
 Eindhoven University of Technology

MASTER

Definition and high level description of the C-processor

Withagen, W.J.

Award date:
1988

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a5e38b3f-8606-4b94-80f8-784869523fd7


Definition and 
High Level description of the 

C-processor 

Master Thesis of: 
Willem Jan Withagen 

E&16a 

Departement of Electrical Engineering, 
Digital Systems groep. 

Eindhoven University of Technology. 
November 1987- December 1988. 

The department of Electrical Engineering of the Eindhoven University of Technology 
does notaccept any responsability what so ever for the contentsof this thesis. 



Abstract 

In this master thesis is reported on the structured design of a processor which is targetted 
to execute high level programming languages with more efficiency. The thesis encompasses: 

• The definition of an instruction set. 

• The developement of a software model that will executed the defined instruction set. 

• The developement of a high level decomposition for a choosen architecture. The 
modules in this high level description are programmed with HHDL. ( Silvar-Lisco) 

The results of this project give an indication of the prohlems to he solved in near future 
hefore a working system can he created. 
It contains two high level models which will execute the defined instruction set. Each of the 
models is written for a specific task. The software model will execute complete programs to 
test the performance of the system and its instruction set. The decomposition model will 
he used as a testing vehicle for future decompositions and possihly gate implementations. 



Acknow ledgements. 

A place like a masters thesis report is a too a small place to thank the friends who have 
helped me during my ( long ) time at the university. 

None the less would I like to say to every one: 

Thank, Thank, Thank for having patience with me! 
or Dank, Dank, Dank voor al het geduld! 

The following is in dutch, sirree the quotations are typically dutch. 
Natuurlijk heeft mijn favoriete schrijver Martin Toonder zijn stripfiguren voor deze gele­
genheden wel wat passelijks laten zeggen. 
Spreuken die we in het dagelijkse leven ook gebruiken: 

• Als je begrijpt wat ik bedoel.. ... 

• Ik wist niet dat ik het in mij had. 

• Had ik maar beter geluisterd. 

Maar ook wat diepzinniger: 

• Bedrijfsleven. 
'Recht is is kroms dat verbogen is,' hernam Super na een korte pauze. 'En daar heb 
ik verstand van, als zakenman zijnde.' 

• Communicatie. 
'Uw antwoord klinkt als een klepel in een gebarsten klok van grote schoonheid,' sprak 
Ping Po. 

• Voor Frank. 
Wanneer men zich in een voertuig zonder bodem bevindt moet men zeer hard lopen 
wanneer het rijden gaat, en dat deed heer Bommel dan ook. 

• Voor de Prof. ( onderwijs ) 
'Als het anders niet is,' sprak heer Bommel. 'Mijn goede vader heeft mij tweeën­
zeventig meter boeken nagelaten. Volg me maar naar de bibliotheek, heer Trot. Er 
bestaan maar weining dingen waar iemand van mijn stand geen weet van heeft.' 



Contents 

1 Introduetion 1 
1.1 The history of the project. 1 
1.2 The aspects added in this thesis 2 

2 Minor changes to the registerset and the first level decomposition 3 
2.1 "C "-processor language background . . . . . . . 3 

2.1.1 A possible memory layout. . . . . . . . 3 
2.1.2 A possible speedup of the architecture. . 5 

2.2 Changes in the registerset. . . . . . . . . . . . . 5 
2.3 A new level1 decomposition . . . . . . . . . . 7 

2.3.1 A means of synchronizing controller(s) and/or slaves. 8 
2.4 What makes the design testable? 10 
2.5 What will the next step(s) be? . . . 11 

3 The definition of an lnstructionset 13 
3.1 The methad of constructing the instructionset. 13 

3.1.1 First term objectives. . . . . . 13 
3.1.2 First term problems. . . . . . . . . 15 

3.2 Inventory of operations and functions. 16 
3.2.1 Listing of all possible instructions. . 16 
3.2.2 P-type instructions. . 19 
3.2.3 F-instructions. . . . . 25 
3.2.4 M(ixed)-instructions. 31 

3.3 Remarks. . . . . . . . . . . 35 

4 A first model description of the "C "-processor. 
4.1 What will the software model not do? 
4.2 The modules in the "C "-processor. ..... 
4.3 Abstractions from the software model. 

4.3.1 Global variables in the C-processor. 
4.3.2 Local operations in modules on variables .. 

4.4 Remarks ..................... . 

11 

38 
39 
39 
41 
42 
43 
43 



5 A high level implementation in HHDL 46 
5.1 The parts to implement on level I. . . 4 7 
5.2 A next decomposition for the Registermodule. 54 

5.2.1 The stackpointer. . . . . . . . . . . . . 54 
5.2.2 The framepointer, external framepointer andtemporary save location. 57 
5.2.3 The program counter. . . . . . . 58 
5.2.4 The Flagsregisters. . . . . . . . . 58 
5.2.5 Cammand and status translators. 60 

5.3 Decomposition of the operand unit. 
5.3.1 The cache window ..... . 
5.3.2 The operand fetchers .... . 
5.3.3 The offset calculation units. 
5.3.4 The store result module ... 
5.3.5 The Operand unit controller. 
5.3.6 The interface to the registers module. 

5.4 The execution unit ... 
5.5 The instruction cache. 
5.6 The bus unit. . . . . . 
5. 7 The instruction unit. 

5. 7.1 The instruction fetcher. . 
5.7.2 
5.7.3 

The instruction decoder. 
Conclusions and/ or remarks. 

6 Simulation and testing of the HHDL models 
6.1 Testing of the registers and the Register Unit. 
6.2 Models tested with a driver modeL 
6.3 The results of the simulations. 

7 Conclusions 
7.1 What has been clone? ........... . 
7.2 What is the current status of the project? 
7.3 Future steps to take. . 
7.4 The ultimate question. 

A Bibliography 

B Enumeration of the "C "-processor instructions. 
B.1 Operand formats and their values ......... . 

C A PL/0 compiler for the C-processor 
C.1 The lexical scanner .. 
C.2 The PL/0 parser ... 
C.3 The code generation. 

111 

60 
62 
64 
67 
68 
69 
70 
71 
72 
73 
76 
78 
80 
82 

84 
86 
86 
87 

89 
89 
91 
92 
94 

95 

96 
110 

118 
118 
119 
120 



C.3.1 The instructions generated. . . . . . . . . . . . . . . . . . . . 121 
C.3.2 CAUTION withaddressing of items. . . . . . . . . . . . . . . 124 

C.4 Remarks about extensions and improvements to the PL/0-compiler. 124 
C.4.1 Peephole code optimisation. 124 
C.4.2 Extending the language. 125 
C.4.3 Other changes. . . . . . . . 125 

D The UNIX features used during the development of the system 126 
D.1 Using the m4 package. . . . . 126 
D.2 Using the SCCS system. . . . 127 
D.3 The used files and directories. 128 

IV 



List of Figures 

2.1 A possible memory layout used for reference .. 4 

2.2 A frame on stack. . . . . . . . . . . . . 5 
2.3 The processor for programmers. .... 6 
2.4 A first decomposition in global blocks. 7 
2.5 The basic handshake cycle. . . 9 

2.6 An extende handshake cycle. . . . . . 10 

3.1 An example of a two operand P-code 21 
3.2 The bit assignment for P-opcodes 24 
3.3 The bit assignment for F-opcodes 26 
3.4 The bit assignment for F-operands 27 

5.1 Level1 decomposition in smaller blocks. 48 
5.2 The register module decomposition .... 55 
5.3 The decomposition of the operand unit .. 61 
5.4 The lnstruction decoder decomposition .. 77 

V 



List of Tables 

3.1 Suggestions for Arithmetic and Logic operations 
3.2 Flow control operations . . . . . . . . . . . 
3.3 Processor control operations . . . . . . . . . . . 
3.4 Several P-opcodes merged into one QUAD . ... 

