
 Eindhoven University of Technology

MASTER

A secure communication model for the pacemaker
a balance between security mechanisms and emergency access

Ibrahimi, S.

Award date:
2014

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/eb1a64f8-70da-4ccd-8fc2-7e3ffaf5eab4

A S E C U R E C O M M U N I C AT I O N M O D E L F O R T H E PA C E M A K E R

A balance between security mechanisms and emergency access
sarah ibrahimi

For the degree of Master of Science in Information Security Technology

Department of Mathematics and Computer Science
Eindhoven University of Technology

Deloitte Amstelveen

August 2014

Examination Committee:
dr . nicola zannone

dr . tanir ozcelebi

ir . jeroen slobbe

Sarah Ibrahimi: A secure communication model for the pacemaker, A balance between
security mechanisms and emergency access, final version, c© August 2014

A B S T R A C T

Currently, millions of people worldwide are supported by implantable medical de-
vices (IMDs). These devices can have life-saving functionalities and carry a lot of
personal data. In this work, the focus is on a specific IMD: the pacemaker. Despite
the storage of sensitive information, pacemakers do not have security or privacy re-
lated measures to protect these data. This can have serious consequences since an
attacker can easily access the device and change its settings which leads to irregular
behavior of the heart and in the worst case cause death. As far as we know, no harm-
ful attacks on patients with pacemakers have happened, but nevertheless we assume
this as a serious problem with high consequences. This risk can be dramatically de-
creased by protecting the communication between a pacemaker and a programmer.
However, during an emergency the pacemaker should be directly available for medi-
cal treatment, since safety of the patient is the most important.

In this thesis, we address the following research question: "How can we define a
system that provides confidentiality and integrity of sensitive information during the com-
munication between a pacemaker and a legitimate programmer, while ensuring availability of
information in case of an emergency?"

Based on challenges related to this system, we define the requirements that are
necessary for an optimal solution for this situation. An optimal solution that fits all
requirements is hard to reach. As a result, we develop two solutions for the problem.
Our first solution is directly applicable on the current situation and uses an external
device to provide security. Although, most requirements are achieved, the use of an
external device that the patient always has to carry is undesirable, since they can
forget it or it can be stolen or broken.

For this reason, we present a second solution with more requirements, which does
not use an external device. We propose a protocol for mutual authentication and
secure communication between the pacemaker and the programmer. We prove that
this protocol is correct according to a well known protocol verifier ProVerif and we
make a cipher analysis to decide what cryptographic cipher will be used for the
protocol. To complete both solutions, we provide details about the key management
system. For the second solution, we present a new method for key generation that
fits the requirements of the environment, is cheap and provides the security that is
necessary. This key management system is innovative in the sense that no static keys
need to be stored on medical devices, because it is a form of dynamic key generation.

To answer the research question, a new proposal related to emergency access is pro-
vided. We developed a way for the pacemaker to function as an emergency detector.
By composing a set of parameters that are relevant for emergency cases, we define
a system that can deal with emergencies itself and does not need the use of crypto-
graphic keys during an emergency. We discuss the benefits of this system compared
to other solutions and we present a proposal how this idea should be completed in
future work.

Keywords: pacemaker, security, emergency access, energy consumption.

iii

A C K N O W L E D G E M E N T S

I would like to take this opportunity to thank people who supported and advised me
along the way.

First, I would like to thank Dr. Nicola Zannone for being my supervisor and being
involved in the process from the beginning until the end. Nicola provided me with
lots of feedback during my writing process and he helped me with finding a suitable
structure for my research. Nicola was always willing to help me back on to the right
track when I was exploring the direction of my research. Second I would like to
thank Dr. Alexandru Egner who joined the meetings with Nicola in a later stage of
the project for sharing his knowledge about medical device security.

I would also like to thank Ir. Jeroen Slobbe and Dr. Trajce Dimkov, who are my
supervisors at Deloitte. Their feedback and especially their experiences with research
on medical devices were valuable to me.

Next, I want to thank Cardiologist Dr. Ward Jansen, who told me about treatments
for patients with pacemakers, the equipment and his experience with emergency
situations.

Furthermore, I would like to thank my colleagues at Deloitte from the Cyber Risk
Services team who were willing to discuss my research with me and who made a
pleasant working environment. I especially want to thank my colleague Piet Kerkhofs
for the inspiring discussion sessions, which helped me to think out of the box.

Also, I would like to thank Ir. Marno van der Maas for reading through my thesis
and providing me with useful comments as being an independent reader without
being involved in my research.

Finally, I would like to thank my family, friends and fellow students for supporting
me during the process of writing this thesis and for relating to me with similar
experiences.

v

C O N T E N T S

1 introduction 1

2 settings 5

2.1 Scenario description . 5

2.2 The general setting . 6

2.3 Pacemaker . 6

2.3.1 IMDs . 8

2.3.2 IMD architecture . 9

2.3.3 Pacemaker architecture . 10

2.4 Programmer . 11

2.5 Telemonitoring system . 11

3 attacker model and challenges 13

3.1 List of concepts . 13

3.2 Attacker capability model . 13

3.3 Vulnerabilities . 14

3.4 Threats . 14

3.5 Attacks . 15

3.6 Challenges for ensuring securing the pacemaker 17

3.6.1 Emergency access . 17

3.6.2 Energy consumption . 17

4 related work 19

4.1 Close-range communication . 19

4.2 Proxy vs non-proxy communication . 20

4.2.1 Solutions without a proxy . 20

4.2.2 Solutions with a proxy . 23

4.3 Emergency access . 28

4.3.1 Emergency access for close range communication 28

4.3.2 Emergency access for solutions without a proxy 28

4.3.3 Emergency access for solutions with a proxy 28

4.3.4 Emergency-based solutions . 29

4.3.5 Break-The-Glass . 30

4.4 Discussion . 30

5 requirements and assumptions 33

5.1 General assumptions . 33

5.2 Requirements for an optimal solution . 33

5.3 Discussion . 35

6 proxy-based solution 37

6.1 Assumptions . 37

6.2 Requirements . 37

6.3 Architecture . 39

6.4 Communication protocol . 40

6.4.1 Mutual authentication . 40

6.4.2 Secure communication . 42

6.5 Discussion . 42

vii

viii contents

7 shared secret based solution 45

7.1 Assumptions . 45

7.2 Requirements . 45

7.3 Architecture . 46

7.4 Communication protocol . 48

7.4.1 Mutual authentication . 48

7.4.2 Secure communication . 49

7.5 Security analysis . 49

7.5.1 ProVerif . 49

7.5.2 Protocol verification . 50

7.6 Analysis of ciphers . 52

7.7 Discussion . 53

8 key management 55

8.1 Proxy-based solution . 55

8.2 Shared secret based solution . 58

8.3 Construction of the session key and the MAC 60

9 emergency access solutions 63

9.1 Emergency solution for the proxy-based system 63

9.2 Emergency solution for the shared secret based system 63

9.2.1 The pacemaker as an emergency detector 64

9.2.2 Alternatives . 69

10 conclusions & future work 71

10.1 Conclusion . 71

10.2 Future work . 72

10.2.1 Implementation details . 72

10.2.2 Emergency access . 72

bibliography 73

a appendix a : proverif code 77

a.1 Input . 77

a.1.1 Mutual authentication . 77

a.1.2 Secrecy . 78

a.2 Output Proverif . 79

a.2.1 Mutual authentication . 79

a.2.2 Secrecy . 80

L I S T O F F I G U R E S

Figure 1 The general architecture of the current system. 7

Figure 2 The architecture of the overal system of an IMD [13]. 9

Figure 3 The architecture of a cardiac IMD. 11

Figure 4 The equipment setting from the research setting [20]. 17

Figure 5 A new architecture for cardiac IMDs [12]. 21

Figure 6 A new architecture for IMDs [40]. 22

Figure 7 The Shield Architecture [17]. 24

Figure 8 A full duplex radio [17]. 25

Figure 9 The use of the Guardian [43]. 26

Figure 10 The architecture of the proxy-based solution. 39

Figure 11 The mutual authentication protocol for the proxy-based solution. 41

Figure 12 The secure communication protocol for the proxy-based solution. 42

Figure 13 The architecture of the shared secret based solution. 47

Figure 14 The mutual authentication protocol for the shared secret based
solution. 48

Figure 15 The secure communication protocol for the shared secret based
solution. 49

Figure 16 The key management life cycle. 56

Figure 17 The process of key storage. 56

Figure 18 The architecture in an emergency situation. 64

Figure 19 A PQRST complex of an ECG. 66

Figure 20 Changes in the PQRST complex. 66

Figure 21 A finite state diagram. 68

ix

L I S T O F TA B L E S

Table 1 Possible attacks and their appearances. 15

Table 2 A comparison of existing solutions. 32

Table 3 Assumptions for an optimal solution. 34

Table 4 Requirements for an optimal solution. 35

Table 5 Assumptions for a proxy-based solution 38

Table 6 Requirements for a proxy-based solution. 38

Table 7 The notation for a proxy-based solution. 41

Table 8 Technical requirements for a shared secret solution. 46

Table 9 The notation for a shared secret solution. 48

Table 10 An overview of characteristics from block ciphers. 52

Table 11 The notation for a Time-Based One-Time Password. 58

x

L I S T I N G S

Listing 1 ProVerif Input Mutual Authentication 77

Listing 2 ProVerif Input Secrecy . 78

Listing 3 ProVerif Output Mutual Authentication 79

Listing 4 ProVerif Output Secrecy . 80

xi

A C R O N Y M S

BCC Body Coupled Communication

BTG Break-The-Glass

DoS Denial of Service

ECG Electrocardiogram

HIPAA Health Insurance Portability and Accountability Act

HOTP HMAC-Based One-Time Password

ICD Implantable Cardiac Defibrillators

IMD Implantable Medical Device

MAC Message Authentication Code

MICS Medical Implant Communication Service

MITM Man In The Middle

NFC Near Field Communication

OWASP Open Web Application Security Project

PSD Personal Security Device

PV Physiological Value

RF Radio Frequency

RFID Radio Frequency Identification

RSSI Received Signal Strength Indcator

TOTP Time-Based One-Time Password

USRP Universal Software Radio Peripheral

WISP Wireless Identification and Sensing Platform

xii

1
I N T R O D U C T I O N

Nowadays, millions of people worldwide are supported by an implantable medical
device (IMD) [13]. These IMDs are able to monitor and treat physiological conditions
in the body when the body is not able to function normally. Functions of IMDs can be
therapeutic or life-saving and are related to various parts of the body. As an example,
pacemakers and implantable cardiac defibrillators (ICDs) are used for cardiac disabil-
ities, insulin pumps are used for the therapy for diabetes and deep brain implants
provide treatment for patients with Parkinson. Because of these implanted devices,
support can be regulated automatically without visiting a doctor.

At least once a year, people carrying an IMD need to visit their doctor for a treat-
ment at the hospital. During this treatment, the status of the device is checked and
settings of this device can be adjusted to the functionality of the organs of the patient.
These checks and adjustments can be done by a programmer, a device that commu-
nicates with an IMD by using radio frequencies. Details of this treatment are logged
on the IMD and can be stored on or printed by the programmer.

The number of IMD technologies is increasing together with its specification and
functionality. Important personal data is stored on the IMD and the IMD acts as a
life-saving solution. Despite this, most IMDs do not have security or privacy related
measures. One of the reasons might be that attacks in this field are rare. There are
no publicly known cases from people noticing attacks on their IMDs or incidents
where can be stated that an attacker was involved. Nevertheless, some events are
alarming. In 2007 and 2008, several attacks on epilepsy websites happened [10]. By
injecting rapidly flashing images, epilepsy was triggered by visitors of the website.
From these type of events, it is reasonable to conclude that there exist malicious
parties who are willing to hurt patients via computer-based attacks. Furthermore,
the market for second hand medical equipment on eBay is growing [11]. This makes
life easier for attackers.

The lack of security mechanisms can have serious consequences. Assume the fol-
lowing scenario, a person with an implanted pacemaker is in a crowded area. In the
area, there is an adversary with malicious intent. With the right equipment, he or she
can imitate the behavior of a legitimate programmer. With this equipment, an adver-
sary is able to communicate with the pacemaker, by asking for data on the pacemaker
or to change its settings. This is already possible from a few meters of distance. In
the worst case, it is even possible to stop the stimulation of the pacemaker that can
lead to irregulations of the heartbeat which can cause death.

There are several security mechanisms that could prevent this type of situations.
By authenticating both the pacemaker and the programmer and by encrypting all the
data sent by these two devices, attacks can be prevented. However, current research
shows that IMDs do not use any of these security mechanisms and these devices are
easy accessible for people with the right equipment [45] [13]. For cardiac IMDs, it is
shown that an adversary of an IMD with the right equipment is able to read, interfere
and change the data communication [20].

1

2 introduction

In general, a solution to protect systems for these types of attack is by the use of
security protocols with strong cryptographic mechanisms. In theory, it is possible
to add these extra layers of security to the IMD, but there are several limitations.
The first one is the limited storage and battery capacity. Because of the small size of
the device and the fact that the device is implanted in the body, there is only space
for small hardware components. Furthermore, batteries cannot easily be replaced.
Because of this, computations required for cryptography and storage of long keys
should be reduced to a minimum. The second important limitation is that security
mechanisms should not block the main functionality of the IMD. In all situations,
safety of the patient is a first priority. In case of an emergency, safety of the patient
is more important than security of the communication. In this situation, an IMD
should be immediately accessible, but only by a legitimate programmer and not by
an attacker. For example, when a patient is on vacation and needs to be treated
in another hospital during an emergency situation, the device should be directly
accessible by every medical staff member who can help. The use of cryptographic
keys increase the difficulty to access the device.

Several agencies address the relevance of solutions for this problem. For example,
the Government Accountability Office (GAO) states that the manufacturer of defib-
rillators has the main role in describing the means in which the defibrillator can be
accessed [18]. It should define access-control policies related to authorizing access,
selecting the basis for restricting access and selecting the access control method. The
manufacturer should establish controls for protection against unauthorized wireless
access to the pacemaker. Furthermore, the manufacturers should establish emergency
access procedures and describe who is authorized to have emergency access and how
the emergency mode of the system is reached. Although stated by the GAO, none of
the manufacturers comply with these guidelines.

During the last decade, more and more researchers have been trying to find solu-
tions for a balance between safety and security aspects of IMDs. These are related to
hardware failures, software errors, radio attacks, malware, vulnerability exploits and
side-channel attacks on IMDs. The main focus in this research area is on radio attacks.
Zhang et al. [45] signalize three main approaches for solutions for radio attacks: (i)
close-range communication to ensure authorized treatment, (ii) the use of cryptogra-
phy in IMDs and (iii) the use of external devices to ensure security properties without
modifying current IMDs.

Several researchers present architectures for IMDs with energy efficient compo-
nents as Wireless Identification and Sensing Platforms [12] or Smart Implant Security
Cores [40] to make implementations of cryptographic mechanisms possible. Solutions
as the Cloaker [10], the Shield [17] and the IMDGuard [43] use an external device that
the patient has to carry to add security layers to the IMD without making any hard-
ware modifications to the IMD and without increasing the energy consumption of
the device enormously.

Although several solutions have been proposed over the years, most of them are
incomplete, proven to be vulnerable for certain attacks or need enormous design
changes to the IMD. Most of these solutions provide security in regular situations, but
in case of an emergency there is open access for everyone to the device. Furthermore,
one of the largest disadvantages is that some solutions make use of a proxy, which

introduction 3

the patient always has to carry. This puts the complete responsibility on the patient.
Currently, there is no solution available on the market for patients carrying an IMD.

research question

In this thesis, we further analyze the balance between safety and security issues for
the IMD and we propose a new system providing the required security requirements
while keeping in mind the challenges related to the type and functionality of the de-
vice. The focus is on the pacemaker and design decisions is based on the architecture
for this type of IMD. In particular, this thesis aims to answer the following research
question:

How can we define a system that provides confidentiality and integrity of sensitive infor-
mation during the communication between a pacemaker and a legitimate programmer, while
ensuring availability of information in case of an emergency?

To answer this research question, we divide it in two parts:

1. What system can provide confidentiality and integrity of sensitive information during
communication between a pacemaker and a legitimate programmer?

2. How can emergency access be assured in this system?

Since the design of the pacemaker is proprietary, little information about the details
of its architecture is publicly available. This limitation makes it difficult to provide
a solution that fits the current architecture of the pacemaker. Reversing the function-
ality of a pacemaker by simulating its behavior is a large and difficult task by itself
and therefore out of the scope of this project. The research question is answered by
making use of the information that is publicly available in the literature. Because of
this, we answer the first research question by defining two types of systems. The first
system is based on the information we know about the architecture of the pacemaker
that is currently available. This system is directly applicable on the pacemaker that
is already implanted in the body. Since manufacturers do not reveal much about the
components of the pacemaker, the system is not able to cover all the requirements.
Therefore, we define a second system which covers more requirements, but requires
certain components in the architecture. By making realistic assumptions about the
architecture of the pacemaker based on modern technologies, a system can be made
that solves the lack of security mechanisms in the future. An important aspect of
the solution is the key management related to this. We describe a new method to
generate and use dynamic keys for this system.

The second subquestion is answered for both systems by presenting two emergency
access solutions. The solution for the second system is a new approach without the
involvement of cryptographic keys.

This thesis focuses on the pacemaker and its related radio attacks, considering the
communication between a pacemaker and a programmer. Hardware failures, soft-
ware errors, malware and vulnerability exploits and side-channel attacks as described
by Zhang et al. [45] are out of the scope of this project. Furthermore, any form of
physical security is out of scope of this research.

4 introduction

outline

This thesis consists of the following chapters:

chapter2 consists of an overview of all the components of the system on the cur-
rent market with its structure and functionality. This section presents the func-
tional aspects of an IMD.

chapter 3 describes the most common attacks related to pacemaker, together with
the challenges this type of devices carry.

chapter 4 consists of a literature study of the most promising existing solutions
and techniques that address the same or a comparable problem. Furthermore,
emergency access for all these solutions is discussed.

chapter 5 consists of the assumptions and requirements for an optimal solution
and shows why an optimal solution is not feasible.

chapter 6 proposes a proxy-based solution for the problem. Assumptions and re-
quirements are introduced, together with the design of the system and the pro-
tocols that are used.

chapter 7 presents a shared secret based solution for the pacemaker. It contains the
assumptions and requirements of the solution, a new protocol and its security
analysis according to a protocol verifier. Furthermore, an analysis of various
ciphers is added.

chapter 8 presents key management methods for both systems. This chapter con-
tains details about the most important phases of the lifecycle of cryptographic
keys and focuses on the process of key generation.

chapter 9 presents two main emergency solutions for both systems and introduces
a new technique for the second system.

chapter 10 gives a conclusion and directions for future work.

2
S E T T I N G S

This chapter provides an overview of the general architecture of the system together
with a description of its main components: the pacemaker, the programmer and the
telemonitoring system. We describe the architecture of these devices and explain the
functionality of different components.

2.1 scenario description

In this section, we present two use cases related to different types of treatment. The
first use case is about treatment in a general situaton. The second use case describes
treatment during an emergency.

Use case 1

In general, a patient carrying a pacemaker visits the hospital for the regular cardiolo-
gist once or twice a year to check the status of the pacemaker. During the treatment,
a medical staff member uses a programmer from the same manufacturer of the pace-
maker to read out the data stored on the pacemaker about its activity in the last
period of time. Depending on this data and the current status of the heart, the med-
ical staff member can adapt therapy settings of the pacemaker. When the treatment
is finished, the programmer and the pacemaker contain a log file with information
about the treatment and changed settings. This information is collected in an archive
of the patient. This archive can be stored digitally in the back-end system of the
hospital or in printed form in the hospital.

