has
only one recoloring per event, but occasionally needs to recolor a larger subset of points. We
show that this method requires an amortized O(log n) recolorings per event, and we show an
example where an amortized Ω(log n) recolorings per event is needed. Secondly, the Maximal
IS algorithm which tries to minimize the number of colors used, at the cost of requiring more
recolorings than the Bounded IS algorithm. We show a worst-case example where a single
event causes an “avalanche” of recolorings.

Finally, we’ve run experiments to test the Bounded IS and the Maximal IS algorithm on
moving point sets distributed uniformly at random. We compare the two algorithms for point
sets of different sizes. By setting different parameters we find a trade-off between the total
number of colors used and the number of recolorings needed.

2

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Problem statement . 5
1.3 Results . 6

2 Previous work 6

3 CF-coloring of kinetic intervals 9
3.1 Static case . 9

3.1.1 Constructing the chains . 10
3.2 Kinetic case . 11

3.2.1 The AddToChain procedure . 13
3.2.2 Cases . 14
3.2.3 Implementation in the KDS model . 17

4 CF-coloring of kinetic points with respect to disks 19
4.1 Bounded IS algorithm . 19

4.1.1 An upper bound on the average number of recolorings 21
4.1.2 A worst case example . 23

4.2 Maximal IS algorithm . 25
4.2.1 Implementation . 26
4.2.2 A worst case example . 28

5 Experimental results 31
5.1 Varying the point-set sizes . 32
5.2 Bounded IS: Varying the reset bound . 35
5.3 Bounded IS: Shifting methods . 36
5.4 Maximal IS: Varying the maximal degree . 37
5.5 Bounded domain . 38

6 Conclusions 39

3

Figure 1.1: Left: Frequency assignment of cellular network solved as a coloring problem.
Middle: A coloring such that no two disks of the same color overlap, using six colors.
Right: A CF-coloring of the disks using four colors, for every point p contained in a disk
there exists a disk containing p with a unique color. Note that every location where two disks
of the same color overlap is contained by another disk of a unique color.

1 Introduction

1.1 Motivation

Wireless communication is used in many different situations. Typically, in order to handle
interference among radio signals, different frequencies are used. However, there are usually
only a small number of different frequencies available, thus one should try to minimize the
number of frequencies being used. In this thesis we study so-called conflict-free colorings,
which can be seen as an abstract version of certain frequency assignment problems. Before
we define conflict-free colorings more formally, we first discuss two applications in which they
play a role.

As a first example, consider a cellular network that consists of two types of nodes: base
stations and clients. Base stations generally have a fixed frequency assigned to them, but
clients can scan different frequencies to find one which is available. Of course, for a client
to communicate with a base station, it has to be within its range. If two base stations close
together have the same frequency, interference occurs. To be precise: if a client is within
range of two base stations with the same frequency, they interfere and the client cannot
communicate with either of them. If the client is within range of a third base station with a
unique frequency the client will still be able to communicate with it. Typically we want that
for every client within range of at least one base station, there exists at least one base station
with which it can communicate without interference.

We can model this as a coloring problem. Namely, we have a set D of n disks in the plane,
each representing a base station, such that the radius of the disk is the range of this base
station. The different frequencies are represented by different colors, and the goal is to assign
a color to every disk. The easiest thing to do would be to simply assign a different color to
every disk, but this would result in a coloring of n colors. Since we want to limit the number
of frequencies this isn’t a very good solution. Another option is to avoid overlapping disks
of the same color altogether. For example, if two disks intersect one another they can’t be
assigned the same color. Again this gives us a valid solution, but it is too restrictive. In the
worst case we may still require n colors. We can create another valid solution by coloring the

4

disks in such a way that for every point p contained by D, we have that p intersects at least
one disk with a unique color. This is called a conflict-free coloring, which we define more
precisely below. See Figure 1.1 for an example.

Our second example of an application of conflict-free colorings involves RFID networks.
Radio Frequency IDentification (RFID) is a technology where a reader device can detect close-
by reader tags. Typically, these tags do not carry their own battery. The power needed for
these tags to transmit their IDs is supplied wirelessly by the reader itself. Instead of different
frequencies, each reader performs a “read” action at a different time slot. Namely, there is a
fixed time interval T consisting of a sequence of equal-length time slots 1 . . . k. During each
of the k time slots a different subset of readers performs a “read” action. If a tag is within
range of two readers which are active in the same time slot, these readers interfere, so for
every tag there has to be at least one time slot in T during which there is exactly one reader
that can read the tag. As in the example above, we can model the readers as a set D of n
disks in the plane, and each time slot corresponding to a color. We want to minimize the
total number of time slots used, this corresponds to trying to find the minimum number of
colors with which we can create a conflict-free coloring of D.

In this thesis we look into the kinetic version of the problem. Namely, what happens if
the base stations or RFID readers move around? We want to maintain a conflict-free coloring
at all times, while limiting the total number of colors used. Since the disks move, we may
need to change the coloring over time to maintain it. We assume that changing the color of
one of the disks is an expensive operation so we would like to limit the number of recolorings
as well.

1.2 Problem statement

Let H = (V, E) be a hypergraph, where V is a set and E is a collection of non-empty subsets
of V . The elements of V are called vertices and the elements of E are called hyperedges. An
induced sub-hypergraph H ′ ⊆ H is a hypergraph H ′ = (V ′, E ′) with vertices V ′ ⊆ V and
edges E ′ = {e ∩ V ′|e ∈ E}. That is, every edge from E with the vertices V \ V ′ removed.

A k-coloring (for some natural number k) of H is a function φ : V → {1, . . . , k}. In other
words, a k-coloring of H is an assignment of one of k colors to each of the vertices in V . Such
a k-coloring of H is called proper or non-monochromatic if every hyperedge e ∈ E with |e| ≥ 2
has two vertices x, y ∈ e such that x and y have a different color. We use χ(H) to denote the
least integer k for which H admits a proper k-coloring.

Definition 1. A conflict-free coloring (often shortened to CF-coloring) of a hypergraph H
is a coloring such that every hyperedge e ∈ E has at least one uniquely colored vertex. More
precisely, there exists a vertex x ∈ e such that for all y ∈ e \ {x}, x has a different color
than y. A unique-maximum coloring (UM-coloring for short) is a further restriction on a
CF-coloring where the maximum numbered color in every hyperedge is unique.

The least integer k for which H admits a CF- or UM-coloring is denoted by χcf(H)
and χum(H) respectively. Since the different colorings are restrictions of one another, every
UM-coloring is a CF-coloring and every CF-coloring is a proper coloring, and we have:

χ(H) ≤ χcf(H) ≤ χum(H)

Since the CF-coloring problem has mainly been studied as a means to assign frequencies in
wireless networks, we focus on hypergraphs that naturally arise in geometry, namely:

5

• Hypergraphs induced by regions: Let R be a finite collection of regions in Rd. The
hypergraph induced by R, is defined as H(R) = (R, {R(p)}p∈Rd), where for a point

p ∈ Rd, we have R(p) = {r ∈ R : p ∈ r}. That is, H(R) contains a vertex for every
region r ∈ R, and a hyperedge e consisting of a subset of R if there exists a point that
is contained by all regions in e and no other regions in R \ e.

• Hypergraphs induced by points with respect to regions: Given a set of points
P ⊂ Rd and a (possibly infinite) set R of regions in Rd, a hypergraph induced by P
with respect to regions R is defined as HR(P) = (P, {P ∩ r | r ∈ R}). That is, HR(P)
has a vertex for every point, and a hyperedge between points P ′ ⊆ P only if there exists
a region r in R such that r ∩ P = P ′.

In this thesis we study the kinetic version of the CF-coloring problem. This means the
regions or points move over time and as a result the induced hypergraph changes as well. We
would like to maintain a CF-coloring at all times, so we may need to recolor the regions or
points. Our goal is to minimize both the total number of colors required, and the number of
recolorings.

1.3 Results

Section 3 concerns a one-dimensional version of kinetic CF-coloring, namely the CF-coloring
of moving intervals. We present a solution requiring three colors for the static case and four
colors for the kinetic case, using the KDS model. This method requires O(1) recoloring per
event, where an event happens whenever two endpoints of different intervals cross one another.

In Section 4 we look at the CF-coloring of points with respect to disks. We adapt a static
CF-coloring algorithm in two different ways (the Bounded IS algorithm and the Maximal
IS algorithm) to work for the kinetic case, and we analyze the number of colors used and
the number of recolorings required when using these methods. For a point-set of n moving
points, both methods limit the total number of colors used to O(log n). However, we show
an example where the Bounded IS algorithm requires an amortized Ω(log n) recolorings per
event. For the Maximal IS algorithm we show an example where a single event causes an
“avalanche” of recolorings.

We have run experiments to see how these methods perform in practice for moving point
sets created uniformly at random. The results of these experiments can be found in Section
5. We try out different parameters for the algorithms used in these experiments and compare
them. In these experiments we confirm the logarithmic bounds for the total number of colors
for both algorithms. By setting different parameters, we find a trade-off between the total
number of colors and the number of recolorings per event.

2 Previous work

CF-coloring was initially studied in 2003 by Even et al. [5] for simple geometric regions. A
framework is presented for the CF-coloring of n points with respect to a set of ranges using
a Delaunay graph. Specifically, for coloring n points in the plane with respect to disks (i.e.
any possible disk should should have a CF-coloring of its internal points), an algorithm is
presented which uses a series of Delaunay triangulations.

