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Abstract

Existing configurable process discovery techniques discover models at an organizational level, i.e., directly
from the event logs of different organizations. In this thesis we propose an approach that allows for the
discovery of models at a behavioral level, i.e., we only consider the observed behavior in the traces and
not their origin. Our full approach consists of three steps.

The first step is to find groups of behaviorally similar traces. In order to do this we use hierarchical
trace clustering. Clustering algorithms often require a dissimilarity measure, existing approaches towards
defining a dissimilarity measure do not include model-awareness and therefore often have difficulties
dealing with the order of execution and loops. We propose a new dissimilarity measure, the Syntactic
reasoning approach, that overcomes these issues by using a reference process tree.

The second step is to provide insights to the end-user of our full approach in why traces are grouped.
We do this with the data of traces and events in such a group. In this thesis we explain how to annotate a
hierarchical clustering with data annotations using the naive Bayes or C4.5 decision tree classifier. In real-
life situations hierarchical clusterings may become huge. Many methods exist to reduce such hierarchies,
these however do not take into account the data annotations. We therefore propose a reduction algorithm
that performs reduction based on the data annotations. Furthermore, situations exist where the event
log does not contain data that explains behavior, in these cases we cannot annotate the hierarchical
clustering using the data from the event log. To solve this we explain how event logs can be enriched
with data attributes that abstract from the traces.

The third step is to create a configurable process model from a selection of groups of traces in
the hierarchical clustering. In this thesis we focus on process trees. Before this work the only way of
discovering configurations for a process tree was a brute force approach. In this thesis we propose a new
structured approach that discovers configurations for any process tree and a collection of event logs.

Through experiments on artificial, random generated and real-life event logs and process trees we
show that the proposed approaches are effective and applicable in different scenarios.
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Chapter 1

Introduction

The increased use of information systems causes more and more data to be recorded. Much of this
data is often unstructured and very hard to reason about. One of the main challenges is to extract
information from this raw data, such that we get value from it [2]. The field of data mining aims at
extracting information from raw data. Often information systems execute processes and the recorded
data describes events of this process. The field of process mining tries to extract information about
the processes of an organization by mainly using the recorded events. The field of process mining is
partitioned into three main activities: discovery, conformance checking and enhancement. These are
respectively the tasks of discovering a new process model from the recorded events, checking how the
recorded events conform to a process model or a given set of rules, and enhancing an existing process
model by the use of the recorded events [2]. In this thesis we mainly focus on process discovery.

Best practices, legal obligations or enterprise systems cause organizations to organize their business
processes in very similar ways [21]. An example of such organizations are municipalities. Municipalities
often provide the same services but are bound by government regulations, causing them to execute
the same processes but with slight deviations [12], e.g., the size of a municipality can influence the
handling of building permits [11]. Another reason is that with the growth and increased use of systems,
the development and maintenance cost greatly increases. The increased use of shared business process
management infrastructures, Software-as-a-Service (SaaS) and Cloud Computing shows that companies
are willing to share the development and maintenance cost [11]. Using such systems does however force
them to use similar processes.

The CoSeLoG project! aims at creating a cloud infrastructure for municipalities. The CoSeLoG
project is a collaboration between the TU/e, 2 IT companies and 10 Dutch municipalities. These
municipalities wish to migrate their information systems to a cloud solution. By doing this they might
save future development and maintenance costs. They however want to keep variability in their processes
such that they can work according to their preferences. Configurable process models provide the means
to deal with variability in processes. A configurable process model can combine many different variants
of the same process. An organization is able to configure the process model in such way that it best suits
their way of working.

In the field of process mining an execution of a process is called a trace (or case) and is a sequence
of events. A collection of traces is called an event log. Event logs can be extracted from the existing
information systems of the municipalities. To support a quick migration from the existing situation
to a cloud solution, process discovery can be used to find a configurable process model that supports
each of the municipalities. Existing techniques however discover a configurable process model with a
configuration for each of the input event logs, which would mean that a configuration is discovered for
every municipality. Such techniques discover configurations at an organizational level. In this thesis we
propose a new approach that allows discovery at the behavioral level, i.e., we only consider the observed
behavior in the traces and not their origin. Discovery at a behavioral level treats the collection of event
logs, which we obtain from the municipalities, as a single event log. To discover a configurable process
model we do however still need a segregation of the traces. To obtain this segregation we identify traces
that are behaviorally similar, i.e., the same choices are made during process execution, and group them.

IThe official website is: http://www.win.tue.nl/coselog/wiki/.
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Next we provide insights to the end-user in why these groups are formed by the data of the traces and
events in the group. By doing this we show how data implicates the observed behavior. It is now possible
to automatically, or by the end-user of our full approach, make a selection of interesting groups for which
a configurable process model is discovered.

For instance, municipalities with over 20,000 citizens might handle building permits different from
municipalities with fewer than 20,000 citizens. With the usual way of configurable process discovery it is
very difficult, or even impossible, to identify these kinds of rules. Discovery at the behavioral level does
allow for this. Creating a cloud solution supporting the configurations at a behavioral level rather than
at an organizational level allows for quick implementation of new municipalities and easier sharing of the
processes. To include a new municipality in the cloud solution it is only required to fill in parameters
(e.g., the number of citizens) in order to find an initial configuration.

In this thesis we propose a new approach that allows for the discovery of a configurable process model
at a behavioral level with explanations based on data. In Section 1.1 we propose a running example
which we use to explain the proposed concepts. Next in Section 1.2 we explain our research goal. Finally,
we present an outline of the remainder of this thesis in Section 1.3.

1.1 Running example

To explain the proposed concepts in this thesis we use a running ezample. Figure 1.1 shows the configur-
able BPMN model of our running example and Figure 1.2 shows the same process model as a configurable
process tree. For our running example we consider the process of a driving school. The way of payment
at a driving schools often differs. Some driving schools require the student to buy a package of classes
and a practical exam while others require payment before or after each individual class. A configurable
process model can be used to represent these three variants of the process. A driving school can then
configure the process model according to their preferred way of payment.

The process starts when a student applies to the driving school. At some schools the student should
first buy a package of classes and a practical exam (Buy Classes + Ezam (B)). Then driving classes
start (Driving Class (C)). If the student has bought a package, they do not have to pay per class, while
students that did not buy a package should either pay before or after the class (Pay For Class (D)),
depending on the driving school. At some time during the classes the student should take and pass a
theoretical exam (Theoretical Exam (F)). After the student is deemed good enough, and has taken their
theoretical exam, he or she can take part in a practical exam (Take Practical Exam (G)). The student
can fail this exam and start taking classes again (Fuailed (H)), fail the exam and stop trying (Stop Trying
(J)), or the student passes the exam and receives a driving license (Receive License (I)).

The process models (shown in Figure 1.1 and Figure 1.2) contain callouts which describe the config-
uration options for each variant. To obtain an executable model one of these configurations should be
applied. We now explain the three variants in more detail:

1. Packages: The student has to buy a package before starting driving classes. Figure 1.3a shows
the configured BPMN model and Figure 1.3d shows the configured process tree. This variant is
obtained in the BPMN model and process tree by hiding activity Pay For Class (D) and allowing
execution of activity Buy Classes + Ezam (B). In the BPMN model we should also block the
branch where Pay For Class (D) is executed before Driving Class (C).

2. After class payment: The student should pay after each class. Figure 1.3b shows the configured
BPMN model and Figure 1.3e shows the configured process tree. This variant is obtained in the
BPMN model by hiding activity Buy Classes + Exam (B) and blocking the branch where Pay For
Class (D) is executed before Driving Class (C). In the process tree we obtain this variant by hiding
activity Buy Classes + Exam (B) and downgrading the a-node to a —-operator.

3. Before class payment: The student should pay before each class. Figure 1.3c shows the con-
figured BPMN model and Figure 1.3f shows the configured process tree. This variant is configured
in the BPMN model by hiding activity Buy Classes + Exam (B) and blocking the branch where
Driving Class (C) is executed before Pay For Class (D). In the process tree we obtain this variant
by hiding activity Buy Classes + Ezam (B) and downgrading the A-node to a «—-operator.
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Figure 1.1: The configurable BPMN model of the process used as running example. The model describes
the process of obtaining a drivers license.
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Figure 1.2: The configurable process tree of the BPMN model shown in Figure 1.1 with only the letter-
codes of the activities instead of the full names.
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(a) Variant 1: Packages (BPMN). (b) Variant 2: After class payment (c) Variant 3: Before class payment

(BPMN). (BPMN).
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(d) Variant 1: Packages (process (e) Variant 2: After class payment (f) Variant 3: Before class payment
tree). (process tree). (process tree).

Figure 1.3: The configured variants of the configurable BPMN model shown in Figure 1.1 (a, b, ¢) and
the configured variants of the configurable process tree shown in Figure 1.2 (d, e, f). The dashed boxes
surround the configured nodes.

1.2 Research goal

The goal of our research is to identify groups of traces in an event log on a behavioral level. We wish
to explain each of these groups with the data of the traces and events in the group. By doing this
we can observe how data implicates the observed behavior. For each of the groups we wish to find a
configuration for a given process tree. Because we already explained the groups of traces by the data we
can now also observe how data implicates a configuration on the process tree. In order to reach our goal
we answer the following research questions:

1. How can we identify groups of behaviorally similar traces in an event log?

2. How can we explain these groups based on data?

3. How can we create a configuration for a given process tree and a group of traces?

4. How can we select a good configurable process tree for a selection of groups of traces?

Consider for instance our running example. Assume we have multiple driving schools which decide
to implement a cloud solution. For each of these driving schools we can extract an event log. With our
full approach it should be possible to identify different variants of the process. For the running example
this would be the three variants of the way of payment. A data attribute describing the way of payment
could explain each of these variants. We can discover a configurable process model for these variants. A
new cloud solution could now be implemented that supports this configurable process model. When a
new driving school wishes to use this cloud solution they only need to fill in which way of payment they
wish in order to obtain an appropriate configuration.
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1.3 Outline

In the previous sections we explained the field of research, introduced our research problem, proposed a
running example which is used to explain the concepts of this thesis, and finally explained our research
goal. In this section we present an outline of the remainder of this thesis.

In Chapter 2 we explain preliminary knowledge used in the remainder of this thesis. The follow-
ing concepts are explained: event logs, (configurable) process trees, alignments, process tree quality
characteristics, the Evolutionary Tree Miner framework, and finally clustering and classification.

In Chapters 3-5, we explain the theoretical foundation of our full approach and answer our research
questions. Our full approach consists of the following steps:

1. Trace clustering: In Chapter 3 we answer the first research question. We explain the concept
of trace clustering and discuss related work. We propose a new approach towards trace clustering
which should improve existing methods by adding model-awareness.

2. Explaining clusters by data: In Chapter 4 we answer the second research question. We relate
our problem to decision mining and show how a trace clustering can be annotated with data from
an event log.

3. Configurable process discovery: In Chapter 5 we answer the third and fourth research question.
We discuss existing approaches towards configurable process discovery and propose a new method.
We also propose a method to evaluate which configurable process model is the best.

Chapter 6 provides a user guide and explains how our plug-in can be extended. In Chapter 7
we present an experimental evaluation in which we compare our proposed approaches with existing
approaches and evaluate our full approach. Finally, we conclude this thesis and discuss possible future
work in Chapter 8.
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Chapter 2

Preliminaries

In this chapter we explain preliminary knowledge used in the remainder of this thesis. First we explain
event logs in Section 2.1. Second we explain process trees in Section 2.2, then continue on how these
process trees can be configured in Section 2.3. Section 2.4 explains alignments of modeled and observed
behavior. Section 2.5 explains how the quality of a process tree can be measured. In Section 2.6 we
explain the Evolutionary Tree Miner. Finally, we explain the notions clustering and classification in
Section 2.7.

2.1 Event logs

The event log is a key concept in the field of process mining [2]. An event log consists of a set of traces
and a trace is a sequence of events (also called activities). Every event log, trace or event can contain
data attributes. The data attributes of an event must at least describe the executed type of activity but
may also include other information, e.g., the resource or timing information. Every type of activity is
also called an event class.

Table 2.1 shows two traces of the running example. For every trace is registered: the payment
method, the student, the instructor, the examiner, how many classes were taken, and how many times
the student failed. Table 2.2 shows the events of these traces. The data of these tables combined forms
an event log.

Case 1d Attributes
Payment Student  Instructor  Examiner Classes#  Failures#
221 Package Arthur  John William 3 0

285 AfterClass Sara John Janette 2 1

Table 2.1: Two cases of the running examples with data attributes.

Using Trace Clustering for Configurable Process Discovery Explained by Event Log Data 7



CHAPTER 2. PRELIMINARIES

Attributes
Case Id - Event Id Timestamp Activity Resource

221 41251 2014-05-02 13:05 Apply (A) Jane
41252 2014-05-02 13:12 Buy classes (B) + Exam  Jane
41257  2014-05-02 13:31  Driving Class (C) John
41258  2014-05-02 14:32  Needs another (E) John
41261 2014-05-05 15:14  Driving Class (C) John
41262  2014-05-05 16:17 Needs another (E) John
41269 2014-05-07 13:01  Theoretical Exam (F) John
41271 2014-05-10 14:59 Driving Class (C) John
41280  2014-05-15 15:57 Take Practical Exam (G) William
41295 2014-05-21 14:07 Receive License (I) Jane

285 53151 2014-06-10 09:02  Apply (A) Jane
53155  2014-06-10 09:30 Driving Class (C) John
53156  2014-06-10 10:26 Pay For Class (D) John
53157  2014-06-10 10:31 Needs another (E) John
53162 2014-06-17 14:15  Driving Class (C) John
53163  2014-06-17 15:16 Pay For Class (D) John
53164  2014-06-23 12:59 Theoretical Exam (F) John
53170  2014-06-30 16:02 Take Practical Exam (G) Janette
53180 2014-07-07 14:12  Stop Trying (J) Jane

Table 2.2: Events of the cases shown in Table 2.1.

2.2 Process trees

The process tree [10] is one of many process modeling notations that can be used to represent process
models. Other examples of process modeling notations are: Petri Nets [2], Business Process Model and
Notation (BPMN) [32], Event Driven Process Chains (EPC) [1], and many more. However for these
languages only a small fraction of all possible models is sound, i.e., they do not contain deadlocks or
other problems [4]. Process trees do not suffer from this issue. Because of the structure of process trees,
which only allows for block-structured models, every possible process tree is sound.

A process tree is a tree that consists of operator-nodes and activity-nodes. Any leaf-node of the tree
is an activity-node and all other nodes are operator-nodes. Operator-nodes specify a relation between
their children. There are six types of operators: sequence (—), parallel execution (A), exclusive choice
(x), choice (v), repeated execution (), and the reverse sequence («) which is simply the — reversed.
Figure 2.1 shows the possible operators that process trees can be composed of and their translations to
BPMN. All operators except the (J-operator can have one or more children. The (J-operator must always
have three children, the first specifying the do part, the second specifying the redo part and the third
child specifying the ezit part of the loop. The activity-nodes of the process tree can also be labeled with
a 7 indicating an unobservable activity.

Currently there are two algorithms to discover a process tree from an event log, i.e., the ETMd and
the Inductive Miner [28]. The ETMd is an evolutionary algorithm and is further discussed in Section 2.6.
The Inductive Miner is a structured approach towards process tree discovery.
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Figure 2.1: The process tree operators and their translations to BPMN.

2.3 Configurable process trees

A configurable process model describes a family of model variants. The configurable process tree [12] is
one of many configurable process modeling notations [21, 34, 36]. In most of these notations the basic
configuration options are: allow, hide and block. Allow meaning that the node is allowed to be executed,
hide meaning that it can be skipped over, and block that the node cannot be executed (and also not
be skipped over). Nodes in the process model can be annotated with these options, this results in a
configurable process model. A collection of configuration options forms a configuration. In order to
obtain an executable model a configuration should be applied on the model.

Configurable process trees support these three configuration options for any node in the tree. However
if all children of a node are blocked, or a single child of an A, —, «—-node, or the do or exit-child child of
a (J-node is blocked, it indicates that the node itself is blocked as well. Next to the allow, hide and block
options, configurable process trees support the concept of operator downgrading. An operator can only be
downgraded to a more restrictive operator. Figure 2.2 shows the downgrade hierarchy, in this hierarchy
the operators above are less restrictive than the ones below. Process trees can only be restricted using
configuration options. There do exist configurable process modeling notations that support extension of
a process model [22]. These are however not defined for process trees and therefore not considered in
this thesis.

In the remainder of this thesis we visualize configuration options as gray callouts. For example, if
a callout contains: [ -, H, B, — 1, it indicates that for the first configuration the node should be
allowed, for the second configuration the node should be hidden, for the third configuration the node
should be blocked, and for the fourth configuration the node should be downgraded to a —-operator.

Figure 2.3a shows the configurable process tree of the running example. The first configuration
consists of a hide option on activity D. After applying the first configuration we obtain the process tree
as shown in Figure 2.3b, which is variant one of the running example.

Vv
/N

O A X

NN

—_—> &

Figure 2.2: Downgrade hierarchy of the process tree operators.
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(a) Configurable process tree. (b) Process tree after applying the first configuration.

Figure 2.3: A configurable process tree (a) and the configured process tree after applying the first
configuration (b). These are respectively the configurable process tree of the running example (Figure 1.2)
and variant one of the running example (Figure 1.3d).

2.4 Alignments

To relate modeled (process tree) and observed behavior (event log), the notion of alignments is introduced
[3, 6]. An alignment is basically a mapping of as many as possible activities observed in a trace to activities
in an execution of the process model. Every alignment consists of a log-execution and a model-execution,
respectively denoted by [ and o. Figure 2.4 shows the alignment of trace: (A, B,C,Z,E,C,F,G,I) and
the process tree of the running example without configuration options (Figure 1.2). The columns of the
table represent the moves of the alignment. Every move is a mapping between the log-execution and
the model-execution. If a log-execution or model-execution misses this is denoted by a »-symbol. Three
types of moves are distinguished:

1. Synchronous move: Is a move that has both an execution in the log and in the model. The
green lines in Figure 2.4 indicate the relation between the synchronous moves and the model.

2. Move on model only: Is a move that has an execution in the model but no corresponding
execution in the log. The orange lines in Figure 2.4 indicate the relation between the model moves
and the model.

3. Move on log only: Is a move that has an execution in the log but without a corresponding model
execution. The moves in Figure 2.4 without a line to the model are the log moves.

Alignments are often used to calculate quality characteristics of a process model like replay fitness
or precision. However alignments are also extremely useful in identifying problems of a process model.
Every move on log only and move on model only indicates a point where the observed behavior (event
log) and the modeled behavior (process tree) did not align.
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Figure 2.4: Alignment for a process tree (which is the unconfigured variant of the running example, as
shown in Figure 1.2) and trace: (A, B,C,Z,E,C,F,G,I). A green line indicates a synchronous move,
an orange line indicates a move on model only and a missing line indicates a move on log only.

2.5 Measuring the quality of a process tree

To compare and discuss process discovery techniques often four different quality dimensions are used.
These quality dimensions compete with each other, improving in one dimension might make another
dimension worse. Figure 2.5 shows these quality dimensions. These quality dimensions are defined as
follows [2, 10]:

e Replay fitness: Describes how well the process model can execute the behavior as observed in
an event log. Models with perfect replay fitness should be able to execute all behavior in the event
log. A flower-model is a model that at any point in time allows the execution of any activity. An
example of a flower model with six activities is shown in Figure 2.6. The flower model containing
all activities can always replay all traces of an event log, meaning that it has perfect replay fitness.

e Precision: Perfect replay fitness can easily be achieved by creating a flower-model that consists of
all activities. Such a model does however underfit an event log since it allows for too much behavior.
Precision describes how well the process model fits an event log. For a flower-model (Figure 2.6)
the precision would be very low. Both perfect replay fitness and precision can be achieved by
creating a trace-model. A trace-model starts with a choice between sequences of activities which

“able to replay event log” “Occam’s razor”
replay fithess simplicity

process
discovery

generalization precision
“not overfitting the log” “not underfitting the log”

Figure 2.5: The four competing quality dimensions [2].
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Figure 2.6: Flower-model for activities: A, B, C, D, E, and F. This model has perfect replay fitness for an
event log with only these activities.

