
 Eindhoven University of Technology

MASTER

Improving network robustness
using distance-based graph measures

Jurgens, S.E.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f1c5aa23-1291-4850-96e8-eaa9db031de6


Improving network robustness

using distance-based graph measures

Sander Jurgens

November 10, 2014

Master thesis
Department of Math and Computer Science Performance of Network and Systems
Eindhoven University of Technology TNO ICT, Delft

Thesis supervisors
dr. K.A. Buchin dr. D.T.H. Worm

mailto:s.e.jurgens@student.tue.nl
mailto:k.a.buchin@tue.nl
mailto:daniel.worm@tno.nl


2



Abstract

Complex networks are ubiquitous in today’s world, being the infrastructure of modern society.
From power grids to transportation highways, network topologies can be found everywhere.
As a result, their failure has major consequences on our daily lives, even more so if these prob-
lems cascade throughout the network. Therefore, improving the robustness of such networks
becomes an essential task, making them able to better cope with occurring failures.

Robustness is defined as the ability of a network to continue performing well when it is
subject to attacks and random failures. By representing networks as simple, connected,
undirected, weighted graphs, we are able to quantify robustness with the use of some well
known topological graph measures. These measures are based on distance, connectivity or
centrality. Furthermore spectral measures are also considered.

In addition to surveying these graph measures through experimental evaluation, we also use
the distance-based measures in the network robustness improvement process. This process
aims at adding a limited number of edges to optimally improve the measures. Although the
problem itself is NP-hard, our proposed approximation algorithms can still ensure a good
solution. Finally, to demonstrate its applicability, a versatile software tool has been realized
which is able to assist in analyzing and improving the robustness of any given network.
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Chapter 1

Introduction

1.1 Motivation

The world we live in nowadays is highly connected. Interaction with surrounding networks
occurs on a continuous basis. Therefore, the consequences for failure have never been higher.
They range from large-scale power blackouts to major traffic congestions, or even a complete
telecommunication breakdown. Although these problems may seem like a temporary nuisance,
they have the ability to create serious issues for vital services.

An example of a network that is susceptible to failure is the U.S. airline system. This
network is based on a model where cities are linked together through highly connected hubs,
as shown in red in Figure 1.1. Attacking these hubs could easily disconnect the network,
bringing air traffic between the two coasts to a halt.

Figure 1.1: Simplified U.S. airline network before and after attacking the hubs.

Robustness of networks, in general, is of high importance due to the societal risks involved.
Moreover, many real world networks are the result of different processes that may not have
taken robustness into account, making it increasingly important to study their robustness at
this time. To introduce the concept of robustness a definition of the term is given.

Definition 1.1. Robustness is the ability of a network to continue performing well when it
is subject to attacks and random failures.

An approach with accurate measurements is needed in order to quantify network robustness
and to check whether a network is actually as robust as it seems. This quantitative approach
would need to measure the network connectivity, preventing failures from having a large
impact by taking down connections. To this extent many measures have been proposed in

9
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the literature. In this thesis we will be going back to the fundamentals of graph theory to
look for simple and intuitive graph measures that give an indication of robustness.

Once the measures have been established, we can make use of them to improve the robustness
of existing networks. Additionally, it can provide guidance in the design of new, more robust,
networks. However, costs are often involved for network modification. Hence, we will limit
ourselves in the number of modifications, whilst still providing close to optimal improvements
in robustness. By doing so, we make the proposed approach viable for real life scenarios.

1.2 Related work

A large number of networks we use every day are extremely vulnerable due to their simplistic
structure, which is why robustness studies are prevalent in network research. These suscep-
tive networks are often based on a scale-free model, the degree distribution of such models
allows them to be easily expandable. This type of network is also beneficial with respect to
maintenance, since it can mostly be focused on the highly connected hubs. However, these
hubs also present a risk to robustness, being very sensitive to failures and targeted attacks [3].

Although many studies have been done on scale-free networks, robustness research spans
across all types of networks and disciplines. This ranges from modeling power networks [25]
to area failures, e.g. floods, in telecom networks [1], and even the spread of disease and other
ecological problems [38]. In the end, all these examples come down to robustness analysis of
the underlying network topology, which is why this thesis focuses purely on graph theory in
a mathematical context.

Complex approaches to robustness analysis are quite common in the literature, since ro-
bustness itself is very multifaceted. In recent studies researchers have looked at the existence
of alternative paths as a measure for robustness [44]. Others claim dynamic techniques work
better, such as analyzing cascading failures [45] and back-up routing possibilities [36]. The
amount of usable measures is so staggeringly high that frameworks have even been proposed
to provide guidelines and generalizations for new measures [29, 30, 39].

We believe it is time to go back to basics by using simple topological graph measure in
an attempt to improve the robustness of any network. This improvement will be done by
edge addition. Although simple randomized edge addition schemes already exist [6], more
sophisticated approaches are required such as the ones aimed at diameter reduction [8, 10,
16, 23]. Techniques like these have sparsely been applied to different measures, for example
minimizing the average shortest path lengths with zero-weight shortcuts [32], but a general
approach does not yet exist.

Overall, when improving robustness, distance-based techniques seem to be more common
in literature. However, improvement based on different measures also exists, namely in the
field of spectral graph theory as extensively discussed by Cvetković et al [9]. Examples from
literature include algebraic connectivity improvement through linear algebra methods [41]
and optimization of the effective resistance based on a statistical approach [42].

In addition to robustness improvement, some work has also been done in network simpli-
fication through edge deletion. The goal behind these approaches is to reduce operational
costs with the lowest sacrifice in robustness. Complexity proofs for such problems were done
by Schoone et al [35], whereas other techniques using minimum spanning trees were also
introduced [20]. In this thesis we will only consider edge addition.
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1.3 Objectives

The aim of this thesis is to find intuitively clear network robustness measures and utilize
them in the process of robustness improvement. To this extent we will represent networks
as simple, connected, undirected, weighted graphs, quantifying robustness in terms of fun-
damental topological graph measures. There is no loss of generality in this representation,
meaning that the approach is applicable to real-world scenarios. Also, to remain close to real
life, we limited ourselves in the number of allowed modification which complicates the process
significantly. This results in the following research question.

Research question How can we determine the robustness of a simple, connected, undirected,
weighted graph, and use the resulting measures in the improvement process?

We will answer this question by taking an in depth look at several graph measures, performing
comparisons between them to show their effectiveness. As for improving the robustness, we
will take the distance-based graph measures as a basis and prove the complexity of the im-
provement when limiting ourselves in the number of modifications. Furthermore, we provide
approximation algorithms for computing improvement suggestions whose resulting measure
value is within a certain bound from the optimal. This bound is also formally proven. In
short, we intend to answer the following questions:

Secondary research questions

• Which graph measures are suited for measuring network robustness?

• How viable are distance-based measures in measuring the network robustness?

• What complexity class does robustness improvement, i.e. distance-based measure min-
imization, belong to?

• How do we go about approximating the optimal robustness improvements?

• What approximation ratios can we achieve for robustness improvements?

1.4 Outline

This thesis will go through the research questions in order, starting with Chapter 2 which
introduces a broad range of graph measures. Each section in this chapter discusses a class of
topological graph measures based on a specific aspect of graph theory: distance, centrality,
connectivity and spectral respectively. A short intuitive explanation regarding the relevance
of each measure to the network robustness is also given in each section.

In Chapter 3 we expand on this explanation of relevancy by experimentally validating the
capability of each graph measures to capture network robustness. The central question is
whether these measures, which are not specifically introduced as network robustness measures,
could be used to determine the robustness properties of a graph. To this end a versatile
software tool which we developed is introduced in Section 3.1 providing the experimental
setup, whereas the actual results are processed in Section 3.2.
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Assuming the distance-based measures to be viable in capturing network robustness, we are
able to improve network robustness by adding edges. However, optimally minimizing these
measures with a limited supply of additional edges is NP-hard as proven in Chapter 4. In
our hardness proofs we will reduce a known NP-complete problem, a variant on set cover as
defined in Section 4.1, to these minimizations. All other sections in this chapter present a
variant of this reduction for a specific distance-based measure.

Finally, Chapter 5 is dedicated to the minimization of the distance-based graph measures
through the addition of a set amount of edges. Although this problem was proven to be NP-
hard in the previous chapter, algorithms are designed to approximate the optimal solution
to this minimization within a proven bound. All of these algorithms rely on a clustering
technique that is introduced in Section 5.1. The other sections in this chapter are focused at
minimizing specific distance-based measures.



Chapter 2

Graph measures

The networks considered in this thesis can be represented by graphs, which allows us to utilize
the numerous measures that have been introduced to characterize them. We define such a
graph G = (V,E) to be simple, undirected, connected and weighted, with |V | = n vertices
and |E| = m edges. The edge weights are represented by function w, mapping pairs of vertices
to a positive real number.

w : V × V → R+
0

For unweighted graphs we assume edges to have unit weight, i.e. w(u, v) = 1 if there is an
edge between u, v ∈ V .

In this chapter we summarize some of the more well known topological graph measures,
whose relevancy in robustness measurements is quite intuitive. Each section describes a class
of measures, and discusses how they effectively measure network robustness. An experimental
evaluation of these measures is performed in the next chapter.

2.1 Distance

Distances, both between individual vertices as well as in the graph overall, present an easy
and intuitive way of defining robustness. These distances are defined on a path, which is a
sequence of vertices π = (v1, . . . , vk) ∈ V × · · · × V such that (vi, vi+1) ∈ E for 1 ≤ i < k. As
is expected, shorter paths are less vulnerable, since this gives an indication that the vertices
are much more closely connected. Longer paths on the hand show a lower robustness value,
because the probability of failure increases with each additional edge on the path.

We define the (weighted) length of a path (v1, . . . , vk) to be
∑k−1

i=1 w(vi, vi+1), i.e., the
combined weight of all edges that make up the shortest path. The shortest path between
vertices u ∈ V and v ∈ V is a path with minimal length, hence no other path has a smaller
length. This path need not be unique. Let distance function d(u, v) be the (weighted) length
of the shortest path between u and v. Similar to the edge weights, it maps all pairs of vertices
to a positive real number

d : V × V → R+
0

Summarizing, we define the distance function as follows.

Definition 2.1. d(u, v) is the combined weight of all edges that make up the shortest path,
with respect to their edge weights, between vertex u ∈ V and vertex v ∈ V .

13
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Using this distance function we can define multiple distance-based measures, starting with
eccentricity. Eccentricity is, in essence, a distance-based measure between individual vertices,
but also a helpful concept in explaining some other measures in this section. For a vertex
v ∈ V it represents the greatest geodesic distance between v and some other vertex in the
graph. Formally, it is defined as follows.

Definition 2.2. Eccentricity, for a vertex v ∈ V , is given by

ε(v) = max
u∈V

d(v, u).

The concept of eccentricity can be applied in specifying the radius measure. As its name
suggests, it describes the radius of a graph as seen from a central vertex. In a graph with
radius R a central vertex is one whose eccentricity is exactly R, meaning all other vertices are
reachable within that distance. This leads to the following definition for the radius measure.

Definition 2.3. The radius of a graph is the minimum eccentricity over all of its vertices:

R = min
v∈V

ε(v).

An intuitive, and more well known, counterpart to the radius is the diameter measure. The
diameter got its name from the fact that it describes the largest distance between any two
vertices in the graph, more specifically any two peripheral vertices. Given a graph with
diameter D a peripheral vertex is one that defines the diameter, hence whose eccentricity is
exactly D. This measure is defined as follows.

Definition 2.4. The diameter of a graph is the maximum eccentricity over all of its vertices:

D = max
v∈V

ε(v).

All of the measures thus far deal with extreme values for the distances, this has become very
prominent in literature due to the relative easy of reasoning about these values. However, an
average value, although more difficult to theoretically analyze, says more about the network as
a whole in comparison to the radius and diameter which deal with more extreme cases. This
is the reason why we include the average shortest path (ASP) measure, both the single source
as well as the general variation, which averages the shortest paths between all combinations
of vertices in the graph.

Definition 2.5. The single source average shortest path length of a vertex is the average over
the shortest paths to all other vertices in the graph:

Davg(v) =
1

n− 1

∑
u∈V

d(u, v)

Definition 2.6. The average shortest path length of a graph is the average over the shortest
paths between all combinations of vertices:

Davg =
1

n

∑
u∈V

Davg(u) =
1

n(n− 1)

∑
u∈V

∑
v∈V

d(u, v).

Overall, these distance-based measures give a good insight as to how closely the graph is
connected, which is a sign of robustness against random failures. Some measures are more well
known than others, but all provide the ability to analyze specific parts of network robustness.
Averaged distance measures such as ASP are more sensible than ones which rely on extreme
values, since they tell more about the graph as a whole. On the other hand, the measures
based on extreme values tell us more about worst case performance.
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2.2 Centrality

In graph theory, centrality aims at identifying the most important vertices within a graph,
ones that are most central to its structure. Important vertices are characterized by their
topological location, large number of connections, and the amount of information passing
through. These measures find their origin in social networks, where it is able to identify the
most influential person(s) [34]. Other applications include locating key infrastructure vertices
of urban networks and finding spreaders of disease.

Since most centrality measures only govern the importance of single vertices, and not net-
work robustness as a whole, they are not as important to us as the other measures presented
in this chapter. However, they do show some interesting concepts which we will be able to
use later on, such as locating interesting graph elements to attack, which is why they are still
a point of discussion in this thesis.

Historically the first centrality measure, and arguable the simplest graph measure overall, is
the degree centrality, which is defined as the number edges incident upon a vertex. In terms of
robustness, the degree can be interpreted as the failure risk of a vertex, due to its utilization
in the network. More neighbors means a higher probability of failure, and hence a lower
robustness. An example of these types of failures can be found in communication networks,
where servers are often overloaded with many incoming service requests (i.e. a high degree).