In some cases treatment does not only consist of visits to the hospital, but also
involves telemonitoring at home. A telemonitoring system is a system that is placed
in the home of a person carrying a pacemaker. The telemonitoring device checks the
state of the pacemaker on regular basis. This may be daily, weekly or monthly. After
doing the checks, this information is sent in encrypted form over the Internet to the
hospital where regular treatments happens [25]. Here, the related cardiologist can
look at the results of the telemonitoring and invite the patient for a new treatment
session in the hospital if this is needed.

Use case 2

When considering emergencies, three main types of emergency situations for patients
with a pacemaker can be distinguished:

• A patient visits the hospital because of abnormal behavior of the heart. The doc-
tor should be able to read out the history of the data recorded by the pacemaker
or modify settings.

5

6 settings

• A patient visits the hospital because some part of the pacemaker is broken or
does not function as it should do. The doctor should be able to read out the
settings in the pacemaker, look at its log history and change the settings. In this
situation, it might even be necessary to replace the pacemaker by a surgery.

• If the patient requires an operation in case of an emergency or a scan with an
MRI and he or she has a pacemaker, the pacemaker must be deactivated before
the operation in order to prevent unintentional shocks to the patient.

In case of an emergency, a check is done if the hospital has the correct equipment
from the same manufacturer as the pacemaker to communicate with the device. This
is checked by a card from the manufacturer that the patient is always carrying in
his or her wallet. If the correct equipment is available, treatment is given. Otherwise,
the patient is brought to another hospital with the right equipment. In case the pace-
maker has to be turned off, this can be done by using a programmer or by placing a
magnet on the body of the patient close to the pacemaker. This reduces the activity
of the pacemaker. Afterwards, the logs of the treatments can be sent to the hospital
where the patient is treated regularly or it can be given to the patient in printed form.
This depends on the hospital, since there are no standard agreements worldwide for
this.

2.2 the general setting

For a treatment of a patient with a pacemaker, the setting is as presented in Fig-
ure 1 and consists of a pacemaker, a programmer, a telemonitoring system and the
back-end system. Note that the programmer and the telemonitoring system are never
physically together, since the programmer is in the hospital and the telemonitoring
system at home of the patient. During this treatment, the programmer and the pace-
maker are constantly communicating with each other.

When the treatment is finished, log files related to the treatment go to the back-
end system or it can be stored in printed form in the hospital. In the first case, the
information can be sent to the local system, it can be saved on USB sticks or floppy
disks or it can be sent over the Internet. In case of a physical back office located in the
hospital, a printer can be directly connected to the progammer and the information
in log files can be printed. During regular checks at home, the telemonitoring system
retrieves data from the pacemaker and sends this to the back-end system from the
hospital.

In the remainder of the chapter we present the main components of the architecture.

2.3 pacemaker

A pacemaker is a particular type of IMD. This section first describes the characteriza-
tions and the components of an IMD in general. Then, pacemaker specific details are
discussed.

2.3 pacemaker 7

Figure 1: The general architecture of the current system.

Legend
1: The telemonitoring system requests the pacemaker for data and may be able to configure
this device.
2: The pacemaker sends its data to the telemonitoring system.
3: The telemonitoring forwards the data from the pacemaker to the back-end system of the
hospital.
4: The programmer configures the pacemaker and requests data stored on the pacemaker.
5: The pacemaker sends the data to the programmer.
6: The programmer forwards the data to the back-end system of the hospital.
7: The back-end system may send data to the programmer about previous treatment sessions.

8 settings

2.3.1 IMDs

The European Council Directive 90/385/EEC defines an active implantable medical
device as "any active medical device which is intended to be totally or partially intro-
duced surgically or medically into the human body or by medical intervention into a
natural orifice, and which is intended to remain after the procedure." [8] Its function
is described in the definition of a medical device which means "any instrument, ap-
paratus, appliance, material or other article, whether used alone or in combination,
together with any accessories or software for its proper functioning, intended by the
manufacturer to be used for human beings in the:

• diagnosis, prevention, monitoring, treatment or alleviation of disease or injury,

• investigation, replacement or modification of the anatomy or of a physiological
process,

• control of conception

and which does not achieve its principal intended action by pharmacological, chemi-
cal, immunological or metabolic means, but which may be assisted in its function by
such means." [8]
As a consequence of implantation by a surgery, the communication between the IMD
and an external device is wireless. This communication is needed in the first place
for the configuration of the IMD, for example to change the therapy for the IMD.
Furthermore, communication with an external device is needed to diagnose the IMD,
extract history information about treatments and incidents and to update the IMD
firmware.

Ellouze et al. [13] divide IMDs into two classes. The first class contains medical
devices that are fully implanted in the body of the patient as pacemakers. The second
class integrates medical devices that are partially implanted such as the insulin pump
system. Part of the components are implanted in the body, other parts are external
to the body. In both classes, the IMDs could be completely autonomous or require
human intervention to adjust the therapy or to approve some undertaken reactions.

Furthermore, they describe the functionality of an IMD [13]. Traditionally, the IMD
and the programmer communicate using the inductive telemetry. This is based on
inductive coupling between the IMD coils and the programmer coils. This type of
communication has several limitations including a short communication range and a
limited data rate to exchange, which is less than 50 kbps. Modern IMDs communicate
wirelessly with programmers using the radio frequency (RF) telemetry. It happens
through the 402-405 MHz Medical Implant Communication Service (MICS) band,
established in 1999 by the U.S. Federal Communications Commission [13]. Because
of the use of MICS, larger communication rangers were possible and these had a
higher data rate as a consequence.

IMDs have several computational and storage resource constraints, because of their
batteries with limited lifespan. They execute energy-aware algorithms to remain op-
erational as long as possible, since replacing a battery requires a surgery and is unde-
sirable. In most cases, the whole IMD is replaced instead of only replacing the battery.
The lifetime of the IMD highly depends on the patient’s health. The more the patient
shows abnormal physiological conditions over time, the more the IMD will react and
apply therapy, which results in a high energy consumption.

2.3 pacemaker 9

Figure 2: The architecture of the overal system of an IMD [13].

2.3.2 IMD architecture

The generic architecture of an IMD is presented in Figure 2. Below we provide an
overview of its components [13].

• Sensor devices: a set of sensors is implanted in the human body to measure
physiological parameters to evaluate the health status of the patient and to
determine the therapy that has to be delivered. The processing unit will process
the performed measurements.

• Battery: this part is responsible for powering the IMD components. Depending
on the type of IMD, the battery is non-rechargeable or powered inductively.
In general, a power management approach is implemented to optimize power
consumption to maximize the battery lifespan or time between recharges.

• Memory: this has the form of a programmable memory, e.g. electrically erasable
programmable read-only memory or flash memory. The memory stores col-
lected measurements, history of detected health abnormalities and therapy set-
tings.

• Processing unit: this unit executes software built in three different layers. The
first layer is the communication code, which generates the uplink bits and
detects the down-link bits. This level manages the communication between
the IMD and the programmer. The second layer manages the state of the RF
transceiver and the power consumption. The third layer implements the IMD
functions as sensing, data processing and stimulation.

• Stimulator: this unit takes care of therapy delivery based on sensed informa-
tion. Stimulation parameters are set by the doctor during a treatment. This
determines the therapy to be delivered to the patient.

• MICS transceiver: this enables wireless communication with the IMD program-
mer. It mainly consists of three components: a 400 MHz transceiver, a 2.45 GHz
wake-up receiver and a media access controller. As described before, it operates
under the 402-405 MHz MICS band.

• Wireless identification and sensing platform (WISP): this is a powerless device
that receives its energy from the incoming RF signal and can be read by ultra-
high-frequency radio frequency identification (RFID) readers. It contains a fully

10 settings

programmable 16 bit microcontroller that is able to execute cryptographic algo-
rithms using the harvested energy. Nowadays, only part of the IMDs on the
market carry this component.

• Implantable medical device programmer: this component in the overall archi-
tecture of the system is used to communicate with IMDs, to adjust therapy,
diagnose the IMD or change its settings.

2.3.3 Pacemaker architecture

A pacemaker is an IMD that delivers a controlled, rhythmic electric stimulus to the
heart muscle in order to maintain an effective cardiac rhythm for long periods of time
[19]. Implanting a permanent pacemaker and selection of the appropriate mode of
operation are based on the type of cardiac disease as a failure of impulse formation
(sinus syndrome) and/or impulse conduction (AV-block). The connection between
the heart and the implanted pulse generator is provided by an implantable electrode
catheter, a lead. This is connected to the heart muscle and serves as a stimulator and
a sensor device at the same time. There are different types of pacemakers [21]:

• A Single Chamber Pacemaker: this type has one lead that is placed in the right
upper chamber (atrium) or the lower chamber (ventricle).

• A Dual Chamber Pacemaker: this type has two leads, one in the atrium and one
in the ventricle.

• A Biventricular Pacemake: this type has three leads, one in the right atrium,
one in the right ventricle and a third in the left ventricle.

• A Rate Responsive Pacemaker: this type of pacemaker adjusts the heart rate
to a patient’s level of activity. It paces faster when a patient is exercising and
slower when a patient is resting.

According to Ellouze et al. [12], a regular cardiac IMD consists at least of four
components that are visible in Figure 2:

• A battery to power the other components.

• A memory to store collected measurements, the history of abnormalities detec-
tion and therapy settings.

• A stimulator in charge of delivering therapy that collects electrocardiogram
signals.

• A 400 MHz transceiver to enable the wireless communication with the pro-
grammer. This is part of a microcontroller which has a functionality that is not
further dicussed in the literature.

A pacemaker has an average lifetime of 5 to 10 years, depending on its type and
the frequency that it needs to regulate the heart. In case the battery is almost empty,
the whole device is replaced in most of the cases. The size of the pacemaker is ap-
proximately 5 by 5 cm and 1 cm thick. At least once a year, the functionality and the
estimated lifetime of the implanted pacemaker is checked at the hospital.

2.4 programmer 11

Figure 3: The architecture of a cardiac IMD based on [12].

2.4 programmer

A programmer is a device that communicates with the pacemaker with radio fre-
quencies in the MICS band and functions as a personal computer by running a user-
friendly operating system. Implanted pacemakers have a micro-antenna which is able
to communicate with an external transmitter. Some programmers have a receiver or
wand attached by a wire which is positioned on the body’s to receive the telemetry
signal from the pacemaker. The programmer is able to read information stored in the
logs of the pacemaker, to read information about its current status and to modify its
settings.

During a visit to the hospital, the programmer is used by a doctor or a programmer
technician to change the therapy for the pacemaker and to see if any unexpected
events happened. This is only possible if both the pacemaker and the programmer
are from the same manufacturer.

2.5 telemonitoring system

The telemonitoring system is a device that either communicates with the pacemaker
on the Industrial, Scientific and Medical (ISM) band from 902-928 MHz or on the
MICS band in the same way as the programmer does [25]. This device is placed at
the home of the patient to assure patient safety, to identify abnormal behavior of
the heart and to optimize the patient’s quality of life. Furthermore, it identifies and
corrects abnormal device function, identify the end of life of the battery and monitor
various alerts. Telemonitoring may be divided in two types of monitoring: remote
follow-up and remote monitoring [25]. During remote follow-up device data is trans-
ferred from the patient to the physician’s office or to the central data processing
center in a predetermined scheduled time using the wand or a transmitter, the sim-
ilar type of object that is attached to a programmer. Remote monitoring consists of
unscheduled transmission of the predefined alerts. The data from the device is trans-
mitted and the cardiologist is notified, according to predefined settings. Only part
of the new telemetry systems is able to execute bidirectional telemetry. Here remote
interrogation and remote programming of the pacemaker can be done. The collected
data is sent in encrypted form by a standard analog phone line or by wireless GSM
connection [25].

3
AT TA C K E R M O D E L A N D C H A L L E N G E S

This chapter gives an overview of the vulnerabilities, threat agents and attacks that
are related to IMDs and are applicable to the pacemaker. Furthermore, challenges
related to emergency access and energy consumption are presented.

3.1 list of concepts

Based on OWASP [30, 31, 32], we define a vulnerability, a threat agent and an attack
as follows:

• Vulnerability: a vulnerability is a hole or weakness in a system that allows an
attacker to cause harm to the stakeholders of the system. It can be a design flaw
or an implementation bug.

• Threat agent: a threat agent is someone who is able to take advantage of a vul-
nerability in a system and can cause a negative impact on the system and its
stakeholders.

• Attack: an attack is a sequence of actions a threat agent performs to exploit a
vulnerability in a system.

3.2 attacker capability model

IBM [2] distinguishes three classes of attackers: clever outsiders, knowledgeable in-
siders and funded organizations. Clever outsiders are often intelligent, but may have
insufficient resources and knowledge of the system. They may have access to only
moderately sophisticated equipment and they try to take advantage of an existing
weakness in the system. Knowledgeable insiders are able to operate on their own,
have specialized education and experience and understand parts of the system. We
assume that they have sophisticated tools and instruments for their analysis. Funded
organizations are able to assemble teams of specialists with related skills by funding
resources. They are able to do in-depth analyses of a system, to design sophisticated
attacks and use advanced analysis tools[2].

In this research, we consider knowledgeable insiders as possible attackers of the
pacemaker. They are able to operate on their own, have specialized education and
experience and understand parts of the functionality of the pacemaker and the pro-
grammer. They have knowledge about the communication stream between the pro-
grammer and the pacemaker, for one or more types of pacemakers. They can buy
a second hand programmer, for example from eBay or they can steal one from a
hospital. Although pacemaker programmers are expensive when offered by the man-
ufacturer, several types are available on eBay [11] within the price range from $65 to
$1750. They can also use their self made equipment consisting of a Universal Software
Radio Peripheral (USRP) [20]. A USRP is commercially available by Ettus Research

13

14 attacker model and challenges

[14] and varies in price range between $675 and $4.800. In both cases, an attacker is
able to communicate with a pacemaker according to a certain communication proto-
col. Since every manufacturer develops his or her own communication protocol, an
attacker will probably not be able to communicate with all types of pacemakers.

3.3 vulnerabilities

The system architecture of the pacemaker and its environment presented in Chapter
2 are subject to several vulnerabilities, related to data storage and communication.
Considering the pacemaker and the programmer, we can distinguish three types of
main vulnerabilities:

A The programmer does not require any form of authentication before usage.
By turning on a programmer, it can be accessed and controlled by every person
who knows how this programmer works. The only protection provided in cur-
rent settings is a form of physical security. Programmer are usually stored in a
room for example with a key that is only carried by authorized medical staff
and a security officer. This type of physical security depends on the design of
hospital buildings and the specific policies for each hospital. This is out of the
scope of this research.

B The pacemaker does not verify the legitimacy of the programmer.
By using a programmer, a communication link with the pacemaker can be estab-
lished without using a PIN or any other form of authentication. The pacemaker
only responds to radio frequencies in the range 402-405 MHz without checking
if the device requesting is a programmer and even more specific, a valid pro-
grammer. In the logs stored on the pacemaker, there is an option to store who
accessed the device, but the use of this option depends on the rules set up by
the institution.

C The communication between the programmer and the pacemaker is not encrypted.
The data between the programmer and the pacemaker is sent in plaintext. With-
out using any form of encryption, privacy sensitive data is sent in the clear and
can become publicly available.

3.4 threats

Threats can be divided in three categories related to the security aspects: confiden-
tiality, integrity and availability. Regarding to confidentiality, we can distinguish two
types of threat agents:

1. Someone who wants to read out data about abnormal physical activities, his-
toric treatment or the current status from the pacemaker or programmer. This
happens by reading the logs.

2. Someone who wants to intercept data on the channel during treatment.

Integrity-related threats are based on the modification of data stored on a device or
data sent during communication. Three types of threat agents can be distinguished:

3.5 attacks 15

3. Someone who wants to change the data in logs stored on the pacemaker or the
programmer

4. Someone who wants to change the current status of the pacemaker

5. Someone who want to change the data on the channel during treatment

Threats related to availability are important, since the system needs to be available at
all times. The two most important availability-related threat agents are:

6. Someone who wants to block the communication channel between the pace-
maker and the programmer during treatment

7. Someone who wants to send unnecessary requests to the pacemaker to drain
the battery

3.5 attacks

Combining both Sections 3.2 and 3.3, leads to different types of attacks. These are
presented in Table 1, where V stands for the vulnerabilities listed in Section 3.2 and
T for the threat agents listed in Section 3.3.

V

T
1 2 3, 4, 5 6 7

A Man in the
Middle

B Man in the
Middle

Man in the
Middle

DoS DoS

C Eavesdropping Man in the
Middle

Table 1: Possible attacks and their appearances.

A description of each of these attacks is now given.

eavesdropping attack

This type of passive attack is related to confidentiality. Using a USRP, an adver-
sary can eavesdrop the exchanged messages both between the programmer and
the pacemaker as between pacemaker components as wireless sensor devices
and the MICS transceiver [20]. In addition, other equipment such as an oscillo-
scope, a software radio or directional antennas can be used for this. Since the
messages in this communication are not encrypted, the adversary can analyze
them and extract sensitive exchanged data. This can include the pacemaker
identification information, physiological data related to the patient’s health,
therapy specification and the history of given treatments.

man in the middle (mitm) attack

In this wide range of active attacks related to integrity and confidentiality, an at-
tacker intercepts and modifies the communication between the pacemaker and

16 attacker model and challenges

the programmer. Related attacks can be executed using a USRP or an unau-
thorized programmer. An adversary is able to establish a connection him or
herself between a pacemaker and his or her own equipment, if he or she knows
the communication protocol. After obtaining unauthorized access, an adver-
sary could execute unauthorized commands to stop the medical treatment by
the pacemaker, modify the pacemaker’s firmware, drift the pacemaker’s clock,
delete data stored on the pacemaker or disable the pacemaker. To make attacks
difficult to detect, attackers could alter, hide or delete data that reveals attacks.
These data consist of the log generated by the pacemaker and the pacemaker’s
clock that timestamps different logged information. By changing these times-
tamps, malicious activity can be seen as part of a regular treatment.

A replay attack is a type of a MITM related to integrity. In this attack, a valid
data transmission is maliciously or fraudulently repeated or delayed. By delay-
ing messages and changing their order, treatment to the patient can be stopped.
Certain request messages from a valid programmer can be overwritten by the
equipment from the attacker, when attacking at the correct time.

dos attack

This type of active attack is related to the availability of the pacemaker. Various
types of denial-of-service (DoS) attacks can be performed to force the pace-
maker to respond to every request. These DoS attacks, as repetitive sending
of request messages to connect to the pacemaker, lead to resource depletion
and could drain the pacemaker’s battery. Examples of DoS attacks are jamming
attacks and buffer overflow attacks.

By jamming the signal exchanged between the pacemaker and the program-
mer, an attacker is able to prevent the pacemaker from receiving the required
configuration or delivering the logged events. In case where the pacemaker is
required to communicate with wireless sensors, a jamming attack would pre-
vent the pacemaker from collecting sensitive events from sensors and it would
prevent the pacemaker from delivering the adequate therapy or reacting appro-
priately.

Halperin et al. [20] show that these attacks are realistic for cardiac IMDs. They
test the security of an implantable cardiac defibrillator (ICD) that uses the 175 kHz
frequency range for communication. Since the ICD shares most of the functionality
of the pacemaker, it is reasonable to assume that these attack scenarios are appli-
cable to the pacemaker. Several weaknesses of the system are presented. First, the
ICD discloses sensitive information in the clear (unencrypted). Second, some possi-
ble attacks are able to change the operation of and information contained in the ICD.
These attacks fall into the category replay attacks. With these attacks, it was possible
to disclose patient and cardiac data, to set the ICD’s clock and to change therapies
[20]. Third, an ICD can be forced to communicate with an unauthenticated device,
which can drain the battery and be a potential DoS attack. To execute these attacks,
they used the equipment according to the setting in Figure 4. This consists of two
hardware tools to intercept the RF signals emitted by the ICD and the programmer:
a recording oscilloscope and a USRP.