Note that for a point set P with n points, a CF-coloring of P with respect to disks with
radius r is equivalent to a CF-coloring of a set of n disks with radius r, each centered around a

6

1 2 3 4

5 6

Figure 2.1: Coloring a set of points with respect to disks, using Delaunay triangulations. In
the figure six iterations are shown. The white points indicate the new independent set to be
colored. In the last figure a disk is shown; any disk containing at least two points of the same
color contains a point with a unique color (which was colored in a later iteration).

point in P . As a result, any CF-coloring of P with respect to every disk in R2 is a CF-coloring
of the corresponding set of disks with the same radius r, regardless of the value of r. The
reason for this is that for a set of disks with radius r, a point p is contained by a disk d if and
only if it is within a distance r of the center of d. This means the center of d is contained by
a disk of radius r centered around p.

A sketch of the algorithm: Each iteration, we compute the Delaunay triangulation of the
set of points. We compute a “sufficiently large” independent set of this graph, and color
it with color i, and we remove these points from the point set. See Figure 2.1 for a visual
example.

This algorithm results in a valid CF-coloring. Namely if two points are colored with the
same color, they were not connected by an edge in the Delaunay triangulation, which means
that any disk containing these points contains another point with a higher color.

The total number of iterations (and therefore the number of colors used) depends on the
sizes of the independent sets. Fortunately, since the Delaunay triangulation is a planar graph,
the average degree of the vertices is at most 6, which means we can greedily pick vertices with
degree less than 6. The result is that our chosen independent set is some constant fraction of
the available vertices, which means the total number of colors used is in O(log n).

There exist arrangements of n disks such that a CF-coloring of these disks requires Ω(log n)
colors. Namely for a sequence of disks of diameter d all placed with their center on a line seg-
ment of length less than d (see Figure 2.2), the hypergraph induced by these disks corresponds
to the discrete-intervals hypergraph. This hypergraph consists of the vertices V = {1, . . . , n}
and its hyperedges being all possible discrete ranges [i, j], with 1 ≤ i ≤ j ≤ n. In [11] it
is shown that for such hypergraphs, χcf(H) = χum(H) = blog nc + 1. Pach and Tóth [9]
proved that for points with respect to disks, any CF-coloring uses at least c log n colors for
some constant c > 0.

In 2005 the above results were extended by Har-Peled et al. [6]. Their paper shows
a probabilistic algorithm for CF-coloring any set of “simple” (but not necessarily convex)

7

{2}
{3, 4}

{1, 2, 3, 4, 5}

Figure 2.2: It is possible to arrange a set of n disks D such that H(D) is equal to the
discrete-intervals hypergraph of size n, so a CF-coloring of H(D) requires blog nc+ 1.

regions with “low” union complexity. Results are refined for particular cases of axis-parallel
rectangles (O(log2 n) colors), and range spaces where the underlying ranges are axis-parallel
rectangles (n points can be CF-colored with O(

√
n) colors w.r.t. axis-parallel rectangles), and

more specialized cases.
Besides that, their paper also studies k-CF-coloring. Going back to our use case of wireless

communication, it may be the case that two nearby base stations with the same wireless
frequency don’t interfere that much, but more than some constant k will. This corresponds
to the k-CF-coloring problem. This is a more relaxed notion of CF-coloring, where for every
hyperedge there must be a color that appears at least once and at most k times among the
vertices of this hyperedge.

The kinetic variant of CF-coloring has not been studied yet. There has been some research
into online CF-coloring however, where points are added one by one and a CF-coloring has
to be maintained. In 2006, online CF-coloring of intervals was studied by Chen et al. [3].
More precisely: points are inserted on a line, and each newly inserted point must be assigned
a color upon insertion. At all times should every interval I be conflict-free. Their paper
provides various deterministic and randomized algorithms, the best deterministic algorithm
using a maximum of Θ(log2 n) colors and the best randomized algorithm has an expected
O(log n log log n) colors. Finally, the paper also demonstrates that in two dimensions, where
the relevant ranges are disks, n colors may be required.

Bar-Noy et al. [1] present a framework for online CF-coloring any hypergraph. Using
this framework an randomized online algorithm is obtained, with which any k-degenerate
hypergraph can be colored using O(k log n) colors with high probability. Their paper also
studies deterministic online CF-coloring with recoloring, that is, using as few colors as possible
while also limiting the number of recolorings. An algorithm is provided for CF-coloring with
respect to halfplanes using O(log n) colors and O(n) recolorings.

In 2007, Smorodinsky [10] presented a method of CF-coloring a hypergraph H using
proper colorings of H and its sub-hypergraphs. A sketch of the algorithm is as follows: Every
iteration i we search for a proper coloring ϕi of Hi with “few” colors. We pick the largest
color class of this ϕi and color it with color i, and remove these vertices from Hi+1 ⊂ Hi until
there are no vertices left.

This results in a valid CF-coloring (and UM-coloring) for each hyperedge e. Namely if
e contains x > 1 uncolored vertices during an iteration step of the algorithm, the proper
coloring ensures that at most x − 1 of the uncolored vertices of e are colored during this

8

iteration step. If e contains only one uncolored vertex, then after coloring this vertex with a
new color, the resulting coloring is conflict free.

The size of these largest color classes directly influences the amount of colors used in the
resulting CF-coloring. Specifically, if every sub-hypergraph H ′ ⊂ H satisfies χ(H ′) < k the
algorithm produces a UM-coloring (and therefore a CF-coloring) of log1+ 1

k−1
n = O(k log n)

colors.
In 2009, Lev-Tov et al. [8] presents an O(1) approximation algorithm for the CF-coloring

of unit disks.
Other than k-CF-coloring described above, a few other variations of CF-coloring have

been studied recently. For example the k-strong CF-coloring problem [7], namely where for
each hyperedge containing at least k vertices, at least k of these vertices must have an unique
color. Any set of n disks in the plane admits a k-strong CF-coloring of at most (k log n)
colors. This bound also holds for pseudo-disks and regions with linear union complexity. The
paper also provides bounds for other types of regions.

It might be the case that a single base station can not use every possible frequency, but
can only select from a small list of frequencies. List CF-colorings are a specialization of the
general CF-coloring problem, in this case each vertex only has a small set of at least k colors
to choose from. Cheilaris et al. [2] provides bounds and an algorithm for this problem.

3 CF-coloring of kinetic intervals

Let V be a set n of intervals on the x-axis. A conflict-free k-coloring of V is an assignment of
one of k colors to each of the intervals in V such that for any point p on the x-axis contained
in one or more intervals, we have that p is contained in at least one interval from V with a
unique color (that is, no other interval covering that point has the same color). We solve the
problem of CF-coloring of intervals in both the static and kinetic case using chains.

We make the assumption that every endpoint is unique. That is, two intervals u and v
cannot share an endpoint, with the exception of event points in the kinetic case. We use
l(v) and r(v) to denote the position of the left endpoint and the right endpoint of interval v
respectively.

Definition 2 (Interval graph). Let V be a set of intervals. We define G(V) = (V,E) as
the interval graph of V . An interval graph is the simple graph whose vertices are the intervals
in V and whose set of edges E contains (u, v) if and only if intervals u and v intersect.

Definition 3 (Connected component). Let V be a set of intervals. We define a subset
V ′ ⊆ V as connected component of V if the vertices from V ′ form a connected component in
G(V). That is, V ′ is a maximal subset such that there is a path between every two vertices
u, v ∈ V ′ in G(V).

For a connected component V ′ ⊆ V it holds that for every point p that is not contained
in any interval from V , we have that p is either to the left of all intervals in V ′ or to the right
of all intervals in V ′.

3.1 Static case

The main idea is as follows. If V is our set of intervals, we find a subset of V such that
every point contained in an interval of V is also contained in an interval in this subset. If we

9

CF-color this subset with (k − 1) colors, we can color the remaining intervals in V with the
k-th color. This results in a CF-coloring of V .

We define a chain as follows: A chain C = {c1, . . . , cm} is an ordered subset of a connected
component of intervals V such that the following invariants hold:

inv1 For two subsequent intervals ci and ci+1 in the chain, the right endpoint of ci must be
contained in ci+1, and the left endpoint of ci+1 must be contained in ci.

inv2 Two non-subsequent intervals in the chain (e.g. ci, cj such that |i − j| > 1) must not
intersect.

inv3 The chain spans the union of the connected component V . That is,
⋃

ci∈C ci =
⋃

v∈V v.

inv4 The chain is the unique chain of the connected component V , in fact, each connected
component has a unique chain.

inv5 An interval ci in the chain must not be fully contained in any other interval v.

It is worth noting that inv5 is not strictly necessary in the static case, but is needed for the
kinetic case.

From the above invariants, we can deduce some additional properties:

• Both the left and right endpoints of the intervals in a chain are ordered by this chain.
That is, for all ci and ci+1 we have l(ci) < l(ci+1) and r(ci) < r(ci+1).

• For any point p on the x-axis, p is contained in at most 2 intervals in a single chain.
This follows directly from inv2 and inv4.

• Any interval v that is not part of a chain is fully covered by a chain. That is, there is
no point p ∈ v for which p /∈ ⋃

ci∈C ci. This follows from inv3.

• From inv4 we have that two different chains can not intersect.

3.1.1 Constructing the chains

We will sketch the algorithm used to construct the chains. We start with the interval in V
with the leftmost endpoint, and make this the start c1 of a new chain C. We then iteratively
build a chain, left-to-right, as follows:

We search for a subset of intervals S ⊂ V , consisting of intervals s ∈ S for which ci
contains the left endpoint of s but not the right endpoint of s. If S is empty, it means ci
is the last interval of the current chain, and we can continue with a new chain in the next
leftmost endpoint. Otherwise, we choose the interval in S with the rightmost right endpoint
and append it to the current chain as ci+1.