X
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Figure 2.7: Trace-model for an event log with traces: (A,C, D, E, F,B) (A,C,D,F,E,B)and (A, E, B).
This model has perfect replay fitness and precision for the given event log.

each describe a trace of the event log. An example of a trace-model for three traces is shown in
Figure 2.7. To penalize such models we need the notion of generalization and simplicity.

e Generalization: Not all behavior might have been observed in an event log. Generalization
describes the relation between the overfitting of a model with respect to an event log. A model
that does not generalize is deemed to be overfitting. A trace-model (Figure 2.7) exactly describes
the event log and is therefore overfitting it. Such models have a low generalization score.

e Simplicity: Captures the principle of Occam’s razor. The size of a process model is the main
indicator of simplicity, meaning that the smallest process model is considered to be the best model
in this quality dimension. A trace-model (Figure 2.7) contains a sequence for every different trace,
this causes the model to become huge for many different traces, which results in a low simplicity
score.

Finding a process model with perfect scores for a subset of these four dimensions is often easy.
For example, a trace-model (shown in Figure 2.7) always achieves perfect replay fitness and precision.
However finding a process model with a perfect score on all four dimensions is often impossible. Therefore
process discovery techniques have to balance the different quality dimensions to find a model that is most
preferable.

2.6 Evolutionary Tree Miner

The Evolutionary Tree Miner [9, 12], or ETM for short, is an evolutionary process mining framework.
Evolutionary algorithms work with the notion of generations. It starts by generating an initial popu-
lation of candidate solutions. Next are multiple generations wherein changes (or mutations) are made
to the candidate solutions by mutators. After every generation the best (according to the specified
quality characteristics) candidate solutions are kept. Multiple algorithms were implemented in the ETM
framework. In this thesis we use the following algorithms:

ETMAd [9]: Discovers process trees from a single event log. The result of the ETMd algorithm is a single
process tree, or a population of process trees that specialize in different quality characteristics. Most
process discovery techniques focus on a subset of the quality dimensions, e.g., replay fitness and
precision. The ETMd is able to balance all the quality dimensions according to user preferences.

ETMc [12]: Discovers configurable process trees from multiple event logs. It can discover a configurable
process model from scratch, wherein aspects of the ETMd algorithm are used, or it can discover
configurations for an existing process tree.
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2.7 Data mining: Clustering and classification

Data mining is the practice of finding relationships in data or to summarize large sets of data. Two major
areas in this field are: clustering and classification, also called unsupervised and supervised machine
learning [2]. Classification assumes a labeled data set while clustering assumes an unlabeled data set. A
data set consists of objects and every object has data attributes associated to it. A data set is considered
to be labeled if its objects are assigned to groups. The data set of a machine learning task can be
visualized as a table, Table 2.3 shows an example data set. Every row in this table describes an object
and its data attributes. The first column in this data set is the label. Classification and clustering work
as follows:

Classification: In classification, the algorithm tries to find an optimal explanation for the given labels
without overfitting it. This explanation is stored as a classifier. This classifier can be used to
assign a label to newly arriving unlabeled objects. For our example training data in Table 2.3,
the classification algorithm might explain label Cy by Payment = Package, Cy by Payment =
BeforeClass and C3 by Payment = AfterClass. This means that any newly arriving unlabeled
object with Payment = BeforeClass is labeled as Cs.

Clustering: In clustering the labels are unknown and the algorithm tries to find the correct labels.
Clustering algorithms either result in a flat partitioning, or in a hierarchical partitioning of the
objects wherein in each split the most dissimilar objects are separated. Most clustering algorithms
require a dissimilarity measure which describes how dissimilar two objects are. Often such a dis-
similarity measure is implemented using a distance function, e.g., for dimensional data: Euclidean
distance, Manhattan distance, Hamming distance, and for sequence data: Levenshtein distance
or Damerau-Levenshtein distance. If we define a dissimilarity measure which heavily punishes a
different value in the Payment column, a flat partitioning algorithm should return the labels as
shown in the first column of Table 2.3.

Label Payment | Classes# | Failures#
C1 Package 20 0
Ch Package 27 0
Ch Package 38 1
Cy BeforeClass 18 0
Csy BeforeClass 25 0
s BeforeClass 48 2
Cs AfterClass 21 0
Cs AfterClass 35 1
Cs AfterClass 29 0

Table 2.3: Machine learning data set. Every row is an object in the machine learning task and represents
a case of the running example.
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Chapter 3

Trace clustering

In this chapter we answer the first research question: How can we identify groups of behaviorally
similar traces in an event log? This problem is directly related to trace clustering. Trace clustering is
the task of finding homogeneous groups of traces. Trace clustering is not different from regular clustering
aside from the input: an event log which is a collection of traces. Every trace in the event log is an
object in the clustering task. One of the first to discuss the significance of trace clustering in process
discovery was Medeiros et al. [30]. They mention that process discovery algorithms often work very well
on structured processes with little noise. This is however typically not the case. It is very difficult to
determine the scope of the process and there is often all kinds of noise. Because of this, process discovery
algorithms often produce spaghetti process models. Trace clustering is believed to solve this problem.
By clustering an event log we can obtain more homogeneous groups of traces. This leads to more
comprehensible process models during discovery. In our approach we see a similar problem. We want to
find groups of homogeneous traces such that we can adequately create process model configurations for
the groups.

Take our running example, assume we can position the traces of an event log in a two-dimensional
space, one might get a result like Figure 3.1. After performing trace clustering we want to find the three
clusters as indicated by the borders around the objects (in red, blue and green).

Figure 3.1: Example segregation of traces that form clusters.

Most clustering algorithms use a dissimilarity measure. The dissimilarity measure is an important
factor in identifying objects that should be grouped together into clusters. Many approaches exist
towards defining such a dissimilarity measure for trace clustering but none of these add the context of a
process model, while this can greatly improve the clustering performance. Therefore we propose a new
approach, the Syntactic reasoning approach which does include model-awareness.

Section 3.1 discusses existing approaches of defining a dissimilarity measure and their problems. In
Section 3.2 we explain why we include process models in our approach towards trace clustering. Then in
Section 3.3 we propose our dissimilarity measure, the Syntactic reasoning approach. Section 3.4 explains
how we performed the trace clustering. Finally, we conclude this chapter in Section 3.5.
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3.1 Related work

Most clustering algorithms use some kind of dissimilarity measure. Because of this we need to define a
dissimilarity measure between traces. Since we want to cluster traces that are behaviorally similar, we
should define this measure on behavior. Dissimilarity is often described as a distance between traces
and the dissimilarity measure is therefore often described using a distance function. FExisting work
[5, 23, 24, 30, 37] suggests many different approaches towards defining such a distance function. In
this we see a categorization between feature-set and syntactical approaches. To explain the existing
approaches and their problems we use the following two traces: t; = (A, B,C,E,C,F,G,I) and ty =
(A,D,C,F,E,D,C,G,J)y, which are executions of respectively model variants one and two of the running
example presented in Section 1.1.

3.1.1 Feature-set approaches

Feature-set approaches define a vector of features for a trace. The distance between two of such vectors
can be calculated using a distance function, e.g., the Euclidean, Hamming or Jaccard distance [37].
The most basic feature-set approaches are Set-Of-Activities and Bag-Of-Activities [24, 37]. In these
approaches the occurrence of an activity is a feature of the feature-set. The Set-Of-Activities approach
only registers whether an activity occurred or not, while the Bag-Of-Activities approach actually counts
the number of occurrences. In the Bag-Of-Activities approach our example traces would result in the
vectors: vy = (1,1,2,0,1,1,1,1,0) and v, = (1,0,2,2,1,1,1,0,1), where the elements respectively
denote the occurrence of activity: A, B, C, D, E, F, G, I, and J. The Set-Of-Activities and Bag-Of-Activities
approaches both fully ignore the order of execution aspect.

Another basic approach is k-grams [24]. In k-grams the occurrence of a subsequence of the trace of
length k is a feature, e.g., in our example 3-grams features would be: (A, B,C) and (A, D,C’. This
approach is a generalization of the Bag-Of-Activities and behaves identical for & = 1. K-grams partially
solves the order of execution problem but explodes the number of features for longer traces.

Jagadeesh Chandra Bose [23, p.81] proposes feature-sets that are context-aware. The idea of their
approach is to find recurring patterns in all the traces of an event log, i.e., their common subsequence
of activities. Unlike k-grams its features can consist of variable lengths. The so called ‘Process-Centric’
feature-sets can be classified in two categories: (i) sequence features and (ii) alphabet features. Their
sequence features enforce constraints on the order of the activities while the alphabet features, derived
from the sequence features, relax the ordering of these sequence features. Choosing the appropriate
feature-sets is still largely dependent on the context of the analysis. Depending on which constructs we
want to cluster we should pick the appropriate feature-set.

Although the approach by Jagadeesh Chandra Bose [23, p.81] tries to solve problems like loops and
ordering of execution, we are still very much dependent on the context of the analysis. Loops might
be identified where they do not exist. Different execution orderings of activities might be observed and
allowed by the feature-set while the process model behind it does not allow for the behavior.

3.1.2 Syntactical approaches

Feature-set approaches try to abstract from the traces by finding features that identify the trace. Syn-
tactical approaches define the distance between traces in terms of error-transformations, i.e., modifica-
tions required to change one trace into the other. A trace is a sequence of activities and a fundamental
way to calculate the dissimilarity of two sequences is the Levenshtein distance (also referred to as the
edit distance). The Levenshtein distance counts the number of insertions, deletions and substitutions
required to change one sequence into another.

A global alignment of our example traces: ¢; and t5 is shown in Figure 3.2. The Levenshtein distance
of these traces is 5. We quickly observe that the execution of F in a different position in the trace causes
an additional two edits (one insert and one delete). But when also considering the process models of
the running example we observe that the key difference is that in variant one we execute activity B and
in variant two we do not. Therefore in order to find the appropriate trace clustering it is not preferable
that the difference in the execution of F accounts for a large portion of the distance.

The Damerau-Levenshtein distance is an extension of Levenshtein distance which adds the transposi-
tion error-transformation. This error-transformation allows transposition of two adjacent activities. For
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Figure 3.2: The Levenshtein distance internally aligns the two sequences. This figure shows this alignment
for the two example traces. The Levenshtein distance for these two traces is 5.

our example the Damerau-Levenshtein distance yields an edit distance of 5. The F activities are not
transposed since they are too far apart.

Another syntactical approach is the Generic Edit Distance [23, p.86] which is a generalization of the
Levenshtein distance and allows for a custom cost function. For our example we could now set the costs
of an insertion or deletion of F to 0. This improves the final edit distance but this is however a very
context-specific task.

3.2 Adding model-awareness

Some of the approaches discussed in Section 3.1 try to add context-awareness but this is only considered
among traces in the event log. What if we already know a single process model or multiple process models
to reason about. These process models could provide important context-information about traces. By
adding a process model, we can calculate an alignment for every trace with respect to the process model.
This alignment tries to match every activity in the trace to a transition in the model (or a node in
case of a process tree). Using this alignment between the trace and the model we can reason about how
activities of the trace are related to each other. Adding model-awareness can solve some of the previously
mentioned issues. By adding model-awareness we can accurately:

1. Match activities that were executed in a different order based on their relation to the model and
each other. The Levenshtein distance punishes a mismatch in ordering with at least two error-
transformations. By identifying these kind of mismatches we can assign a more appropriate cost
to such a mismatch.

2. Identify loops in the traces and deal with different number of iterations appropriately. In existing
approaches an additional loop iteration can cause for a big difference in the distance. For example,
if one trace executes a loop 5 times and the other 6 times and every iteration adds 10 activities.
With no other differences the Levenshtein distance already counts 10 edits. We think that this 6**
iteration should however have a very small impact on the final edit distance.

3.3 The Syntactic reasoning approach

Existing feature-set approaches often suffer from issues such as: (i) trouble capturing the ordering of
the execution, and (ii) an exploding number of features with the growing size of a trace. Existing
syntactical approaches suffer from issues such as: (i) no real loop identification, (ii) and punishment of
mismatches for a different ordering of activities even while the corresponding process model does not
restrict the ordering of these activities. By adding model-awareness we can solve the common issues of
syntactical approaches. Therefore we propose a new syntactical approach that overcomes the typical
issues of existing approaches by adding model-awareness.

To overcome the issues we first introduce partially ordered alignments and how these should be
constructed in Section 3.3.1. Then in Section 3.3.2 we propose a method to relate two partially ordered
alignments to each other such that we can compare them to each other. To penalize mismatches in parallel
behavior we propose a method of calculating a score that represents this mismatch in Section 3.3.3.
Then in Section 3.3.4 we define the distance function for two traces and a process model. Finally in
Section 3.3.5 we allow for multiple process models and explain how the scores of the distance function
can be aggregated to a single distance function which represents the final dissimilarity measure of the
Syntactic reasoning approach.

Our approach is implemented for process trees but can be generalized to any process modeling
notation if partially ordered alignments can be constructed, and the do and redo activities of loops can
be identified.
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3.3.1 Partially ordered alignments

Assume we are given a process tree (which is the running example as shown in Figure 1.2 without
configuration options), and a trace: (A, B,C,Z, E,C, F,G, Iy, we can now calculate an alignment. The
resulting alignment is shown in Figure 3.3, a green line indicates a synchronous move, an orange line
indicates a move on model only and a red line indicates a move on log only.

Using this alignment and the given process tree we construct a Partially Ordered Alignment (POA).
We use Figure 3.3 to explain our construction algorithm. The first step of the construction algorithm is
to determine the parent node(s) for every move in the alignment. For a synchronous move or a move on
model only this is obtained by a traversal of the process tree from the child to the root. For example,
for the synchronous move of activity C the parent nodes are: <—1,J1,—2, v,z, A>.

Determining the parent node(s) for a move on log only is not trivial. For a move on log only we
try to insert it under the parent of the first non-log move that occurred before it or the first non-log
move that occurred after it. We never insert the move on log only under a x-operator because if the
parent of our neighbor is a x-node it means that this x-node is already executed, in this case we take
the first non-x parent. We prefer insertion under a A-operator or v-operator, as these operators do
not enforce an order restriction in the resulting POA and therefore are not an as strong assumption as
an insertion under e.g., a —-operator would be. In our example we have one move on log only which
executes activity Z. We can either insert it under the parent of activity E or the parent of activity C. The
parent of activity C is a A-operator while that of E is a (J-operator, therefore we prefer insertion under
the parent of activity C. The red line in Figure 3.3 illustrates this insertion. The parents nodes for this
move on log only become: <—1,01,—2, v, 2, A>.

The next step is to walk backwards over the alignment moves and compare each move to the moves
that were after it (again starting with the last move of the alignment). For every succeeding move we
retrieve the common parent. If this common parent does not restrict order (i.e., A or v-operator), we
are done with this move. Else we create a reference to this successor and remove all successors that have
now become redundant (the new successor might already refer to some of the old successors and thus
these old successors have become redundant). After having obtained the successors for every move, we
have obtained the final POA. The pseudo-code of this algorithm is included in Appendix A.
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Figure 3.3: Optimal alignment for a process tree (which is the unconfigured variant of the running ex-
ample, as shown in Figure 1.2) and trace: (A, B,C,Z, E,C, F,G,I). A green line indicates a synchronous
move, an orange line indicates a move on model only and a red line indicates a move on log only.
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Figure 3.4: Partially ordered alignment of the alignment of Figure 3.3. The color of a node indicates the
type of move; white: synchronous move, gray: move on model only, and black: move on log only.

For example, take the synchronous move of activity F and the synchronous move of activity I in
Figure 3.3. For activity F we have the parent nodes: <—1,(J;,—2, v> and for activity I we have
the parent nodes: <—1,(1, x>, their common parent is the node: (J1, this is not a A-operator or v-
operator, therefore we create a relation between F and I. Next we compare F with the synchronous move
of activity G. Their first common parent is —o, therefore we create a relation between activity F and
activity G. But since G already has a relation to I we now remove the relation from F to I. We continue
in this fashion for all moves until we have constructed the full POA.

Any POA can be represented by a directed acyclic graph. Figure 3.4 shows the result of our algorithm
on the example alignment as shown in Figure 3.3. We could now use a graph edit distance to calculate
an edit distance between this POA and the POA for another trace. This solves the issue of punishment
of parallel behavior. Only then mismatches in parallel behavior are not punished at all and the issues
with loops remain.

3.3.2 Relating partially ordered alignments

To reason about a dissimilarity of POAs we need to relate one POA to the other. To illustrate how we
propose to relate POAs, we use the trace from the previous section: ¢; = (A4, B,C,Z,E,C, F,G,I) and
introduce a new trace: to = (A, F,C,D,G, Z,I). Figure 3.5 shows the POAs of these traces (constructed
for the process tree shown in Figure 3.3) and relates them to each other. The dotted green lines show
proper relations meaning that both nodes have the same activity type and move type. Orange dotted
lines show weak relations meaning that both nodes have the same activity type but different move types.
All nodes that are not connected do not have a node to which they can be related in the other POA.
Surprising might be that the move on log only of activity Z is not connected to its partner in the other
POA, this is caused by their different contexts. Relating the POAs on Z would result in a misalignment
on: C, D, G, and 7, which is obviously a worse relation.

In order to relate the POAs we first create a flat presentation of both POAs using an modified version
of the topological sort algorithm that was first introduced by Kahn [26]. This algorithm starts with an
empty list L, which eventually contains the sorted nodes, and a set S, which contains all nodes with no
incoming edges. We initialize S with the nodes that do not have any incoming edges, for Figure 3.5 this
would be A. The algorithm takes a node n from S and adds it to L, it then removes all outgoing edges
from n and updates S with the nodes that no longer have any incoming edges. This continues until all
nodes are in L and thus we have obtained the topological ordering. The ordered result L is however
heavily dependent on the way the nodes are visited. To be able to relate two POAs we want to enforce
certain rules upon this visitation.

We start by creating a fixed ordering of all types of activities in the event log. We also create a fixed
ordering of the leaf-nodes in the process tree (for which the POAs were created). We now modify the
algorithm by making S an ordered set of nodes, which at all times remains sorted, i.e., any newly added
elements are automatically sorted. S is sorted in such way that first all move on log only are present
and sorted according to the fixed ordering of the types of activities, then second all synchronous moves
and model moves are present and sorted according to the fixed ordering of the leaf nodes in the process

Using Trace Clustering for Configurable Process Discovery Explained by Event Log Data 19



CHAPTER 3. TRACE CLUSTERING

topoSort(POA(t1)) | A | B
A|B

tq
topoSort(POA(t2)) |

Figure 3.5: The table shows the global alignment of the topological sorts for the POAs of t; =
(A,B,C,Z,E,C,F,G,I) and to = (A, F,C,D,G,Z,I). The top POA represents ¢t and the bottom
POA represents t;. Green dotted lines indicate a proper relation between nodes and orange dotted lines
indicate a weak relation.

tree. Because of this sorting the topological sort always returns a flat presentation of the POA that can
be optimally aligned to a flat presentation of another POA.

The alignment of the topological sorts is obtained using the global alignment algorithm introduced
by Needleman and Wunsch [31]. The resulting global alignment of the flat presentations now provides
us information on how the nodes in the POAs are related to each other. The table in Figure 3.5 shows
the global alignment of the topological sorts of the example traces.

3.3.3 Computing parallel execution difference

Using the POAs we can already calculate a graph edit distance and use this as a distance function.
This however fully ignores the difference in the observed execution orderings of activities on which no
ordering is enforced by the model. In order to cluster on different execution orderings of these activities
we should still penalize differences in these executions. To illustrate this mechanism we use Figure 3.6,
which shows two alignments with the same POA.