Definition 2.7. Degree centrality of a vertex v ∈ V is the number of edges incident upon
said vertex:

δ(v) = |{ u ∈ V | (u, v) ∈ E }|.

As specified at the beginning of this chapter, we are dealing with undirected graphs. Hence we
will not distinguish between in-degree and out-degree. An averaged version of this measure,
capable of measuring overall network robustness, is defined as follows.

δ̄ =
1

n

∑
v∈V

δ(v)

Centrality can also be based on distances to (all) other vertices, as is done with the closeness
centrality measure. Closeness is defined as the sum of the inverted distances, i.e. farness, to
all other vertices in the graph. Thus, more central vertices have a lower closeness, since they
are closer to all other vertices. Intuitively, closeness can be regarded as a measure of how
long it will take to spread information from to all other nodes sequentially.

Definition 2.8. Closeness centrality of a vertex v ∈ V is the sum of inverse distances to all
other vertices:

c(v) =
∑

u∈V ∧u6=v

1

d(u, v)
.

To measure overall robustness, and more specifically whether there is a high percentage of
outliers, a variation of this metric averaged over all vertices is introduced. This variation,
which is quite similar to the average shortest path measure, can be computed as follows.

c̄ =
1

n

∑
v∈V

c(v)
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The final centrality measure which we will introduce is betweenness centrality. This measure
is special in that it is applicable to both vertices and edges, making it ideal for selecting
important graph elements to attack. Betweenness centrality denotes the number of shortest
paths, when considering all combinatorial pairs of vertices, passing through a vertex or edge.
In terms of robustness measurements, this means that the measure excels in networks with
information traveling along the edges.

Definition 2.9. Betweenness centrality of a vertex or edge x is the number of shortest paths
passing through it:

b(x) =
∑

s,t∈V ∧s6=x 6=t

σst(x)

σst
.

where σst is total number of shortest paths from vertex s to vertex t and σst(x) is the number
of those paths that pass through x.

If desired, the betweenness can be normalized by dividing through the number of vertex pairs
excluding x, which is (n − 1)(n − 2)/2 in our graphs. As for the overall robustness of a
network, Sydney et al have proposed a measure based on maximum edge betweenness and
its behavior as vertices are removed [37]. However, as we are interested in comparisons with
other averaged centrality measures, we introduce an averaged variation of the betweenness
centrality measure below, both for vertex and edge betweenness.

b̄v =
1

n

∑
v∈V

b(v) b̄e =
1

m

∑
e∈E

b(e)

2.3 Connectivity

Connectivity is one of the basic concepts of graph theory, it implies the existence of connections
between components of the graph. This means that a highly connected graph is more dense,
whereas a graph with less connectivity is sparse. In terms of robustness, a dense graph is
more resilient, having back-up paths if anything goes wrong. Therefore, connectivity-based
graph measures are also intuitively compatible as robustness measures.

An important part of connectivity is how well the network is able to hold together. Hence,
when discussing connectivity, the classic measures vertex connectivity and edge connectivity
first come to mind. These measures express the amount of removals it takes to disconnect
the graph into multiple separate connected components. More formally, they are defined as
follows.

Definition 2.10. The vertex connectivity of a graph is the minimum number of vertices κv
whose deletion from the graph disconnects it into multiple components.

Definition 2.11. The edge connectivity of a graph is the minimum number of edges κe whose
deletion from the graph disconnects it into multiple components.

The act of disconnecting a graph into multiple connected components can be seen in more
detail in Figure 2.1. The figure shows the removal of a single graph element, denoted by the
vertex and dotted edges, which leads to the graph splitting into two components.
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(a) Graph with vertex connectivity
of κv = 1.

(b) Graph with edge connectivity
of κe = 1.

Figure 2.1: Disconnecting a graph into multiple components.

It should be noted that the vertex and edge connectivity have a special property between them.
Since deleting a vertex also influences the connected edges, it holds that κv ≤ κe ≤ δmin, where
δmin is the minimum degree of all vertices in the graph.

Also, vertex connectivity has an interesting case for a complete graph, which by definition
cannot be disconnected by vertex deletions. To uphold the given inequality we define the
vertex connectivity to be κv = n− 1 for this case.

When looking at connectivity in a more local setting, we are in need of different measures
to capture these specific details of robustness. Clustering coefficient is such a measure, it
determines connectedness through the presence of triangles between neighboring vertices and
comparing it to the total number of connected triples. Originally this measure was designed
for social networks, where the context is the probability that two friends of a person are each
others friends too, but it can also be used to measure robustness.

In terms of robustness, a better clustering is inherent to a higher robustness due to the
increasing number of alternative paths for each existing triangle. However, before we can
continue to describe the clustering coefficient, we must first define the neighborhood of a
vertex which enables the creation of triangles in the graph.

Definition 2.12. The neighborhood of a vertex consists of the immediately connected vertices
of the graph:

N(v) = { u ∈ V | (u, v) ∈ E }.

Using this definition for the neighborhood of a vertex, we can more formally describe the
clustering coefficient. As shortly explained above, the clustering coefficient is computed by
dividing the number of triangles, also called closed triples, by the total number of connected
triples. In an undirected graph this can be defined as follows:
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Definition 2.13. The local clustering coefficient of a vertex v ∈ V is the number of triangles
containing v divided by the total number of connected triples containing v:

ρ(v) =
2 |{ (u,w) | u,w ∈ N(v), (u,w) ∈ E }|

δ(v)(δ(v)− 1)
.

An undirected graph has the property that (u, v) and (v, u) are considered identical. There-
fore, if a vertex v has δ(v) neighbors, δ(v)(δ(v) − 1)/2 edges could exist among the vertices
within the neighborhood. In a directed graph this amount would be δ(v)(δ(v) − 1). For
additional clarity, the type of triples this measure tries to locate are visualized in Figure 2.2.

v

u w

Figure 2.2: Vertex v has neighbors u and w which may or may not form a closed triple
(triangle).

As expected, the global clustering coefficient is defined in the same way as its local variant;
dividing the total number of closed triples by total number of connected triples of vertices.
However, due to the complexity of computing this measure, the network average clustering
coefficient is often considered instead as suggested by Watts and Strogatz [43]:

ρ̄ =
1

n

∑
v∈V

ρ(v)

Although this measure captures the existence of triples very well, which is what we are mainly
interested in, it does not take edge weights into account. Therefore, a generalization of this
measure which applies to weighted networks has been proposed by Barrat et al [5].

A somewhat simpler measure, yet still extremely relevant to connected components and
connectivity in general, is the largest connected component size. Often named the giant
component size, this measure aims at describing the size of the remaining active network.
In the majority of real world cases the largest component contains most vertices critical to
survival of the network, e.g. generators and other types of servers. Hence, all other smaller
components will not survive independently.

Definition 2.14. The largest connected component size of a graph is the number of vertices,
ν, present in the largest connected component of said graph.

Note that this measure plays a smaller role in connected graphs, which only have a single
connected component, whereas its importance increases once failures or attacks disconnect
the graph into multiple components.

Overall, it seems natural to say that connectivity is inherent to robustness. On the other
hand, a graph split into multiple connected components might still be functioning well if there
was already little communication between these components in the first place. Therefore,
although the measures might seem intuitive, caveats can always be found.
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2.4 Spectral

In all of the previous sections in this chapter we have studied graphs directly, extracting mea-
sures that are evident when representing the graph visually. However, different approaches
exists, such as studying the matrices representing the graph. Presented in this section are
several robustness measures dependent on the eigenvalues of the adjacency or Laplacian ma-
trices. Our goal here is not to give all details about these measures, nor will we prove any
of its properties, we will merely present the measures themselves. However, before we are
able to introduce these measures, we must first define some of the basics. A more general
introduction to spectral graph theory was written by Cvetković et al [9].

Definition 2.15. For all indices 1 ≤ i, j ≤ n, where the graph contains vertices vi, vj ∈ V ,
the adjacency matrix A has at position (i, j) a one when edge (vi, vj) is present in the graph
and a zero otherwise:

Aij =

{
1 if (vi, vj) ∈ E,
0 otherwise.

Definition 2.16. For all indices 1 ≤ i ≤ n, where the graph contains vertices vi ∈ V , the
degree matrix ∆ has at position (i, i) the degree of vertex vi and 0 elsewhere:

∆ij =

{
δ(vi) if i = j,

0 otherwise.

By combining the two matrices defined above we are able to create the Laplacian matrix, also
called admittance matrix, which fully characterizes the original graph; when given, the entire
graph can be reconstructed. The Laplacian matrix can in turn be used to find many other
graph properties in the field of spectral graph theory.

Definition 2.17. The Laplacian matrix L is the difference ∆−A between the degree matrix
∆ and the adjacency matrix A:

Lij =


δ(vi) if i = j,

−1 if (vi, vj) ∈ E,
0 otherwise.

The most important property of the Laplacian matrix, with respect to robustness, is its
second smallest eigenvalue. Often called the algebraic connectivity, this eigenvalue measures
the connectivity of the graph, more specifically the difficulty to cut the graph into multiple
connected components.

Definition 2.18. The algebraic connectivity λ2 is the second smallest eigenvalue in the eigen-
decomposition of the Laplacian matrix

Lv = λiv

where L is the Laplacian matrix and v a non-zero eigenvector, also called the Fiedler vector
for λ2.
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The algebraic connectivity, as originally proposed by Miroslav Fiedler, is a spectral measure
which is closely related to a lot of other graph characteristics [14]. Some interesting properties
of these characteristics are noted below, though a complete survey of its properties and
applications was done by Mohar et al [33].

As for the properties, since we are dealing with undirected graphs, the adjacency matrix is
symmetric and thus has real eigenvalues. This is very important because it allows for easy
comparison with other robustness measures. Also, eigenvalue λ2 starts at 0 when the graph is
disconnected, and is limited by the vertex connectivity in graphs that are not complete. Hence
the following inequality 0 ≤ λ2 ≤ κv ≤ κe ≤ δmin holds for graphs that are not complete, as
proven by Fiedler [14].

However, criticism is also to be found, as Baras and Hovareshti have shown that the algebraic
connectivity does not always increase whenever an edge is added [4]. Figure 2.3 shows this
example in more detail.

(a) λ = (0, 2, 2, 4) (b) λ = (0, 2, 4, 4)

Figure 2.3: Two graph with the same algebraic connectivity.

Spectral graph theory also allows the use of edge weights in the matrices, this is done by
slightly altering the definition of the Laplacian matrix to form a weighted Laplacian matrix.
Though it should be noted that non-negative edge weights are not allowed in this matrix
configuration.

Definition 2.19. The weighted Laplacian matrix LW is the difference between the strength
diagonal, where each element is the sum over all its connected edge weights, and the weight
matrix :

LWij =


∑
vj∈V

w(vi, vj) if i = j,

−w(vi, vj) if (vi, vj) ∈ E,
0 otherwise.

Note that the strength diagonal is introduced to keep the row sums at 0, similar to the
unweighted Laplacian L. This is done to keep the all-one vector as an eigenvector with an
eigenvalue of 0.

A spectral graph measure that uses this weighted Laplacian matrix extensively is the effective
graph resistance. This measure aims at describing the global resistance of a graph as if all its
edges were connected in parallel, where the edge weights correspond to its conductance (i.e.
inverse of resistance). Hence, a graph with a relatively small effective resistance is implied to
be more robust, due to less flow resistance along its edges.

Although this measure can be computed by summing the effective resistance of each separate
edges in the graph, we will only present the more efficient global approach. An elaborate
explanation of both approaches has been written by Ellens [12] and Koç et al [25, 26, 27].
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Definition 2.20. The effective graph resistance Ω is the aggregated resistance as computed
by the eigenvalues of the weighted Laplacian matrix:

Ω = n

n∑
i=2

1

λWi

where λWi is the ith smallest eigenvalues of LW .

Overall both presented spectral graph measures show potential. Algebraic connectivity has
already established its position as a well known spectral graph measure with respect to ro-
bustness, whereas effective graph resistance is still relatively new. However, in contrast to
algebraic connectivity, the effective graph resistance has the desirable property that its value
strictly decreases when edges are added.
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Chapter 3

Measure evaluation

A large number of graph measures has been introduced in Chapter 2. However, before we can
use these measures in our analysis, experimental evaluation of their effectiveness with respect
to capturing the robustness of any given network still needs to take place. This evaluation
will analyze each graph measure on a number of different network topologies, both predefined
(e.g. cycle, line, star) and randomly generated (e.g. scale-free, small-world).

Although this analysis could be done in any mathematical processing application, there is
a demand for a customizable network analysis tool that is able to run on multiple platforms.
This demand exists both in the consultancy branch where advice is given about network up-
grades, and the companies who maintain the networks themselves. To this end, we developed
a tool that is able to apply all measures mentioned in this thesis to any given network, and
also contains algorithms to improve the network robustness as will be detailed later.

We will start this chapter by describing all functionality of the tool in Section 3.1, having
subsections for each stage of the analysis process. Afterwards, in Section 3.2, the results that
were gathered from the experimental validation are presented. Hence, we are able to conclude
which measures are good at capturing network robustness.

3.1 Experimental setup

The developed Java tool, being able to run on a large number of platforms, has a workflow
that allows users to generate, visualize, simulate, analyze and improve any given network.
Each of these aspects is discussed in their respective subsections below. However, first we will
define the network model that the tool is working with, since it provides a generalization on
the standard definition of graph as presented in Chapter 2.

Network model
An Interdependent Flow Network, or ifn, is a network model with support for both inter-
dependencies and flow computations. This specialized network model will only be relevant
in Section 3.1 due to its presence in the tool. It will not be referred to in other parts of
this thesis. The tool supports this model in particular since it is very adaptable to real life
situations where flow and network interdependency are common occurrences.