3.5 Layout of 1-operand FM instruction in the code stream 
3.6 Layout of 2-operand FM instruction in the code stream 

Vl 

17 
18 
18 
25 
36 
37 



Chapter 1 

Introduetion 

1.1 The history of the project. 

As part of a project to get a better and more systematic grip on the design aspects of digital 
systems, a number of "test" design projects have been started at the Digital Systems group 
of the Department of Electrical Engineering of the Eindhoven University of Technology. 
The aim is to retrieve common design steps and methods in order to automate, or at least 
partly automate, these design steps. 
The studies are focused on the higher levels of the designs, and do not bother about the 
last steps of finishing the design, the production of layout and masks. There are two 
reasons for these limitations. The restrietion placed on the projects make them more or 
less technology independent. At a high level of the design, functional blocks are created 
which have very little relation yet with their physical implementation. 
Current state-of-the-art design systems have speeded up the design process enormously: 
Time consuming items as drawing, documenting, and testing are already, or will in the 
near future, be handled in large amount by software systems. What remains for the 
human designer are the more creative aspects of the design: Developing the specifications 
and architecture of the circuit. Once the circuit has been broken down into pieces small 
enough to be handled by software, most of the designers work is clone. The software 
programs can be items such as: State diagram translators, RAM/ROM generators, PLA 
generators, or even a "silicon compiler". 
The design project described in this report is a follow up on the graduation work of 
F. Budzelaar [Bud88], coached by Prof. M.P.J. Stevens. This thesis involves the design 
of a microprocessor targeted to execution of high level languages, and in more detail the 
language "C" [Ker88]. 
My "inheritance" consistedof a master's thesis which gave a clear analysis of the language 
items to be implemented in the C-processor, a proposal for the first level of design and 
the decomposition of the first level into subblocks. Next to this contained the thesis 
discussions on: Processor design in general, a first global definition of the instructionset, 
communication between the modules, and low level machine architecture. 



_______________________________________________________________ lntroduction. 

1.2 The aspects added in this thesis 

The assignment for this thesis was to take the work of [Bud88] and check his analysis of 
the design for flaws ( if there where any ). And from there on continue with the design 
process starting at the highest level possihle. In this thesis are descrihed: 

• A minor change in the functionality of the onhoard register set. This results in a 
redraw the highest level of design. 

• The hitwise description of the instructionset. The instructionset had to he fully 
defined hefore any work of greater detail could he clone. 

• A software model of the "C"-processor. Due to the complexity of designing the 
processor a distinction was made in executing mere code, and the functioning of the 
designed hardware. As a consequence of this divide and conquer methode, the soft­
ware model would give information ahout functionality of the given instructionset, 
usefulness of the first step of decomposition, possihle guidelines for future decompo­
sitions. 

• Another advantage to consider was the possihility to forgo the timing relations and 
concentrate on the data path and data manipulation. A final profit was constituted 
hy the test files. To test the software model, small code files had to he made, and these 
code files can also he used during designing and testing of the hardware realization. 

• A high level description in HHDL ( Silvar Lisco ) of the decomposition was an ohvious 
next step following the software model. On this level the software functions and 
procedures are translated into separate hardware modules. Each of these modules 
has its interfaces with the "calling" modules and/or a controller. The ohjective at 
this stage of implementation is to acquire a HHDL model that will execute the same 
"C-code" as was executed hy the software model. No efforts are made to convert the 
serial program flow of the software model into parallel execution in hardware. Note 
that this does not imply that parallelism will not he possihle or wanted. But at the 
current level this is not really considered a valid item. 

2 



Chapter 2 

Minor changes to the registerset and 
the first level decomposition 

2.1 "C "-processor language background 

The "C "-processor is designed to execute the language "C" more efficiently. To show some 
of the properties of this concept a short introduetion of the backgroundprinciplesis made 
before the "real" workis started. 

2.1.1 A possible memory layout. 

In fig 2.1 a possible subdivision is given. In this are clearly distinguishable: 

• The Code space. 

• The Stack space 

• The Heap 

• Unallocated memory. 

It is obvious that this subdivision is not the only one possible. But it will serve the purpose 
of explaining some of the used principles and ideas. 
The Code space can be enlarged, in which case the routines comprising the program can 
be seen. It is possible to look upon the main global body of a program as the first and 
entrance routine. It is possible for routines to contain a section with constants. These can 
be either user defined constants, or possibly construct a jump table. It has however to be 
fixed data. 
When the execution of a routine is started, the routine will create a stackframe. In this 
frame ( fig. 2.2 ) are located: 

• Parameters 



_________ Minor changes to the registerset and the first level decomposition. 

unallocated 

TA_CK 

ODE 

<high> I 
I 

I 

I 
I 

I 
I 

I 

I 
I 
I 

I 
I 

s 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

IProc 3 Frame 

!Proc 2 Frame 
I 

i 
Proc 2 Frame 

Proc 2 Frame 

Proc 1 Frame 

Procedure 3 

Procedure 2 

~··· ""·-

Procedure 1 

I 
I 
I 

' 

I 
I 
I 
I 

'\ 

I 
I 
I 
I 

I 

I 
I 
I 
i 
I 

Proce ure 
code 

Possibly 
re urs1ve 

try 

\ Constants 
\ 

\ 

Figure 2.1: A possible memory layout used for reference. 

• The status of the previous routine to be saved. ( Here: The return address, and the 
old frame pointer. ) 

• Local variables. 

• The dynamically used part of the stack, containing <TOS>. 

The main routine of the program can be considered as a special type of routine. In the 
frame of this routine could also the global variables be declared. If a routine calls itself 
recursively, it will create a new frame for every new entrance of the routine. 
Once a routine terminates it returns the Stack space occupied to the unallocated space. 
( Or the calling routine will do so. ) 
If we were to consider frames created by the programming language PAS CAL, the above 
would hold. And the allocation of the parameter and local variabiespace would be simpler, 
since this could always be done in the function caB of the routine to execute. It is however 
beyond the scope of this thesis to go too much into detail. For more details of PAS CAL 
program construction we refer to [Pem82]. 
Although these considerations would give enough reasou to call the design a stack-processor 
design, the name "C "-processor will be kept for historica} reason. 

4 



__________ Minor changes to the registerset and the first level decomposition. 

Frame 1 

Figure 2.2: A frame on stack. 

2.1.2 A possible speed up of the architecture. 

In our design of the "C "-processor shall the concept of the stack frames ( As shown in the 
above paragraph ) be used as the key item of the design philosophy. The instructionset 
will contain operations which will handle data in the stackframe with optimal speed and 
with flexibility. The hardware design will facilitate these operations and will make the 
stack frame fast accessible. 
To fulfil the first requirement the instructionset contains a set of P-instructions. ( derived 
from the P(ascal)4 instructions), which are in all kinds of types and machines available) 
To fulfil the second requirement the hardware will be equipped with a dedicated stack 
system. This system will manipulate a high speed on board stack window. This window 
will always contain the last activated stackframe. As a consequence of the above assumption 
all operands to the P-instructions are within the system. And thus low access times can 
be guaranteed. The programmer could view the system as drawn in figure 2.3. 

