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A Line Feature Based, Hybrid 
Scan Matching Algorithm for 
the Indoor SLAM Problem 

Abstract 
Simultaneous localization and mapping is tbe problem of building a map 

of an unknown environment witb a robot, while localizing tbe robot on tbe 
map constructed so far. There are two dominant approaches for the solution of 
SLAM problem: probabilistic and scan matching. Probabilistic metbods treat 
the problem as maximum likelibood estimation. Scan matching is computing 
tbe amount of rotation and translation between a reference and a current scan. 
We present a novel, two-stage, feature-to-feature scan matching metbod as a 
solution to tbe indoor SLAM problem using a laser range finder. Each of tbe 
stages uses an Extended Kalman Filter to estimate tbe robot pose. Data 
association is done on a grid-map, tbe cells of which contain links to tbe 
features, in order to speed up the process. We tested tbe metbod in a simulated 
environment, and obtained promising results. 

I. Introduetion and Related Work 
Simultaneous localization and mapping (SLAM) is tbe problem of 

building a map witb a mobile robot, based on pose estimates and environment 
perception sensors, in an unknown environment while simultaneously 
localizing the robot on tbe map constructed so far. The robot has to precisely 
know its location on tbe map, to correctly integrate new measurements to tbe 
map. Otberwise, any error in localization willlead to an incorrect map, and in 
tbe next step an incorrect map will cause incorrect localization and so on. By 
its nature tbe SLAM problem is a cyclic problem like tbe chicken-egg problem 
[1]. According to Thrun [2], tbe SLAM problem is composed of four 
ebaHenging components: 

• Sensors. Odometry errors accumulate over time, and tbey affect the 
way future measurements are interpreted. Environmental perception 
sensor measurements vary due to lighting or surface properties, which 
may not return consistent values. 

• High dimensionality. A detailed 2D floor plan often requires 
tbousands of entities. Time requirements often demand tbat intemal 
models must be simple and easily accessible. 

• Data association. It is deterrnining if tbe sensor measurements, taken 
at different points in time, correspond to tbe same physical object in 
tbe world. When mapping a large cyclic environment, at the moment 
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of closing the cycle, the robot has to find out where it is relative to 
previously built map. This is not trivial because of the accumulated 
pose error. 

• Dynamic environment. The dynamism of the robot's environment is 
another reason of inconsistent sensor measurements. 

There are many types of environment perception sensors: camera, sonar, 
IR, laser range finder, etc. The choice of the environmental sensor depends 
highly on purpose of mapping and accuracy requirements. Cameras provide a 
huge amount of information, which is not cost efficient to process and to 
interpret in real-time. Sonar and IR range finders were a breakthrough in the 
SLAM field. They are low-cost and fast, but they are not very precise. Laser 
range fioders (laser scanners) are the most popular sensors in the field. They 
are accurate, reliable and time-efficient, but they are expensive. 

There are two dominant approaches to solve SLAM problems [3]. One is 
the probabilistic approach, in which localization is treated as a maximum 
likelibood estimation problem. Extended Kalman Filter (EKF) SLAM and 
FastSLAM [4] are the most popular probabilistic approaches. In EKF-SLAM, 
uncertainties and correlations are represented with a Gaussian function, and 
are propagated using an extended Kalman filter. FastSLAM is a partiele filter 
based solution, which represents pose estimate as a discontinuous 
approximation of Gaussian distribution. The other approach to the SLAM 
problem is called scan matching, which means finding a maximum overlap of 
scans through a process of translation and rotation. Probabilistic approaches 
are able to cope with large errors, but they are computationally inefficient. 
Scan matching methods are confined to small perturbations of sensor scans, 
and they cannot reeover from large errors, while they are computationally 
efficient. A mix of both approaches is called hybrid method. Hybrid methods 
are efficient, accurate and robust to noise [5]. 

Scan matching is utilized to compute the rigid transformation parameters 
between a reference scan and a current scan. A generic scan matching metbod 
is composed of two steps which are data association and error rninimization. 
Scan matching approaches can be categorized based on their association 
method: point-to-feature (P2F), point-to-point (P2P) and feature-to-feature 
(F2F). In P2F matching raw measurement points are matebed to some line 
features in the reference. This metbod was originated by Cox [6]. Gonzalez [7] 
extended the idea to polylines, by using an auxiliary grid-map to speed up 
association. Iterative Ciosest Point (ICP) [8], Iterative Matching Range Point 
(IMRP) [9] , and Iterative Dual Correspondence (IOC) [9] are the most popular 
methods in P2P matching category. In P2P matching approaches, the number 
of scan points is approximately two orders of magnitude larger than in feature 
based methods. In these methods, the association is performed as a nearest­
neighbor search. Thus, computational complexity of P2P methods is not 
suitable for real-time applications [10]. F2F matching methods have the 
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shortest run time, since hundreds of range points are reduced to a few dozens 
of features . For indoor applications, lines, circles, corners and other simple 
geometrical features are rich and easy to detect. Bailey [11] uses distance and 
angle relations of features to generate a graph of relations, and then transforms 
the association problem into a problem of finding the maximum common 
subgraph. Shaffer [ 12] uses di stance and angle relations of lines and corners, 
but association is done between minimum-error features . Wolter [13] matches 
polylines to polylines. Matching is done by rnanipolating the features to 
minimize a penalty function. In the Anchor Point Relationship (APR) metbod 
[14], two graphs which are generated from distances between point features 
are matched. In this method, association and error minimization are done in 
one step. 

The fundamental problem of scan matching methods is that there is no 
good way to estimate the quality of the position estimate, which prohibits an 
effective fusion with other position estimates from other sensors, and thus, the 
migration to a hybrid method. Lu [9] assumes white Gaussian noise in x, y 
coordinates of the scan points, which results in over-optimistic error estimates 
in situations where there is lack of information in some directions, e.g. 
corridors. Bengtsson [15] estimated the pose covariance matrix from the 
Hessian of the scan matching error function, which does oot take the 
uncertainties of the scan points into account but results in better error 
estimation. Once a realistic error estimate is achieved, it is possible to 
combine scan matching with any probabilistic method, such as EKF-SLAM 
[10], [16], [17], FastSLAM [18], etc. In our method, we estimate the pose 
covariance matrix from the scan matching error and integrate it to represent 
the accumulated error. 

This paper is organized as follows: Our metbod is summarized in Section 
Il. The first stage of the metbod which indodes feature extraction, data 
association and error minimization, is described in Section lil. Mapping 
processis discussed inSection IV. The results of the simulations are reported 
in Section V. Finally, in Section VI, conclusions and future work are 
presented. 