We define an interdependent flow network as a sequence of n graphs, G = (G1, G2, . . . , Gn),
where each graph is a tuple, Gi = (Vi, Ei), consisting of its vertices (Vi) and edges (Ei).
Vertices from graph Gi will be denote as either u ∈ Vi or ui ∈ Vi, where identifier i may be
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added to a vertex to determine its graph of origin.
The interdependence between graphs is given by set I, which contains all dependencies. A

dependency occurring in the set can only exist between two different graphs, meaning that
for a given dependency (ui, vj) ∈ I, where ui ∈ Vi, vj ∈ Vj , and 1 ≤ i, j ≤ n, it must hold
that i 6= j. Dependencies can be directed or undirected, where a directed interdependency
(ui, vj) ∈ I is defined as ui depends on vj . This results in ui failing whenever vj fails, but not
the other way around.

Although flow computation on the network are supported, its representation with respect
to the model will not be formally defined here. However, we will describe that each vertex in
the ifn model can have a supply and demand, which means that it can be both a source and
a sink at the same time. Each graph stores its sources and sinks in separate sets. Also, edges
have flows and capacities as is normal in a flow network. Constraints regarding capacities,
flow conservation and demand fulfillment are not enforced by the tool, but rather by the
applied network simulators.

Generating networks
Although the tool provides the capability to open user-defined networks, generating random
graphs is also part of validating the graph measures presented in Chapter 2. Hence, we
implemented some of the most well known models:

• Erdős-Rényi models (both variants) [13]

• Barabási-Albert (scale-free) [2]

• Watts-Strogatz (small-world) [43]

The two closely related variants of the Erdős-Réyi random graph model supported in this
tool are:

• The G(n,M) model, where a graph is chosen uniformly at random from the collection
of all graphs which have n nodes and M edges.

• The G(n, p) model, where a graph is constructed by connecting nodes randomly. Each
possible edge is included in the graph with probability p. Hence, for a given M all
graphs with n nodes and M edges have equal possibility to be generated.

On the other hand, the Barabási-Albert model presents a different approach to generating
random graphs. Its aim is to create scalable graphs whose degree distribution follows a power
law. Many real life networks are conjectured to be scale-free which increases the applicability
of the model in our tool.

The final random graph model is Watts-Strogatz, known for its small-world property. This
property implies that most vertices are not neighbors of one another, but rather can be
reached by a small number of steps. Moreover, the distance between two randomly chosen
vertices grows proportionally to the logarithm of the number of vertices in the network. Such
a model is most commonly used to emulate social networks.
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Visualization
To visualize interdependent flow networks we used the Java Universal Network/Graph Frame-
work (JUNG). This open-source software library provides a common and extendible language
for the modeling and visualization of data that can be represented as a graph or network. By
extending their definition of a graph with the ifn model, as previously presented, we are able
to utilize the visualization framework to interactively explore different types of network data.

Although the tool is able to visualize networks based on its vertex locations, as given by
the ifn model, the JUNG framework also comes with a number of graph layout algorithms
built-in. Most of these are based on a force-directed approach, but some other techniques
exist such as the competitive learning strategy used in the ISOM algorithm. The following
list of layouts is implemented by the tool, some of which are depicted in Figure 3.1.

• Fruchterman-Reingold [17]

• Kamada-Kawai [22]

• Spring embedders [11]

• Self-organizing graph/map (ISOM) [31]

Additionally, two custom layout algorithms based on network interdependency clustering are
implemented. These layouts cluster either networks or interdependent vertices into separate
groups, each of which has a custom layout. The layout algorithms were added to provide a
clear overview of existing interdependencies between networks.

(a) Force-directed (Kamada-Kawai) (b) Competitive learning (ISOM)

(c) Network clustering (d) Interdependency clustering

Figure 3.1: An interdependent network, consisting of two scale-free networks connected
through interdependencies, with different layout algorithms applied.
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Simulation
The definition of robustness as presented in Section 1.1 states that it is defined by the ability of
a network to continue performing well when subject to attacks and random failures. Therefore,
in order for the tool to visualize the robustness of a network it must have the ability to simulate
the cascading effects of these attacks. This simulation must be able to take the current state
of the (interdependent) network, make a certain amount of vertices or edges fail, and simulate
the networks (and interdependencies) until a steady state is reached.

Failures, as specified by the definition of robustness, are the result of either a random
occurrence or a targeted approach. The tool implements three attack strategies to mimic this
behavior, but also allows for custom strategies to be implemented.

• Random

• Betweenness

• Manual

The randomized strategy allows for the simulation of random failures, whereas attacks based
on the betweenness (Definition 2.9) and manual selection of graph elements (i.e. vertices and
edges) represent a targeted approach. Using such a strategy, in combination with the initial
state of the network and a certain amount of graph elements to attack, we can compute the
network state resulting from these failures.

This failure state is the start of a simulation that applies an iterative process until the (in-
terdependent) network reaches a steady state. The process simulates each network separately
using a designated simulator, followed by interdependency resolving between the networks.
Such a network simulator takes a network state as input and performs a number of simulation
rounds, spreading the failure throughout the network based on its rules. Multiple of these
network simulators have been implemented as shown in the following list, an extendable class
has also been creating allowing for the addition of custom simulators (including those using
the interface to communicate to an external application such as MATLAB).

• Basic, edges adjacent to failed vertices also immediately fail.

• LCC, only the largest connected component remains working, all else fails.

• MATCASC, flow simulation based on the concept defined by Koç et al [25].

The simulation process also needs to synchronize failures between the networks by means
of the interdependencies. This interdependency simulation simply transfers failures between
connected vertices from different networks, as specified by the ifn model. However, inter-
leaving this step with the network simulations presents two options as shown in Figure 3.2.
Either perform all network simulations in parallel followed by a single interdependency syn-
chronization, or sequentially execute the simulation and interdependency synchronization for
each individual network.
Both approaches can be useful in simulating cascading failures. Sequential interleaving would
work best for networks adhering to scheduled behavior, whereas parallel interleaving is better
in cases where all networks are active simultaneously.
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(a) Sequential simulation

(b) Parallel simulation

Figure 3.2: Sequence diagrams of simulator interleaving.

Measure analysis
The focus of the tool is network analysis, allowing the user to gather statistics about differ-
ent aspects of the network. Providing these statistics are the graph measures presented in
Chapter 2, which have all been implemented. Although these measures give insight into the
structure of the network, they might not give a correct indication of robustness. The relation
between these measures and the network robustness will be discussed in Section 3.2.

As for an interdependent network, the graph measures are able to compute a separate value
for each of its networks or an overall average. Another option which the tool provides is to
consider the interdependent network as a regular network where the interdependencies are
represented by edges. Using one of these computation techniques, the tool is able to analyze
a graph measure for each stage of the simulation.

After gathering all measure statistics, the data series can be plotted in a chart or statistically
analyzed using a variety of techniques such as linear regression and correlation.

Measure improvement
For each of the distance-based measures, as defined in Section 2.1, the tool contains an
approximation algorithm aimed a minimizing said measure for a given graph. More details
on these algorithms will follow in Chapter 5.
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3.2 Measure comparison

In this section we will perform a comparison between the graph measures presented in Chap-
ter 2 to study their effectiveness with respect to capturing the robustness of a given network.
The relative robustness of the networks utilized in the comparison is known, allowing for rea-
soning about the effectiveness of the graph measures. Two sets of networks are considered:
a set of small predefined graphs each with a different topology, see Figure 3.3, and a set of
large randomly generated graphs. Displayed in Table 3.1 are the graph measure values for all
networks in the first set as computed by the tool.

(a) Complete (b) Cycle (c) Star (d) Line (e) Empty

Figure 3.3: Graph topologies consisting of four vertices.

R D Davg δ̄ c̄ b̄v b̄e ν ρ̄ λ2 Ω

Complete 1 1 1 3 1 0 2 4 1 4 3

Cycle 2 2 11
3 2 3

4 1 4 4 0 2 5

Star 1 2 11
2 11

2
7
10 11

2 6 4 0 1 9

Line 2 3 12
3 11

2
5
8 2 62

3 4 0 6
10 10

Empty ∞ ∞ ∞ ∞ ∞ 0 0 1 0 0 ∞

Table 3.1: The values of all graph measures for the graphs given in Figure 3.3.

Small topology networks
Intuition says that the graphs in Figure 3.3 are ordered by decreasing robustness. Defined in
terms of graph measures, the amount of vertices required to disconnect the network decreases
with each graph (i.e. κv goes from 3 to 0). Note that κv = 1 for both the star and line
graph, but the line graph is less robust because there is more than one way to disconnect the
network. Since graph construction is based on the vertex/edge connectivity, this measure has
not been added to the table.

The values of all graph measures displayed in Table 3.1 correspond to the intuition, though
not all of them can distinguish between graphs. All measures (except radius) confirm that
the graphs are indeed in order of decreasing robustness. By looking closely at the classes in
the table we can concluded that connectivity measures (i.e. ν and ρ̄) are poor at capturing
robustness, since there is no significant change in the values between most of the graphs.

All other classes seem to make reasonably good robustness measures. The centrality mea-
sures, apart from degree centrality, all have distinct values for each graph making them very
suitable. The only downside is the fact that their scaling is of different magnitude and even in
opposite directions (degree and closeness versus betweenness). Spectral measures, although
proven to capture robustness by Koç et al [27], suffer from the same issues.
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The distance-based graph measures also seem to capture robustness reasonably well. The
average shortest path length measure is especially good, having distinct values for all graphs
(unlike radius and diameter). However, what makes this class as a whole viable as robustness
measures is that, contrary to all other classes, the scaling of the measures seems to coincide
nicely. This indicates that the measures correlate well together. Hence each measure agrees
with the others, and the class presents a combined robustness analysis.

Large randomized networks
Although the analysis on small graphs with different topologies shows some interesting results,
it remains to show that the same conclusions still hold when dealing with larger networks
based on a more randomized topology. To this end, we will use the random network generation
models as discussed in Section 3.1. For each model we will assume three instances, whilst
continuously increasing its respective connectivity parameter. This increased connectivity
makes a given network relatively more robust than its predecessor, since the additional edges
provide more backup connection capabilities.

For each of the network generation models we will assume a vertex count of 100, i.e. n = 100,
the other parameters are specified according to the following list.

• Erdős-Rényi G(n,M), with M varied between 300, 400, 500.

• Erdős-Rényi G(n, p), with p varied between 0.05, 0.1, 0.15.

• Barabási-Albert, where each new vertex is assigned 1, 2, 3 connections.

• Watts-Strogatz, where the mean degree is varied between 2, 4, 6 (and β = 0.25).

Displayed in Table 3.2 are the graph measure values for all of these cases as computed by
the tool. Each row in the table contains the graph measures averaged over 100 randomly
generated networks according to the model.

R D Davg δ̄ c̄ b̄v b̄e ν ρ̄ λ2 Ω

G(n,M) 4 5 2.75 6.00 0.37 173.06 90.69 100 0.06 1.11 2436.41
3 4 2.43 8.00 0.41 141.40 60.10 100 0.09 1.60 1663.49
3 4 2.22 10.00 0.45 120.90 43.98 100 0.10 3.24 1213.03

G(n,p) 4 6 2.94 5.12 0.34 192.12 113.72 100 0.05 0.41 3236.62
3 4 2.24 9.96 0.45 122.82 44.54 100 0.11 1.81 1213.57
3 3 1.96 14.32 0.51 95.14 27.11 100 0.14 4.52 783.20

BA 6 11 4.74 1.98 0.22 370.56 474.30 100 0.00 0.02 23478.00
4 6 3.05 3.94 0.33 202.58 153.09 100 0.12 0.63 4705.13
3 4 2.59 5.88 0.39 157.48 87.24 100 0.17 1.39 2750.27

WS 22 43 15.32 2.00 0.07 1417.50 1516.50 100 0.00 0.00 74686.63
5 8 4.05 4.00 0.25 302.02 200.51 100 0.28 0.24 4749.21
4 6 3.04 6.00 0.33 201.60 100.20 100 0.28 0.72 2333.10

Table 3.2: The values of all graph measures for randomly generated graphs.
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As can be seen in the table, all measures confirm that the graphs are indeed in order of
increasing robustness. The gathered data shows patterns that are similar to those concluded
in our previous results. Again, connectivity measures (i.e. ν and ρ̄) seem to perform poorly
at capturing robustness, since there is no significant change in the values between most of the
graphs. All other measures seem to capture robustness reasonably well, providing distinct
values albeit scaled differently.

However, the class of distance-based measures again stands out. All three measures analyze
a different aspect of shortest path distances on network performance, yet their scaling is still
of the same order of magnitude. Hence, we can conclude that distance-based graph measures
are viable as robustness measures. This includes using the measures as a basis for network
robustness improvement.



Chapter 4

Complexity of improvements

Improving distance-based measures, as defined in Section 2.1, for a given graph can be done
by adding previously non-existing edges. However, in many physical networks there is a cost
involved when upgrading which discourages the placement of sub-optimal edges. Hence, in
an effort to give guarantees on the edge addition, our aim is to minimize the distance-based
measures given a limit of k additional edges.

In this chapter we discuss the algorithmic complexity of the minimization problems. We
will prove for all of the defined distance-based measures that finding the optimal k additional
edges, such that the measure is minimized for a given graph, is NP-complete. In our complex-
ity proofs we will reduce a known NP-complete problem, as defined in Section 4.1, to these
minimization problems and show for a given graph that this is the only way to improve the
measure optimally.

Thus far, regarding the minimization of distance-based measures, some work has been done
analyzing the complexity of both diameter and average shortest path length minimization.
The complexity of diameter minimization was initially analyzed by Schoone et al [35], and later
refined to a tighter bound by Li et al [28]. Meyerson and Tagiku have also given complexity
proofs for several variants of the average shortest path length minimization [32, Theorem 2].
Our proofs for the other measures are based on the technique presented by Schoone et al [35]
due to its high adaptability.