3.6 challenges for ensuring securing the pacemaker 17

Figure 4: The equipment setting from the research setting [20].

3.6 challenges for ensuring securing the pacemaker

Adding security layers to the communication between the pacemaker and an external
device brings several challenges. These are related to emergency access and energy
consumption.

3.6.1 Emergency access

In case of one of the emergency situations as described in Section 2.1, a doctor needs
to communicate with the pacemaker using a programmer. With the current pace-
maker settings, everyone with a programmer from the same manufacturer as the
pacemaker is able to communicate with the pacemaker in an emergency situation.
This is undesirable, since attackers can access the pacemaker in this case. In con-
trast, if we encrypt all the data in the communication between a programmer and a
pacemaker and let programmers authenticate to the pacemaker at the start of each
treatment, unauthorized access would not be possible. However, it is difficult to de-
termine who is authorized and how to give right permissions. During general treat-
ments, only the cardiologist treating the patient needs authorization. However, in
case of an emergency, a medical staff member from another hospital in the same
country or even abroad needs to get access to the pacemaker to treat the patient. It is
undesirable that getting access to the device takes much time.

As a solution, various researchers present fail open access for emergency situations
[43]. Here, the pacemaker or another device distinguishes between a regular situation
and an emergency situation and provides access for everyone in case of an emergency.
However, if an attacker is in proximity of the patient in this situation, he or she is
able to access the pacemaker. Burleson et al. [6] claim that a medical professional
may need to reprogram or disable an IMD to effectively treat the patient in case of
an emergency. Encryption or other authentication mechanisms could make measures
during emergency impossible if the patient is unconscious or if the programmer does
not have the required cryptographic key to access the IMD.

3.6.2 Energy consumption

Rostami et al. [38] recognize three ongoing trends related to energy challenges for
IMDs. First, IMDs are becoming complex and need more power for new therapeutic
and monitoring functionality. Second, the IMDs are collecting more data from new

18 attacker model and challenges

sensors that monitor the patient’s health, which requires power intensive wireless
communication. Third, strong security protocols for authentication require the use of
cryptography and require a lot of computation power.

On the one side it is clear that various security aspects of the IMDs should be
improved to protect sensitive data of patients and to provide them with a safe en-
vironment. On the other side, improvements in battery lifetime and computation
power needs to be used in improving the functionality of the device, its lifetime and
to decrease its size.

Although energy consumption is an important aspect of IMDs, the focus in this
research will be more on emergency access. Currently new techniques are coming up
and might solve the energy consumption in the very near future. For example, induc-
tive charging offers the possibility of relaxing the energy constraints and avoiding the
complications and costs associated with replacing batteries for medical implants [44].
This form of wireless charging is still in a research phase, but can be the future for
IMDs. Since emergency access depends less on new technological developments for
components in the IMD and is more a challenge for the design of the overall system,
we will focus on emergency access in the rest of the research.

4
R E L AT E D W O R K

This chapter presents the main trends in the literature related to the security of the
IMD and its communication with the programmer. Both solutions for close range
communication as for regular communications are presented. For the last category,
solutions without a proxy and with a proxy are discussed. Furthermore, solutions
related to emergency access are presented.

4.1 close-range communication

To minimize the number of attacks on the radio communication between the IMD and
the programmer, the communication range between the IMD and the programmer
can be limited. Several types of solutions have been proposed in this area by Zhang et
al. [45]. Radio-frequency identification (RFID) and near-field communication (NFC)
are presented as possible solutions, but there exist attacks for these solutions. An
adversary with equipment as a strong transmitter and a high-gain antenna can attack
a wireless channel only for RFID-based communication. NFC might be more effective,
since it has a working distance up to 20cm. However, there is no guarantee that
an attacker with high-gain antenna cannot read the signal from outside this range.
A common used technique, which is also proposed for RFID is distance bounding.
Distance-bounding consists of a single-bit challenge and a rapid single-bit response
[5]. Based on a series of rapid bit exchanges, a delay time for response is computed
by the receiver and can lead to an upper-bound on the distance. Applied to IMDs,
this is part of a broader technology called body-coupled communication (BCC) [45].
This uses the human body as a transmission medium and its communication range
is limited to the proximity of the human body. It works at low frequencies from
10 kHz to 10 MHz and can only achieve very low data rates. Also measures can
be taken to enforce close-range communication in addition to short-range physical
communication layers. However, limiting the communication range is only effective
when radio attacks are launched from beyond a certain distance.

Rasmussen et al. [36] state that access control solutions based on close-range com-
munication have an advantage of being simple and intuitive, but they do not provide
any firm guarantee about the range of communication. If an attacker has a strong
transmitter and a high-gain antenna, he or she will be able to communicate with the
IMD from far outside the intended range. Existing solutions are based on magnetic
switches, but they do not require any authentication to unlock access. Rasmussen et
al. propose a new mechanism based on ultrasonic distance-bounding which enables
an IMD to grant access to its resources only to devices in its close proximity. Mes-
sages are cryptographically tied to the distance bounds measured by the IMD, to the
device that requests access.

The security range defined in the IMD is set to a distance less than 10 cm. In
this scheme, access control is based on device pairing. During this process, a pairing
protocol will run and will generate a shared key. The reader acts as a prover, who

19

20 related work

has to prove its proximity to start the data transfer. The IMD is the verifier, that must
verify the distance to the prover before accepting the connection.

The system distinguishes two modes of operation: a normal mode and an emer-
gency mode. In the normal mode of operation, the credential token that shares a
secret key, that the patient carries, is used. When a doctor needs to access the IMD,
he or she gets credentials from the patient and provides it to the reader. The proximity
aware device pairing protocol runs and afterwards each party has the assurance that
the other party is in the security range and has derived a key that is used to secure
future communication. The emergency mode of operation is discussed in Section 4.3.

Although MITM attacks are difficult to be executed because of the ultrasonic dis-
tance bounding protocol, where a secure pairing is possible only if the reader is ap-
proximately 3cm away from the IMD, this solution has some disadvantages according
to Ellouze et al. [13]. The device pairing protocol requires high energy consumption
to be executed, because of the computational complexity of the Diffie-Hellmann key
agreement protocol. This is undesirable for an IMD. Also, since the solution does not
take the update of parameters into account, they can become vulnerable to cryptanal-
ysis attacks when they are used extensively.

4.2 proxy vs non-proxy communication

Several types of solutions for securing the communication between a programmer
and an IMD are presented in the literature. These solutions can be divided in two
main categories: solutions without a proxy and solutions with a proxy.

4.2.1 Solutions without a proxy

This type of solutions relies on the implementation of cryptographic algorithms to
protect the communication between a programmer and an IMD. For this purpose,
energy-efficient components with computation power are added. Furthermore, the
protocols used for these systems need to be as less energy consuming as possible.
Examples of these approaches are using block ciphers, radio frequency energy har-
vesting and a smart implant security core. Solutions with these approaches will be
discussed in the following subsections.

4.2.1.1 Block cipher based security

Beck et al. [4] present a block cipher based security protocol with two modes. A
stream mode that aims to minimize the radio duty cycle while maintaining basic
security and a session mode that provides strong security for highly sensitive infor-
mation and a role-based user authorization scheme. The stream mode is used for the
transmission of very short messages and uses the output feedback mode to obtain a
scalable stream cipher that enables a strict duty cycling of the IMD’s radio for maxi-
mum energy efficiency. The session mode uses cipher-block chaining in combination
with a challenge response mechanism. This mode is useful when the IMD connects to
an external base station. The system provides role-based authorization by assigning
a specific private key to each individual user group. This key is linked to a set of
rules that regulate the permitted and prohibited operations of the user.

4.2 proxy vs non-proxy communication 21

Figure 5: A new architecture for cardiac IMDs [12].

The scheme is designed for Artificial Accomodation System. This is a micro-mechatronic
implant meant to replace the natural eye lens in case of a cataract. This IMD should
have a duration of 30 years which is very long. As a consequence, the designers
should be aware of threats in the future, which might not be known nowadays. Within
30 years, the keysize might be too small because of the computational power of new
computers. Beck et al. present the solution as meeting all the security and privacy
requirements related to confidentiality, integrity and availability, but they do not give
any proof of this, neither do they present implementation details for the specific
device. In addition, they do not discuss a solution in case of emergencies.

4.2.1.2 Radio frequency energy harvesting

Ellouze et al. [12] propose a solution based on new components of the architecture of
cardiac IMDs. This would allow the system to perform radio frequency energy har-
vesting to enforce secure key generation and authentication. They make use of an en-
hanced Wireless Identification and Sensing Platform (WISP) which is able to execute
complex functions using the harvested energy. The IMD programmer is equipped
with an RFID reader to communicate with the WISP and a cardiac sensor to capture
the patient ECG. A powerless mutual-authentication protocol is used to allow secure
access both in regular situations as in emergency situations. To perform authentica-
tion, a biometric key is simultaneously computed by the WISP, embedded in the IMD
and the programmer. The key is extracted from the ECG signal and is used to derive
master and session keys.

A buffer of readings, a WISP and an enhanced programmer with an RFID reader
and a set of cardiac sensors are added to the current architecture of the cardiac IMD.
The new architecture is presented in Figure 5. The RFID reader is used to interact
with the WISP to execute the powerless mutual authentication protocol. The first
time the programmer tries to access the IMD, there are no preshared credentials yet.
Secure mutual authentication is achieved when the IMD and programmer share a
biometric key, which is dynamically and securely generated during access starting

22 related work

Figure 6: A new architecture for IMDs [40].

from the ECG. The regular mode is used when both the IMD and the programmer
share the same credentials in a validity period.

After mutual authentication, the devices communicate using a session key, com-
puted in the authentication protocol. Each message sent by the programmer contains
a cookie to protect against DoS attacks. By using nonces and a sequence number, the
freshness of the message can be determined and the IMD can react in different ways
on the type of freshness to improve the life of the battery.

Ellouze et al. claim that their solution is resilient to battery draining attacks, be-
cause of their powerless mutual authentication protocol and robustness against de-
synchronization attacks and the use of sequence numbers and cookies. Furthermore,
their solution prevents against replay attacks, is resilient to brute force attacks and
guarantees perfect forward secrecy, which ensures that the compromise of one master
key will not allow an adversary to predict the subsequent master keys. It is only able
to deduce session keys derived from the compromised master key. Since the architec-
ture of the IMD and the programmer needs to be drastically changed and needs to
be tested thoroughly, it is not realistic that this type of IMD will be on the market
within a reasonable amount of time.

4.2.1.3 A smart implant security core

Strydis et al. [40] propose an implant system architecture for an IMD where security
and the main-implant functionality are made decoupled by running the tasks on
two separate cores. For the wireless communication, a smart implant security core
(SISC) is used, which runs an energy efficient security protocol. This core is powered
by RF harvested energy until it performs external-reader authentication to provide
a defense mechanism against battery DoS attacks and other attacks. The proposed
solution consists of a new system architecture, a secure communication protocol for
shielding IMDs and a security processor. Strydis et al. assume jamming attacks never
occur. Figure 6 presents the architecture of the solution.

For the symmetric encryption scheme, a 64 bit lightweight block cipher MISTY1

is used. This cipher is suitable for implants since it uses low power consumption,
low energy cost and a high encryption speed. The system is protected against replay
attacks, MITM attacks, eavesdropping attacks and DoS attacks. This solution needs a
drastic change of the architecture of the pacemaker and switching to the emergency

4.2 proxy vs non-proxy communication 23

with more access rights is possible in regular situations as explained in Section 4.3.2.
Therefore, this solution is not ready for immediate use.

4.2.2 Solutions with a proxy

A technique often presented to preserve battery IMD power is to use a trusted ex-
ternal device to verify incoming requests. Because the burden of computation is
offloaded to the external device, this approach can protect the IMD against battery-
draining attacks.

4.2.2.1 Communication Cloakers

Denning et al. [10] present the so called Communication Cloakers as a solution. A
Cloaker is an externally worn device, like a computational Medical Alert bracelet.
The general idea of the Cloaker approach is to provide security when the patient
is wearing the Cloaker and provide fail-open access to all external programmers
when the patient is not wearing a Cloaker. In this model, the patient has to wear the
Cloaker during his or her everyday life. During regular clinic visits, the Cloaker will
only allow pre-specified, authorized commercial programmers to interact with the
IMD. The Cloaker acts as a third party mediator in the IMD’s communication with
external programmers.

The communication between the IMD and the Cloaker would be encrypted by
using symmetric-only cryptography. This to prevent replay and reordering attacks.
Then the Cloaker can proxy the communications between the programmer and the
IMD or the Cloaker can hand-off a lightweight access credential to the programmer.
Since the Cloakers have replaceable batteries and greater computational power than
the IMD, the Cloaker can take the cryptographic operations on it and its public keys.
One of the difficulties is how to detect the Cloaker if it does not have a fixed format.
A solution for it is to incorporate a pulse-sensing unit in the Cloaker and define it
as being present. There are different approaches for the IMD to detect the Cloaker’s
presence. These can be categorized in a stateless approach and a stateful approach.
In a stateless approach, the IMD queries the Cloaker when it detects an external
communication request. In a stateful approach, the IMD keeps an internal record of
the Cloaker’s presence and can periodically update this record, based on the presence
or absence of successful keep-alive messages. Both the IMD and the Cloaker can
initiate the keep-alive messages. The use of a Cloaker as a proxy seems promising
and is applied in several solutions that will be discussed in the rest of this subsection.
Most of these solutions require no or minimal changes to the architecture of the
IMD, which makes them almost directly applicable. Unfortunately, several of these
solutions are shown to be vulnerable to attacks.

4.2.2.2 A Personal Security Device

Pournaghshband et al. [34] present a Personal Security Device (PSD). This is a portable
device improving security for mobile medical systems. Its use requires no changes
to the medical device or its monitoring software and offers protection for certain
types of attacks. The PSD should be aware of the suite of wireless mobile medical
devices used by the owner. Furthermore, it has built-in knowledge of their security

24 related work

Figure 7: The Shield Architecture [17].

properties and vulnerabilities. The PSD augments the security of the owner’s devices
by adding authentication and encryption to data streams. When a medical device
communicates with a hospital monitoring system, a PSD can be used as an over-
lay between the two components. Here, the link between the PSD and the hospital
monitoring system can be secured, but the link from the medical device to the PSD
remains unsecured. Furthermore, the PSD cannot prevent the device from pairing
with untrusted systems. In this case, the PSD is able to listen to the signals sent by
the device. It is unclear what the PSD does with this information. Although the solu-
tion is presented for Bluetooth communication, the idea can be extended to medical
devices of other radio technologies, by equipping the PSD with that particular radio
technology capability to connect to the device.

Resulting from their own security analysis, Pournaghshband et al. state that the
PSD does not protect against Bluetooth jamming between the PSD and the involved
system, but does detect this. The solution is also vulnerable to MITM attacks on
the communication line between the PSD and the device. They state that additional
security mechanisms can prevent this, but this requires altering or rebuilding the
device.

4.2.2.3 A Medical Security Monitor

Zhang et al. [44] propose a medical security monitor MedMon, that snoops on the
radio-frequency wireless communications to or from medical devices. It uses multi-
layered anomaly detection to identify transactions that are potentially malicious.
MedMon takes response actions ranging from passive to active. It can be applied
to existing medical devices without modifying the hardware or software.

MedMon addresses the loss of integrity, but not the loss of privacy, since the at-
tacker may passively listen to transmissions to or from the medical device. Therefore,
this solution does not protect against eavesdropping attacks. Furthermore, MedMon
does not address the attacks on availability, since attackers may jam the wireless
channel rendering any communication impossible or intentionally send invalid pack-
ets to drain the device’s battery life. Also, this solution does not consider emergency
situations.

4.2.2.4 The Shield

Gollakota et al. [17] present a design in which an external device, called the shield,
is placed between the IMD and the other party (e.g. a programmer). The architec-
ture with the shield is shown in Figure 7. The shield can be worn on the body near

4.2 proxy vs non-proxy communication 25

Figure 8: A full duplex radio [17].

an implanted device. It uses a physical-layer mechanism for securing its communi-
cation with the IMD and a standard cryptographic channel to communicate with
other authorized endpoints. To provide confidentiality for the IMD’s transmissions,
the shield continuously listens for those transmissions and jams them so that they
cannot be decoded by eavesdroppers. To protect the IMD against commands from
unauthorized endpoints, the shield listens for unauthorized transmissions address-
ing the IMD and jams them. A full-duplex radio (Figure 8) is built together with
a jamming antenna and a receive antenna, as a small wearable device. This system
provides both confidentiality for IMD’s transmissions and protects IMDs against com-
mands from unauthorized parties, all without modifying the IMD. The shield works
as a relay between the IMD and the programmer. It receives and jams IMD messages
at the same time, so others cannot decode them. It encrypts the IMD message and
sends it to the legitimate programmer. All commands from the programmer should
be encrypted and sent to the shield first, then the shield sends legitimate commands
to the IMD. In this situation, the IMDs do not need to change in their design, but the
programmers. Because of the encryption of the communication between the program-
mer and the shield and since the messages from the IMD are jammed, confidentiality
of the IMD messages is achieved. However, for commands from the programmer to
the IMD, confidentiality is not achieved. Moreover, the full duplex radio does not
provide specific support for access in emergency situations.

Ellouze et al. [13] state that the shield jams every unauthenticated packet, so the
verification of its checksum at the IMD level fails. This does not prevent the IMD
from losing energy to read forged packets. Sending several unauthenticated packets
can have battery draining as a consequence.

4.2.2.5 The IMDGuard

Xu et al. [43] present a solution with an ON/OFF switch to control security protec-
tions and switch between emergency and non-emergency situations. They notice two
challenges in this configuration: first, no secret should be pre-deployed inside the
IMD. In this way situations where the user is unable to recall the secret and needs to
rekey the IMD are avoided. Second, there has to be a reliable method to prevent an

26 related work

Figure 9: The use of the Guardian [43].

adversary from convincing the IMD that the external device is absent. The IMDGuard
is a security scheme for implantable cardiac devices, including ICDs and pacemakers.
As a Cloaker, the IMDGuard leverages the Guardian, which is an external wearable
device, to coordinate interactions between the IMD and the doctor. This happens in
a way that provides the security in a regular condition and safely allow access in an
emergency.

Xu et al. propose an information-theoretic secure extraction scheme for ECG based
key agreements and a security protocol for the architecture that uses external devices
as an authentication proxy to protect the IMD. Compared to the fail-open approach of
the Cloakers, this design avoids the periodic message broadcasting which consumes
considerable battery power and exposes the patients to privacy risks. It protects the
IMD without an assumption on the adversary’s transmission capability and it is com-
prehensive. In Figure 9, the use of the Guardian is shown.

The Guardian is a wearable device with more power and computational resources
than the IMD. It works as a proxy for the IMD and performs the authentication on
its behalf. Both the Guardian and IMD are capable of measuring ECG signals. Xu et
al. make the assumption that there is no adversary in an emergency situation. They
classify the attacks in two types: the first is when the adversary tries to impersonate
the Guardian and in the second, the adversary may spoof the absence of the Guardian
to switch to the emergency mode.

The Guardian performs two essential functions. First, it is used to control which
mode the IMD should enter: regular or emergency. In regular mode, the programmer
that will interact with the IMD will first be authenticated by the Guardian, which will
then issue the appropriate keys to the IMD and programmer. Second, the Guardian
will authenticate the programmer on behalf of the IMD. They do not assume that the
IMD must associate exclusively with one Guardian. It needs to be initialized by shar-
ing a secret key between the IMD and the Guardian, such that they recognize each
other. In case the Guardian is broken or lost, a new Guardian can be paired easily
with the IMD without retrieving the old key or resetting the IMD. They also assume

4.2 proxy vs non-proxy communication 27

that the Guardian has a list of legitimate programmers and their corresponding pub-
lic keys that will be used in case of non-emergency mode.