11. Oor Metbod 
We focus on the indoor SLAM problem. An indoor environment cao 

easily be described by geometrie features, e.g. lines, circles, etc. We were 
aiming to end up with an efficient SLAM algorithm, such that it must be reai­
time manageable with low-cost hardware, and sufficiently accurate to 
compensate variations in a dornestic environment. Consirlering time­
complexity of probabilistic mapping methods, feature-based mapping is a 
better solution. Furthermore, our environment is limited to geometrie features, 
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mostly lines, thus feature-to-feature matching would be more efficient than 
other scan matching approaches. 
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Fig. I. Layout of our approach. u stands for control signal 
and/or odometry measurement, S is laser scan , i is the robot 
pose estimate, x is the final robot pose, f is covariance matrix, 
Lis list of features, v;;, is list of visible map features at pose x. 

Wedevelopeda two-stage hybrid method, both stages of which stages are 
using an identical scan matching approach with Kalman filtering. A layout of 
the approach is shown in Fig.l. The first stage matches the extracted features 
in the kth scan (Sk) to the ones in the (k- l)th scan (Sk_1 ) to determine the 
amount of displacement between them. An EKF is used to predict the 
displacement from control signals and/or odometry measurements, and to 
update it with the scan matching result. The first stage passes an improved 
estimate of the robot pose and a covariance matrix, to the second stage. 
Therefore the first stage behaves like an improved odometry sensor. The 
second stage matches the features in Sk to the map. Again, an EKF is used to 
predict the robot pose from the output of first stage, and to update it from the 
scan matching result. Then, the map is updated with Sk at the best pose 
es ti mate. 

In order to do scan matching, the features in the scans have to be 
associated in between. We limit the nearest-neighbor search space by using a 
grid-map. The cells of the grid-map contain links to the features . A grid-map 
is generated for each scan to be matched. We translate the uncertainty ellipse 
of the robot pose (extracted from the covariance matrix) to a point which 
belongs to a line feature. The translation generates an area around the known 
position of the point. That area corresponds to some cells on the grid-map. To 
associate, we look at those cells for some features on the grid-map of the other 
scan. In other words, we detach the uncertainty of the features from the 
uncertainty of the robot pose, and account for all uncertainties in the robot 
pose. 

111. Measurement Module 

5 



The measurement module takes in control input/adometry measurements 
and raw laser scanner data; it extracts features from the raw scan data, then it 
calculates the amount of translation and rotation to fit the new scan onto the 
previous scan. The robot pose state of the intemal EKF is updated with the 
resulting correction movement, and an improved pose estimate is passed to the 
mapping module tagether with the list of features and with the 
correspondences among them. Fig.2. shows the layout of the measurement 
module. 

Feature 
Extraction 

Scan Matching 
Lk, Lk-1 Data association Lk 

1----------J~+ 
Error 

rninimization 

u, r~~::.::::.~:--- -~.-.~: -----~:.: :~~---~ ~. 
1 : xk ik 
: EKF I 

L---------------------------------------1 
Fig.2. Layout of the measurement module. Inputs are the raw scan (Sk), the control input/odometry 
data (uk) . Outputs are the Jatest scan (Lk), the integrated pose covariance (tk) and the pose estimate 
(ik)· Scan matching block outputs the displacement (x5 .k) between two scans (Lk, Lk_ 1 ) together 
withits uncertainty o: •. k>· 

Control input or odometry is used in the prediction step of the EKF. In 
case bath are provided, the most uncertain one can be used for prediction and 
the other can be used as update to the EKF tagether with Xs,k. Bath inputs 
require a probabilistic motion model and a probabilistic observation model to 
use with the EKF. 

The module updates the pose estimate at arrival of each control input, but 
it outputs a new pose estimate only when a new laser scan arrives. The 
measurement module does not have feedback on the long term (map-wise 
feedback). Thus, the pose error is still subject to increase unboundedly as time 
proceeds, whereas the covariance of EKF becomes confident after each scan 
matching operation. It cannot represent the accumulating behavior of the error. 
This is a contradicting situation. To represent the accuroulating error of the 
pose estimate, we output the sum of all previous covariance matrices. 

A. Feature Extraction 
The feature extraction step takes a 360° range scanS = (ri, </Ji)i=l, ... ,N as 

input, where r is the range value, <P is the hearing of the measurement wrt the 
robot coordinate frame, and N is the number of data points; and outputs a list 
of line features (L) tagether with a grid-map (G), the cells of which include the 
ID of the line feature passing through them. A line feature 

t = (a,b,</Je,v<Pe,z,O"J.,O"Dtl,te,vte,z) is defined by line formula: y = ax + 
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b. The endpoints 1 and 2 are determined by the hearings 1Je,v 1Je,Z• i.e. the jth 

endpoint is the intersection point of the fitted line with the y = tan (1Je,j)x 

line. Uncertainty of the fitted line is represented by a J.' aL which are the 
standard deviations of the perpendicular distance to the line from the origin 

and from the orientation of the line, respectively. The parameters t1, te,v te,z 
are some type definitions for the feature. The reason of defining lines in 
parametrie form, instead of with two end points, is that the matching operation 
is done more efficiently in parametrie form. 

We have used two types of features (t1): lines and polylines. The lines 
represent structural objects like walls, couches etc. of which two sides are 
intersecting with an angle close to 90°; whereas the polylines represent non­
flat shaped objects. According to the positions of the features in the scan, we 
assign three types to the edges of the features (te): definite, indefinite and 
incomplete. A definite edge corresponds to a corner of a structured object, i.e. 
a 90° corner; whereas an indefinite edge corresponds toa corner of a polyline 
which does nothave an angle close to 90°. Indefinite edges rnight occur due 
to approximation of a non-flat surface with some lines. Definite and indefinite 
edges are regarded as complete edge. Incomplete edges are assigned when 
some part of a line is occluded by another one or is out of range of the laser 
scanner. 

