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1 Introduction

The aim of this report is to explain and to provide the formal semantics for a workflow
management system, which will be used by the adaptive brachytherapy platform. This
workflow management system is developed to control, schedule and monitor the workflow
of a medical treatment in the field of brachytherapy in order to increase the quality of
medical intervention.

The adaptive brachytherapy platform is designed to support user-centric workflows.
Hence, the platform supports hospitals of scalable sizes. Moreover, users who have skills in
the range from basic to advanced, should be able to manage and control the brachytherapy
treatment of a patient. The user-interface of the platform is adjustable with use of the
hospital clinical protocols and preferences.

A clinical workflow for brachytherapy can be separated into small demarcated steps, i.e.,
workflow steps. The workflow management system will schedule the workflow steps.

1.1 Project description

The aim of this project is to develop a protocol based workflow management system. This
workflow management system will interpret the protocol in order to schedule the workflow
steps of a clinical workflow. This scheduling approach is called: Protocol based workflow
scheduling.

The main advantage of a protocol based workflow is the reproducibility of a workflow.
Besides that, the user can only choose workflow steps that are allowed to be executed
according to the protocol. Hence, the chance of mistakes is reduced. The user will not
be hampered by starting feasible workflow steps, because the system disallows only the
workflow steps that are not allowed to execute according to the protocol.

Moreover, the user has the ability to achieve a certain quality of a medical intervention,
because he is able to get insight in the execution and risks of the performed workflows.
With use of this insight the quality of the treatment can be optimized. This is a reason
why the medical field can benefit from this methodology.

A protocol based workflow management system is based on the semantics that all work-
flow steps that do not violate the constraints of the protocol are allowed to be executed.
This semantics contributes to the ability to create the highest flexible workflow that is
allowed by the protocol. A protocol based workflow management system provides more
flexibility than a traditional workflow management systems [13].

A medical protocol describes: the equipment that is allowed to be used; the execution
order of workflow steps; constraints on for example the height of a dose rate; the necessary
authorization of the medical staff; and conditions where the patient must reside in. The
protocol is used to determine which workflow steps are allowed to be executed each moment
in time. Therefore, the protocol describes the dependencies between the workflow steps.

The constraint based workflow model depends on the inter-task dependency. This means
that the restrictions are based on the dependencies between the workflow steps. The
inter-task dependency can be specified into value dependency and external dependency.
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Khemuka [11] distinguished these dependencies by:

• Value dependency: A value dependency specifies task dependencies based on the
output value generated by certain tasks.

• External dependency: These dependencies are due to some external factors.

The external dependencies are described in the protocol rules of the treatment. The
protocol rules describe the behavior in a declarative style [13], e.g., “eventually workflow
step A is followed by workflow step B”.

1.2 Architecture description

The adaptive brachytherapy platform aims to integrate multiple devices and algorithms
into a single platform. Therefore, a five layer reference model architecture is developed at
Elekta. The five layers are based on the separation of concerns of the platform. Figure 1.2.1
depicts the layering architecture.

• The bottom layer realizes the interfaces between the platform and the medical devices,
which can be in contact with the patient. An example of a medical device is for
instance a CT-scan or an afterloader.

• The second bottom layer is the functional integration layer. This layer is responsible
for combining the medical devices and other components into qualified workflow
elements. A single workflow element can use multiple devices and a single device can
be part of multiple workflow elements.

• The 3th layer of the model is called the treatment supervisor layer. This layer is
responsible to determine the feasible workflow steps. This supervisor layer contains
a workflow controller, which deals with the concerns of interpreting the protocol,
the current state, available workflow elements, authorization, and the commissioning
state of the workflow elements.

• The 4th and 5th layers are outside the scope of this report. These layers deal with
the concerns of multiple patients, where the lower layers deal with the concerns of a
single patient treatment.

Hospital information system

Practice management layer

Treatment supervisor layer

Functional integration layer

Component and device layer

Figure 1.2.1: System layering, Elekta
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The perception of working with multiple devices is changing in the medical field. Pre-
viously, medical equipment mostly worked stand alone. Each medical device had its own
task and user-interface. However, the need to work adaptively is increasing. This means
that the inter-operability between the devices increases. Therefore, it becomes more ap-
propriate to combine multiple devices into a single workflow element.

The American Society for Testing and Materials (ASTM), developed an architecture
reference [10], which can be mapped to the layering software architecture of Elekta. The
architecture of ASTM is developed to improve the inter-operability of multiple medical
devices. Figure 1.2.2 depicts the reference architecture. The gray layers map to the Elekta
architecture of Figure 1.2.1.

Operators
(physician, tech-
nician, physicist)

Treatment supervisor,
workflow controller

Functional integrator,
Clinical network controller

LoggingInterface

Interface

Medical
device

Interface

Medical
device

Interface

Medical
device

Patient

OIS
and other

External systems

Figure 1.2.2: Architecture overview based on the ASTM F2761-09 ICE architecture
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1.3 Related work

Workflow management systems are currently being used in several businesses processes in
order to monitor, control, and to schedule tasks to participants. The concept of workflow
management emerged in the late eighties, begin nineties.

Before the eighties, the processes were implemented hard-coded into the software appli-
cations. The consequence of this approach were increased costs in modifying a workflow
or a process. Therefore, it became too expensive to maintain the software applications,
because lifetime of processes decreased and the complexity of processes increased. This is
the reason for development of a generic system with the purpose to support the definition,
execution, registration and control of processes [3].

The Workflow Management Coalition, which is founded in 1993, defined the formal def-
inition of Workflow Management System as: “A system that defines, creates and manages
the execution of workflows through the use of software, running on one or more workflow
engines, which is able to interpret the process definition, interact with workflow participants
and, where required, invoke the use of IT tools and applications.” [5].

Web service based workflow management systems

Many vendors have developed workflow management systems. A cooperation of com-
panies has developed a Web Service based workflow management language, abbreviated
WSBPEL. This language emerged from the cooperation of the two companies IBM and
Microsoft. The latest version of WSBPEL, version 2.0, is developed by several companies,
e.g., Adobe, SAP, and BEA systems. This version is standardized by the consortium OA-
SIS.

WSBPEL is based on web standards and it makes use of a Extensible Markup Language
messaging protocol (XML). The disadvantage of this language is that it is not based on
any formal semantics [5]. Several research groups have been working on a formal semantics
for WSBPEL. The tools that are developed in order to provide a framework, are based on
formal model languages. For instance, Petri nets, guarded automata and labeled transitions
systems [12].

Petri net based workflow management systems

A Petri net is a well-founded formal model language, which is represented by a directed
bipartite graph. The graph is composed of nodes and connections called places and tran-
sitions, which are depicted by rectangles and circles, respectively. A place can contain
tokens, which are depicted by black dots. The transitions and places are connected via the
arrows in the graph.

The current state of the Petri net is defined by all tokens of the net. Therefore, the Petri
net is a state based rather than an event based model [3, 6, 7, 8]. Figure 1.3.1 depicts a
model of a simple postorder process, represented by a Petri net.

The Dutch government started a project called Sagitta-2000, which led to an eponymous
software platform. The platform is being used in order to manage the customs declarations.
This platform is based on mathematical modeling language called Petri net. The benefit
of a workflow language based on Petri nets is the formal semantics of the language [8].
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P1
T1

P2

P3

T2 P4

T3 P5

T4 P6

T1 = Receive order
T2 = Write bill
T3 = Pack order
T4 = Ship order

Figure 1.3.1: Petri net of a postorder process

Another Petri net based management system is YAWL, which is the abbreviation for Yet
Another Workflow Language. This language is used in a theoretically proven management
system, which is developed in corporation of several universities and companies [4].

There are various reasons whether workflow management systems, e.g., YAWL and
Sagitta, are based on Petri nets. In the paper of van der Aalst [8] the three main rea-
sons are summarized to choose for a Petri net based workflow system for the Sagitta-2000
platform. The three reasons are:

1. Formal semantics despite the graphical nature.

2. State-based instead of event-based.

3. Abundance of analysis techniques.

The argumentation of the author [8] is sustained by the mathematical analysis and
theorems of among others W. Reisig [9]. With use of the formal semantics it is possible
to prove the safety properties of a workflow. Hence, with use of a well-founded workflow
language, it is possible to increase the confidence of the correctness of a workflow [11].

The graphical nature of the definition of a Petri net is sustained by the unambiguous
representation with tokens, places and transitions. The main benefits of the formal seman-
tics and graphical nature are the unambiguous, tool independent, and available analysis
techniques.

Moreover, with use of a state based description the workflow management system is able
to interpret the enabling conditions of a task. The execution of a task can be enabled
automatically, with user input or with a time based event. Secondly, the state-based de-
scription is able to handle competitive tasks.

Two tasks are competitive if both tasks are enabled to execute, although only one of
the two is allowed to be executed. Hence, if one of the two tasks executes, then the token
is removed from the place. Therefore, the other task is not able to execute anymore.
Figure 1.3.2 depicts a situation where the two tasks T1 and T2 are competitive, because
both tasks are enabled, although only one task is allowed to execute. In this situation task
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T1 is executed and the token moves from P1 to P2, task T1 and T2 are not enabled any
more. See Figure 1.3.3.

P1

T1 P2

T2 P3

Figure 1.3.2: Tasks T1 and T2 are enabled

P1

T1 P2

T2 P3

Figure 1.3.3: Task T1 is executed

The author extends his arguments with the possibility to analyze the performances of
the workflows. This leads to the benefit that it is possible to calculate the response times,
waiting times, and occupation rates of a specified workflow [8].

Automata based management systems

The semantics of the workflow management system in this report is based on automata
theory. As far as we know there is no commercial language that sustains a constraint based
workflow management system based on automata theory.

However, there is a thesis [11] that describes a constraint based management system
based on the automata theory.

The workflow principle models a task as a finite automata, these automata are shuffled
to combine the languages of the tasks. The inter-tasks dependencies are then defined
by so called illegal states. The illegal states are disabled in the result of the shuffled
automaton [11].

1.4 Brachytherapy

This section describes briefly the aim of brachytherapy in order to provide the reader some
background information to understand the medical example, which is discussed later on in
this report.

Brachytherapy is an important way to treat patients with cancer. It is a subclass of
radiotherapy, which works by radiating the cancer cells in order to destroy the cells of a
tumor. Brachytherapy radiates the patient from inside out. This means that the radiation
source is placed directly inside or closely next to the tumor. The benefit of brachytherapy
in comparison with external radiotherapy is lower exposure of radiation onto the healthy
organs, because the radiation has not first to pass healthy tissue before reaching the tu-
mor. [14].

During the brachytherapy treatment it is important that the physician knows where
the radiation source is located with respect to the target and the organs at risks (OAR).
Therefore, the physician creates contours of the target and OAR on an image acquired of
the patient. With the knowledge of the contours he is able to plan and optimize the total
dose distribution on the target and OAR. This information is described in a plan. When
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the plan is approved, the patient can be radiated. In some cases the patient needs multiple
doses. This means that a part of the treatment needs to be iterated.

1.5 Structure of report

This report speaks of semantics in order to give meaning to a workflow system suitable
for Elekta. The semantics are described by the definitions, theorems and lemmas and sub-
stantiated by the proofs in this report.

This report is composed of six sections. Section 2 starts with the common definitions
in the field of automata theory. Some definitions are adapted to be applicable to the
workflow management system. In order to verify the properties of the definitions, the
necessary proofs are provided.

Section 3 describes the concepts of the protocol, these concepts are not common in
the field of automata theory. Hence, the concepts are based on the needs of the medical
purpose.

The concepts of the protocol are used by the workflow controller, which is explained
in section 4. The workflow controller interprets the protocol and determines the feasible
workflow steps.

Until section 5 most examples are at a high of abstraction level and these examples
are not directly related to the medical purpose. Section 5 describes a practical medical
workflow used in the field of brachytherapy. The protocol based on the semantics of this
report is evaluate to the intention of the original workflow.

The report ends with a conclusion and some comments to future research.

7
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2 General definitions

This section describes the general definitions, which are used throughout the report. These
definitions are common in the field of automata theory, although they are not directly
related to the medical field. The ubiquitously known definitions, e.g., intersection, list
manipulation, etcetera are excluded from this section. The definitions in this section are
adapted in such a manner that they can be applied to the adaptive brachytherapy platform
reference architecture.