2.2 Changes in the registerset. 

Although the design in [Bud88] complies with the above assumptions a few changes will 
be made. Most of these changes are not in the system, but in the functionallity of the 
designed parts. 
The initial design has a TOS ( Top of Stack ) and a TOPS ( Top of Parameter Stack ). 
Both point to the same location, with one exception: When the parameters are loaded 
on the stack, the stackpointer points in the old frame, while the parameter stackpointer 
increments with every parameter loaded. 
Sirree it is considered useful to be able to use the stack as a save location for temporary 

5 



_________ Minor changes to the registerset and the fi.rst level decomposition. 

X= / / /I /L / Data 

{v ~ ~ ' 

\ L Bus 14 Flags Operand 1 
..... 

ALU FP Fctcy Inter 
~,... ' 
~ EFP Unit face 

~ 

SP / Address 
V 

PC /,... 
~,. i ' 7 i 

Controller I IR I 

Figure 2.3: The processor for programmers. 

results, and as a consequence of this a chance is made to the functionality of TOS and 
TOPS. 
<TOS >will be a pointer that will always point to the Top of Stack ( in future it will be 
called "SP" ), TOPS will point in the current frame to the return address. A negative 
offset will give access to the parameters, a positive offset will return a value from the local 
variabie space. When examining compiled PASCAL programs it is very often found that 
one of the general registers serves as a frame pointer. This is also due to the nature of 
the language PAS CAL. The language "C" has the same implications and concerns at this 
point. 
From the same analysis one can deduct that storing large quantities of data on the stack, 
will defeat the purpose of a cache for the stack. Due to these large quantities, too many 
reads and writes to main memory will occur and to processor will be slowed down. For 
these large quantities of data a special frame pointer is added ( EFP = External Frame 
Pointer ). This register can be used as an offset register in all addressing modes. But it is 
the programroers responsibility to maintain a correct value in this pointer. The pointer is 
not modified by calls or returns. It only changes on a process swap or if the programroer 
writes into the register. 

6 



_________ Minor changes to the registerset and the first level decomposition. 

The consequences of this change are major with respect to the instructionset, but smce 
this was not yet rigidly defined no workis lost. 

2.3 A new level 1 decomposition 

IU 
j8U8.CIID 

IIUS.STAT 

IC cu:: CLK 

LCA<H: CliO CODE.C"D 
STAT CODE.8TIIT 

IN8TRUCnOH.UN%T 
INSTRUCnON INSTRUCnOH 

....,.. IIUS.~ 
PC -

r- IIUS.STAT - CUMENT ..INSTitUCTION 

AIIDRESSDAT 11 r- DDIECT 

OP.~ OP.STIIT EXEC.8TAT EXEC.CIUI EXEC.ItQOE RE0.8TAT REO.CI1D PC.VALUE 

I 1 au tu I I l.l.ll.IWIIfc~ ATA ~ RU 

EXEC.UNIT ~ 1- INSTR.CIII IN8TR.PC 
'- IC.8TAT f"LA08.IN AL U ..IN 

'--- IC.CI1D 
..___ IN8TR.8TAT r- - CLK f"L.A08.0u. ALU.OUT 

IN8TR..CIUI ~ STAT REO.UNlT '---- STATUS A 11 c 

~ I 
1 

OP-C11D 
IIUS-UNIT lll:û: f OUT .A OUT -11 

~ I 1EXE.C.8TIIJ.im>FC..IILS 

STAT 
CI1D CLJ( 1- omc:fWND-UNn 
rDRIIAT 

EXEC-8TA BUS-STAT 
EXEC.CIID BUS.CI1D 

EXEC-DAT BUS-DATA 
EXEC..ADDIIEllf IIU8..ADOIE88 

111!:0..1!0 1-
CLI:: IIlEO-ST 

IN-A IN-11 Vall• .Jen Va..._en. C'·Prooe•-

~ I I jnTI.Ea 
'-wel i MDOI!Ipan&an 
'" r ... blóolua • . "., 

··-~~ ......... I~ L-=:1 M C·PIIOC-1115 

o ••• .., 1!1. l888 _l8hee111l ot. 

Figure 2.4: A first decomposition in global blocks. 

The impacts on the design however are very modest. None the less is a slightly new 
architecture created. This architecture will make better use of the FP and EFP, see fig. 2.4 
If one compares this architecture with the design from [Bud88] on page 41, it is clear that 
almost all submodules are still there, the narnes have changed a little. By the new design 
the data paths and command paths are given in greater detail and have a completely 
different structure, as are the connections. 
For instance: 

• Since instructions with two operands will be created, a double data path is used to 
conneet all registers and the operand unit. This gives a possibility to calculate the 
addresses of both operands at the same time, given that other criteria allow for this 
parallelism. 

7 



__________ Minor changes to the registerset and the first level decomposition. 

• The program counter can he used for references during offset calculations, hence the 
path to the operand_unit. 

• But as one can deduct from the design, the paths to and from the execution unit 
are all uni-directional. The A- and B-bus have six sources, the C-bus or the "result 
bus" has one master and six slaves. The fiags register has two connections to the 
execution unit, one for either direction. Through these connections the values of the 
fiags will he transported. ( to and from the AL U ) 

• All modules ( on this level ) are centrally controlled by the instruction-unit. Every 
module interfaces with the instruction-unit through a set of handshake signals. These 
signals contain at least on of the following signals or busses: 

2.3.1 

A command bus, with a NOP command as one of the commands. Other com­
mands can he either a plain start command or more complex commands which 
specify the action to perform. 

A result or status bus. This bus has at least the following values: READY, 
BUSY. They indicate whether the unit is currently active. Other included com­
mands can he request for the controller. If for instanee extra data is required, 
this can he asked with a status like MORE or NEW _DATA. 

- An exception to the above scheme is the regsiter_unit This unit can also he 
controlled directly from the operand_uni t. Although this is clearly an evasion 
from the "central controller" idea, it prevents extensive amounts of communi­
cation between the instruction_uni t and the regsi ter_uni t. 

A means of synchronizing controller(s) andfor slaves. 

Since on forehand very little is know about timing and sequence relations, a tight ( but 
fiexible) mechanism is needed to keep all modules in synchronization. It would he possible 
to solve some of these problems, using a central doek, but this would force us to give 
timing estimates for the modules. In stead of the clocked solution, a choice is made for 
a completely asynchonous communication. In this way no information concerning timing 
relations will he left out. In future steps, however, it can prove possible to remove certain 
constrains in the operations. These decisions should then he made at the appropriate level 
and not on the current level, in which case they could stress the design to comply with 
some ad hoc rules. 
The principal way of handshaking will he: 

1) The slave unit is READY, and the command is NOP. 

2) The controller issues a command (COMMAND), and the slave responds with 
setting it's status to BUSY. 

8 



__________ Minor changes to the registerset and the first level decomposition. 

IDLE )f; COMMAND X IDLE 

ê_ 
READY XBUSY x READY 

I 

lil c 
CMD STAT 

REG FP 

out A out B 

I I 

Figure 2.5: The basic handshake cycle. 

3) The slave carries out the requested task. While in the meantime other modules 
could be scheduled, either in parallelor upon request of the slave unit currently 
observed. 

4) Once the slave is clonewithits assignment, it clears the status to READY. 

5) The controller acknowledges the READY by resetting the command to NOP. 

Compare with figure 2.5. 
1f the slave module has a "request" for the controller, then the communication could be 
extended as in figure 2.6: 

3a) The status changes to REQUEST. The slave could continue its operations, but 
it is not yet allowed to use the requested item. 

3b) The controller responds with a NOP on the control bus. This should be inter­
preted by the slave as: "The controller is currently not observing the statusbus 
of this unit". 