In order to differentiate between the measures when working with multiple graphs, which
is a common occurrence in the next two chapter, we need to alter our notation slightly. A
measure, as defined in Chapter 2, with graph G in subscript notation refers to the value of
the measure when applied to G. In particular, the notation of distance-based measures is
extended as shown in Table 4.1.

dG(u, v) weighted shortest path distance between vertices u and v in graph G

εG(v) eccentricity of vertex v in graph G

RG radius in graph G

DG diameter in graph G

Davg
G (v) single source average shortest path length for vertex v in graph G

Davg
G average shortest path length in graph G

Table 4.1: The extended notation of all distance-based measures.
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4.1 Covering by 3-sets

A decision problem is NP-complete when it is both in NP and NP-hard. Hence to prove the
NP-completeness for a given problem C we need to show that

1) C is in NP (a candidate solution to C is verifiable in polynomial time), and

2) Every problem in NP is reducible to C in polynomial time.

The decision problems of individually minimizing each distance-based measure below a certain
bound are proven to be NP-hard through reductions to a specific instance of the set cover
problem [24], which is known to be NP-complete.

Initially proven to be NP-complete by Garey and Johnson [18], exact cover by 3-sets (x3c)
requires that there is no overlap between the selected subsets, all of size three, whose union
is equal to the universe. It was even included as one of Richard Karp’s 21 NP-complete
problems [24].

Definition 4.1. The problem of computing an exact cover by 3-sets:

Name: Exact cover by 3-sets (x3c)
Instance: Given a set X with |X| = 3q and a collection C of 3-element subsets

of X.
Problem: Finding an exact cover of X in C, i.e., a subcollection C ′ ⊂ C such

that every element of X occurs in exactly one member of C ′.

In our reductions we will utilize a variant of the x3c problem, as formulated by Schoone et
al [35]. This problem, named cover by 3-sets (3c), removes the restriction of the exact cover
(i.e. no overlap between the selected subsets) whilst still enforcing subsets of size three. This
variation, which is clearly NP-complete due to it being a combination of aspects from both
set cover and x3c, is formally defined as follows

Definition 4.2. An equivalent variant of the x3c problem, as presented by Schoone et al [35],
which computes a cover by 3-sets:

Name: Cover by 3-sets (3c)
Instance: Given a set X with |X| = 3q and a collection C of 3-element subsets

of X such that each element of X occurs in at least one member of
C.

Problem: Finding an exact cover of X in C, i.e. a subcollection C ′ ⊂ C with
|C ′| = q, such that every element of X occurs in at least one member
of C ′.

In order for the 3c problem to be reduced to a graph measure minimization problem, we must
represent 3c by means of a graph. This graph, where we will assume that xi ∈ X and ci ∈ C
with |C| = l, will at least consist of the following elements

V = { x1, . . . , x3q, c1, . . . , cl }
E = { (xi, cj) if xi ∈ Cj }
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Note that the 3c problem defines that there should exist a subset C ′ ⊂ C containing q vertices
from which all vertices in X can be reached. The intuition behind the reductions is to use
this property for the correct placement of q shortcut edges, to each vertex in C ′, as to reduce
the measure defining paths with vertices from X as their endpoints.

In the following sections we prove NP-completeness of the decision problem correspong to
minimizing eccentricity, average shortest path length, radius and diameter, by reduction from
3c. Our reduction for the diameter minimization problem is similar to the reduction by
Schoone et al [35]. Nonetheless, the reduction is present in this thesis for the purpose of
a coherent and self-contained presentation. Likewise, our complexity proof for the average
shortest path length minimization problem expands on the short proofs given by Meyerson
and Tagiku [32, Theorem 2].

4.2 Eccentricity

Recall that the eccentricity for a given vertex v ∈ V is defined as the distance to the furthest
vertex in the graph (Definition 2.2). Minimizing such a measure could greatly improve the
reachability of v within the graph, which is especially important for targeted improvement of
network weaknesses. Formally this minimization problem is defined as follows.

Definition 4.3. The problem of minimizing the eccentricity for a vertex in the given graph:

Name: Eccentricity Minimization (em)
Instance: An undirected graph G = (V,E), a distance function d : V × V →

R+
0 , a vertex v ∈ V , and a bound k ∈ N.

Problem: Finding a set F of non-existing edges, with |F | ≤ k, such that
eccentricity for vertex v, εG′(v), is minimized in supergraph G′ =
(V,E ∪ F ).

A specific instance of em is the Unweighted Eccentricity Minimization (u-em) problem, this
unweighted variant has a distance function that only uses unit weights in the computation
of its all-pairs shortest paths. All other parameters in this instance remain the same with
respect to em. The corresponding decision problem (in the weighted and unweighted case)
is defined as the problem whether the eccentricity εG′(v) can be reduced to a value below a
given threshold ε′ ∈ N. If we are able to prove that the decision problem for u-em is NP-hard,
then the hardness of the other variants naturally follows.

To prove the hardness of the decision problem for u-em, and hence also em (through the
same reduction, but with the use of a unit weight function), a polynomial time transformation
of 3c to the decision problem for u-em is made. We will construct a graph G with vertex
a such that a supergraph G′ can be obtained where εG′(a) ≤ 2 by adding all edges in set F
with |F | ≤ q, if and only if C contains a subset C ′ ⊂ C with |C ′| = q such that every element
of X occurs in at least one element of C ′. Hence we take v = a, ε′ = 2, k = q, |C| = l, and
define G = (V,E) to be as follows (see Figure 4.1).

V = { x1, . . . , x3k, c1, . . . , cl, b, a }
E = { (xi, cj) if xi ∈ Cj , (ci, b) for 1 ≤ i ≤ l, (b, a) }
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c1 clC:

b

a

. . .

. . .x1X: x3q

Figure 4.1: Graph G = (V,E) used in the proof of Theorem 4.5.

Using graph G, where εG(a) = 3, and its supergraph G′, we can relate 3c and u-em in the
following way.

Lemma 4.4. C contains a subset C ′ ⊂ C, with |C ′| = q, such that every element of X occurs
in at least one element of C ′, if and only if G has a supergraph G′, obtained by adding all q
edges from set F , where εG′(a) ≤ 2.

Proof. Suppose C contains such a subset C ′. Then let F be the set consisting of all edges
(a, ci) where ci ∈ C ′, it holds that |F | ≤ q. The resulting supergraph G′ = (V,E ∪ F ) has
εG′(a) ≤ 2, since the shortest path from a to any xj ∈ X is now two due it skipping vertex b.

Conversely, suppose G has such a supergraph G′ = (V,E ∪ F ) with εG′(a) ≤ 2. Then for
every xj ∈ X we must either have an edge (a, xj) or an edge (a, cj) for a cj such that xj ∈ Cj .
Let there be s edges of type (a, xj) and t edges of type (a, cj). Then at most s+ 3t x-vertices
are at distance two of a. Since we have that |X| = 3q and s + t ≤ q, i.e. a maximum of q
added edges, we can conclude that s = 0. This becomes clear in the scenario with l = q,
where we cannot afford anything else then (a, cj) edges.

Now, if we define C ′ = { cj ∈ C | (a, cj) ∈ E′ }, then we have |C ′| = t ≤ q and C ′ is a cover
of X. �

Following from the polynomial time reduction in Lemma 4.4 and the fact that a candidate
solution can also be verified in polynomial time, by simply constructing the supergraph and
computing the measure, the following theorem follows.

Theorem 4.5. The decision problems for u-em and em are both NP-complete, and thus
u-em and em are NP-hard.

4.3 Average Shortest Path

The average shortest path length is a measure that aims at capturing average network per-
formance, instead of best and worst case such as radius and diameter respectively. Hence
minimizing such a measure would increase the average distance-based connectivity within
the network, which is often wanted in general network improvement. However, due to the
averaging this is also a more difficult measure to theoretically analyze.

The measure itself is split into two definitions, a single source variant (Definition 2.5) and a
general case (Definition 2.6), just like diameter and radius with respect to eccentricity. Mey-
erson and Tagiku have given sketches for the complexity proofs of comparable variants, our
proofs will expand on these short proofs [32, Theorem 2].
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Single source (ssaspm)
The single source variant of average shortest path length minimization is very similar to the
em problem, focusing only on the average reachability of a single vertex within the graph.
Hence their definitions are also very similar:

Definition 4.6. The problem of minimizing the average shortest path length for a single
source, i.e. vertex, in the given graph:

Name: Single Source Average Shortest Path Minimization (ssaspm)
Instance: An undirected graph G = (V,E), a distance function d : V × V →

R+
0 , a vertex v ∈ V , and a bound k ∈ N.

Problem: Finding a set F of non-existing edges, with |F | ≤ k, such that
average shortest path length for vertex v, Davg

G′ (v), is minimized in
supergraph G′ = (V,E ∪ F ).

As with all minimization problems defined in this chapter, this problem too has an unweighted
variant. The unweighted u-ssaspm problem shares all of its parameters with the regular
ssaspm except for the distance function, which considers only unit weights in its shortest
path computations. Also, we will again consider the corresponding decision problem (in both
the weighted and unweighted case), which is defined as the problem whether the measure
Davg
G′ (v) can be reduced to a value below a given threshold Davg′ ∈ N. If we are able to prove

that the decision problem for u-ssaspm is NP-hard, then the hardness of the other variants
naturally follows.

Proving the hardness of the decision problem for u-ssaspm will also provide us with the
same results for ssaspm, using the same reduction with a unit weight function for ssaspm. A
polynomial time transformation from 3c to the decision problem for u-ssaspm is made using
the same principle as the complexity proof for eccentricity.

Graph G will be constructed with vertex a such that a supergraph G′ can be obtained where
Davg
G′ (a) ≤ 1+2l+5q

n−1 with |C| = l by adding all edges in set F with |F | ≤ q, if and only if C
contains a subset C ′ ⊂ C with |C ′| = q such that every element of X occurs in at least one
element of C ′. Hence we take v = a, k = q, Davg′ = 1+2l+5q

n−1 , and let G = (V,E) be as defined
in the previous section (see Figure 4.1).

Using graph G, where Davg
G (a) = 1+2l+9q

n−1 , and its supergraph G′, we can relate 3c and
u-ssaspm in the following way.

Lemma 4.7. C contains a subset C ′ ⊂ C, with |C ′| = q, such that every element of X occurs
in at least one element of C ′, if and only if G has a supergraph G′, obtained by adding all q
edges from set F , where Davg

G′ (a) ≤ 1+2l+5q
n−1 .

Proof. Suppose C contains such a subset C ′. Then let F be the set consisting of all edges
(a, ci) where ci ∈ C ′, it holds that |F | ≤ q. The resulting supergraph G′ = (V,E ∪ F ) has
Davg
G′ (a) ≤ 1+2l+5q

n−1 , which follows from the following computations with respect to the path
lengths starting in vertex a.

Davg
G (a) = 1+2l+3·3q

n−1 = 1+2l+9q
n−1

Davg
G′ (a) = 1+q+2(l−q)+2·3q

n−1 = 1+2l+5q
n−1
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Conversely, suppose G has such a supergraph G′ = (V,E ∪ F ) with Davg
G′ (a) ≤ 1+2l+5q

n−1 . The
difference between the measurement value for G and G′ is the multiplication with respect to
q. Hence the distance between a and each xj ∈ X, having the only size parameter dependent
on q, must be minimized. To this extent, for every xj ∈ X we must either have an edge (a, xj)
or an edge (a, cj) for a cj such that xj ∈ Cj .

Let there be s edges of type (a, xj) and t edges of type (a, cj). Then at most s+3t x-vertices
are at a lesser distance to a than before. Since we have that |X| = 3q and s + t ≤ q, i.e. a
maximum of q added edges, we can conclude that s = 0. This becomes clear in the scenario
with l = q, where we cannot afford anything else then (a, cj) edges.

Now, if we define C ′ = { cj ∈ C | (a, cj) ∈ E′ }, then we have |C ′| = t ≤ q and C ′ is a cover
of X. �

Since we can verify a candidate solution in polynomial time by computing the measure for
a proposed supergraph, and a polynomial time reduction is presented in Lemma 4.4, the
following theorem has been proven.

Theorem 4.8. The decision problems for u-ssaspm and ssaspm are both NP-complete, and
thus u-ssaspm and ssaspm are NP-hard.

General (aspm)
The general, or complete, variant of average shortest path length minimization is a problem
which aims at improving reachability across the entire network since all shortest paths are
taken into consideration. Hence, instead of focusing on a single vertex, this definition aims
at minimizing a more global measure.

Definition 4.9. The problem of minimizing the average shortest path length the given graph:

Name: Average Shortest Path Minimization (aspm)
Instance: An undirected graph G = (V,E), a distance function d : V × V →

R+
0 , and a bound k ∈ N.

Problem: Finding a set F of non-existing edges, with |F | ≤ k, such that
average shortest path length Davg

G′ is minimized for supergraph G′ =
(V,E ∪ F ).

A related problem, with a slightly different instance, is the unweighted variant (u-aspm).
In this altered instance, the distance function is replaced with one which only considers unit
weights in its shortest path computations. The NP-complete decision problem related to both
aspm and u-aspm is one with an imposed bound on the maximum measurement value, which
is defined as the problem whether the measure Davg

G′ can be reduced to a value below a given

threshold Davg′ ∈ N. Proving the hardness of this decision problem would then also imply
the hardness of the related minimization problems.

The hardness of the decision problem for u-aspm will be proven through a polynomial time
transformation from 3c. This reduction will also automatically hold for aspm, since it can
mimic the u-aspm problem by assuming a unit weight function. Although the reduction is
based on the same principle as previous ones, p additional vertices are added to a to balance
the tree.

We will construct graph G such that a supergraph G′ can be obtained where Davg
G′ ≤

Davg
G − 8q(p+1)

n(n−1) by adding all edges in set F with |F | ≤ q, if and only if C contains a subset

C ′ ⊂ C with |C ′| = q such that every element of X occurs in at least one element of C ′.
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Hence we take Davg′ = Davg
G − 8q·(p+1)

n·(n−1) , k = q, |C| = l, and define G = (V,E) to be as follows

(see Figure 4.2).