To compute a score representing this mismatch in parallel behavior, we replay the original alignments
on their corresponding POA. For every node that is related to a node in the other POA (can be a weak

|C|D|E|C|D|>»|F|G
C|DIE|C|D F |G

| I
I

L|A|l»|D|[C|E|[D|C|»|F]|G
A D|C|[E[D]|C F|G

[CIE[D[C]r]F]

> | I
[ B[C[D] [

|7 ]

sucey, =<{C, D, F) sucey, =<C, D)
sucey, ={(D,C, F) sucey, =<{(D,C»
swaps(sucey,, sucer,) =1 swaps(sucey, , sucer,) = 1

Figure 3.6: Two traces t; and ty, with identical POAs but different observed execution orderings. This
figure illustrates the parallel splits of the POA. It shows the successors and the parallel execution ordering
score per split. The final parallel execution ordering score is 2.
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or proper relation) that has multiple outgoing arrows, the successor nodes should be further investigated.
In the example of Figure 3.6 this would be node B and E.

We take all successor nodes that are properly related (i.e., they represent the same activity type and
move type) and do not represent a move on model only. We ignore move on model only because these
moves have no observed execution ordering and therefore cannot be used to inspect the difference in
observed execution orderings. We now take the intersection of the two sets of successors and order the
sets according to their observed execution in the trace. For the move on model only of activity B we
would obtain the lists of activities: (C, D, Fy and (D, C, F).

Using permutations it is now possible to calculate how many swaps are required to change the first
ordered set of successors to the second ordered set of successors or vice versa. For node B this results in
one swap. We calculate this number of swaps for every split present in the POA. The sum of the number
of swaps is the parallel execution difference.

3.3.4 Calculating dissimilarity for a single model

Using the previously described techniques we are now able to define the dissimilarity measure of the
Syntactic reasoning approach. We define this measure using a distance function: d(t;,t;, M, ) —

{x e R:x > 0}. The result of this function is obtained by a multi-step approach. First for both traces
a POA is created and the POAs are related to each other, then multiple error-transformation-steps are
performed such that both POAs become more similar. After the last step both POAs are identical. Our
approach consists of the following error-transformation steps:

1. Parallel-Difference: This does not actually transform anything in the POAs but the cost of the
parallel execution difference is added to the final distance. Assume the parallel execution difference
is m, then the total added distance is defined according to the function:

log(n+1) x ifn>0
cuat) = { B 2 0 1)

Where parameter p,q is a multiplier to influence the cost of the parallel execution difference.

2. Log to Model synchronization: The provided model might not represent the traces perfectly.
For example, the model might have a —-operator while it should be an A-operator, this causes
the alignment algorithm to introduce a move on log only and a move on model only for a single
mismatch in the ordering of an activity. This error-transformation merges this move on log only
and move on model only to a single synchronous move on the position of the move on model only,
but only if the move on log only is not related to a move on log only in the other trace. The cost of
a single synchronization is represented by p;,s. Therefore the cost of n synchronizations is defined
by the function:

Cims(N) =N X Prms (3.2)

3. Loop roll-up: As indicated in Section 3.2 existing approaches can add a lot of distance for just
a single extra iteration of a loop, our approach solves this issue by incorporating a loop roll-up
error-transformation. Process trees have a loop operator that makes a clear distinction between
the do, redo, and exit part of a loop. Using this information we can relate nodes of a POA with
the loop construct. Our approach counts the number of iterations for both traces for every loop
instance (i.e., an instance starts at the first do-activity and ends before the first exit-activity).
Afterwards additional iterations of a loop are added to one POA such that both have the same
number of iterations for every loop instance. This way we only penalize the difference in the number
of iterations instead of penalizing every individual observed activity.

The cost of adding loop iterations takes into account that adding a second and third iteration if
there was only one iteration should cost more than when adding an 11** and 12" iteration if there
were 10 iterations. The idea is that the more iterations there are, the less significant the cost of
adding an additional iteration should be. The cost of loop roll-up for a single loop instance is
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defined by the function:

(IOg (ihigh + 1) - 10g (ilow + 1)) X Plru 1f ihigh Z Z‘low > 0
Cru(ihighs liow) = {108 (high + 1) X Prry if ipign > 0 and iz, = 0 (3.3)
0 else

Where ipiqp, is the number of iterations in the POA with the most iterations, 40, is the number
of iterations in the POA with the least iterations, and parameter p.,, is the multiplier for the
logarithmic difference. The final cost of this error-transformation is the sum of the costs per loop
instance.

In addition to adding these iterations, this error-transformation also repairs iterations such that
the mismatch of a single activity, but repeated in multiple loop iterations, does not result in a
big edit-cost in the last step. We only keep the mismatches in one iteration and repair all other
occurrences. No additional cost is added for this kind of repair.

4. Node transfer: The provided model might not represent the event log perfectly. This can cause
for unrelated nodes in the POAs while they should actually have been related. This transformation
transfers the node from one place in the POA to a place where it can be properly related to a node
in the other POA. The cost of a single node transfer is represented by p,;. Therefore the cost of n
node transfers is defined by the function:

cnt(n) =n X ppg (3.4)

5. Insertion / Deletion / Substitution: This is a slightly modified version of a standard graph edit
distance. We distinguish between three types of substitutions: (i) Substitution of a non-log-move
with a non-log-move that describe different process tree nodes, (ii) Substitution of a non-log-move
with a non-log-move that describe the same process tree node, and (iii) all other substitutions. The
cost of a single insert / delete, or single substitution of type: (i), (ii) or (iii) is defined respectively
by: Pid, Pe1, Pez and p.3. Therefore the cost of n;q insert / deletes, n. substitutions of type (i),
neo substitutions of type (ii), n.s substitutions of type (iii) is defined by the function:

cged(nid; Ne1, Ne2, ncB) = NidPid T Nec1Pc2 + NeaPe2 + Ne3Pes (35)

Please note that the insertion and deletion costs were not defined separately since these must be
identical in order to keep symmetry, i.e., d(t;,t;, M,) = d(t;,t;, My,).

The final distance function d(t;,t;, M,) is defined as the summation of the cost functions of these error-
transformations.

3.3.5 Aggregating dissimilarity for multiple models

The Syntactic reasoning approach defines the distance function: d(¢;,t;,M,) — {relR:z >0} to
describe the dissimilarity of two traces for a given model. As explained in Section 3.2, adding a process
model can provide important context-information about the traces. Evolutionary process discovery
algorithms like the ETMd can produce many models which specialize in different aspects. Because of
this we might not have a single ideal model, but instead have a lot of models that approach this ideal
model. We can calculate distances for each of these models, but for the actual trace clustering we need
a single distance. For this we define the following basic aggregation functions:

Definition 3.1 (Distance aggregation functions)
Let t; and t; denote two traces. Let MC denote a collection of process models. We now define four
aggregation functions:

1. Mazimum: dyqq(ti, t;, MC) = maxcd(ti,tj,Mn)

MypeM

2. Minimum: dmin(tiy tj, MO) = Mmiﬂnjc d(tz, tj, Mn)
n€

3. Sum: dsum(ti,tj,MC) = ZMHEMC d(ti,t]‘,Mn)

4. S’quared: dsq(ti,tj,MO) = \/ZIVInEMC d(ti,tj7M1)2
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3.4 Creating a segregation of traces

Many algorithms exist to perform clustering, e.g., k-means [29], agglomerative/divisive hierarchical clus-
tering [16], DBSCAN [18], OPTICS [7], hierarchical DBSCAN [13], and many more. Some of these
algorithms return strict groups of objects while others return hierarchies of objects where in each split
the most distant objects are split of from a bigger cluster. For our trace clustering we focus on hier-
archical algorithms because: (i) hierarchical algorithms often require less parameters, (ii) parameters
of non-hierarchical algorithms are often not trivial and very context-specific, and (iii) end-users of our
full approach have more freedom in choosing a selection of clusters and thus retrieving a good set of
configurations. The Syntactic reasoning approach (proposed in Section 3.3) is a syntactical approach,
meaning that we do not have feature-sets and therefore no features per trace that can be represented
as a vector. We therefore cannot place the traces in a dimensional space. This restricts the use of our
dissimilarity measure to hierarchical algorithms that do not require this, e.g., agglomerative/divisive
hierarchical clustering [16], OPTICS [7] or hierarchical DBSCAN [13].

Hierarchical clustering [16] is one of the most well known clustering algorithms. The bottom-up
variant (agglomerative) starts by placing the traces in separate clusters and then merges the closest
clusters into a larger cluster until eventually there is one root cluster that contains all traces. Different
methods to determine the closest clusters can be used, e.g., (i) single linkage, which takes the distance of
the closest two objects, (ii) complete linkage, which takes the distance of the farthest two objects, and
(iii) average linkage, which takes the average of the distances between objects of the clusters. Hierarchical
DBSCAN [13] is a more recent hierarchical clustering approach and can be seen as an algorithmic and
conceptual improvement over OPTICS [7]. Both Hierarchical DBSCAN and OPTICS are density based
algorithms and produce hierarchies. Density based algorithms form clusters of traces in the densely
populated areas. Objects that fall in between such areas are often discarded as noise.

Figure 3.7 shows a hierarchical clustering of traces (which are executions of the running example)
using the Syntactic reasoning approach as a dissimilarity measure. Please note that some clusters have
green borders. These are the clusters that distinguish the different configurations of the running example,
we call this the preferred clusters.

ty | (A,B,C,E,C,E,C,F,E,C,G,I)

ts | (A,B,F,C,E,C,E,C,G,I)

ts | (A,C,D,F,E,C,D,E,C,D,E,C,D,E,C,D,G,I)

ts | (A,C,D,E,C,D,F,E,C,D,G,I)

ts | (A,D,C,E,D,C,F,E,D,C,G,H,D,C,E,D,C,F,E,D,C,G)
ts | (A,D,F,C,E,D,C,G,H,D,C,E,D,C,E,D,C,G)

t- | (A,D,C,E,D,C,F,E,D,C,E,D,C,G)

t1,t2,%3,t4,t5,%6,t7

/

Package payment | t1,t2

/ \ t3,t4, 15,6, t7
tq &

N

Before class payment |t3,t4 ts,te,t7 | After class payment

t/\ RN

ty | ts,l6 tr

t/ \t

Figure 3.7: The table shows traces which represent executions of the running example. The tree rep-
resents a hierarchical clustering of these traces. The clusters with green borders represent the preferred
clusters. The three preferred clusters in this hierarchy represent the three variants of the running ex-
ample.
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Many algorithms exist to extract such preferred clusters. The most basic approaches simply retrieve
all clusters with a minimum number of objects, or cut the hierarchy when a certain height threshold
is reached (the height is the distance between the clusters that are split of). These methods perform
global cuts of the hierarchy. Campello et al. [13, p.166-168] proposes a method that instead performs a
local cut of the hierarchy by using the notion of cluster stability. In our approach we wish to keep the
hierarchy for the next step but we do use this local cut method to suggest the most preferable clusters
to the end-user.

3.5 Conclusion

We have explained the relevance of trace clustering in process discovery, by finding homogeneous groups
of traces the complexity of discovered models may be reduced. We applied trace clustering to find
groups of traces that imply configurations on a process model. Clustering algorithms use some kind
of dissimilarity measure, we explained how existing approaches towards defining this measure suffer
from problems because of their lack of model-awareness. We proposed a new dissimilarity measure:
the Syntactic reasoning approach, which includes process models. By adding model-awareness we are
able to adequately identify parallel executable behavior and loops. Finally we have explained how our
dissimilarity measure can be used in clustering and how preferred clusters can be suggested to the end-
user. The final result is a hierarchical clustering that shows a segregation of the input event log for a
given collection of process trees. In Chapter 4 we explain how we can relate the data of the event log to
this hierarchical clustering. This provides insights to the end-user in how the data implies behavior as
observed in the clusters and finally how the data implies configurations.
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Explaining clusters by data

In Chapter 3 we explained how we obtain a hierarchical clustering. Each cluster in this hierarchy is
a group of traces. The root of the hierarchy contains the full event log, then at every level the most
dissimilar groups are split of. In this chapter we answer the second research question: How can we
explain these groups based on data? With these groups we refer to the clusters in the hierarchy.

A similar issue is observed in the area of decision mining [35]. Decision mining aims at gaining insight
into the data perspective of processes. With an event log and a process model we can replay the traces
of this event log on the process model. At some points in this process model choices are made. The
points where a choice can be made are called decision points. In process trees the decision points are
represented by the operators x and v which provide a choice between activities, and () which provides
a choice between exiting the loop and entering another iteration. Decision mining tries to explain the
choices made at the decision points using the data of the traces.

We can relate to this problem since the traces are clustered on their behavioral similarity, i.e., the
traces are clustered since similar choices were made during execution. Different in our approach from
decision mining is that we do not want to explain each choice individually but instead want to explain
a collection of choices (represented by a cluster) by the data of the traces. For any hierarchical clus-
tering we wish to annotate every split in the hierarchy with an explanation based on data. If such an
explanation does not exist we wish to reduce the hierarchy. Hierarchical clusterings can become huge
and incomprehensible. Under the assumption that splits which cannot be explained by data are invalid,
we can remove such splits. A comprehensible annotated hierarchical clustering provides insights to an
end-user in how data implicates a cluster and finally a configuration of the process model.

Assume we have the same traces and partially the hierarchical clustering as shown previously in
Figure 3.7. Assume the traces contain the data as shown in Table 4.1. After performing annotation we
wish to find a hierarchical clustering as shown in Figure 4.1. This hierarchical clustering clearly shows
the three variants of the running example.

Section 4.1 explains how we annotate the hierarchical clustering based on data. Then in Section 4.2
we discuss a method to reduce the hierarchical clustering. In Section 4.3 we explain how the trace data
can be enriched to obtain better results. Finally in Section 4.4 we conclude this chapter.

ty | Trace Payment Classes# | Failures#
t1 | {A,B,C,E,C,E,C,F,E,C,G,I) Package 4 0

ts | (A,B,F,C,E,C,E,C,G,I) Package 3 0

ts | (A,C,D,F,E,C,D,E,C,D,E,C,D,E,C,D,G,I) | AfterClass 5 0

ty | (A,C,D,E,C,D,F,E,C,D,G,I) AfterClass 3 0

ts | <A,D,C,E,D,C,F,E,D,C,G,H,D,C,E,D,C, BeforeClass 6 1

F,E,D,C,G)
te | (A,D,F,C,E,D,C,G,H,D,C,E,D,C,E,D,C,G) | BeforeClass 5 1
tr | (A,D,C,E,D,C,F,E,D,C,E,D,C,G) BeforeClass 4

Table 4.1: Executions of the running example with data attributes.
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ty,t2,t3,14,ts5, 6, t7

_ Payment=BeforeClass
PaymentPaCkV v Payment=AfterClass

tlatQ t31t47t57t67t7
PaymentBeforeClas/ &aymentAfterClass
3,14 ts,t6, b7

Figure 4.1: The reduced annotated hierarchical clustering of the example given in Figure 3.7 using the
data set of Table 4.1.

4.1 Annotating a hierarchical clustering

In this section we propose two methods for annotating the hierarchical clustering. We annotate the
hierarchical clustering using the data of the traces. In order to do this we transform our problem to
a classification problem. In classification it is required to have a set of objects for which we know the
class, in our case the traces are the objects and the class is the cluster to which they are assigned. Using
this input the classification algorithm aims at forming an optimal internal presentation that represents
the input classification of the training objects. The resulting classifier can now be used on new objects
to assign them to one of the classes. Figure 4.2 shows how for each hierarchy split a training set for the
classification algorithm is created. Every cluster is given a class label, and every trace in a cluster is an
object in the training set under this label. Every attribute in the data of the traces is a column in the
training set. The events of a trace can contain data as well, the training set can be expanded with this
data. A classification algorithm can now be asked to create a classifier for this training set.

Different from normal classification is that we are not interested in using the classifier to assign
new objects to one of the existing classes, but instead want to use the internal rules of the classifiers
to annotate the hierarchical clustering. Many algorithms exist to perform classification, e.g., Bayesian
classifier [17], C4.5 decision trees [33], nearest neighbor [15], support-vector networks [14], and many
more. However most of these algorithms have internal classification rules that are incomprehensible for
people while we want to annotate the hierarchy in such way that people can reason about it. Algorithms
like the Bayesian classifier and C4.5 decision trees (or decision trees in general) do however produce a
comprehensible set of rules, we therefore only consider these algorithms.

The Bayesian classifier [17] is a statistical approach towards classification. The naive variant of the
Bayesian classifier is a probabilistic approach based on the application of Bayes’ theorem and assumes
that all variables (i.e., the attributes of the training set) are independent. Figure 4.3 is used to illustrate
this algorithm. First for any attribute in the training set the probability that a certain value is observed
within a class is calculated, Figure 4.3b shows such probabilities for the training set shown in Figure 4.3a.
Then using these probabilities and Bayes’ theorem we can calculate the probability that an object belongs
to a class given the attribute values. The object is assigned to the class with the highest probability. We
can annotate the splits in the hierarchical clustering with the probabilities that attributes have certain
values given a class. Such an annotation is partially shown in Figure 4.3c.

We observe that for a small example these annotations already become quite complex. To solve
this we could order the probabilities on their value and remove any that have a probability below a
certain threshold where they are no longer interesting. This however only partially solves the issue and
annotations might still become incomprehensible.

Like the Bayesian classifier, the C4.5 decision tree [33] algorithm is a statistical approach. To illustrate
the C4.5 algorithm we use Figure 4.4. The C4.5 algorithm uses the concept of information entropy.
Information entropy is a measure which describes the uncertainty in a random variable. It creates a
classifier by splitting the entries of the training set on attributes that provide the most information gain
(i.e., normalized difference in information entropy). The algorithm keeps splitting the training set until
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Label ty  Payment Classes# Failures#

1 t1 Package 4 0

(& ta Package 3 0

Cy t3 AfterClass 5 0

Chroot Cy ts AfterClass 3 0

. _/_ ) _\‘_ ., Cy ts BeforeClass 6 1

Oy Col|fF-------- s s ts  BeforeClass 5 1

- 'r'_'_'_'}/'_' _____ _'\ o Cs t7  BeforeClass 4 0
E Cs Cq E Label ty  Payment Classes# Failures#

\\\\ Cs ts  AfterClass 5 0

s N Cs ta AfterClass 3 0

Cy ts BeforeClass 6 1

Cy ts BeforeClass 5 1

Cy tr BeforeClass 4 0

Figure 4.2: The transformation from cluster splits (on the left) to training sets (on the right) to use as
input for a classification algorithm.

Att Val P(Att = Val|C1) P(Att = Val|C2)
Label ty  Payment  Classes# Failures# Payment Package 1 0

C ty Package 4 0 Payment  AfterClass 0 2/5
Ch to Package 3 0 Payment  BeforeClass 0 3/5
Cy ts  AfterClass 5 0 Classes# 6 0 1/5
Cy ty  AfterClass 3 0 Classes# 5 1/2 2/5
Cy ts  BeforeClass 6 1 Classes# 4 1/2 1/5
Co ts  BeforeClass 5 1 Classes# 3 1/2 1/5
Cy t7  BeforeClass 4 0 Failures# 1 0 2/5

Failures# 0 1 3/5

(a) Training set
(b) Probabilities of attribute values with respect to a class

Payment = Package|C7) = 1 Payment = Package|C3) =0
Payment = AfterClass|Cy) =0 Croot Payment = AfterClass|Cs) = 2/5

P( P(
P( P(
P(Payment = BeforeClass|Cy) = 0 P(Payment = BeforeClass|Cy) = 3/5
P(Classes# = 6|C1) =0 P(Classes#t = 6|Ca) = 1/5
P(Classes# = 5|Cy) = 1/2 P(CZCLSSGS# =5[Cy) =1/5

Ch

(c) Annotated hierarchical clustering

Figure 4.3: The internal probabilistic model (b) of a naive Bayesian classifier for the training set (a),
and the resulting annotated hierarchical clustering (c).
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Label ty Payment  Classes#  Failures# Payment

& t1 Package 4 0

c o Package 3 0 =Package =BeforeClass
Oy t3  AfterClass 5 0

Cy ty  AfterClass 3 0

Cy ts  BeforeClass 6 1 =AfterClass
Cy te BeforeClass 5 1

Cy t7  BeforeClass 4 0

(a) Training set (b) C4.5 decision tree
Croot
_ Payment=AfterClass
Payment=Package v Payment=BeforeClass
Ch Cy

(¢) Annotated hierarchical clustering

Figure 4.4: The decision tree (b) created by the C4.5 algorithm for the training set (a), and the resulting
annotated hierarchical clustering (c).

none of the attributes provide any information gain or if the active set contains a single class label. In
a decision tree all nodes (except the leafs) contain an attribute, and every outgoing edge from these
nodes are labeled with the value expression on this attribute. Any leaf of a decision tree is a class label.
Figure 4.4b shows such a decision tree for the training set shown in Figure 4.4a. By traversing the
resulting decision tree from its root to the leafs we can create a logical expression that explains a class.
This logical expression can now be used to annotate the hierarchical clustering, Figure 4.4c shows an
example of such a hierarchy. We already observe that for this small example the annotations generated
by the C4.5 algorithm are much easier than the ones generated by the naive Bayesian classifier.