We now prove that the algorithm fulfills all the invariants of a chain:

inv1 Since we pick the next interval in a chain such that its left endpoint is contained in ci
but its right endpoint does not, we satisfy this invariant.

inv2 Let ch and cj with (j − h > 1) be two non-subsequent intersecting intervals in a chain.
This means there exists an interval ci in the chain such that h < i < j. By inv1 we
have that the left endpoint of cj intersects ch, and we have that the r(ch) > r(ci). This

10

however would mean that from ch, the next interval chosen by the algorithm would
be cj , which is a contradiction. Therefore, using this algorithm, two non-subsequent
intervals do not intersect.

inv3 Since we start each chain at the leftmost endpoint and end at the rightmost endpoint of
a connected component, and because every pair of subsequent chain intervals intersects
each other, the chain will span the entire connected component.

inv4 The algorithm only starts a new chain at a new component if no new interval intersects
the current rightmost right endpoint, so there is one chain per connected component.

inv5 By contradiction: Let v be an interval not in a chain C which completely contains
interval ci part of C. Then (by inv3) the left endpoint of v is contained in an interval
in the chain ch with h < i. By inv1 we have that r(ch) < r(ci) < r(v). This however
would mean that v would have been chosen as next interval from r(ch), contradicting
the statement that v is not in a chain. So we have that no interval in a chain is contained
in another interval.

The algorithm can be implemented efficiently as follows: We can sort the set of intervals by
their left endpoint. This means that when finding a suitable next interval for a chain, we can
efficiently find the subset Si of intervals whose left endpoints are in the current ci. We have
that the sum of all subsets Si is O(n). Each interval can only have its left endpoint in two
intervals in a chain, by inv2. This means that even if we use linear search (starting from the
leftmost endpoint of the current interval) to find rightmost endpoint in Si, this results in a
total running time of O(n log n).

Lemma 1. For a set of n intervals, we can construct a series of chains in O(n log n) time.

Using chains, we can create a CF-coloring of a set of intervals as follows using only 3 colors
as follows. Let C be a chain of connected component V . We color C as follows: every even
interval c2i in the chain is colored blue and every odd interval c2i+1 is colored red. We color
the remaining intervals in V \C green. Because of inv3, every point p which is contained in
an interval from V will be contained in the chain. From inv2 follows that p is contained in
a single red interval, a single blue interval, or both a red interval and a blue interval. In any
of these cases p is contained in an interval with a unique color, therefore the coloring of V is
conflict-free. Figure 3.1 shows an example of such a CF-coloring using three colors.

Theorem 1. A set of intervals can be CF-colored using three colors in O(n log n) time.

3.2 Kinetic case

We now discuss the kinetic case, where intervals move over time. We will keep a valid CF-
coloring by maintaining the chains as the intervals move, and for this we use the KDS model
in which we assume we know the trajectories of the intervals.

In order to preserve the CF-coloring of the chains, we have to add and remove intervals
from the chains while doing as few recolorings as possible. If we use only two colors for the
chains we run into trouble here, but three colors (so four colors for the total CF-coloring) is
sufficient. For example, imagine an update to a chain causing it to contain two subsequent
intervals ci and ci+1 of the same color. If we use only two colors for the chains we might
have to recolor a large part of this chain, but if we use three colors we can always resolve this

11

Figure 3.1: CF-coloring of a set of intervals with 3 colors, using chains. In the figure, the
intervals make up two connected components (the “gap” between the two is indicated by a
dashed line). The chains are colored red-blue, and the remaining intervals are colored green.

Figure 3.2: Using only two colors for a chain might cause O(n) recolorings in a single event.
Left, one of the blue intervals will be removed from the chain when the red interval moves
farther to the right. Upper right: Using only two colors, we need to recolor the entire rest
of the chain. Lower right: Using three colors we can always limit the number of recolorings
to a constant.

conflict by coloring ci or ci+1 a color different from its neighbours in the chain. See Figure
3.2 for an example. Because of this, our CF-coloring of the kinetic set of intervals uses four
colors rather than three.

The general approach is as follows. We keep track of an ordered list of interval endpoints.
An event happens when two endpoints cross, at which point some of the chain invariants
may no longer hold. Depending on the types of endpoints which cross, we need to “fix” the
chains in different ways. In section 3.2.2 we describe the different cases of endpoints crossing.
In some of these cases we will need to add an interval to a chain using the AddToChain
procedure we describe in section 3.2.1 below.

12

v

cl

cr

Figure 3.3: Example of the AddToChain procedure of an interval v. In the figure, the colors
red, blue and yellow are used for the chain, and green is used for the remaining intervals. On
the left side the state before insertion is shown, the right side shows the state after insertion.

3.2.1 The AddToChain procedure

We define a procedure AddToChain, which adds an interval v ∈ V to a chain, possibly
replacing some of the intervals already in the chain. This procedure is used to repair violations
of inv3 and inv5. Calling the procedure on an interval v will result in a valid chain under
the following preconditions:

• Interval v is not part of the chain.

• Interval v contains a single violation of either inv3 or inv5 (in fact, v might be the
violating interval itself). That means:

– If inv3 is violated (the chain does not fully contain all intervals), the parts of the
intervals not covered by the chain are contained in v.

– If inv5 is violated (an interval ci in the chain is fully contained in an interval not
part of the chain), v contains this interval ci.

• If there are multiple intervals containing the violation of inv3 or inv5, then v is an
interval which is not contained in any of these other intervals.

The procedure works by finding the leftmost chain interval cl containing the left endpoint of
v, and the rightmost chain interval cr containing the right endpoint of v. We distinguish the
following cases:

• If there exists no cl (no interval containing the left endpoint of v), v becomes the leftmost
interval in the chain, and we remove all intervals ci with i < r from the chain.

• Symmetrically, if there exists no cr, then v becomes the rightmost interval in the chain
and we remove all intervals ci with i > l from the chain.

• If both cl and cr exist, v will be placed between them in the chain, and we remove all
intervals ci with l < i < r.

Figure 3.3 shows an example of this procedure.

Theorem 2. If the preconditions are true when calling AddToChain on an interval v, all
invariants will hold afterwards.

Proof. The AddToChain procedure affects the invariants as follows:

13

Figure 3.4: Examples of inv5. Left: Any interval which is not part of a chain (green) can
intersect with at most four intervals in a chain. Right: This situation is not allowed because
the green interval fully contains one of the intervals of a chain.

inv1 Simply, l(v) is contained in cl and r(v) is contained in cr, and v contains both l(cr) and
r(cl), so this invariant holds.

inv2 Intervals cl and cr don’t intersect because otherwise there wouldn’t be a violation of
inv3 or inv5 before calling the procedure. Since we’re picking the leftmost chain interval
containing l(v) as cl and the rightmost chain interval containing r(v) as cr, we have that
v does not intersect any intervals in the chain other than cl and cr.

inv3 Interval v is now part of the chain, and it contains the previously uncovered part that
violated inv3 before calling AddToChain (if any), so this invariant now holds.

inv4 Since cl, v and cr are all part of the same chain, the status of this invariant remains
unchanged.

inv5 If inv5 was violated with chain interval ci prior to calling the procedure, v is not
contained in any other interval. If inv3 was violated before calling the procedure,
interval v contains the range that violated the invariant and again v is not contained in
any other interval.

So, given the preconditions, all invariants hold after calling the AddToChain procedure.

Earlier we mentioned inv5 is only necessary for the kinetic case. We will repeat this
invariant here:

inv5 An interval ci in the chain must not be fully contained in any other interval v.

The reasoning behind this invariant is as follows. Note that above, in the AddToChain
procedure, we remove all intervals between cl and cr from the chain. Without inv5 this could
mean as many as Θ(n) recolorings after adding a single interval, but with inv5 we have that
any interval v not part of a chain can intersect at most four chain intervals (see Figure 3.4).
This means there can be at most two intervals between cl and cr, which means at most three
color changes are needed when adding an interval (two for the intervals to remove, one for
interval v).

3.2.2 Cases

Let the endpoints of two intervals u and v cross at position x. There are three different cases
depending on which endpoints cross each other, each with subcases depending on whether
or not u and v are part of a chain, and depending on whether x is contained in any other
intervals. Figures 3.5 through 3.11 show examples of the following cases.

14

Figure 3.5: Case 1.a: Two left or two right endpoints of intervals u and v cross each other,
both intervals being part of the same chain. This means v is the last (or first) interval in the
chain, and can simply be removed.

Figure 3.6: Case 1.b.i: Two left or two right endpoints of intervals u and v cross each other
at position x, only v being part of a chain. If there is no other interval containing x we have
that u should be appended to the chain.

1. Two left endpoints or two right endpoints cross each other at position x. We describe
how to handle the case where two right endpoints cross, the case where two left endpoints
cross is symmetrical. We define u and v such that after the event, interval u “reaches
past” interval v. We have the following subcases:

(a) Both intervals are part of a chain. This can happen only if v is the last interval in
a chain, and u is the interval in the chain before it. This means inv1 breaks and
to resolve this, interval v must be removed from this chain. It is easy to see this
restores the invariants. See Figure 3.5 for an example.

(b) Interval v is part of a chain, interval u is not. There are a few subcases here:

i. If there is no third interval which contains x it means v is the last interval in
its chain, which breaks inv3. Since u is the interval violating the invariant, we
have that u is not contained by any other interval, so can add u to the chain
using AddToChain. See Figure 3.6 for an example.

ii. If there is a third interval in the chain which contains x and if u is longer than
v, then u will be fully containing v (breaking inv5). Since there is no bigger
interval containing v, and since before the event happened all invariants were
satisfied, we have that u is not contained by any other interval, we should add
u to the chain using AddToChain. For an example, see Figure 3.7.

iii. Otherwise, we have that there is a third interval in the chain intersecting x
and we have that u is shorter than v. In this case no invariants are violated.