V = { x1, . . . , x3k, c1, . . . , cl,
b, a, y1, . . . , yp }

E = { (xi, cj) if xi ∈ Cj , (ci, cj) for 1 ≤ i < j ≤ l,
(ci, b) for 1 ≤ i ≤ l, (b, a), (a, yi) for 1 ≤ i ≤ p }

y1 yp. . .

. . .x1X:

b

a

x3q

c1 clC: . . .

Figure 4.2: Graph G = (V,E) used in the proof of Theorem 4.11.

Using graph G, where we assume a measurement value of Davg
G , and its supergraph G′, we

can relate 3c and u-aspm in the following way.

Lemma 4.10. C contains a subset C ′ ⊂ C, with |C ′| = q, such that every element of X
occurs in at least one element of C ′, if and only if G has a supergraph G′, obtained by adding
all q edges from set F , where Davg

G′ ≤ D
avg
G − 8q(p+1)

n(n−1) .

Proof. Suppose C contains such a subset C ′. Then let F be the set consisting of all edges
(a, ci) where ci ∈ C ′, it holds that |F | ≤ q. The resulting supergraph G′ = (V,E ∪ F ) has

Davg
G′ ≤ D

avg
G − 8q(p+1)

n(n−1) , where the difference of 8q(p+1)
n(n−1) can be computed through an addition

over all path lengths that are shortened.

• Between X and a, reduced from 3 to 2, for all 2 · 3q combinations.

• Between X and yi, reduced from 4 to 3, for all 2 · 3q · p combinations.

• Between C and a, reduced from 2 to 1, for q of the l vertices, with 2 · q combinations.

• Between C and yi, reduced from 3 to 2, for q of the l vertices, with 2 ·q ·p combinations.

Therefore the total reduction in shortest path lengths is:

(1 · 2 · 3q) + (1 · 2 · 3q · p) + (1 · 2 · q) + (1 · 2 · q · p)
= 6q + 6q · p+ 2q + 2q · p
= 6q(p+ 1) + 2q(p+ 1)

= 8q(p+ 1)
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Averaging these results over all combinations leads to the 8q(p+1)
n(n−1) difference, hence proving

the lemma one way.
Conversely, suppose G has such a supergraph G′ = (V,E ∪ F ) with Davg

G′ ≤ D
avg
G − 8q(p+1)

n(n−1) .
Note that at least one edge in F should reduce the sum over all shortest path length by a value
of 8(p+ 1). If we assume p to be large enough, say p > 4(3q + l + 1)2, then we can conclude
that no edges from F are in the subgraph consisting of X, C and b, since 4(3q+ l+ 1)2 is an
upper bound on the shortest path lengths sum in this subgraph. Even if a single additional
edge from F could reduce this to 0, then it would still not come close to an improvement of
8(p+ 1).

Edges in F could also not be between y-vertices, or an yi and the subgraph consisting of
X, C and b, because each edge would only reduce the total average shortest path length by
a constant amount, and not quantifiable in p since p > q.

Therefore we must have for every xj ∈ X either an edge (a, xj) or an edge (a, cj) for a cj
such that xj ∈ Cj . Let there be s edges of type (a, xj) and t edges of type (a, cj). Then at
most s+ 3t x-vertices are at distance two of a. Since we have that |X| = 3q and s+ t ≤ q, i.e.
a maximum of q added edges, we can conclude that s = 0. This becomes clear in the scenario
with l = q, where we cannot afford anything else then (a, cj) edges.

Now, if we define C ′ = { cj ∈ C | (a, cj) ∈ E′ }, then we have |C ′| = t ≤ q and C ′ is a cover
of X. �

Following from the fact that we can verify a candidate solution in polynomial time by com-
puting the measure for a proposed supergraph, and a polynomial time reduction is presented
in Lemma 4.4, the following theorem has been proven.

Theorem 4.11. The decision problems for u-aspm and aspm are both NP-complete, and
thus u-aspm and aspm are NP-hard.

4.4 Radius

The radius distance measure is a function of the eccentricity (Definition 2.3) whose complex-
ity was already discussed in Section 4.2. Due to it being equal to the minimum eccentricity
across all vertices in the graph, minimizing such a measure could greatly improve best case
performance, making the shorter paths even shorter. This may come into effect when deal-
ing with a centralized vertex, e.g. a server, that spreads information across the network.
Moreover, the minimization problem is defined below.

Definition 4.12. The problem of minimizing the radius for a given graph:

Name: Radius Minimization (rm)
Instance: An undirected graph G = (V,E), a distance function d : V × V →

R+
0 , and a bound k ∈ N.

Problem: Finding a set F of non-existing edges, with |F | ≤ k, such that radius
RG′ is minimized for supergraph G′ = (V,E ∪ F ).

The rm problem can be instantiated on a graph containing only unit weights on its edges.
This specialized variant, also called the Unweighted Radius Minimization (u-rm) problem,
has a distance function that only uses unit weights in the computation of its all-pairs shortest
paths. All other parameters remain the same with respect to rm. The corresponding decision
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problem (in the weighted and unweighted case) is defined as the problem whether the radius
RG′ can be reduced to a value below a given threshold R′ ∈ N. The hardness of these
minimizations will result from the following complexity proof for the decision problem related
to u-rm.

A polynomial time transformation from 3c to the decision problem for u-rm is used to prove
the hardness, since rm can choose its weight function to mimic the u-rm problem its decision
problem must be at least as hard. Graph G will be constructed such that a supergraph G′

can be obtained where RG′ ≤ 2 by adding all edges in set F with |F | ≤ q, if and only if C
contains a subset C ′ ⊂ C with |C ′| = q such that every element of X occurs in at least one
element of C ′. Hence we take R′ = 2, k = q, |C| = l, and define G = (V,E) to be as follows
(see Figure 4.3).

V = { x1, . . . , x3k, c1, . . . , cl, b, a,
y1, . . . , y2k+1, z1, . . . , z2k+1 }

E = { (xi, cj) if xi ∈ Cj , (ci, b) for 1 ≤ i ≤ l, (b, a),

(a, yi) for 1 ≤ i ≤ 2q + 1, (yi, zi) for 1 ≤ i ≤ 2q + 1 }

b

z1 z2q+1

. . .x1X: x3q

y1 y2q+1. . .

a

. . .

c1 clC: . . .

Figure 4.3: Graph G = (V,E) used in the proof of Theorem 4.14.

Using graph G, where RG = 3, and its supergraph G′, we can relate 3c and u-rm in the
following way.

Lemma 4.13. C contains a subset C ′ ⊂ C, with |C ′| = q, such that every element of X
occurs in at least one element of C ′, if and only if G has a supergraph G′, obtained by adding
all q edges from set F , where RG′ ≤ 2.

Proof. Suppose C contains such a subset C ′. Then let F be the set consisting of all edges
(a, ci) where ci ∈ C ′, it holds that |F | ≤ q. The resulting supergraph G′ = (V,E ∪ F ) has
RG′ ≤ 2, since the shortest path from a to any other v ∈ V is now at most two. In graph G
the distance from a to any xj ∈ X was three, which has been reduced to two in G′ due to the
edges in F skipping over vertex b.

Conversely, suppose G has such a supergraph G′ = (V,E ∪ F ) with RG′ ≤ 2. Since there
are 2q + 1 y- and z-vertices, there is at least one i for which both yi and zi are not incident
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with one of the q edges in F . Hence the vertex defining the radius must be a, since it is the
only vertex within a distance of two with all z-vertices.

To ensure an eccentricity of two for a, and thus also radius, we must have for every xj ∈ X
either an edge (a, xj) or an edge (a, cj) for a cj such that xj ∈ Cj . Let there be s edges of
type (a, xj) and t edges of type (a, cj). Then at most s + 3t x-vertices are at distance two
of a. Since we have that |X| = 3q and s + t ≤ q, i.e. a maximum of q added edges, we can
conclude that s = 0. This becomes clear in the scenario with l = q, where we cannot afford
anything else then (a, cj) edges.

Now, if we define C ′ = { cj ∈ C | (a, cj) ∈ E′ }, then we have |C ′| = t ≤ q and C ′ is a cover
of X. �

The following theorem has now been proven, due to the polynomial time reduction in Lemma 4.13
and the fact that a candidate solution can also be verified in polynomial time by simply con-
structing the supergraph and computing the measure.

Theorem 4.14. The decision problems for u-rm and rm are both NP-complete, and thus
u-rm and rm are NP-hard.

4.5 Diameter

The diameter is a distance measure equal to the maximum eccentricity over all vertices in
the graph (Definition 2.4). Being a measure that computes the longest path in the graph,
it is often used in analyses of worst case network performance. Improving such a measure,
hence reducing the longest path, could greatly improve reachability by reducing the distance
to outliers. This minimization problem, which tries to decrease the diameter, is defined as
follows.

Definition 4.15. The problem of minimizing the radius for a given graph:

Name: Diameter Minimization (dm)
Instance: An undirected graph G = (V,E), a distance function d : V × V →

R+
0 , and a bound k ∈ N.

Problem: Finding a set F of non-existing edges, with |F | ≤ k, such that
diameter DG′ is minimized for supergraph G′ = (V,E ∪ F ).

An unweighted instantiation of dm, which is referred to as the Unweighted Diameter Mini-
mization (u-dm) problem, has a distance function that only uses unit weights in the compu-
tation of its all-pairs shortest paths. All other parameters in this instance remain the same
with respect to dm. The corresponding decision problem (in the weighted and unweighted
case) is defined as the problem whether the diameter DG′ can be reduced to a value below
a given threshold D′ ∈ N. If we are able to prove that the decision problem for u-dm is
NP-hard, then the hardness of the other variants naturally follows.

Proving the hardness of this decision problem for u-dm, and thus also dm through the same
reduction (with the use of a unit weight function), a polynomial time transformation from
3c to u-dm can be made. This reduction, which inspired all other complexity proofs in this
chapter, is similar to the proof as written by Schoone et al [35, Theorem 5.2]. Although
some details have been altered to increase familiarity between the proofs in this chapter,
substituting our graph for theirs would still result in a completely correct proof.
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We will construct a graph G such that a supergraph G′ can be obtained where DG′ ≤ 3 by
adding all edges in set F with |F | ≤ q, if and only if C contains a subset C ′ ⊂ C with |C ′| = q
such that every element of X occurs in at least one element of C ′. Hence we take D′ = 3,
k = q, |C| = l, and define G = (V,E) to be as follows (see Figure 4.4).

V = { x1, . . . , x3k, c1, . . . , cl,
b, a, y1, . . . , y2k+1 }

E = { (xi, cj) if xi ∈ Cj , (ci, cj) for 1 ≤ i < j ≤ l,
(ci, b) for 1 ≤ i ≤ l, (b, a), (a, yi) for 1 ≤ i ≤ 2q + 1 }

y1 y2q+1. . .

. . .x1X:

b

a

x3q

c1 clC: CLIQUE. . .

Figure 4.4: Graph G = (V,E) used in the proof of Theorem 4.17.

Using graph G, where DG = 4, and its supergraph G′, we can relate 3c and u-dm in the
following way.

Lemma 4.16. C contains a subset C ′ ⊂ C, with |C ′| = q, such that every element of X
occurs in at least one element of C ′, if and only if G has a supergraph G′, obtained by adding
all q edges from set F , where DG′ ≤ 3.

Proof. Suppose C contains such a subset C ′. Then let F be the set consisting of all edges
(a, ci) where ci ∈ C ′, it holds that |F | ≤ q. The resulting supergraph G′ = (V,E ∪ F ) has
DG′ ≤ 3, since the paths that previously defined the diameter, from any x-vertex to any
y-vertex, are now shortened to length three. This is due to the addition of edges in F which
skip over vertex b. Also note that the clique among all c-vertices is added so the distance
between x-vertices does not define the diameter.

Conversely, suppose G has such a supergraph G′ = (V,E ∪ F ) with DG′ ≤ 3. Since there
are 2q + 1 y-vertices, there is at least one yi which is not incident with one of the q edges in
F . Hence the shortest path from yi to any xj ∈ X contains a, and thus the distance from a
to any xj is at most two.

To ensure this distance of at most two from a to any x-vertex we must have for every xj ∈ X
either an edge (a, xj) or an edge (a, cj) for a cj such that xj ∈ Cj . Let there be s edges of
type (a, xj) and t edges of type (a, cj). Then at most s + 3t x-vertices are at distance two
of a. Since we have that |X| = 3q and s + t ≤ q, i.e. a maximum of q added edges, we can
conclude that s = 0. This becomes clear in the scenario with l = q, where we cannot afford
anything else then (a, cj) edges.

Now, if we define C ′ = { cj ∈ C | (a, cj) ∈ E′ }, then we have |C ′| = t ≤ q and C ′ is a cover
of X. �
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Resulting from the polynomial time reduction presented in Lemma 4.16 and the fact that
a candidate solution can also be verified in polynomial time, by simply constructing the
supergraph and computing the measure, the following theorem has been proven.

Theorem 4.17. The decision problems for u-dm and dm are both NP-complete, and thus
u-dm and dm are NP-hard.



Chapter 5

Approximating optimal
improvements

As shown in the previous chapter, the problem of minimizing any distance-based measure
given a limit on the number of edge additions is NP-hard. Hence no polynomial time algo-
rithm to compute the optimal placement of these edges, i.e. that reduce the given measure
the most, exists unless P = NP. Therefore, in this chapter, we aim at approximating each
of the minimization problems defined in Chapter 4, which includes proving bounds on our
approximation ratios with respect to the optimal result.

Since these approximation algorithms are all based on distance measures, it is important
that the edge weights of the given graph adhere to the triangle inequality. A definition of the
property for graphs is given below.