Feature extraction begins with segmentation of scan S based on jump 
edges which are detected basically by a jump of consecutive range readings. 
These jumps are indicators of different features. Then, we fit lines onto the 
data points. A common way to fit lines is the least squares metbod which is 
tended to return erroneous results in the presence of outliers. In order to 
imprave the quality of the fits, we employed the Random Sample Consensus 
(RANSAC) [19] method, which is an iterative metbod used for model fitting, 
hypothesis testing and outlier removal, on the farmer segmentation results. For 
each segment, the maximum error limit of RANSAC is updated based on the 
sensor model. RANSAC returns the line parameters (a, b), the inliers and their 
errors (€). 1Je,v 1Je,z are the hearings of the first and the last inliers. a J. is equal 

to the standard deviation of the errors of the inliers. For computation of aL , 

the analytical metbod presented in [20] is overcomplicated and expensive. For 
that reason we chose to approximate aL as in (1) where c; E JR(.2 is the vector 

from origin to the jth inlier point among the Ni inliers of the segment. 

(1) 

After fitting lines to the measurements, the lines are projected on a local grid­
map. The grid-map is of the size of the maximum range of the sensor and only 
used for data association between the current and previous scans. Fig.3. shows 
the input (a) and outputs (b,c) of the feature extraction. 
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Fig.3. (a) Raw measurement points. Maximum range circle is shown by dash-line. (b) Extracted features. 
Circle and square edges are for complete and incomplete edges, respectively. (c) Grid-map, composed of 
links to features, shown by link numbers. The triangle is the robot. 

B. Scan Matching 
Scan matching is composed of two steps: Data association and error 

rninirnization. 

In the data association step, we try to associate features in the current scan 
to the ones in the reference. Most of the studies in literature [6], [8], [9] use 
the nearest-neighbor algorithm to find the correct. The nearest-neighbor search 
algorithm is an expensive methad and becomes intraetabie as the number of 
features increases. To increase the efficiency of the search method, we could 

constrain the search region in ~2 , if we had known where the features were, 
without checking all of them. Thus, we propose a grid (discrete) map, the cells 
of which contain links to the features. By doing so, we search for a feature 
only at the maximum likely region. The maximum likely region is extracted 
from the uncertainty of the robot pose. The uncertainty of the robot pose is 
transfigured like an extruded ellipse as it is shown Fig.4. 

We use three points to deterrnine where a feature is. We take two 
endpoints and the rnidpoint of the lines and check the neighborhood of the 
corresponding points in the other map to see which feature is there. The 
neighborhood of a point is equal to the shaded region shown in Fig.4. Once a 
feature is found in the neighborhood, we increase the number of 
correspondences between those two features, which are stared in a n x m 
correspondence matrix where n and m are the amount of features in reference 
and current scans, respectively. At the end of the search, we conclude that the 
feature couple (i,j) is correspondent, only if the (i,j) element of the 
correspondence matrix is the maximum in ith row and in jth column at the 
same time. This beuristic approach does not eliminate one-to-multiple feature 
correspondences. 
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Fig.4. Robot uncertainty ellipse, shown on left, is translated 
onto a point feature, shown by cross. The ellipse is 
extruded for an angle of 3a8 where aJ is the varianee of 
the robot orientation. Shaded cells show the discretization 
of the maximum likely region. 

Next, we extract relations between the corresponding features. A relation 
is defined as a geometrie property of a feature. The relation of a feature in the 
current scan is compared to the relation of the corresponding feature in the 
reference scan. The result of the comparison is called relation error and is used 
in the error rninirnization. We use four types of relations: orientation (0), 
perpendicular distance from the origin (d), coordinates of feature end points 
(xe, Ye). The first two relations are defined for all features, whereas the end 
point relations are only defined for features with definite edges. The relations 
have different weights on the error rninirnization, based on the variances of the 
features. The weight of a relation, wiJ• between feature couple (i,j) is defined 

in (2). 

(2) 

Weights of the perpendicular distance and orientation relations are 

directly computed from the variances, oL az . Weights of the end point 

coordinates are computed from a;, a~, which are obtained from aL az via the 

following transformation. 

[
afxefad 

lxy = a{ye/ad 

0] T 
2 • fxy 

aL 
(3) 

(4) 

where fxe(d,cfJJ.,cfJe), [ye(d,cfJJ.,cfJe) are functions retuming the x and y 

coordinates of the edge of the line feature, at angle c/Je, transformed from po lar 
coordinate representation of the line feature. 
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Lastly, the errors of the relations are attempted to be rninirnized in a 
weighted least-squares sense by using the Gauss-Newton method, given in (5), 

(6). For this metbod to converge to a correct solution, it must be guaranteed 
that the initial orientation error is less than 90°, which is well within the 
accuracy of dead reekoning [12]. 

~I;= -UTW])-1 . JTW. e 

1 = [atr.~~ax atrday arr_l_~aol 
atrnfax atrnfay afrnfaO 

(5) 

(6) 

where eis the vector of relation errors,~( = (~x. ~y. ~())T is the difference 
vector between the transformation parameters on successive iterations, Wis 
the diagonal weight matrix and] is the Jacobian of size n x 3. fri(~Ç) is a 
function of transformation parameters, returning the error of the particular 
type of relation i. 

Equation (5) is supposed to be solved iteratively for ~I;, until the 
magnitude of relation errors is less than some tolerance. However, we 
observed that iterating more than once does not provide additional 
rninirnization of the error. Usually, a feature does not exactly match to the 
associated feature due to outlying scan points, even if two scans are obtained 
at the same position. Moreover, errors of incorrectly-associated features 
cannot be rninirnized. These constant errors badly influence the result of error 
rninirnization. Thus, after the first iteration, we elirninate relations with 
relatively large error, and repeat the iteration once more. Eventually, there will 
always be a non-zero error in the estimated transformation. Weneed to predict 
how large the error is. Therefore, we compute the uncertainty of the resulting 
estimate in the form of a covariance matrix, ~L\Ç· 

(7) 

Ie= [afe1 ... aten] 
ael aen 

(8) 

where W is the normalized weight matrix, E is the diagonal matrix of squared 
errors and feiCea is the transformation function of the coordinate frame based 
on the resulting error regarding to the ith relation. 

IV. Mapping Module 
The mapping module matches the latest scan to the current map and 

updates the position of the robot accordingly. The mapping module includes 
the same scan matching process, explained in Section 111.2, but a separate 
EKF than the measurement module. The output of the measurement module is 
used as aprediction to the EKF, and the result of the scan matching is used as 
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the update to EKF. Thus, the actual pose estimate of the robot is based on the 
pose in this module. 

A dual map representation, which is composed of a list of features (A) 
and a grid-map (r), is used for the global map, as well. A line feature of the 
map, il = (e1 (x,y),e2 (x,y),aJ.,O"L>T/•LSQ), is defined by two end points 
(e11 e2 ) in global coordinate frame, uncertainties ofthe line (aJ.,aL), a list of 
its neighbor features (T/), and some parameters (LSQ = p::x,Ly,Lxy,Lx2}) 

required for incremental least squares method. The grid-map is used for 
efficient feature association, but it also enables the path-planner algorithms to 
optimize the travel distance by avoiding obstacles. 