(c) Otherwise, we have that interval v is not part of a chain, which means no invariants
can be violated.

15

Figure 3.7: Case 1.b.ii: Two left or two right endpoints of intervals u and v cross each other
at position x, only v being part of a chain. If there is a third interval containing x and if u is
longer than v, then u will be fully containing v, which means we should add u to the chain.

Figure 3.8: Case 2.a.i: Two endpoints cross each other, causing two intervals from a chain
to stop intersecting. If there are other intervals containing x, we should seek out an interval
that is not contained in any other interval and add it to the chain.

Figure 3.9: Case 2.a.ii: Two endpoints cross each other, causing two intervals from a chain
to stop intersecting. If there is no other interval containing x, we split the chain.

2. A left and right endpoint cross each other at position x, causing intervals u and v to
stop intersecting.

(a) Both intervals are part of a chain. There are the following subcases:

i. If there exists a third interval which contains x, we should find an interval
v containing x that is not contained in any other interval, and add it to the
chain (using AddToChain) in order to avoid breaking inv3. See Figure 3.8
for an example.

ii. Otherwise inv1 breaks. This means the connected component splits, so we
need to split the chain into two smaller chains. In this case u and v become
the first and last intervals of separate chains. Clearly, no further action is
needed. See Figure 3.9 for an example.

16

Figure 3.10: Case 3.a.i: Two endpoints from chain intervals u and v cross each other at
position x, causing the two intervals to start intersecting. If there exists a third interval w
in the chain which contains x, it means u and v are part of the same chain and w can be
removed from the chain.

Figure 3.11: Case 3.a.ii: Two endpoints from chain intervals u and v cross each other at
position x, causing the two intervals to start intersecting. If there exists no third interval
which contains x, it means u and v are from different chains, and these two chains should be
joined.

(b) Otherwise we have only one or none of u and v are part of a chain, so no invariants
are violated.

3. A left and right endpoint cross each other at position x, causing intervals u and v to
start intersecting.

(a) Both intervals are part of a chain. There are the following subcases:

i. If there exists a third interval w in the chain which contains x, it means inv2
breaks, so this interval w should be removed from the chain (since u and v
intersect, this will restore the invariants). If u and v both have the same color,
either u or v should be recolored to a color not used for its neighbours in the
chain. See Figure 3.10 for an example.

ii. Otherwise, if there exists no interval containing x it means u and v are from
different chains, and inv4 breaks. This can be resolved by joining the two
chains together. If u and v both have the same color, either u or v should be
recolored to a color not used for its neighbours in the new chain. It is easy to
see that this restores the invariant. For an example, see Figure 3.11.

(b) Otherwise either u or v is not part of a chain, we can easily see that no invariants
are violated in these cases.

3.2.3 Implementation in the KDS model

In the KDS model, we need to maintain the x-order of the endpoints. For every pair of
consecutive endpoints we have a certificate, which breaks when the endpoints cross each
other. An event occurs whenever a certificate breaks.

17

In order to efficiently maintain the chains, we need to use the following data structures:

• An array A[1 . . . 2n], containing all the endpoints of the intervals ordered by their x-
position. When two endpoints cross each other, we swap them in the array.

• A linked list L containing the chain intervals. This linked list is used to find chain
intervals containing a given endpoint for the AddToChain function. Since this function
is local to at most four chain intervals, we can follow the linked list from the interval
where the event occurs.

• An interval tree T as described in [4], containing all chain intervals. An interval tree
is an augmented red-black tree containing a node for every interval, sorted by their
left endpoint. Each node also stores the rightmost right endpoint of any interval in
its subtree. An interval tree supports insertion, deletion and searching (e.g. find an
interval in T containing a query point x) in O(log n) time.

In [4], intervals are static and sorted by their left endpoint. In our kinetic case we can
still do this, instead of storing the endpoint positions we store the functions describing
the endpoint positions over time. We need to ensure that the order of the intervals in
the tree (and the rightmost right endpoint positions) remains correct as the endpoints
swap, which we can do by deleting and reinserting one of the intervals. In our case, we
use the tree to find the non-chain interval containing a query point x with the leftmost
left endpoint, so we insert/remove intervals from T when they are removed from or
added to a chain.

Searching for the interval containing x with the leftmost left endpoint can be done as
follows: From a node N storing an interval v, we always go down the left subtree if our
point x is smaller than the rightmost right endpoint in the left subtree. If this is not
the case, we do one of the following:

– If x is left of v, this means there is no interval which contains x and we return nil.

– If x lies inside v, we return v since it is the interval containing x with the leftmost
left endpoint.

– If x is right of v, we go down the right subtree of N .

Our KDS, which consists of the three data structures discussed above (the array A, linked
list L and interval tree T), has the following properties:

• Responsive: An event simply means swapping the order of two endpoints in the data
structure. This may require inserting/removing intervals from the interval tree. In
addition this requires updating a constant number of certificates in the event queue, so
this takes O(log n) time.

• Compact: It can be easily seen there are O(n) certificates, namely one certificate for
every adjacent pair of endpoints. The total amount of storage for the supporting data
structures is also O(n).

• Local: Each endpoint has certificates only for the endpoints directly left and right of
it, so each endpoint participates in only O(1) certificates.

18

• Efficient: For two large intervals, each fully containing a set of small intervals moving
at exactly the same speed, there are Θ(n2) events and only Θ(1) recolorings, so the
worst case efficiency is Θ(n2).

The following theorem summarizes the results from this section.

Theorem 3. Let V be a set of intervals moving in R1. We can maintain a CF-coloring for
V using only four colors with a KDS such that per event (i.e. two endpoints crossing one
another), only O(1) recolorings are needed.

4 CF-coloring of kinetic points with respect to disks

In this section we will be focusing on the problem of computing the CF-coloring of a set P of
n points in the plane with respect to disks. That is, for any disk in the plane the subset of
points contained by that disk should be CF-colored. As mentioned in Section 2, we can solve
the static version of this problem using a recursive algorithm. In iteration i of the algorithm,
we are given a set Vi (initially V1 = V).

• We compute a Delaunay triangulation DT (Vi) of Vi.

• We find an independent set ISi ⊆ Vi of vertices in this triangulation.

• We color the vertices in ISi with color i.

• We call the algorithm recursively on the set Vi \ ISi with i := i+ 1.

We’ve seen that this algorithm produces a valid CF-coloring of the point set P . By sorting the
vertices in Vi by their degree, we can greedily find an independent set in any planar graph of
size at least 1

6Vi. This means each iteration we have at most 5
6th the number of vertices of the

previous iteration. Because of this the number of iterations in the algorithm, and therefore
the number of colors in the resulting CF-coloring is at most log 6

5
n.

In the remainder of this section we will be adapting this algorithm for the kinetic case. To
do this we will be maintaining the Delaunay triangulation and the independent set of every
iteration of the algorithm, which in turn means our coloring of the points remains a valid
CF-coloring. We will be using the following terminology. We refer to the subset Vi ⊆ V that
are handled in the i-th iteration of the algorithm as a layer. We will shorten independent set
as IS. Specifically, we use ISi to denote the IS of the i-th layer.

4.1 Bounded IS algorithm

We can easily see that if the Delaunay triangulations of none of the layers changes, the CF-
coloring remains valid. However, as the points move, eventually the triangulation might no
longer be a valid Delaunay triangulation. Recall that a triangle u, v, w is a Delaunay triangle
if and only if its circumcircle does not contain any other point from P . Thus when a point
moves in the interior of a circumcircle of three points of a triangle, this triangle is no longer
a valid Delaunay triangle. To resolve this, we need to flip one of the edges of the triangle to
fix the triangulation. See Figure 4.1 for an example.

In this structure, we define an event as when the moving vertices cause an edge flip in the
Delaunay triangulation of any layer. During an event in a layer p, two vertices in the IS of this

19

Figure 4.1: Example of an edge flip in a Delaunay triangulation. The red points are the IS
of this layer. Left: The original Delaunay triangulation. Note that the circumcircles have no
points in their interior. Middle: The green point has moved a bit to the right, causing the
circumcircles to contain a point in their interiors. This is not a valid Delaunay triangulation
anymore, so we need to flip an edge. Right: The triangulation after the edge has flipped.
The new circumcircles are empty, so this is a valid Delaunay triangulation. Note however
that there are two adjacent red vertices, meaning the IS of this layer is no longer valid, which
means we have to recolor.

Figure 4.2: Recoloring a vertex to resolve a conflict. The i-th horizontal row of points
represents the vertices which are still available in iteration i (that is, the set Vi). On the left,
the leftmost red vertex has to be recolored to resolve a conflict. On the right, the result of
this recoloring is shown. Note that in the second layer on the right the bound of |Vi|/d has
been broken for d = 12, so this might prompt a full recoloring from layer 2 onwards.

layer might become adjacent in DT (Vp), which means the IS is no longer a valid independent
set and therefore the CF-coloring is no longer valid. To rectify this, we arbitrarily pick one
of the conflicting vertices and color it with a new color q, not used for any other vertex. This
adds the vertex to the Delaunay triangulation to every layer between p and q (see Figure
4.2). Note that this can not invalidate the independent sets of the intermediate Delaunay
triangulations, since inserting a vertex cannot create a new edge between existing vertices.