The basic IMD protocol for this system is as follows. The IMD periodically wakes
up to determine whether there is a request from the programmer. When the IMD
receives a request, the IMD sends its ID and a random nonce to the programmer and
starts a timer to wait for the Guardian. If the Guardian is present and responds during
the timer, the regular condition protocol mode will run. When the Guardian does
not respond before the timer times out, the IMD will run the emergency condition
protocol.

Rostami et al. [38] show that this protocol is vulnerable to MITM attacks, since the
effective key length of the key used in the encryption can be reduced from 129 bits
to 86 bits. Nowadays, it is possible to brute force this key with available equipment.
Furthermore, Ellouze et al. [13] show that the system is vulnerable to DoS attacks, by
replaying a certain response of the guardian. Replayed messages should be decrypted
by the IMD before it can decide to reject it or not. With this type of attack, it is possible
to drain the battery.

4.2.2.6 Analysis of proxy-based solutions

Denning et al. [9] study a fundamental gap between the development of technical
mechanisms that could protect the security of medical devices and the security de-
fenses that all parties, including the patients and doctors, will accept. They suggest
three relevant security properties for IMDs: authorized clinical access, emergency ac-
cess and security in the sense that no unauthorized person should be able to change
settings or view information on the patient’s IMD.

They present four different technical security approaches as a strategy to find the
balance between security for IMDs and safety for the patient in case of an emergency.
The first approach consists of using passwords, which is a tradition in the security
community and natural to investigate, but difficult to carry and to access in case of
emergencies. The second category consists of additional patient body modifications,
which can be for example a tattoo that serves as a password. The third consists of a
change in behavior of the patient, an example of this is to ask the patient to carry an
access card. The fourth and last approach is passive with respect to the patient. An
example of this is using biometrics.

Participants are asked for their opinion about the following security mechanisms:
medical alert bracelets, visible tattoos, UV-visible tattoos, wristbands, a critically
aware IMD with no extra modifications and proximity bootstrapping. Although most
mechanisms are clear from their name, proximity bootstrapping needs some further
explanation. This system consists of an external device that is used by the medical
staff. By placing it close to the patient, a temporary key is shared between the device
and the IMD. Compared to the other ideas, this system does not burden the patient,
since he or she does not have to participate in this.

Denning et al. conclude that the password and body modification solutions were
the least favorite. Both the wristband with emergency and warning functionality as
patient passive solutions as proximity bootstrapping were preferred by the patients.
One major comment was that participants did not like the idea of wearing or seeing
something that would remind them of their condition. This could be upsetting. Most
of the participants had difficulties with wearing something all the time under differ-

28 related work

ent conditions. Also cultural and historical associations had as a consequence that
certain solutions were not liked by the participants. Denning et al. conclude that the
psychological effects of the technology should be minimized.

4.3 emergency access

This section describes several solutions for accessing an IMD in case of an emergency.

4.3.1 Emergency access for close range communication

Rasmussen et al. [36] present a solution for emergency access for proximity based
access control. In the emergency mode, it is assumed that the authorization token
is not available. In most existing systems, wireless communication is only possible
when the IMD is activated by a magnetic switch. Rasmussen et al. claim that these
physical backdoors have many drawbacks. They suggest a new solution in which the
security range should be much smaller (2-4 cm) than in the normal mode of opera-
tion. If a malicious reader is inside the security range when the IMD is in emergency
mode, the reader has free access by design. They state that token-based approaches
have several drawbacks, since it does not protect against the loss or theft of the token.

4.3.2 Emergency access for solutions without a proxy

Ellouze et al. [12] describe that the RFID reader is used to interact with the WISP to
execute the powerless mutual authentication protocol. In emergency situations, the
same way of mutual authentication is used as the first time the programmer tries to
access the IMD without having preshared credentials. This is achieved when the IMD
and programmer share a biometric key, which is dynamically and securely generated
during access starting from the ECG.

Strydis et al. [40] define a way to get fail-open access in close proximity to the
implant. This is possible by the use of a magnetic switch. They argue that this should
be sufficient for next-generation IMDs, but they also state that an adversary may
have significantly powerful equipment at his or her disposal capable of changing the
security mode in case of using a magnetic switch. Also, systems using this technique
may be prone to accidental mode switching when in presence of relatively strong
magnetic fields.

4.3.3 Emergency access for solutions with a proxy

The Cloaker can be removed from the patient in case of an emergency [10]. When this
happens, the doctor can access the IMD with previously unauthorized commercial
programmers. By this operation, immediate, emergency open access is enabled.

The Personal Security Device provides a fail-open property in case of an emergency
[34]. Unbounded access to the device can be granted by turning off the PSD. They
state that this mechanism is needed, since life-critical medical devices should always
be available in case of an emergency.

4.3 emergency access 29

Xu et al. [43] present two modes of operation: a regular mode and an emergency
mode. If the Guardian is present and responds during the timer, the regular condition
protocol mode will run. When the Guardian does not respond before the timer times
out, the IMD will run the emergency condition protocol. This means that to get access
to the IMD in case of an emergency, it is sufficient to remove the Guardian from the
body of the patient. During the emergency condition protocol, the IMD checks if the
programmer is able to send a response that is expected in this emergency mode. In
this mode, every programmer should be able to communicate with the IMD.

4.3.4 Emergency-based solutions

There are several systems that focus on solutions for emergency situations. In this
case, no distinction is made between a regular or an emergency mode, but the current
mode is specifically suitable for emergencies.

4.3.4.1 Heart-to-heart

Rostami et al. [39] present the solution Heart-to-heart for emergency situations. In
non-emergency situation, when a patient is receiving routine medical care, they sug-
gest the medical personnel to retrieve device-specific keys. In emergency situations
or a situation when a patient is traveling abroad, Heart-to-heart can be usefull for a
secondary authentication mechanism. Rostami et al. present a way to use electrocar-
diograms (ECG) as an authentication mechanism to ensure that only authorized ex-
ternal medical device controllers will make contact with the IMD. A new technique is
developed for extracting time-varying randomness from ECG signals together with
a new cryptographic device pairing protocol that uses this randomness to protect
against attacks. In this system, a programmer will make contact with the IMD only if
it has significant physical contact with the patient’s body. Authentication to the IMD
lapses once the programmer loses physical contact with the patient. This solution en-
forces a touch-to-access policy using a time-varying biometric called a physiological
value (PV). Both the programmer and the IMD take their own reading of the PV. If
both readings are nearly equal, the programmer obtains access to the IMD.

The IMD consists of a microcontroller, an ECG analog A/D front end and a wireless
sensor modem, so current IMDs should be modified. Rostami et al. state that their
system is secure against jamming and replay attacks, but they only tested briefly
against remote heart rate monitoring results. They do not address DoS attacks and
eavesdropping.

4.3.4.2 Biometric-based access control

Hei et al. [22] propose a light-weight secure access control scheme for IMDs during
emergencies, using the patient’s biometric information to prevent unauthorized ac-
cess to IMDs and to achieve authentication. The scheme consists of two levels. The
first one employs some basic biometric information of the patient and is lightweight.
This consists of fingerprints’ pattern, height and eye color. The second level utilized
patient’s iris data for authentication and this combination of two levels should be
effective. Having a low false acceptance rate, a false rejection rate and small memory
and computation overheads, this is presented as a very effective scheme.

30 related work

Because of severe resource constraints of IMDs, as energy supply, processing and
storage, traditional security schemes are not directly applicable. As an example, an
IMD from 2002 has only 8kb storage. In this scheme, clinical personnel do not need
to have or know a key. They only need devices to measure the biometric properties
of the patient. In non-emergency situations, an IMD reader needs to pass an authen-
tication process in order to access an IMD.

Hei et al. see that in emergency situations, biometric data can be destroyed, as
fingerprints in case of a fire. However, they assume that in this case, help for the
IMD is secondary and other medical treatments are more important. Because of the
lack of cryptography, it is possible to eavesdrop during communication between an
IMD and a programmer. Furthermore, no technique is used to prevent DoS attacks.
However, iris image verification technique is unpractical, because a specific camera
is required to capture the patient’s iris [13]. In addition, eye illnesses for aged people
can cause many false positives and negatives during authentication of the patient’s
IMD.

4.3.5 Break-The-Glass

Break-The-Glass suggests to use a system with maximum freedom and maximum
responsibility [16]. Maximum freedom stands for the property that the system must
provide mechanisms for the users to access the requested information at all times,
whenever it is needed. Maximum responsibility means that the system must provide
mechanisms to show the user an alert message, when he or she is trying to access
information he or she is not authorized to see.

Ferreira et al. [16] state that the BTG principle can be implemented in the following
way. When a user does a request to the system, the authorization model verifies
whether the user has access to the requested information. If the model returns ’yes’,
the user gets immediate access. In case of ’no’, the user is shown that he or she
can still break the glass and he or she will be notified that all his or her actions are
recorded from then. The user decides to break the glass or leave the system. In case
of breaking, a hierarchy model verifies who has to be notified and continues. From
then all notifications and user actions are registered automatically.

4.4 discussion

In this chapter, several solutions for securing the IMD are presented. For each sys-
tem, we looked at the architecture of the system and its functionality compared to
the architecture described in Chapter 2, its resistance against the attacks mentioned
in Chapter 3 and the way it handles emergency access. In the next three table, we
compared the aspects of the architecture, attacks and the emergency mode for ten
systems described in this chapter. Table 2 shows that only solutions with a change in
the hardware components of the IMD are able to prevent against battery draining. In
none of the systems that use a proxy, it is possible to prevent battery draining. It is
also remarkable that four out of ten system do not talk about battery draining at all.
This suggests that the designer of the new system did not take this into consideration
and the system will probaly not be able to prevent battery draining attacks.

4.4 discussion 31

We can conclude that no current system is able to prevent all the five types of
attacks. It is remarkable that only two systems consider all types of attacks and that
most systems only worry about active attacks and do not take eavesdropping into
account. Because of this, it is hard to get an overview of all types of systems and
their possibilities. Furthermore, only half of the systems have proofs for some security
aspects. Other systems state that they are secure against certain types of attacks, by
giving an indication or without further explanation. From this, we can conclude that
current research lacks in considering all relevant security aspects.

From the table, we can see that most systems have an emergency mode where
weaker or less security is used. Three systems do not have a specific emergency
mode and will operate in their regular mode during emergencies. The differences
and similarities between the security modes of the systems are hard to describe,
since some systems only state that there is an emergency mode or shortly give a
description, while others give extensive protocols. It is hard to compare these differ-
ent approaches.

3
2

r
e

l
a

t
e

d
w

o
r

k

Table 2: A comparison of existing solutions.

Legend
n/a: not mentioned in the research

V: proven to be protected
V*: stated to be protected

x: vulnerable

Properties

Systems
Proximity Block cipher RF energy harvesting SISC PSD MedMon The Shield IMDGuard H2H Biometric

Using a proxy no no no no yes yes yes yes no no

Battery draining V* n/a V V n/a x x x n/a n/a

Modify the IMD hardware no no yes yes no no no no yes no

Emergency mode yes no yes yes yes no no yes yes yes

Eavesdropping attacks n/a n/a n/a V* n/a x V n/a n/a n/a

MITM attacks V* n/a n/a V* x V n/a x V* n/a

Replay attacks V* n/a V V n/a V* n/a V* V* n/a

DoS attacks V* n/a V V x x n/a x n/a n/a

Jamming attacks n/a n/a n/a x x x V V V* n/a

5
R E Q U I R E M E N T S A N D A S S U M P T I O N S

In this chapter, we define all assumptions and requirements for an optimal system
solution. Assumptions and requirements are categorized in the categories general,
emergency access and energy consumption. We show that these requirements are
difficult to implement at the same time. For this reason, two types of system solutions
are introduced at the end of this chapter.

5.1 general assumptions

The assumptions for an optimal solution are listed in Table 3. All assumptions are
general asumptions (GA) and are not related to emergency access and energy con-
sumption. These general assumptions are based on how the system works and on
the environment where the systems are used.

For GA1, the first assumption in Table 3, we assume that programmers are stored
in a locked room that is only accessible by authorized medical staff. They are only
used by the staff that is authorized to treat patients and is trusted. GA2 is about the
location where the patient is treated. We assume that the patient is treated in the
same hospital for regular treatments. GA3 assumes that no medical staff member
will misuse a valid programmer on purpose to change the behavior of the pacemaker.
Staff members are authorized and screened beforehand. GA4 assumes that the hos-
pital makes use of a back-end system. This can be a local system or can be connected
to the Internet. Details about the security of a connection from the back-end to the
Internet are out of the scope of this research. This back-end system is needed to store
the cryptographic keys. In case of the use of a telemonitoring system at the home of
the patient, the back-end system needs to be reached by the telemonitoring system
over the Internet. GA5 is about contact between a patient and an attacker. Attacks on
patients where the attacker can touch the patient and that will have consequences on
the pacemaker or its behavior are out of scope. GA6 is based on the fact that the Fed-
eral Communications Commission [15] stated that a transmission is always started
by a device external to the body. GA7 assumed that a treatment takes place once in 6

to 9 months, but it can happen more frequently if necessary.

5.2 requirements for an optimal solution

For an optimal solution, we can define various requirements. General requirements
(GR) are based on security principles and on the environment where the systems
are used. They should hold in general situations and during general treatments, but
not during emergencies. Requirements for emergency access (ER) and energy con-
sumption (ECR) are based on the challenges presented in Chapter 3. A list of all the
requirements is presented in Table 4.

GR1, GR2 and GR3 are related to access by authorized entities. The programmer
should only communicate with a pacemaker implanted in a patient’s body. More im-

33

34 requirements and assumptions

ID Assumption

GA1 Programmers in a hospital are only accesible by authorized medical staff
members.

GA2 A patient is treated in the same hospital during regular treatments.

GA3 The medical staff from a hospital is trusted.

GA4 The programmer is connected with a back-end system.

GA5 An attacker does not attack a patient by having physical contact to the body.

GA6 A pacemaker does not initiate a transmission.

GA7 Treatments for patients happen twice a year on average.

Table 3: Assumptions for an optimal solution.

portant, a pacemaker should only communicate with a legitimate programmer. The
same holds for telemonitoring systems. In this way, access to the pacemaker is re-
stricted to authorized entities. These authorized entities should be able to access data
on the pacemaker at all times. This should not be blocked by DoS attacks. GR4 is
about the protection of the data communication, which can be realized by encrypting
the communication with the use of strong cryptographic primitives. In the optimal so-
lution, this should be the case both during general treatments and during emergency
situations. GR5 and GR6 are about the visibility of the presence of the pacemaker to
medical staff members and attackers. The presence should be visible to authorized
entities, but unknown to attackers in the ideal case. GR7 and GR8 are about the
applicability of the solution. The solution should be applicable on new pacemakers,
but also on pacemakers that are already implanted in the body. Otherwise, since a
pacemaker has a lifetime of 10 years, in the worst case the patient has to wait for
10 years or have a surgery and replace the pacemaker. Replacing pacemakers in all
patients bodies will cost an enormous amount of money and is undesirable. At the
same time, it is preferable that the solution is applicable to all types of pacemakers,
which will require standards in the communication protocols for programmers and
pacemakers. GR9 describes the privileges for the manufacturers. They should be able
to access data different from those for healthcare professionals and patients. GR10

describes that one programmer can only communicate with one pacemaker at a time
and one pacemaker can only communicate with one programmer at a time. GR11

mentions the use of a back-end IT system. Nowadays, a physical database can be
sufficient for some hospitals, but an electronic back-end system is necessary for the
key management, as described in Chapter 8.

ER1, ER2 and ER3 are about access to the patient in case of emergency. In this
situation, each medical staff member over the world who is able to treat patients
with a pacemaker, is authorized to access the pacemaker. They should be able to read
out the log history of the patient, to change appropriate pacemaker settings and to
upgrade pacemaker firmware and applications.

For ECR1 and ECR2, it is necessary to minimize computation within the pacemaker,
communication with other devices and data storage. Furthermore, battery draining
as a cause of attacks should be prevented as much as possible. All these aspects can
decrease the lifetime of the pacemaker, which is undesirable.

5.3 discussion 35

ID Requirement

GR1 The pacemaker and the programmer should authenticate to each other.

GR2 Only authorized entities should be able to communicate with the pacemaker.

GR3 Data on the pacemaker should be always available to appropriate entities.

GR4 The communication between the pacemaker and the programmer should be
protected.

GR5 The presence and type of the pacemaker should be known to medical staff
members who want to treat the patient.

GR6 The existence of the pacemaker should be hidden for attackers.

GR7 The solution should be directly applicable on all pacemakers.

GR8 The solution should be applicable to pacemakers from different manufactur-
ers.

GR9 The manufacturer should be able to audit the operational history of the pace-
maker in case of a failure.

GR10 The communication between the programmer and the pacemaker is one-to-
one.

GR11 The system should use a back-end IT system.

ER1 In case of emergency, a medical staff member should be able to access the
pacemaker in the hospital.

ER2 If the patient requires an operation during an emergency and carries a pace-
maker, the pacemaker must be deactivated before the operation in order to
prevent unintentional shocks to the patient.

ER3 In case of emergency, the pacemaker should only be available for all medical
staff members worldwide.

ECR1 The solution should decrease the lifetime of the pacemaker as less as possible.

ECR2 The solution should not interfere with the functionality of the system.

Table 4: Requirements for an optimal solution.

5.3 discussion

Looking at the requirements in Table 4, we see that some of the general requirements
are difficult to implement at the same time as emergency requirements and energy
consumption requirements.

• GR3 and GR4: A new solution should be directly applicable, even on pacemak-
ers that are already implanted in patients bodies, but at the same time strong
cryptographic mechanisms should be implemented on the device. It is not
known whether only software design changes are enough for the pacemaker,
since hardware design changes might be necessary. For now the specifications
of the hardware components are unknown, so we cannot be sure that strong
cryptographic mechanisms can be applied on current pacemakers.

• GR4 and ECR1: It is difficult to implement GR2 with the energy consump-
tion requirements at the same time. On the one hand, strong cryptographic
mechanisms should be implemented on the device; on the other hand com-
putation power should be minimized, since this decreases the lifetime of the

36 requirements and assumptions

pacemaker. Cryptographic mechanisms require of a lot of computations, so the
performance of various hardware components should be improved to maintain
the current lifetime of the pacemaker.

• GR3 and ER1 and ER3: On the one hand, the data should be always available
to authorized entities, in general the cardiologist and pacemaker technicians
who treat the patient. However, the number of authorized entities should be
extended in case of an emergency. It is difficult to make medical staff members
authorized entities and to give them access. It is possible to extend authoriza-
tion to more medical staff member in the hospital where the patient gets his or
her regular treatments, but for medical staff in other hospitals and even in other
countries, this is a challenge. In this situation, we have to deal with different
trust domains which makes it harder. At the moment, there is no worldwide
medical database that could save this type of information and this probably
will not be there on short term.

Because of these issues, we need to make some trade-offs and thus we present two
solutions to solve this problem. The first solution presented in Chapter 6 is a solu-
tion which is directly implementable for implanted pacemakers. This solution makes
use of a proxy which is placed between the programmer and the pacemaker. This
proxy contains a jammer, which only allows communication between the proxy and
the pacemaker but blocks all the traffic from other devices to the pacemaker. Without
using any form of encryption of the communication between the proxy and the pace-
maker, this solution does not require any changes of the design of the pacemaker.
Encryption of the communication between the proxy and the programmer is needed.
In the next chapter, we present the system design of the solution together with the
design of the proxy and the security protocol for the communication between the
programmer and the proxy. We also present a solution for access in emergency situa-
tions.

In Chapter 7, we present a solution which does not require the use of the proxy.
The use of an external device is undesirable, because it can be lost, stolen, broken or
forgotten by the patient. We define a security protocol together with an analysis of its
correctness and we make an analysis on the ciphers that may be used in combination
with the protocol.