To represent a line feature, it is sufficient to describe two edges. 
However, due to limited maximum range of laser scanners, or due to 
occlusion, it is not always possible to fully-observe a feature. Most of the 
time, we cannot see even any edges for long features. Feature extraction 
algorithm can distinguish between incomplete and complete 
(definite/indefinite) edges. When two completeedges are observed, the feature 
is directly added to the map, by averaging previously observed edge 
coordinates. lf one or bath of the edges are not observed yet, we use least­
squares line fitting on the previously seen incomplete edges. lf one complete 
edge is already observed, then we try to fit a line while assuring the line passes 
through the edge. The uncertainties a J.• aL are computed as in (9) and ( 10), 
respectively. 

(9) 

-1( O"J.) 
aL = tan 0.5 . L (10) 

where Vej is a vector which is projection of the principal components of the 

covariance of the jth edge, onto the line perpendicular to the feature, aLsQ is 

the standard deviation of the residuals of the least-squares which is used 
unless bath edges are observed, and L is the length of the feature. 

Having the features know their neighbors reduces the search time for 
reconstruction of a scan for matching. When a new feature is observed, it is 
added to the neighbor lists of all features which are present in the same scan. 
At the time of reconstructing a scan for matching, we start from the ciosest 
feature to the robot pose and search the neighbor features which are in the 
visible range. At the moment of loop-closing, since the robot will not know 
about the neighborhood relations among new and old features, in scan 
reconstruction the old features will not show up. Thus the new features, 
corresponding to the old features, will remain unassociated. Nevertheless, in 
the map update step, we use the grid-map to associate old features to the 
unassociated new features, and update the map accordingly. By doing so, the 
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neighborhood relations among the old and new features are updated for the 
next iteration. 

V. Simulations 
The aim of the simulations was to see how good the robot could generate 

the map of the environment while not any particular exploration strategy is 
employed, and how the robot would localize itself when it travels to 
previously visited areas. We did not test the complete approach on a mobile 
robot in a real environment but in a Player/Stage simulation environment [21]. 
We worked offline in MATLAB® on the data set generated by Player/Stage. 
A laser scanner module with 360° view angle and maximum range of 2.5 
meters is used as the perception sensor. The odometry error is modeled as 
10% of the travelled distance. We constructed two rooms of sizes 12m x Sm 
and 7m x llm. Some rectangular obstacles (like cupboards, couches etc.) are 
used to include visual occlusion. 

Fig.5. shows the map generated from the first data set. Fig.6. shows the 
maps generated from poor odometry measurements. Fig.7. shows the 
comparison of the position errors of different stages. In this simulation, we 
used a grid-cell size of O.lm. An error less than the grid size would result in 
the exact map association. In other words, the map would be globally 
consistent. Otherwise, partial consistency would occur. 

Fig.5. Generaled map and the path of the robot. Robot starts from (0,0). The output of the 
second phase is almost always coinciding with the true pose, whereas pure odometry and 
the output of the first phase deviate. 
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(b) 

Fig.6. Maps generaled from raw scan points. (a) Using pure odometry data. (b) 
Using the output of the first phase (improved odometry data). 
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Fig.?. Position error throughout the trip. Error of the second phase 
is always less than the grid size, O.lm. 

The second room bas a loop inside, thus we could test the loop-closing 
performance of our method. The robot travelled in counter-clockwise 
direction, starting from the lower left corner. After making one complete 
cycle, it stopped at lower right corner. We used a grid-cell size of O.lm. Fig.8. 
shows the map generated. Fig.9. shows the maps generated from poor 
odometry measurements. Fig.lO. shows the localization error throughout the 
trip. 

-2 0 2 10 

Fig.8. Generaled map and the path of the robot. Robot starts from (0,0) and makes one 
turn around the room. 
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Fig.9. Maps generaled from raw scan points. (a) Using pure odometry data. (b) 
Using the output of the fi rst phase (improved odometry data). 
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Fig. 10. Position errorthroughout the trip. Grid size is O.lm. 

As shown in Fig.8., the predicted robot pose (output of the second stage) 
is always less than the grid-cell size, which implies the map is globally 
consistent. Output of the first stage and pure odometry errors grows 
unboundedly. In bothof the simulations, the magnitude of orientation error for 
the second stage was always less than 0.5 degree, whereas the magnitude of 
orientation error for the first stage could grow up to 5 degrees while the robot 
rotates. This is the reason why the pose estimates of the two stages differ. The 
second stage compensates the orientation error. 

Sometimes, the localization error exceeded the grid-cell size, causing the 
generated map to be inconsistent with the true map. But still the robot was 
able to close the loop. When the robot travelled to inconsistent regions again, 
it could localize itself without losing track due to inconsistent laser scans. 

VI. Conclusions and Future Work 
In this paper, we presented a navelSLAM algorithm, basedon feature-ta­

feature scan matching. The first stage is regarded as an improved odometry 
sensor, which is subject to unbounded error. The second stage is the mapping 
module, which matches the current scan to the map. Extended Kalman filter is 
used at each stage to fuse sensor measurements. We observed that the 
algorithm is able to rnaintaio the localization error sufficiently small, to close 
loops in the environment. 

Uncertainties of map features are not stared in the Kalman filter state. 
Thus, at the moment of loop-closing, error correction cannot be back 
propagated to the features. A drawback of this result is that the map may not 
be globally consistent. On the other hand, the time-complexity of the 
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algorithm is kept an order of magnitude low and constant. One possible 
solution for the map inconsistency problem is combining the second stage 
with a partiele filter. The robot pose uncertainty will be represented with 
partieles. Each partiele will hold a map, which is assumed to be correct. At the 
moment of loop-elosing, the partiele with minimum error survives. Moreover, 
for partieles, which are in the same cell, data association will be the same, 
which will speed up the process of scan matching for each partiele. In this 
way, we foresee that a globally consistent map can be obtained. 