2.1 Finite automaton

A finite automaton described by formal model language can be expressed as a directed
graph. The graph is composed of states and transitions. A state represents the statename
or some parameters. They are depicted by circles. The states are connected via transitions.
Each transition is composed of a begin and an end state. Furthermore, the transition is
labeled with a workflow step. We label the workflow steps of the set W in this section with
〈p, e〉 to be consequent with the rest of the report. For the definition of the workflow step
see section 3.2.

Definition 2.1.1. (Automaton) Given a set of workflow steps W . We call a quadruple
in the form A = (S,→, si, Sg) an automaton, where:

• S is a finite set of states.

• →⊆ S ×W × S is a set of transition relations.

• si is the initial state.

• Sg is a set of final states.

An automaton accepts only a predefined alphabet, i.e., the set of workflow steps. An
accepting path is an execution order of workflow steps, which lead from the initial state to
a final state. The minimal set of all possible accepting paths is called the language of the
automaton.

Definition 2.1.2. (Automaton language) [1]. Given an automaton A = (S,→, si, Sg).
We define the language L(s) of a state s ∈ S as the minimal set satisfying:

• if s ∈ Sg then ∅ ∈ L(s).

• if 〈s, 〈p, e〉, s′〉 ∈→ and σ ∈ L(s′) then 〈p, e〉σ ∈ L(s).

Definition 2.1.3. (Language equivalence) [1]. Given two automata k = (Sk,→k

, sik , Sgk) and l = (Sl,→l, sil , Sgl). We call the automata k and l language equivalent
iff L(sik) = L(sil).

8
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2.2 Bisimulation

The definition of bisimulation is included to prove some equivalence properties [2]. Using
bisimulation it is possible to express the behavioural equivalence between two states of an
automaton.

Bisimulation is based on the following principle, if an action can be performed in a state
of an automaton it is also possible to perform the action from a state, which is bisimilar
to the first mentioned state. If two states are bisimilar, then all the resulting states must
be bisimilar as well [1].

Definition 2.2.1. (Bisimulation) [1]. Given two automata k = (Sk, →k, sik , Sgk) and
l = (Sl, →l, sil, Sgl). A binary relation R ⊆ S × S is called a strong bisimulation relation
iff for all s ∈ Sk and t ∈ Sl such that sRt holds, it also holds that:

1. if 〈s, 〈p, e〉, s′〉 ∈→k, then there is a t′ ∈ Sl such that 〈t, 〈p, e〉, t′〉 ∈→l with s′Rt′.

2. if 〈t, 〈p, e〉, t′〉 ∈→l, then there is a s′ ∈ Sk such that 〈s, 〈p, e〉, s′〉 ∈→k with s′Rt′.

3. s ∈ Sgk if and only if t ∈ Sgl .

Two bisimilar states are denoted by s↔− t. Two automata are called strongly bisimilar if
the initial states of the automata are bisimilar. We write k↔− l if and only if sik

↔− sil.

2.3 Determinism

A deterministic automaton does not contain states that have multiple identical outgoing
transitions to different states. Figure 2.3.1 and Figure 2.3.2 depict two automata. The
right automaton is non deterministic, because it contains two outgoing transitions to two
different states with the same workflow step.

Definition 2.3.1. (Determinism) [1]. We call an automaton A = (S,→, si, Sg) de-
terministic if an only if for all states s, s′, s′′ ∈ S it holds that if 〈s, 〈p, e〉, s′〉 ∈→ and
〈s, 〈p, e〉, s′′〉 ∈→ then s′ = s′′.

0

1 2

〈p0, e0〉 〈p1, e1〉

Figure 2.3.1: Deterministic automaton

0

1 2

〈p0, e0〉 〈p0, e0〉

Figure 2.3.2: Non deterministic automaton
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2.4 Synchronous product

A synchronous product automaton is based on two automata and the language of this
automaton is the intersection of these two automata. The states of the synchronous product
automaton is the cartesian product of the two input automata. The set of transitions is
defined by the transitions of both automata that contains the same workflow steps. The
synchronous product automaton contains a single initial state and goal state, which is again
the cartesian product of the initial and goal states.

Definition 2.4.1. (Synchronous product) Given two automata k = (Sk,→k, sik , Sgk)
and l = (Sl,→l, sil , Sgl). We define the synchronous product as a quadruple k × l =
(Sk×l,→k×l, sik×l

, Sgk×l
), where:

• Sk×l = Sk × Sl.

• →k×l= {〈〈sk, sl〉, 〈p, e〉, 〈s′k, s′l〉〉 | 〈sk, 〈p, e〉, s′k〉 ∈→k ∧ 〈sl, 〈p, e〉, s′l〉 ∈→l}.

• sik×l
= 〈sik , sil〉.

• Sgk×l
= Sgk × Sgl.

Example 2.4.2. This example describes the synchronous product of two automata k and
l and is depicted in Figure 2.4.3. The automaton k contains a self loop with the workflow
step 〈{a}, {a}〉. Automaton l contains a selfloop with the workflow step 〈{a}, {b}〉.

Both self loops will be canceled out by the synchronous product automaton, because
they are not accepted by both input automata.

The synchronous automaton contains a considerable number of unreachable states, e.g.,
〈0, 0〉, 〈0, 1〉 and 〈1, 3〉. State 〈1, 3〉 is unreachable, although the state has an outgoing
transition. However, it is not an initial state and it has no incoming transitions.

Given the two automata:
k = ({0, 1, 2, 3}, {〈{a}, 〈∅, a〉, {a}〉〈{a}, 〈a, b〉, {a, b}〉, 〈{a, b}, 〈∅, a〉, {a, b}〉}, 1, {3}) and
l = ({0, 1, 2, 3}, {〈{a}, 〈a, b〉, {a, b}〉, 〈{a, b}, 〈a, b〉, {a, b}〉}, 1, {3}).

0 2

1start 3
〈{a}, {b}〉

〈{a}, {a}〉 〈{a}, {a}〉

Figure 2.4.1: Direct graph of automaton k

0 2

1start 3
〈{a}, {b}〉

〈{a}, {b}〉

Figure 2.4.2: Direct graph of automaton l
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We can construct the synchronous product automaton depicted in Figure 2.4.3 from the
two automata of Figure 2.4.1 and 2.4.2.

〈0, 0〉 〈0, 1〉 〈0, 2〉 〈0, 3〉 〈1, 2〉 〈2, 2〉 〈2, 3〉

〈1, 1〉start 〈3, 3〉 〈1, 3〉
〈{a}, {b}〉 〈{a}, {b}〉

Figure 2.4.3: Direct graph of the automaton k × l

The synchronous product construction is idempotent, commutative and associative. This
means applying the function multiple times, or swapping the two input automata, or chang-
ing the order of execution does not change the output automaton. The three properties
are stated in theorems 2.4.3, 2.4.4, and 2.4.5, respectively.

Theorem 2.4.3. (Idempotent) Given an automaton k = (S,→, si, Sg). It holds that the
synchronous product automaton k × k is bisimilar with k:

k × k↔− k

Proof. In order to prove k×k↔− k, we need to show the existence of a bisimulation relation
R that relates 〈si, si〉 and si. The relation R = {〈〈s, s〉, 〈s〉〉|s ∈ S}. We need to check that
R is a bisimulation relation. Therefore, we need to check the three properties of strong
bisimulation from Definition 4.4.1.

1. Suppose the transition 〈〈s, s〉, 〈p, e〉, 〈s′, s′〉〉 ∈→k×k. According to Definition 2.4.1 we
can deduce that: 〈s, 〈p, e〉, s′〉 ∈→. Clearly, 〈s′, s′〉R〈s′〉 holds.

2. Suppose the transition 〈s, 〈p, e〉, s′〉 ∈→. Applying Definition 2.4.1 on k × k, we can
deduce that: 〈〈s, s〉, 〈p, e〉, 〈s′, s′〉〉 ∈→k×k. Clearly, 〈s′, s′〉R〈s′〉 holds.

3. Suppose 〈s, s〉 ∈ Sgk×k
. According to Definition 2.4.1 we can deduce that: s ∈ Sg

Similarly, it can be shown that if s ∈ Sg, then 〈s, s〉 ∈ Sgk×k
.

11
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Theorem 2.4.4. (Commutative) Given two automata k = (Sk,→k, sik , Sgk) and l = (Sl,
→l, sil , Sgl). It holds that the synchronous product automaton k× l is bisimilar with l× k:

k × l↔− l × k

Proof. In order to prove Sk×Sl↔−Sl×Sk, we need to show the existence of a bisimulation
relation R that relates sik×l

and sil×k
. The relation R = {〈〈sk, sl〉, 〈sl, sk〉〉|sk ∈ Sk ∧ sl ∈

Sl}. We need to check that R is a bisimulation relation. Therefore we have to check the
three properties of strong bisimulation from definition 4.4.1.

1. Suppose the transition 〈〈sk, sl〉, 〈p, e〉, 〈s′k, s′l〉〉 ∈→k×l. According to definition 2.4.1
we can deduce that: 〈sk, 〈p, e〉, s′k〉 ∈→k and 〈sl, 〈p, e〉, s′l〉 ∈→l . By applying defini-
tion 2.4.1, we get: 〈〈sl, sk〉, 〈p, e〉, 〈s′l, s′k〉〉 ∈→l×k. Clearly, 〈s′k, s′l〉R〈s′l, s′k〉 holds.

2. This second case is symmetric to the first case and is therefore omitted.

3. Suppose 〈sk, sl〉 ∈ Sgk×l
, according to definition 2.4.1 we can deduce that: sk ∈ Sgk

and sl ∈ Sgl . By applying definition 2.4.1, it can be obtained that: 〈sl, sk〉 ∈ Sgl×k
.

Similarly, it can be shown that if 〈sl, sk〉 ∈ Sgl×k
, then 〈sk, sl〉 ∈ Sgk×l

.

Theorem 2.4.5. (Associative) Given three automata k = (Sk,→k, sik , Sgk), l = (Sl,
→l, sil , Sgl), and m = (Sm,→m, sim , Sgm). It holds that the synchronous product automaton
(k × l)×m is bisimilar with k × (l ×m):

(k × l)×m↔− k × (l ×m)

Proof. In order to prove (k × l)×m↔− k × (l×m), we use a similar structure as the proof
of Theorem 2.4.4. Therefore, we need to show the existence of a bisimulation relation R
that relates 〈si(k×l)×m

, sik×(l×m)
〉. The relation R = {〈〈sk, sl, sm〉, 〈sl, sm, sk〉〉|sk ∈ Sk ∧ sl ∈

Sl ∧ sm ∈ Sm}. We need to check that R is a bisimulation relation. Therefore we have to
check the three properties of strong bisimulation from definition 4.4.1.

1. Suppose the transition 〈〈sk, sl, sm〉, 〈p, e〉, 〈s′k, s′l, s′m〉〉 ∈→k×l×m.
First, according to definition 2.4.1 we can deduce that: 〈〈sk, sl〉, 〈p, e〉, 〈s′k, s′l〉〉 ∈→k×l
and 〈sm, 〈p, e〉, s′m〉 ∈→m . Secondly, we can deduce from definition 2.4.1 that:
〈sk, 〈p, e〉, s′k〉 ∈→k and 〈sl, 〈p, e〉, s′l〉 ∈→l . Now, we apply definition 2.4.1 to con-
struct the automaton: 〈〈sl, sm〉, 〈p, e〉, 〈s′l, s′m〉〉 ∈→l×m. By applying the defini-
tion 2.4.1 again we can construct the automaton 〈〈sl, sm, sk〉, 〈p, e〉, 〈s′l, s′m, s′k〉〉 ∈
→l×m×k. Clearly, 〈s′k, s′l, s′m〉R〈s′l, s′m, s′k〉 holds.