Using the C4.5 algorithm can however cause contradictions in the resulting annotated hierarchical
clustering. Because every split of the hierarchical clustering is classified locally and the C4.5 algorithm
does not always perform fully accurate splits, it can occur that after an ‘equal to’ expression there are
still objects in the cluster that contain a different value for the attribute. After the split on the attribute
the information gain of the attribute drops, but the information gain might increase again when clusters
become smaller. This can cause the C4.5 algorithm to split again on this attribute, which may lead to a
contradiction in the final hierarchy. We can solve this issue by: (i) stop annotating the hierarchy when a
contradiction occurs, or (ii) remove traces from the cluster that do not match the annotation expression.

Both the naive Bayes and C4.5 algorithm are suitable to annotate a hierarchical clustering. However
the naive Bayes classifier often produces annotations which are difficult to understand. This is in contrast
with the C4.5 algorithm which produces naturally readable annotations but can result in contradictions.
In this thesis our main focus is therefore on the C4.5 decision tree [33] algorithm. However as we have
shown other classification algorithms can also be used.

4.2 Reducing an annotated hierarchy

Hierarchical clusterings can become huge and incomprehensible for many traces. Often such hierarchies
are already reduced by the clustering algorithm, e.g., (i) by cutting the hierarchy at a certain split-height
threshold (the height of a split is the value of the dissimilarity measure between the clusters that are split
of), or (ii) by cutting the hierarchy at a minimal number of objects. These methods are also applicable in
our approach but could result in the loss of information. By doing this we might remove useful clusters
from the hierarchy. We propose an approach that uses the annotations to remove irrelevant parts of
the hierarchical clustering. In our approach we make the assumption that splits which are annotated
with the same expression do not distinguish different behavior and should therefore be merged. Our
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approach starts at the leafs and works its way up to the root. At every split it merges children with
equal expressions. If only one child of a node remains, we merge the node with the single child. After
nodes are merged, the children of the resulting merged node may again have equal expressions. Therefore
the children of the merged node should be investigated again.

Figure 4.5a shows a non-reduced annotated hierarchical clustering, which we use as an example. The
empty expression (i.e., there is no explanation for the cluster) is denoted by: ¢J. The algorithm starts by
merging clusters C7 and Cy into a cluster Crg. This results in C5 having a single child, C5 is therefore
merged with C7 g into cluster Cs 7 3. During every merge, the expressions related to merging clusters are
combined using a A. Since both C7 and Cg yield the empty expression, the expression of Cs 7 g stays
ay = vy (the intermediate result is shown in Figure 4.5b). Next are cluster C; and C which have an equal
expression (the empty expression) and are therefore merged into the cluster C 2, the resulting cluster
C1 2 has four children: Cs, Cy, Cs78 and Cs (the intermediate result is shown in Figure 4.5¢). These
children should now be merged into two clusters: Cs57s and Cy6. Earlier C; and C; were merged,
because of this the C,,,: contains only a single child and should therefore be merged with this child,
turning it into Cyroot,1,2. The final result is shown in Figure 4.5d.

We observe that our approach can greatly reduce the hierarchical clustering if it is properly annotated.
Hierarchies with only annotations yielding the empty expression are however reduced to a single cluster.
A second issue is that not every interesting cluster might be explainable by data, this can cause such
clusters to be removed from the hierarchy. The proposed approach is therefore only suitable in situations
where the data describes the interesting clusters. In cases where this is not the case we might be required
to skip this step and let the clustering algorithm reduce the hierarchical clustering using other approaches
such as cutting the hierarchy at a minimum number of objects.

root

7 Ne
A AN e

/\ /\ -/ \on

Cs,7.8 Cs

(b) Intermediate hierarchy after merging C7 with Cg
(a) Non-reduced annotated hierarchical clustering into C7 g, and merging Cr g with Cs.

Croot
1%

a = v a = V2 root,1,2
a = Vg a = v1

) G / \
Cy Cs,78 Cs5.7.8 Cupe
(c) Intermediate hierarchy after merging Cy and Cs. (d) Fully reduced annotated hierarchical clustering

Figure 4.5: Situation before reduction (a). Followed by two intermediate stages (b, ¢) and the final
reduced hierarchy based on the data annotations (d). The symbol & denotes the empty expression.
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4.3 Enrichment of trace data

Event logs may lack data that implies behavior. Without adding additional data to such event logs it is
impossible to annotate the hierarchical clustering. By enriching the event log with derived data we can
solve this issue. Section 3.1.1 discussed dissimilarity measures of traces that are based on feature-sets.
These feature-set approaches try to abstract from traces by finding features that identify the trace. We
can enrich the data of the traces with such features. The classification algorithm might find a direct
relation between a feature and a cluster. Some examples of features are:

1. Occurrence: For any activity in the trace we can count the number of occurrences. We can add
this as a numeric attribute to the trace data.

2. Direct-succession: We can count the number of times an activity directly succeeds another
activity and add this as a feature.

Table 4.2 partially shows a data set that is enriched with the occurrence and direct-succession features.
For this enriched data set the C4.5 algorithm can relate the occurrence and direct-succession of activities
to the variants of the running example. For example, the cluster containing traces of variant one would
be annotated with the expression #B = 1, which describes the execution of activity Buy Classes + Exam
(B).

Many other feature-sets like k-grams [24] or context-aware feature-sets [23, p.81] could be included to
improve annotations results. The classification algorithm automatically decides which features describe
the clustering in the best way.

ty | Trace #A | #B | #C | ... |C>D | D>C

t1 | {(A,B,C,E,C,E,C,F,E,C,G,I) 1 1 4 0 0

ta | (A,B,F,C,E,C,E,C,G,I) 1 1 3 0 0

ts | (A,C,D,F,E,C,D,E,C,D,E,C,D,E, 1 0 5 5 0
C,D,G,I)

ts | (A,C,D,E,C,D,F,E,C,D,G,I) 1 0 3 3 0

ts | (A,D,C,E,D,C,F,E,D,C,G,H,D,C, 1 0 6 0 6
E,D,C,F,E,D,C,G)

t¢ | (A,D,F,C,E,D,C,G,H,D,C,E,D,C, 1 0 5 0 5
E, D,C,G)

tr | <A,D,C,E,D,C,F,E,D,C,E,D,C,G) 1 0 4 | ... 0 4

Table 4.2: The traces of Table 4.1 enriched with feature data attributes.

4.4 Conclusion

Decision mining tries to explain every choice made during the execution of a process model by the data
of the traces. By doing this a direct relation between data and behavior may become visible. We can
relate to this since the groups of traces in the hierarchical clustering are grouped together because they
describe similar behavior, i.e., they made similar choices. We annotate a hierarchical clustering with
the data of these traces such that the end-user can pick a set of preferred clusters. We have shown
how our problem can be transformed to a classification problem and have proposed ways to use the
naive Bayes classifier and C4.5 decision tree classifier. After annotating the hierarchical clustering it
may still be huge and incomprehensible for an end-user, we therefore proposed an algorithm that can
reduce such a hierarchy based on the data annotations. This algorithm is however only effective if the
trace data actually describes the interesting clusters. Finally, we explained how we can enrich event logs
which lack data that implies behavior. We can add trace-features as data to the traces such that the
hierarchical clustering can be annotated. The final result is a (reduced) annotated hierarchical clustering.
This hierarchy can be presented to the end-user such that a selection of preferred clusters can be made.
Chapter 5 proposes a new approach towards discovery of a configurable process tree for these preferred
clusters and proposes a method to evaluate the quality of a configurable process tree.
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Chapter 5

Configurable process discovery

In this chapter we answer the third research question: How can we create a configuration for a
given process tree and a group of traces? And the fourth research question: How can we select
a good configurable process tree for a selection of groups of traces?

Best practices, legal obligations or enterprise systems cause organizations to organize their business
processes in very similar ways [21]. Configurable process models provide the means to deal with variability
in processes. A configurable process model can combine many different variants of the same process and
then allow an organization to configure the process in such way that it best suits their way of working.

Configurable process discovery is directly related to our third research question. In Chapter 4 we
explained how we annotate a hierarchical clustering with the data of traces and events. Preferred
clusters can be hand-picked from a hierarchical clustering or automatically determined. Every preferred
cluster is a group of traces for which we try to find an optimal configuration. Figure 5.1a shows three
groups of traces: C7, Cy and C3, which are executions of the running example. Figure 5.1b shows a
process tree that is used as input for a configurable process discovery algorithm. We would now like to
find a configurable process tree like the one presented in Figure 5.1c. The callouts in Figure 5.1c show
the configurations options per configuration, e.g., B is annotated with: [ - , H , H ], indicating that
for C the node should be allowed, and for Cy and C3 the node should be hidden.

In some situations we might not have a single reference model but instead multiple reference models.
Discovering a process tree using an evolutionary process discovery algorithm like the ETMd can produce
many models which specialize in different aspects. Another reason could be that due to acquisitions,
take-overs or mergers we obtain multiple process models for similar processes [19]. Merging these process
models into a single reference model is not trivial and can lead to several merged models. Using our
configurable process discovery approach we can create a configurable variant for any of these models.
However it is not trivial which of these models is the best. By answering the fourth research question
we solve this issue by providing a means to evaluate the configurable process tree on different quality
characteristics.

Section 5.1 discusses existing work on discovering a configurable process model and their common
issues. In Section 5.2 we propose our configurable process discovery approach that uses observed execu-
tion orderings and execution frequencies to find configuration options. Then in Section 5.3 we propose
a method for evaluating the quality of configurable process models. Finally we conclude this chapter in
Section 5.4.
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ty | Trace Cluster
ti | (A,B,C,E,C,E,C,F,E,C,G,I) o
ta | (A,B,F,C,E,C,E,C,G,I) Ch
ts | (A,C,D,F,E,C,D,E,C,D,E,C,D,E,C,D,G,I) Co
tas | (A,C,D,E,C,D,F,E,C,D,G,I) Cy
ts | (A,D,C,E,D,C,F,E,D,C,G,H,D,C,E,D,C,F,E,D,C,G) | Cs
t¢ | (A,D,F,C,E,D,C,G,H,D,C,E,D,C,E,D,C,G) C3
t | (A,D,C,E,D,C,F,E,D,C,E,D,C,G) Cs

(a) Traces that are clustered into three clusters Cy, C2 and C3, which represent the variants of the running
example.
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(b) Reference process tree, which is the unconfigured (¢) The discovered configurable process tree.

running example.

Figure 5.1: Table of traces clustered into three clusters (a), a reference process tree (b), and the resulting
configurable process tree (c).
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5.1 Related work

A configurable process model can be discovered in many different ways. Buijs et al. [12] proposes four
different approaches and evaluates these. Every approach starts with a collection of event logs. We
can relate to this since any preferred group of traces, can be seen as an individual event log. The four
approaches are:

Approach 1: The first approach, shown in Figure 5.2, discovers a process model for every input event
log. Then these models are merged to obtain a single configurable process model. This approach
was first proposed by Gottshalk et al. [20]. Merging process models is however no trivial task.
Many different merge methods were proposed [12, 19, 27, 36]. A major problem of this approach
is that when process models cannot be related properly, the merging algorithm simply produces a
choice between the input models.

Process
model 1

Process
model 2

Process
model n

Step 1:
Process
Mining
ETMd

Step 2a:

Process Configurable
Model Process model

Merging

Step 2b:
Process
Configuration

Figure 5.2: Merge individually discovered process models [12].

Approach 2: The second approach, shown in Figure 5.3, tries to improve the first approach by first
merging the event log. Next a common process model is discovered from this merged event log.
This common process model is then individualized per input event log. After which these individual
models are merged into a configurable process model. The idea is that by first making a common
process model and deriving the individual models from this, it becomes easier to merge them into
a configurable process model [12].

Process
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Process
model 2

Process
model n
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Model Configurable Process
event log Slesss . Process model ation

Process model  [&elplile[FIEe]y)

Individual-
Merging
o Mining

EMTd

Figure 5.3: Merge similar discovered process models [12].
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Approach 3: The third approach, shown in Figure 5.4, works by discovering a single process model

that describes the behavior of all event logs. Then for each individual event log a configuration is
discovered for this process model such that it fits this event log best. In this approach the single
process model should be less precise since it is only restricted by the configurations but never
extended [12].

[ X
tep 1b: Configurable

Process Process model [ Sl ElEl
Mining
ETMd

Figure 5.4: First discover a single process model then discover configurations [12].

Approach 4: The fourth approach, shown in Figure 5.5, is an approach wherein the discovery of the

process model and the configurations is combined. By doing this it might overcome the disadvant-
ages of the previous three approaches. By providing this integration, a better trade-off between
process model structure and configuration options can be made [12].

The ETM [9] is evolutionary process mining framework that uses mutators. Every generation muta-
tions are made by the mutators in the process models. After each generation the best (according
to the specified quality characteristics) models are kept. Buijs et al. [12] extends the ETM with
a mutator that changes configuration options. They also add a metric representing the quality of
the configuration perspective. The ETM can therefore automatically make a trade-off between the
process model quality and the quality of the configuration perspective.

Assy et al. [8] proposes an interactive discovery approach. Their approach tries to assist the end-
user in creating a final configurable process model. They first mine configurable process fragments
from a collection of event logs. For these fragments guidelines are mined that assist in choosing a
configuration of such a fragment. After every configuration step these guidelines are dynamically
updated in order to take the already chosen configurations into consideration.

log 1 C1
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T
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event
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Figure 5.5: Discover process model and configurations at the same time [12].
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Buijs et al. [12] evaluated these four approaches and found that approach one and two struggle with
merging process models based on their behavior. The individual models that need to be merged may
not be similar at all, making it very hard to merge them appropriately. Also these approaches only
consider the model structure but lack knowledge of the frequencies that parts of a model are executed.
The second approach performs slightly better, although the resulting configurable process model may
still remain complex. The third and fourth approach seem to be able to better generalize the behavior
into a configurable process model. Finally the fourth approach seems to provide the most flexibility.
In Section 5.2 we propose an approach that can find configurations for any event log, given a process
tree. Our approach is therefore applicable in step two of approach three but can also be incorporated in
approach four.

5.2 Discovering process tree configurations

Section 5.1 discussed four different approaches towards configurable process discovery. Approach three
and four seem to provide the best results in general. For these approaches Buijs et al. [12] extended the
ETM framework with a mutator that randomly selects a node in the process tree and randomly changes
the node its configuration options to one of the allowed options for that node. This is however a brute
force approach that in the worst case covers the full search space.

We propose a new method that uses the execution frequencies and observed execution orderings (of
parts of the process tree) to discover a configuration for a given process tree and event log. The final
configurable model is obtained by combining the configurations and use this as the final set of configur-
ation options. Our method is directly applicable in step two of approach three (shown in Figure 5.4).
It can however easily be modified into a mutator for the ETM framework. By doing this the ETMc al-
gorithm can directly make a trade-off between the process model structure and the configuration options.
Inclusion in the ETM framework will make it applicable in approach four (shown in Figure 5.5).

We start by explaining the use of alignments and their mapping to process trees in Section 5.2.1.
Section 5.2.2 explains how we discover parts of the process tree that need to be blocked or hidden.
Section 5.2.3 explains how we discover operator downgrades. Finally in Section 5.2.4 we explain how we
deal with loops with respect to operator downgrading.

5.2.1 Mapping alignments

Alignments provide a mapping between the observed behavior (as present in the event logs) and the
modeled behavior (process tree). We use this mapping to identify points in the process tree that require
configuration options for an event log. We start by discarding any move on log only, these moves de-
scribe behavior that was observed in the event log, but not allowed by the process tree. Since we are
only restricting the process tree and not adding any behavior, these moves cannot be used in discovering
configuration options. Next any move in the alignment is mapped to its related node (since only syn-
chronous moves and model moves remain, we always have a mapped node in the tree) and all parents of
the related node. We do however keep a segregation of traces in this mapping per node.

Figure 5.6 shows the creation of a mapping for leaf C and all of its parents. The full mapping should
however always consist of a mapping between every node in the process tree and the corresponding
alignment moves. The root node of the process tree always contains every move of every alignment
which is not a move on log only.

5.2.2 Hiding and blocking

After mapping the alignments our method starts by investigating the strongest configuration options:
hide and block. The idea is that if within an event log a part of the process tree is not executed frequently
we should either hide or block it. The hide option indicates that a node can be skipped over and the
block options indicates that a node cannot be traversed (and also not skipped over). If all children of a
node are blocked, a single child of an A, —, «—-node is blocked, or the do or exit-child child of a (>-node
is blocked, it indicates that the node itself is blocked as well.

To find the hide and block options we use a top-down approach, starting at the root of the process
tree. For every node in the process tree, we compare the fraction of the traces related to this node with
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Figure 5.6: The boxes around the process tree show the mapping between the moves of the alignments
(as shown in the top for a trace ¢; and a trace to in which all move on log only are already discarded)
and the process tree for leaf C and all of its parents.

respect to the full event log. If this fraction is below a certain threshold we should perform hiding or
blocking. When we have to hide or block we no longer visit the children of the node and skip to the first
node that is not part of the sub-tree. By default we assume that a node should be blocked. However
to avoid propagation of the block to the parent(s), we should instead hide the node if the parent of the
node is an operator of type: —, «, A, or if the node is the do or exit-child of a (J-node, or if all other
children of the parent are already blocked. We should also hide the node if it is the root-node. Hiding
and blocking is defined as follows:

Definition 5.1 (Hiding and blocking)

Let L be the full event log and L, S L the collection of traces related to a node n of a process tree. Let
thy be a given threshold, with 0 < tpy < 1. Let p(n) denote the parent of node n or undefined if n is the
root-node. Let c(n) denote the children of node n. Let m(n) denote the type of node n. We should hide
or block if and only if:

|Ln|
— < 1—tp (5.1)
L]

We choose an appropriate downgrade option as follows:
e If p(n) is undefined, then hide
o Ifm(p(n)) € {—, <, A}, then hide
e If m(p(n)) = O and n is the do or exit-child of p(n), then hide
o Let Cother = {c; € c(p(n)) : ¢; #n}, if Ve; € Cother = ¢; is blocked, then hide
e FElse, block

According to this definition a threshold of t5;, = 0.95 would indicate that if less than 5% of the
traces execute the node, it should be hidden or blocked. After visiting the full tree we have obtained the
initial configuration with only hide and block options. In the next step we determine possible downgrade
options of operators.
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5.2.3 Downgrading operators

After determining the hide and block options we should find the downgrade options for the operator-
nodes (i.e., the non-leaf nodes). Operators can only be made more-restrictive. Figure 2.2 shows the
downgrade hierarchy. In this hierarchy the operators on the top are less restrictive than the ones further
below. We again take a top-down approach and visit any A, v or (3-node which is not yet configured.
To downgrade these types of nodes we use the following policies:

Parallel execution A: The A-operator can be downgraded to a — or «<-operator. Every trace related
to the A-node should be evaluated whether it executes the children: left-to-right, right-to-left
or in another order. If the fraction of traces that execute left-to-right with respect to the total
number of traces related to the A-node is above a certain threshold we should downgrade to the
—-operator. In a similar fashion the downgrade to the «-operator is determined. We formally
define the downgrade of the A-operator as follows:

Definition 5.2 (Downgrade parallel execution)

Let n be an unconfigured A-node, or an v-node configured as an A-operator, of a process tree.
Let L be the full event log and L, S L the collection of traces related to node n. Let Ly, S Ly
be the collection of traces that execute the children of n in a left-to-right way, and L.y < L,
be the collection of traces that execute the children of n in a right-to-left way. No trace can be
both left-to-right and right-to-left, therefore: Ly, N Lyy = . Let t, be a given threshold, with
05<t, <1

We should downgrade to a —-operator if and only if:

|thr|
||

>t (5.2)

We should downgrade to a «—-operator if and only if:

|Lrtl|
>t (5.3)
|Ln|

According to this definition a threshold of £, = 0.95 would indicate that if at least 95% of the
traces related to the node are executed left-to-right, we should downgrade to the —-operator, and
if at least 95% of these traces are executed right-to-left, we should downgrade to the « operator.