Important part of both solutions is key management. Key generation methods de-
pend on the capability of devices, which is not straightforward for resource con-
strained devices. The management of these keys requires that keys are stored on a
safe place. Since programmers can contain malware, this is not an appropriate place
to store them. Furthermore, in emergency situations the pacemaker should still be
available. In Chapter 8, details about key management are discussed and Chapter
9 presents a new emergency access solution which does not use the cryptographic
keys.

6
P R O X Y- B A S E D S O L U T I O N

In this chapter, we present our solution that is directly applicable on already im-
planted pacemakers. By making use of a proxy, secure communication can be guar-
anteed, except for emergency situations where fail open access is provided. Together
with our formulated assumptions and requirements for this solution, the architec-
ture of the system is presented including the technical requirements of the proxy.
Furthermore, a security protocol is presented that is used for the communication be-
tween the proxy and the programmer. In Chapter 8, we present details about the key
management for this solution.

6.1 assumptions

For this proxy-based solution all general assumptions (GA1 to GA7) from Section 4.1
hold, since these are listed as general assumptions. A few additional assumptions
have to be made related to the design of the new system and the fact that it should be
possible to implement this immediately on already implanted devices. The assump-
tions concern the use of a proxy (PA) and emergency access (PEA). These additional
assumptions are presented in Table 5.

PA1 requires a setting in which the distance between the proxy and the pacemaker
is small. This is necessary to prevent that the pacemaker willl communicate with
other devices than the proxy. This can be achieved when the proxy has the form of
a necklace for example. PA2 is an extension of GA5, in which an attacker does not
physically attack a patient. PEA1 can be assumed for now, since treatment is given in
a hospital environment. An attacker carrying his or her own equipment in a hospital
will be noticed, since current equipment is too large to hide. It is possible that in the
future this may no longer be true.

6.2 requirements

Considering the requirements presented in Table 4, we can state the following. The
general requirements that hold are GR1, GR2, GR4, GR5, GR7, GR8, GR9 and GR11.
The proxy-based solution is able to meet all these requirements. This will become
clear in the following sections of this chapter when the architecture and security
mechanisms are discussed. There are two requirements GR3 and GR6 that cannot be
realized. GR3 has to do with the availability of the pacemaker, which cannot be guar-
anteed because of possible DoS attacks. This system does not have a mechanism to
prevent all types of DoS attacks. Although the proxy can be made in a way that an at-
tacker does not notice the necklace, an attacker with the right equipment does notice
the pacemaker, even when he or she is not able to authenticate. GR6 is not achieved,
since attackers will always notice the existence of the pacemaker, when they have the
right equipment. GR10 is replaced by requirement PGR2 presented in Table 6, since
GR10 does not consider the existence of a proxy. PGR2 dscribes the communication

37

38 proxy-based solution

ID Assumption

PA1 The proxy is a wearable device located close to the pacemaker.

PA2 The attacker does not try to physically remove the proxy.

PEA1 There is very little chance an attacker is around during an emergency treat-
ment.

Table 5: Assumptions for a proxy-based solution

ID Requirement

PGR1 All communication between a programmer and a pacemaker should pass the
proxy.

PGR2 The communication between the programmer and the proxy is one-to-one
during a treatment session.

PGR3 The communication between the pacemaker and the proxy is one-to-one.

PTR1 The proxy is able to execute cryptographic operations and to store crypto-
graphic keys.

PTR2 The programmer is able to execute cryptographic operations.

PTR3 The back-end should store cryptographic keys.

Table 6: Requirements for a proxy-based solution.

between the programmer and a proxy during a treatment session. In a session, a pro-
grammer can only communicate with one proxy and a proxy can only communicate
with one programmer at the same time. PGR3 states that the communication between
a pacemaker and a proxy is always one-to-one. This has to do with the fact that these
devices are linked to each other during the first treatment. Both ER1 and ER2 hold,
since the pacemaker can be accessed by everyone in case of an emergency situation.
This has to do with the architecture of the system and is explained in the next sec-
tion. ER3 does not hold, since an attacker also has access during an emergency. Both
energy consumption related requirements ECR1 and ECR2 hold because the proxy
takes over the heavy computations from the pacemaker.

The following general requirements (PGR) and technical requirements (PTR) in Ta-
ble 6 are added because of the use of a proxy. The general requirements are general
in the sense that they are applicable on general situations and during general treat-
ments. They do not hold during emergencies.

Note that the requirements for the programmer also hold for the telemonitoring
system. PGR1 specifies how the communication goes between the programmer, proxy
and pacemaker. The proxy should block the traffic to the pacemaker from other
sources than itself. The proxy has the task to only let the pacemaker indirectly com-
municate with authorized entities. The architecture is further explained in the next
section. PGR2 describes that one programmer can only communicate with one proxy
at the time and one proxy can only communicate with one programmer at the time.
This is comparable with GR10, which describes the same for the pacemaker instead
of the proxy. PTR1 and PTR2 require specific technical functionalities to provide au-
thentication and secure communication both for the proxy and the programmer. As

6.3 architecture 39

Figure 10: The architecture of the proxy-based solution.

Legend
1: The programmer authenticates to the proxy which is necessary to communicate with the
pacemaker.
2: After authentication, the proxy forwards the configuration or data request to the pace-
maker.
3: The pacemaker responds by this request and sends the data to the proxy.
4: The proxy forwards the data to the programmer.
5: The programmer sends the data to the back-end system.
6: The back-end system sends data from previous treatments to the programmer.

presented in Section 5.3, PTR3 specifies the role of the back-end system in the archi-
tecture.

6.3 architecture

The architecture of the system consists of five components: a programmer, a proxy,
a pacemaker, a telemonitoring system and a back-end system. These are related to
each other as presented in Figure 10. As we can see, the figure differs from Figure 1 in
the sense that all communication between the programmer and the pacemaker goes
via the proxy. The telemonitoring system is not part of the figure, because it takes
the same place as the programmer. The only difference between the setting with the
programmer and the telemonitoring system is the use of arrow 6. This arrow is there
for the programmer, but not for the telemonitoring system. The back-end system of
the hospital does not send any data from previous treatments to the telemonitoring
system.

In the remainder of the section we present the proxy, while we refer to Chapter 2

for details about other devices and components. The proxy is based on the design
of the Shield [17] as described in Section 4.2.2.4. This design is chosen since from
all existing solutions with proxies, this one provides secure communication from the
pacemaker to the programmer, without using cryptographic mechanisms between

40 proxy-based solution

the pacemaker and the proxy. As far as we could find, this is the only solution with
these characteristics and fits our requirements the best. The Shield uses two antennas:
a jamming antenna and a receive antenna that are placed next to each other. The
jamming antenna transmits a random signal to prevent eavesdroppers from decoding
the pacemaker’s transmissions. The receive antenna is simultaneously connected to
both a transmit and a receive chain. The transmit chain sends an antidote signal that
cancels the jamming signal at the receive antenna’s front end, allowing it to receive
the pacemaker’s signal and decode it.

As a consequence of this technique, the proxy can transmit the pacemaker’s signal
to an authorized programmer. At the same time, the proxy listens for unauthorized
transmissions addressing the pacemaker and jams them in order to protect the pace-
maker against commands from unauthorized programmers. Because of the jamming
of the proxy, the pacemaker is not able to decode transmissions from an adversary.
Halperin et al. [20] proved with their technique that an implantable cardiac defibril-
lator which is comparable to a pacemaker, does not respond to unauthorized com-
mands when using the Shield, even when the adversary is only 20 cm away.

This proxy-based solution would also be applicable to other IMDs. The only re-
quirement is that the proxy should be close to the IMD, to use its jamming func-
tionality properly. In case of a pacemaker, this can be in the form of a necklace. For
other IMDs it can be more difficult to carry a proxy and to hide it in an object or an
accessory.

Details of the configuration of the Shield are presented By Fu et al. [17]. Two main
components that are necessary for this technique are a USRP2 software radio and a
400 MHz daughterboard for compatibility with the MICS band.

Using a proxy with properties of the Shield solves part of the problems of the unse-
cured communication, since all communications are led by the proxy and the proxy
can determine what requests are sent to the pacemaker. Although the proxy can
block other entities to eavesdrop messages between the proxy and the programmer,
the communication between the programmer and the proxy is unencrypted. Fu et al.
[17] state that a secure channel should be built for this part of the communication.
Our research completes this proposal of the Shield by choosing a proper mutual au-
thentication protocol, building a secure channel and by defining a key management
system for this solution. This key management system will be presented in Chapter
8.

6.4 communication protocol

In this section, a protocol is given for mutual authentication between the programmer
and the proxy. Furthermore, one protocol is given for secure communication between
the programmer and the proxy.

6.4.1 Mutual authentication

As a first step, both the proxy and the programmer should authenticate to each other.
The programmer wants to know that it is communicating with the real proxy, but
even more important: the proxy wants to be sure that it is talking to the legitimate
programmer. Since the programmer takes the initiative for communication, the pro-

6.4 communication protocol 41

Notation

A Programmer

B Proxy

Na Nonce from the programmer

Nb Nonce from the proxy

Ka Public key from the programmer

Kb Public key from the proxy

K−1
a Private key from the programmer

K−1
b Private key from the proxy

{m}K Message m encrypted with key K

T Timestamp

Table 7: The notation for a proxy-based solution.

1. A→ B : {Na,A}Kb

2. B→ A : {B,Na,Nb}Ka

3. A→ B : {Nb}Kb

Figure 11: The mutual authentication protocol for the proxy-based solution.

grammer should present itself and announce a communication process to the proxy.
After mutual authentication, the programmer can start a session in which messages
can be exchanged.

Since there are less limitations related to cryptographic operations for both devices,
because the proxy can replaced at any moment when the battery is empty, we can
make use of asymmetric cryptography. In particular, we use the Needham-Schroeder-
Lowe protocol [27], which has not been broken since its creation in 1995 and is not
expected to break in the near future. Lowe fixed the public key protocol of Needham-
Schroeder [35], which appeared to be vulnerable against Man in the Middle attacks.
The idea of the protocol is that both parties prove their identity to each other by
sending and receiving fresh nonces that are encrypted with the public key of the
receiving entity. When both parties are able to show that they received the nonce that
the other party send to them, mutual authentication is achieved.

For the moment, assume both entities have the public key of the other entity and
they have their own public-private key pair. In Chapter 8, we present the key gener-
ation and key management process for this protocol. The notation in Table 7 is used
in both mutual authentication and secure communication protocols. The protocol for
mutual authentication is presented in Figure 11. Note that the protocol also holds for
the telemonitoring system and the pacemaker.

• Step 1: A tries to establish a connection with B by generating a nonce Na and
sending it with its identity to B, using B’s public key. When B receives this
message, it decrypts it to obtain the nonce Na.

• Step 2: B returns its own identity together with the nonce Na and a new nonce
Nb to A, encrypted with A’s key. When A receives this message, it should be

42 proxy-based solution

1. A→ B : {{B, T ,N,m1}K−1
a
}Kb

2. B→ A : {{A, T ,N,m2}K−1
b
}Ka

Figure 12: The secure communication protocol for the proxy-based solution.

assured that it is talking to B, since only B should be able to decrypt the first
message to obtain Na.

• Step 3: A returns the nonce Nb to B, encrypted with B’s key. When B receives
this message it should be assured that it is talking to A, since only A should be
able to decrypt the second message to obtain Nb.

6.4.2 Secure communication

After the mutual authentication phase, the programmer and the proxy communicate
over a secure channel presented in Figure 12.

• Step 1: The programmer sends a request m1 to the proxy. This request is first
signed by the sender with his or her private key and then encrypted with the
public key of the receiver. Furthermore the receiver, a timestamp and a nonce
are included in the request.

• Step 2: The proxy replies to the programmer by sending m2 and by using the
same format of the message as is used in step 1.

This stream of messages can be repeated multiple times. Each time A sends a mes-
sage, a fresh nonce is created. B uses the same nonce in its reply.

6.5 discussion

As Fu et al. [17] state, the proxy with properties from the Shield protects the pace-
maker from attackers who want to eavesdrop or do MITM or jamming attacks. The
Needham-Schroeder-Lowe protocol is widely used for mutual authentication, so we
can assume that it prevents eavesdropping, MITM and replay attacks when it is imple-
mented correctly. Now we need to verify that the protocol for secure communication
also prevents these attacks.

Considering the communication between the programmer and the proxy, the fol-
lowing things can be concluded. Assume an attacker attempts to perform a MITM
attack. If the attacker wants to start the communication by pretending he or she is
another entity, he or she has a problem with signing the message, since he or she
cannot pretend to be someone else. When the attacker wants to forward a message
that was meant for him or her to retrieve information from another entity, this entity
sees that the message was originally not meant for him or her, since the receiver is
always part of the message.

Assume an attacker attempts to perform a replay attack by sending a message
again that he or she sees over the communication channel. Both in the case of the
programmer and the proxy, this is noticed because of nonce and the time stamp.

6.5 discussion 43

Even if the attacker has some knowledge about the composition of the message, it is
hard to guess the correct nonce together with a correct timestamp.

It is possible to perform certain types of DoS attacks on the proxy, but this has
limited influence on the pacemaker. The programmer only accepts and forwards
messages coming from the authorized programmer, so messages from other pro-
grammers are blocked. The proxy should only be available during treatments in a
hospital and we assumed that there is a very small chance that an attacker is around,
because of the phsyical security of the hospital and the size of current programmers
or self-made equipment of an attacker. Since the proxy is an external device, there
are fewer limitations on the battery than in case of the pacemaker. A DoS attack
can cause battery draining of the proxy, but the battery can be replaced at any time
without any surgery. It is not clear how much energy is consumed every time the
pacemaker wakes up when a programmer tries to reach the proxy. Since all devices
communicate on the same frequency, the pacemaker probably wakes up when it no-
tices something on the frequency. Depending on the energy consumption for waking
up, this might have battery draining as a consequence.

Looking at the requirements stated in this chapter, we see that all the general re-
quirements, described in Section 6.2, are met. The secure communication is achieved
because of the mutual authentication part of the protocol and the secure channel that
is built. Furthermore, no changes on the pacemaker are necessary because of the use
of the proxy. Also, the system is applicable on pacemakers from all manufacturers.
Nevertheless, we had to make some trade-offs for this solution, to make it applicable
on already implanted pacemakers. One of these trade-offs is unsecured communica-
tion in case of an emergency, since this is for now the most efficient way to avoid
key management details. However, the largest risk of this solution is that it does not
work when the proxy is lost, stolen, broken or just forgotten by the patient. This puts
a large responsibility on the patient, which is undesirable. Furthermore, patients are
not willing to wear additional devices and research showed that they are not aware
of any risks or do not take these risks serious [9]. Because of this, we prefer a solution
that does not use a proxy. A solution without a proxy is presented in the next chapter.

7
S H A R E D S E C R E T B A S E D S O L U T I O N

In this chapter, we present our new solution that is based on a shared secret between
the programmer and the pacemaker. This solution does not make use of a proxy to
guarantee protected communication. It uses security protocols for the communication
between the pacemaker and the programmer and requires at least software modifi-
cations on current devices but probably also hardware changes. In the following sec-
tions, the assumptions and requirements are presented together with our designed
communication protocol. A proof of the correctness of this protocol is given together
with an extensive analysis of the cipher that will be used. Key management details
are explained in Chapter 8. Emergency access proposals are described in Chapter 9.
The chapter is concluded with a discussion section.

7.1 assumptions

For this solution, all the assumptions hold as listed in Section 5.1. For now we can
make the assumption that the chance an attacker is around during an emergency is
very small, but it is difficult to predict how this will be in a decade. When program-
mers will become smaller and attackers get more knowledge about making their own
equipment, it can be more likely that attackers are around in emergency situations
and in hospitals. This is the reason why this assumption PEA1 is listed in Section 6.1,
but not stated explicitly in this chapter.

7.2 requirements

Considering the requirements from Table 4, we can observe that most of the require-
ments hold for this situation. GR1 and GR2 focus on authentication and authorized
entities, which is guaranteed in this solution by the techniques presented in Section
7.4. The continuous availability in GR3 cannot be guaranteed since the solution pre-
sented in this chapter is not able to prevent all types of DoS attacks. The security
mentioned in GR4 is achieved by the protocol presented in Section 7.4 and GR5

holds because of the solution, which standardizes communication protocols. For this
reason, there is no need for different types of programmers. GR6 about the visibility
of the pacemaker cannot be realized, since an attacker can notice the pacemaker if
he or she has the right equipment. GR7 about the applicability of the solution on
current pacemakers cannot be guaranteed, since this solution needs the use of strong
cryptographic mechanisms and it is not known if already implanted pacemakers
are able to use these mechanisms. It is possible that hardware changes are required.
GR8 is applicable, but requires an official standard that needs to be implemented
by all manufacturers. Furthermore, manufacturers can audit the pacemaker so GR9

holds. GR10 about the one-to-one communication is still valid, since there is no multi-
communication feature added to the design. The existence of the back-end system
mentioned in GR11 should also hold because of the use of cryptographic keys that

45

46 shared secret based solution

ID Requirement

TR1 The pacemaker should be able to store a secret of 160 bits.

TR2 The pacemaker should be able to store 128 bit cryptographic keys.

TR3 The pacemaker should be able to perform the IDEA cipher.

TR4 The pacemaker should be able to perform Sha-1 hash operations.

Table 8: Technical requirements for a shared secret solution.

should be stored in the back-end system. The applicability of medical requirements
ER1, ER2 and ER3 is discussed in Chapter 9 in which emergency access solutions
are presented. Both energy consumption requirements ECR1 and ECR2 related to the
lifetime and the functionality are met as best as possible. This will be presented in
this chapter and in Chapter 8.

Besides these requirements, there are a few technical requirements related to the
pacemaker that are presented in Table 8. The need for TR1, TR2 and TR4 is shortly
explained in this chapter, but more in detail in Chapter 8. This has to do with the fact
that these technical requirements are related to key generation. According to TR1,
the pacemaker should be able to store a secret of 160 bits. This has to do with the
key generation phase which is discussed in Chapter 8. This secret is shared with the
back-end system of the hospital and the telemonitoring system at home and its use is
further explained in Chapter 8. TR2 states that the pacemaker should be able to store
cryptographic keys from a certain length that is secure enough. This length is set to
128 bits as required by the cipher that is used for this solution. Most block ciphers use
a key of length 128 bits and is at the moment strong enough to prevent brute force
attacks [41]. Storage of only a few cryptographic keys is necessary, since keys are only
stored temporarily. TR3 focus on all the operations related to the IDEA cipher which
the pacemaker should execute. The reason for the use of the IDEA cipher is explained
in Section 7.6. TR4 is about the ability to perform a Sha-1 hash. This is necessary for
the key generation process as explained in Chapter 8. Both the prorgammer and
the telemonitoring system should be able to perform the same operations and store
the same keys, but since these are computers with strong computational power and
storage space, we do not state these requirements here explicitly.

7.3 architecture

The architecture of this solution, presented in Figure 13, consists of a pacemaker and
a programmer which are directly communicating with each other. This is exactly
the same as the current situation as presented in Figure 1. Both the programmer
and the telemonitoring system are able to communicate directly with the pacemaker.
No proxy comes in between to regulate the communication between the pacemaker
and another device as in Figure 10. The programmer and the telemonitoring system
are connected with the back-end system of the hospital, which stores confidential
information about the encryption of the communication. Although the devices may
change in software and hardware design, the overall architecture stays the same.

7.3 architecture 47

Figure 13: The architecture of the shared secret based solution.

Legend
1: The telemonitoring system requests the pacemaker for data and may be able to configure
this device.
2: The pacemaker sends its data to the telemonitoring system.
3: The telemonitoring forwards the data from the pacemaker to the back-end system of the
hospital.
4: The programmer configures the pacemaker and requests data stored on the pacemaker.
5: The pacemaker sends the data to the programmer.
6: The programmer forwards the data to the back-end system of the hospital.
7: The back-end system may send data to the programmer about previous treatment sessions.