2. This second case is symmetric to the first case and is therefore omitted.

3. Suppose 〈sk, sl, sm〉 ∈ Sgk×l×m
, according to definition 2.4.1 we can deduce that:

〈sk, sl〉 ∈ Sgk×l
and sm ∈ Sgm . Furthermore, we can deduce that: sk ∈ Sgk and

sl ∈ Sgl . By applying definition 2.4.1 twice, we get: 〈sl, sm, sk〉 ∈ Sgl×m×k
. Similarly,

it can be shown that if 〈sl, sm, sk〉 ∈ Sgl×m×k
, then 〈sk, sl, sm〉 ∈ Sgk×l×m

.

12
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The synchronous product is applied to construct an automaton that accepts only the
sequences of workflow steps that are feasible in both automata. Therefore, Theorem 2.4.6
must hold.

Theorem 2.4.6. (Language intersection) Given two automata k = (Sk,→k, sik , Sgk),
and l = (Sl, →l, sil , Sgl). It holds that the language of the synchronous product automaton
k × l is equivalent with the intersection of the language of k and l:

L(k × l) = L(k)∩ L(l)

Proof. First, we prove the case from left to right. L(k × l) ⊆ L(k) ∩ L(l). Suppose the
two goal states sgl ∈ Sgl and sgk ∈ Sgk . Furthermore, suppose an accepting path of the

automaton k × l = sik×l

〈p,e〉−→k×l s
′
k×l

〈p′,e′〉−→k×l s
′′
k×l , . . . , s

′′′
k×l

〈p′′,e′′〉−→k×l sgk×l
. From this path

we can deduce the word σ =
〈p,e〉−→k×l,

〈p′,e′〉−→k×l, . . . ,
〈p′′,e′′〉−→k×l ∈ L(k× l). From definition 2.4.1

can be deduced that
〈p,e〉−→k,

〈p′,e′〉−→k, . . . ,
〈p′′,e′′〉−→k ∈ L(k) and

〈p,e〉−→l,
〈p′,e′〉−→l, . . . ,

〈p′′,e′′〉−→l ∈ L(l) and
therefore σ ∈ L(k)∩ L(l).

Secondly, we prove the case from right to left L(k)∩ L(l) ⊆ L(k × l). Suppose the two
goal states sgl ∈ Sgl and sgk ∈ Sgk . Furthermore, suppose an accepting path for automaton

k = sik
〈p,e〉−→k s

′
k

〈p′,e′〉−→k s
′′
k , . . . , s

′′′
k

〈p′′,e′′〉−→k sgk and the accepting path for automaton l =

sil
〈p,e〉−→l s

′
l

〈p′,e′〉−→l s
′′
l , . . . , s

′′′
l

〈p′′,e′′〉−→l sgl . By applying definition 2.4.1 we get
〈p,e〉−→k×l,

〈p′,e′〉−→k×l

, . . . ,
〈p′′,e′′〉−→k×l ∈ L(k × l).

The synchronous product automaton of Definition 2.4.1 is deterministic if both input
automata are deterministic. In order to prove this property we need to show that Theo-
rem 2.4.7 holds.

Theorem 2.4.7. (Deterministic synchronous product) Given two deterministic au-
tomata k = (Sk,→k, sik , Sgk), and l = (Sl, →l, sil , Sgl). Then the synchronous product k×l
is also deterministic.

Proof. Suppose the two transitions 〈〈sk, sl〉, 〈p, e〉, 〈s′k, s′l〉〉 ∈→k×l and
〈〈sk, sl〉, 〈p, e〉, 〈s′′k, s′′l 〉〉 ∈
→k×l. From definition 2.4.1 we can deduce that 〈sk, 〈p, e〉, s′k〉 ∈→sk ,
〈sl, 〈p, e〉, s′l〉 ∈→sl , 〈sk, 〈p, e〉, s′′k〉 ∈→sk and 〈sl, 〈p, e〉, s′′l 〉 ∈→sl . Because, k and l are
deterministic automata, it follows from definition 2.3.1 that s′k = s′′k and s′l = s′′l . Therefore,
〈s′k, s′l〉 = 〈s′′k, s′′l 〉 and it can be concluded that the synchronous product automaton is also
deterministic.

13
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2.5 Function to remove infeasible states

An automaton can contain infeasible states. These states do not contribute to the accepting
paths of an automaton. In other words, these states are not reachable from the initial
state or they are not connected to a final state. In some situations it is not desirable that
these states are included into the automaton. In Definition 2.5.1 and Definition 2.5.2 two
functions are defined that are able to remove the infeasible states from the automaton.

Definition 2.5.1. (Remove the transitions that do not lead to a final goal) Given
an automaton x = (Sx,→x, six , Sgx). We define the function ��G (x) = (S,→, si, Sg), where:

• S = {sj | sj
〈p,e〉−→x s

′
x
〈p′,e′〉−→x s

′′
x , . . . , s

′′′
x
〈p′′,e′′〉−→x sgx ∧ sgx ∈ Sgx} ∪ {six}.

• →= {〈sj , 〈p, e〉, s′j〉 | sj , s′j ∈ S ∧ 〈sj , 〈p, e〉, s′j〉 ∈→x}.

• si = six.

• Sg = Sgx.

If the initial state si can not reach a final goal from the set Sg, then the automaton is
invalid.

Definition 2.5.2. (Remove unreachable states of the automaton) Given an au-
tomaton x = (Sx,→x, six , Sgx). We define the function ��I (x) = (S,→, si, Sg), where:

• S = {sj | six
〈p,e〉−→x s

′
x
〈p′,e′〉−→x s

′′
x , . . . , s

′′′
x
〈p′′,e′′〉−→x sj}.

• →= {〈sj , 〈p, e〉, s′j〉 | sj , s′j ∈ S ∧ 〈sj , 〈p, e〉, s′j〉 ∈→x}.

• si = six.

• Sg = Sgx ∩ S.

Both functions do not affect the deterministic behaviour of a deterministic automaton.
This statement is trivial, because both functions remove transitions. Therefore, it can be
concluded that an automaton remains deterministic after applying the two functions.

Example 2.5.3. Recall the result of Example 2.4.2. Figure 2.5.1 shows the result after
applying the function ��G on the automaton of Figure 2.4.3.

〈1, 1〉start 〈3, 3〉 〈1, 3〉
〈{a}, {b}〉 〈{a}, {b}〉

Figure 2.5.1: Direct graph of the automaton ��G (k × l)
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Example 2.5.4. The automaton of Example 2.5.3 can be further reduced by using the
function �I . The resulting automaton is depicted in Figure 2.5.2.

〈1, 1〉start 〈3, 3〉
〈{a}, {b}〉

Figure 2.5.2: Direct graph of the automaton �I (��G (k × l))
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3 Patient space

During the execution of a clinical workflow, many decisions must be taken in order to
choose the appropriate workflow steps to reach the clinical intent of a treatment. The
availability of the workflow steps depend on the history of the treatment, the status of the
patient, and the protocol that is being used.

The patient space describes the complete space of workflow steps that can be carried out
during a treatment, i.e., all workflow sequences that can be performed from the start to
the clinical goal of the treatment.

The patient space will be expressed as an automaton. The definition of this automaton
will be defined in the following subsections.

3.1 Conditions

The status of the patient is expressed as a set of conditions. A condition is not always
directly related to the physical condition of the patient. Hence, a condition can be an
image set, a result of a measurement or an answer to a question.

The conditions in the report are mostly of a high abstraction level e.g., a, b, c, etcetera.
We write C for the set of all conditions.

In this report it is assumed that the condition stop is always in the set of conditions.
This condition will be applied to terminate a case that is no longer useful. This concept is
explained in detail in section 4.6.

3.2 Workflow step

The clinical workflow for the treatment of a patient is a sequence of separated workflow
steps. A workflow step can be executed when its input conditions are satisfied. After the
execution of a workflow step new results are available. The new results unified with the old
results, describe the condition of the patient at that moment of time. The input require-
ments for the succeeding workflow steps are examined on these conditions. Therefore, the
input and output conditions of the workflow steps are considered as pre and post conditions
of the workflow steps. The pre and post conditions describe the value dependency between
the tasks, as explained in section 1.4.

Definition 3.2.1. (Workflow step) Given a set of conditions C. We define a workflow
step as a pair w ∈ P × E, where:

• P ⊆ 2C is a set of preconditions; i.e., input conditions.

• E ⊆ 2C is a set of effects; i.e., post conditions.

16
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A special workflow step is called wstop , this workflow step will be used in section 4.6.

Definition 3.2.2. (Workflow step end case) We define the workflow step wstop =
Pstop × Estop as an end case workflow step, where

• Pstop = ∅

• Estop = {stop}

Example 3.2.3. In the domain of brachytherapy a common workflow step is contouring
an organ. During this workflow step, the medical specialist emphasizes a specific organ
in an image set by drawing a contour around this organ. The medical specialist can only
start this workflow step if the image set is available. The result of the workflow step is the
contour of the organ. Therefore, The precondition of this workflow element is defined by
the image set and the postcondition is a contour.

3.3 Workflow element

A workflow element is a set of workflow steps. It combines workflow steps that are related
to each other. For instance, the workflow element contour can consist of the workflow steps
contour target and contour organs at risk.

Definition 3.3.1. (Workflow element) We call the set in the form wfe ∈ 2w a workflow
element.

3.4 Protocol

A protocol describes the workflow steps that are allowed to be executed during the treat-
ment of a patient, and it describes the external dependency rules between the workflow
steps. Therefore, the protocol describes the best practice for a specific clinical intent.

The execution ordering of workflow steps is the result of the inter-task dependency.
Hence, it depends on the pre and post conditions of the workflow steps, the protocol rules,
and the quality conditions, where the treatment must reside.

The protocol rules describe the ordering between two arbitraire workflow steps w1 and
w2. There are four types of rules. The meaning of these rules are described below:

• w1 � w2: Eventually after the execution of w1, w2 needs to be executed.

• w1 � w2: Directly after the execution of w1, w2 needs to be executed.

• w1 ≺ w2: Somewhere before the execution of w2, w1 must have been executed.

• w1 � w2: Directly before the execution of w2, w1 must have been executed.

The protocol can restrict the feasible workflow steps of the workflow space, based on its
rules. The protocol can be very loose, such that many different workflows lead to the clin-
ical goal, or the protocol can be very strict, such that the patient space only consist of one
single path. Hence, when a protocol is very strict then there is also less space for parallelism.

17
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It is possible that the protocol restricts the patient space in a manner that the protocol
is in conflict with the final state and therefore the clinical goal can not be reached. This
type of protocol is called an invalid protocol.

Definition 3.4.1. (Protocol) Given a finite set of conditions C, preconditions P ⊆ C
and effects E ⊆ C. We define a protocol as a sixtuple Pr = (W,�,�,≺,�, Q), where:

• W ⊆ P×E is a finite set of workflow steps, which are allowed to be used.

• � ⊆ W×W is a set of pairs representing the eventually after rules between the work-
flow steps.

• � ⊆ W×W is a set of pairs representing the directly after rules between the workflow
steps.

• ≺ ⊆ W×W is a set of pairs representing the eventually before rules between the
workflow steps.

• � ⊆W×W is a set of pairs representing the directly before rules between the workflow
steps.

• Q is a triple of quality conditions, Q = (QC, Qi, Qg), where:

– QC ⊆ C is the set of quality conditions in which the patient must reside.

– Qi ⊆ QC are the quality conditions of the initial state.

– Qg ⊆ QC are the quality conditions of the finial state. i.e., conditions of the
clinical goal.

Throughout the report several examples are provided based on the protocol of the fol-
lowing example.

Example 3.4.2. This protocol consists of two workflow steps. The pre and postcondition
of the first workflow step are equal as, both have the condition a. The second workflow
step has the precondition a and the postcondition b.

The protocol contains one single rule, namely: directly after workflow 〈a, a〉 the workflow
step 〈a, b〉 must be executed.

The initial state consists of the condition a and the end state consists of the conditions
a and b.

Given the conditions C = {a, b}, initial conditions IC = {a}. We construct the protocol
Pr.

Pr = {{〈a, a〉, 〈a, b〉}, {}, {〈〈a, a〉, 〈a, b〉〉}, {}, {}, {{a, b}, {a}, {a, b}}}.