We choose two constants c and d. The constant c is chosen such that we can always find
an IS for any layer i of size at least |Vi|/c, if we compute the IS from scratch, e.g. c = 6. The
constant d > c determines the slack we allow ourselves on the size of the IS as the points move
and we may have to remove points from the IS. That is, ISi is considered “large enough”
as long as it contains more than |Vi|/d vertices, where we usually take d = 12. If all the
IS’s remain within this bound, we will have a logarithmic number of colors. Specifically, the
number of colors is bounded by log d

d−1
n. Of course this means that for larger d we will be

using more colors.
If an edge flip occurs in layer j, the two vertices connected by the new edge might both

be in an independent set, so one of these vertices needs to be removed from the IS, we add
the vertex to Vi for all i > j, and append a new layer consisting only of this vertex. Edge
flips might occur in multiple layers simultaneously. When this happens we simply process the
edge flips in order of their layer number, so edge flips in less deep layers are processed first.

20

When we “shift” a vertex to a new layer like this, it might happen that the bound of |Vp|/d
is broken for a layer p. When this happens, we can recolor Vp using the static algorithm, such
that Vp and the deeper layers all have IS’s of size at least |Vi|/c again. We will call such a
recoloring a reset of layer p. A reset of layer p might recolor every vertex in that layer, so the
total number of recolorings can be as much as |Vp|. Informally speaking, the deeper layers
are reset more frequently, but since they are smaller the total number of recolorings is not
too large.

The implementation of this method is fairly simple. When an edge flip happens in a layer
p and a new edge (u, v) is created, handleEvent(p, u, v) should be called.

procedure handleEvent(p, u, v)
if color(u) = color(v) then

q ← the current number of colors +1
create a new layer Vq
for i = p+ 1 to q do

add u to Vi
end for
set the color of u to q
for i = p to q do

if d · |ISi| ≤ |Vi| then
perform a reset from layer i
return

end if
end for

end if
end procedure

In the pseudocode, color(v) returns the color of a vertex v. We only store implicitly whether
a vertex v is in ISi of a layer i, namely v ∈ ISi ⇐⇒ color(v) = i.

4.1.1 An upper bound on the average number of recolorings

For a given layer p with initial IS size |ISinit
p | ≥ |Vp|/c, if every event causes a vertex to shift

from ISp to the IS of a deeper layer q, we have that every event shrinks the IS of this layer
by one, while the total number of vertices in the layer remains the same. Because of this, the
number of events it takes for our bound of |ISp| > |Vp|/d to be broken is at least

|ISinit
p | − |ISend

p | ≥
|V init

p |
c
−
|V init

p |
d
≥ |V init

p |d− c
cd

,

where |V init
p | is the initial size of Vp (right after a reset).

If we look at a deeper layer Vi with p < i < q, every event where we “shift” a vertex from
ISp to ISq will grow the number of vertices in Vi by one, while the size of the ISi remains
the same. Therefore the number of these events it takes for the bound of |ISi| > |Vi|/d to be
broken is at least

|V end
i | − |V init

i | ≥ |ISinit
i |(d− c) ≥ |V init

i |d− c
c

,

where |V init
i | is the initial size of Vi. This of course only happens if a less deep layer doesn’t

reset before layer i does.

21

Informally, we can find an upper bound on the average number of recolorings as follows.
When shifting a vertex to a new layer, we have that each layer in between moves a bit closer
to its bound. We’ve seen above that the number of events it takes for a layer Vi to break its
bound is at least Θ(|Vi|). Of course, the number of recolorings during a reset of a layer Vi is
also Θ(|Vi|). This means the average number of recolorings per event per layer is O(1), and
since we have a logarithmic number of layers this means the average number of recolorings
per event is O(log n).

We will prove an upper bound on the average number of recolorings per event using the
accounting method [4]. Imagine a scheme where we have a wallet W (v, i) for every vertex
v ∈ Vi. The goal is to make sure that whenever we reset a layer Vi, the total amount of money
in each of its wallets W (v, i) (for all v ∈ Vi) is at least e 1. We will show that this can be
ensured if we spend O(log n) at each event, thus proving that we recolor O(log n) vertices per
event, amortized.

To simplify the proof, we wish to maintain the following invariants:

• For every layer, vertices in the same IS have the same amount of money in each of their
wallets. In other words, for any two vertices in the same IS, e.g. u, v ∈ ISl, we have
that W (u, i) = W (v, i) for all i. The reason for this is to ensure that vertices in the
same IS are able to go through the same resets.

• A wallet can not hold more than e 1. If adding money to a wallet W (v, i) would cause its
contents to be higher than e 1, we will set the contents to e 1. We can do this because
after a reset in a layer i, this layer and any deeper layers are back to their starting
bounds, at which point there is no reason to have any money left in these wallets.

At each event a vertex v is shifted from a layer p to a new layer q (or in other words, v
is removed from ISp, added to all layers Vi for i > p and a new layer q is created containing
only v, which of course becomes the only element in ISq as well).

When shifting a vertex v from layer p to a new layer q we spend money as follows:

1. We spend e 1 to immediately recolor this vertex.

2. We add e cd
|Vp|(d−c) to W (v′, p) for each vertex v′ ∈ Vp.

3. Note that when we shift v to a new layer q, then v will be added to all sets Vi with
p < i < q. For each such layer i we create a wallet W (v, i) and we put eXi into W (v, i),
where Xi is the amount of money in wallet W (v′, i) for v′ ∈ Vi. (Recall that all v′ ∈ Vi
have the same amount of money in their wallets.)

4. After that, we add e c
|Vi|(d−c) to all wallets W (v′, i) for all i > p, v′ ∈ Vi.

The first rule is trivial. As for the second rule, if all events shift a point from layer p to

a deeper layer, it takes at least
|Vp|(d−c)

cd events before a reset happens in layer p, hence we

should give e cd
|Vp|(d−c) to each vertex in Vp. Note that the total amount of money spent on

the vertices is e cd
d−c , which is a constant.

The third rule is there to ensure that the wallets for two points in the same IS hold the
same amount of money. For example, if a layer i is close to resetting, and a point v is added
to Vi, then W (v, i) should contain enough money to recolor during the upcoming reset. Note
that since the number of layers is logarithmic, and since the wallets are “capped” at e 1, the
amount of money we spend in this rule is bounded by O(log n).

22

Finally, the fourth rule. For a layer i, if each event adds a vertex to this layer, it takes at
least |Vi|(d−c)

c events for this layer before a reset is needed. To ensure the wallets for this layer
contain enough money, we give e c

|Vi|(d−c) to each wallet in this layer. Per layer, the total

amount of money spent per event is e c
d−c , which is a constant. Since we have a logarithmic

number of layers the total amount of money spent by this rule is bounded by O(log n).
Since each of the rules above spends at most eO(log n), and since this is enough to

facilitate all recolorings in the structure, we have the following theorem:

Theorem 4. The Bounded IS method requires an average of O(log n) recolorings per event.

4.1.2 A worst case example

We now give an illustrative example that requires Ω(log n) recolorings per event on average.
For simplicity, we use as bounds c = 2 and d = 4, so a layer i resets when its IS is smaller
than (or equal to) |Vi|/4 and when this occurs the layer is recolored such that the IS is exactly
|Vi|/2.

To be able to have these bounds, we will be using a raster-like structure as shown in
Figure 4.3. For simplicity we assume that recolorings only happen from the first layer. We
can imagine the points to move within a small distance ε from their starting point, causing
the diagonal edges to flip, which results in violations in the independent set.

Since the raster is not infinitely large there is a boundary, where the IS’s aren’t structured
quite as neatly and the example doesn’t work. We can still focus on any square region in the
interior of the raster where the bounds do hold.

Let V be a set of n = 2k vertices. This means initially, the layers have respectively
2k, 2k−1, 2k−2, . . . , 2, 1 vertices, of which respectively 2k−1, 2k−2, 2k−3, . . . , 1, 1 are in the IS’s.
Each step, we remove a vertex from the IS in the first layer and append it as new layer at the
end. See Figure 4.4 for an example.

Lemma 2. In this scheme, all layers (with exception of the first layer) have an IS size which
is a power of two. In fact, for every i with 0 ≤ i ≤ k − 2 there is at least one layer with IS
size 2i.

Proof. We prove by induction that every power of two (up to 2k−2) occurs as the size of a
layer. Initially, this is trivially true. Recall that in our scheme we only move vertices from
the top layer down, we never move a vertex from another layer down. Because of this, when
shifting vertices down the recursion, the independent sets in the existing layers (with the
exception of the first layer) don’t change. Only a reset can cause the IS in a layer to change.

If every layer i > 1 has an IS size which is a power of two, say 2j , we have that the
layer resets when |Vi| equals exactly 2j+2. This means the new IS of this layer has size 2j+1,
and the IS’s of the deeper layers becomes 2j , 2j−1, 2j−2, . . . , 1, 1, so every power of two still
appears as an IS size.

If there are multiple layers with the same IS size, the one that is the least deep reaches its
bound before the other layers, and therefore these other layers won’t reach their bounds. We
will call each of these least deep layers a critical layer. Specifically, we will call the least deep
layer with an IS size of 2i the i-th critical layer. Note that the ordering of the critical layers
is reversed compared to the ordering of the layer numbers. We have an i-th critical layer for
0 ≤ i ≤ k − 2.

23

Figure 4.3: A raster of points. The first five figures show the first five layers of a CF-coloring,
with the independent sets colored. The lower right figure shows the resulting CF-coloring.

Lemma 3. The i-th critical layer resets every 2i+2 steps.

Proof. Note that after it has been reset, the i-th critical layer has a total size of 2i+1, and
therefore it takes 2i+1 steps until enough vertices are added for its bounds to break. It takes
the (i+1)th critical layer exactly twice as long for its bounds to break, and because of this we
have that if the bounds of the i-th critical layer are broken, the bounds of all deeper critical
layers break simultaneously.