Definition 5.1. The triangle inequality states that, for any three vertices v1, v2, v3 ∈ V in
graph G = (V,E), the distance of the shortest path between v1 and v2 is smaller or equal to
the sum of distances of the shortest paths from v1 to v3 and from v3 to v2:

dG(v1, v2) ≤ dG(v1, v3) + dG(v3, v2)

Note that this inequality always holds with our definition of shortest path distance, because
dG(v1, v3) + dG(v3, v2) < dG(v1, v2) contradicts that dG(v1, v2) is the length of the shortest
path. Equality only occurs in the case where v3 is on a shortest path from v1 to v2.

The approximation algorithms presented in this chapter aim at computing a set F of ad-
ditional edges that reduce the specific distance measure the most. The maximum weight of
these new edges is defined by the variable ω, which is specified as follows.

Definition 5.2. The additional edge weight ω is given by the maximum edge weight in set
F , where F is the set of edges to be added.

If not stated otherwise, all edges in F have weight exactly ω. The definition of the addi-
tional edge weight is especially important since it is used in almost all approximation ratio
proofs. For simplicity we will also assume a single weight ω for all additional edges. However,
one could simply use a preferred value for each separate edge, ω would then represent the
maximum value among those weights. In the unweighted case we assume ω = 1.

43
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In the following sections we present for each of the minimization problems defined in Chap-
ter 4 an approximation algorithm as well as a proven bound on the approximated results.
Some of these bounds have already been proven elsewhere as is indicated by a citation in
the lemma or theorem header. Nonetheless, the proofs are still present in this thesis for the
purpose of a coherent and self-contained presentation of the approximation algorithms and
bounds. But first, in Section 5.1, we will discuss the clustering algorithm that is a subroutine
of all other presented approximation algorithms.

5.1 Clustering

A strategy to minimize shortest path distances in the graph would be to add edges between
a single centralized vertex and other vertices centered in more distant groups. Using this
technique the connectivity will be improved, since all vertices are then able to better reach
the centralized vertex and continue from there. An important factor in this approach is the
distance from a vertex to the center of the group it belongs to, which has to be minimized to
ensure the shortest possible path to the centralized vertex.

Identifying these groups, or clusters rather, can be done using a clustering algorithm, par-
ticularly one solving the k-center problem. The k-center or facility location problem is a
combinatorial optimization problem that wants to partition the set of vertices into k subsets,
each with a center, such that for all vertices in the graph the maximum distance to the closest
center is minimized. Formally it is defined as follows.

Definition 5.3. The k-center or facility location problem, given an undirected graph
G = (V,E) with distances satisfying the triangle inequality, is to find a subset S ⊆ V with
|S| = k while minimizing the objective function:

max
v∈V

min
s∈S

dG(v, s)

The k-center problem is known to be NP-complete. In fact, it has been proven that the
problem cannot be approximated with a factor better than 2, unless P = NP [40]. However, a
2-approximation algorithm was given by Gonzalez [19], which will be discussed in more detail
in this section.

The algorithm presented by Gonzalez takes as input a graph G = (V,E), a distance function
dG : V × V → R+

0 , and a value k ∈ N+. The algorithm returns a k-clustering 〈B1, . . . , Bk〉
with heads, i.e. centers, hi for each 1 ≤ i ≤ k. First h1 is chosen arbitrarily, or given as a
parameter, and B1 = V . Then, for every l = 2, . . . , k, a vertex that maximizes the distance
to its clusters head is selected to be head hl, and all other vertices are redistributed among
the clusters by assigning them to those whose head is closest. We give pseudocode for this
algorithm below (Algorithm 1).

Note that Algorithm 1 (i.e. Cluster) only returns the heads of the resulting k-clustering,
since only these vertices are used in the distance measure minimization. Also, given that the
all-pairs shortest path distance function is pre-computed and given as a parameter, the time
complexity of Algorithm Cluster is given by the following theorem.



CHAPTER 5. APPROXIMATING OPTIMAL IMPROVEMENTS 45

Algorithm 1: Gonzalez approximation algorithm for the k-center problem [19].

Input: G = (V,E), the graph that needs to be clustered
dG : V × V → R+

0 , the all-pairs distance function of graph G
v ∈ V , the initial cluster head
k ∈ N+, the required number of cluster

Output: H, an array of cluster heads approximation the optimal k-split
Cluster(G, d, v, k)
(1) h1 ← v
(2) B1 ← {v1, . . . , vn}
(3) for l = 2 to k
(4) x← max { dG(vi, hj) | vi ∈ Bj ∧ 1 ≤ j < l }
(5) Y ← { vi | dG(vi, hj) = x ∧ vi ∈ Bj ∧ 1 ≤ j < l }
(6) Let u be a vertex from Y
(7) hl ← u
(8) Bl ← {u}
(9) foreach vi ∈ (B1 ∪ · · · ∪Bl−1)
(10) Let j be such that vi ∈ Bj
(11) if dG(vi, hl) ≤ dG(vi, hj)
(12) Bj ← Bj \ {vi}
(13) Bl ← Bl ∪ {vi}
(14) return (h1, . . . , hk)

Theorem 5.4 ([19, Theorem 2.3]). The time complexity of algorithm Cluster is O(kn).

Proof. While lines 1 and 2 take constant time, the loop from lines 3 to 13 has O(k) iterations..
The pseudocode in this loop contains multiple lines with a O(n) time complexity, i.e. line 4,
5 and the loop starting on line 9. Hence the total time complexity is indeed O(kn). �

Using a (k+1)-clique, Gonzalez proved the following approximation ratio.

Theorem 5.5 ([19, Theorem 2.2]). Algorithm Cluster computes a 2-approximation of the
objective function.

5.2 Eccentricity

In Section 4.2 we proved that minimizing the eccentricity is NP-hard. This does not only
hold for the general version em of this problem but also for its unit weight variant u-em.
This section will show how to approximate the general problem within a ratio of 2 + ω

ε∗(v) ,

which for the unit weight case implies a bound of 2 + 1
ε∗(v) , when given an optimal resulting

eccentricity of ε∗(v).
Our approach to approximating the em and u-em problem, which was already shortly dis-

cussed in the previous section, is to connect v to other vertices which are central in a distant
cluster. The intuition is that this technique would significantly decrease the path length be-
tween v and all vertices in these clusters. Although this approach might not yield an optimal
result, it can be proven by the following lemma that adding edges incident to v is optimal. A
similar lemma has also been discussed by Meyerson and Tagiku [32, Lemma 1].
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Lemma 5.6. When improving the eccentricity of vertex v ∈ V , there exists an optimal set
F ∗ such that each edge e ∈ F ∗ is incident on v.

Proof. Given an optimal set of additional edges F ∗, with (s, t) ∈ F ∗. Let π1 be a shortest
path from v to x that traverses (s, t) in the st direction, and π2 be a shortest path from from
v to y that traverses (s, t) in the ts direction. Then path π3 that starts in v, follows π1 until
s and afterwards follows π2, never crosses (s, t). Path π3 can also never be longer than π2,
otherwise there would exist a path from v to x that is shorter than π1. This case, illustrated
by Figure 5.1, would contradict the assumption that π1 is the shortest path from v to x. Thus
showing that (s, t) has an implicit orientation such that it is only ever used in the correct
direction.
The contradiction becomes clear when assuming w(s, t) = 0 in the following deduction.

π3 > π2

d(v, s) + d(s, y) > d(v, t) + w(t, s) + d(s, y)

d(v, s) + d(s, y) > d(v, t) + d(s, y)

d(v, s) > d(v, t)

d(v, s) + w(s, t) > d(v, t)

d(v, s) + w(s, t) + d(t, x) > d(v, t) + d(t, x)

π1 > d(v, t) + d(t, x)

Since edge (s, t) is only used in one direction, say from s to t, then moving s closer to v would
only increase the improvement in eccentricity. Hence the solution (F ∗ \ {(s, t)}) ∪ {(v, t)} is
at least as good. Doing this for all other edges would ensure that F ∗ only contains edges
incident on v, proving the lemma. �

xy

v

s t

π1

π2

π3

Figure 5.1: Graph illustrating the paths used in the proof of Lemma 5.6

Lemma 5.6 indicates that it would be optimal to have all k edges in F incident to v, the
vertex whose eccentricity we are aiming to improve. Therefore, our approach is to partition
the graph into k+ 1 clusters, vertex v being the head of the initial cluster, and defining F to
be the set of k edges from v to all other cluster heads. This technique ensures that the added
edges connect v to k well separated vertices in the graph, hence improving the eccentricity.
Formally, this approach is described by the following algorithm.
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Algorithm 2: Approximation algorithm for single source distance measure improvement.

Input: G = (V,E), graph with vertex whose measure needs improvement
dG : V × V → R+

0 , the all-pairs distance function of graph G
v ∈ V , the vertex whose measure needs improvement
k ∈ N+, a bound on the number of added edges

Output: F , a set of non-existing edges to improve the measure over v
ApproxSource(G, d, v, k)
(1) H ← Cluster(G, d, v, k + 1)
(2) F ← { (h1, hi) | 1 < i ≤ k + 1 }
(3) return F

Theorem 5.7. The time complexity of algorithm ApproxSource is O(kn).

Proof. The first line of the ApproxSource algorithm performs a call to the Cluster algo-
rithm, hence taking O((k + 1)n) = O(kn+ n) = O(kn) time, as proven in Theorem 5.4. The
second line uses these results to build a set of size k, taking O(k) time to do so. Therefore,
in total, the algorithm has a running time of O(kn). �

Before we can prove the approximation ratio of Algorithm ApproxSource, or any other
algorithms in this chapter, we must first define some basic notation. Specifically, for a graph
G = (V,E), we denote the radius of U ⊆ V in G by RG(U) = minv∈V maxu∈U dG(v, u). Note
that for a cluster Bi it holds that maxv∈Bi dG(h1, v) = RG(Bi), in other words the head is
the most central vertex in the cluster.

Also, a set of vertices from G, {v1, . . . , v`}, is an independent set of G if and only if (vi, vj) /∈
E for all 1 ≤ i, j ≤ `. Such an independent set is maximum if for every other independent
set {v1, . . . , v`′} of G we have that ` ≥ `′. Let α(G) denote the cardinality of the maximum
independent set of G. And finally, for τ ∈ R+

0 , let Eτ = {(u, v) | u, v ∈ V ∧ dG(u, v) ≤ τ} and
Gτ = (V,Eτ ). The intuition is that α(Gτ ) is the maximum size of the set of vertices such
that all pairs have a distance larger than τ .

With this new notation we can introduce the following two lemmata.

Lemma 5.8 ([7, Lemma 1]). Let G = (V,E) be a graph, and τ ∈ R+
0 . If α(Gτ ) ≤ k, then the

Cluster algorithm on input G and k computes a k-clustering of V such that RG(Bi) ≤ τ for
all 1 ≤ i ≤ k.

Proof. First, we will show by contradiction that when given a graph G = (V,E) with α(Gτ ) ≤
k, all vertices are within distance τ of their cluster head maxv∈V min1≤i≤k dG(hi, v) ≤ τ .
Hence, for the sake contradiction, assume that γ = maxv∈V min1≤i≤k dG(hi, v) > τ . Let
u ∈ V be any vertex such that u ∈ {v | v ∈ V ∧min1≤i≤k dG(hi, v) = γ}.

By construction of the clustering, dG(hi, hj) > τ for every 1 ≤ i, j ≤ k with i 6= j. Therefor,
we then have that {h1, . . . , hk} ∪ {u} is an independent set of α(Gτ ) with cardinality k + 1,
thus contradicting the assumption that α(Gτ ) ≤ k. From this we can conclude the following
for every 1 ≤ i ≤ k

RG(Bi) ≤ max
v∈Bi

dG(hi, v) ≤ max
v∈V

min
1≤j≤k

dG(hj , v) ≤ τ .

�
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vj

vj′

vi

vi′

vu

(a) Case (i)

vi
u v

vi′

vi′′

(b) Case (ii)

Figure 5.2: The two cases of the proof of Lemma 5.9.

Lemma 5.9 ([7, Lemma 2]). Let G = (V,E) be a graph, and τ ∈ R+
0 . For every e /∈ E, with

G′ = (V,E ∪ {e}), α(G′τ ) ≥ α(Gτ )− 1.

Proof. Let {v1, . . . , v`} be an independent set in Gτ . Then, for the sake of contradiction,
assume an edge (u, v) /∈ E exists, with G′ = (V,E ∪ {(u, v)}), such that α(G′τ ) < `− 1. This
implies that, in the independent set, (i) there exist four distinct indices 1 ≤ i, i′, j, j′ ≤ ` such
that (vi, vj), (vi′ , vj′) ∈ Eτ , or (ii) there exist three distinct indices 1 ≤ i, i′, i′′ ≤ ` such that
(vi, vi′), (vi′ , vi′′), (vi′′ , vi),∈ Eτ . Both cases are displayed in Figure 5.2.

In the first case, since dG(vi, vj), dG(vi′ , vj′) > τ and dG′(vi, vj), dG′(vi′ , vj′) ≤ τ , we can
conclude that in G′ both the shortest path from vi to vj and the shortest path from vi′ to
vj′ must pass through edge (u, v). We also have that dG(vi, vi′), dG(vj , vj′) > τ , since all four
vertices are part of the independent set. Therefore, without of loss generality, we have the
following

dG(vi, u) + w(u, v) + dG(v, vj) ≤ τ
dG(vi′ , u) + w(u, v) + dG(v, vj′) ≤ τ
τ < dG(vi, u) + dG(u, vi′)

τ < dG(vj , v) + dG(v, vj′).