9 



_________ Minor changes to the registerset and the first level decomposition. 

_,-,----

IDLE COMMAND SERVICE ( COMMAND IDLE 
---1 7 ... 
_~). ' ~ k--
_READY XBUSY >C REQUEST x BUSY /'0EADY 

Opcod 

ne t cmd 

'nstr fetch instr decode 

Figure 2.6: An extende handshake cycle. 

3c) Once the controller is able to fulfil the request issued by the slave, the controller 
will change the controlbus to COMMAND to alert the slave that the operation 
asked for has been completed. 

3d) The slave unit will acknowledge the completion of the request by setting its 
status baok to BUSY. 

Naturally there are many possible variations on this theme. The two examples above are 
considered the most elementary ones used in this design. They are, if so needed, adapted 
for each situation. But on the high level description a strong attempt is made to exercise 
a complete handshake mechanism on all interfaces. 

2.4 What makes the design testable? 

If testability needs to he considered on this level of the design it would he possible to 
state:" I'm using a scan-design, so the design will he testable by definition." Ho wever, 
simple observations show that on this level every module can he connected directly to 
1/0-pins of the chip by switching other modulesintoa transparent state. In this test state 

10 



_________ Minor changes to the registerset and the first level decomposition. 

there will be no changes in the flow of data. Or in other words: no datapath will have to 
change its direction of flow for the testing. 
Switching a module into a transparent state will require a multiplexer and a demultiplexer 
per datapath, and in the overall design a small controller to perform the testing. 
The problem with this approach is that there is no guarantee that the chip will be fully 
testable. Scan-design however will in its crude form guarantee that all modules are testable. 
The systems buses are the one exemption from this. Even in the current scan-designs one 
has to test busses with a different strategy. 
The valid question to ask now is: "Which ofthe two options will be the cheaper one." The 
answer to this question at the moment is of very little concern, since it was already stated 
that scan-design is a possibility that is almost always possible, and for the other option 
the circuit needs no changes at this level of implementation. 

2.5 What will the next step(s) he? 

The decomposition has stillleft us five large items: 

• The bus controller, a circuit which has to arbitrate memory requests from the operand 
unit, and the instruction cache unit. It also has to manipulate the data to be able 
to write BYTEs, WORDs and QUADs. The complexity of this will be fairly low, the 
next step will result in a definition of the datapath, registers and controller within 
the module. 

• The instruction cache unit, the unit can have several types of implementation. How­
ever, all of these are on a rather primitive leveL Hence the next decomposition step 
for this block will probably be port level. 

• The instruction unit, this blockis the major controller of the processor. It will consist 
of a micro programmed controller, or a state machine, or any combination of the two. 
The design can be straight forward. 

• The execution unit, in this unit the actual data manipulation will take place. It will 
contain alllogic to do the needed arithmetic and logic opera ti ons, most of these can be 
done by a "simple" combinatorial network. Multiply, divide, modulo are candidates 
for serialisation, since a 32/32 di vide ain't nothir'tg toprogram just straight into logic. 

• As a consequence of this the execution block will contain a large and complex logic 
part, next to a simple controller with again a large logic network. 

• The operand unit, this unit has to prepare the operands to go along with an in­
struction. The operands will be used by the execution unit. All different types of 
addressing modes are implemented in this module. The stack cache could also be 
fitted into this module. This module has to implement several subprocesses and 
will be fairly complex. This module will have to perform the actual fetching of the 

11 



__________ Minor changes to the registerset and the first level decomposition. 

operands, whether they are in main core or in the stack cache. It has to translate 
operand sizes to their appropriate formats. It has to convert from signed to unsigned 
and vice versa. 

Before a next decomposition step is taken, it is very desirabie to have the instructionset of 
the "C "-processor available in full detail. It is obvious that the instructions used, and the 
operand formats possible will have a great impact on the future decompositions. The next 
chapter will contain a short recapture of the analysis from [Bud88] and then an enumeration 
of the used instructions and operands will be given. 
After this it will be possible to make a new decomposition for the major blocks in the 
current decomposition, and for this is it advisable to make a complete analyses of the 
structure and the requirements of the modules that will be sliced up. For this purpose a 
software model will be created. This model should supply detailed information on the data 
paths used and manipulations dorre with this data. 

12 



Chapter 3 

The definition of an Instructionset 

For the "C "-processor to function, it is necessary to have an set of instructions which can 
be executed. ( How very trivial! ) The definition of this instructionset is however not a 
trivial matter. 

3.1 The metbod of constructing the instructionset. 

As a guideline for the decisions to be made during the selection of instructions and the 
subsequent assignment of codes to the instructions, a colledion of objectives is generated. 
The souree of these objectives is in the first place the famous big thumb, and secondly 
there are some indications for selection in the literature. [Das84] 

3.1.1 First term objectives. 

As guideline for the design of the instructionset, the following criteria were taken into 
account: 

• lnstructions are aligned at either BYTEs (8 bits), WORDs (16 bits) or QUADs. ( The 
term QUAD stands for 32 bits. ) A good choice seems to be alignment on WORD 
basis. Which gives the basic opcode a size of 16 bits. 

• The possible operand sizes included in the instruction are BYTE, WORD and QUAD. 
lf an operand is of BYTE size then it might be desirabie not to waste any space due 
to alignments. Not from a next operand, not from a next instruction. 

This would mean that for instructions with BYTE operands the opcodefield is limited 
to 8 bits. 

• Two operand instructions. Most of the arithmetic and some other instructions have 
two operands, which are both to he included in the instruction. 

• If an instruction contains a Qu AD immedia te operand, then this operand will be 
aligned on a QUAD boundary. The two lowest address bits are zero. If the alignment 



_______________________ The definition of an lnstructionset. 

leaves holes in the code space, they will he treated as NOPs, it is up to the execution­
unit to detect these items in time to ignore them completely. 

The coding of the instructions is chosen in such a way that the decoding and/ or the 
interpretation can be clone in a straightforward way. Straightforward here means in 
as little time as possible. 

The following addressing modes are candidates for implementation. With these items 
one has to keep in mind that the processor under design has to he of semi-RISC 
architecture, and this prohibits the use of complex addressing modes such as base­
indexed, indirect-indexed, etc. The reason for this is that in most processors a lot 
of registers are used in these modes to get a high performance. Since our processor 
does not stand out in the number of onboard registers these modes are taboo. The 
emphasis should he on the dedicated stack in the system 

The only exemptions from this are the indirect modes, which need one extra cycle 
to obtain the final result. And the linkecl-list mode which will access to get next 
operands, and these might cause extra accesses given their format. 

• Register. 

SP, <TOS>, FP, EFP, Flags, PC. 
Although the previous arguments favor a rigid and orthogonal instructionset, 
not all registers need to he possible in all instructions. ( i.e. Flags and PC) 
For the <TOS> register could using the register mode mean: implementation 
of autoincrement and autodecrement: POP and PUSH. 

• lmmediate. 

Data size: BYTE, WORD, QUAD. 

The operand is contained in the instruction. 

• Direct. 

Address size: WORD, QUAD. 

( BYTE is possible but gives page ZERO addressing. Which doesnotseem very 
important in this design. ) 
The address of the operand is included in the instruction. 

• Relative. 

Offset size: BYTE, WORD, QUAD. 

The address of the operand is found through the addition of the contents of a 
register and an offset contained in the instruction. The registers used with this 
mode are mostly SP, FP, EFP, <TOS>. The PC could be used fora, in code 
included, table of constants. 

• Indirect. 

14 



_______________________ The definition of an Instructionset. 

Address sizes: WORD, QUAD. 

( For BYTE indirect addressing can be said exactly the same as with direct 
addressing. ) 
The field in the instruction gives the address where the operands address can 
be found. 