In fact, of all the times the i-th critical layer breaks its bounds, the (i+ 1)th critical layer
breaks its bounds exactly half of those times, so for each critical layer only half of the times
the bounds break results in a reset in this layer. This means the i-th critical layer causes a
reset every 2i+2 steps.

At the moment the i-th critical layer breaks its bounds, it has 2i+2 vertices total, so the
number of recolorings is 2i+2.

Every i-th critical layer resets every 2i+2 steps, with 0 ≤ i ≤ k − 4. This means that
during the 2k−2 steps it takes for the first layer to recolor, this critical layer resets 2k−2

2i+2 times.
This gives us a total number of recolorings due to resets of:

k−4∑
i=0

2k−2

2i+2
× 2i+2 = (k − 3)× 2k−2

24

step 0 step 1 step 2 step 3 step 4 step 5 step 6 step 7 step 8

16/32 15/32 14/32 13/32 12/32 11/32 10/32 9/32 16/32

8/16 8/17 8/18 8/19 8/20 8/21 8/22 8/23 8/16

4/8 4/9 4/10 4/11 4/12 4/13 4/14 4/15 4/8
4/8 4/9 4/10 4/11

2/4 2/5 2/6 2/7 2/4 2/5 2/6 2/7 2/4
2/4 2/5 2/4 2/5

1/2 1/3 1/2 1/3 1/2 1/3 1/2 1/3 1/2
1/1 1/2 1/1 1/2 1/1 1/2 1/1 1/2 1/1

1/1 1/1 1/1 1/1

Figure 4.4: Progression of the layers and their IS’s in our worst case example. Each x/y pair
shows the IS size compared to the total layer size, so |ISi|/|Vi|. Each column represents a
step where a vertex is shifted down. Layers with the same IS size are grouped together. Blue
cells indicate the bound will be broken the next step, causing a reset. Green cells show the
layers which were recolored in a reset.

in 2k−2 steps, so the average number of recolorings per step is

k − 3 = Θ(k) = Θ(log n).

4.2 Maximal IS algorithm

We will now give an alternative approach to the Bounded IS algorithm described above.
Again, we keep track of the Delaunay triangulations of every layer, an event happens when
in any one of the layers an edge flip occurs. The difference here is that instead of waiting
for resets, we try to keep the IS of a layer maximal. More precisely, we impose the following
restrictions on the IS of a layer i:

• ISi should be a valid independent set in the Delaunay triangulation of that layer.

• ISi should not contain any vertices with a degree of 12 or greater.

• ISi should be maximal (with exception of vertices with degree 12 or greater). ISi is
maximal if all vertices in Vi \ ISi with a degree less than 12 are neighbours to a vertex
in ISi. In other words, there are no more vertices in Vi we can add to the independent
set.

For any vertex v neighbouring a vertex from ISi, we will say v is covered by ISi.
The maximal degree avoids situations where the IS of a layer consists of a few very high-

degree vertices. More precisely, we have that at most half the vertices in a triangulation have
a degree of 12 or greater, and for all the other lower-degree vertices we can say that choosing
a vertex for the IS eliminates at most 11 other choices. This means the IS size of a layer i has
a lower bound of 1

24 |Vi|, and as a result we have a logarithmic bound in the number of layers.
When the points move and a Delaunay edge flips, the invariants can be broken as follows:

25

• Two vertices in ISi become neighbours. This means one of the vertices v should be
removed from the independent set.

• A vertex v ∈ Vi \ ISi (with degree < 12) is no longer covered by ISi. This means it can
be added to ISi.

• A vertex v ∈ Vi \ ISi not covered by ISi loses a neighbour such that v’s degree is now
< 12. This means v can be added to ISi.

• A vertex v ∈ ISi gains a neighbour and reaches a degree ≥ 12, which means it should
be removed from ISi.

Adding or removing a vertex to an IS will have some side effects. If a vertex v is removed
from ISp it is added to the deeper layers until we find a layer q where v can be added to
ISq without violating the invariants. On top of that, ISp might no longer be maximal, which
means one or more vertices need to be added to ISp. If a vertex is added to an IS then the
vertex is removed from all the deeper layers.

Adding or removing a vertex v to/from a layer q can have side-effects as well:

• v is added to layer q, and causes a vertex in ISq to get a degree of 12 or greater.

• v is added to layer q, and makes it possible to add a new vertex (possibly v itself, but
not necessarily) to ISq.

• v is removed from layer q, and makes it possible to add a different vertex into ISq.

• v is removed from layer q, and causes two vertices in ISq to become neighbours.

Each of these effects will require ISq to change, which in turn may cause similar effects in
layers even deeper. This means one single edge flip can cause several recolorings to happen
in a single event.

4.2.1 Implementation

First of all, these four procedures are used in the pseudocode below. Since they are fairly
trivial, we will not elaborate on them any further.

• color(v) returns the color of point v.

• degree(l, v) returns the degree of point v in DT (Vl).

• isCovered(l, v, ignore) returns whether v is covered by ISl. Note that we do not check
v itself, nor any vertices in the set ignore.

• neighbours(l, v) returns a set of neighbours of v in the current DT (Vl).

The following pseudocode illustrates the implementation of processing an edge flip. After
flipping an edge in layer l we should call vertexChange(l,v) on all vertices v involved in
this edge flip. For a single edge flip this would be four vertices, but in some cases multiple
edge flips might happen at the same moment in time. This procedure will check if the vertex
v violates the restrictions of the maximal independent set in layer l and fix this violation.

26

procedure vertexChange(l, v)
if color(v) 6= l then

checkAddIS(l, v, ∅)
else if degree(l, v) ≥ 12 or isCovered(l, v, ∅) then

removeFromIS(l, v)
end if

end procedure

The checkAddIS procedure is called on layer l and vertex v to add v to ISl if possible.
In addition, checkAddIS takes an ignore parameter which contains a set of vertices to ig-
nore when checking whether v is covered. Doing this requires v to be removed from deeper
layers.

procedure checkAddIS(l, v, ignore)
if not isCovered(l, v, ignore) and degree(l, v) < 12 then

for i = color(v) downto l + 1 do
removeFromLayer(i, v)

end for
set the color of v to l

end if
end procedure

The removeFromIS procedure is called on a layer l and vertex v to remove v from ISl.
When this happens, we need to see if the neighbours of v can be added to ISl, and finally
add v to the next layer.

procedure removeFromIS(l, v)
for all n ∈ neighbours(l, v) do

checkAddIS(l, n, {v})
end for
fitInIS(l + 1, v)

end procedure

The fitInIS procedure is called on a layer l and vertex v. This procedure adds v to Vl
and tries to fit v in ISl. If this is not possible, it recursively calls itself to fit v in the next
layer, and afterwards handles the changes that adding v to Vl have caused in the Delaunay
triangulation.

27

procedure fitInIS(l, v)
add v to Vl
if isCovered(l, v, ∅) or degree(l, v) ≥ 12 then

fitInIS(l + 1, v)
for all n ∈ neighbours(l, v) do

if color(n) = l and degree(l, n) ≥ 12 then
removeFromIS(l, n)

else if color(n) 6= l then
checkAddIS(l, n, ∅)

end if
end for

else
set the color of v to l

end if
end procedure

The removeFromLayer procedure removes a vertex v form a layer l and fixes any voila-
tions of the IS which may occur. In particular, if a neighour n of v has to be removed from
ISl as a result of removing v, then we need to check for every neighbour m of n if they can
be added to ISl instead. To avoid conflict we temporarily set the color of n to an invalid value.

procedure removeFromLayer(l, v)
nbv ← neighbours(l, v)
remove v from Vl
for all n ∈ nbv do

if color(n) 6= l then
checkAddIS(l, n)

else if isCovered(l, n, ∅) or degree(l, n) ≥ 12 then
for all m ∈ neighbours(l, n) do

checkAddIS(l,m, {n})
end for
set the color of v to −1
fitInIs(l + 1, n)

end if
end for

end procedure

4.2.2 A worst case example

A theoretical example of things escalating is the following: A vertex is removed from a layer
Vi, which causes the addition of two new vertices to ISi. These two vertices were originally
in ISi+1, but since they are now removed in Vi+1 these removals will cause twice as many
new vertices to be added to ISi+1, which removes them from Vi+2 (and ISi+2), etc.

This example will double the number of recolorings each layer, so if this keeps up for l
layers, the total number of recolorings in a single event is O(2l). However, the question is: is

28

Figure 4.5: A set of points arranged in squares. On the left, three layers are shown, on the
right the same layers are shown after removal of the center vertex. Each next layer, the
number of recolorings doubles. Not shown are “padding” vertices close to the vertices in the
outer squares to ensure the IS’s are maximal.

such an example geometrically possible?
For an actual example of something like this happening, see Figure 4.5. The figure shows

a set of points arranged on l squares centered around a single center point. The i-th square
has dimensions 1 − 1

2i
, and has a point on each corner. The edges of the square consist of

points spaced 1
2i+1 apart. For i ≥ 1, we call the subset of points on the i-th square Si. Note

that if Si has m points, Si+1 will have 2m+ 8 points, so the number of vertices doubles each
square.

The center point is in the first IS and for all i in {1 . . . l}, exactly half of the points of the
Si are in ISi+1. The other half of the points on each square are in deeper independent sets

29

Figure 4.6: For a point set in general position (no 4 points lie on the same circumcircle), we
can always add a new IS vertex to a Delaunay triangulation to cover a yet uncovered vertex
v.

and are unimportant for this example.
The “escalation” is as follows: if we remove the center point from IS1, we have to add 4

vertices from S1 to IS1. If these 4 vertices were originally in IS2 their removal from this layer
prompts 12 vertices from S2 to be added to IS2. If we again pick the 12 vertices which were
originally in IS3, which removes them from V3, etc. In other words, if we “badly” choose new
vertices for each IS, then we can cause twice the number of changes in every next layer.