A grid-map is used to speed up the data association. However, since we 
only have a non-optimized MATLAB implementation of the method, we 
cannot provide any performance measures. In the future, software will be 
optimized and re-implemented in CIC++ for benchmarking. 
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Appendix A 

Contents 

1. Probabilistic motion model 
2. Extended Kalman Filter 
3. Relation functions 
4. Covariance matrix computation from relation errors 
5. Determining end point variances from variances of polar parameters 
6. Solution of rank deficiency problem in Gauss-Newton error minimization 

Introduetion 

This report is an appendix for the presented paper. The theories and equations, which are 
overlooked in the paper, are elaborated in this appendix. 
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1. Probabilistic Motion Model 

Probabilistic motion model is the name of the kinematic model which comprises the state transition 
probabili ty, 

(A.l) 

where p(xt) denotes the probability of state x at timet, and Ut is the input to the system at timet. 
Equation (A.l) represents the probability of the new state, knowing the new input and the previous state. 

State transition probability (A.l) plays an essential role in the prediction step of probabilistic state 
estimation techniques like Extended Kalman Filter (EKF) or partiele filter. The goal of a proper 

probabi listic model is to accurately model the specific types of uncertainty that exist in robot actuation. 

In Player/Stage simulations, we used a differential drive robot. There are two types of motion models 
defined for differential drive robots: velocity motion model, odometry motion model. 

According to Thrun1
, "In practice, odometry models tend to be more accurate than velocity models, 

for the simple reason that most commercial robots do oot execute velocity commands with the level of 

accuracy that cao be obtained by measuring the revolution of the robot's wheels. However, odometry is 
only available after executing a motion command. Hence it caooot be used for motion planning. Planning 

algorithms such as collision avoidanee have to predict the effects of motion. Thus, odometry models are 
usually applied for estimation, whereas velocity models are used for probabilistic motion planning." 

We made use of the odometry model, since we had direct access to odometry measurements. A 

probabilistic odometry model, (k = f((k-v uk), cao be formulated as follows: 

[
xkl [xk-1] [cos(9k_1 + 0.5d9) 

(k = Yk = Yk-1 + sin(Bk_1 + O.Sd9) 
(}k (}k-1 0 

(A.2) 

where robot pose (k = (xk, Yk• Bk)T is a vector of Cartesian coordinates of the robot and its orientation 

wrt the global reference frame. dd is the amount of travel between measurements, dO is the amount of 

orientation change between odometry measurements taken at time k- 1 and k . For this model the system 

input is uk = (dd, d9)T. 

The uncertainty of the pose estimate (A.2) is computed basedon EKF as follows: 

(A.3) 

where L~x3 is the covariance matrix of pose estimate (k, 1/.~3 is the Jacobian of (A.2) wrt the robot pose, 

1~.~2 is the Jacobian of (A.2) wrt the system input, Q2 x 2 is the diagonal noise covariance matrix of the 

system input. 

1 S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics, Cambridge, MA. MIT Press, 2005. 
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2. Extended Kalman Filter 

The Kalman filter, is invented by R.E. Kalman in 1960, is a recursive filter that estimates the state of 
a linear dynarnic system from a series of noisy measurements. In other words, the Kalman filter is a 
technique for producing an optimal estimate of the system state based on the system and measurement 
models, the description of the system noise and measurement errors. Kalman filter can only be applied to 
linear systems, which is not the case for robotic systems. The EKF is developed to be applied on 
nonlinear systems. 

The EKF, so the Kalman filter, estimates the system state withits uncertainty. EKF is composed of 
two phases: prediction and update phases. In prediction phase, the effect of the noisy control input on the 
system is estimated. In update phase, the system state is updated with the noisy measurements. The 
update phase decreases, and the prediction phase increases, the uncertainty of the state. Definitions of the 
prediction phase and the update phase are given in (A4) and (A5), respectively. 

it = f(xt-v ut) 
~t = F'Lt-1FT + FuQFJ 

K = ~tH(H~tHT + R)-1 

Xt = Xt + K(Zt- h(it)) 
'Lt =(I- KH)~t 

(A4) 

(A5) 

where barred (-: ) parameters represent the predictions; Xt is the state and 'Lt is the uncertainty of the state 
at timet. Sirnilar to (A3), F and Fu are the Jacobians. h(it) is the measurement function which returns 
the estimated measurements according to the state estimate, and H is the Jacobian of h(it)· Zt is the 
measurement. R is the measurement noise covariance matrix. K is called as the Kalman gain. Note that 
(A4) is identical to the probabilistic motion model. 

In our method, we use separate EKFs in each stage. First phase takes in odometry data coming from 
the wheels of the robot, whereas the second phase takes in virtual odometry data, which is the output of 
first phase. Nevertheless, they are in the same form, thus we use (A.2) and (A3) in the prediction phase of 
both EKFs. We only use the robot pose as the state of the EKF. The measurement (zt) of both stages is 
the result of scan matching, which is in the same form with the robot pose. Thus, the measurement 

function h(it) is equal to (k and H is identity matrix. Consequently, the EKF algorithm which is used in 
our metbod becomes: 

(k = f((k-v uk) (A6) 
- T T 
Lk = h,k'Lk-1h,k + lu,kQlu,k 

K = ~k(~k + 'Ls,k) -
1 

(k = (k + K((s,k - ~k) (A7) 
'Lk =(I- K)~k 

where scan matching results, (s,k and 'Ls,k• are already shown in Fig.2. ofthe reference paper. 
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3. Relation Functions 

As described in Section 111.2 of the reference paper, a relation is a geometrie property of a feature. 
The re lation of a feature in the current scan is compared to the relation of the corresponding feature in the 
reference scan. The result of the comparison, called relation error, is used in error minirnization step. The 

relations of orientation (0) and the perpendicular distance from the origin (d) are defined for all features. 

The relations of end point coordinates (Xe, Ye) are only defined for features with definite edges. For each 
relation a function fr(D.() is defined, which returns the change of the geometrie relation when the robot 

pose changes with an amount of D.Ç = (D.x, D.y, D.O)T . Mathematically speaking, fr(D.() is equivalent to 
ar I aç where r is the geometrie relation function. For clarity of the following explanations, note that: 

• e = (D.x, D.y)T defined in coordinate frame I, (XvYl). 

• The coordinate frame 2, (x2 , y2), is obtained by translating the coordinate frame 1 to e and 

rotatingit 110. 

• The geometrie relations wrt the coordinate frame 2 are distinguished with a prime ( · '). 