48 shared secret based solution

Notation

P Programmer

I Pacemaker (IMD)

Np Nonce from P

Ni Nonce from I

K Symmetric key shared between P and I

SK Session key

Table 9: The notation for a shared secret solution.

1. P → I : {P,Np}K

2. I→ P : {I,Np,Ni}K

3. P → I : {Ni,SK}K

Figure 14: The mutual authentication protocol for the shared secret based solution.

7.4 communication protocol

In this section two protocols are presented: one for mutual authentication and one
for secure communication. The protocol for mutual authentication is based on the
Needham-Schroeder-Lowe protocol presented in Chapter 6. With the use of the cryp-
tographic protocol verifier ProVerif, we proved that the mutual authentication proto-
col is secure against eavesdropping and Man in the Middle attacks. For the secure
communication protocol we prove that we build a strong channel which is protected
against the same type of attacks. In the remaining part of this section, communi-
cation between the programmer and the pacemaker is considered. We assume the
telemonitoring system can take the role of the programmer in all these processes.

7.4.1 Mutual authentication

For the mutual authentication protocol and the secure communication protocol, the
notation is used as presented in Table 9.

Figure 14 presents the mutual authentication protocol for this solution. Note that
the programmer can be replaced by the telemonitoring system in this protocol. The
use of nonces and identities for the mutual authentication is based on the Needham-
Schroeder-Lowe protocol, since this protocol is tested thoroughly and is short in its
use. Different is the type of encryption: the Needham-Schroeder-Lowe protocol as
presented in Chapter 6 uses asymmetric encryption, in this case symmetric encryp-
tion is used. This means that the programmer and pacemaker need to share a key
beforehand. These details are described in Chapter 8.

1. The programmer (P) tries to establish a connection with the pacemaker (I) by
generating a nonce Np and sending it with its identity to the pacemaker, using
their shared key. When the pacemaker receives this message, it decrypts it to
obtain the nonce Np.

7.5 security analysis 49

P → I : {{P, I,m,N}SK}MAC

I→ P : {{I,P,m,N}SK}MAC

Figure 15: The secure communication protocol for the shared secret based solution.

2. The pacemaker returns its own identity together with the nonce Np and a new
nonce Ni to the programmer, encrypted with the shared key. When the pro-
grammer receives this message, it should be assured that it is talking to the
pacemaker, since only the pacemaker should be able to decrypt the first mes-
sage to obtain Np.

3. The programmer returns the nonce Ni and a session key to the pacemaker,
encrypted with the shared key. This session key will be used in further commu-
nication according to the secure communication protocol. When the pacemaker
receives this message, it should be assured that it is talking to the programmer,
since only the programmer should be able to decrypt the second message to
obtain Ni.

7.4.2 Secure communication

After the mutual authentication protocol, the programmer and the pacemaker com-
municate over a secure channel. This secure channel is built as in Figure 15. For this,
the session key is used together with a message authentication code (MAC). Each
message is initiated by the programmer. This device sends its identity together with
the identity of the receiver, the message and the nonce to the pacemaker. This com-
plete message is encrypted with the session key and then signed by using a MAC.
The pacemaker can decrypt this message by computing the same MAC and using the
session key and it will send a message back to the programmer using the same order
in its message.

This stream of messages can be repeated multiple times. Each time P sends a mes-
sage, a fresh nonce is created. The same nonce should be used by I in its reply to P.
The generation of the MAC and the session key is described in Chapter 8.

7.5 security analysis

In this section, we present a security analysis of our protocols in ProVerif.

7.5.1 ProVerif

ProVerif is an automatic cryptographic protocol verifier with respect to the Dolev-
Yao model [26]. This is a formal model used to prove properties of interactive cryp-
tographic protocols. It assumes that the underlying key system is perfectly secure,
that the adversary has complete control over the entire network and that concurrent
executions of the protocol can occur. The most important properties that ProVerif can
prove are secrecy, strong secrecy and authentication. ProVerif is sound but incom-
plete. This means that if the tool claims that a protocol satisfies a property, then the

50 shared secret based solution

property is satisfied. When the tool cannot prove a property, it tries to reconstruct an
attack. This is an execution trace of the protocol that falsifies the desired property. It
can give false attacks in this case, but then it is not able to prove the property.

The base of ProVerif lies in pi-calculus [1]. This is a process calculus which can deal
with processes that communicate and can consider the execution of several processes
in parallel. It is primitive in the sense that it does not contain primitives as numbers,
booleans or functions. The notion of name is important in pi-calculus. A name can
be a communication channel and a variable. There are various constructs of the pi-
calculus: interaction, composition, restriction, replication, match and nil. Because of
the basic structure of pi-calculus, it is easy to extend this calculus. One of these
extensions is spi-calculus, designed to represent cryptographic protocols. It provides
a setting to analyse security protocols. It is possible to express security guarantees as
equivalences between spi calculus processes. This is achieved by the introduction of
encryption and decryption constructs. ProVerif is a command-line tool which accepts
the language pi-calculus and therefore also the spi-calculus.

7.5.2 Protocol verification

Now the security analysis is presented.

Protocol

For the analysis, only the protocol for mutual authentication as in Figure 14 is con-
sidered. For this protocol, two tests are done: one for mutual authentication and one
for secrecy of the session key. The security of the secure channel is not tested with
ProVerif, since this depends on the security of the mutual authentication protocol.
If the session key is not revealed during the mutual authentication protocol, a se-
cure channel can be built with the session key and the MAC as presented in Figure
15. No eavesdropping can happen and no MITM attack either, because of the form
of encryption. Especially replay attacks cannot take place, because of the use of a
fresh nonce in every request from the programmer to the pacemaker. This protocol
is tested in ProVerif on mutual authentication and secrecy of the session key sent in
the third message. For the syntax of ProVerif, we refer to the manual [26]. As a basis,
we defined both protocols in ProVerif according to the communication stream.

Specification

For both tests on mutual authentication and secrecy, we implement the mutual au-
thentication protocol as a basis. We define a free channel, the entities P and I (for
the programmer and the pacemaker) and two functions for symmetric encryption
and symmetric decryption. The session key is defined as a secret and has the label
’private’. Details can be found in Appendix A in Listings 1 and 2. The processes for P
and I are defined by the messages that are coming in and the messages that are sent
out. Furthermore, the processes contain the encryption and decryption functions for
composing and decrypting messages. These processes are executed multiple times in
parallel by the statement ((!P) | (!I)) to see if multiple sessions reveal some informa-
tion during the mutual authentication phase. More details on the syntax of ProVerif
can be found in the manual [26].

7.5 security analysis 51

Properties

For secrecy, we only need to test on "query attacker: secret" to see if the attacker can
retrieve the secret, which is the session key in this case, through the protocol. Fur-
thermore, we explicitly state that we do not need to test on leakage of the symmetric
key.

For mutual authentication, we test on one to one correspondence. This tests if an
event M is always preceded by an event N and if every trace contains at least as
many N-events as M-events. This is tested for specific lines in the protocol by placing
it between a begin and an end statement. For the mutual authentication protocol, the
following should be tested:

1. P → I : {P,Np}K

I: begin(I,P,Np)

2. I→ P : {I,Np,Ni}K

P: end(I,P,Np)

P: begin(P,I,Ni)

3. P → I : {Ni,SK}K
I: end(P,I,Ni)

Now we test if each event in which the programmer receives nonce Np from the
pacemaker is really preceded by an action from the pacemaker where it sends the
nonce Np. The same is done for nonce Ni. By begin(P,I,Ni) and end(P,I,Ni) is checked
if receiving Ni implies that Ni is really sent by P. This property is the same as the
mathematical definition of injectivity. Now we can test mutual authentication, by
specifying the following queries in ProVerif:

query evinj: end(x,y,z) ==> evinj:begin(x,y,z)
query evinj: end2(x,y,z) ==> evinj:begin2(x,y,z)

The first query tests authentication from I to P and the second query tests authen-
tication from P to I. ProVerif explicitly tests if an attacker cannot mess with different
sessions to reveal information about the encrypted data.

Results

In Appendix A, Listing 1 presents the input for testing for mutual authentication in
ProVerif. In Listing 2, the output for ProVerif is given. We see that authentication for
both parties is satisfied, since the result for both queries is true. This means that after
the execution of the mutual authentication protocol, both parties can be sure that they
are communicating with the entity they think they communicate with. For testing on
secrecy, the session key that is sent from the programmer to the pacemaker in the
third message is considered. Appendix A contains the input for ProVerif in Listing 3.
Listing 4 presents the output from ProVerif and shows that the property is satisfied
for this protocol, since ProVerif outputs true for the related query.

52 shared secret based solution

MISTY1 IDEA RC6

Average power consumption (mW) 86 58 93

Peak power consumption (mW) 96 95 107

Program size (kb) 18.8 13.4 11.4

Measurements 1kb 10kb 1kb 10kb 1kb 10kb

Total encryption energy costs(Joule) 0.04 0.22 0.03 0.17 0.02 0.11

Computation overhead 0.267 0.210 0.210 0.161 0.137 0.097

Encryption rate 4.5 5.2 3.9 4.6 9.7 13.5

Table 10: An overview of characteristics from block ciphers.

7.6 analysis of ciphers

Encryption of the messages during mutual authentication and secure communication
is done by the use of a cipher. Since we are dealing with a resource constrained device,
this cipher should be chosen carefully. The first decision is about choosing between
stream ciphers and block ciphers. We decided to choose for block ciphers. This is
a symmetric cipher which operates on fixed-length groups of bits that are called
blocks. For each block, the same transformation is done with the help of a secret key.
We decided to use a block cipher because they can deal better with data chunks of
known length and this is the case for our protocol, although at the moment the length
of the messages is unknown. Furthermore, tampering the message is easily detected
and block ciphers provide better security.

To choose a block cipher, we have to look at different aspects of ciphers related to
energy consumption. Strydis et al. [41] evaluate a large number of symmetric block
ciphers in terms of various metrics to determine their applicability for biomedical
applications as implantable medical devices. They use XTREM [7] as a performance
and power simulator for Intel’s XScale embedded processor for testing different prop-
erties of ciphers. XTREM has been selected for its high precision in modeling the
performance and power of the Intel XScale core and because of its straight-forward
functionality. XScale is a low-power processor with aggresive power-measurement
features. XTREM models this hardware with high accuracy.

Strydis et al. consider average power consumption, peak power consumption, pro-
gram size, total energy costs, computation overhead and encryption rate. Some of
these measurements are done for plaintexts of 1KB and 10KB for some comparisons.
Power consumption was not affected by these differences. Besides average power
consumption, peak power consumption is relevant since a ciper with a given average
power consumption may be unable to deliver the required output at agiven point
in time if the ciper presents peak power values which are largely deviating from its
average power needs.

The results of these tests for the three best performing ciphers are presented in
Table 10. These are MISTY1, IDEA and RC6 and they all use a key size of 128 bits
and a sufficient equal security margin [41]. MISTY1 is a block cipher designed in 1995

for Mitsubishi Electric. This cipher uses block of 64 bits, has a number of rounds that
is a multiple of 4 and uses a Feistel network for its structure. IDEA is a symmetric-
key block ciper designed by ETH Zurich in 1991. It has a block size of 64 bits, has 8.5

7.7 discussion 53

rounds, uses the Lai-Massey scheme and is currently part of the OpenPGP standard.
RC6 is a symmetric key block cipher developed for the AES competition. It uses block
sizes of 128 bits, has 20 rounds and has a Feistel network structure.

Considering the pacemaker, we can state that for this device power consumption
and encryption costs are the most important issues. We see that the power consump-
tion is the smallest for the IDEA cipher and in case of the average power consumption,
it is remarkably lower than for MISTY1 and RC6. Looking at the energy costs, we see
that RC6 scores the best, then IDEA and then MISTY1. When we would consider all
the parameters with equal weight, then overall RC6 would get the highest score for 4

out of 6 parameters and it would score the best. However, considering the actual val-
ues together with the importance of the parameters, the blockcipher IDEA performs
the best for the pacemaker out of these three ciphers.

7.7 discussion

The solution presented in this chapter provides secure communication between the
programmer and the pacemaker. It prevents eavesdropping and MITM attacks, as
proven with ProVerif and by the construction of the secure communication protocol.
Because of the way the secure channel is constructed and the use of the session key
in this secure channel, an attacker is not able to intercept or modify a message.

At the moment it is not sure if any hardware modifications on the pacemaker are
required. We expect that this will be necessary, especially for some older types of
pacemakers, because they are not designed with the goal of implementing crypto-
graphic mechanisms. For this reason, software updates are probably not enough to
implement this solution, while maintaining the current lifetime of the pacemaker.
This means that a new pacemaker has to be designed, tested and implanted in bod-
ies of the patients. The designing and testing phase will take some time, but this is
not comparable to the time it takes to replace all the pacemakers in the bodies of
the patients. This can take up to 20 years, because it is undesirable and expensive to
change all pacemakers at once. Furthermore, standards need to be set for different
manufacturers in the communication protocol to make this solution work.

In this new solution, DoS attacks are not prevented and they are still a large risk,
since these attacks can have battery draining as a consequence. Because of the pre-
sented protocol, the first step in the mutual authentication phase costs a lot of energy,
as we will see in the next chapter. After receiving the first message, a key has to
be generated by the pacemaker and needs to be compared with the receiving mes-
sage and this step cannot be avoided at the moment. For now we assume that after
receiving three messages that cannot be decrypted, the pacemaker goes into time
out mode for a certain period of time, for example 10 minutes, and refuses all the
incoming messages.

8
K E Y M A N A G E M E N T

This chapter describes the key management we developed for the solutions presented
in Chapter 6 and Chapter 7. This is done by using the key management lifecycle pre-
sented by Posea [33], which is drawn in Figure 16. The following stages are important
in this process: (1) key generation, (2) key storage, (3) key distribution, (4) key usage,
(5) key change and (6) key expiration, archival and destruction. For both solutions,
each of these stages is discussed. The main focus is on the key generation stage of
the shared secret based solution, since we developed a new way to generate dynamic
symmetric keys for medical devices.

8.1 proxy-based solution

In our architecture, the programmer, the telemonitoring system and the proxy need a
public-private key pair to enable secure communication between them. In this section,
the key management for the proxy-based solution is presented according to the six
stages.

Key generation

Since the Needham-Schroeder-Lowe protocol suggests RSA keys for asymmetric en-
cryption, we decided to use them in this system. During the first treatment, the pro-
grammer generates three asymmetric key pairs: one key pair for the programmer, one
for the telemonitoring system and one for the proxy. This is done by using the Diffie-
Hellman Key Agreement Method presented in a related RFC [37]. Details about this
method can be found in this RFC.

Key storage

The key storage process is presented in Figure 17. The telemonitoring system and
the programmer are connected to the back-end system. For this reason, the proxy is
drawn seperated from the other devices. After generating the three key pairs in (1)
for the programmer, the telemonitoring system and the proxy, the programmer sends
these key pairs to other devices in (2). The key pair for the proxy is sent to the proxy
and the public key for the proxy is also sent to the back-end system. For the proxy,
the key is saved in a hardware security module (HSM). This compouting component
manages digital keys for authentication. In (2), the programmer also sends the key
pairs for the telemonitoring system and the programmer to the back-end system of
the hospital. Furthermore, the programmer sends the public key from the program-
mer and the telemonitoring system to the proxy. This happens in plaintext, since
these keys are public and can be read by everyone. When these key pairs are sent,
the programmer removes all the created pairs in (3).

55

56 key management

Figure 16: The key management life cycle.

Figure 17: The process of key storage.

Legend
1: The programmer generates the key pairs.
2: The programmer sends the key pairs to the back-end system and the proxy.
3: The programmer removes the key pairs.

8.1 proxy-based solution 57

Key distribution

Since for each patient, the devices that are involved in secure communication are
the programmer, the telemonitoring system and the proxy, the doctor is able to do
the key distribution manually. There is no reason to automate this process. This is
done by a pacemaker technician, since we assumed that we trust the medical staff
in the hospital. For the distribution from the programmer to the proxy a distance
bounding protocol is used as described before. The key for the telemonitoring can
be sent encrypted from the back-end system to the telemonitoring system over the
Internet with a secure channel. The private key of the telemonitoring system only
has to be on the system during a monitoring session. At the start of this session, the
telemonitoring system can connect with the back-end system and temporarily get the
key. After the session, the telemonitoring system should erase the private key.

Key usage

To avoid key disclosure while the system is in use, it is good to perform all cryp-
tographic operations in a physically isolated dedicated environment, offered by for
example an HSM. For this reason, we advise that the proxy, programmer and tele-
monitoring system have such an HSM. Further research has to be done to determine
what type of HSM fits in a proxy, since the proxy has size limits. But at least the pro-
grammer and the telemonitoring system can contain such a module to perform all
cryptographic operations during sessions with the pacemaker and prevent malware
to influence the encrypted communication.

Key change

In case a key is compromised or expired, a new key pair has to be generated. For
a programmer and a telemonitoring system, this can be done immediately by the
programmer and keys can be directly transferred to the back-end system. But for the
pacemaker, the patient has to come to the hospital where the programmer generates
a new key pair for his or her proxy. When the proxy is lost, stolen or broken, it
has to be replaced by a new one. In this case, the programmer destroys the old key
pair and generate a new key pair. The process of key management of the keys is
then repeated. When a patient is treated in another hospital, it is considered as an
emergency situation. The proxy is temporarily removed from the patient and there is
no key exchange between the programmer and the proxy.

Key expiration, archival and destruction

The expiration date for the key pair is set to two years, according to the requirements
from NIST [3]. After this period of time, the whole key management cycle will be
repeated. But first the expired key pair need to be destructed. There is no need to
archive them, since these expired keys will not play a role in further session anymore.

58 key management

Notation

K Secret

C Counter

X Time step in seconds

T0 Unix time to start counting time steps

Table 11: The notation for a Time-Based One-Time Password.

8.2 shared secret based solution

In this section, the key management for the shared secret based solution is presented
according to the six stages.

Key generation

In the proxy-based solution, the system uses static keys that are replaced every two
years. The use of static keys is undesirable because of possible disclosure of the
keys. The use of dynamic keys is prefered and is the case in the shared secret based
solution.

As a basis, the Diffie Hellman key agreement scheme is used between the program-
mer and the pacemaker to establish a shared secret together. This secret is then part
of the input to generate the dynamic symmetric key that is used by the programmer,
pacemaker and telemonitoring system to communicate. This symmetric key is based
on the Time-Based One-Time Password (TOTP) [29]. This is a password that can be
used only once and is based on a shared secret and the current time. The secret and
the timer are the input for a hash function, from which a key is generated. The TOTP
is based on a HMAC-Based One-Time Password (HOTP) [28], which uses a counter
instead of a timer. The use of a counter is less secure and a timer is more practical for
this solution. For computing a TOTP, the notation in Table 11 is used.

The TOTP is computed according to the following equation:

TOTP = HOTP(K, T) = Truncate(HMAC− SHA1(K, T))

T and HMAC are defined as follows:

T =
Current Unixtime− T0

X

HMAC(K, T) = H((K XOR opad)|H((K XOR ipad)|T)),

where opad and ipad stand for outer padding and inner padding. Both are one-
block-long hexadecimal constants, where opad differs from ipad. The values do not
influence the solution in a certain way, but are there to provide different inputs for the
hash function. The hash function that is used in this HMAC is a Sha-1 hash. Although
Sha-1 has a weakness with regards to collisions, this does not affect the security of
the HMAC. HMAC resistance does not rely on resistance to collisions [28].

8.2 shared secret based solution 59

The Truncate function is able to convert an HMAC-SHA1 value into an HOTP
value. A Sha-1 hash always has an output of 160 bit, so the HMAC-SHA1 algorithm
also outputs a 160 bit value. In general, the purpose is to extract a 32-bit key from
this 160-bit key in the TOTP algorithm. In our case, the Truncate function needs to
convert the 160-bit TOTP value into a 128-bit value, since we want to use the TOTP
as a key for the encryption cipher IDEA as presented in Chapter 7.