Choice v: The v-operator can be downgraded to a x or A-operator. Initially we assume that we
can downgrade to both of these operators. We should now compare every child of the v-node to
every other child of this node. If the fraction of traces that executes both children with respect to
the traces that execute at least one of the two children is at least a certain threshold, we should
downgrade to an A-operator. If this fraction is below the inverse of this same threshold, we should
downgrade to a x-operator. If we should downgrade to an A-operator, we should further investigate
a downgrade to a — or «—-operator as defined by definition 5.2. If the v-operator is downgraded to
an A, — or «-operator, all of its children with a block option should get the hide option instead.
We formally define the downgrade of the v-operator as follows:

Definition 5.3 (Downgrade choice)

Let n be an unconfigured v-node of a process tree. Let c(n) denote the children of node n and
define the pairs of different children as cp(n) = {(c1,c2) € c(n) x ¢(n) : ¢1 # ca2}. Let L be the full
event log and L, S L the collection of traces related to node n. Let t, be a given threshold, with

0<t, <1
We should downgrade to an A-operator if and only if:
|Le, N Le, |
V(er,c2) € ep(n) : ————=2 >t (5.4)
|Le, U L, |
We should downgrade to a x-operator if and only if:
|Le, N L, |
Y(cy,c2) € e <1-t, 5.5
(er,e2) € cplm) : 70 (55)
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According to this definition a threshold of ¢, = 0.95 would indicate that if 95% of the traces related
to the node execute all children, we should downgrade to the A-operator, and if less than 5% of
the traces execute more than one child we should downgrade to the x-operator.

Repeated execution (5: The (J-operator should be downgraded to the —-operator if the fraction of
traces that execute the do and redo part of the loop with respect to the traces that only execute
the do part is below a certain threshold. We formally define the downgrade of the (3-operator as
follows:

Definition 5.4 (Downgrade repeated execution)
Let n be an unconfigured (O-node of a process tree. Let the do-child of n be denoted by cq, and the
redo-child by creqo- Let L be the full event log and L, S L the collection of traces related to node
n. Let t¢s be a given threshold, with 0 < t¢5 < 1.

We should downgrade to the —-operator if and only if:

|Lc,, n L

Credo |

<1l-—t 5.6
. o (5.6)
According to this definition a threshold of ts = 0.95 would indicate that if less than 5% of the
traces related to the node execute both the do and redo child of the loop, we should downgrade to
the —-operator.

After visiting the full process tree we obtain the final configuration. However a problem arises when
calculating downgrades for operators that are in the do or redo part of a (5-operator. In the next section
we explain the problem in more detail and propose a solution.

5.2.4 Loop iteration partitioning

Activities within the do or redo parts of a (3-node may be executed multiple times. From this arises a
problem when applying the policies for operator downgrading. Figure 5.7 illustrates this problem. For
the trace: t = (A, D, B,C) and a process tree we can calculate an alignment (shown in Figure 5.7a). To
determine the configurations we need to map this alignment onto the process tree (shown in Figure 5.7b).
We should now start our top-down approach to find configurations. Every node is executed by trace
t, therefore we quickly observe that no hiding or blocking is necessary. The (J-node does not require a
downgrade since trace ¢t executes both the do and redo part. The v-node should however be downgraded.
Trace t executes all children of the v-node, since it is the only trace it means we should downgrade to
an A-operator. Next is to determine whether we can downgrade to a — or «—-operator, since the only
trace is t, we only have left-to-right traces related to this node and we should therefore downgrade it to
a —-operator. The end-result is shown in Figure 5.7c.

This is obviously not the most favorable result. The newly configured model can no longer replay
the original trace t even though this was the only trace. To solve this issue we propose loop iteration
partitioning. Before processing any child of a (3-node we first partition the traces related to the child.

t:A,D,B,C O e
t:AB v D C /N
I |A|D[B]C =1y D
s TA[D[BC /\
t: A A B t:B A B
(a) Alignment for trace: t = (b) Process tree in which the (c¢) Resulting configurable process
(A, D, B,C and the process tree alignment of (a) is mapped to the tree with an unexpected configur-
shown in (b). nodes. ation option.

Figure 5.7: Mapping of an alignment (a) onto a process tree with a loop construct (b) and how the final
configurable tree would look (¢). The v-node is unexpectedly downgraded to a —-operator.
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t:A,D,B,C O o)
tl . A A /N
ty: B A b C [x] A D C
tl T A A B tg : B A B
(a) Process tree in which the alignment of Figure 5.7a (b) Resulting configurable process tree with the expec-
is mapped onto the nodes and partitioned for the chil- ted configuration option.

dren of the loop construct.

Figure 5.8: The partitioned mapping for the loop construct (a) and the resulting configurable process
tree (b).

For every trace we introduce new artificial traces that only contain a single iteration of the loop and we
remove the original trace. Figure 5.8a shows how such an updated mapping would look for the original
mapping shown in Figure 5.7b. When we now investigate the v-node we observe that the two related
traces both only execute one of the children. Therefore we should downgrade the v-node to a x-operator.
This seems like the most favorable result since downgrading the v-node to a x-operator only increases
the overall quality of the process model and it is still able to replay all observed behavior (which was
only trace t).

5.3 Evaluating configurable process trees

Situations exist where we do not have a single reference process tree but instead multiple reference
process trees. In the previous section we proposed a new method towards finding a configurable process
tree for a collection of event logs by adding configuration options to a single process tree. This method
can be applied on each of these reference process trees. In this section we explain a method to evaluate
which of the resulting configurable process trees is the best one.

Buijs et al. [12] proposes a method to measure the quality of a configurable process tree in a certain
quality dimension. They define the score of a quality dimension for a configurable process tree as the
weighted average of the scores for the configured variants of this configurable process tree. This averaged
quality dimension is defined as follows:

Definition 5.5 (Averaged quality dimension)
Let LC' denote the collection of input event logs and PT* the configurable process tree. Let the configured
variant of PT for an input event log L € LC be denoted by PT§.

We now define the score of an quality dimension of PT¢ as follows:

Q(PTC,LC) — ZLELC |L| X Q(PTLCNL) (57>

Yrerc |l

Using this definition we can evaluate the configurable process tree on the four well known model
quality dimensions: replay fitness, simplicity, precision and generalization. These however only take
into account the size of the process tree (simplicity), how the process tree reflects the observed behavior
(replay fitness and precision) and to what extend it allows for non-observed behavior (generalization).
The quality of the configuration options is not considered. The idea is that a configurable process model
with fewer configuration options is better. To capture this Buijs et al. [12] proposes a fifth quality
dimension: configuration fitness, which is defined as follows:

Definition 5.6 (Configuration fitness)
Let PT€ be a configurable process tree. We define configuration fitness as follows:

number of configurable nodes in PT*

Qe(PT¢) = (5.8)

number of nodes in PT¢
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Using definition 5.5 and 5.6 we can now define an overall quality score for a configurable process tree.
We formally define two different ways of calculating this score:

Definition 5.7 (Overall configurable process tree quality)
Let Q. y(PT°, LC), Qs(PT°,LC), Qu(PT°, LC), and Q4(PT*, LC) denote instantiations of Q(PT°, LC)
for respectively the model quality dimensions: replay fitness, simplicity, precision, and generalization. Let
Wrf, Ws, Wy, and w, respectively denote weights for the same quality dimensions.

We now define two options for calculating an overall configurable process tree quality:

1. Weighted sum (Total): Let w. denote the weight of the configuration fitness quality dimension.
We now define the weighted sum of the five quality dimensions as follows:

Quit(PT, LC) = w, Q. (PT¢, LC) + w,Q(PT*, LC)
+ w,Qp(PT¢, LC) + wyQy(PT¢, LC) + w.Q.(PT®) (5.9)

2. Weighted sum (Split): Let a, with 0 < a < 1, denote the fraction in which configuration fitness
should be taken into account. We now define the weighted sum that separates configuration fitness
as follows:

Qus(PTC, LC) = (1 — a)(w,$Qrp (PT, LC) + w,Q4(PT®, LC)
+wyQp(PTC, LC) + wyQy(PT*, LC))
+ 0 Qu(PT*) (5.10)

For both options holds that a higher score indicates a better process tree. Therefore the configurable
process tree with the highest score is considered to be the best configurable process tree. The first option
provides a fully integrated measure of the model and configuration quality dimensions. The second
option separates these aspects. Often we first wish to consider the model quality dimensions and only in
case of draws prefer a model with a better configuration fitness. We can mimic this behavior by using
the ‘Weighted sum (Split)’ option with a very low value for a.

5.4 Conclusion

In Chapter 4 we explained how we obtain an annotated hierarchical clustering. From such a hierarchy
the end-user can pick one or more groups of traces (clusters). Every group of traces can be considered
an individual event log. In this chapter we discussed four different approaches in finding a configurable
process tree for a collection of events logs. Evaluation of previous work shows that configuration discovery
approaches (approach three and four) overcome the disadvantages of merging approaches (approach one
and two). Configuration discovery approaches are implemented in the ETM framework, however in a
brute force way. Therefore we have proposed a new configuration discovery approach that can directly be
used in approach three and is easily adoptable for approach four. Our configuration discovery approach
uses execution frequencies and observed execution orderings to discover a configurable process tree and
configurations for every input event log. Finally, in some situations we do not have a single reference
process tree but instead multiple reference process trees. We can discover a configurable process tree for
each of these reference process trees. It is however not trivial which of these configurable process trees
is the best. Therefore we have presented two ways of evaluating which is the best.
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Chapter 6

ProM implementation

The full approach and many of the discussed techniques are implemented and available as a plug-in of
the ProM 6 framework'. The Trace Clustering & Configuration Mining plug-in allows interactive
trace clustering with data annotation and configurable process tree discovery. Our plug-in is setup to be
easily extendable with new techniques. First in Section 6.1 we provide a user guide. Second in Section 6.2
we explain how the plug-in can be extended.

6.1 User guide

Our plug-in provides an interactive platform to perform trace clustering with data annotation, and
configurable process tree discovery for a selection of these clusters. As input the plug-in requires a single
event log and one or more process trees. The plug-in starts with a wizard consisting of five steps:

1. Introduction: This step shows an introductory text which explains the purpose of the plug-in.

2. General: Selection of the maximal number of CPU cores and the event classifier. An event
classifier defines which of the event data attributes define an event class (i.e., type of activity).

3. Clustering: Configuration of the dissimilarity measure, distance aggregation function, and selec-
tion and configuration of the clustering algorithm.

4. Annotation: This step allows configuration of the annotation algorithm, selection of the data
attributes in the event log that may be used for annotation, enable/disable reduction of the hier-
archical clustering based on data annotations, and enable/disable of data enrichment with the
occurrence of activities.

5. Evaluation: In this last step the weight and alpha values are set for the evaluation of the con-
figurable process trees. Our implementation uses the ‘Weighted sum (Split)’ equation of definition
5.7 to evaluate configurable process trees.

All settings, except the event classifier, can be changed at any time in the plug-in. After finishing the
wizard, initial results are calculated and a visualization of the data is shown. Figure 6.1 shows an example
for a simulated event log of the running example. The visualization consists of five panes:

1. Settings: In this pane the buttons: ‘General settings’, ‘Clustering settings’, ‘Annotation settings’
and ‘Evaluation settings’ open the corresponding steps of the wizard. All settings except those
made in the ‘Evaluation settings’ are applied immediately and the visualization is updated with
the new results. Evaluation is a CPU intensive process and is therefore not performed until the
user clicks on ‘Evaluate preferred clusters’.

2. Hierarchy overview: This pane shows the annotated hierarchical clustering. Every cluster is
a circle node in the graph. If a node is colored green it indicates that this cluster is marked as
preferred, i.e., it should be considered as an event log in the configurable process discovery. The

1ProM 6 is available via: http://www.promtools.org/promé/.
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Figure 6.1: Interactive visualization of the plug-in for a simulated log of the running example. The
overview consists of five panes: ‘Settings’, ‘Hierarchy overview’, ‘Cluster inspector’, ‘Tree overview’ and
‘Tree inspector’.

preferred status of a cluster can be toggled by double clicking on the corresponding node. A single
click on a node shows the contents of the corresponding cluster in the ‘Cluster inspector’ pane.

3. Cluster inspector: After selecting a node in the hierarchical clustering an overview of all traces
and corresponding events is provided in this pane. A cluster can be pushed as an XLog object to
the ProM workspace by clicking on ‘Push as XLog to workspace’. XLog is the implementation of
an event log in the ProM framework.

4. Tree overview: After clicking on ‘Evaluate preferred clusters’ configurations are discovered for
the input process trees and the quality characteristics are calculated according to the evaluation
settings. This pane shows the configurable process trees in an ordered way (best overall fitness
first). The list shows an overall fitness score of the configurable process tree and the scores per
preferred cluster. Upon clicking on one of the configurable process trees it is visualized in the ‘Tree
inspector’ pane.

5. Tree inspector: This pane shows the selected configurable process tree. With the selection box
in the header, the process tree can be configured for each of the preferred clusters. A process tree
can be pushed to the ProM workspace by clicking on ‘Push to workspace’.

6.2 Extendable framework

Our plug-in is setup to be easily extendable with new: dissimilarity measures, clustering algorithms,
and annotation algorithms. An extension is added by creating a class which extends one of the base
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Extension H Base class ‘ Ul Annotation
Dissimilarity measure || AbstractTraceDistanceFunction | UIDistanceFunction
Clustering algorithm AbstractClusteringAlgorithm UIClusteringAlgorithm
Annotation algorithm || AbstractAnnotatorAlgorithm UIAnnotatorAlgorithm

Table 6.1: Overview of the possible extensions, their corresponding base class, and the annotation that
should be added to enable the extension in the GUIL.

classes. To enable an extension in the GUI an additional annotation should be added. Table 6.1 shows
the possible extensions with the corresponding base class and UI annotation. The GUI automatically
searches the root package of the plug-in for extensions. To enable an extension in the GUI it should
therefore be placed in a subpackage of org.processmining.plugins.yvo. Every Ul annotation contains
a list of UISetting annotations which allow the developer to define the settings that may be set in the
GUI. We now explain each of the extensions in more detail:

Dissimilarity measure: To add a new dissimilarity measure the developer should create a new class
that extends AbstractTraceDistanceFunction. This abstract class enforces the implementation
of the method distance(t1, t2), which should calculate the distance between two traces. Please
note that distances are calculated in parallel and therefore any dissimilarity measure is required to
be thread safe. The framework also assumes that every dissimilarity measure is symmetric.

Instead of using AbstractTraceDistanceFunction, feature-set approaches are encouraged to ex-
tend the class AbstractFeatureSetTraceDistanceFunction. This class implements the distance
function as the Euclidean distance of two feature-sets. When extending this class the developer
is only required to implement the method createFeatures(t1), which should return the features
for the given trace.

Clustering algorithm: In order to add a new clustering algorithm, a new class should be created which
extends AbstractClusteringAlgorithm. This class enforces the implementation of a method
clusterHierarchical (), which should perform the actual clustering and return a hierarchy. The
method clusterHierarchical () does not have any parameters but instead has access to a Central
Repository object which provides the event log and trace distances.

One of the most well known open-source data mining frameworks is ELKI?. ELKI contains im-
plementations for most of the well known clustering algorithms. To allow quick use of ELKI
the developer can instead extend from AbstractElkiClusteringAlgorithm which provides basic
wrapping functionality.

Annotation algorithm: A new annotation algorithm is added by extending the class
AbstractAnnotatorAlgorithm. This abstract class enforces the implementation of the method
annotate(clustering), which should add annotation expressions to a given collection of clusters.

Weka is another well known open-source data mining framework®. Weka has implementations for
most of the well known classification algorithms. To allow quick use of Weka the developer can
instead extend from AbstractWekaAnnotatorAlgorithm which provides basic wrapping function-
ality.

Every extension has access to a CentralRepository object. This object acts as a central storage for
information used in the plug-in, i.e., it stores the configuration, the event log and basic information of this
event log, intermediate results of the different steps, and the process tree contexts. The configuration is
a key-value store in which string keys map to objects of arbitrary types, e.g., the number of usable CPU
cores is represented by the key general.cpu.cores and an integer value. The process tree contexts are
represented by ModelRepository objects which store a process tree, the (sequential) alignments and the
partially ordered alignments.

2The website of ELKI is: http://elki.dbs.ifi.lmu.de/.
3The website of Weka is: http://www.cs.waikato.ac.nz/ml/weka/.
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Chapter 7

Experimental evaluation

In this chapter we present and discuss the results of executed experiments which test the effectiveness of
our newly proposed approaches and the effectiveness of our full approach. Most of the experiments are
executed on randomized data since event logs with a known clustering are rare. First in Section 7.1 we
explain the creation of random process trees and event logs that contain behaviorally similar groups of
traces. Section 7.2 compares the Syntactic reasoning approach with existing dissimilarity measures for
trace clustering. Section 7.3 compares our configuration discovery approach with existing approaches.
Finally in Section 7.4, we apply our full approach on various data sets.

7.1 Generating process trees and clustered event logs

For our experimental setup we implemented a random process tree generator and a clustered event
log simulator. The random process tree generator requires the following parameters: minimum nodes,
maximum nodes, the range of the number of children for an operator node, the number of event classes
(i.e., activity types), and probabilities for: a 7-activity, a leaf and probabilities for the operator types.
Using these parameters the generator returns fully random process trees that satisfy these conditions.
Given a process tree the clustered event log simulator generates an event log that contains groups of
traces which are behaviorally similar. The parameters of the simulator are: the number of traces in the
event log, the number of required clusters, the noise probability, and the allowed configuration types. To
generate the event log the simulator first generates a configuration (for the process tree) for every cluster
that is required. In order to obtain these configurations the simulator first determines configuration
possibilities per node in the tree. Three types of configuration possibilities are distinguished:

1. Choice: At certain points in the process tree traces can make a choice, i.e., between the children
of a x or v-operator. At these points the simulator creates a configuration possibility for every
child of the x or v-operator wherein the active child is allowed and all other children are blocked.

2. Order: Process trees do not always imply a strict ordering on activities, i.e., between the children
of an v or A-operator. In this case the simulator creates two possibilities, either downgrade the v
or A-node to a —-operator or to a <—-operator.

3. Loop: At every (J-node a decision between just a single iteration or multiple iterations can be
made. Again the simulator creates two possibilities, either downgrade to a —-operator or not
downgrade at all.

Only if a type is allowed the corresponding possibilities are added to the possibilities of a given node.
In the second step the simulator tries to obtain an initial set of configurations. The simulator does
this by randomly taking a node and the corresponding configuration possibilities. First we investigate
whether the current node is always reachable. For example, if one of its parents is a choice, and the
branch of the current node was not chosen, this node can never be reached. Introducing configurations
for this node would then not make sense. Every configuration possibility can become an individual
configuration. If we have less configuration possibilities than configurations that are still required we can
immediately add the configuration possibilities to the set of configurations. However if only one more
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configuration is required, we randomly pick two of the possibilities and combine these with a randomly
picked configuration which we previously obtained. Such a combination is however only possible if the
existing configuration does not block the path to the new possibilities.

We have now obtained an initial collection of configurations. The simulator now tries to randomly
expand this initial collection with new configuration possibilities. This might introduce so-called long-
term dependencies, i.e., a choice in the beginning of the execution may influence a choice or the order of
execution at the end of the execution. We do this by combining a collection of existing configurations
with a collection of possibilities. Every existing configuration is combined with one of the possibilities.
This combination is however only possible if the existing configuration does not block the path to the
new possibility.