We have however ignored a problem with this example, namely that our independent sets
aren’t maximal. If we add vertices in the outer squares to an IS such that it is maximal,
our scheme no longer works out, so we have to do something different. For each layer i we
add a set Xi of padding vertices to Vi, which are become become part of ISi such that this
independent set becomes maximal.

Lemma 4. Given a set of vertices V , of which a subset C ⊆ V forms an independent set in
the Delaunay triangulation of V , it is possible to add a set of vertices X such that X ∪ C is
a maximal independent set of the Delaunay triangulation of X ∪ V .

Proof. We can solve this problem greedily, by adding the vertices of X one by one to the
triangulation until X ∪ C is a maximal independent set. Let C be the current independent
set in V . If C maximal, we are done. However if C is not maximal, this means there are
vertices in V \ C which are not neighbouring any vertices in C. In other words, there are
vertices in V still not covered by C. Let v be such an uncovered vertex. We try to add a
vertex c which covers v. Of course we should ensure that c does not become a neighbour to
any IS vertex in the new Delaunay triangulation.

Let S be the set of circumspheres through the vertices in C, that is, S contains a circum-
sphere of a Delaunay triangle if and only if one of the vertices is in C. If we add c inside any
of the circumspheres of S, it will become a neighbour of a vertex in C. However since the
vertex v is uncovered by the independent set, and since our points are in general position,
there is always some amount of space around v not intersecting any of the spheres in S. See
Figure 4.6 for an example. This means we can place our vertex c inside this space, close to
v, which results in v being covered.

Vertices with degree of 12 or greater of course do not need to be covered by the independent
set. However, padding vertices should not have a degree of 12 or greater either. A padding

30

vertex c covering v can be neighbour only to neighbours of v and v itself, so by placing c
opposite to some neighbour of v we can guarantee c is not a neighbour to all neighbours of
v. This means the degree of c is less than 12.

This means our total construction consists of the center vertex, the square vertices Si and
the padding vertices Xi for 1 ≤ i ≤ l. Each independent set ISi consists of exactly half the
vertices in Si+1, the padding vertices Xi and possibly some leftover vertices in the earlier
squares Sj for j < i. With this construction it is possible that removing the center vertex
will cause an “avalanche” effect, doubling the number of recolorings in each layer until the
l-th one.

5 Experimental results

In the previous sections, we have determined a few theoretical bounds for the number of
recolorings and the number of colors. For the Bounded IS algorithm with bound d, each layer
has at most d−1

d times the number of vertices of the previous layer, which means the number
of colors is at most log d

d−1
n. We also have argued that this algorithm requires an amortized

O(log n) recolorings per event. For the Maximal IS algorithm we’ve seen that a single event
can cause an “avalanche” effect, namely in every next layer twice as many vertices need to
be recolored. In this section we experimentally investigate the number of recolorings and the
number of colors used by these two algorithms.

Unless otherwise indicated, we use the following settings when running the experiments:

• Our point-set consists of 100 points, placed uniformly at random in a domain D which
is an axis-aligned square. Each point has a velocity vector chosen uniformly at random
from a unit square.

• When a point intersects a boundary of the domain D its trajectory in the x- or y-
direction is reversed. The result of this is that the point distribution will stay uniformly
at random.

• Our tests end after processing 10000 events.

• For the Bounded IS algorithm, the bound d after which a reset happens is set to d = 12.

• For the Bounded IS algorithm, we resolve conflicts (neighbouring points in the IS,
making the IS invalid) by shifting one of the points to a new layer (as opposed to the
first layer where the point would fit in the IS).

• For the Maximal IS algorithm, the maximal degree d is set to d = 12, so a point in an
IS can not have a degree of 12 or greater.

These are the default settings of our experiments. We typically use the default settings for all
variables except one, which we vary in the experiment. Thus we investigate the dependency
of the quality of our solution on the following parameters.

• The number of points for both algorithms.

• The bound d in the Bounded IS algorithm.

• The shifting method in the Bounded IS algorithm.

31

Figure 5.1: Examples of the number of recolorings (red) and the number of colors (green)
during 2500 events. Upper left: Bounded IS algorithm with 100 points. Upper right:
Bounded IS algorithm with 1000 points. In both the Bounded IS graphs the reset size appears
to ascend until the reset of the first layer. Lower left: Maximal IS algorithm with 100 points.
Lower right: Maximal IS algorithm with 1000 points.

• The maximal degree in the Maximal IS algorithm.

• Whether or not the x- or y-direction of a point is reversed when it collides with the
boundary of the domain D.

We look at the effect changing these variables has on the number of colors and the number
of recolorings.

5.1 Varying the point-set sizes

Our first experiments are to analyze the effect of different point-set sizes. We’ve run ex-
periments for point-sets ranging from 20 to 2000 points, for both the Bounded IS and the
Maximal IS algorithm. For the Bounded IS algorithm, since we use a constant of d = 12, each
layer is at most 11

12th of the previous one in size, the upper bound of the number of colors is
given by log 12

11
n. Similarily, for the Maximal IS algorithm the upper bound of the number of

32

Colors Recolorings
n avg max bound avg

logn
max
logn total max

20 12.4 15 34.4 2.9 3.5 1232 20

50 17.2 22 45.0 3.0 3.8 1569 50

100 20.9 28 52.9 3.1 4.2 2017 100

200 24.6 31 60.9 3.2 4.1 2275 200

500 28.3 35 72.4 3.2 3.9 2879 337

1000 31.3 38 79.4 3.1 3.8 4064 444

2000 34.0 42 87.4 3.1 3.8 5659 696

Table 5.1: Varying the number of points for the Bounded IS algorithm. For the number of
colors, avg is the average number of colors per event, max is the maximal number of colors
that occurred during the experiment, and bound is the theoretical upper bound. For the
number of recolorings total is the total number of recolorings during the experiment, and
max is the highest number of recolorings in a single event.

Colors Recolorings
n avg max bound avg

logn
max
logn total max

20 8.2 10 69.3 1.9 2.3 6414 12

50 11.2 14 91.9 2.0 2.5 8036 19

100 13.5 16 108.2 2.0 2.4 9834 24

200 15.9 18 124.5 2.1 2.4 12034 27

500 19.1 21 146.0 2.1 2.3 15248 34

1000 21.3 23 162.3 2.1 2.3 18406 62

2000 23.5 25 178.6 2.1 2.3 22164 60

Table 5.2: Varying the number of points for the Maximal IS algorithm.

Figure 5.2: The average (green) and maximal (red) number of colors for different point-set
sizes. Left the Bounded IS algorithm is shown, right the Maximal IS algorithm. The x-axis
is the logarithm of the number of points.

33

Figure 5.3: The total number of recolorings plotted against the number of points. Left the
Bounded IS algorithm is shown, right the Maximal IS algorithm.

colors is given by log 24
23
n. In both cases we will likely never get close to these bounds since

they require the IS fractions of every layer to be close to |V |/12 or |V |/24 respectively.
Figure 5.1 shows some examples of the progression of the number of colors and number

of recolorings during these experiments, and Tables 5.1 and 5.2 show the results of these
experiments.

One interesting pattern in the figures is the “staircase effect” that appears during the
Bounded IS algorithm. Namely, the recoloring spikes seem to get bigger and bigger towards
the end of the graph. In fact, for two subsequent layers Vi and Vi+1, we have that Vi+1 tends
to reset shortly before Vi resets. The reason that this occurs is that Vi+1 is “almost” the size
of Vi, so its bounds break shortly before Vi’s bounds break. This means we expect a slightly
smaller spike shortly before a large spike, which gives us these increasing reset sizes. After a
reset of the first layer we expect the spikes to start small again.

It is of course a bit wasteful to have a layer Vi+1 recolor shortly before Vi, since it means
most of the points in Vi are recolored twice in a row, and if Vi would have broken its bounds
before Vi+1 then Vi+1 would not have to recolor again for a while.

Figure 5.2 shows the average and maximum number of colors plotted against log n. The
linear behaviour of the graphs indicates indeed that in practice, the number of colors is
logarithmic in the number of points. Figure 5.3 shows the number of recolorings plotted
against n.

Comparing the two algorithms, we can see that although the Maximal IS algorithm uses
less colors than the Bounded IS algorithm, the Maximal IS algorithm requires many more
recolorings. The Bounded IS algorithm has some events with a very large number of recol-
orings (occasionally the entire point-set), though most events only cause 1 recoloring or less.
The Maximal IS algorithm has many recolorings of smaller size, but recolorings where only
a single point is recolored are rare. Around 70% of the recolorings here have a size greater
than one.

34

Figure 5.4: Examples of the number of recolorings (red) and the number of colors (green)
during 2500 events for the Bounded IS algorithm. In the left graph we use a bound of d = 9,
in the right graph d = 18. As expected, the number of recolorings for higher d is lower, but
the average number of colors is higher.

Colors
d avg max bound Recolorings

7 16.2 19 29.9 6960

8 17.4 21 32.5 4292

9 18.2 24 39.1 3899

10 19.1 24 42.7 2979

11 19.8 25 48.3 2819

12 20.6 27 52.9 1986

14 22.8 29 62.1 1609

16 23.8 33 71.4 1289

18 27.2 35 80.6 731

20 27.6 36 89.8 680

22 28.6 37 99.0 477

24 30.9 41 108.2 458

Table 5.3: Varying the bound d for the Bounded IS algorithm.