The time step X should be set to a suitable value depending on the performace of
the system. This depends on the time it takes to create a TOTP for the programmer,
the time between sending the TOTP from the programmer to the pacemaker and the
time it takes for the pacemaker to generate the TOTP and do the check by trying to
decrypt the message. Depending on how fast this process goes, the timer has to be
set. This time should be long enough to do all the checks, but not too long since in
case of an error a new TOTP should be created and a system should not accept keys
that are not fresh enough.

Current TOTP tokens are able to generate about 14.000 TOTPs and they have a life-
time between 5 to 7 years. For now, this lifetime is too short, since it should exceed
at least the average lifetime of the pacemaker. Current TOTP tokens are relatively
cheap ($65) and we can expect that current pacemakers have better batteries, since
their costs are between $35.000 and $45.000. We expect that the generation of 14.000

TOTPs is more than enough, since only 1 TOTP is needed per treatment session.
For the complete lifetime of the pacemaker, this is about 20-40 TOTPs in the hospi-
tal. Assuming a patient has one telemonitoring session per day, after 20 years only
half of the 14000 TOTPS are used. Even with a few DoS attacks per day, which is
unexpectable, there would be enough TOTPs for the lifetime of the pacemaker.

Key storage

Since we use dynamic keys, the TOTP is not stored, but only the secret, created by
the pacemaker and the programmer, is stored. The process of key storage is the same
as in the proxy-based solution and presented in Figure 17. The only difference is
that the proxy in this scheme is replaced by the pacemaker. Furthermore, not the key
pairs but the secret is sent from the programmer to the pacemaker and the back-end
system. There is one extra step, in which the clock of the pacemaker is synchronized
with the clock of the back-end system. Now with both the secret and the timer, the
pacemaker, programmer and proxy are able to generate the symmetric key that is
used for the communication. This key is stored temporarily and can be removed
directly after a treatment session from all devices.

Key distribution

As mentioned in the key generation part, the secret is distributed according to the
Diffie Hellman key agreement scheme [37]. In this scheme, both parties agree on two
public values: a prime p and a base g. Then the programmer chooses a secret value
a and the pacemaker a secret value b. Now the programmer sends ga mod p to the
pacemaker and the pacemaker computes (ga)b mod p from this. The pacemaker
sends gb mod p to the programmer and the programmer computes (gb)a mod p

out of this. This final value that they both compute, is the shared secret. The only

60 key management

restriction is that the secret is 160 bits. This distribution of the secret can happen over
an insecure channel, since both p and g are public.

The timer of the pacemaker can be synchronized with the back-end system during
the first treatment.

Key usage

To avoid key disclosure while the system is in use, it is good to perform all crypto-
graphic operations in a physically isolated dedicated environment. We propose that
this is done by an HSM. So the pacemaker needs to contain a HSM or a compo-
nent with similar capabilities. Furthermore, the programmer and the telemonitoring
system needs such an HSM, as well.

Key change

In case of a disclosure of the secret, a new secret has to be generated between the
pacemaker and the programmer. As a consequence, the patient has to visit the hos-
pital for this process. In case of an emergency, a programmer from another hospital
may synchronize with the pacemaker. The details of this process are explained in
Chapter 9. Then a new secret is established which works together with the correct
time from the back-end system of the hospital. This secret and time can be used as a
one time key and are stored only during the session on the pacemaker or the back-
end system, since it is unlikely that the patient will come back to this same hospital
for more treatments. In this rare case, the key generation process can happen again
by generating a new secret. The secret is valid for a short period of time which should
be long enough for the complete treatment.

Key expiration, archival and destruction

Secrets expire after 2 years of use. After this period, the pacemaker and program-
mer need to establish a new secret with the Diffie Hellman key agreement scheme.
The old secret can be destructed, when a new secret is generated. Secrets created in
emergencies are removed from the pacemaker and the programmer directly after the
treatment, since they do not need to be stored for a longer period of time.

8.3 construction of the session key and the mac

For the secure channel of the shared secret based solution, a session key and a MAC
are necessary. These are created for every session the pacemaker establishes with a
programmer or a telemonitoring system and are removed from the pacemaker at the
end of each session. Computations with the session key are done in the HSM of the
devices. The session key is exchanged at the end of the protocol by the programmer.
It is generated according to the key generation algorithm of the IDEA cipher, which
is not further explained here.

The MAC that is used for integrity of the messages during the secure commu-
nication protocol is made by the use of a universal hash function. For this it uses

8.3 construction of the session key and the mac 61

the algorithm UMAC as propsed in RFC 4418 [24]. This is a very fast and relatively
lightweight algorithm to generate MACs and possible to combine with various type
of block ciphers. It relies on addition of 32-bit and 64-numbers and multiplication of
32-bit numbers. These operations are well-supported by contemporary machines. The
only cryptographic component that is used, is the block cipher for generating pseu-
dorandom pads and internal key material. We advise to use it in combination with
the IDEA cipher. The default block cipher is AES, but this block cipher is relatively
more heavy than IDEA.

9
E M E R G E N C Y A C C E S S S O L U T I O N S

In this chapter, we present the emergency access approaches for the systems pre-
sented in Chapter 6 and Chapter 7. For the proxy-based system, we present one
solution that fits all the requirements described in Chapter 6. This solution will al-
ways work, because of the design of the system and the possibility to remove layers of
security easily. For the shared secret based system presented in Chapter 7, we present
our new solution in Section 9.2, where the pacemaker functions as an emergency de-
tector. Our work is the first in giving concrete parameters and a method of detecting
emergencies. However, this solution has the limitation that not all emergency situa-
tions can be recognized and covered. For this reason, some alternative solutions are
presented that can be used to authenticate to the system. They increase the success
of accessing the pacemaker in case of an emergency.

9.1 emergency solution for the proxy-based system

During an emergency, a patient visits a hospital that is close by. Depending on his or
her location, this can be A) the hospital he or she regularly visits or B) a hospital in
another city or even in another country where he or she has never been before. In case
A, the pacemaker can be accessed in the same way as during regular treatments and
the system is the same as in Figure 10. In case B, the proxy has to communicate with a
programmer it does not know. Both the proxy and the programmer do not have each
others public key. It takes time to exchange public keys in a safe way, which is not
preferred in an urgent situation. We remark that in case of an emergency, safety of
the patient is more important than security of the communication. In this situation,
the proxy is temporarily removed. The programmer and the pacemaker communi-
cate as systems that are in use nowadays, without encryption of the communication.
After the treatment, the proxy can be reattached to the body of the patient and the
pacemaker is protected again.

The system architecture for this situation is presented in Figure 18, where only a
programmer and a pacemaker are involved. The logs of the treatment are stored in
the hospital where the patient is treated. We assume that the patient should transfer
the logs from this data to the hospital where he or she is regularly treated. In general,
this information is not exchanged between the hospitals without help of the patient.
Furthermore, during the next regular treatment, the cardiologist should check the
logs from the emergency that are stored in the pacemaker and check if the settings
of the pacemaker are correct.

9.2 emergency solution for the shared secret based system

In this section, we present a new solution for emergency access to the pacemaker
where the pacemaker takes the role of an emergency detector. Since it is difficult to
guarantee a detection system that covers 100% of the emergencies, the use of a second

63

64 emergency access solutions

Figure 18: The architecture in an emergency situation.

Legend
1: The programmer configures the pacemaker and requests data stored on the pacemaker.
2: The pacemaker sends the data to the programmer.

way to authenticate to the system might be needed. For this reason, some alternatives
are presented as well.

9.2.1 The pacemaker as an emergency detector

In the shared secret based system presented in Chapter 7, security is not an additional
layer on a removable device as it is for the proxy-based system. As a consequence,
there is no easy way to access the pacemaker in case of an emergency when a patient
is not near to the hospital where he or she is regularly treated. This has to do with the
fact that the elements that are necessary to generate keys are only stored on the pace-
maker and the back-end system of the hospital where the patient is regularly treated.
During an emergency, the pacemaker should be immediately accessible by a medical
staff member in any part of the world. Although we want to prevent unauthorized
access to the pacemaker even in case of an emergency, safety of the patient goes
above all. No time can be lost by retrieving the correct key. In our system, we create
the possibility for a pacemaker to synchronize again with a programmer during an
emergency by establishing a new secret and follow the process of key management
as described in Chapter 8.

The principle is that access control is based on the condition of the heart and
that the pacemaker can operate in two modes: a regular mode and an emergency
mode. When the heart is in a condition where the pacemaker is able to support it,
there is no immediate access needed by other parties. This is the regular mode and
security mechanisms are provided. In case the heart functions abnormally and the
pacemaker is not able to correct this behavior, help by medical staff is needed. Now
the pacemaker goes into emergency mode. This mode is explained in the remainder

9.2 emergency solution for the shared secret based system 65

of this section. The state of the heart can be measured by various parameters that
depend on heart rate and rhythm. By setting acceptance values for these parameters,
it is possible to recognize states in which the patient might be in possible danger. The
system makes it possible to enter emergency mode if one or more of the acceptance
values is exceeded.

Hei et al. [23] proposed a detection system in the pacemaker that takes the heart
rate as a parameter and only considers an upper limit of 140 beats per minute. An
explanation of this specific number is missing even as a reason why they assume a
lower limit for the heart rate is not necessary. Since the heart rate depends on various
aspects, e.g. age, this limit should not be set to a fixed value applicable to everyone.
Furthermore, we think that taking only the heart rate as a parameter is not sufficient,
since this parameter does not cover most serious heart problems. For this reason, we
argue that more parameters should be involved in the emergency detection system
to do proper checks. These parameters are discussed next.

Parameters

The parameters are based on a dangerous emergency situation, where the pacemaker
is not able recover the normal behavior of the heart, namely during a heart attack. In
general, a heart attack can be diagnosed in three ways according to Thaler [42]. These
are:

1. by examining the physical state of the patient and by looking at the symptoms,

2. by examining the blood level and its cardiac enzymes,

3. by considering the electrocardiogram (ECG).

Methods 1 and 2 are measurable after the heart attack happened and require spe-
cific equipment. Furthermore, these methods are not always accurate enough. With
method 3, it is possible to reveal the correct diagnosis in case of most attacks and an
ECG makes it possible to detect the earliest changes in the rhythm of the heart. An
ECG is a recording of the electrical activity of the heart. The pattern of an ECG looks
as presented in Figure 19. Here the vertical line represents the Voltage and the hori-
zontal line represents the time. Over time, the pattern in Figure 19 repeats itself. The
waves and complexes in the figure are caused by the behavior of the heart atria and
ventricles and represent the difference in voltage level during a heartbeat. During a
heart attack, an ECG evolves through three stages as shown in Figure 20:

1. T wave peaking (a) followed by T wave inversion (b)

2. ST segment elevation (c)

3. Appearance of new Q waves (d)

The pacemaker can stimulate the behavior of the atrial and ventricular pacing and
the device is able to determine limits for the voltage at certain points of a heartbeat.
If limits are exceeded in the same order as they appear in a heart attack, the system
should go into emergency mode. Depending on the specific heart rate of a patient,
the doctor needs to set these limits with care for every patient individually.

From this pattern, we can define the following parameters with ranges.

66 emergency access solutions

Figure 19: A PQRST complex of an ECG.

Figure 20: Changes in the PQRST complex.

9.2 emergency solution for the shared secret based system 67

• The height of the T wave. This parameter can have a positive Voltage value or a
negative value. By defining an upper limit and a lower limit for the T wave, we
can check if this limit is exceeded. Both limits are determined by the doctor for
each patient, since it depends on the height of T waves in a regular condition. It
is reasonable that a certain percentage is set that the T wave is allowed to differ
from the regular situation.

• The ST segment elevation. As a consequence of a T wave peak and a T wave
inversion, the ST segment will elevate. Now we can measure if it elevates com-
pared to the previous heart beat. This parameter is a boolean with the value
True if ST segment elevation happens and False if it does not happen.

• A new Q wave. After ST segment elevation, a new Q wave can appear. This
parameter is a boolean with value True if a new Q wave appears and False if
no new Q wave appears.

Another parameter that has to be measured, is the heart rate itself. An upper limit
and lower limit should be set for this parameter, since in case of an extremely low
or extremely high heart rate a medical staff member should be able to access the
pacemaker directly. This is done by the doctor for each patient seperately and is
determined by considering a certain percentage that the heart rate may differ from
the heart rate in a regular situation.

As shortly explained, the system enters an emergency mode when it discovers an
emergency situation. To be more specific, the emergency mode is reached, when the
following logical formula gives "True" as an output:

emergency = heart rate > upper limit1 ∨ heart rate < lower limit1∨

(T wave > upper limit2 ∧ T wave < lower limit2

∧Appearance of ST segment elevation ∧ NewQwave)

This check can be done every minute for example to control the heart rate and to
recognize patterns of a possible emergency situation.

Now that the parameters are defined, we can explain how the system functions in
emergency mode with the help of a finite state diagram.

Finite state diagram

The finite state diagram related to these states is presented in Figure 21. As explained
before, there are two modes of the system: an emergency mode and a non-emergency
mode. In the non-emergency mode, the pacemaker can only communicate with de-
vices that are able to authenticate to the programmer. But when a pacemaker notices
an emergency, the system should go into emergency mode. In this mode, the pace-
maker can synchronize with a programmer and establish a secure connection. The
states related to the emergency mode are the following.

• Protected: in this state, the pacemaker is only accesible by authentication and
the communication is encrypted. It can only communicate with the program-
mer that is meant for regular treatments.

68 emergency access solutions

Figure 21: A finite state diagram.

• Open: here, the pacemaker is open for all programmers and can synchronize
with every programmer.

• Synchronizing: in this state, the pacemaker is synchronizing with a program-
mer.

• Treatment: here, treatment is provided for the patient carrying the pacemaker
by using a programmer.

The protected state is the entering state of the system. From this state, there are
three possibilites. Without an emergency, the pacemaker stays into this state. When
the system recognizes an emergency based on the limits of parameters as discussed
in the previous section, it can go in two different states. If the patient is brought
to the hospital where he or she is regularly treated, the system goes into treatment
state and the programmer can directly communicate with the pacemaker. If the pa-
tient enters another hospital or there is no programmer around, the system goes into
state ’open’. The pacemaker stays in this state until the emergency situation is over
or when a programmer appears. When the emergency is over before help is available,
the pacemaker goes back into the protected state. Otherwise, it waits to synchronize
with a programmer again as is mentioned in Chapter 8 and go into synchronizing
state. During the ’synchronizing’ state, a new secret is created and shared between
the programmer and the pacemaker and the time of the back-end system is used
once to generate the key and to synchronize with the programmer to provide secure
communication, even during an emergency. If synchronizing fails, this process can
be repeated with the same programmer or with another programmer. When synchro-
nizing succeeds, the system goes into treatment state and treatment can be provided.
After the treatment, the system goes back to the protected state. Note that because of
this mechanism, communication between the programmer and the pacemaker is still
encrypted in case of an emergency.

9.2 emergency solution for the shared secret based system 69

False positives and negatives

It is important to minimize false positives and false negatives in this solution. In
this system, false positives are situations in which the pacemaker goes in emergency
mode, when there is no emergency. This can happen when the heart rate is high or
low or other parameters exceed a limit, but the patient is not experiencing a difficult
situation. Now resynchronization is possible in a situation where this is not necessary.
In case an attacker is around, he or she is able to access and connect. The number of
false positives should be minimized by choosing the limits for the parameters very
carefully. During the occurence of a false negative, the patient is in an emergency,
but the device does not recognize the emergency. Therefore, access is necessary, but
the pacemaker does not recognize an emergency mode. This can be the case when
there is an emergency because of non-related heart problems. This is a problem, since
the pacemaker has to be turned off during some surgeries. However, at the moment
there is no easy way to stop the pacemaker from functioning. And this is also a good
property, because it should not be easy for an attacker to turn of the pacemaker.

9.2.2 Alternatives

There are several possible emergency solutions that solve the problem of false posi-
tives and false negatives, since it is not dependent on measurements, but on external
components and systems. In all solutions there is a better way to secure that only
medical staff members access the pacemaker in case of an emergency. However, it
might take too much time to access the pacemaker, since the medical staff is depend-
ing on other parties or systems.

Smartcard

The first solution is that the patient carries a paper card or smartcard in his or her
wallet with an access code to access the pacemaker in case of an emergency. These
cards can be standardized and can be a replacement of cards that patients are carry-
ing in their wallet with the type of the pacemaker and the manufacturer. In this case,
access is guaranteed by sending the code on the smartcard from the programmer to
the pacemaker, but it is also possible that an attacker steals the wallet with the card
and gets access in the same way. Furthermore, the card has the property that it can
be lost, stolen or broken and that in case of an emergency, it is not available. In this
case, access would not be possible. This is the main reason why an external object or
device will never be an optimal emergency solution.

Alarm line

Another solution is the use of an alarm line system. Each country already has an
alarm line system, this service can be added to this system. This alarm line can have
access to a database with all the secrets and timers and will be able to generate the
TOTP. The alarm line is unique for each country. In case of an emergency, the medical
staff has to call to the alarm line of the country where the patient is from.

The process can happen for example as follows: The doctor calls the alarm number
by phone and the insurance company checks this caller id. If it appears in a database

70 emergency access solutions

with phone numbers from a hospital, it sends a key to access the pacemaker to the
hospital by fax. By responding this call with a fax, we can be sure this key arrives
at the hospital. It does not make sense if an attacker spoofs the caller id, since he or
she will never receive the key from the fax. Now this key can be used to encrypt the
message from the programmer to the pacemaker to start authentication.

Positive aspects is the fact that there are multiple verifications by the caller id
and the fax, to be sure it is a medical staff member and no attacker. Furthermore, it
needs a local database for each country at the alarm service. A negative aspect is that
the solution may take a large amount of time. It takes time to call, to search in the
database and to pass the TOTP. Furthermore, since the TOTP is a 128-bit key, it is
difficult to give this by fax. Another possibility is to send it over the Internet, but this
requires strong encryption of the data sent.

Global key management system

The ideal solution to retrieve emergency access only for authorized entities and for
other problems (e.g. an electronic patient health record) would be an electronic global
key management system. When all hospitals worldwide have access to this global
system, it is possible to define who has access at what moments. With such a system,
it would be easy to ask for keys in any part of the world, at each hospital that is
connected to the database. By looking for the identity of the patient, the secret and
the timer could be immediately retrieved and the key could be determined. This can
be done in a few seconds and would only depend on the availability of the database.
There are not that many disadvantages to this solution, the only thing is that at this
point in time, it is not realistic to have such a database. It is already hard enough
to have a national patient health record system, a global database would be much
harder, because standards related to database systems, but also access control rights
need to be set worldwide.

10
C O N C L U S I O N S & F U T U R E W O R K

In this chapter, we present the conclusions of the work performed for this thesis. Fur-
thermore we discuss possible directions for future work related to implementation
details of the solution and emergency access solutions.

10.1 conclusion

In this thesis, we tried and answered the research question "How can we define a system
that provides confidentiality and integrity of sensitive information during the communication
between a pacemaker and a legitimate programmer, while ensuring availability of information
in case of an emergency?". The goal is to find an optimal system that fulfils the require-
ments and see what possible emergency access solutions are applicable. This research
question is split up in two subquestions namely:

1. What system can provide confidentiality and integrity of sensitive information during
communication between a pacemaker and a legitimate programmer?

2. How can emergency access be assured in this system?

To answer the first subquestion, we had the following approach. We defined a list
of requirements for an optimal solution. Considering these requirements, it was im-
mediately clear that it was hard to meet different requirements at the same time. The
largest challenge was the fact that certain properties could not be assured without
having knowledge about the exact components that were in the pacemaker. Since
pacemakers are property of the manufacturers and they are each others competitors,
manufacturers were not willing to give details about the architecture and communi-
cation protocols of the devices. This led to the decision to come up with two different
types of solutions: one that is directly applicable on the current pacemaker and sec-
ond that may require changes in the pacemaker design, but fits more requirements.