18



TU Eindhoven Protocol Based Workflow Management System, Elekta

3.5 Workflow space

The workflow space is an automaton, which forms the base of the patient space. The
workflow space represents all the workflows that are possible with use of the provided
workflow steps of the protocol. As result the workflow space describes all possible execution
sequences and is not influenced by the rules of the protocol. The initial state of the workflow
space contains the initial conditions defined by the protocol.

Definition 3.5.1. (Workflow Space) Given a set of conditions C, a set of initial patient
conditions IC ⊆ C and a protocol Pr = (W,�,�,≺,�, (QC,Qi, Qg)), where Qi ⊆ IC . We
can express all the possible transitions and states, which are reachable by the workflow steps
of a protocol, as an automaton Ws = (S, →, si, sg), where:

• S = 2C is a powerset of conditions, which represents the states of the patient model.

• →= {〈s, 〈p, e〉, s∪ e〉 | p ⊆ s ∧ 〈p, e〉 ∈ W} is a set of relations between two states of
the patient model.

• si = IC is the initial state.

• Sg = {sg | sg ⊇ IC ∪Qg}.

The workflow automaton is always deterministic. In order to prove this statement, we
need to prove Theorem 3.5.2.

Theorem 3.5.2. (Deterministic workflow space) Every workflow space Ws is deter-
ministic.

Proof. Suppose the two transitions 〈s, 〈p, e〉, s′〉 ∈→Ws and 〈s, 〈p, e〉, s′′〉 ∈→Ws . From
definition 3.5.1 we can deduce that s′ = e∪ s and s′′ = e∪ s, therefore s′ = s′′ and Ws is
deterministic.

Example 3.5.3. The workflow space described in this example is based on the protocol of
Example 3.4.2. The initial state consists of the condition a and the end state must consist
of the conditions a and b.

Given the conditions C = {a, b}, initial conditions IC = {a} and a protocol Pr

Pr = {{〈a, a〉, 〈a, b〉}, {}, {〈〈a, a〉, 〈a, b〉〉}, {}, {}, {{a, b}, {a}, {a, b}}}

We can construct the following Workflow space automaton, which is also depicted in
Figure 3.5.1:

Ws = {{{}, {a}, {b}, {a, b}}, {〈{a}, 〈a, a〉, {a}〉, 〈{a}, 〈a, b〉, {a, b}〉}∪

{〈{a, b}, 〈a, a〉, {a, b}〉, 〈{a, b}, 〈a, b〉, {a, b}〉}, {a}, {a, b}}

19



TU Eindhoven Protocol Based Workflow Management System, Elekta

{a}start {a, b}

{} {b}

〈a, b〉

〈a, a〉
〈a, a〉, 〈a, b〉

Figure 3.5.1: Graph representation Workflow Space Ws
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3.6 Rule automata

The patient space is expressed as an automaton. This automaton must be restricted by
the protocol rules. Therefore, we need to transform the protocol rules into automata. The
rule automaton constrains the workflow space such that the patient space is restricted with
respect to the inter-task dependencies.

Definition 3.6.1. (Automaton eventually after, A�) Given a protocol Pr = (W,�
,�,≺,�, Q). We define for each pair 〈〈p0, e0〉, 〈p1, e1〉〉 ∈ � an automaton A�, where

A� =({0, 1}, {〈0, 〈p0, e0〉, 1〉, 〈1, 〈p1, e1〉, 0〉} ∪
{〈0, 〈pi, ei〉, 0〉|〈pi, ei〉 ∈W ∧ 〈pi, ei〉 6= 〈p0, e0〉} ∪
{〈1, 〈pj , ej〉, 1〉|〈pj , ej〉 ∈W ∧ 〈pj , ej〉 6= 〈p1, e1〉}, 0, {0})

0start 1

〈p0, e0〉

〈pi, ei〉 〈pj , ej〉

〈p1, e1〉

Figure 3.6.1: Automaton eventually after, 〈p0, e0〉 � 〈p1, e1〉

Definition 3.6.2. (Automaton directly after, A�) Given a protocol Pr = (W,�,�
,≺,�, Q). We define for each pair 〈〈p0, e0〉, 〈p1, e1〉〉 ∈ � an automaton A�, where

A� =({0, 1}, {〈0, 〈p0, e0〉, 1〉, 〈1, 〈p1, e1〉, 0〉} ∪
{〈0, 〈pi, ei〉, 0〉|〈pi, ei〉 ∈W ∧ 〈pi, ei〉 6= 〈p0, e0〉}, 0, {0})

0start 1

〈p0, e0〉

〈pi, ei〉

〈p1, e1〉

Figure 3.6.2: Automaton directly after, 〈p0, e0〉 � 〈p1, e1〉
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Definition 3.6.3. (Automaton eventually before, A≺) Given a protocol Pr = (W,�
,�,≺,�, Q). We define for each pair 〈〈p0, e0〉, 〈p1, e1〉〉 ∈ ≺ an automaton A≺, where

A≺ =({0, 1}, {〈0, 〈p0, e0〉, 1〉, 〈1, 〈p1, e1〉, 0〉, 〈1, 〈pj , ej〉, 1〉|〈pj , ej〉 ∈W ∧ 〈pj , ej〉 6= 〈p1, e1〉} ∪
{〈0, 〈pi, ei〉, 0〉|〈pi, ei〉 ∈W ∧ 〈pi, ei〉 6= 〈p0, e0〉 ∧ 〈pi, ei〉 6= 〈p1, e1〉}, 0, {0, 1})

0start 1

〈p0, e0〉

〈p1, e1〉

〈pi, ei〉 〈pj , ej〉

Figure 3.6.3: Automaton eventually before, 〈p0, e0〉 ≺ 〈p1, e1〉

Definition 3.6.4. (Automaton directly before, A�) Given a protocol Pr = (W,�,�
,≺,�, Q). We define for each pair 〈〈p0, e0〉, 〈p1, e1〉〉 ∈ � an automaton A�, where

A� =({0, 1}, {〈0, 〈p0, e0〉, 1〉, 〈1, 〈pi, ei〉, 0〉|〈pi, ei〉 ∈W ∧ 〈pi, ei〉 6= 〈p0, e0〉} ∪
{〈1, 〈p0, e0〉, 1〉, 〈0, 〈pj , ej〉, 0〉|〈pj , ej〉 ∈W ∧ 〈pj , ej〉 6= 〈p0, e0〉 ∧ 〈pj , ej〉 6= 〈p1, e1〉},
0, {0, 1})

0start 1

〈p0, e0〉

〈pi, ei〉

〈pj , ej〉 〈p0, e0〉

Figure 3.6.4: Automaton directly before, 〈p0, e0〉 � 〈p1, e1〉
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3.7 Patient space automaton

The patient space is the synchronous product of the workflow space and all the rule au-
tomata, which is finally reduced with use of the two cancelation functions.

The patient space is only valid when there is a path from the initial state to the goal state.
Furthermore, the set of quality states needs to contain all the effects i.e., post conditions
of the workflow steps, which are allowed to executed within the protocol. Otherwise it is
possible to have a workflow step that leads to a state outside the set of quality conditions.

Definition 3.7.1. (Patient space) Given a protocol Pr = (W,�,�,≺,�, Q). Let
a0, · · · , ak ∈ �, b0, · · · , bl ∈ �, c0, · · · , cm ∈ ≺, and d0, · · · , dn ∈ � be the pairs, which de-
scribes the rules between the workflow steps, and let Aa0 , · · · , Aak , Ab0 , · · · , Abl, Ac0 , · · · , Acm
and Ad0 , · · · , Adn be all the related automata of the rules. We define the patient space as
the synchronous product automaton of the Workflow Space automaton and all the automata
of the eventually after, direct after, eventually before and direct before rules, and the cance-
lation of the states which are unreachable from the initial state, and the states which does
not reach the goal state.

Ps = ��I (��G (Ws ×Aa0 × · · · ×Aak ×Ab0 × · · · ×Abl ×Ac0 × · · · ×Acm ×Ad0 × · · · ×Adn))

The patient space is a deterministic automaton, because the workflow space and protocol
rule automata are deterministic, the synchronous product of a two deterministic automata
is deterministic, and the results of the cancelation functions are deterministic. See Theo-
rem 2.4.7, Theorem 3.5.2, and section 2.5.

Example 3.7.2. (Patient space) Recall the workflow space Ws of Example 3.5.3 based
on the protocol Pr of Example 3.4.2. In the following example is the patient space con-
structed based on these two examples.

Given the workflow space Ws and the protocol Pr, where

Pr ={{〈a, a〉, 〈a, b〉}, {}, {〈〈a, a〉, 〈a, b〉〉}, {}, {}, {{a, b}, {a}, {a, b}}}, and
Ws ={{{}, {a}, {b}, {a, b}}, {〈{a}, 〈a, a〉, {a}〉, 〈{a}, 〈a, b〉, {a, b}〉}∪

{〈{a, b}, 〈a, a〉, {a, b}〉, 〈{a, b}, 〈a, b〉, {a, b}〉}, {a}, {a, b}}

We construct the protocol rule automaton A�, where

A� = ({0, 1}, {〈0, 〈a, a〉, 1〉, 〈1, 〈a, b〉, 0〉, 〈0, 〈a, b〉, 0〉}, 0, {0})

We can calculate the synchronous product of Ws ×A�, where

Ws ×A� = ({〈{}, 0〉, 〈{a}, 0〉, 〈{b}, 0〉, 〈{a, b}, 0〉, 〈{}, 1〉, 〈{a}, 1〉, 〈{b}, 1〉, 〈{a, b}, 1〉},
{〈〈{a}, 0〉, 〈a, a〉, 〈{a}, 1〉〉, 〈〈{a}, 1〉, 〈a, a〉, 〈{a}, 1〉〉}∪
{〈〈{a, b}, 0〉, 〈a, b〉, 〈{a, b}, 0〉〉, 〈〈{a, b}, 1〉, 〈a, b〉, 〈{a, b}, 0〉〉}∪
{〈〈{a, b}, 0〉, 〈a, b〉, 〈{a, b}, 0〉〉, 〈〈{a, b}, 1〉, 〈a, b〉, 〈{a, b}, 0〉〉},
〈a, 0〉, {〈{a, b}, 0〉})
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0start 1

〈a, a〉

〈a, b〉

〈a, b〉

Figure 3.7.1: Automaton directly after, 〈a, a〉 � 〈a, b〉

〈{}, 0〉 〈{}, 1〉

〈{b}, 0〉 〈{b}, 1〉

〈{a}, 0〉start 〈{a, b}, 0〉 〈{a, b}, 1〉

〈{a}, 1〉

〈{a}, {b}〉

〈{a}, {b}〉

〈{a}, {b}〉

〈{a}, {a}〉

〈{a}, {a}〉

〈{a}, {b}〉

Figure 3.7.2: Direct graph of the automaton Ws ×A�

The construction of the patient space PS is almost finished. The last step is to apply the
functions ��I and ��G on the synchronous product Ws × A�. These two functions remove
the infeasible states of the automaton.

We can construct PS = ��I (��G (Ws ×A�)), where

PS =({〈{a}, 0〉, 〈{a, b}, 0〉, 〈{a}, 1〉, 〈{a, b}, 1〉},
{〈〈{a}, 0〉, 〈a, a〉, 〈{a}, 1〉〉, 〈〈{a}, 1〉, 〈a, a〉, 〈{a}, 1〉〉}∪
{〈〈{a, b}, 0〉, 〈a, b〉, 〈{a, b}, 0〉〉, 〈〈{a, b}, 1〉, 〈a, b〉, 〈{a, b}, 0〉〉}∪
{〈〈{a, b}, 0〉, 〈a, b〉, 〈{a, b}, 0〉〉, 〈〈{a, b}, 1〉, 〈a, b〉, 〈{a, b}, 0〉〉},
〈a, 0〉, {〈{a, b}, 0〉})
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〈{a}, 0〉start 〈{a, b}, 0〉 〈{a, b}, 1〉

〈{a}, 1〉

〈{a}, {b}〉

〈{a}, {b}〉

〈{a}, {b}〉

〈{a}, {a}〉

〈{a}, {a}〉

〈{a}, {b}〉

Figure 3.7.3: Direct graph of the patient space PS
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4 Workflow controller

The aim of a workflow controller is to determine, activate, control and finally terminate
the feasible workflow steps. The feasible workflow steps depend on the current status of
the treatment.