• Geometrie descriptors of the features, e.g. cp .v d, Xe, Ye, are known from the line representation 
and are in coordinate frame 1. 

a. Orientation relation 

' ' ' ' ' ' ' ' ' ' ' ' ' 

Fig. I. Orientation relation. 

b. Perpendicular distance relation 

(A.8) 

(A.9) 

where, 
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c. End point relations 
(Xe,Ye) 

() 

R=P-ê 
R' = [cos/).() 

sin/).() 
-sin!:!()] R 
cos/).() 

frx(D.() = Xe - R~ 
fry(D.() = Ye - R~ 

4. Covariance Matrix Computation from Relation Errors 

(AlO) 
(All) 

In the error-rninirnization step of scan matching, it is not always possible to obtain zero error. 
Especially with scans taken at two different times, there will always be a non-zero error in the estimated 
transformation. We need to predict how large the error is. Therefore, we compute the uncertainty of the 
resulting estimate in the form of a covariance matrix, 1:8 ç. 

(A12) 

(Al3) 

where Wis the normalized weight matrix, Eis the diagonal matrix of squared errors and feiCei) is the 
transformation function of the coordinate frame based on the resulting error regarding to the ith relation. 
ei is taken as the relation errorbasedon the final transformation parameters, i.e. ei = fri(D.(). 

For each type of relation, a function fe is defined. feCea returns the required displacement of the 
coordinate frame (x11 y1), to satisfy the amount of error in relation while maintaining other geometrie 
properties constant. In other words, it is like inverse of fri(D.(). 

a. Orientation relation 

Input: e = D.4J, 
Constant geometrie properties: 
4J .1 = 4J ~ and X1 = Xz, Y1 = Yz 

(A14) 
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b. Perpendicular distance relation 

c. End point relations 
P' 

p/\., 
\ \ 

\ \\ t 
'.\\~(x,:!';l 

(XvY1) 

Input: e = L'l.d, 
Constant geometrie properties: 
<IJ J. = <IJ~ and 81 = 82 where (} is 
orientation of coordinate frame. 

Input: e = (L'l.x, L'l.y) T 
Constant geometrie properties: 
81 = 82 where (} is orientation of 
coordinate frame. 

fex(L'l.x) = (L'l.X, Q,Q)T 
{ey(L'l.y) = (O,L'l.y,O)T 

(A.l5) 

(A.l6) 
(A.I7) 

5. Determining End Point Variances from Variances of Polar Parameters 

For calculation of orientation and perpendicular distance relation weights, the variances, which are 
calculated in feature extraction, are directly used. The weights of the end point coordinates are computed 

from a;' a; , which are obtained from al, az via the following transformation (A.l8), (A.l9): 

Q] T 
2 • fxy 

aL 

[
iJfxefiJd iJfxefiJ<fJJ.] 

fxy = iJ[ye/iJd iJ[ye/iJ<fJJ. 

Xe= b(tan</Je- a)-1
, Ye = axe + b 

a = tan ( </J J. +i), b = dsin</J J. - adcos<fJ J. 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

where (xe, Ye) are end point coordinates, calculated in (A.20) as the intersection point of line t with 

y = tan (</Je)x line. In (A.21), conversion from known polar parameters to Cartesian parameters is done. 
Eventually, (A.22) is obtained by substituting (A.21) in (A.20). 
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I 
I 

~e 
I 
I 
I 
I 

' I 
', I 

d ',, kil 
' I ', \ ,.,... 

' 'f'.l 

(xo,Yo)', 

dsincp .l - d tan ( cp .l + !) coscp .l 
fxe(d, c/J .L• c/Je) = ( rr) 

tanc/Je - tan cp .l + 2 

6. Solution of Rank Deficiency Problem in Gauss-Newton Error 
Minimization 

(A.22) 

The errors of the relations are attempted to be rninimized in weighted least-squares sense by using 
Gauss-Newton method, given in (A.23), (A.24). 

~Ç = -UTWJ)-1 . 1TW . e 

1 
= [a fr_~: a x a fr.1.: ay a fr.1.: a el 

armfax atrnfay atrnfaO 

(A.23) 

(A.24) 

where e is the vector of relation errors, ~Ç = (~x, ~y, ~())T is difference vector between the 
transformation parameters on successive iterations, Wis the diagonal weight matrix and1 is the Jacobian 
ofsize n x 3. 

It is possible that all of the features, in the scan, lie in the same direction and there is not sufficient 
information in orthogonal direction to that. In such a case, the matrix multiplication Z = 1TW1 cannot be 
inverted due torank deficiency. Principal component analysis of Z returns the direction (t/J) which is not 
observable. We ornit the column, which causes the rank deficiency, in 1 and obtain ]*. As a result, 
z• = U*)TW]* will have an inverse and will rninirnize the error. However, the resulting translation 

vector P is expressed in robot coordinates. Unless the principal component directions coincide with the 

robot coordinates, P will include some arbitrary value in t/J direction. The arbitrary component bas to be 
elirninated for a reliable pose estimate. Fig.l . illustrates the situation. 
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' ' ' ' 
Fig. A.I . Rank deficiency solution. 

In Fig.A.l. (x0 , y0 ) is the robot reference frame. (xv y1 ) is the coordinate frame coïncident with the 
~ ~ 

principal component directions of Z. The arbitrary component of P, which is Px
1

, is taken to be zero, since 
~ ~ ~ 

there is no information in that direction. Then, Py
1 

is decomposed to components (Rxo• Ry
0

) in reference 

frame (x0 , y0). Eventually, the updated result of error rninirnization becomes l1Ç = ( Rxo• Ry
0

, M)) r_ 

Rank deficiency in Z also affects the covariance matrix Lt.Ç . Since, there is no information in 1/J 
direction, Lt.ç will have a zero eigenvalue pointing to 1/J direction. In order to rnaintaio the consistency of 

covariance matrix with the pose estimate, we change that eigenvalue with a constant non-zero value, 
which represents a constant uncertainty in that direction. 
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Appendix B 
Contents 

1. Laser scanner hardware 
2. Distance measuring 
3. A laser scan example 

Introduetion 

Apart from the presented paper, some work is done on a laser scanner module. This report 
explains the developed laser scanner module. The structural properties of the module, theoretica! and 
practical methods used for distance measuring and an example of a 360 degree scan are explained in 
detail. Due to timing restrictions, no SLAM experiments are done with the constructed laser scanner 
module. Nevertheless, feature extraction tests are done and presented in the following chapters. 
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1. Laser Scanner Hardware 

The laser scanner module is formed of two sub-modules. These are a pan-tilt unit, which is used for 
360 degree rotation, and a laser range finder setup, which is duplicated from the work of Konolige1

• 

a. Pan-Tilt Unit 

A pan-tilt unit of model PTU-46-17.5, which is produced by Directed Perception (USA), is used for 
actuation. Fig.B.l. shows the pan-tilt unit. It bas two degrees of freedom, i.e. pan and tilt motions. The 
lower motor is used for the pan motion and the up per motor is used for the tilt motion. In Fig.B .1. there is 
a camera, which we do not have, mounted on the unit. The unit bas a height of lScm. The base plate area 
of the unit is 12cm x 12cm. 