• Relative Indirect. 

Offset: BYTE, WORD, QUAD. 

The offset in the instruction and the indicated register create the address where 
the address of the operand can be found. 
The registers for this mode are again: SP, FP, EFP, <TOS>. 

• Next to the previous types of "normal" operands is the linkecl-list addressing. This 
kind of addressing is specifically targeted towards high level programming languages. 

• To get the value of a variabie which is defined on a higher lex-level in PASCAL, a 
series of static links has to be processed before the required value can be obtained. 

• In "C" often variables are referenced with more than one level of indirection. Since 
the types and repetitions of the indirections are known at compile-time is it possible 
to create a list of actions to be taken. 

• This method does not have a fixed format. It consistsof a repeated list of addressing 
operands with offsets. The offset of a item in the chain is calculated by part of the 
chain already processed. 

• Offsets specified in the instructions are ,where used, of several sizes. BYTE and 
WORD are valid candidates for this. QUAD would be comfortable if large structures 
are used on the External Frame. ( Large means bigger than 64K ) 

Literature indicates that a considerable amount of processing power is spent on the trans­
portation of data from one location to the next. ( approx. 50% ) 
Next to these instructions are the arithmetic-instructions ( approx. 35% ) of which the 
add instruction is by far out the most used instruction. 
Even more difficult is the fact that in most cases of immediate data the size of the data is 
very small. The instructions ADD 1, LOAD 0, TESTBIT 1 are very common examples of 
this type. 

3.1.2 First term problems. 

Given the above statements, some of the problems already shine on the horizon. 

• If all possibilities are simply cocled in the instruction, without regards to compacti­
fication, the size of an instruction might well be larger than 32-bits. 

15 



_______________________ The definition of an Instructionset. 

• When however all operand formats and opcodes are merged into one large bit field, 
then the decoding of a instruction will require a large block of logic to decode the 
exact meaning of the opcode and the operand formats. 

• When a two-operand instruction has operands of different sizes, the smaller operand 
has to be converted to the size of the larger one. This extension can be clone by 
either sign-extension or by logic- extension. Some information regarding the types 
has to be added in the instruction. 

3.2 lnventory of operations and functions. 

The previous section contains an enumeration of possible operands and their addressing 
methods. To be able to define an instructionset one needs a list of operations on these 
operands. Furthermore needed are other instructions. A list is given below which is 
extracted from: [Bud88], 68000 user manual, am29000 user manual and the P4-code in­
structions. Note that this list is not the full and complete union of the four mentioned 
instructionsets. The report [Bud88] and the P4-code were used as prime sources, the other 
two are "checked" to see if there where any omissions. 

3.2.1 Listing of all possible instructions. 

This is a list with: 

• A description of the instruction, 

• A mnemonic and 

• The number of possible operands. 

NOTE: 

This is not an listing of the instructions in assembler format. It is mere jested as a 
inventory list for the instructions possibly implemented. 
IJ and when the instruction are going to be used, then a definition of the assembler 
foramt would be apropriate. 

End NOTE 

The instructions are grouped in appropriate classes: 

• Arithmetic, boolean and logic operations. 
Table 3.1 

Boolean operations can have only two result values. The result is either 1 or 0, 
( true or false. ) A non boolean value is always considered true if it is not 0. 

16 



____________________ The definition of an Instructionset. 

Souree Description Mnem. #operands 

B Add. ADD 2 
B Add with Carry. ADDC 2 

B Boolean AND. BAND 2 
B Logical AND. LAND 2 

B Boolean OR. BOR 2 
B Logical OR. LOR 2 

B Logic XOR. XOR 2 

M Check bounds. CHK 3 
B Compare. CMP 2 

B Divide Unsigned. DIVU 2 

B Divide Signed. DIVS 2 

A Extract part of item. EXTR 2 

B Modulo U nsigned. MODU 2 

B Modulo Signed. MODS 2 

B Multiply Unsigned MULU 2 

B Multiply Signed MULS 2 
p Boolean Not. BNOT 1 
p Logic Not. LNOT 1 
B Negate NEG 1 

B Move MOVE 2 
B Shift left. SHL 2 
B Shift right, arithmetic Signed. SARS 2 

B Shift right, arithmetic Unsigned. SARU 2 

B Subtract. SUB 2 
B Subtract, with Borrow. SUBB 2 

B Select operand SEL 3 

Table 3.1: Suggestions for Arithmetic and Logic operations 

17 



_____________________ The definition of an Instructionset. 

Souree Description Mnem. #operands 

B Call "high level" Function. CALLF 2 

B Call Subroutine CALL 1 
B Conditional Jump. JMPC 2 

B Jump, Goto. JMP 1 

B Return from "high level" Function. RETF 1 

B Return from Interrupt. IRET 0 

B Return from Subroutine RET 0 
B Swap context. SWAP 2 

M Test, Decrement and Jump. TDJ 2 

M Trap. TRAP 1 

Table 3.2: Flow control operations 

Souree Description Mnem. #operands 

B Call "high level" Function. CALLF 2 

B Clear Instruction Cache CIC 0 
B Enable interrupt. ENAINT 1 

B Disable interrupt DISINT 1 

A Halt. HALT 0 
A Loek. LOCK 0 
M Reset external system. RESET 0 

B Update Main Memory with data cache UPDM 0 

Table 3.3: Processor control operations 

18 



_______________________ The definition of an Instructionset. 

Logic operations are operations which are performed bitwise on all bits of the 
operands. 

• Flow-control instructions. 
Table 3.2 

• Processor-control instructions. 
Table 3.3 

The indications with the instructions, A = am29000, B = [Bud88], M = Motorola 68000, 
P = P4-code, give an indication where the instruction is first found during the generation 
of this list. It does not suggest as to which processor knows which instructions. 
This gives 42 different types of opcodes to be implemented. 
It is also possible to classify the instructions by the way they handle their operands. In 
the following paragraphs different types of instructions will be introduced. 

3.2.2 P-type instructions. 

These instructions emphasize the stack oriented character of the processor. On a "regular" 
processor they are usually very slow and cumbersome. Here this is not the case due to the 
typical implementation of the stack-cache, or stack-window. 
The instructions are targeted at: 

• Data manipulation on the stack, in the stack-window. 

• Use autoincrement and autodecrement modes with the stackpointer, when used as 
<TOS> operand. 

• Are short and compact. ( 8 or 16 bits ) 

• Can contain short immediate data. 

• Some can take one operand from the local frame using the FP. 

In the following description the notation given below is used: 

• <TOS> the QUAD pointedat by the stackpointer SP. 

• <TOS- 1 > is the QUAD just below the stackpointer. 

• <TOS- 2 > is the QUAD just 2 below the stackpointer. 

Instructions with implied operands. 

These instructions have complete implicit addressing, no operands what so ever are present 
in the instruction. 

19 



_____________________ The definition of an Instructionset. 

1 Operand instructions. 

Plnot. 

Pbnot. 

Pneg. 

Pdup. 

<TOS>:= lnot <TOS> 

Logic bitwise complement the top of stack. 

<TOS>:= bnot <TOS> 

Boolean complement the top of stack. 

<TOS>:=- <TOS> 

2's-complement the top of stack. 

<T0S+1> <TOS> 

;SP:= SP+ 1 

Create a copy of< TOS >on the stack. 

2 operand instructions. 

All of the following instructions have the same description except for the AL U-action to 
he performed: 

'code'= Padd, Paddc, Pland, Pband, Plor, Pbor Pxor, Pdivu,Pdivs, Pmodu, Pmods, 
Pmultu, Pmults, Psub, Psubb, Pshl, Pshrs, Pshru. 