The workflow controller needs to interpret the patient space and the current state in this
patient space in order to determine the feasible workflow steps. The workflow controller
determines its current state with support of a case space.

The case space is an automaton, which represents the status of the treatment based on
all the cases of a patient. A case represents a part of the treatment. It is composed of
three separate parts: the history including the conditions of the treatment; the current
protocol; and the active workflow steps. With these three parts it is possible to determine
the feasible workflow steps.

The treatment can consist of multiple cases. These cases can be manipulated by prede-
fined functions. All possible manipulations of the cases are recorded by the case space.

This section starts with the explanation of time stamps. Subsequently, the definition of
a case and the feasible workflow steps of such a case are given in sections 4.2 and 4.3. The
manipulations on the cases are tracked by the case space. The definition of the case space
is given in section 4.4. The manipulations are the results of the functions described in the
sections 4.5 until 4.8.

4.1 Time stamps

In order to evaluate and log the treatment, we need some notion of time. Therefore, we
introduce a time stamp, which represents the year, date, and time. We call the set T the
set of time stamps. An element of the set T defines the start and finish time of a workflow
step.

4.2 Case

A single case describes a piece of the treatment. It describes the history, the active workflow
steps and the current protocol of the case. The history is stored in a list and it contains
all states and workflow steps that are carried out during the treatment. The history list
can only be extended. Thus, when states and workflow steps are added to the history list,
they become immutable.

The current active workflow steps are maintained in a set with their related start times.

When a workflow step is accomplished it will be added to the history list and deleted
from the set of active workflow steps.
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Definition 4.2.1. (Case) Given a protocol Pr = (W ,�,�,≺,�,Q), the patient space
PS = (S ,→, si ,Sg) based on the protocol Pr, a set of states Sh ⊆ S, a set of workflow steps
Wh ⊆W , a set of time stamps T related to the start and finish time of the workflow steps.
We call a triple in the form CS = (HL,AW ,Pr) a case, where

• HL = (si , t1 , s1 , t2 , s2 , . . . , sn−1 , tn , sn) is a history list, where

– si , . . . , sn ∈ Sh , represents the states that are reached during the treatment of the
patient, where si is the initial state of the history list and sn is the current state
of the patient.

– t1 , . . . , tn ∈ T ×Wh × T , represents the transitions between the states. Those
transitions are composed of workflow steps, which are carried out during the
treatment and the related start and finish time of the workflow step.

• AW ⊆ T ×W is a set of active workflow steps, which represents the set of currently
running workflow steps with their related start times.

We define the function head(CS ) = sn .

Definition 4.2.2. (Valid history list) Given a protocol Pr = (W ,�,�,≺,�,Q), the
patient space PS = (S ,→, si ,Sg) based on the protocol Pr, a set of states Sh ⊆ S, a set of
workflow steps Wh ⊆W , a set of time stamps T related to the start and finish time of the
workflow steps, and a history list HL = (si , t1 , s1 , t2 , s2 , . . . , sn−1 , tn , sn), where

t1 = 〈st1, w1, ft1〉, t2 = 〈st2, w2, ft2〉, . . . , tn = 〈stn, wn, ftn〉.

We say that the history list HL is a valid history list, if and only if it holds that:

• si
w1−→ s1

w2−→ s2 , · · · , sn−1
wn−→ sn,

• For all k in the range from 1 till n, stk < ftk, and

• ft1 < ft2 < · · · < ftn.

4.3 Feasible workflow steps of a case

The set of feasible workflow steps represents the workflow steps that are executable for a
specific case. This set of feasible workflow steps is called AT . A workflow step can only be
activated or started, when it is present in the set of feasible workflow steps.

The set of feasible workflow steps depends on the workflow steps that are active at the
current moment in time. If the set of active workflow steps AW is empty, i.e., no workflow
steps are active, then the set AT consist of all the workflow steps that are feasible from the
head state of the current case with respect to the patient space. This situation is depicted
in Figure 4.3.1.

If the set of active workflow steps AW is not empty i.e., at least one workflow step is
active, then another workflow step is only feasible if it is feasible from the head node of the
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AW = ∅
AT = {w0, w1, w2, w3} Solid line = feasible

0

1 2 3 4

w0 w1 w2 w3

Figure 4.3.1: Feasible workflow steps if no workflow step is active

case and both workflow steps reach the same state after the termination of both workflow
steps.

This restriction allows concurrent workflow steps, as long as the workflow steps that are
executed concurrently are aiming for the same treatment goal. The restriction must hold
for all the workflow steps that are currently active in the specific case.

Figure 4.3.2 depicts a situation where one workflow step is active. It can be seen that
only workflow step w2 is feasible.

Solid = feasible, dotted = active,
and dashed = not feasible

AW = {〈st, w1〉}
AT = {w2}

0

1 2 3 4

5 67

w2w1w0 w3

w1w3 w2 w1

w3

Figure 4.3.2: Feasible workflow steps if a workflow step is active
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Definition 4.3.1. (Predicate to determine the feasible workflow steps) Given a
patient space PS = (S ,→, si ,Sg), a finite set of workflow steps W , and the state s ∈ S.
We define the predicate Check(W , s) as follows:

Check(W , s) =


∀x∈W , ∃s′∈S : 〈s, x, s′〉 ∈→ if Size(W ) 6 1,

∀x∈W , ∀y∈W\{x},∃s′,s′′,s′′′∈S : 〈s, x, s′〉, 〈s, y, s′′〉, otherwise.

〈s′′, x, s′′′〉, 〈s′, y, s′′′〉 ∈→ ∧Check(W \{x}, s ′).

If the set W validates the predicate Check(W , s), then the set has the property that
every workflow step can be permutated with every other workflow step from the set W and
still reach the same end state. Therefore, the order of execution does not influence the end
state that will be reached, or in other words: all possible paths from state s composed of
all the workflow steps of set W that are executed once, will end in the same state. This
property is satisfied in the proof of Theorem 4.3.2.

Theorem 4.3.2. (Permutation) Given a patient space PS = (S ,→, si ,Sg), a finite set of
workflow steps W = {w1, . . . , wn} and a state s ∈ S, which satisfy the function Check(W , s).
Call σ the path of workflow steps in the form σ = permutation(w1 , . . . ,wn). The following
statement holds:

∃s′∈S : s
σ−→ s′

Proof. Lemma 4.3.3 states that, if we swap two neighbor workflow steps in the path σ we
still end in the same state. Lemma 4.3.4 states that every possible sequence can be con-
structed by swapping the workflow steps of the path σ pairwise. Hence, we can determine
that every possible sequence of the path σ starting from the state s ends in the same state,
say s′.

Theorem 4.3.2 makes use of Lemma 4.3.3, which states that every workflow element in a
path from state s can be permutated with another workflow step and still end in the same
state. Figure 4.3.3 depicts the situation of Lemma 4.3.3. The path σ leads to a state t.
From this state there are two paths that reach the same state. The order of the workflow
steps in the paths are permutated. Note that the workflow steps wi and wj are not in the
path σ.

σ
s

t′

t t′′′

t′′

wi

wi

wj

wj

Figure 4.3.3: Permutation of workflow step wi and wj
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Lemma 4.3.3. Given a patient space PS = (S ,→, si ,Sg), a finite set of workflow steps
W = {w1, . . . , wn} and a state s ∈ S, which satisfies the predicate Check(W , s). We
define the path σ as a path that starts from state s and consists of feasible workflow steps
of set W excepts the workflow steps wi, wj. Hence, σ = 〈s, wk, s′〉, . . . , 〈s′′, wl, t〉, where
wk, . . . , wl ∈ W\{wi, wj} and wk 6= . . . 6= wl. The following lemma holds if the predicate
Check(W , s) is valid:

∀wi,wj∈W∧wi 6=wj
,∃u,v,w∈S : 〈t, wi, u〉, 〈u,wj , w〉, 〈t, wj , v〉, 〈v, wi, w〉 ∈→

Proof. The workflow steps wi and wj must be two different workflow steps. Therefore, we
reason about a set larger than 1. We will use induction on the length of the path σ.

Base If σ is empty, then s = t. Hence, we validate the predicate Check(W , t). Defini-
tion 4.3.1 contains two cases, In our case is the set W greater than 1. Thus, it follows
that 〈t, wi, u〉, 〈u,wj , w〉, 〈t, wj , v〉, 〈v, wi, w〉 ∈→ exists.

Induction Step If σ is not empty, then the predicate Check(W , s) is valid. We can
determine by Definition 4.3.1, that the predicate Check(W ′, t) holds, where W ′ =
W\{wk, . . . , wl}. The set W ′ is larger than 1, because W ′ ⊇ {wi, wj}. We can deter-
mine from the predicate Check(W ′, t) that 〈t, wi, u〉, 〈u,wj , w〉, 〈t, wj , v〉, 〈v, wi, w〉 ∈→
exists.

Lemma 4.3.4. Given a path of workflow steps σ = (w1, w2, . . . , wn). We state that we can
construct every sequence with the workflow steps of the path by swapping the workflow steps
pairwise. In other words, each workflow step can only swap with its neighbors workflow
step.

Proof. We will prove Lemma 4.3.4 by induction on the length of the path σ.

Base We take as base a length of two elements. Hence, σ = (w1, w2). It is trivial that
we can create every possible sequence, because we swap w1 and w2 and we have all
possible sequences.

Induction step We assume that we can construct every sequence for σ = (w1, w2, . . . , wn).
Now, we have to prove that it holds for σ = (w1, w2, . . . , wn, wn+1).

We can swap every workflow step from w1 till wn+1 by the induction hypothesis.
Hence, we can swap every workflow step to the place of wn and we can swap wn+1

with the element on place wn. Therefore we can determine that we can create every
possible sequence.

Definition 4.3.5. (Feasible workflow steps) Given a case CS = (HL,AW ,Pr), the
head state s = head(CS ), where stop 6∈ s, and the patient space PS = (S ,→, si ,Sg) based
on the protocol Pr = (W ,�,�,≺,�,Q) and a set of workflow steps AWw = {w | 〈st, w〉 ∈
AW }. We define the set AT ⊆ W of workflow steps that can be executed from the head
node of the case.

AT = {x |x ∈W\AWw ∧ Check(AWw ∪ {x}, s)}
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If we execute all workflow elements from the set AW and an additional workflow step
from the set AT, then we will still end in a state which is an element of the set S.

Corollary 4.3.6. Given a case CS = (HL,AW ,Pr) and the head state s = head(CS ), a
patient space PS based on the protocol Pr = (W ,�,�,≺,�,Q). We can determine the
set AT based on the set AW and the patient space PS. Call σ the path of workflow steps
in the form σ = permutation(w1 , . . . ,wn ,wx ), where {w1, . . . , wn} = {w | 〈st, w〉 ∈ AW }
and wx ∈ AT . It holds that:

∃s′ ∈ S : s
σ−→ s′

4.4 Case space

The case space is used as an event logging database. Hence, the case space saves all the
manipulations that are generated during the treatment of a patient. Therefore, the entire
treatment history can be obtained from the case space.

The case space is represented by a finite automaton, where the states represent the cases
and the transitions represent the manipulations on these cases. The head states of the case
space represents the cases, which are currently active.

The case space changes when workflow steps are activated or terminating. The case
space can also be extended by new cases and a protocol of a case can be switched. All this
changes are described by so called manipulations. These manipulations are the result of
the functions described in the sections from 4.5 until 4.8.

The following functions are defined:

• StartWFS .

• TerminateWFS .

• SwitchProtocol .

• TerminateUnexpWFS .

• StartBranch.

Definition 4.4.1. (Manipulations) We define the set of manipulations as

M ={StartWFS , TerminateWFS , SwitchProtocol , TerminateUnexpWFS}∪
{StartBranch,TerminateCase}.
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Definition 4.4.2. (Case Space Automaton) Given a set of manipulations M and a
set of cases CSP. We call a quadruple of the form CSA = (S,→, sb, Sh) a Case Space
Automaton, where:

• S = CSP is a finite set of states.

• →⊆ S ×M × S is a set of transition relations.

• sb ∈ S is the initial state of the treatment.