Finally, we obtain a configurable process tree with configurations for every required cluster. The next
step is to make a division of the required traces among the required clusters. We do this by first dividing
it in a fair way. Second, we introduce some random deviation. Next is to configure the process tree per
required cluster and randomly execute the configured process tree from the initial state to an arbitrary
final state. Every of such executions is considered a trace. We keep randomly executing the configured
process tree until we have found the required number of traces for the cluster we are currently creating.
Finally this yields: a combined event log, event logs per cluster, and a process tree with configurations
per cluster.

7.2 Comparison of dissimilarity measures

In Chapter 3 we discussed trace clustering and the importance of a dissimilarity measure. Many ap-
proaches exist towards defining such a measure. We explained the problems of existing approaches and
proposed a new approach in Section 3.3, i.e., the Syntactic reasoning approach. First in Section 7.2.1 we
explain our experimental setup. Second in Section 7.2.2 we present and discuss the results.

7.2.1 Experimental setup

The Syntactic reasoning approach is a syntactical approach that tries to overcome the common problems
of existing approaches by adding model-awareness. If not mentioned otherwise we use the default cost
settings of the Syntactic reasoning approach!'. To show this advantage we compare our approach with
four existing approaches:

1. Levenshtein distance: A fundamental way to calculate the dissimilarity between two sequences.
The Levenshtein distance counts the number of insertions, deletions or substitutions required to
change one sequence into another.

2. Set-Of-Activities Every activity observed in the full event log is considered to be a feature (or
dimension in a vector). If the trace contains an activity, the feature is given the value 1 and if
not 0. The final dissimilarity of two traces is defined as the Euclidean distance of the vectors of
features of these traces.

3. Bag-Of-Activities: Similar to the ‘Set-Of-Activities’ approach, however different in that a feature
is given the number of occurrences of an activity as the value.

4. 3-Grams: The k-grams approach with k = 3. Every subsequence of a trace of length 3 is considered
to be a feature. The number of times this subsequence occurs in the trace is the value of the feature.
The final dissimilarity of two traces is defined as the Euclidean distance of the vectors of features
of these traces.

We evaluate these approaches on randomly generated process trees and clustered event logs. Which are
generated using the techniques as explained in Section 7.1.

As explained in Section 3.3 existing feature-set approaches have trouble capturing the order of execu-
tion, while existing syntactical approaches suffer from issues with respect to loop identification and that

IThe default costs of the Syntactic reasoning approach are: Ppd = 1.25, pyms = 0.5, piry = 1.25, pnt = 0.75, p;q = 1.0,
Pe1 = 1.5, pea = 0.5 and pe3 = 1.0.
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Case H Leaf ‘ Operator H 7-leaf H — ‘ “— ‘ A ‘ O ‘ X ‘ \Y
Normal 0.50 0.50 0.05 || 0.25 | 0.05 | 0.25 | 0.10 | 0.200 | 0.150
Loop iterations 0.50 0.50 0.05 || 0.05 | 0.05 | 0.05 | 0.70 | 0.075 | 0.075
Order of execution 0.50 0.50 0.05 || 0.05 | 0.05 | 0.70 | 0.05 | 0.075 | 0.075
Parallelism punishment || 0.50 0.50 0.05 || 0.05 | 0.05 | 0.70 | 0.05 | 0.075 | 0.075

Table 7.1: Per case the probability of an operator or leaf node. Followed by the probability of an 7-leaf
and the probability of each operator type. Any leaf that is not a 7 describes an actual activity.

Case H Tree Size ‘ Operator node children # ‘ Duplicate activities ‘ FEvent classes #
Normal Variable 2-5 No Variable
Loop iterations Variable 2-5 No Variable
Order of execution Variable 2-5 No Variable
Parallelism punishment Variable 2-5 No Variable

Table 7.2: Per case the tree size, number of children per operator node, whether duplicate activities are
allowed, and the number of event classes.

mismatches in the order of execution might be punished very heavily where this would not be appropri-
ate. To illustrate these problems we introduce four cases, one normal case and three cases that illustrate
extreme case wherein these problems are visible. Table 7.1 shows per case the probability settings and
Table 7.2 shows the other settings of the random process tree generator. Table 7.3 shows the settings of
the clustered event log simulator. The four cases are setup as follows:

Normal: We compare our approach against others on normal trees. We chose probabilities that we
think are close to realistic process trees. The clustered event log generator is allowed to use any
kind of configuration possibility.

We hypothesize that if our approach adequately deals with common problems it should profit from
this in the normal situation as well and therefore perform better than other dissimilarity measures
in general.

Loop iterations: In this case the probability of a (J-node is very big, this can cause a great variability
in the traces of the simulated event logs. Some traces iterate loops very often while others very few,
even while the traces belong to the same cluster. In this case we wish to highlight problems that
occur if an approach fails to deal with loops. We include a context-aware version of the Syntactic
reasoning approach which is setup to ignore the cost of additional loop iterations (p;-, = 0).

We hypothesize that approaches that are capable of dealing with repeating activities should perform
better. Examples of such approaches are the Syntactic reasoning approach and the Set-Of-Activities
approach. When setting the cost of additional loop iterations in the Syntactic reasoning approach
to zero, both approaches do not penalize an extra loop iteration and are therefore able to accurately
identify the different choices that are made.

Order of execution: In this case the probability of an A-node is very big, therefore process trees have
a lot of parallelism. In this case we only allow for the order configuration type. By doing this we
can show that feature-set approaches have trouble capturing the order of execution aspect. We
include a context-aware version of the Syntactic reasoning approach which penalizes the cost of a
difference in parallel execution very heavily (p,q = 20).

Case H Configuration types ‘ Trace # ‘ Cluster # ‘ Noise probability
Normal Choice, Order, Loop 1,000 Variable 0.0
Loop iterations Choice 1,000 Variable 0.0
Order of execution Order 1,000 Variable 0.0
Parallelism punishment Choice 1,000 Variable 0.0

Table 7.3: Per case the allowed configuration types, the number of traces per experiment, the number of
clusters per event, and the probability of noise.
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Syntactical approaches can fully observe the order of execution aspect while the 3-Grams approach
can only partially observe this. Other feature-set approaches like the Set-Of-Activities and Bag-
Of-Activities can not observe this at all. We therefore hypothesize that syntactical approaches
perform best, 3-Grams worse and the Set-Of-Activities and Bag-Of-Activities approaches worst.

Parallelism punishment: Like the previous case, the probability of an A-node is very big, therefore
process trees have a lot of parallelism. In this case we only allow for the choice configuration type.
This means that the traces can execute the process trees in various orders, even while they belong
to the same cluster. In this case we include a context-aware version of the Syntactic reasoning
approach which is setup to ignore the cost of the parallel execution difference (p,q = 0).

We hypothesize that approaches that cannot ignore parallelism behavior have difficulties finding
the clusters. Examples of such approaches are the Levenshtein distance and 3-Grams.

Each of these cases is investigated for different tree sizes. We investigate the process tree sizes: 2 - 5,
5-10, 10 - 20, 20 - 40, 40 - 80 and 80 - 160 nodes, with respectively the number of event classes: 5, 10,
20, 40, 80, 160 and the number of clusters in the log: 2, 2, 3, 4, 5 and 5. The clustering problem becomes
increasingly difficult with an increasing process tree size and number of clusters. For every process
tree size we run 100 experiments, i.e., 100 different process trees and clustered event logs are generated
on which we perform single linkage hierarchical clustering [16] using the five dissimilarity measures as
distance functions.

The result for a single experiment and a dissimilarity measure is a hierarchical clustering. From
our clustered event log simulator we however get a flat clustering of traces. Comparing the hierarchical
clustering with the flat reference clustering is not trivial. To extract a flat clustering from the hierarchy
we cut the hierarchy at the required number of clusters. We do this by starting at the root and traversing
the most distant splits until we have found the required number of clusters.

It may however occur that a draw occurs, i.e., a split consists of more than two clusters or multiple
splits have the same distance between the clusters. If a split consists of more than two clusters we should
add all of these clusters at the same time. If we have multiple splits we should traverse all of these splits
at the same time. It may now occur that we obtain more clusters than we required. To solve this we
should take the base set of clusters (i.e., the clusters we had before traversing the splits without the
splits we are about to traverse) and the candidate set of clusters (i.e., clusters we obtain after traversing
the splits). The base set should now be combined with every combination of the candidate clusters of
such length that we obtain the required number of clusters. Every such combination of the base and
candidates is called a cut of the hierarchy.

Another issue arises when the hierarchy does not contain the required number of clusters. In this
case we should add empty clusters to the final set of clusters such that we obtain the required number
of clusters. This final clustering is called a cut of the hierarchy.

For every cut of the hierarchy we calculate the precision, recall and F; score, which is the harmonic
mean of recall and precision. In our results we distinguish between the best cut (i.e., the cut for which
the Fy score is highest) and the worst cut (i.e., the cut for which the F; score is lowest). We formally
define the recall, precision and F; scores for a single cut of the hierarchy as follows:

Definition 7.1 (Recall, Precision and the Fi-score)

Let Crey = <Cy1,...,Crn> denote a list of reference clusters. Let Ceyr be a cut of the hierarchical
clustering with |Ceyt| = |Cres|. Let pmt(S) be a function that returns all permutations for a set S. Let
<Cp1,...,Cpn> be a single permutation of Ceyr. We now define precision for a single permutation as
follows:

_ |Cp1 N Cra| + .. + |Cpn " Cry|

Pt (<Criy e, Crpn>, <Chi,yonn, Cop> 7.1
D t( 1 pl D ) |Op1| P |Cpn| ( )
We now define recall for a single permutation as follows:
C C, e +|Cop 0 Crpy
Rpmt(<Crla---aCrn>7<CP1;---aCPn>) = | £ a 1| i i | L & | (72)

|Cr1] + ... +|Crnl
Using these measures we define the F-score for the given cut of the hierarchy as follows:

2P, mt(Cref Cpmt) R mt(CTGf Cpmt)
F Cre 7Ccu = L —r : — 3
1( °f t) Cpmteglii((ccut) Ppmt(cref7 C;Dmt) + Rpmt(CT€f7 Cpmt) ( )
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Let Cpmt,maz be the permutation of Ceyy for which the Fi-score is mazimized. We now define precision
as follows:

P(Crefa Ccut) = Ppmt (Crefy Cpmt,max) (74)
We now define recall as follows:

R(Cref; Ccut) = Rpmt(crefa Cpmt,maa:) (75)

7.2.2 Results and discussion

Figure 7.1, Figure 7.2, Figure 7.3 and Figure 7.4 respectively show the results of the cases: normal, loop
iterations, order of execution and parallelism punishment. In each of these figures the left graph shows
the F; score of the worst cut and the right graph shows the F; score of the best cut. Appendix B.1
includes the corresponding recall and precision scores for each of the cases. Please note that the context-
specific version of the Syntactic reasoning approach has different tweaks of the cost function per case.
For all cases we observe that for very small process trees (2 - 5 and 5 - 10 nodes) every approach performs
very good and often provides a perfect clustering. In these process trees the clustered event log simulator
is unable to build more complex configurations. This results in very simple and clearly distinguishable
clusters, e.g., a choice between A and B. With larger process trees, starting from 10 - 20 nodes, the
clustered event log simulator is able to generate more complex configurations, and therefore clusters that
are harder to recognize. For most cases, except the loop iterations, we observe that at 10 - 20 nodes the
results start to stabilize. We now discuss every case individually:

Normal: (Figure 7.1) For normal process trees we observe that the Syntactic reasoning approach is
one of the top scoring approaches. We observe a relatively stable result, i.e., there is not much
difference between picking the worst or the best cut. The Set-Of-Activities has a similar score but
is less stable, i.e., there is a bigger difference between picking the worst or the best cut.

We should also take into account that the random process tree generator was not allowed to use
duplicate activities which is an advantage for the Set-Of-Activities approach. When duplicate
activities are allowed, clusters may be formed on the execution of the same activity but at a
different state in the process tree. By providing a process tree to the Syntactic reasoning approach
it can distinguish these different states. For the Set-Of-Activities it is however impossible to identify
these kinds of clusters.

Loop iterations: (Figure 7.2) We observe that the Syntactic reasoning approach can adequately deal
with loops by using the input process tree. The Set-Of-Activities approach was able to deal with
loops since it only counts activities once, meaning that adding another iteration of a loop adds
no distance. The Levenshtein distance, 3-Grams and Bag-Of-Activities were not able to deal with
loops and therefore score much worse.

With a context-specific tweak of the cost parameters we greatly improved the performance of the
Syntactic reasoning approach such that it can compete with the Set-Of-Activities approach. Like
in the normal case we observe that the Set-Of-Activities approach is less stable than the Syntactic
reasoning approach.

Order of execution: (Figure 7.3) In this experiment we observe the advantage of a syntactical ap-
proach over a basic feature-set approach. Because of the syntactic nature of our approach it fully
captures the order of execution aspect. The Syntactic reasoning approach scores similar to the
Levenshtein distance and the 3-Grams approach. 3-Grams is a feature-set approach that partially
observes the order of execution aspect, this seems to be sufficient to score similarly to the syn-
tactical approaches in this experiment. The Set-Of-Activities and Bag-Of-Activities approaches
are unable to distinguish any order of execution and therefore score worst. Again we observe that
a context-specific tweak of the cost parameters of the Syntactic reasoning approach improves the
result. In this experiment this is however less visible.

In general it seems that all of the approaches have difficulties recognizing the clusters in this
experiment. As the process trees become bigger more nested A or v-nodes occur. In some cases
the clustered event log simulator configures the shallow nodes but not the deeper nodes. Because
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Figure 7.1: The F1 scores with 95% confidence intervals of the best and worst cut in the normal case.

1 1
0,9 0,9
0,8 0,8
0,7 0,7
0,6 0,6

= =

S 05 S 05

Ll ol

b b
0,4 0,4
0,3 0,3
0,2 0,2
0,1 0,1

0 0
2 - 5 5-10 10 - 20 20 -40 40 -80 80 - 160 2 - 5 5-10 10 - 20 20 -40 40 -80 80 - 160

TREE SIZE (# NODES)

—&— Syntactic Reasoning Approach

—0— Syntactic Reasoning Approach (Context)
—— Levenshtein distance

—#— Set-Of-Activities

== Bag-Of-Activities

=¥=3-Grams

(a) Worst cut.

TREE SIZE (# NODES)

—4&— Syntactic Reasoning Approach

—0— Syntactic Reasoning Approach (Context)
—— Levenshtein distance

—#— Set-Of-Activities

== Bag-Of-Activities

=¥=—3-Grams

(b) Best cut.

Figure 7.2: The F1 scores with 95% confidence intervals of the best and worst cut in the loop iterations

case.
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Figure 7.3: The F1 scores with 95% confidence intervals of the best and worst cut in the order of execution
case.

of this still much variability in the order of execution among the clusters may exist. Meaning that
it is still very difficult to observe the clustering.

Parallelism punishment: (Figure 7.4) The Syntactic reasoning approach is again one of the top scoring
approaches and provides the most stable result. The Set-Of-Activities and Bag-Of-Activities do not
observe order of execution and therefore score similarly to the Syntactic reasoning approach. The
context-specific tweak of the cost parameters does improve the result in the best cut, but decreases
the result in the worst cut, therefore the context-specific variant is less stable. The Levenshtein
distance and 3-Grams approach penalize difference in the order of execution very heavily and
therefore score worst.

We observe that the best approaches differ per case. However our approach, the Syntactic reasoning
approach, with a simple context-specific tweak always scores among these best approaches. Without any
tweaks our approach already scores among the best scoring approaches for the normal, order of execution
and parallelism punishment cases. The Syntactic reasoning approach supports context-specific tweaking
of the cost function. We have shown that a simple tweak can greatly improve the performance of our
approach. With such a tweak we improved the scores in the loop iterations approach such that it can
compete with the top scoring approach of this case, i.e., Set-Of-Activities. Furthermore, it seems that
the Syntactic reasoning approach produces a more stable result than other approaches, i.e., there is not
much difference between the best and worst cut of the resulting hierarchical clustering.

Our approach adequately deals with loops and difference in parallelism execution but is still able to
penalize differences in order of execution when required in a context. Therefore our approach combines
the best of two worlds (feature-set and syntactical). Opposed to the compared approaches, the Syntactic
reasoning approach allows tweaking of the cost function to a specific context which can greatly improve
performance.
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Figure 7.4: The F1 scores with 95% confidence intervals of the best and worst cut in the parallelism
punishment case.

7.3 Comparison of configurable process discovery approaches

In Chapter 5 we discussed different approaches towards configurable process discovery. We discussed the
ETMc algorithm which is part of the ETM framework. The ETMc algorithm explores the full search
space to find the optimal set of configurations, it is therefore a brute force approach [12]. We have
proposed a new structured approach that uses execution frequencies and observed execution orderings
to discover configurations in Section 5.2. This section compares our method with the ETMc algorithm.
First in Section 7.3.1 we explain the experimental setup. Second in Section 7.3.2 we present and discuss
the results.

7.3.1 Experimental setup

In this experiment we compare our configuration discovery approach with the ETMc algorithm. The
ETMc algorithm is currently the only other configuration discovery approach for process trees. We split
our experiment into two parts:

Comparison with paper: Buijs et al. [12] evaluated the ETMc algorithm on a running example. We
compare their results of approach three with the results of our algorithm for the same event logs
and input process tree. They ran the ETMc algorithm for 80,000 generations to obtain a stable
result. The used running example is a simple loan application process of a financial institute.
Four different variants of this process exist for which they created event logs using simulation. We
first discuss the time complexity of both algorithms and second compare both algorithms in the
following quality dimensions: the number of configuration options, generalization, precision, replay
fitness, and simplicity.

Random trees and clustered event logs: In the second part of this experiment we randomly gen-
erate process trees and clustered event logs using the techniques as discussed in Section 7.1. The
random tree generator uses the same settings as the normal case of the previous experiment (shown
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in Table 7.1 and Table 7.2). We investigate the tree sizes: 2 - 5, 5 - 10, 10 - 20, and 20 - 40 with
respectively the number of event classes: 5, 10, 20 and 40. For every tree size 30 different process
trees and clustered event logs are generated. The clustered event log simulator generates logs of
500 traces without noise. It is allowed to use all types of configuration possibilities and is setup to
generate event logs with two clusters. The clustered event log simulator internally uses a config-
urable process tree to simulate the event log. We consider this reference configurable process tree
to be the optimal result. In this experiment we consider the time aspect and the following quality
dimensions: replay fitness, precision, simplicity, generalization and the number of configuration
options.

To evaluate the ETMc algorithm we run it for 1,000 generations with a population-size of 20 and
an elite-size of 6. After 1,000 generations we evaluate the best configurable process tree from the
population. The ETMc is setup to evaluate the process trees using the ‘Weighted sum (Split)’
equation of definition 5.7, with parameters: w,¢ = 10, w, =5, ws, = 1, wy = 1, and a = 0.00001.

All process model quality dimensions are calculated according to definition 5.5. In the results we denote
our approach as the VisFreq algorithm. In all experiments we run our approach using 95% threshold
settings, i.e., tpp = 0.95,t, = 0.95, t, = 0.95 and ¢y = 0.95.

7.3.2 Results and discussion
Comparison with paper

We start by comparing our approach with the paper by Buijs et al. [12]. Figure 7.5 shows the resulting
configurable process trees of the ETMc and the VisFreq algorithm. In order to obtain a stable result
the ETMc was ran for 80,000 generations. In every generation the ETMc needs to evaluate every newly
created or modified process tree using the techniques as discussed in Section 5.3. In order to calculate
replay fitness, the ETMc calculates alignments between a process tree and every unique trace in the
event log. The time complexity of a random mutation of the configuration options in a process tree is
negligible with respect to the time complexity of calculating alignments. Therefore most of the time
is spend on calculating alignments. The same holds for our algorithm, determining the configuration
options is negligible with respect to the time complexity of calculating alignments. However our approach
calculates the alignments only once for the input process tree. Therefore the time complexity of our
algorithm is approximately the time complexity of a single process tree evaluation of the ETMc. We
further support this claim in the second part of this experiment.