Fig.B. l.Pan-Tilt Unit. 

The pan-tilt unit bas its own position controller. Velocity and acceleration of the motor is adjustable. 
We are using the unit at the highest allowable velocity and acceleration values. The embedded controller 
generates a trajectory as soon as the new position order is received. 

Communication with the unit is achieved via serial port of the computer (RS232). Simple commands 
are sent to the unit to move the motor to a desired position. The unit sends signals to inform that a 
cammand is processed. A simple driver is built for achieving the two-way communication. 

b. Laser Range Finder 

The laser range finder setup bas been built in Philips Apptech. An ordinary laser beamer, which ernits 
laser with maximal SmW optica! power, at 635nm wavelength, and a uEye UI1226LE-M camera bebind 
a red-passing filter are used. A feasibility study was made about usage of the principle for mobile robot 
navigation. Fig.B.2. shows the laser range finder setup. The setup bas a height of Bern. Di stance 

measuring is achieved at the height of Scm. The base plate area ofthe setup is 8cm x lScm. 

1 K. Konolige, J. Augenbraun, N. Donaldson, C. Fiebig and P. Shah, "A low-cost laser distance sensor," Proc. IEEE 
Int. Conf Robotics and Automation, Pasadena, CA, USA, May 2008. 
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Fig.B.2. Laser range finder setup. 

The laser range finder uses triangulation principle to measure the distance. Fig.B.3. illustrates the 
triangulation principle. In Fig.B.3. the distance s and the angle p are structural properties. The focal 
distance of the imager (camera) is denoted by f. The reflection angle of the laser ray on the imager 
changes according to the di stance, between the object and scanner, denoted by q. The di stance x on the 
imager provides a measure for the real distance q. 

lmag~ 

····. 
··•··. 

. ... 
Fig.B.3. Triangulation principle. The distance to the object is given by 
the angle of the laser spot in the image. The distance x in the image is 
measured between the ray parallel to the laser beam and the ray from 
the object. [Konolige] 

For our setup, s is 60mm and P. is 82 degrees. The focal di stance of the camera is 16mm and pixel 
size is 611m. According to Konolige, with these parameters, the minimum distance we can measure is 
23cm. The theoretica! maximum distance is determined according to a sensitivity limit. By expecting to 
be able to resolve the laser dot on the image within 0.1 pixelsorbetter [Konolige], the maximum range 
becomes 6m. At that range, 0.1 pixel change on image corresponds to 27mm in distance. With the same 
expectation, our setup is supposed to measure distances up to 7m. However, due to robustness concerns 
the maximum measurable range dropstoa distance between 200cm and 250cm. At this range, 0.1 pixel 
change on image corresponds to 3mm in distance. 
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2. Distance Measuring 
a. Laser Scanning 

Laser scanning is executing the distance measuring operation at several angles. Multiple angle 
measurement is realized by rotating the laser range finder device with the pan-tilt unit. At each angle, an 
image is captured and the image is processed to find the distance. 

The camera is located bebind a red-passing filter. This filter suppresses non-red light, but having a 
filter is not sufficient to suppress other objects in the image. The laser is a highly-dense and relatively 
high power light, so even with a low exposure time; it is visible in the image. We set the exposure time to 
the lowest possible value, namely 0.30ms, to capture the laser reflection clearly while not having any 
other objects in the image. 

The laser beam reflects from the dosest surface and a "white dot" appears in the camera image. As 
the distance to the reflecting surface increases, the "white dot" travels to left on a horizontal line. 
Therefore, by measuring the position of the "white dot" on the image, one can determine the distance to 
the surface. Processing the whole image is unnecessary, so we erop the image to process. Around the 

horizontal line which the "white dot" moves along, 5 pixels are cropped out as the region of interest. 
Fig.B.4. shows how the camera images and the regions of interest look like. 

(d) _,. ..., (e) 

Fig.B.4. Camera images at various distances. The red arrows indicate the white dots. (a) Full image at 30cm. (b) Full image at 60cm. 
(c) Full image at 120cm. (d) Region of interest at 30cm. (e) Region of interest at 60cm. (f) Region of interest at 120cm. 

The region of interest (ROl) is a bitmap which can be treated as a matrix of size 5 x 752. In order 

to measure the distance, we compute the center of mass of the "white dot" in the ROL It is expected that a 
"white" region will always exist in the ROl, if the object, from which the laser reflects, is between the 
minimum and maximum measurable distances. Nevertheless, as the distance increases the size and the 
brightness of the "white dot" decreases; and eventually the white dot disappears befare reaching the 
maximum distance. Thus, existence of a white dot in the ROl is not guaranteed as well as the brightness 
of the dot. Consequently, a robust center of mass measuring algorithm has to be implemented. After 
calculating the position of the "white dot" in pixels, a nonlinear calibration function is used to convert a 
pixel value to distance. 

A software library is built in C# environment for laser scanning operations. Conneetion to the pan-tilt 
unit, image capturing, image processing and distance calibration etc. are done within the library. 

27 



b. Center of Mass Algorithm 

The relation between the position of the "white dot" and the real distance is mathematically well­
defined. However, due to the discrete image it is oot possible to know the exact position. The only way to 
estimate the position of the "white dot", is calculating the center of mass of the white dot. 

In grayscale bitmaps, white represents the highest value, 255, and black represents the lowest value, 
0. In the camera images, the laser reflection is so strong that it usually appears as white. However, it is oot 
guaranteed that the laser reflection will always appear as white in the image. The brightness of the 
reflection depends on the distance, the orientation of the surface, the color of the surface etc. There is 
also noise existing in the image. The algorithm is needed to distinguish between noise and reflection, and 
to compute the center of mass of the brightest region compared to the rest of the image. The algorithm is 
as follows: 

Let, /9 be the region of interest of the captured image at an angle 9. 19 is a matrix ofm rows and n 
columns which comprises the bitmap. Let, t9 be a vector of length n. Fig.B.S. shows an example of t 9 • 

m 

io,k = L lo,j,k for k = 1,2 ... n 
j=l 

(B.l) 

where io,k represents the k-th element of t9 and lo,j,k represents the j-th row, k-th column element of 19 . 