• Sh ⊆ S is the set of head states.

The treatment of a patient starts always with an empty case space. This is an automaton
without any transitions and the initial state contains only the conditions that are initially
known. The definition of an empty Case Space Automaton is given in Definition 4.4.3.

Definition 4.4.3. (Empty Case Space Automaton) Given a protocol Pr, a set of
initial conditions IC , and the patient space PS = (S,→, si, Sg) based on the protocol Pr
and the set of initial conditions IC . We call the case CS = 〈si, ∅, P r〉 the new case. We
define the quadruple of the form CSAe = (S,→, si, sg) as an empty case space automaton,
where:

• S = {CS}.

• →= ∅.

• sb = CS.

• Sh = {CS}.

4.5 Execution of a workflow step

The execution of a workflow step is carried out in three steps. The first step is selecting a
workflow step from the set of feasible workflow steps AT , which is explained in section 4.3.
The second step describes the starting procedure of the selected workflow step and the last
step describes the termination of the workflow step.

Definition 4.5.1 defines the start of a workflow step. When the selected workflow step
is activated, it will directly be added to the list of running workflow steps AW , together
with the current time stamp. This action will be carried out by the function StartWFS .
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Definition 4.5.1. (Start workflow step) Given the case space automaton CSAx =
(Sx,→x, sbx , Shx), a state CSx ∈ Shx , where CSx = 〈HLx ,AWx ,Prx 〉, the set of manip-
ulations M , the set of feasible workflow steps AT based on the case CSx , a selected
workflow step wm ∈ AT , and the related start time stm ∈ T . We call the new state
sh = 〈HLx ,AWx ∪ {〈stm, wm〉},Prx 〉. We define the function StartWFS = (S,→, sb, Sh),
where

• S = Sx ∪ {sh}.
• →=→x ∪{〈CSx,StartWFS , sh〉}.

• sb = sbx.

• Sh = (Shx\{CSx})∪ {sh}.

If the workflow step is successfully executed and the expected post conditions are reached,
then the history list of the case is not longer up to date. Therefore, the workflow step will be
deleted from the running set and it will be added to the history list together with the newly
reached state. This handling mechanism is performed by the function TerminateWFS .

Definition 4.5.2. (Terminating workflow step) Given the case space automaton
CSAx = (Sx ,→x , sbx ,Shx ), a state CSx ∈ Shx , where CSx = 〈HLx ,AWx ,Prx 〉, the set of
manipulations M , the state s = head(CSx ), the patient space PS = (S,→, si, Sg) based
on protocol Prx , a terminating workflow step wm and the related start time stm, where
〈stm, wm〉 ∈ AWx , the finishing time ftm ∈ T of workflow step wm, and the transition
〈s, wm, s′〉 ∈→. We call sh = 〈((HLx + 〈stm, wm, ftm〉) + s′),AWx\{〈stm, wm〉},Prx 〉 the
new state of the case space.

We define the function TerminateWFS = (S,→, sb, Sh), where

• S = Sx ∪ {sh}.
• →=→x ∪{〈CSx ,TerminateWFS , sh〉}.

• sb = sbx.

• Sh = (Shx\{CSx})∪ {sh}.
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4.6 Switching protocol

During the treatment it is possible to change the protocol of the treatment. This can
happen, when for instance, the user decides to change the goal of the treatment.

When a protocol is switched, a new case is started and the current case will terminate with
a so called STOP -state. This action can be performed with the function SwitchProtocol .

Definition 4.6.1. (Switch protocol) Given the case space automaton CSAx = (Sx,→x

, sbx , Shx), a state CSx ∈ Shx , where CSx = 〈HLx ,AWx ,Prx 〉 and Prx = (Wx,�x,�x,≺x
,�x, Qx), the set of manipulations M , the state s = head(CSx ), the set of conditions C
used to construct the protocol Prx , the set of conditions of the head state HC = s ∩ C ,
the start and finish time st , ft ∈ T of workflow step wstop, the new protocol Pr = (W,�,�
,≺,�, (QC,Qi, Qg)), where Qi ⊆ HC and HC ⊆ QC , and the patient space PS = (S,→
, si, Sg), where HC ⊆ si . We call the terminating state sy = 〈((HLx + 〈st ,wstop , ft〉)+
(s∪ {stop})), ∅,Prx 〉 and the state with the new protocol sh = 〈si, ∅,Pr〉. We define the
function SwitchProtocol = (S,→, sb, Sh), where

• S = Sx ∪ {sh, sy}.
• →=→x ∪{〈CSx ,SwitchProtocol , sy〉, 〈CSx ,TerminateCase, sh〉}

• sb = sbx

• Sh = (Shx\{CSx})∪ {sh}

4.7 Exception handling

In section 4.5 the assumption is made that the post conditions of a terminating workflow
step are equal to the post conditions of the started workflow step. However, it is possible
that an unexpected workflow step terminates.

An unexpected workflow step occurs when an active workflow step executed erroneously.
This means that for instance a workflow step is aborted. An unexpected workflow step is
not a member of the set of active workflow steps AW . Although, the unexpected workflow
step is always linked to a workflow step that is in the set of active workflow steps.

There are two possible scenarios when the unexpected workflow step occurs, namely:

1. The unexpected workflow step was in the set of feasible workflow steps before termi-
nation, or

2. The unexpected workflow step did not reside within the protocol, and therefore it is
not an element of the set of feasible workflow steps.

The termination of the first scenario is almost equal to the termination of an expected
workflow element, because the workflow controller has to delete the related workflow step
from the set of active workflow steps and it has to add the unexpected workflow step and
post condition to the history list. This termination mechanism is performed by the function
TerminateUnexpWFS .
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Definition 4.7.1. (Terminate unexpected workflow step) Given the case space au-
tomaton CSAx = (Sx,→x, sbx , Shx), a state CSx ∈ Shx , where CSx = 〈HLx ,AWx ,Prx 〉,
the set of manipulations M , the state s = head(CSx ), the patient space PS = (S ,→, si ,Sg)
based on protocol Prx , the set of feasible workflow steps AT based on the case CSx , an unex-
pected terminating workflow step wu ∈ AT , the related workflow step wm, the related start
time stm, where 〈stm, wm〉 ∈ AWx , the finishing time ftm ∈ T of workflow step wm, and
the transition 〈s, wu, s′〉 ∈→. We call the new state sh = 〈((HLx + 〈stm ,wu , ftm〉) + s ′),
AWx\{〈stm ,wm〉},Prx 〉. We define the function TerminateUnexpWFS = (S,→, sb, Sh),
where

• S = Sx ∪ {sh}.
• →=→x ∪{〈CSx ,TerminateUnexpWFS , sh〉}.

• sb = sbx.

• Sh = (Shx\{CSx})∪ {sh}.

The second scenario is more complicated, because the unexpected workflow step was not
allowed to run, otherwise it was an element of the set AT . Therefore, it is not possible to
continue the treatment, because there is a state reached that is not in the patient space.

This scenario will be handled in the following way. The current case will be closed and
the user needs to start a new case with a protocol that includes the side effects of the un-
expected workflow. This action can be performed with the function SwitchProtocol , which
is explained in section 4.6.

If the current case contains workflow steps in the set of active workflow steps, then the
user has to decide how he will terminate these workflow steps. This is out of the scope of
this report.
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4.8 Branching

The workflow controller supports a branching mechanism, which is comparable to the
principle of the branching mechanism in a software version control repository management
system. In such a system branching is supported to modify software objects in parallel
along different branches to avoid interference. If in one of the branches a software object
is modified, then the final object will be merged to the main branch.

Parallelism can also be beneficial in the medical field. For example, multiple algorithms
are required to calculate the pareto point of a dose rate distribution. Those calculations
can be performed in parallel to reduce the calculation time. A second benefit can be found
in the medical research, because from each state in the history it is possible to analyse
what should happen if different choices were made during the treatment.

The branching mechanism that is supported by the workflow controller is slightly differ-
ent in comparison with the branching methodology of the software management system in
the sense that it does not support the concept of merging to a main branch.

With branching it is feasible to conceive an extension from each state, which is in the
case space. This implies that a new case can be added to the case space with the conditions
and history of the state where the branch is started. This new case can continue with the
current protocol or it can switch to a new protocol.

It is feasible to start a single branch or multiple branches with the use of a workflow
step. The workflow step will start and supervise the subbranches. The workflow step will
wait till all branches terminate and it is then also able to terminate.

The case, which starts the branch is called the primary branch. Therefore the protocol
of this case is the “global” protocol. The global protocol is responsible for all the subcases.
Therefore, it is able to overview all the meta data in those subcases.

The subcases contains “local” protocols. The local protocol is responsible for the ac-
complishment of the goal in a single branch. It is conceivable that a local protocol starts
a new branch with the use of a workflow step, then the local protocol overviews those
subbranches.

Definition 4.8.1. (Start new branch) Given the case space automaton CSAx = (Sx,→x

, sbx , Shx), a state CSx ∈ S, where CSx = 〈HLx ,AWx ,Prx 〉, and Prx = (W ,�,�,≺,�,Q),
the set of manipulations M , the head state Bs = head(CSx ), the set of conditions of
the current protocol PC = {P ∪ E | 〈P ,E 〉 ∈W }, the set of conditions of the head state
BC = Bs ∩ PC , the new protocol Pry = (Wy ,�y ,�y ,≺y ,�y , (QCy ,Qiy ,Qgy )), where
Qiy ⊆ BC and BC ⊆ QCy , and the patient space PS = (S ,→, si ,Sg) based on protocol Pry ,
where BC ⊆ si . We call the new branch state sb = 〈si, ∅, P ry〉. We define the function
StartBranch = (S,→, sb, Sh), where

• S = Sx ∪ {sb}.
• →=→x ∪{〈CSx ,Branch, sb〉}.

• sb = sbx.

• Sh = Shx ∪ {sb}.
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The function StartBranch can be executed through a workflow step. The effect of this
workflow step is equal to the union of the goals of the protocols that are started in the
branches.

Definition 4.8.2. (Workflow branch) Given the protocols Pr1 = (W1,�1,�1,≺1,�1

, (QC1, Qi1 , Qg1)), . . . ,Prn = (Wn,�n,�n,≺n,�n, (QCn, Qin , Qgn)) and the function
StartBranch.

We define the workflow step wbranch = P × E, where

• P = Qi1 ∪Qi2 ∪ . . .∪Qin .
• E = Qg1 ∪Qg2 ∪ . . .∪Qgn .

Example 4.8.3. (Branching) Figure 4.8.1 shows an example of branching. It represents
a treatment with multiple treatment plans. The global protocol contains the workflow
element that creates four different plans in separated branches. After activating the four
branches, the global protocol will wait until the meta data of the four plans is available.
When each branch reaches its goal and terminates, then the workflow controller can provide
a new workflow step based on the rules of the global protocol.
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Figure 4.8.1: Example of workflow “create four treatment plans”
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4.9 Concurrency

The workflow rule w0 � w1 states that directly after termination of workflow step w0,
workflow step w1 needs to be executed. Therefore, no other workflow element may execute
in parallel with w0. In order to prove this statement we need to show that Theorem 4.9.1
holds.

Theorem 4.9.1. (Concurrency) Given the case space automaton CSA = (S,→, sb, Sh),
a state CS ∈ Sh , where CS = 〈HL,AW ,Pr〉, which is only manipulated with the functions
of the report. Given the head state s = head(CS ), the patient space PS based on the protocol
Pr = (W ,�,�,≺,�,Q), which includes the protocol rule w0 � w1.
It holds that:

If 〈st0, w0〉 ∈ AW then AW = {〈st0 ,w0 〉}.

Proof. We prove that for all functions on a Case Space Automaton, Theorem 4.9.1 holds.
The functions that are defined in the report are:

1. StartWFS , see Definition 4.5.1.

2. TerminateWFS , see Definition 4.5.2.

3. TerminateUnexpWFS , see Definition 4.7.1.

4. SwitchProtocol , see Definition 4.6.1.

5. StartBranch, see Definition 4.8.1.

Theorem 4.9.1 holds trivially for functions 2 and 3, because these functions remove el-
ements from the set AW , so if the theorem holds before executing the functions it also
holds after the execution. We can also determine that it holds after applying functions 4
and 5, because the case in the new states are empty cases after applying these functions.