When manually investigating the configurable process trees (shown in Figure 7.5) we observe that
the configuration options for both algorithms are very similar. However since the ETMc randomly
adds configuration options to nodes in the process tree, the resulting configurable process tree contains
configuration options for nodes that are no longer reachable since one of its parents is hidden or blocked
for that configuration.

Table 7.4 shows the combined scores of the quality dimensions and the scores per event log and
corresponding configuration. The best scores among the two approaches are in bold. We now discuss
every quality dimension individually:

Configuration options: For every variant the VisFreq algorithm generates fewer configuration op-
tions than the ETMc algorithm. The ETMc algorithm randomly configures nodes in the process
tree. Because of this the ETMc might add a configuration option to a node after which in further
generations it hides or blocks one of the parents of this node. The configuration option is not re-
moved from this child node, causing the final result to have redundant configuration options. The
VisFreq algorithm investigates the configuration options top-down and therefore does not suffer
from this issue.

Generalization: In the generalization dimension our approach scores slightly worse. We argue that
generalization is the least important quality dimension for any configured process tree. A config-
urable process tree should generalize very well since it should support many variants. However
upon configuring a configurable process tree we want to restrict the process tree such that it only
supports the preferred variant. By restricting a process tree it should generalize less.

Precision: Both algorithms score identical in the precision dimension.
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Figure 7.5: Configurable process tree discovered by the ETMc algorithm (a) and the configurable process
tree discovered by the VisFreq algorithm (b).
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Configuration options | Generalization | Precision | Replay Fitness | Simplicity
Combined 6.9895 0.6591 0.9775 0.9933 0.7626
Variant 0 6.0000 0.7112 0.9898 1.0000 0.8500
Variant 1 7.0000 0.5157 1.0000 0.9545 0.7000
Variant 2 8.0000 0.7069 1.0000 1.0000 0.7692
Variant 3 6.0000 0.6142 0.9079 1.0000 0.7083

(a) Results ETMc algorithm.

Configuration options | Generalization | Precision | Replay Fitness | Simplicity

Combined 4.7895 0.6557 0.9775 1.0000 0.7439
Variant 0 4.0000 0.7112 0.9898 1.0000 0.8500
Variant 1 5.0000 0.5562 1.0000 1.0000 0.6471
Variant 2 5.0000 0.6901 1.0000 1.0000 0.7500
Variant 3 5.0000 0.6039 0.9079 1.0000 0.6957

(b) Results VisFreq algorithm.

Table 7.4: Quality criteria of the two trees shown in Figure 7.5. The best scores among the two approaches
are in bold. Fewer configuration options is considered to be better. For the other quality dimensions
holds that a higher score is considered to be better.

Replay fitness: The Viskreq algorithm performs slightly better with respect to replay fitness. The
VisFreq algorithm finds a configuration for variant one that supports perfect replay fitness while
the ETMc did not. Therefore the combined score is higher as well.

Simplicity: The ETMec algorithm scores better for variant one, two and three. The most significant
difference is observed for variant one. The VisFreq algorithm however scores better in replay fitness
for variant one. We argue that in order to achieve perfect replay fitness a bigger process tree was
required.

We cannot conclude that one of the algorithms is better. Both algorithms provide a similar solution.
Only with respect to the time complexity of both algorithms we see an obvious difference. With 80,000
generations the brute force ETMc algorithm covered a large portion of the full search space. Opposed to
the VisFreq algorithm which is a structured approach towards finding configurations and therefore only
needs to calculate alignments once for the input process tree. This is similar to a single tree evaluation
of the ETMc with respect to time complexity.

Random trees and clustered event logs

In the second part we tested both algorithms on randomly generated process trees with randomly gen-
erated event logs. Figure 7.6 shows the timing results and quality dimension scores. For the quality
dimensions we included the scores of the reference configurable process tree used by the clustered event
log simulator to generate the logs. We consider this reference configurable process tree to be the optimal
result.

Figure 7.6a shows the timing results of both algorithms on a logarithmic scale. We can now clearly
see the difference in time complexity (which we also discussed in the previous part of this experiment).
For the tree sizes: 2 -5, 5 - 10, 10 - 20 and 20 - 40 the VisFreq algorithm is approximately 450, 900, 1,000
and 1,600 times faster than the ETMc algorithm. The timings of both algorithms include a start-up
time. Because of this start-up time we cannot directly observe that the VisFreq algorithm is similar to
a single tree evaluation of the ETMc. However this seems a reasonable assumption since the time spent
by the ETMc algorithm increases more rapidly than that of the VisFreq algorithm.

For all quality dimensions the result of the VisFreq algorithm closely approximates the reference
configurable process tree. The ETMc however fails to achieve similar scores in the quality dimensions:
precision and generalization. It does however improve in the number of configuration options. Having
fewer configuration options seems to be better but we argue that the fewer configuration options directly
relate to the worse score in the precision quality dimension.
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Both approaches achieve perfect replay fitness and simplicity. This can be explained by the fact that
any input process tree already has perfect replay fitness. This is inherent to the way the clustered event
log simulator creates the event logs. Since replay fitness is considered to be the most important quality
dimension the ETMc does not quickly prefer a solution with a worse replay fitness.

Running the ETMec for more generations will probably improve the results with respect to the quality
dimensions. With enough generations the ETMc has traversed the full search space to such extend that
it always finds a solution that closely approximates the reference configurable process tree. This however
takes significantly longer than a run of the VisFreq algorithm. We can conclude that our approach is
significantly faster than the ETMc while still providing close to optimal solutions.
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Figure 7.6: Comparison of the different quality criteria calculated on the results of the VisFreq and
ETMc approaches and quality criteria that were calculated on the reference configurable process tree.

The error bars denote the 95% confidence intervals.
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7.4 Evaluation of the full approach

To test the full approach we manually evaluate data sets and discuss the results of different approaches.
First in Section 7.4.1 we evaluate the full approach on a simulated event log of the running example.
Second in Section 7.4.2 we evaluate the full approach using the BPI challenge logs of 2012.

7.4.1 Running example

To evaluate the full approach on the running example (as proposed in Section 1.1), we build a simulation
model which randomly executes one of the three variants of the running example. The simulation model
records the payment method (Payment) and whether the student finished the process with a driving
license or not (Result). The simulated event log contains 323 traces of variant one, 363 traces of variant
two, and 314 traces of variant three. We performed clustering on this event log using the single linkage
hierarchical clustering algorithm [16] and annotated the hierarchical clustering using the C4.5 decision
tree algorithm [33]. Next we reduced the resulting hierarchical clustering based on data annotations.
Using the Syntactic reasoning approach with default settings we find the annotated hierarchical clustering
as shown in Figure 7.7. We ran the same procedure using the Levenshtein distance, Set-Of-Activities,
Bag-Of-Activities and 3-Grams approaches (explained before in Section 7.2.1) and included the resulting
hierarchical clusterings in Appendix B.2.1.

Table 7.5 summarizes the results of the different approaches. It shows the size of the hierarchical
clusterings in number of clusters and marks the variants of the running example for which we could
identify a cluster. Both Set-Of-Activities and Bag-Of-Activities are feature-set approaches that cannot
observe the order of execution aspect. The difference between variant two and three of the running
example is the order of execution of activities Driving Class (C) and Pay For Class (D). Therefore it is
impossible for these approaches to observe the difference between these variants.

The Set-Of-Activities approach was also unable to find a cluster representing variant one. The Set-
Of-Activities approach does not take into account the number of times an activity occurred. Therefore
the execution of activity Pay For Class (D) for variant two and three is only taken into account once
in the final distance. When comparing a trace of variant two or three with a trace of variant one, the
execution of activity D is therefore not penalized heavier than e.g., when a student fails once, which adds
the execution of of activity Fuailed (H).

All other approaches are able to identify the three variants of the running example. The Syntactic
reasoning approach however finds the smallest and simplest hierarchical clustering. For the approaches
that identify the three variants of the running example, we used the clusters identifying the variants to
discover configurations using our configuration discovery algorithm. This resulted in the configurable
process tree as shown in Figure 1.2.

C’root

Payment=BeforeClass

Payment=Package v Payment=AfterClass

Gy

Cy
Result=Success Result=Failed PaymentBeforeCV ymentAfterCIass

CQ Cg 5

C Cs
Result=Success Result=Failed
Result=Success Result=Failed
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Figure 7.7: Hierarchical clustering of the running example using the Syntactic reasoning approach.
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Dissimilarity measure || Clusters [dentifies variants

1. Package | 2. Payment After | 3. Payment Before
Syntactic reasoning 11 v v v
Levenshtein distance 41 v v v
Set-Of-Activities 11 - - -
Bag-Of-Activities 56 v - -
3-Grams 19 v v v

Table 7.5: Per dissimilarity measure the size of the hierarchical clustering in number of clusters and
whether a variant of the running example can be distinguished in this hierarchical clustering.

7.4.2 BPI challenge logs 2012

The BPI challenge 20122 is a competition in which the participants are asked to analyze a real-life event
log using whatever techniques available and report on this. The provided event log describes the process
for a personal loan or overdraft within a Dutch Financial Institute. The event log contains 262,000 events
in 13,087 traces. The event log contains three data attributes per trace: concept:name, AMOUNT_REQ and
REG_DATE. These data attributes respectively denote a unique name of the trace, the loan amount, and the
time of registration. We immediately discarded the data attribute: concept:name since it is unique per
trace and therefore cannot be used to explain groups of traces (clusters). In the event log the requested
loan amount is marked as a string, we modified this to an integer to allow range conditions by the data
annotation algorithm. The goal of this experiment is to identify whether there is a relation between the
trace data and the observed behavior and whether we can make a classification of the traces.

We first opened the full event log and discovered a process tree using the Inductive Miner [28].
This gave us a huge and complex process tree, indicating that the process contains many deviations.
Using this discovered process tree and the event log, we performed trace clustering using the single linkage
hierarchical clustering algorithm [16] using as dissimilarity measure the Syntactic reasoning approach with
default settings. Next we annotated the hierarchical clustering using the C4.5 decision tree algorithm [33].
Finally we reduced the hierarchical clustering based on data annotations. This resulted in a huge
hierarchical clustering wherein the root branches out to many clusters with each only a few traces.
Each of these clusters is annotated with a long chain of conditions. It seemed like the annotation
algorithm tried to explain every trace in the cluster individually. We can therefore conclude that both
data attributes: AMOUNT_REQ and REG_DATE do not relate to behavior. We also tried to exclude one of
the two data attributes, this however did not improve the results. In the remainder of this experiment
we discarded both data attributes.

Since the event log does not contain data attributes that describe behavior, we enriched it with the
occurrence of events using the techniques proposed in Section 4.3. We ran the same procedure as before
to obtain an annotated hierarchical clustering. This resulted in a huge hierarchical clustering from which
we could not make much sense. We could however identify an initial distinction between approved and
other traces, and recognize that the event log probably contains uncompleted traces.

Next we investigated the meaning of the activities and identified interesting activities for our invest-
igation. The BPI challenge website explains that the activities prefixed with A_ indicate the states of
the loan application. We first filtered the event log to only contain the application states. Next we
discovered a process tree using the Inductive Miner [28]. Inspection of this process tree showed that the
process always starts with the activity: A_SUBMITTED, and that the process ends with at least one of
the activities: A_LAPPROVED, A_.REGISTERED, A_ACTIVATED, A_DECLINED or A.CANCELLED.
We further filtered the event log to only include events of these six activities. Again we discovered a
process tree using the Inductive Miner [28], this resulted in the process tree shown in Figure 7.8. Using
this process tree and the filtered event log we ran the same procedure as before to obtain an annotated
hierarchical clustering.

Figure 7.9 shows the resulting hierarchical clustering. Data attributes prefixed with EO: indicate the
occurrence of activities. If the activity occurred it has the value True, else it has the value False. The
hierarchical clustering shows a clear segregation between approved, canceled and declined traces. It is
reasonable to assume that these are the end-states of the traces. Next to these clusters we also have a

2The official website is: http://www.win.tue.nl/bpi/2012/challenge.
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Figure 7.8: Process tree discovered using the Inductive Miner for the initial filtered event log of the BPI
challenge 2012.
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EO:A_DECLINED= Tm/ \Eo A_DECLINED=False

Figure 7.9: Resulting hierarchical clustering of the initial filtered event log of the BPI challenge 2012.

cluster with traces that do not belong to any of these end-states, we consider this to be the uncompleted
traces. Table 7.6 shows the number of traces and the state of the traces for each of the leaf clusters. We
compared our result with a submission of the BPI challenge 2012 [25] and can conclude that we have
found a clustering that is identical to their first-level classification of the traces (shown in Figure 7.10).
We however found this classification in a semi-automatic way.

Next to this initial classification in the end-states, the report [25] includes sub-classifications into
whether an offer was sent and/or there was a fraud check. Our previous result could not identify these
sub-classifications since we removed the events representing these types of activities. Therefore we again
manually inspected the event log and found two activities: O_SENT and W_Beoordelen fraude, which
respectively represent sending an offer and accessing for fraud. We filtered the original event log to
only include the previous six activities and the two new activities. Again we discovered a process tree
using the Inductive Miner [28], this resulted in the process tree shown in Figure 7.11. We ran the same
procedure as before to obtain an annotated hierarchical clustering. Figure 7.9 partially, i.e., some of the
deeper levels are removed, shows the hierarchical clustering (the full hierarchical clustering is included in
Appendix B.2.2). The hierarchical clustering now also segregates whether an offer was sent or not. The
fraud check is however less visible and only for clusters C7 and C7 the traces were segregated. Table 7.7
shows per cluster the number of traces, whether an offer was sent in these traces, and whether a fraud

Cluster H Number of traces ‘ Trace state

Ch 2,246 Approved
Cs 2,807 Canceled
Cs 7,635 Declined
Cs 399 | Uncompleted

Table 7.6: Summarizes the leaf clusters of Figure 7.9. It shows the number of traces and the state of the
traces per cluster.
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Financial Log
13,087
Declined Canceled Undecided
2,246 7,635 2,807 399
Offer Offer Offer No Offer
2,246 802 1,640 1,167
Fraud| |No Fraud| (Fraud| [No Fraud| [Fraud| |No Fraud No Fraud | (Fraud| |No Fraud
30 2,216 6 796 67 6,766 1,640 4 1,163

Figure 7.10: Classification of the BPI challenge 2012 traces [25].

Approved

No Offer
6,833

check was performed. Our trace clustering is very similar to the classification shown in Figure 7.10. We
were however unable to detect the very small fraud check clusters in the case of a canceled trace for
which no offer was sent and in the case of a declined trace for which an offer was sent.

Classifying traces in large real-life event logs like the BPI challenge 2012 log is a cumbersome task.
With manual inspection and filtering it is possible to classify the traces (as shown by one of the sub-
missions [25]). However more complex dependencies between activities would be nearly impossible to
identify in this way. Trace clustering with data annotations is no holy grail in that it always provides a
perfect clustering, not to mention that the perfect clustering is context-specific and probably impossible
to define, it does however provide much insight to an end-user. In this experiment we immediately
observed the segregation of approved and other traces and observed that the event log probably contains
uncompleted traces. With these insights the user can further pre-process the event log by filtering noisy
or irrelevant events. A few of these manual steps made it possible to find a clustering that provides much
information to the user. We initially found a segregation of the traces based on its end states. Further
manual steps made it possible to immediately find a trace clustering of the traces in which we could also
identify whether an order was sent and whether there was a check for fraud.

In this experiment we did not have a reference process tree and had to discover a process tree from
the event log which was then used as input for the Syntactic reasoning approach. For the unfiltered
event log the Inductive Miner [28] discovered a very big and complex process tree because of the many
deviations in the process. We argue that such a process tree provides less information to the Syntactic
reasoning approach opposed to what a reference process model could have provided. A reference process
model could have made it possible to find a good classification of the traces without any filtering. This
reference process model was however not supplied and could therefore not be used. We do however think
that with some manual steps a discovered process tree does help the trace clustering. The Syntactic
reasoning approach could be extended with process discovery algorithms such that it no longer needs an
input process tree. Any process discovery algorithm that outputs one or more process trees would be
applicable. This mean that by improving process discovery algorithms, which is a very active field of
research, we directly improve upon trace clustering.

We had to enrich the BPI challenge 2012 event log with the occurrence of events since the traces itself
did not contain any data which support the choices that were made during execution. This however adds
attributes for every activity, which allows the data annotation algorithm to find an appropriate data
expression for every cluster. Because of this the reduction algorithm based on data annotations is a lot
less effective. It might be easier to find a good classification for event logs that contain data attributes
which describe the choices made during the execution of the traces.
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Figure 7.11: Process tree discovered using the Inductive Miner for the filtered event log of the BPI
challenge 2012 which includes sending of offers and checks for fraud.
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(3) (4)
Cs Coy
(1) EO-APPROVED=True
(2) EO-APPROVED=False
(3)  EO:W_Beoordelen fraude=True
(4) EO:W_Beoordelen fraude=False
(5) EO:ADECLINED=False A EO:A_CANCELLED=True A EO:0_SENT=False
(6) EO:ADECLINED=False A EO:A_CANCELLED=True A EO:O_SENT=True
(7)  EO:ADECLINED=True A EO:A_CANCELLED=False A EO:0_SENT=False
(8) EO:ADECLINED=True A EO:A_CANCELLED=False A EO:0_SENT=True
(9) EO:ADECLINED=False A EO:A_CANCELLED=False A EO:0_SENT=False
(10) EO:A DECLINED=False A EO:A_CANCELLED=False A EO:0_SENT=True

Figure 7.12: Partial trace clustering of the filtered event log of the BPI challenge 2012 which includes
sending of offers and checks for fraud.
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Cluster || Number of traces | Trace state Offer sent | Fraud check
Ch 2,246 | Approved Yes -
Cs 10,841 | Canceled/Declined/Uncompleted | - -
Cy 30 | Approved Yes Yes
Cy 2,216 | Approved Yes No
Cs 1,167 | Canceled No -
Cs 1,640 | Canceled Yes -
Cy 6,833 | Declined No -
Cs 67 | Declined No Yes
Cy 6,766 | Declined No No
Cho 801 | Declined Yes -
Ci1 72 | Uncompleted No -
Cio 326 | Uncompleted Yes -

Table 7.7: Summarizes the clusters of Figure 7.12. Per cluster it shows the number of traces, the state
of the traces, whether an offer was sent, and whether a fraud check was performed.






Chapter 8

Conclusion and future work

In this chapter we conclude this thesis, discuss the limitations of our work, and propose ideas for future
work. First in Section 8.1 we conclude our results and briefly answer our research questions. Second in
Section 8.2 we discuss the limitations of our work and propose ideas for future work.

8.1 Conclusion

The development and maintenance cost greatly increases with the increased use of information systems.
This causes more and more organizations to start using shared business process management infrastruc-
tures, Software-as-a-Service (SaaS) and Cloud Computing. This shows that companies are willing to
adapt themselves to information systems in order to reduce costs. Configurable process models provide
a means for organizations to keep some freedom in the use of an information system. They can configure
these models in such way that it best suits their way of working.

Related work proposes many different approaches to discover a configurable process model from a
collection of event logs. These approaches however discover the model at an organizational level. In
this thesis we proposed discovery at a behavioral level. Rather than looking at the traces of different
organizations we directly consider the behavior of the traces and group those that describe similar
behavior. Grouping behaviorally similar traces of an event log directly relates to the field of trace
clustering. Clustering algorithms often use a dissimilarity measure to identify objects that are similar
to each other. Existing dissimilarity measures for trace clustering often have difficulties with parallel
executable behavior and loops. We proposed a new dissimilarity measure that solves these issues by
using an input process tree. In this thesis we also explained how we can annotate groups of traces with
the data in the event log. By doing this we provide insights to the end-user in how data implicates the
observed behavior. Each group of traces can be considered to be an event log. From such a collection
of event logs it is possible to discover a configurable process model. Before this work the ETMc was the
only approach to discover a configurable process tree. This is however a brute force approach. In this
thesis we proposed a new structured approach that uses execution frequencies and observed execution
orderings to find configurations for a process tree and a collection of event logs, resulting in a configurable
process tree.