Pixel; 

Fig.B.S. An example for vector ï;. Horizontal axis represents the 
index (pixel) values. 

Let, ILo be the meao value of the data lii and a9 he the standard deviation of t9 . 

n 

ILO = .!_ "" ie k nL · 
k=l 
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n 1' 2 ae = ;;L (ie,k -lle) 
k=l 

Fig.B.6. shows a zoom in view of the peak shown in Fig.B.S. 

Fig.B.6. A closer view to the peak. 

Let, Me be the maximum value of te and me is the smallest index position of Me in te. 

(B.3) 

The mass, of which center is going to be used, is defined around me. As shown in Fig.B.6., there is 
one region, shaded with red color. The red region is limited from above by the vector values and from 
below by lle + ae. This region is called as the mass. According to Fig.B.6., ae is defined as the smallest 
(leftmost) index of the mass, be is defined as the greatest (rightmost) index of the mass. The center of 
mass is shown as ce which is defined as: 

L:~a/ie.k · (k- me)) Ce = me + __ ....::........,b _____ _ 
~ 8 0 

L..k=ae te.k 
(B.4) 

In theory, the ce value must be in between 0 and n. However, due to hardware limits and concerns 
about reliability of the algorithm, the range cannot be entirely exploited. 

In our case, the raw image is of size 480 x 752 (row x col) and the ROl, Ie, is of size 5 x 752 
( m x n) which is cropped around row 270. Consequently, the vector te has length of n = 752. 
According to the experiments, the range of Ce is between 50 and 715. However, the sensitivity of ce with 
respect to distance change is very small at lower values, so the lower range is shifted to 90 for reliable 
operation. 
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c. Calibration 

Konolige defined the calibration formula as follows. The parameters are described in Fig.B.3. 

fs 
q=­

x 
(B.5) 

According to the formula x is the position of the reflection on the camera sensor in 11m, f s is in 
mm2 and q is in cm. The output of the center of mass algorithm is pixel values instead of length, as x . 
The conversion from pixel value, p, to x is x = 0.06 · p where x is in 11m. 

Despite the assumption that f and s values known exactly from the structure and they are constant; 
during the calibration tests, it is figured out that they are not constant as expected. This result might be 
due to the imperfect structure of the laser scanner, or it indicates that the formula neglects some other 
parameters. Eventually, a function is fitted for fs values according to results of calibration tests. 

For calibration, two range sweeps are done with two different reflecting surfaces, in other words, the 
measurable range is sampledateach 10cm and measurements are taken with one white and one black 
object. The result is presented in Fig.B.7. 
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Fig.B.7. Result of calibration tests. 

The residuals in measurements are shown in Fig.B.8. In the figure, blue and red bars correspond to 
black and white surface measurements, respectively. 
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Fig.B.8. Calibration residuals. 

In order to stick to the formula which theory showed (B.5), a rational function is fitted for fs values, 

to eliminate the square sum of errors. Fig.B.9. shows the distribution of fs values. 

0.02756p2 + 949.6p + 19780 
fs(p) = p + 8.676 
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d. Reliability of Results 

Center of Maas (pixer 

Fig.B.9. Fitted function on fs values. 

(B.6) 

Not all of the measurements are as reliable as any other. Based on many factors, such as the 
brightness of the environment, the illumination of the object, the color of the object, the surface 
orientation of the object or the distance to the object etc., the properties of the "white dot" may change. 
Therefore, it is handy to know how eertaio a measurement is. 

During the scan, places out of the measurable range will not reflect any laser light, so no mass will 
exist in the image to find the center. In such a case, the algorithm may return any value due to noise in the 
image. Thus, out-of-range and low-reflectance surface measurements are totally unreliable and must not 
betaken into consideration. In commercial range finders, regardless of the principle they employ, there is 
not a reliable metbod to detect false measurements. 
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In our approach, it is possible to define a reliability measure in terrns of contrast of the "white dot" 
relative to the black region in the image. We call the reliability measure as confidence value. The 
confidence value is between 0 and 1. A confidence value of 1 means the measurement is very clear and 
almost certain, while 0 means the measurement is totally unreliable, even random. The confidence value 
of a measurement taken at angle () is defined as follows: 

fle + O'e 
Ce = 1 - --'---'­

Me 
(B.7) 

Equation (B.7) is guaranteed to he between 0 and 1, since statistically it is guaranteed that the 
maximum value will remaio outside of the 1a confidence region. Experimentally, it is determined that 
confidence values greater than 0.55 can he considered as reliable. The lirniting confidence value 
corresponds to a mass which has a maximum value of 2.2 times the 1a confidence value. 

Fig.B.lO. shows some measurement examples and their confidence values. As the distinctiveness of 
the peak becomes poor, the confidence value decreases. 

103 ~----r-----r-----~----~----,-----~----~~ 

100 400 
Index 

--d=63cm C=0.93 
--d=33cm C=O.B5 
--d=200cm C=0.57 
--d=48cm C=0.36 
--d=78cm C=0.19 

Fig.B.l 0. Measurements and corresponding confidence values. Logarithm of the vertical axis is taken for visual purposes. 
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3. A Laser Scan Example 

A 360 degree scan with a resolution of 0.5 degrees is performed in an office environment with 
regular-shaped (geometrie) objects. The results are as follows: 
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Fig.B.ll. Raw measUJ-ement in series order. Columns represent fö . Dark blue 
corresponds to black regions while dark red corresponds to white regions. 
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Fig.B.l2. Processed and calibrated measurements. Red dots are the reliable measurements 
while blues are unreliable ones. 
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Fig.B.13. Confidence values ofthe measurements. Reliability threshold is taken as 0.55. 
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Fig.B.14. The measurements are drawn in Cartesian space. Reliable measurements are shown in red. 
The robot is shown in (0,0) . The black shapes represent the original map of the environment. 
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Fig.B.IS . Extracted features from the reliable measurements. The robot is shown in (0,0) . 

From SLAM point of view, the significanee of the reliable measurement concept is that one does not 
need to distinguish between noisy measurements and true measurements. By simply utilizing the 
confidence values, one can extract or match features easily. Moreover, the confidence concept also 
eliminates misinterpretation of irregular-shaped features. In other words, if there was no measure of 
reliability of scans, a feature extraction/matching algorithm might easily consicter the irregular-shaped 
feature as a false measurement of a regular-shaped feature, or vice versa. 
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