Now, we only need to prove the theorem for function 1. The set AW is defined in
Definition 4.5.1 as: AW = AWx ∪ {〈stm ,wm〉}, where wm ∈ AT . Therefore, we have to
prove two cases:

Case 1: If 〈st0, w0〉 ∈ AWx then {〈st0, w0〉} = AWx . This rule is not applicable, because
wm 6∈ AT . Hence, AT = ∅ following Lemma 4.9.2.

Case 2: If 〈st0, w0〉 ∈ {〈stm, wm〉} then 〈st0, w0〉 = 〈stm, wm〉. Therefore m = 0. Now, we
have to prove that AWx ⊆ {〈st0 ,w0 〉}. w0 ∈ AT , so AWx = ∅ following Lemma 4.9.3.

Lemma 4.9.2. Given a case CS = (HL,AW ,Pr), the head state s = head(CS ), a patient
space PS, which is based on the protocol Pr = (W ,�,�,≺,�,Q), which includes the
protocol rule w0 � w1, and the set of feasible workflow steps AT . It holds that:

If {〈st0, w0〉} = AW then AT = ∅
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Proof. We can determine from Definition 4.3.5 that w0 6∈ AT as w0 ∈ AWw . The lemma
follows from the following observation, which we must prove:

∀x ∈W\{w0} : Check({w0, x}, s) = False.

We choose an arbitrary workflow step wk ∈W\{w0} for x. The size of the set {w0, wk} is
two. Therefore, we have to prove that:

(∃s′,s′′,s′′′∈S : 〈s, wk, s′〉, 〈s, w0, s
′′〉, 〈s′′, wk, s′′′〉, 〈s′, w0, s

′′′〉 ∈→ ∧Check({w0}, s′))∧

(∃s′,s′′,s′′′∈S : 〈s, w0, s
′〉, 〈s, wk, s′′〉, 〈s′′, w0, s

′′′〉, 〈s′, wk, s′′′〉 ∈→ ∧Check({wk}, s′)) = False.

We weaken the predicate by substituting the second part by True and in the first part we
substitute the predicate Check({w0}, s ′) by True, hence:

(∃s′,s′′,s′′′∈S : 〈s, wk, s′〉, 〈s, w0, s
′′〉, 〈s′′, wk, s′′′〉, 〈s′, w0, s

′′′〉 ∈→) = False.

We make a distinction between two cases, either wk 6= w1 or wk = w1. The first case
satisfies the predicate, because after the execution of w0, there does not exists a transition
to a new state with a workflow step different from w1, so s

w0−→ s′′
wk−→ s′′′ does not exists.

Now, we need to prove that:

(∃s′,s′′,s′′′∈S : 〈s, w1, s
′〉, 〈s, w0, s

′′〉, 〈s′′, w1, s
′′′〉, 〈s′, w0, s

′′′〉 ∈→) = False.

Definition 3.6.2 of the protocol rule automaton, states that after the execution of w0 a
different state is reached than after the execution of w1. Therefore, there does not exist a
state s′′′ with two incoming transitions with workflow step w0 and w1.

Lemma 4.9.3. Given a case CS = (HL,AW,Pr), the head state s = head(CS), a patient
space PS, which is based on the protocol Pr = (W,�,�,≺,�, Q), which includes the
protocol rule w0 � w1. , and the set of feasible workflow steps AT . We define the set
AWw = {w | 〈st, w〉 ∈ AW}. It holds that:

if w0 ∈ AT then AW = ∅.

Proof. Suppose that w0 ∈ AT then there is a transition 〈s, w0, s
′〉 ∈→ and there is a set

AWw of workflow steps, which satisfies the predicate Check(AWw ∪ {w0}, s). If AWw is
empty it satisfies the predicate Check({w0}, s), see Definition 4.3.1.

We can determine that if w0 ∈ AWw then w0 6∈ AT by Definition 4.3.5. Now, we
can reason about the subset W\{w0}. We define the set AWw as a set with a single
element, say AWw = {wk}, where wk ∈ W\{w0}. The workflow step w0 can only be an
element of AT if it satisfy the predicate Check({w0, wk}, s). Therefore, we prove that
Check({w0, wk}, s) = False. Now, we can use partly the prove of Lemma 4.9.2, namely:

(∃s′,s′′,s′′′∈S : 〈s, wk, s′〉, 〈s, w0, s
′′〉, 〈s′′, wk, s′′′〉, 〈s′, w0, s

′′′〉 ∈→ ∧Check({w0}, s′))∧

(∃s′,s′′,s′′′∈S : 〈s, w0, s
′〉, 〈s, wk, s′′〉, 〈s′′, w0, s

′′′〉, 〈s′, wk, s′′′〉 ∈→ ∧Check({wk}, s′)) = False

We weaken the predicate by substituting the second part by True and in the first part we
substitute the predicate Check({w0}, s′) by True, hence:

(∃s′,s′′,s′′′∈S : 〈s, wk, s′〉, 〈s, w0, s
′′〉, 〈s′′, wk, s′′′〉, 〈s′, w0, s

′′′〉 ∈→) = False.
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We make a distinction between two cases, either wk 6= w1 or wk = w1. The first case
satisfies the predicate, because after the execution of w0, there does not exists a transition
to a new state with an outgoing transition with a workflow step different then w1, so
s

w0−→ s′′
wk−→ s′′′ does not exists.

Now, we need to prove that:

(∃s′,s′′,s′′′∈S : 〈s, w1, s
′〉, 〈s, w0, s

′′〉, 〈s′′, w1, s
′′′〉, 〈s′, w0, s

′′′〉 ∈→) = False.

Definition 3.6.2 of the protocol rule automaton, stated that after the execution of w0 a
different state is reached then after the execution of w1. Therefore, there is no state s′′′

with two incoming transitions with workflow step w0 and w1.
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5 Practical medical treatment

This section describes the validation of the protocol semantics described in the previous
sections. Therefore, an intended workflow, based on a practical example of a gynaecology
protocol used in the field of brachytherapy, is compared with the workflow resulting from
an implementation of the example in our formal protocol semantics.

The protocol consists of a main protocol, which makes use of two sub protocols, namely:
Plan creation and Delivery. The workflows of the main protocol and the two sub protocols
are depicted in three flow diagrams, which are shown in Figure 5.1.1, Figure 5.1.2 and
Figure 5.1.3.

5.1 Implementation

The flow diagrams are transformed into the protocol semantics described in section 3.4.
The protocol semantics is defined as follows:

Pr = (W,�,�,≺,�, (QC,Qi, Qg)).

The protocols are constructed on the generic bases of the inter-task dependencies. The
inter-task dependencies are categorized in two groups, the value and the external depen-
dencies. The transitions depicted in the flow diagrams describe the external dependencies.
The pre- and postconditions of the workflow steps describe the value dependencies.

The transitions in the flow diagrams are interpreted as follows: When no concurrency
is possible, then the transition is interpreted as a direct rule. Otherwise the transition is
interpreted as an eventually rule.

The pre- and postconditions and the abbreviations of the workflow steps are described
in Appendix A.

Main protocol: Gynaecology

Plan
Creation

Choose
Plan

Delivery
1

Delivery
2

Dose
Evalu.

START

NEG

END

Figure 5.1.1: Main flow diagram of the protocol: GYN

The implementation of the main protocol is straightforward, because there is no concur-
rency possible in the flow diagram of Figure 5.1.1. Therefore, each transition is interpreted
as a directly after rule. Except for the transitions between the workflow elements Delivery 2
and Dose Evaluation. These transitions are not described, because the workflow element
Dose Evaluation contains two workflow steps and the semantics of a direct rule do not
support two workflow steps after a single workflow step.
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In other words, the workflow element Dose Evaluation can have either a positive or nega-
tive result. Therefore, it consist of two workflow steps. After the execution of the workflow
step BranchDelivery2 , one of the two workflow steps of the Dose Evaluation needs to be
executed. Thus, the execution of another workflow step beside these two workflow steps is
not allowed. Therefore, a protocol rule is needed that states: “Directly after the execution
of workflow step ‘A’, workflow step ‘B’ or workflow step ‘C’ needs to be executed.”

The main protocol GYN is formalized as follows:

PrGYN =({BranchPlancreation, CP,BranchDelivery1 , BranchDelivery2 , DEP,DEN}, {},
{〈BranchPlancreation, CP 〉, 〈CP,BranchDelivery1〉}∪
{〈BranchDelivery1 , BranchDelivery2〉, 〈DEN,BranchPlancreation〉},
{}, {}, 〈{DoseReached}, {}, {DoseReached}〉).

Sub protocol: Plan Creation

Image data
Import

Contour
Target

Contour
OARs

Implant
Reconstruction

Approve
Structure

Dose
Planning

Evaluate and
Approve Plan

END

START

Figure 5.1.2: Flow diagram of the sub protocol: Plan Creation

The flow diagram of Plan Creation, shown in Figure 5.1.2, allows concurrency until the
workflow step Dose Planning . Therefore, the transitions until this workflow element are
interpreted as eventually after rules.

The transition between Dose Planning and Evaluate and Approve Plan must be inter-
preted as a directly after rule. However, this transition is not described, because the
workflow element Evaluate and Approve Plan contains two workflow steps and that is not
supported by the semantics, just as explained in the implementation of the main protocol.
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The sub protocol Plan Creation is formalized as follows:

PrPlanCreation =({IM,CT,CO,ASS,UAS, IR,DP, PUA,PA}, {〈IM,CT 〉, 〈IM,CO〉}∪
{〈CT,ASS〉, 〈CO,ASS〉, 〈IR,DP 〉, 〈UAS,ASS〉}, {},
{DP,ASS}, {}, 〈{ApprovedP lan}, {}, {ApprovedP lan}〉).

Sub protocol: Delivery

Actualize
Plan

Extra Check
Cable Run

Remove
Obstruction

Delivery

POS

NEG

START END

Figure 5.1.3: Flow diagram of the sub protocol: Delivery

The flow diagram of the protocol Delivery, shown in Figure 5.1.3, allows that workflow
steps are executed concurrent, except for the workflow step Delivery .

However, not all the transitions of this flow diagram are interpreted as an eventually
after rule, because the intention of this protocol differs in comparison with the two other
protocols. This protocol needs the usage of the eventually before rules, because the in-
tended workflow states that before the execution of a workflow step, another workflow step
must have been executed before.

For example, before an obstruction in a catheter can be removed, it must be known
which catheter is obstructed. Therefore, the workflow step Check Cable Neg must have
been taken before the workflow element Remove Obstruction can be executed.

The sub protocol Delivery is formalized as follows:

PrDelivery =({CCP,CCN,AP,RO,D}, {〈RO,CCP 〉, 〈CCN,RO〉}, {},
{〈CCP,D〉, 〈CCN,RO〉, 〈AP,D〉}, {},
〈{ApprovedP lan,Dose}, {ApprovedP lan}, {Dose}〉).
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5.2 Evaluation

For each protocol appointed in section 5.1 a patient space is constructed. These patient
spaces can be found in Appendix B, except for the sub protocol Plan Creation. The patient
space is used to determine the feasible workflow steps during the treatment of a patient.

This section describes the intended behavior of the workflow of a gynaecology proto-
col, described by the flow diagrams. Secondly, the obtained behavior of the workflow of
our protocols are described. The intended and obtained behaviors of the workflows are
compared to determine the discrepancy. Each protocol will be evaluated separately.

Main protocol: Gynaecology

This protocol describes the overall workflow of the treatment of the patient. During the
treatment the patient receives the desired dose, which is calculated during the plan creation.

(Intended behavior) Figure 5.1.1 depicts a flow diagram where concurrency in the work-
flow is excluded. The treatment starts with the creation of a plan and should terminate
after a positive dose evaluation. When the result of the desired dose evaluation is negative,
a new plan needs to be created and the same workflow will be executed. There should
always be an evaluation step after two deliveries.