The solution that is directly applicable, is a proxy-based solution based on The
Shield [17]. From the list of requirements we formulated for this solution, we de-
cided to use the Needham-Schroeder-Lowe protocol to guarantee secure communi-
cation between the programmer, proxy and pacemaker. Although most requirements
are met, the use of a proxy as a solution is considered as not to be a desirable solu-
tion. Since the external device can be lost, stolen or broken, the additional security
layer is not always guaranteed. For this reason, a shared secret based solution is pre-
sented without a proxy. For this solution, we defined a list of requirements and we
designed a mutual authentication protocol and a secure channel. This communica-
tion protocol is based on a combination of the lightweight block cipher IDEA and
the use of Time-Based One-Time Passwords (TOTP) as an encryption key. This key
management method related to the TOTP is a new way to make use of a dynamic
key solution instead of the use of static keys which is frequently suggested.

The second subquestion is answered by presenting a new system in which the
pacemaker behaves as an emergency detector. Our system constantly measures var-

71

72 conclusions & future work

ious parameters of the heart and when one or more of these parameters exceed a
limit, the pacemaker goes into emergency mode. In this mode, the pacemaker is able
to synchronize again with another programmer. This type of solution avoids the use
of a central key management scheme or an external wearable object that the patient
needs to carry to access the pacemaker in case of an emergency. Our work is the first
in giving concrete parameters and a method of detecting emergencies.

10.2 future work

This work addresses future research in two main areas: the implementation details
of the solution and a specification of the emergency access solution.

10.2.1 Implementation details

To implement the solution presented in Chapter 7, the current architecture of the
pacemaker needs to be studied carefully. Research has to be done to investigate if
the necessary components are available and what will be the effect of the security
mechanisms on the performance and the lifetime of the device. The needed type and
capacity of the battery has to be determined together with the type of processor and
other relevant components. With these estimations a prototype needs to be build to
measure the performance. In this research, it was not possible to make a start on this
part, since manufacturers were not willing to participate. Since at the moment hardly
any security mechanisms are implemented in medical devices we advise manufac-
turers to work together with researchers who studied security aspects to guarantee
the security properties of medical devices in the future. Furthermore, standardising
parts of the communication process and the capabilities of the components of IMDs
would make it more easy to address security related difficulties. Organizations that
define standards in this area could play an important role here.

10.2.2 Emergency access

For the emergency access solution, where the pacemaker plays the role of an emer-
gency detector, it is important to develop a way to determine the limits of the pa-
rameters in the emergency detection system. Here, the number of false positives and
false negatives should be as small as possible. To complete this solution, it should
be determined how to respond in case of a false negative. In our presented solution,
this is an open problem. An option is to introduce a second backdoor in the system
to cover most false positives, but it is hard to cover 100% of the cases.

B I B L I O G R A P H Y

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. December 1996.

[2] D. Abraham, G. Dolan, G. Double, and J. Stevens. Transaction security system.
IBM Systems Journal, 30(2):206–229, 1991.

[3] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation for key
management - part 1: General. NIST Special Publication 800-57, 2007.

[4] C. Beck, D. Masny, W. Geiselmann, and G. Bretthauer. Block cipher based secu-
rity for severely resource-constrained implantable medical devices. In ISABEL
’11 Proceedings of the 4th International Symposium on Applied Sciences in Biomedical
and Communication Technologies, October 2011.

[5] S. Brands and D. Chaum. Distance-bounding protocols (extended abstract). In
EUROCRYPT93, Lecture Notes in Computer Science 765, pages 344–359. Springer-
Verlag, 1993.

[6] W. Burleson, S. S. Clark, B. Ransford, and K. Fu. Design challenges for secure
implantable medical devices. In DAC ’12 Proceedings of the 49th Annual Design
Automation Conference, pages 12–17, June 2012.

[7] G. Contreras, M. Martonosi, J. Peng, R. Ju, and G. Lueh. Xtrem: A power simu-
lator for the intel xscale core. LCTES’04, pages 115–125, 2004.

[8] Council Directive. 90/395/eec. Official Journal of the European Communities, June
1990.

[9] T. Denning, A. Borning, B. Friedman, B. T. Gill, T. Kohno, and W. Maisel. Pa-
tients, pacemakers, and implantable defibrillators: Human values and security
for wireless implantable medical devices. In CHI ’10, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 917–926, 2010.

[10] T. Denning, K. Fu, and T. Kohno. Absence makes the heart grow fonder: New
directions for implantable medical device security. In HOTSEC’08 Proceedings of
the 3rd conference on Hot topics in security, 2008.

[11] EBAY. Pacemaker programmer, http://www.ebay.com/bhp/pacemaker-
programmer, March 2014.

[12] N. Ellouze, M. Allouche, H. B. Ahmed, S. Rekhis, and N. Boudriga. Securing
implantable cardiac medical devices: Use of radio frequency energy harvesting.
In TrustED ’13 Proceedings of the 3rd international workshop on Trustworthy embedded
devices, pages 35–42, November 2013.

[13] N. Ellouze, M. Allouche, H. B. Ahmed, S. Rekhis, and N. Boudriga. Security of
implantable medical devices: limits, requirements, and proposals. Security and
Communication Networks Journal, November 2013.

73

74 bibliography

[14] Ettus Research. Usrp products, https://www.ettus.com/product, March 2014.

[15] Federal Communications Commission. Mics medical implant communication
services. FCC 47CFR95.601-95.673 Subpart E/I Rules for MedRadio Services, 2013.

[16] A. Ferreira, R. Cruz-Correia, L. Antunes, P. Farinha, E. Oliveira-Palhares, D. W.
Chadwick, and A. Costa-Pereira. How to break access control in a controlled
manner. In CBMS ’06 Proceedings of the 19th IEEE Symposium on Computer-Based
Medical Systems, pages 847–854, 2006.

[17] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu. They can hear
your heartbeats: Non-invasive security for implantable medical devices. In SIG-
COMM ’11 Proceedings of the ACM SIGCOMM 2011 conference, pages 2–13, 2011.

[18] Government Accountability Office. Medical Devices: FDA Should Expand Its Con-
sideration of Information Security for Certain Types of Devices, August 2012.

[19] S. A. P. Haddad, R. P. M. Houen, and W. A. Serdijn. The evolution of pacemakers.
Engineering in Medicine and Biology Magazine, IEEE, 25(3), May/June 2006.

[20] D. Halperin, T. Heydt-Benjamin, B. Ransford, and S. Clark. Pacemakers and im-
plantable cardiac defibrillators: Software radio attacks and zero-power defenses.
In Security and Privacy (SP), 2008 IEEE Symposium, pages 129–142, May 2008.

[21] Heart Rhythm Society. Pacemakers, http://www.hrsonline.org/patient-
resources/patient-information-sheets#axzz2wwarxdxr, March 2014.

[22] X. Hei and X. Du. Biometric-based two-level secure access control for im-
plantable medical devices during emergencies. In INFOCOM, 2011 Proceedings
IEEE, pages 346 –350, April 2011.

[23] X. Hei, X. Du, J. Wu, and F. Hu. Defending resource depletion attacks on im-
plantable medical devices. Global Telecommunications Conference, pages 1–5, De-
cember 2010.

[24] T. Krovetz. Umac: Message authentication code using universal hashing. RFC
4418, March 2006.

[25] U. Lakshmanadoss, A. Shah, and J. J. Daubert. Telemonitoring of the pacemaker.
In Modern Pacemakers - Present and Future. InTech, Rijeka, 2011.

[26] B. Lanchet, B. Smyth, and V. Cheval. Proverif 1.88pl1: Automatic cryptographic
protocol verifier. June 2014.

[27] G. Lowe. An attack on the needham-schroeder public key authentication proto-
col. Information Processing Letters, 56(3):131–136, November 1995.

[28] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen. Hotp: An
hmac-based one-time password algorithm. RFC 4226, December 2005.

[29] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. Totp: Time-based one-time pass-
word algorithm. RFC 6238, May 2011.

bibliography 75

[30] OWASP Attacks. https://www.owasp.org/index.php/category:attack. April
2014.

[31] OWASP Threat Agent. https://www.owasp.org/index.php/category:threat_agent.
April 2014.

[32] OWASP Vulnerability. https://www.owasp.org/index.php/category:vulnerability.
April 2014.

[33] S. Posea. Renewal Periods for Cryptographic Keys. 2012.

[34] V. Pournaghshband, M. Sarrafzadeh, and P. Reiher. Securing legacy mobile med-
ical devices. MobiHealth, 2012.

[35] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993–999, December
1978.

[36] K. B. Rasmussen, C. Castelluccia, T. Heydt-Benjamin, and S. Capkun. Proximity-
based access control for implantable medical devices. In CSS ’09 Proceedings of
the 16th ACM conference on Computer and communications security, pages 410–419,
November 2009.

[37] E. Rescorla. Diffie-hellman key agreement method. RFC 2631, June 1999.

[38] M. Rostami, W. Burleson, and F. K. A. Juels. Balancing security and util-
ity in medical devices? In Design Automation Conference (DAC), 2013 50th
ACM/EDAC/IEEE, pages 1–6, May 2013.

[39] M. Rostami, A. Juels, and F. Koushanfar. Heart-to-heart (h2h): Authentication
for implanted medical devices. In CCS ’13 Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages 1099–1112, November
2013.

[40] C. Strydis, R. M. Seepers, P. Peris-Lopez, D. Siskos, and I. Sourdis. A system
architecture, processor, and communication protocol for secure implants. ACM
Transactions on Architecture and Code Optimization, 10(4), December 2013.

[41] C. Strydis, D. Zhu, and G.N.Gaydadjiev. Profiling of symmetric-encryption algo-
rithms for a novel biomedical-implant architecture. 5th Conference on Cumputing
Frontiers, pages 231–240, May 2008.

[42] M. S. Thaler. The Only EKG book you’ll ever need. Lippincott Williams & Wilkins,
2007.

[43] F. Xu, Z. Qin, C. C. Tan, B. Wang, and Q. Li. Imdguard: Securing implantable
medical devices with the external wearable guardian. In INFOCOM, 2011 Pro-
ceedings IEEE, pages 1862–1870, April 2011.

[44] M. Zhang, A. Raghunathan, and N. K. Jha. Medmon: Securing medical de-
vices through wireless monitoring and anomaly detection. IEEE Transactions on
Biomedical Ciruits and Systems, 7(6):871–881, December 2013.

76 bibliography

[45] M. Zhang, A. Raghunathan, and N. K. Jha. Towards trustworthy medical devices
and body area networks. In Design Automation Conference (DAC), 2013 50th ACM
/ EDAC / IEEE, pages 1–6, May 2013.

A
A P P E N D I X A : P R O V E R I F C O D E

a.1 input

a.1.1 Mutual authentication

Listing 1: ProVerif Input Mutual Authentication

1 free c. (* public channel *)

free P,I.

fun sencrypt/2. (* symmetric encryption *)

reduc sdecrypt(sencrypt(x,y),y)=x. (* symmetric decryption *)

6 not symkey. (* secrecy assumption: symkey cannot be *)

private free secretK. (* secret k sent from P to I *)

query evinj:end(x,y,z) ==> evinj:begin(x,y,z).

query evinj:end2(x,y,z) ==> evinj:begin2(x,y,z).

11

let P =

new Np; (* nonce *)

out(c, sencrypt((P, Np), symkey)); (* P -> I {P, Np}symkey *)

in(c, m2);

16 let (I,=Np,Ni) = sdecrypt(m2,symkey) in

event end(I,P,Np);

event begin2(P,I,Ni);

out(c,sencrypt((Ni,secretK), symkey)). (*P->I {Ni, session key} *)

21 let I =

in(c, m1); (* I receives message *)

let (P, Np) = sdecrypt(m1, symkey) in (* checks the message *)

event begin(I,P,Np);

new Ni;

26 out(c, sencrypt((I, Np, Ni), symkey)); (* I -> P: {I, Np, Ni}symkey *)

in(c, m3);

let(=Ni,y) = sdecrypt(m3, symkey) in

event end2(P,I,Ni).

31 process new symkey;

((!P) | (!I))

77

78 bibliography

a.1.2 Secrecy

Listing 2: ProVerif Input Secrecy

free c. (* public channel *)

fun sencrypt/2. (* symmetric encryption *)

3 reduc sdecrypt(sencrypt(x,y),y)=x. (* symmetric decryption *)

not symkey. (* secrecy assumption: symkey cannot be *)

private free secretK. (* secret k sent from P to I *)

query attacker: secretK. (* secrecy query *)

8

let P =

new Np; (* nonce *)

out(c, sencrypt((P, Np), symkey)); (* P -> I {P, Np}symkey *)

in(c, m2);

13 let (I,=Np,Ni) = sdecrypt(m2,symkey) in

out(c,sencrypt((Ni,secretK), symkey)). (*P->I {Ni, session key} *)

let I =

in(c, m1); (* I receives message *)

18 let (P, Np) = sdecrypt(m1, symkey) in (* checks the message *)

new Ni;

out(c, sencrypt((I, Np, Ni), symkey)); (* I -> P: {I, Np, Ni}symkey *)

in(c, m3);

let(=Ni,y) = sdecrypt(m3, symkey) in

23 0.

process new symkey;

((!P) | (!I))

bibliography 79

a.2 output proverif

a.2.1 Mutual authentication

Listing 3: ProVerif Output Mutual Authentication

Process:

{1}new symkey_24;

(

4 {2}!

{3}new Np_25;

{4}out(c, sencrypt((P,Np_25),symkey_24));

{5}in(c, m2_26);

{6}let (I_27,=Np_25,Ni_28) = sdecrypt(m2_26,symkey_24) in

9 {7}event end(I_27,P,Np_25);

{8}event begin2(P,I_27,Ni_28);

{9}out(c, sencrypt((Ni_28,secretK),symkey_24))

) | (

{10}!

14 {11}in(c, m1_29);

{12}let (P_30,Np_31) = sdecrypt(m1_29,symkey_24) in

{13}event begin(I,P_30,Np_31);

{14}new Ni_32;

{15}out(c, sencrypt((I,Np_31,Ni_32),symkey_24));

19 {16}in(c, m3_33);

{17}let (=Ni_32,y_34) = sdecrypt(m3_33,symkey_24) in

{18}event end2(P_30,I,Ni_32)

)

-- Query evinj:end2(x_43,y_44,z_45) ==> evinj:begin2(x_43,y_44,z_45)

24 Completing...

ok, secrecy assumption verified: fact unreachable attacker:symkey_24[]

Starting query evinj:end2(x_43,y_44,z_45) ==> evinj:begin2(x_43,y_44,z_45)

goal reachable: begin:begin2(P[],I[],Ni_32[m1 = sencrypt((P[],Np_25[!1 = @sid_41

8]),symkey_24[]),!1 = endsid_419]), m2_26 = sencrypt((I[],Np_25[!1 = @sid_418],N

29 i_32[m1 = sencrypt((P[],Np_25[!1 = @sid_418]),symkey_24[]),!1 = endsid_419]),sym

key_24[]), @sid_109 = @sid_418, @occ8_193 = @occ_cst() -> end:endsid_419,end2(P[

],I[],Ni_32[m1 = sencrypt((P[],Np_25[!1 = @sid_418]),symkey_24[]),!1 = endsid_41

9])

RESULT evinj:end2(x_43,y_44,z_45) ==> evinj:begin2(x_43,y_44,z_45) is true.

34 -- Query evinj:end(x_430,y_431,z_432) ==> evinj:begin(x_430,y_431,z_432)

Completing...

ok, secrecy assumption verified: fact unreachable attacker:symkey_24[]

Starting query evinj:end(x_430,y_431,z_432) ==> evinj:begin(x_430,y_431,z_432)

goal reachable: begin:begin(I[],P[],Np_25[!1 = endsid_776]), m1_29 = sencrypt((

39 P[],Np_25[!1 = endsid_776]),symkey_24[]), @sid_213 = @sid_777, @occ13_654 = @occ
_cst() -> end:endsid_776,end(I[],P[],Np_25[!1 = endsid_776])

RESULT evinj:end(x_430,y_431,z_432) ==> evinj:begin(x_430,y_431,z_432) is true.

80 bibliography

a.2.2 Secrecy

Listing 4: ProVerif Output Secrecy

Process:

{1}new symkey_24;

(

4 {2}!

{3}new Np_25;

{4}out(c, sencrypt((P,Np_25),symkey_24));

{5}in(c, m2_26);

{6}let (I_27,=Np_25,Ni_28) = sdecrypt(m2_26,symkey_24) in

9 {7}out(c, sencrypt((Ni_28,secretK),symkey_24))

) | (

{8}!

{9}in(c, m1_29);

{10}let (P_30,Np_31) = sdecrypt(m1_29,symkey_24) in

14 {11}new Ni_32;

{12}out(c, sencrypt((I,Np_31,Ni_32),symkey_24));

{13}in(c, m3_33);

{14}let (=Ni_32,y_34) = sdecrypt(m3_33,symkey_24) in

0

19)

-- Query not attacker:secretK[]

Completing...

ok, secrecy assumption verified: fact unreachable attacker:symkey_24[]

24 Starting query not attacker:secretK[]

RESULT not attacker:secretK[] is true.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	2 Settings
	2.1 Scenario description
	2.2 The general setting
	2.3 Pacemaker
	2.3.1 IMDs
	2.3.2 IMD architecture
	2.3.3 Pacemaker architecture

	2.4 Programmer
	2.5 Telemonitoring system

	3 Attacker model and challenges
	3.1 List of concepts
	3.2 Attacker capability model
	3.3 Vulnerabilities
	3.4 Threats
	3.5 Attacks
	3.6 Challenges for ensuring securing the pacemaker
	3.6.1 Emergency access
	3.6.2 Energy consumption

	4 Related work
	4.1 Close-range communication
	4.2 Proxy vs non-proxy communication
	4.2.1 Solutions without a proxy
	4.2.2 Solutions with a proxy

	4.3 Emergency access
	4.3.1 Emergency access for close range communication
	4.3.2 Emergency access for solutions without a proxy
	4.3.3 Emergency access for solutions with a proxy
	4.3.4 Emergency-based solutions
	4.3.5 Break-The-Glass

	4.4 Discussion

	5 Requirements and assumptions
	5.1 General assumptions
	5.2 Requirements for an optimal solution
	5.3 Discussion

	6 Proxy-based solution
	6.1 Assumptions
	6.2 Requirements
	6.3 Architecture
	6.4 Communication protocol
	6.4.1 Mutual authentication
	6.4.2 Secure communication

	6.5 Discussion

	7 Shared secret based solution
	7.1 Assumptions
	7.2 Requirements
	7.3 Architecture
	7.4 Communication protocol
	7.4.1 Mutual authentication
	7.4.2 Secure communication

	7.5 Security analysis
	7.5.1 ProVerif
	7.5.2 Protocol verification

	7.6 Analysis of ciphers
	7.7 Discussion

	8 Key management
	8.1 Proxy-based solution
	8.2 Shared secret based solution
	8.3 Construction of the session key and the MAC

	9 Emergency access solutions
	9.1 Emergency solution for the proxy-based system
	9.2 Emergency solution for the shared secret based system
	9.2.1 The pacemaker as an emergency detector
	9.2.2 Alternatives

	10 Conclusions & Future work
	10.1 Conclusion
	10.2 Future work
	10.2.1 Implementation details
	10.2.2 Emergency access

	Bibliography
	A Appendix A: ProVerif code
	A.1 Input
	A.1.1 Mutual authentication
	A.1.2 Secrecy

	A.2 Output Proverif
	A.2.1 Mutual authentication
	A.2.2 Secrecy