Where the sequence of action is given by: 

<TOS -1>:= <TOS -1> 'code' <TOS> 

;SP:= SP- 1 

In plain English: 
The two top elementsof the stack are added and deleted from the stack. The result will 
he placed back on the stack. This is shown in figure 3.1. 

20 



_____________________ The definition of an Instructionset. 

Padd 
<TOS> 

<TOS> 

<TOS-1> 

A 

B 

x 

<TOS-1> 
+ <TOS> 

A+E 

x 
y 

Eefore Af ter 

Figure 3.1: An example of a two operandP-code 

At first it may seem strange to use <TOS - 1 > as the first operand for the instruction, 
since <TOS > is ready available. But it is the design target to execute instructions like 
this in one cycle, and hence both have to be fetched in parallel. And if one considers 
that statements of the construction "A := A 'code' B " are very common, then the used 
sequence becomes even more obvious. 
In the remaining text of this thesis it will be assumed, unless stated otherwise, that in 
constructions like the on es discussed here A represents operand 1, and B represents operand 
2. 
Pcomp. 

Flags:= <TOS -1>- <TOS> 

;SP:= SP- 2 

Set the flags according the result of a subtradion of the top 2 elements. The elements are 
removed from the stack. 
Pswap. 

<TOS>:= <TOS -1 > 

'parallel' 

<TOS -1>:= <TOS> 
Swap the top two elements in the stack. 

21 



definition of an Instructionset. 

3 Operand instructions. 

Pcheck. 

Psel. 

Flags or <TRAP>:= <TOS- 2><= <TOS><= <TOS -1 > 

( possibly <TOS 2 >:= <TOS>) 

;SP:= SP- 3 ( -2??? ) 

Check the bounds of the top against the two given bounds on the stack. It is 
either possible to generate a TRAP if the check fails. It is also possible to set 
flag to indicate a failure. 

<TOS- 2>:= (<TOS- 2>? <TOS 1 >: <TOS>) 

;SP:= SP- 2 

Replace the top of stack witheither <TOS 1 > or <TOS> dependant on 
the value of theselector in <TOS- 2 >. 

Remarks on P-instructions with implicit operands 

All instructions described above have no specified operands, and their mnemonics can he 
used as is. It is also clear that the majority of the instructions will have two operands, 
only a few will have 1 operand. Only 2 instructions require three operands, of which the 
Check instruction also requires two aritmetic actions. 

Instructions with explicit operands. 

In most cases where immediate data is used, the size of the data is small. One of the most 
common actions is the addition of one, increment, or a subtradion of one, decrement. 
Another class of instructions with parameters is shifts and rotates. The explicit operands 
indicate the number of places to he shifted. Also possible is an extract with two operands: 
They indicate the place of the first bit to he extracted and the length of the string to he 
extracted. 
The size of the operand is made 8 bits in arithmetic and logic operations. This gives a 
possibility to act on values which are actually 8 bits, characters for instance. For the shifts 
and the extract an operand size of 5 bits will generate all possible index addresses. 

22 



______________________ The definition of an Instructionset. 

Arithmetic and logic instructions 

'code' = Paddi, Paddci, Plandi, Pbandi, Plori, Pbori, Pxori, Pdivui, Pdivsi, Pmodui, 
Pmodsi, Pmultui, Pmultsi, Ppushi, Psubi, Psubbi, Pcompi. 

Extract. 

Pextract. 

Where the sequence of action is given by: 

<TOS>:= <TOS >'code' <extended immediate> 

Next to the 7-bits immediate data included, the data BYTE also contains a 
bitflag to indicate whether the immediate data is to be logic or sign extended. 
It is also possible to see the data as an 8 bits signed integer which is always 
sign extended. The ultimate effect will be the same. 

The immediate data will be the second operand during calculations of this type 
of instruction. 

< TOS[O .. length]> := < TOS[start .. (start+length)]> 

The bitstring [start..(start+length)] replaces the <TOS> right justified. ( if 
length = 0 exactly one bit is extracted! ) Since this extraction needs 2 * 5 bits 
to identify all extractions possible, 2 bits from the instruction code are used. 
This gives 4 Pextract opcodes, they all extract a part of the <TOS> value, 
but dependant on the start value another version of the extract instruction will 
be used. 

Instructions with a relative reference to FP. 

The instructions with a reference to the FP use the location referred to in the same way as 
the short P-instructions use <TOS>. As a consequence of this 2-operand P-instructions 
are the only instructions that are able to use this mode. These instructions were: 

Padd, Paddc, Pland, Pband, Plor, Pbor, Pxor, Pdivu, Pdivs, Pmodu, Pmods, Pmultu, 
Pmults, Ppush, Psub, Psubb, Pcomp. 

The index is an offset to the FP and thus are they in "C" or PAS CAL references to the 
local variabiespace and current parameters from the routine under execution. The size of 
the index is 8 bits, in signed notation. This makes it possible to address 127 locations in 
the local frame, and 126 locations in the parameterlist. ( The maximum negative number 
is 128, but the locations -1 and -2 are references to the old FP andreturn address. ) 

23 



______________________ The definition of an Instructionset. 

NOTE: 

One has to realize that references made with the FP as base register are always to 
QUAD units. Since bits are considered valuable in P-instructions the units of dis­
placement also reference QUADs. This in contrast with F(ull)-operand instructions 
where the addressing is done in BYTE units. 

End NOTE 

Generic 
Opcode Format 
\7\6\5\4\3\2\1\0l 

~ loperation Mode 
( un)signed 
logic <- > boolean 
(no) carry 

Operation Type 
add, subtract 
and, or, xor 
mult, div, mod 

~-- shift, extract 

Opcode sub select 
0 operand P codes 
FP relative P codes 
Immediate data P codes 
mise. P codes 

Opcode Type 
P codes 
F codes 
M codes 
NOP 

Figure 3.2: The bit assignment for P-opcodes 

Bit-allocations for the instructions. 

There are all in all there 64 instructions in the P-instructionset. This takes 6 bits from 
the opcode field. If instructions can be aligned on BYTE addresses and opcodes are 8 bits 
wide then with the remairring 2 bits the indication must be given that the instruction to 

24 



______________________ The definition of an Instructionset. 

P -code instructions 
P-opcode P-opcode P-opcode P-opcode 

P-code instructions with data field 
Pdata-opcode Offs. or lmm. 

Pdata-opcode Offs. or lmm. 

Pdata-opcode Offs. or lmm. 

Table 3.4: Several P-opcodes merged into one QUAD. 

be used in this opcode is part of the P-instructionset. In figure 3.2 are the bit assignments 
forthemodes depicted, in table 3.4 is show how P-codes are merged into QUADs. 

3.2.3 F-instructions. 

Are P-instructions targeted towards the optimal use of the onboard stack-cache. The 
F( ull)-instructionset forms an orthogonal set of instructions with various methods of ad­
dressing, referencing and indexing. And this is true for almost all instructions mentioned in 
the inventory of operations and instructions. The exceptions are those instructions where 
the operands are of a specific type. 
For every operand in an instruction are all possible addressing modes possible, whether 
this is immediate, indirect or indirect relative. 
Relative instructions can use either SP, FP, EFP or <TOS> ( and/or PC) as the base 
register. 
The registers usable in the register mode are: SP, FP, EFP, PC, < TOS >and Flags. 
<TOS>, which is not just a short notation for SP[ü], gives an automatic update of 
the stackpointer SP. If the <TOS> operand is used as a operand which is read than the 
item is popped from the stack. If <TOS> is used as base value in an offset calculation 
then the base value is left on stack, it has to be removed explicitely. Is the result of the 
instruction placed in <TOS> then the result is pushed on the stack. 
The exception to this ruleis a move to <TOS>. In this casethereis no operation involved 
using the first operand, This is the mere destination. The action is corrected and the SP 
is incremented before the value is loaded on the stack. The old <TOS> value is ,as a 
consequence of this, kept as <TOS- 1 >, the new value becomes <TOS>. 