(Obtained behavior) The patient space of Figure B.0.1 in Appendix B depicts the ob-
tained workflow, where concurrency is almost excluded. The treatment starts with creation
of a plan. However, the protocol does not terminate after reaching the desired dose. There-
fore, it is always possible to execute a following workflow step. This has as consequence
that after reaching the desired dose, a new dose can be delivered to the patient. This is
in practice undesirable. Moreover, it is possible to irradiate the patient more than twice
without evaluating the dose at the patient, which is also undesirable.

(Discrepancies) The first discrepancy is the termination of the treatment. With our
semantics it is not possible to define a rule to terminate a treatment. Therefore, the se-
mantics must be extended with a rule that states that after the execution of a certain
workflow step, some workflow steps are disabled.

The second discrepancy is the number of irradiations between the dose evaluations of the
patient. This discrepancy occurs, because the transitions between the workflow elements
Delivery 2 and Dose Evaluation can not be described in the implemented protocol.

Sub protocol: Plan Creation

This protocol creates a plan based on the location of the applicator inside the patient.

(Intended behavior) The flow diagram, shown in Figure 5.1.2, describes a workflow
where it is possible to execute the workflow steps concurrently until the workflow element
Dose Planning . After this workflow step the plan can be approved and the workflow ter-
minates. This sub protocol does not use workflow elements that can change the physical
condition of the patient.
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(Obtained behavior) The patient space of this sub protocol is not included into the Ap-
pendix, because the number of states and transitions were to large to create a clear picture.

It is not always possible to work concurrent in the workflow. However, the workflow el-
ements Dose Planning and Evaluation and Approve Plan are able to work concurrent with
other workflow steps.

Figure 5.2.1 shows a trace of the patient space in order to give some insight into the
behavior of the obtained workflow. This trace shows the following invalid trace: An user
approved a certain structure set, subsequently he creates a new contour and disapproves
this new structure set, where after he continues the process and creates a dose plan on the
unapproved structure set.

Contour
Target

Approve
structure

Contour
Target

Unapprove
structure

Dose
Planning

Figure 5.2.1: Single trace of sub protocol Plan Creation

(Discrepancies) The first discrepancy is the possible concurrency between the two be-
haviors. The intended workflow shows that no concurrency is possible from the start of the
workflow element Dose planning. However, in the obtained workflow is concurrency still
possible. During the implementation, we already observed that the transition between the
workflow elements Dose planning and Evaluate and Approve Plan can not be transformed
into the protocol semantics. If this was possible then it was not possible to work concur-
rent with the workflow element Evaluate and Approve Plan. However, it was still possible
to work concurrent with the workflow element Dose planning . It is possible to extend the
protocol semantics with a rule that disallows concurrency.

The invalid trace is also not clearly described in the intended workflow. However, it
is not possible to avoid this trace with the protocol semantics described in this report.
Although it is also for this problem possible to extend the protocol rules with a rule that
disallows a workflow step between the occurrences of two other workflow steps.

Sub protocol: Delivery

This protocol describes the steps to deliver the dose to the patient based on the plan cre-
ated in the sub protocol Plan Creation.

(Intended behavior) The flow diagram in Figure 5.1.3 depicts a workflow that should
start with two workflow elements, which can be executed concurrently. The workflow
should terminate after the execution of the workflow element Delivery .

Workflow element Delivery can only be activated if the result of the workflow element
Extra Cable Check Run is positive and the workflow step Actualize Plan is executed. Oth-
erwise, the obstruction must be removed and the workflow element Extra Cable Check Run
needs to be executed again.
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The workflow element Delivery should not be executable in parallel with any other work-
flow element.

(Obtained behavior) The patient space of Figure B.0.2 in Appendix B describes a
workflow that starts with the three workflow steps Actualizeplan, Check Cable Pos and
Check Cable Neg , which can be executed concurrently.

The workflow does not terminate. Hence, it is always possible to execute a new workflow
step. Therefore, it is possible to executed the workflow step Delivery multiple times. The
workflow step Delivery can only be activated if the workflow steps Check Cable Pos and
Actualize Plan are executed. The workflow step Delivery can not work concurrently with
other workflow steps.

(Discrepancies) The first discrepancy in the sub protocol Delivery is the possibility to
radiate the patient multiple times without evaluating the total dose on the patient.

The evaluation of the total dose is done in the main protocol. Therefore, it must be
impossible to execute the workflow step Delivery more than once in this sub protocol.
Therefore, a solution is needed such as appointed in the explanation of the main protocol
discrepancy.

The solution should extend the protocol semantics with a rule that disables some work-
flow steps after executing a workflow step. Hence, if the workflow step Delivery is disabled
after executing once, then the workflow elements Extra Check Cable Run, Actualize plan
and Remove Obstruction are obsolete. Therefore, all workflow steps can be disabled after
executing the workflow step Delivery .

The last discrepancy occurs when the workflow step Cable Check Neg is directly followed
by the workflow step Delivery , this means that there is an obstruction in one of the catheters
during delivery.

This problem is also solved if the workflow directly terminates after the workflow step
Delivery , because there must exists a path from every state to an accepting state. If the
workflow step Cable Check Neg is executed it will reach a non accepting state. Therefore,
if the treatment terminates after the workflow step Delivery , it is not longer possible to
reach an accepting state and this path would not exist.
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6 Conclusion

This section emphasis the contribution to the research of workflow management systems
and it provides a summary of the semantics for the workflow management system described
in this report. Moreover, it discusses the gap between theory and practice. This section
ends with comments on possible future research.

6.1 Recapitulation

This report describes the formal semantics of a protocol based workflow management sys-
tem. The semantics are based on automata theory and are supported by formal proofs
and some examples. The workflow management system is used to control, execute and to
monitor the workflow of a treatment.

A workflow is composed of small steps called workflow steps. These workflow steps make
use of devices and algorithms to perform the treatment of the patient. A workflow step is
described by pre and post conditions. The pre conditions represent the start requirements
and the post conditions the results of a workflow step.

A workflow in the medical field is described by a protocol, which describes the con-
straints or inter-task dependencies between the workflow steps and the workflow steps that
are needed to accomplish the medical intervention. Hence, the workflow management sys-
tem is designed as a constraint based workflow management system, which means that
every workflow step is allowed to perform, except for those workflow steps that violates
the inter-task dependencies.

The inter-task dependencies are separated in two categories, namely the value and ex-
ternal dependencies. The value dependencies are based on the pre conditions of a workflow
step and the post conditions generated by certain workflow steps. The external dependen-
cies describe the preferred user ordering of the workflow steps. They are described by the
protocol rules.

All conceivable workflows of a single protocol are described in an automaton, called the
patient space. The base of this automaton is the workflow space, which is constructed by
the value dependencies of the workflow steps described in the protocol. This workflow space
will be restricted by the external dependencies with use of the protocol rule automata.

A synchronous product automaton can be constructed with use of the workflow space
and all the protocol rule automata. After removing the infeasible workflow steps from this
automaton the patient space emerged.

In the workflow management system a workflow controller interprets the patient space.
The workflow controller determines the feasible workflow steps based on the achieved results
of the treatment, the protocol, and the currently active workflow steps. These parts are
described in a case. The treatment of a patient can contain multiple cases, which are
combined in a case space.

The workflow controller supports a branching mechanism in order to allow parallel work
and research purposes.
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6.2 Gap between theory and practice

This report describes a medical example of a gynaecology protocol to validate the formal
protocol semantics.

From the discrepancies between the intended and obtained workflows, it can be concluded
that the protocol semantics are not yet expressive enough in order to achieve the desired
workflows. However, the protocol semantics can be extended to cover all the demands of
the practical example.

Although the protocol semantics can be extended, there is still a gap between theory
and practice. This report provides the notion of workflow elements as a set of workflow
steps that are related to each other. However, there is a problem in the definition of what
a workflow element is in relation to workflow steps.

For example, the workflow element Dose Evaluation contains two workflow steps, namely:
Dose Evaluation Positive and Dose Evaluation Negative. The report assumed that the user
can activate one of these two workflow steps. Although in practice the user activates the
workflow element Dose Evaluation and not one of the two workflow steps. If the result
of the workflow element is achieved, then one of the two workflow steps will be taken.
Therefore, the assumption that one of the two workflow steps can be activated is incorrect.

Another example of a shortcoming in the definition of a workflow element is the oppor-
tunity to include side effects into workflow elements. For some workflow elements it is
possible to predict the side effects. For instance the side effects of a dose delivery when
it is aborted partially. If these side effects can be modeled into the workflow element as a
workflow step, then it is possible to extend the protocol with a workflow that resolves the
result of such side effects.

However, in the current semantics is this not possible, because if the side effect is modeled
as a workflow step, then it will appear in the set of feasible workflow steps. Hence, the user
is able to activate a workflow step which is not desirable. Therefore, we would be able to
activate the workflow element including the workflow steps, which models the side effects
and if the workflow element terminates, then the related workflow step can be taken.

6.3 Future research

First of all, the gap mentioned above between theory and practice must be resolved.
Secondly, the authorization of executive medical staff must be included to the protocol.

The treatment of a patient is carried out through qualified medical staff with different
authorizations, and tasks in the workflow. The semantics of the workflow management
system does currently not support the notion of authorization.

Finally, the semantics of the workflow controller supports a minor feature to handle un-
expected workflow steps. This feature can be improved, because our workflow management
system is a constraint based workflow, which means that every workflow step that does not
violate constraints is allowed to perform. Therefore, it is possible to determine the reason
behind the unexpected workflow step. The unexpected workflow step violates either the
protocol rules, or it was not included into the protocol. If the reason of the occurrence of
the unexpected workflow step is known, then the protocol can be modified in a manner
that the workflow step is allowed once. The benefit of this handling mechanisme is that
the workflow can continue.
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A Workflow Elements

The tables in this appendix describe the workflow elements and workflow steps used in the
practical example.

Actualize Plan

Name workflow step Precondition Postcondition

Actualize plan (AP) Approved Plan Actualized Plan

Approve Structure

Name workflow step Precondition Postcondition

Approve structure set (ASS) Structure set Target Approved set
Structure Set OARs

Unapprove structure set (UAS) Structure set Target Unapproved set
Structure Set OARs

Choose Plan

Name workflow step Precondition Postcondition

Choose Plan (CP) Plan Plan

Contour Target

Name workflow step Precondition Postcondition

Contour Target (CT) 3D Image set Structure set Target

Contour OARs

Name workflow step Precondition Postcondition

Contour OARs (CO) 3D Image set Structure set OARs

Delivery

Name workflow step Precondition Postcondition

Delivery (D) Actualized Plan Dose

Delivery 1

Name workflow step Precondition Postcondition

Branch Delivery 1 (BD1) Approved Plan Dose1

Delivery 2

Name workflow step Precondition Postcondition

Branch Delivery 2 (BD2) Approved Plan Dose2

Dose Evaluation

Name workflow step Precondition Postcondition

Dose Evaluation Pos (DEP) Dose DoseReached

Dose Evaluation Neg (DEN) Dose DoseNotReached
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Dose Planning

Name workflow step Precondition Postcondition

Dose Planning (DP) 3D Image Set Plan
Structure Set OARs
Structure Set Target
Reconstructed Applicator

Evaluate and Approve Plan

Name workflow step Precondition Postcondition

Plan Approval (PA) Plan Approved Plan

Plan Un-Approval (PUA) Plan Un-Approved Plan

Extra Check Cable Run

Name workflow step Precondition Postcondition

Check Cable Pos (CCP) Approved Plan Pos Validation Cable

Check Cable Neg (CCN) Approved Plan Neg Validation Cable

Image Data Import

Name workflow step Precondition Postcondition

Image Import (IM) None 3D image

Implant Reconstruction

Name workflow step Precondition Postcondition

Implant Reconstruction (IR) 3D Image Set Reconstructed Applicator

Plan Creation

Name workflow step Precondition Postcondition

Branch Plan Creation (BPC) None Approved Plan

Remove Obstruction

Name workflow step Precondition Postcondition

Remove Obstruction (RO) None None

51



TU Eindhoven Protocol Based Workflow Management System, Elekta

B Medical protocol implementation

The figures in this appendix describe the patient spaces, which are determined on the bases
of the practical example.
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Figure B.0.1: Patient space of the main protocol: GYN
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Figure B.0.2: Patient space of the sub protocol: Delivery
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