5.2 Bounded IS: Varying the reset bound

In the previous sections we’ve seen that the upper bound of the number of colors when using
the Bounded IS algorithm is given by log d

d−1
n. In practice, we expect the number of colors

to be lower, since this upper bound only occurs if all layers have an IS size close to |Vi|/d.
For higher values of d, the IS of a layer needs to be a smaller fraction of the layer vertices

for a full reset to take place, so we expect the number of recolorings to decrease. Similarily,
for lower d resets take place earlier so the number of recolorings is greater.

Figure 5.4 shows examples of the algorithm running with different bounds. As expected,
a higher value of d results in less frequent resets and a higher number of colors.

35

Figure 5.5: Experimental results when varying the reset bound d for the Bounded IS algo-
rithm. Left: The average (green) and maximal (red) number of colors plotted against d.
The blue points indicate the theoretical upper bound of log d

d−1
n. Right: The number of

recolorings plotted against d.

Colors
Shift to avg max Recolorings

new layer 21.7 27 1699

first fit 19.5 23 998

Table 5.4: Comparing shifting to a new layer to shifting to the first fitting layer.

In Table 5.3 and Figure 5.5 we show the results of these experiments. The number of
colors stays far below the calculated upper bound. The number of recolorings show a pattern
converging to 0. After all, for higher values of d resets will happen less frequently.

It is worth noting that the Maximal IS algorithm has a lower average and maximum
number of layers for 100 points, even compared to the Bounded IS with d = 7. As a trade-off,
the number of recolorings is higher than that of the Bounded IS with d = 7. This is because
while a maximal independent subset of a layer i can in theory be smaller than Vi/7, this
rarely happens for uniformly distributed points.

5.3 Bounded IS: Shifting methods

Our next experiments involve the shifting methods for the Bounded IS algorithm. In our
other experiments we’ve always shifted points to a new layer, but it is also possible to shift
a point to the first layer where it fits in the IS without causing a violation. This should
improve the number of colors, since we don’t create a new layer for every shift. The number
of recolorings should also improve since adding a point to the IS of an existing layer will delay
a reset taking place from that layer.

Table 5.4 and Figure 5.6 shows the results of these experiments. These results indicate
that the number of colors for the “first fit” shifting method is slightly less than the number
of colors for the “new layer” method. The number of recolorings is significantly less for the

36

Figure 5.6: The number of colors (green) and recolorings (red) for the Bounded IS algorithm
when shifting to a new layer (left) and shifting to the first fitting layer (right). Interestingly,
when shifting to the first fitting layer, resets of layers other than the first one seems much
less common.

Colors Recolorings
d avg max bound total max

7 13.3 15 223.3 21450 31

8 13.4 15 145.1 13153 28

9 13.5 15 122.0 10796 26

10 13.6 16 112.8 10110 25

11 13.6 16 109.1 9360 27

12 13.5 16 108.2 10066 25

14 13.6 16 110.5 9517 23

16 13.6 16 115.6 9852 24

18 13.6 16 122.0 9863 22

20 13.5 16 129.3 9973 23

22 13.6 16 137.0 9356 22

24 13.6 15 145.1 9713 24

Table 5.5: Varying the maximal degree d for the Maximal IS algorithm.

“first fit” shifting method. It seems resets from layers other than the first layer are much
less common, which can be explained by the fact that vertices are often added to the IS’s of
existing layers other than the first one, which means they don’t reset as often.

5.4 Maximal IS: Varying the maximal degree

For the Maximal IS algorithm we use a maximal degree denoted as d in order to limit the
number of colors. A lower maximal degree means that fewer vertices can be chosen to be in
the IS of a layer, whereas a higher maximal degree means that high-degree vertices can be
chosen for the IS which covers many other points at once.

37

Figure 5.7: The number of recolorings plotted against the maximal degree d for the Maximal
IS algorithm.

Colors Recolorings
Algorithm bound avg max total max events

Bounded IS enabled 21.2 27 1761 100 10000

Bounded IS disabled 21.0 27 1239 100 5640

Maximal IS enabled 13.5 16 9987 22 10000

Maximal IS disabled 13.7 15 3348 20 3139

Table 5.6: Experimental results for both algorithms, with the bounded domain disabled and
enabled.

Since vertices reaching this maximal degree may need to be recolored, we expect the
number of recolorings to be higher for lower values of d. However since high degrees are fairly
rare, especially degrees greater than 12, the number of recolorings for d > 12 should not differ
too much from d = 12.

Table 5.5 and Figure 5.7 show the results of the experiments. As expected, low values
of d increase the number of recolorings, but for d ≥ 10 there are too few vertices with such
high degrees to make a significant difference. Interestingly, the number of colors appears to
be unaffected by the different values of d. This indicates that for point trajectories chosen
uniformly at random, having a maximal degree d at all is unnecessary.

5.5 Bounded domain

In our previous experiments we have used a bounded domain, points which hit the edge of
the domain reverse their horizontal or vertical speed. This way we could continue running
the experiment indefinitely. Without this boundary the points will move further apart and
events will start happening less frequently as time progresses.

Figure 5.8 shows examples of both algorithms running without bounded domain. In Table
5.6 the results of the experiments are shown. It seems that for both algorithms the number of
colors is not significantly affected. Also, for both algorithms the average number of recolorings

38

Figure 5.8: The number of colors (green) and recolorings (red) without bounded domain. Left
the Bounded IS algorithm is shown, right the Maximam IS algorithm.

per event does not seem to differ much depending on the whether we bound the domain.

6 Conclusions

For the one-dimensional case we have shown a method to find a CF-coloring of intervals using
structures called chains, which results in a coloring using three colors. Using the KDS model,
we have shown how to maintain these structures when the intervals move which results in a
CF-coloring using four colors with O(1) recolorings per event.

In two dimensions we’ve looked into maintaining a CF-coloring of points with respect to
disks, or equivalently the CF-coloring of unit disks. We’ve mainly looked into adapting the
algorithm found in [5] for the kinetic case. We’ve looked into two different ways of doing this,
summarized as the Bounded IS and the Maximal IS algorithms, both resulting in a O(log n)
number of colors.

For the Bounded IS algorithm, we have shown that the algorithm requires an amortized
O(log n) recolorings per event, and we’ve seen an example where an average of Ω(log n)
recolorings per event are required. For the Maximal IS algorithm no clear bounds were found,
but we did show an example where the number of recolorings doubles each layer, causing an
“avalanche” of recolorings.

We have run experiments of both the Bounded IS and Maximal IS algorithm on point
sets chosen uniformly at random from inside a square. We have compared the number of
recolorings and the total number of colors during different experiments, varying the number
of points and some of the parameters of both the Bounded IS and Maximal IS algorithm.

In these experiments we’ve confirmed the logarithmic behaviour of the number of col-
ors, though the total number of colors generally does not come close to the theoretical upper
bound. For the Bounded IS algorithm we’ve shown the trade-off between the number of recol-
orings and the total number of colors when using different bounds. We’ve also demonstrated
that coloring a vertex with the first available color gives quite an improvement over coloring
a vertex with the first unused color. For the Maximal IS algorithm we’ve looked at the effects
when changing the maximal degree parameter. It turns out that this parameter only matters

39

when it is set to a low value, e.g. 10 or lower. This stems from the fact that high-degree
vertices are simply not that common when the points are distributed uniformly at random.
Finally, we’ve taken a brief look at the effects of having a bounded domain compared to not
having one.

There is still plenty of further research to be done in Kinetic CF-coloring. In this thesis
we’ve only considered CF-coloring of kinetic intervals and CF-coloring of points with respect
to disks. For example, we haven’t looked into CF-colorings of rectangles or other types of
regions. The most generalized version of Kinetic CF-coloring would be maintaining a CF-
coloring of a hypergraph as we insert and remove hyperedges. Other than that, there are
a few variations of CF-coloring which do not have any kinetic solutions yet, such as k-CF
coloring, k-strong CF-coloring, and List CF-coloring.

References

[1] A. Bar-Noy, P. Cheilaris, S. Olonetsky, and S. Smorodinsky. Online conflict-free colorings
for hypergraphs. 2007.

[2] P. Cheilaris, S. Smorodinsky, and M. Sulovskỳ. The potential to improve the choice: list
conflict-free coloring for geometric hypergraphs. In Proceedings of the 27th Annual ACM
Symposium on Computational Geometry, pages 424–432, 2011.

[3] K. Chen, A. Fiat, H. Kaplan, M. Levy, J. Matoušek, E. Mossel, J. Pach, M. Sharir,
S. Smorodinsky, and U. Wagner. Online conflict-free coloring for intervals. SIAM Journal
on Computing, 36(5):1342–1359, 2006.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, 2001.

[5] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. Conflict-free colorings of simple ge-
ometric regions with applications to frequency assignment in cellular networks. SIAM
Journal on Computing, 33(1):94–136, 2003.

[6] S. Har-Peled and S. Smorodinsky. Conflict-free coloring of points and simple regions in
the plane. Discrete & Computational Geometry, 34(1):47–70, 2005.

[7] E. Horev, R. Krakovski, and S. Smorodinsky. Conflict-free coloring made stronger. In
Algorithm Theory-SWAT 2010, LNCS, pages 105–117. 2010.

[8] N. Lev-Tov and D. Peleg. Conflict-free coloring of unit disks. Discrete Applied Mathe-
matics, 157(7):1521–1532, 2009.

[9] J. Pach and G. Tóth. Conflict-free colorings. In Discrete & Computational Geometry,
pages 665–671. 2003.

[10] S. Smorodinsky. On the chromatic number of geometric hypergraphs. SIAM Journal on
Discrete Mathematics, 21(3):676–687, 2007.

[11] S. Smorodinsky. Conflict-free coloring and its applications. arXiv preprint
arXiv:1005.3616, 2010.

40