25 



_________________ The definition of an Instructionset. 

Operand Format 
j7j6j5j4j3j2j1jOj 

l Re sult Type 
- ( un)signed 

'----- Size informa ti on 
Operand 
Offset 
8, 16, 32 bits 

'----- Miscellaneous Modes 

Base Register 
stackpointer 
framepointer 
extern. framepointer 
<TOS> 

Data Mode 
Relative 
Relative Indirect 
PC base register 
Immedia te data 

Format Types 
Relative with register 
Relative indirect with register 
Data Mode 
Miscellaneous formats 

Figure 3.3: The bit assignment for F-operands 

26 



______________________ The definition of an Instructionset. 

Opcodes in the F -instructionset. 

All F-instructions, arithmetic and logic, can be combined with all variants of the the F­
operands. 
The used arithmetic and logic instructions are: 

Fadd, Faddc, Fband, Fland, Fbor, Flor, Fxor, Fcheck, Fcomp, Fdivu, Fdivs, Fmodu, 
Fmods, Fbnot, Flnot, Fmove, Fshl, Fshrs, Fshrs, Fsub, Fsubb, Fselect. 

If one visually depiets the bit assignment of an opcode BYTE, it looks like figure 3.3. 

F-operands. 

Extended instruction 
Opcode Format 
I 71 s1 51 41 31 21 11 o I 

~ loperation Mode 
(un)signed 
logic <-> boolean 
(no) carry 

F Operation type 
add, subtract 
and, or, xor 
mult, div, mod 
shift 

00 => regular F code 

regular M code 

01 = > system M code 

Opcode Type 
M codes 

- F codes 

Figure 3.4: The bit assignment for F-opcodes 

The F-instructions are characterized by their large amount of operand types possible. 
These operands, F-operands, are the key item for the orthogonality of this part of the 
instructionset. 

27 



______________________ The definition of an lnstructionset. 

The following section gives a complete list with all possible operands. First are listed all 
partial components. Next are listed all combinations of the partial components. 

Addressing modes. 

Immedia te. 
Register. 
Direct. 
Relative. 
Relative Indirect. 

Result Types. 

Signed. 
Unsigned. 

Sizes. 

8 bits or BYTE. 

16 bits or WORD. 

32 bits or QUAD. 

Combinations of all items. 

Explanation of the used notation. 
"N#IM":{slu}M has the following meaning: an immediate value IM is stored in the code­
stream, the size of the information is N bits. ( N = 8, 16, 32 ). This value has to be 
extended to M bits. ( signed or unsigned ). The resulting value is then used for any 
operation indicated. 

NOTE: 

Every operation uses a 32-bit intermediale value! this according I<&R. All operations 
are converted to 32 bits according to the type of the operand. The resulting value will 
be truncated in the highest bits to fit into the format of the destination. 

End NOTE 

* 

is the notation that stands for the contents of memory location *· 
is the memory location addressed by the addition of the register contents 
and *· 
Items marked with = are equivalent with another possible format, and are 
therefor not used. 
Items marked with * are not used to keep the number of possibilities with 
8 bits. 

28 



_______________________ The definition of an Instructionset. 

{ Immediate } 
"imS":SS "imS":S16 "imS":S32 
"imS":US = "imS":U16 "imS":U32 

"im16":SS = "im16":S16 "im16":S32 
"im16":US = "im16":U16 = "im16":U32 

"im32":SS = "im32":S16 = "im32":S32 
"im32":US = "im32":U16 = "im32":U32 

{ Register } 
{ The registers are only usable as a QUAD quantity. 

The exception is <TOS> but than this is not a real 
register. <TOS> can use all possible formats, but the 
results on the stack are always aligned on QUAD addresses. 

} 
SP:SS * SP:S16 * SP:S32 * 
SP:US * SP:U16 * SP:U32 

FP:SS * FP:S16 * FP:S32 * 
FP:US * FP:U16 * FP:U32 

EFP:SS * EFP:S16 * EFP:S32 * 
EFP:US * EFP:U16 * EFP:U32 

PC:SS * PC:S16 * PC:S32 * 
PC:US * PC:U16 * PC:U32 

{ with auto-stack } 
<TOS>:SS <T0S>:S16 <T0S>:S32 
<TOS>:US <T0S>:U16 <T0S>:U32 

<flags>:SS • <flags>: S16 • <flags>: S32 • 
<flags> :US • <flags> :U16 • <flags> :U32 

{ Direct } 
["addrS"]:SS ["addrS"] :S16 ["addrS"] :532 
["addrS"] :US ["addrS"] : U16 ["addrS"] :U32 

["addr16"] :SS ["addr16"] :S16 ["addr16"] :S32 
["addr16"] :US ["addr16"] :U16 ["addr16"] :U32 

["addr32"] :SS ["addr32"] :S16 ["addr32"] :S32 
["addr32"] :US ["addr32"] :U16 ["addr32"] :U32 

{ Indirect } 
[["addrS"]] :SS [["addrS"]] :S16 [["addrS"]]:S32 
[["addrS"]] :US [ ["addrS"]] :U16 [["addrS"]]:U32 

[["addr16"]] :SS [["addr16"]] :S16 [["addr16"]] :S32 
[["addr16"]] :US [["addr16"]] :U16 [["addr16"]] :U32 

[["addr32"]]:SS [["addr32"]] :S16 [["addr32"]] :S32 
[["addr32"]]:US [["addr32"]] :U16 [ ["addr32"]] :U32 

{ Relative } 
SP ["offS"] :SS SP ["offS"] :S16 SP["offS"]:S32 
SP["offS"]:US SP["offS"]:U16 SP["offS"]:U32 

SP["off16"]:SS SP ["off16"] : S16 SP["off16"]:S32 
SP["off16"] :US SP ["off16"] :U16 SP ["off16"] : U32 

SP["off32"]:SS SP["off32"]:S16 SP["off32"]:S32 

29 



______________________ The definition of an Instructionset. 

SP["off32"]:U8 SP["off32"]:U16 SP["off32"]:U32 

FP["off8"]:S8 FP["off8"]:S16 FP["off8"]:S32 
FP["off8"]:U8 FP["off8"]:U16 FP["off8"]:U32 

FP["off16"]:S8 FP ["off16"] :S16 FP["off16"]:S32 
FP["off16"]:U8 FP["off16"]:U16 FP["off16"]:U32 

FP ["off32"] :SS FP["off32"]:S16 FP["off32"]:S32 
FP ["off32"] :US FP["off32"]:U16 FP["off32"] :U32 

EFP["off8"]:S8 EFP["off8"]:S16 EFP["off8"] :S32 
EFP["off8"]:U8 EFP["off8"]:U16 EFP["off8"] :U32 

EFP ["off16"] :SS EFP["off16"]:S16 EFP["off16"]:S32 
EFP["off16"]:U8 EFP ["off16"] : U16 EFP["off16"] :U32 

EFP["off32"]:S8 EFP["off32"]:S16 EFP["off32"]:S32 
EFP["off32"]:U8 EFP["off32"]:U16 EFP["off32"]:U32 

PC["off8"]:S8 PC["off8"]:S16 PC["off8"]:S32 
PC["off8"]:U8 PC["off8"]:U16 PC["off8"]:U32 