In order to reach our goal we answered the four research questions as follows:

1. How can we identify groups of behaviorally similar traces in an event log? (Chapter 3)

This question directly relates to the field of trace clustering. Before this work the usage of trace
clustering was primarily in process discovery, by finding homogeneous groups of traces the com-
plexity of discovered models may be reduced. In this thesis we use trace clustering to find groups of
traces that imply configurations on a process model. Most clustering algorithms use a dissimilarity
measure. Related work proposes different approaches towards defining this measure, however most
of these approaches suffer problem problems because of their lack of model-awareness. Therefore we
have proposed a new dissimilarity measure: the Syntactic reasoning approach. We have explained
how our dissimilarity can be applied in clustering and how preferred clusters can be suggested to the
end-user. The final result is a hierarchical clustering. This hierarchical clustering is a hierarchical
segregation of the traces in the input event log.
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2. How can we explain these groups based on data? (Chapter 4)

Decision mining can be applied to explain every choice during the execution of a process model by
the data of the traces. The problem stated in this research question is very similar. The groups
of traces in the hierarchical clustering are grouped since they describe similar behavior, i.e., they
make similar choices. To explain the groups we annotate the hierarchical clustering with the data
of the traces such that the end-user can pick a set of preferred clusters. We have shown how this
problem can be transformed to a classification problem and discussed the use of two classification
algorithms, the naive Bayes classifier and C4.5 decision tree classifier.

After annotation of the hierarchical clustering it may still be huge and incomprehensible for an
end-user. Existing techniques to reduce a hierarchical clustering do not take into account the data
annotations. We have proposed an algorithm that reduces the hierarchical clustering based on the
data annotations. Another issue is that sometimes we cannot explain a hierarchical clustering with
the data of the event log. For these cases we explained how event logs can be enriched. By adding
trace-features as data to the traces it may become possible to find an explanation for the clusters.
By answering this research question we obtained an (reduced) annotated hierarchical clustering.
From this hierarchy the end-user can select their preferred clusters,

3. How can we create a configuration for a given process tree and a group of traces?
(Chapter 5)

We answered this research question by first discussing four different approaches towards configur-
able process discovery. Evaluation of previous work shows that discovery approaches overcome the
disadvantages of merging approaches. We have explained that for any group of traces we can find
a configuration for a given process tree using the ETMc algorithm. This algorithm is however a
brute force approach. Therefore we proposed a new structured configuration discovery approach.
Our configuration discovery approach uses execution frequencies and observed execution orderings
to discover the configurations.

4. How can we select a good configurable process tree for a selection of groups of traces?
(Chapter 5)

Situations may arise where we do not have a single reference process tree but instead multiple
reference process trees. For example, merging process trees is not trivial and may result in multiple
trees, or algorithms like the ETMd can discover many different process trees which each specialize
in different aspects. It is not trivial which configurable process tree is the best. We presented two
ways of calculating an overall configurable process tree quality score. Using this score an end-user
can evaluate which of the configurable process trees is the best.

Our full approach is implemented as a plug-in in the ProM 6 framework. In Chapter 6 we provided
a user guide and explained the extensible framework of our plug-in. Our plug-in provides the user an
interactive way to perform trace clustering with data explanations, and discovery of a configurable process
tree for a selection of preferred clusters. The plug-in is setup in such way that it is easily extensible with
new dissimilarity measures, clustering algorithms, and classification algorithms.

We have performed extensive experimental evaluation on the newly proposed approaches and our full
approach. In Chapter 7 we explained our experimental setup and discussed the results. For different
types of process trees and event logs the most suitable dissimilarity measure for trace clustering seems to
be different. However our Syntactic reasoning approach is always among the best scoring approaches, or
the best scoring approach, even without tweaking. Next to this, our approach produces the most stable
results, i.e., when cutting the hierarchy there is not much difference between the worst and best possible
cut. Furthermore, our approach supports context-specific tweaking which other approaches do not. The
experiments showed that tweaking improves the clustering results. Our configuration discovery approach
was compared with the ETMc on the running example of the ETMc paper [12] and we experimented
with random process trees and event logs. In both comparisons we can conclude that our algorithm is
much faster and produces solutions that are close to a reference solution. The ETMc is only able to
produce good solutions after sufficient generations. Finally, we tested our full approach on our running
example and the BPI challenge 2012 event log. We have explained how our full approach is applicable
on such event logs and have shown that our full approach is effective in identifying different behavior
and in finding a classification of traces.
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8.2 Future work

In this section we discuss the limitations of our work and discuss possible improvements of the proposed
approaches. In Section 8.2.1 we discuss possible improvements of the Syntactic reasoning approach and
the implementation of a trace clustering plug-in. Section 8.2.2 discusses improvements in the annotation
of the hierarchical clustering. Section 8.2.3 discusses how our configuration discovery algorithm can
be further improved and applied in different contexts. Finally in Section 8.2.4 we propose additional
experimental evaluation which was not included due to time constraints.

8.2.1 Trace clustering

In Chapter 3 we discussed trace clustering. Clustering algorithms often require a dissimilarity measure.
We proposed a new dissimilarity measure in Section 3.3, the Syntactic reasoning approach. Our approach
improves over existing approaches by the use of one or more reference process trees. We think that the
following ideas might still be noteworthy to look into:

Loop roll-up improvement: The Loop roll-up error-transformation currently simply adds additional
loop iterations to one partially ordered alignment (POA) such that both POAs have the same
number of iterations for a loop instance. This is followed by a second step that repairs repeating
mismatches. In this second step only the first occurrence of a mismatch is kept, other mismatches
are removed. In this way a repeating mismatch is only penalized once. In some cases this may
not be appropriate. An alternative is to use the insert/delete/substitution error-transformations
to make sure that both POAs have the same number of iterations, while decreasing the costs of
the error-transformations with every iteration of the loop.

Generic cost function: The current setup of the cost function of the Syntactic reasoning approach
does allow some context-specific tweaking but this is however limited. Currently we can only
change the weights of the error-transformations. The different cases in the substitution error-
transformation provide some freedom in how particular types of substitutions should be penalized
but we think that this can be greatly improved. In Section 3.1.2 we explained the Generic Edit
Distance [23, p.86] which is a generalization of the Levenshtein and allows for a fully customized
distance function. The same principle could be applied in our approach. The current costs could
be used as defaults, from which the end-user could tweak specific error-transformations per type
of activity and/or corresponding type of alignment move.

Weighted distance aggregation: In definition 3.1 of Section 3.3.5 we define four basic different ag-
gregation functions. Initially we performed tests with a fifth aggregation function that weights the
distances based on the quality dimensions of the corresponding process model. The idea is that
distances calculated for better process trees should be weighted heavier than distances calculated
for worse process trees. Due to time constraints we were however unable to look deeper into this.
The main issue is that it is not trivial which quality dimensions indicate that a process tree is bet-
ter and which quality dimensions indicate that a process tree is worse for the Syntactic reasoning
approach.

Trace clustering plug-in: Chapter 6 explains the implementation of our plug-in of the full approach.
The components used in this plug-in are implemented in such way that it should be relatively easy
to implement a plug-in purely focused at trace clustering. We were however unable to implement
this due to time constraints.

8.2.2 Explaining clusters by data

In Chapter 4 we explained how a hierarchical clustering can be explained by the data of an event log.
We also proposed a new reduction algorithm and proposed enrichment of the event log. We still have
the following ideas for improvement:

Naive Bayes classifier: In Section 4.1 we proposed how the naive Bayes classifier can be used to
annotate the hierarchical clustering, we however did not implement this algorithm. We proposed
to add the probabilities to the edges. An alternative is to add the absolute occurrences to the
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edges. The probabilities and absolute occurrences are directly interchangeable but the absolute
occurrences might provide more insight to the end-user.

C4.5 contradictions: The C4.5 decision tree algorithm can result in contradictions in the final annot-
ated hierarchical clustering (as discussed in Section 4.1). We provided two solutions towards this
problem. Both solutions are however not implemented at this time. Future work could look into
when a solution is appropriate and how these should be applied.

Data implications: Some data attributes might implicate values on others. This is especially visible
when enriching trace data with the occurrence of events, e.g., all events under an A-node are
always executed and therefore directly imply each other (not considering noise). An analysis of
these implications might provide the user with insights and may simplify the classification problem.

Data annotation subsets: In Section 4.2 we proposed a reduction algorithm based on data annotation.
The current version only merges clusters with identical data annotations. However we could also
merge clusters when the data annotation of one cluster describes a subset of the data annotation
of an other cluster, e.g., in the case of range conditions on numbers.

8.2.3 Configurable process discovery

In Chapter 5 we proposed a new structured configuration discovery approach for process trees. We
effectively tackled a problem with respect to loops, there is however still a limitation in the current
version of our approach with respect to decision points. We also discussed that our algorithm can be
applied in an evolutionary way, in this section we propose two ideas. We now discuss our ideas in more
detail:

Decision points: The decision points in a process tree are represented by x, v and (O-nodes. We
use Figure 8.1 to illustrate the problem. Assume we have an event log with 50 traces that each
execute the x-node of this process tree. The traces uniformly execute the children of the x-node.
Figure 8.1a shows a distribution of the 50 traces among the children. Any threshold ¢y, < 0.8
causes the configuration discovery algorithm to block or hide all of the children. This is expected
behavior since if we choose a threshold below 80%, we expect the children to be blocked or hidden
if they are executed less than 20% of the time. However a problem occurs in the cases where we
have nested choices. Figure 8.1b shows a process tree with again a uniform distribution among
the children. For this process tree all children of the nested choice are blocked or hidden for any
threshold ¢, < 0.96. We can easily see how this problem grows worse with more nested choices.
Please note that this problem only occurs when hiding or blocking since all operator downgrading
equations are already context-specific.

The problem occurs since we always compare the number of traces related to a node against the
number of traces in the full event log. Currently the following equation is used to determine whether

X 50
X 50 A B X 10 D E
ABCDE ey eury 00
10 10 10 10 10 2 2 2 2 2
(a) Process tree with a choice between five activities. (b) Process tree with a nested choice.

Figure 8.1: A process tree with a choice between five activities (a) and a process tree with a nested
choice. Both process trees are annotated with callouts that indicate the number of traces associated to
the node.
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blocking or hiding should be applied:

|Ln|
||

<1—tp (8.1)

We can modify this equation to compare against a context specific number of traces, as follows:

Ly
|s|<1_“b (8.2)

Where s > 0 is the context-specific number that initially has the value of |L|. s may only decrease
when visiting deeper choice nodes, i.e., a shallow node may influence the value of s for a deeper
node, but never the other way around.

A trivial solution is to set s to the number of traces related to the decision node for all children
of this decision node. This however does not take into account the size of the full event log at
all. Another solution would be to assume a uniform distribution of traces among the children of
the choice node. In this case we divide s by the number of children related to the decision node.
However assuming a uniform distribution may not be appropriate, especially for v and (5-nodes
since for these operators multiple children may be executed. We can raise the assumption by taking
into account the execution frequencies of the children, i.e., the number of times a child is executed.

We have presented multiple options to solve this limitation. Due to time constraints we were
however unable to implement a solution and use it in our experimental evaluation.

Evolutionary threshold optimization: It is not trivial which values should be taken for the thresholds
of our configuration discovery approach. We can implement a new algorithm in the ETM framework
that tries to optimize the thresholds. The most basic approach would be to randomly change the
thresholds and create new candidate configurable process trees. Every generation we keep the best
configurable process tree and modify all others. After sufficient generations this gives us the best
possible (according to the specified quality criteria) configurable process tree for our algorithm.

Evolutionary discovery: As mentioned in Section 5.2 our configuration discovery approach can easily
modified into a mutator for the ETM framework. This makes our algorithm applicable in the ETMc
algorithm which discovers the process model and configurations at the same time. Currently our
algorithm always generates configurations for the full process tree. The algorithm can be modified to
only determine the configuration options for parts of the process tree, which the mutator randomly
picks. Another idea is to mix our approach with the random mutator of the ETMec, this might yield
surprising results. Like proposed in the previous item, the mutator could also randomly change
the thresholds.

8.2.4 Additional experimental evaluation

In Chapter 7 we provided the results of our experimental evaluation. We now propose additional exper-
iments that were not performed due to time constraints:

Noisy event logs: In none of our experiments on artificial or simulated data we added noise to the
event logs. We did some preliminary tests in the comparison of dissimilarity measures with 10%
noise and the initial results were very promising, i.e., our Syntactic reasoning approach seemed to
outperform all other approaches. Due to time constraints we were however unable to include the
findings in this thesis.

The thresholds of our configuration discovery approach provide a means to deal with noise. In the
experiments of part two of Section 7.3, we set all thresholds to 0.95 but we might as well have
used 1.0 since no noise was present in the simulated event logs (not taking into account the issue
with nested choices). Further experiments are required to validate whether the thresholds work as
expected.

Imperfect process trees: The input process trees of the configuration discovery approaches in the
experiments of Section 7.3 always had perfect replay fitness. Results might be different when noise
is present in the process trees. Therefore further experiments are required that introduce random
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flaws in the process trees and then try to discover the configurations for the process tree and the
simulated event log.

Duplicate activities: In Section 7.2 we compared multiple dissimilarity measures. In none of the
investigated cases we allowed for duplicate activities in the process trees. One of the best scoring
approaches is the Set-Of-Activities approach. This approach is however unable to deal with clusters
that are identified by the same type of activity. Our Syntactic reasoning approach does not suffer
from this issue since it uses process trees. Therefore we expect that our approach outperforms the
Set-Of-Activities approach in such situations.

Comparison of one vs. multiple process trees: Section 3.3.5 provides equations to aggregate the
calculated distances of the Syntactic reasoning approach for multiple models. It seems like a
reasonable assumption that many process models which each specialize in different aspects approach
an ideal process model for the Syntactic reasoning approach. However experiments are required to
verify this assumption.
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Appendix A

Partially ordered alignment
construction algorithm

Algorithm 1 shows the construction algorithm for partially ordered alignments. The algorithm requires
as input a sequential alignment and a process tree.
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APPENDIX A. PARTIALLY ORDERED ALIGNMENT CONSTRUCTION ALGORITHM

Data: Sequential Alignment a, Process Tree ¢
Result: Partially ordered alignment

Store parent nodes in the tree for every non-log move
for move «— non-mowve on log only € a do

‘ parentNodes[move] « t.parents(move.treeNode);
end

Estimate an insertion point for the log-moves. Always prefer insertion under a A-operator or
v -operator. This makes sure that our assumption on the insertion point is the weakest possible
(when only considering the parents of the first non-log left and right move).

for move «— move on log only € a do

nextMove « a.nextNonLog(move);

previousMove « a.prevNonLog(move);

if nextMove exists then
Retrieve the first parent in which we can insert the move

commonParent « t.firstInsertableParent(nextMove.treeNode);

if t.nodeType(commonParent) is A or v then
Store commonParent as a parent and all parents of commonParent

parentNodes[move] t.parentTilllncluding(commonParent);
continue;
end

end

if previousMove exists then
commonParent « t.firstInsertableParent(previousMove.treeNode);
parentNodes[move] « t.parentTilllncluding(commonParent);
continue;

end

if t.numChildren(t.root) == 0 then

| parentNodes[move] « [J;

else

| parentNodes[move] « [t.root];

end

end

Now create a successor relation that represents the POA.
for i — a.length; i >= 0; i «— i - 1 do
successorsli] < [|;
for succ < a.length; succ > i; succ « succ - 1 do
commonParent « seekFirstCommonParent(i, succ, parentNodes);
if commonParent exists then
if t.nodeType(commonParent) is A or v then
‘ break;
end
successors|i].push(succ);
successors|i].removeAll(impliedSuccessors(succ, successors));
end

end
end
Result « POA (successors);

Algorithm 1: Algorithm to construct a partially ordered alignment
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Appendix B

Additional experimental evaluation
results

In this appendix we present additional experimental evaluation results. In Section B.1 we show the recall
and precision results for the F; scores as discussed in Section 7.2. In Section B.2 we present additional
results for the full approach experiments as discussed in Section 7.4.

B.1 Comparison of dissimilarity measures

In this section we present the recall and precision results for the dissimilarity measure experiments as
discussed in Section 7.2. Figures B.1, B.2, B.3 and B.4 respectively show the recall and precision scores,
for the worst and best cut, of the cases: normal, loop iterations, order of execution and parallelism
punishment.
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Figure B.1: The recall and precision scores with 95% confidence intervals of the best and worst cut in

the normal case.
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Figure B.2: The recall and precision scores with 95% confidence intervals of the best and worst cut in

the loop iterations case.

80 Using Trace Clustering for Configurable Process Discovery Explained by Event Log Data



APPENDIX B. ADDITIONAL EXPERIMENTAL EVALUATION RESULTS

e e o o
o ~ ) ©

RECALL (0..1)
o
w

0,4
0,3
0,2
0,1
0
2 -5 5-10 10-20 20-40 40-80 80 - 160
TREE SIZE (# NODES)
—4&— Syntactic Reasoning Approach
=@ Syntactic Reasoning Approach (Context)
—#— Levenshtein distance
—#— Set-Of-Activities
—>—Bag-Of-Activities
—¥—3-Grams
(a) Worst cut - Recall.
1
0,9
0,8
0,7

o
=)

PRECISION (0..1)
o © o o o
- N w B wv

o

2 -5 5-10 10 -20 20-40 40-80 80 -160

TREE SIZE (# NODES)

—&— Syntactic Reasoning Approach

—@— Syntactic Reasoning Approach (Context)
—— Levenshtein distance

—— Set-Of-Activities

=>4 Bag-Of-Activities

=¥—3-Grams

(c) Worst cut - Precision.

RECALL (0..1)
o o o o o o o o o
T % w ® »n oaw U »

o

PRECISION (0..1)
o © © © © o © o o
- N w B wv ()} ~N [e:] [C=]

o

-5 5-10 10-20 20-40 40-80 80 - 160
TREE SIZE (# NODES)

—4&— Syntactic Reasoning Approach

=@ Syntactic Reasoning Approach (Context)
—— Levenshtein distance

—#— Set-Of-Activities

== Bag-Of-Activities

—¥—3-Grams

(b) Best cut - Recall.

-5 5-10 10 -20 20-40 40-80 80 -160

TREE SIZE (# NODES)

—&— Syntactic Reasoning Approach

—@— Syntactic Reasoning Approach (Context)
—— Levenshtein distance

—— Set-Of-Activities

=>4 Bag-Of-Activities

=¥—3-Grams

(d) Best cut - Precision.

Figure B.3: The recall and precision scores with 95% confidence intervals of the best and worst cut in

the order of execution case.
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Figure B.4: The recall and precision scores with 95% confidence intervals of the best and worst cut in

the parallelism punishment case.
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B.2 Evaluation of the full approach

In this section we present additional results for the experiments discussed in Section 7.4. Section B.2.1
shows additional results for the full approach experiment of the running example (Section 7.4.1) and
Section B.2.2 shows additional results for the full setup experiment of the BPI challenge logs 2012
(Section 7.4.2).

B.2.1 Running example

Figures B.5, B.6, B.7, B.8 and B.9 respectively show the hierarchical clusterings of the Syntactic reas-
oning, Levenshtein distance, Set-Of-Activities, Bag-Of-Activities and 3-Grams approaches.

Payment = PACKAGE

{Payment = AFTER) OR (Payment = BEFORE)

Result = FAILED Payment = AFTER

Result = SUCCESS

Result = FAILED
Result = SUCCESS

Result = FAILED Result = SUCCESS

) 4 B 73 @

Figure B.6: Hierarchical clustering of the running example using the Levenshtein distance.

B.2.2 BPI challenge logs 2012

Figure B.10 shows the full hierarchical clustering of the filtered BPI challenge log of 2012 which includes
sending of offers and checks for fraud.
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Figure B.8: Hierarchical clustering of the running example using Bag-Of-Activities.
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Figure B.10: The full hierarchical clustering of the filtered BPI challenge log of 2012 which includes
sending of offers and checks for fraud.
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