The sum of these inequalities results in 2 · w(u, v) < 0, a contradiction.
In the second case, since dG(vi, vi′), dG(vi′ , vi′′), dG(vi′′ , vi′) > τ and dG′(vi, vi′), dG′(vi′ , vi′′),

dG′(vi′′ , vi′) ≤ τ , we can conclude that any shortest path in G′ between any pair of the three
vertices vi, vi′ , vi′′ has to go through edge (u, v). Hence, two of the three endpoints must be
closer to either u or v than the other one. Without loss of generality, assume that dG(vi′ , v) ≤
dG(vi′ , u) and dG(vi′′ , v) ≤ dG(vi′′ , u). Also, we have that dG(vi, vi′), dG(vj , vj′) > τ , since all
four vertices are part of the independent set. As a consequence we can deduce the following

dG(vi′ , vi′′) ≤ dG(vi′ , v) + dG(vi′′ , v)

< min{dG(vi′ , v) + w(v, u)

= dG(u, vi′′), dG(vi′ , u) + w(u, v) = dG(v, vi′′)}
= dG′(vi′ , vi′′)

≤ τ .

Therefore (vi′ , vi′′) ∈ Eτ , which is a contradiction. �

To prove the approximation ratio of Algorithm ApproxSource we need to introduce two
additional lemmata with respect to the lower bound of the measures.
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Lemma 5.10. For a given graph G = (V,E) it holds that DG ≤ 2 ·RG.

Proof. For the sake of contradiction, assume 2 · RG < DG, and let v ∈ V be the vertex
such that εG(v) = RG (i.e. the vertex defining the radius). Therefore, by definition of the
eccentricity, dG(v, u) ≤ RG for all u ∈ V .

Let vertices s, t ∈ V be the endpoints defining the diameter; dG(s, t) = DG. Then the path
from s to t passing through v is of length dG(s, v) + dG(v, t) ≤ 2 · RG. Since we assumed
2·RG < DG, this contradicts the assumption that the current diameter is defined by a shortest
path. Thus the lemma is proven. �

Lemma 5.11. For a given graph G = (V,E), with v ∈ V , it holds that DG ≤ 2 · εG(v).

Proof. Since the radius is defined as the minimum eccentricity we know that RG ≤ εG(v).
From this and Lemma 5.10 we can conclude

RG ≤ εG(v)

2 ·RG ≤ 2 · εG(v)

DG ≤ 2 · εG(v).

�

Theorem 5.12. Algorithm ApproxSource computes a
(

2 + ω
ε∗(v)

)
-approximation for the

u-em and em problem.

Proof. Let F ∗ be an optimal solution for em in the instance G = (V,E), v ∈ V , and k ∈ N,
hence |F ∗| ≤ k. For graph G∗ = (V,E∪F ∗) we denote D∗ = DG∗ and ε∗(v) = εG∗(v). Also, by
definition α(G∗D∗) = 1, since each vertex in G∗ can reach all other vertices within a diameters
distance. Using Lemma 5.9 repeatedly will then result in α(G∗D∗) ≥ α(G∗D∗)−|F ∗|, which can
be rewritten as α(G∗D∗) ≤ k + 1. As a consequence of Lemma 5.8, the Cluster algorithm
computes a (k + 1)-clustering 〈B1, . . . , Bk+1〉 such that RG(Bi) ≤ D∗ for all 1 ≤ i ≤ k + 1.
With the use of Lemma 5.11 this becomes RG(Bi) ≤ D∗ ≤ 2 · ε∗(v).

Now consider set F = {(h1, hi) | 2 ≤ i ≤ k + 1}, with |F | ≤ k, as computed in algorithm
ApproxSource. We will denote the resulting graph as G′ = (V,E ∪ F ). Every vertex in
G′ is at distance at most 2 · ε∗(v) + ω from v, as is illustrated in Figure 5.3. Therefore,
εG′ (v) ≤ 2 · ε∗(v) + ω, and we have an approximation ratio of 2 + ω

ε∗(v) .
This approximation ratio also holds for u-em by the same analysis. Moreover, due to the

fact that ω = 1 in this case, the approximation ratio is improved to 2 + 1
ε∗(v) . �

RG(B1) RG(Bi)

ω

h1 hi

Figure 5.3: Graph illustrating the eccentricity bound proven in Theorem 5.12.
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5.3 Average Shortest Path

In Section 4.3 we proved that minimizing the (single source) average shortest path length is
NP-hard. This does not only hold for the general version of this problem but also for its unit
weight variants u-aspm and u-ssaspm. This section will show how to approximate the single
source case within a ratio of 2 and for the general version a ration of 4. However, instead of
minimizing Davg(v) and Davg, as presented in Definition 2.5 and 2.6 respectively, all proofs
will be based on the measures without the added division over all vertex combination.

Davg(v) :
∑
u∈V

d(u, v)

Davg :
∑
u∈V

∑
v∈V

d(u, v)

Minimizing these distance functions will give the same results as minimizing the original
definitions of Davg(v) and Davg, since the omitted division does not change in value. First
consider the single source variant.

Single source (ssaspm)
Our approach to approximating the ssaspm problem is similar to the one used in minimiz-
ing the eccentricity. As discussed by Meyerson and Tagiku in their analysis of the ssaspm
problem, and Lemma 5.6 in the previous section, adding edges incident to the source vertex
is optimal [32, Lemma 1]. This holds for both the eccentricity and the single source average
shortest path length, since both rely on shortest paths with the source as an endpoint.

Therefore, adding edges from source vertex v to other vertices which are central in distant
clusters is a technique that still applies. With these connections to all other vertices, through
the cluster heads, the average lengths of shortest path starting in v should be decreased
significantly. Hence, we will apply Algorithm 2 (i.e. ApproxSource) to the ssaspm problem
and prove a different approximation bound with the following theorem.

Theorem 5.13. Algorithm ApproxSource computes a 2-approximation for the ssaspm
problem.

Proof. Let F ∗ be an optimal solution for ssaspm in the instance G = (V,E), v ∈ V , and
k ∈ N, hence |F ∗| ≤ k. By Lemma 5.6 we know that all edges contained in F ∗ are incident
to v. Therefore, we only need to find k endpoints for the edges such that the distance for
each vertex u ∈ V to its closest endpoint is minimized, since this also minimizes the average
shortest path from v to all u.

The ApproxSource algorithm uses k-center clustering algorithm Cluster to compute the
endpoints, afterwards the edges from v to these endpoints are stored in set F . The cluster
heads, i.e. endpoints, returned by this algorithm are aimed at minimizing the maximum dis-
tance to the closest head for all u ∈ V , as specified by the objective function in Definition 5.3.
Since the average distance to such an endpoint is always smaller or equal than the maximum
distance to endpoints overall, we can assume the same 2-approximation ratio as proven for
the clustering algorithm in Theorem 5.5.

Note that distance ω of all added edges is included in both set F and F ∗, therefore it
is not a part of the approximation ratio. Hence, due to the chosen clustering algorithm,
algorithm ApproxSource computes set F which provides a 2-approximation of F ∗. Both
in the weighted ssaspm and unweighted u-ssaspm problem. �
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General (aspm)
Thus far we have only dealt with minimizing single source measures, where all additional
edges are incident to the source itself. In a more general graph measure such as the average
shortest path length, all combinations of vertices must be taken into consideration. To this
end, additional edges could be placed all over the graph, not all being incident to the same
vertex.

However, an intuitive idea would be to apply the single source algorithm to all vertices in
the graph and store the best solution thus far. To do this we must first prove the following
lemma, which claims that there exists a vertex in the graph that is sufficiently close to all
other vertices.

Lemma 5.14 ([32, Lemma 2]). For a given graph G = (V,E), there exists a source vertex
v ∈ V for which algorithm ApproxSource returns a 4-approximation for the aspm problem.

Proof. Let F ∗ be an optimal solution for aspm in the instance G = (V,E) and k ∈ N, hence
|F ∗| ≤ k. We denote G∗ = (V,E ∪ F ∗) to be the graph with all optimal edges added. For
this graph, the average value of Davg

G∗ (u) over all u ∈ V is 1
nD

avg
G∗ , hence at least one vertex v

must not exceed this average.
Therefore, we will compute a set F , with G′ = (V,E ∪ F ), aimed at minimizing Davg

G′ (v).
Algorithm ApproxSource allows us to do so within an approximation ratio of a, as proven
by Theorem 5.13. Using this approximation ratio we can deduce

Davg
G′ (v) ≤ 2 ·Davg

G∗ (v) ≤ 2 · 1

n
Davg
G∗ . (5.1)

A bound Davg
G′ in terms of Davg

G′ (v) can be obtained by applying the triangle inequality given
in Definition 5.1, which specifies for vertices x, y, z ∈ V that d(x, z) ≤ d(x, y) +d(y, z). When
summing this inequality over all vertex pairs, the distances between intermediate vertex y
and all other vertices in V occurs twice on the right hand side of the inequalities (once as x
and once as z) for all n possible choices of y. Hence, the bound defined as

Davg
G′ ≤ 2n ·Davg

G′ (v). (5.2)

These two equations can be combined to finalize our proof.

Davg
G′ ≤ 2n ·Davg

G′ (v)

≤ 4 ·Davg
G∗

�

Therefore, given a source vertex v with Davg
G∗ (v) ≤ 1

nD
avg
G∗ as stated in Lemma 5.14, we

are able to treat the general aspm problem as a single source problem (ssaspm) and apply
algorithm ApproxSource to produce a 4-approximation. However, finding this vertex v
requires knowledge of F ∗, which we do not have. Hence, we must try all vertices and take
the best solution. This approach is captured by the following algorithm.
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Algorithm 3: Approximation algorithm for the aspm problem.

Input: G = (V,E), graph with vertex whose ASP length needs improvement
dG : V × V → R+

0 , the all-pairs distance function of graph G
k ∈ N+, a bound on the number of added edges

Output: F , a set of non-existing edges to improve the ASP length.
ApproxASP(G, d, k, M)
(1) F ← ∅
(2) m←∞
(3) foreach v ∈ V
(4) F ′ ← ApproxSource(G, d, v, k)
(5) G′ ← (V,E ∪ F ′)
(6) if Davg

G′ < m
(7) F ← F ′

(8) m← Davg
G′

(9) return F

The time complexity of Algorithm 3 (i.e. ApproxASP), although polynomial, is strongly
dependent on the method used to compute Davg

G′ as shown in the theorem below.

Theorem 5.15. The time complexity of algorithm ApproxASP is O(n4).

Proof. The ApproxASP algorithm mainly consists of a loop over all n vertices in V . For
each of these vertices the single source measure minimization is approximated using algorithm
ApproxSource, which has a running time of O(nk) as proven by Theorem 5.7. Moreover, all
k edges returned by the measure minimization are added to a new graph, taking O(k) time.
Afterwards the average shortest path length measure of the resulting graph is computed,
which is done in O(n3) time by the Floyd-Warshall all-pairs shortest path algorithm [15].
However, one could also apply Johnson’s algorithm when dealing with sparse graphs, having
a running time of O(n2 log n + nm) [21]. In our analysis we will assume the Floyd-Warshall
algorithm is used, due to its general applicability. Finally, a comparison is made with the
best solution thus far, only taking constant time.

Therefore, within the main loop, the Floyd-Warshall algorithm has the highest time com-
plexity of all actions. When multiplying this by the number of iterations we get a total
running time of O(n · n3) = O(n4). �

Theorem 5.16. Algorithm ApproxASP computes a 4-approximation for the aspm problem.

Proof. Lemma 5.14 states that, for a given graph G = (V,E), a vertex v ∈ V exists such
that algorithm ApproxSource on v returns a 4-approximation for the aspm problem. Since
the ApproxASP algorithm applies ApproxSource to all vertices in V , storing the best
solution seen thus far, the result must be at least a 4-approximation. This also holds for the
unweighted u-aspm variant. �
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5.4 Radius

Minimizing the radius is another optimization problem based on a measure defined on the
overall graph. The definition and complexity proof of the rm problem, and its unweighted
counterpart u-rm, can be found in Section 4.4. An algorithm approximating these optimiza-
tion problems with ratio 2 + ω

R∗ , for an optimal resulting radius of R∗, will be presented
below.

As with general average shortest path length minimization, our intuition will be to minimize
the measure for only a single source vertex. However, due to the definition of the radius, we
can prove a much tighter bound on the approximation ratio. The following lemma will give
an indication of this bound with respect to the single source algorithm.

Lemma 5.17. For a given graph G = (V,E), assuming that algorithm ApproxSource
returns an α-approximation for the em problem, there exists a source vertex v ∈ V for which
algorithm ApproxSource returns an α-approximation for the rm problem.

Proof. Let F ∗ be an optimal solution for rm in the instance G = (V,E) and k ∈ N, hence
|F ∗| ≤ k. For graph G∗ = (V,E ∪ F ∗) we denote R∗ = RG∗ . Then by definition of the radius
there must exist a vertex v ∈ V , where ε∗(v) = εG∗(v), such that ε∗(v) = R∗. Assuming that
algorithm ApproxSource returns an α-approximation for ε∗(v), in the form of an edge set
F with G′ = (V,E ∪ F ) and εG′(v), we can conclude thatApproxSource also returns an
α-approximation for R∗ and therefore the rm problem on the same instance. �

As a result of Lemma 5.17, we are able to treat rm as a single source problem given a source
vertex v. However, finding this vertex v requires knowledge of F ∗, which we do not have.
Hence, we must iterate over all vertices in the graph and store the best solution we come
across.

Algorithm 4: Approximation algorithm for the rm problem.

Input: G = (V,E), graph with vertex whose radius needs improvement
dG : V × V → R+

0 , the all-pairs distance function of graph G
k ∈ N+, a bound on the number of added edges

Output: F , a set of non-existing edges to improve the radius.
ApproxRad(G, d, k, M)
(1) F ← ∅
(2) m←∞
(3) foreach v ∈ V
(4) F ′ ← ApproxSource(G, d, v, k)
(5) G′ ← (V,E ∪ F ′)
(6) if RG′ < m
(7) F ← F ′

(8) m← RG′

(9) return F

Similar to the average shortest path length minimization algorithm, the time complexity of
Algorithm 4 (i.e. ApproxRad) strongly depends on the methods used to compute the radius.
This is illustrated by the theorem proven below.
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Theorem 5.18. The time complexity of algorithm ApproxRad is O(n4).

Proof. Note that the ApproxRad algorithm is very similar to ApproxASP, the main differ-
ence being the computation of measure RG′ . This is by no means a coincidence, more details
regarding a generalization will be discussed in Section 5.5. Computing the radius measure for
graph G′ can also be done using the same all-pairs shortest path algorithms used to compute
the average shortest path length, either the Floyd-Warshall algorithm [15] or Johnson’s algo-
rithm when dealing with sparse graphs. graphs [21]. Hence, the time complexity of algorithm
ApproxRad is equal to that of ApproxASP, proven to be O(n4) in Theorem 5.15. �

Theorem 5.19. Algorithm ApproxRad computes a
(
2 + ω

R∗

)
-approximation for the rm

problem.

Proof. Let F ∗ be an optimal solution for rm in the instance G = (V,E) and k ∈ N, hence
|F ∗| ≤ k. For graph G∗ = (V,E ∪ F ∗) we denote R∗ = RG∗ . Then by definition of the radius
there must exist a vertex v ∈ V , where ε∗(v) = εG∗(v), such that εG∗(v) = R∗. Assuming
algorithm ApproxSource returns a (2 + ω

ε∗(v))-approximation for the em problem as proven
by Theorem 5.12, then Lemma 5.17 shows us that for vertex v the same algorithm returns a
(2 + ω

R∗ )-approximation for the rm problem.
Since the ApproxRad algorithm applies ApproxSource to all vertices in V , storing the

best solution seen thus far, the result must be at least a (2 + ω
R∗ )-approximation. This

approximation ratio also holds for u-rm by the same analysis. Moreover, due to the fact that
ω = 1 in this case, the approximation ratio is improved to 2 + 1

R∗ . �

5.5 Diameter

The dm problem of minimizing the diameter for a given graph G = (V,E), as specified and
proven to be NP-hard in Section 4.5, has been studied the most among all graph distance
minimization problems. We will start by discussing the algorithm introduced by Demaine
and Zadimoghaddam [10], which is simply our ApproxSource algorithm with any arbitrary
vertex v ∈ V defining the source. Although initially an approximation ratio of (4 + ε) was
proven, the bound was shortly thereafter improved by Bilò et al. to 2 + 2·ω

D∗ for an optimal
resulting diameter of D∗. We will shortly revisit the theorem by Bilò et al, due to the fact
that the eccentricity approximation ratio proof was based on this same principle.

Theorem 5.20 ([7, Theorem 1]). Algorithm ApproxSource, on an arbitrary vertex v ∈ V ,
computes a 2 + 2ω

D∗ -approximation for dm.

Proof. Let F ∗ be an optimal solution for dm in the instance G = (V,E), and k ∈ N, hence
|F ∗| ≤ k. For graph G∗ = (V,E ∪ F ∗) we denote D∗ = DG∗ as the optimal diameter after
minimization. Also, let F be the solution returned by algorithm ApproxSource on vertex
v, where G′ = (V,E ∪ F ).

Now consider Theorem 5.12, where a bound of RG(Bi) ≤ D∗ was proven for all 1 ≤ i ≤ k+1.
Then the situation displayed in Figure 5.4, for any 1 < i, j ≤ k + 1, illustrates the bound on
the diameter. Since every vertex in G′ is at distance at most 2 ·D∗+ω from v, we know that
DG′ ≤ 2D∗ + 2ω. Therefore, we have proven an approximation ratio of 2 + 2ω

D∗ .
This approximation ratio also holds for u-dm by the same analysis. Moreover, due to the

fact that ω = 1 in this case, the approximation ratio is improved to 2 + 2
D∗ . �
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Figure 5.4: Graph illustrating the diameter bound proven in Theorem 5.20.

Theorem 5.20 has shown improving the connectivity of any arbitrary vertex in a specific way
is sufficient to approximate minimizing the diameter. However, some vertices are better suited
for this improvement than others, providing more benefit to the diameter due already existing
connections. Hence, the idea is to improve the approximation by improving the connectivity
each vertex in the graph separately and keeping track of the best resulting diameter.

However, this approach is very similar to the technique used in approximating minimiza-
tion problems aspm and rm, Algorithm 3 and Algorithm 4 respectively. Therefore we will
introduce Algorithm 5 (i.e. ApproxGeneral) below, which approximates a generalized
distance-based measure M , to replace these algorithms. Note that the approximation ratios
of the aspm, rm, dm, and their unweighted variants remain unchanged, due to the algorithm
having the same structure.

Algorithm 5: General approximation algorithm for distance-based measure improvement.

Input: G = (V,E), graph with vertex whose measure needs improvement
dG : V × V → R+

0 , the all-pairs distance function of graph G
k ∈ N+, a bound on the number of added edges
M , a distance-based measure

Output: F , a set of non-existing edges to improve the measure
ApproxGeneral(G, d, k, M)
(1) F ← { }, m←∞
(2) foreach v ∈ V
(3) F ′ ← ApproxSource(G, d, v, k)
(4) G′ ← (V,E ∪ F ′)
(5) if MG′ < m
(6) F ← F ′

(7) m←MG′

(8) return F

Since Algorithm 5 (i.e. ApproxGeneral) is a generalization of Algorithm 3 and Algorithm 4,
its time complexity has also changed accordingly.

Theorem 5.21. The time complexity of algorithm ApproxGeneral is O(nM+n2k), where
O(M) is the time complexity of the equally named distance-based measure.

Proof. The structure of algorithm ApproxGeneral has a lot in common with algorithms
ApproxASP and ApproxRad. Hence, when substituting the measure computation time
complexity with O(M) in Theorem 5.15 and Theorem 5.18, we get O(nM + n2k). �
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5.6 Algorithm evaluation

In the previous sections, worst case approximation bounds of the ApproxGeneral algorithm
have been proven for the three main distance-based measures, being radius, diameter and
average shortest path length. However, to ensure that the algorithm performs according to
expectations, we will experimentally evaluate it on some of the large randomly generated
networks as seen in Chapter 3.

Of the random network generation models discussed in Section 3.1 we have selected the
Barabási-Albert and Watts-Strogatz models for this evaluation due to their structure being
more susceptible to improvements. Both of these models will have the same initial instance
as presented in Section 3.2, i.e. 100 vertices (n = 100). In the Barabási-Albert model each
new vertex is assigned 1 connection, whereas the Watts-Strogatz model has β = 0.25 and a
mean degree of 2.

Displayed in Table 5.1 are the distance-based graph measure values after adding k edges to
the graph/network using the ApproxGeneral algorithm. Each row in the table contains
the graph measures averaged over 100 randomly generated networks according to the given
model.

R D Davg

k = 0 7 13 5.50
k = 5 7 11 5.11
k = 10 6 10 4.77
k = 15 5 9 4.38
k = 20 4 8 4.13
k = 25 4 7 3.89

(a) Barabási-Albert model

R D Davg

k = 0 16 30 12.01
k = 5 12 21 8.42
k = 10 7 13 6.34
k = 15 6 11 5.26
k = 20 5 10 4.52
k = 25 4 8 4.09

(b) Watts-Strogatz model

Table 5.1: The values of all distance-based graph measures on randomly generated graphs
before and after improvement using the ApproxGeneral algorithm.

As can be seen in the table, all measures are indeed reduced significantly. Although no
comparative results are shown here, such as the optimal measurement values (or a lower
bound) after adding k edges, we can still conclude that the ApproxGeneral algorithm is
effective at reducing the distance-based measures.



Chapter 6

Conclusion

6.1 Discussion

The aim of this thesis was to find a way to quantify network robustness through the use
of intuitive graph measures, and to utilize them in the process of robustness improvement.
Moreover, we specifically aimed at answering the following research question.

Research question How can we determine the robustness of a simple, connected, undirected,
weighted graph, and use the resulting measures in the improvement process?

Let us analyze the achieved results by discussing the following secondary research questions,
as stated in the introduction and repeated below.

Secondary research questions

• Which graph measures are suited for measuring network robustness?

• How viable are distance-based measures in measuring the network robustness?

• What complexity class does robustness improvement, i.e. distance-based measure min-
imization, belong to?

• How do we go about approximating the optimal robustness improvements?

• What approximation ratios can we achieve for robustness improvements?

We started by defining some traditional graph measures from network theory in Chapter 2:
radius, diameter, average shortest path length, average degree, average closeness, average
vertex/edge betweenness, vertex/edge connectivity, largest connected component size, average
clustering coefficient, algebraic connectivity and effective graph resistance. Each of these
graph measures was attributed to one of four classes: distance, centrality, connectivity and
spectral.

We continued the thesis by reviewing and comparing these measures in Chapter 3. This
comparison showed that some measures are better at capturing robustness than others. More
specifically, the class of connectivity measures performed poorly in the comparison due to the
fact that its values did not strictly increase with the robustness. The spectral measures, al-
though better than the connectivity measures, also did not always strictly increase. Moreover,
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these measures were not as intuitive as others, since it was not always clear which properties
of the graph it expressed. The centrality and distance measures performed better, average
shortest path length and betweenness in particular, being strictly increasing according to an
expected pattern. Out of all measures considered in the comparison, the distance-based graph
measures appeared to be the most feasible. All measures in this class had similar scaling,
being in the same order of magnitude, implying that they correlate well. Hence, since the
measures in this class agree with each other, they present a combined method aimed at ro-
bustness analysis. Thus we concluded that distance-based measures were viable in measuring
network robustness.

Afterwards we analyzed the minimization problems related to the distance-based measures
in Chapter 4. Using a polynomial reduction from the NP-complete 3c problem, as defined
in Definition 4.2, we were able to prove the NP-hardness of all minimization problems. This
reduction was based on the concept of adding a number of specific edges aimed at solving the
3c problem. Hence, solving these minimization problems is at least as hard as solving the
NP-complete 3c. Resulting from this reduction are Theorem 4.5, Theorem 4.8, Theorem 4.11,
Theorem 4.14 and Theorem 4.17 respectively.

Knowing the complexity of these minimization problems, it was clear that finding a poly-
nomial time algorithm which could compute the set of edges minimizing the measure is only
possible if P=NP. Hence, we shifted our aim towards approximating an optimal solution to
these problems. This approximation technique, as explained in Chapter 5, works by con-
necting a single vertex to a number of well-separated cluster heads. Using Algorithm 1 as
our clustering technique, this resulted in Algorithm 2 for single source improvements, and
Algorithm 5 for general graph improvements.

Approximation ratios for these algorithms were also formally proven in the same chapter,
as done in Theorem 5.12, Theorem 5.13, Theorem 5.16, Theorem 5.19, and Theorem 5.20
respectively. The approximation of most measure minimization problems admitted to an
approximation rate of 2, with some additional factor depending on the maximal weight ω of
the added edges. The only exception was the general average shortest path, for which we
proved a ratio of 4.

To summarize, in this thesis we compared different techniques of determining the robustness
of a simple, connected, undirected, weighted graph. In this analysis, distance-based graph
measures seemed to be the most viable. Furthermore, we presented multiple approximation
algorithms aimed at minimizing these distance-based measures, thus improving robustness.
Hence, our efforts have given a conclusive answer to the posed research question.

6.2 Future research

Since the results presented in this thesis are based on undirected graphs, it would be interesting
to expand the analysis and some of its proofs to directed graphs. Other possibilities with
respect to directed graphs would be the introduction of new graph measures, which might
work better in a directed context.

Concerning the algorithms, improving on the approximation ratios is still possible. New
techniques could lead to lower bounds, or even a proof stating that the optimal ratio has
already been reached. As for experimental validation, it could be interesting to compare the
results of our approximation algorithms to the optimal results. This would show the ratio of
the algorithms in an average case, hence illustrating the tightness of our proven bound.
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Another issue which could be dealt with is the introduction of potential targets through the
use of our approximation algorithm. Since the algorithm adds all its k additional edges to a
single vertex, this highly connected vertex suddenly becomes a target for attacks. A solution
to this problem could be to call the algorithm multiple times with smaller values for k, such
that the added edges are eventually distributed across many vertices. However, the optimal
way to distribute the k total edges over these function calls needs to be researched further.

Finally, since we shortly discussed interdependent networks, it could be of interest to per-
form additional research into designing measures capable of capturing the robustness of such
networks. An idea could be to use the same distance-based measure, but with the limitation
that the vertices defining the endpoints of a regular distance-based measure should be part
of different networks.



60 6.2. FUTURE RESEARCH



Bibliography

[1] Pankaj K. Agarwal, A Efrat, S. Ganjugunte, D. Hay, S. Sankararaman, and G. Zussman.
The resilience of wdm networks to probabilistic geographical failures. In INFOCOM,
2011 Proceedings IEEE, pages 1521–1529, April 2011.

[2] R. Albert and A.L. Barabási. Statistical mechanics of complex networks. Reviews of
Modern Physics, 74:47–97, 2002.

[3] R. Albert, H. Jeong, and A. Barabási. Error and attack tolerance of complex networks.
Nature, 406:378–382, July 2000.

[4] J.S. Baras and P. Hovareshti. Efficient and robust communication topologies for dis-
tributed decision making in networked systems. In Proceedings of the 48th IEEE Con-
ference on Decision and Control, pages 3751–3756, 2009.

[5] A. Barrat, M. Barthlemy, R. Pastor-Satorras, and A. Vespignani. The architecture of
complex weighted networks. Proceedings of the National Academy of Sciences of the
United States of America, 101(11):3747–3752, 2004.

[6] A. Beygelzimer, G. Grinstein, R. Linsker, and I. Rish. Improving network robustness by
edge modification. Physica A: Statistical Mechanics and its Applications, 357(3-4):593–
612, 2005.
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