PC ["off16"] :sa PC["off16"] :S16 PC ["off16"] : S32 
PC ["off16"] :US PC ["off16"] :U16 PC["off16"] :U32 

PC["off32"]:S8 PC["off32"]:S16 PC["off32"]:S32 
PC ["off32"] :US PC["off32"]:U16 PC["off32"]:U32 

<TOS> ["off8"] :sa <T0S>["off8"] :S16 <T0S>["off8"] :S32 
<TOS> ["off8"] :US <TOS> ["off8"] :U16 <TOS> ["off8"] :U32 

<TOS> ["off16"] :sa <TOS> ["off16"] : S16 <TOS> ["off16"] : S32 
<TOS> ["off 16"] :US <TOS> ["off16"] : U16 <TOS> ["off16"] : U32 

<T0S>["off32"] :SS <T0S>["off32"] :S16 <TOS> ["off32"] : S32 
<T0S>["off32"] :US <TOS> ["off32"] : U16 <TOS> ["off32"] :U32 

{ Relativa Indirect } 
[SP ["off8"]] :sa [SP["off8"]] :S16 [SP ["off8"]] : S32 
[SP ["off8"]] :US [SP ["off8"]] :U16 [SP ["off8"]] :U32 

[SP ["off16"] J :sa [SP ["off16"]] : S16 [SP ["off16"]] : S32 
[SP ["off16"]] :US [SP ["off16"]] :U16 [SP["off16"]] :U32 

[SP ["off32"]]: sa [SP ["off32"]] :S16 [SP ["off32"]]: S32 
[SP ["off32"]] :US [SP ["off32"]] : U16 [SP ["off32"]] :U32 

[FP ["off8"] J :sa [FP ["off8"]] : S16 [FP["off8"]] :S32 
[FP["off8"]] :US [FP["off8"]] :U16 [FP ["off8"]] :U32 

[FP["off16"]] :SS [FP ["off16"]] : S16 [FP ["off16"]] : S32 
[FP["off16"]] :US [FP ["off16"]] : U16 [FP["off16"]]:U32 

[FP["off32"]] :SS [FP["off32"]] :S16 [FP["off32"]] :S32 
[FP["off32"]] :US [FP ["off32"]] :U16 [FP ["off32"]] :U32 

[EFP["off8"]] :SS [EFP ["off8"]] : S16 [EFP["off8"]] :S32 
[EFP ["off8"]] :US [EFP["off8"]] :U16 [EFP ["off8"]] :U32 

[EFP["off16"]] :SS [EFP["off16"]] :S16 [EFP ["off16"]] : S32 
[EFP["off16"]] :US [EFP ["off16"]] : U16 [EFP["off16"]] :U32 

[EFP ["off32"] J :sa [EFP["off32"]] :S16 [EFP["off32"]] :S32 
[EFP ["off32"]] :US [EFP ["off32"]] : U16 [EFP["off32"]] :U32 

[<TOS> ["off8"]] :sa [<T0S>["off8"]] :S16 [<T0S>["off8"]] :S32 

30 



______________________ The definition of an Instructionset. 

[<TOS>["off8"]] :US [<TOS>["off8"]] :016 [<TOS>["off8"]] :032 

[<TOS> ["off16"]] :58[<T0S> ["off16"]] :516 [<TOS> ["off16"]] :532 
[<TOS>["off16"]] :US[<TOS>["off16"]] :016 [<TOS>["off16"]] :032 

[<TOS> ["off32"]] :58 [<TOS> ["off32"]] :516 [<TOS> ["off32"]] :532 
[<T0S>["off32"]] :U8[<T0S>["off32"]] :016 [<TOS>["off32"]] :032 

For an exact definition of the values assigned to the operand codes, see the appendix with 
the definition of the instructionset. In this appendix the formats are described as encoded 
bitfields and a full enumeration of the values and their functionality is given. The figure 
3.4 gives however an idea of the bit assignments used for operand formats. In the table 3.5 
are examples given of the packing of an F-instruction into the code stream. ( This table 
can be found at the end of the chapter. ) 

3.2.4 M(ixed)-instructions. 

A processor neecis more instructions types than the instructions explained in detail in the 
previous sections. This section of the instructionset description covers those instructions 
that control the flow of the program, maintain the processor status, etc. 
The instructions in this colledion do not created a neatly organised subset. Every item 
has its specific operands and operand formats. The only operand format that used more 
general, is the F-operand. This operand has all the possible forms as given in the section 
on F-operands. 

FLOW-CONTROL instructions. 

- CALL "high level" function with "C" mechanism. 

Instruction format: Mcallc "SU-operand" ,"F-operand" 

The "SU-operand" is a subset of the F-operand, namely all formats which have an 
S bit unsigned integer as a result. ( i.e. "imS" :US or <TOS >:US ). The integer 
indicates the number of QUADs to be reserved for extra parameter variables on 
entrance of the function. This space can be used for return values. The local variabie 
space, which is only known inside the function, is created by ad ding a value to SP. If 
the value of the second operand is outside its range, this will not result in a system 
error. One cannot rely on the resulting actions to be reproducible. 

The "F-operand" gives the address of the procedure or function to be called. 

First the si ze for the parameter area is added to the SP. 

N ext is the programcounter pushed on the stack. 

Then the frame pointer is pushed on the stack, and once it is pushed, FP is updated 
to point to <TOS>. This leaves the framepointer pointing to the first local variable, 
if needed. 

31 



______________________ The definition of an Instructionset. 

The code in the called routine is now free to reserve any extra space for local variables 
by adding a value to the SP. 

- CALL "high level" fundion with PASCAL mechanism. 

Instrudion format: Mcallp "F-operand", "SU-operand" 

The "F-operand" gives the address of the procedure or fundion to be called. 

The "SU-operand" is a subset of the F-operand, namely all formats which have a 
S bit unsigned integer as a result. (i.e. "imS":US or <TOS >:US ). The integer 
indicates the number of QUADs to be reserved for extra local stack variables on 
entrance of the function. This space can be used for the local variabie space, which 
is only known inside the function. 

First is the programcounter pushed on stack. 

Second is the frame pointer pushed on the stack. 

Third is the SP is pushed onto the stack to keep the return address. Parallel with 
this is the framepointer updated to point to the first entry in the new local variable. 
Thus under normal operation will FP[ü] indicate the first local variable. The last 
action is the addition of the "SU-operand" to the stackpointer. 

- CALL subroutine. 

Instrudion format: Mcall "F-operand" 

This type of call has a strong likeness with the previous calls. The only difference 
is that no stack-space is allocated for parameter or local variables and thus the FP 
pointer needs no changes. It is left pointing to the current frame of local variables. 
Local variables are only created explicitly if the SP is incremented. 

- JUMP, GOTO. 

Instrudion format: Mjmp "F-operand" 

The F-operand gives the new address for the programcounter to be loaded with. 

- Conditional JUMP, GOTO. 

Instruction format: Mjmpc "condition", "F-operand" 

The flow-control is direded to the address of the F- operand when the given condition 
shows TRUE. Otherwise the instrudion following the jmpc instrudion is executed. 

The following conditions can be used: 

32 



______________________ The definition of an lnstructionset. 

• Zero. 
• Non zero. 
• True. 
• False. 
• Equal. 
• Not equal. 
• less. 
• greater. 
• less or equal. 
• greater or equal. 
• Sign ( negative ). 
• No Sign ( positive ). 

It is not said that all of the above conditions are represented by different fiag settings. 

- RETURN from "high level" function. 

lnstruction format: Mretf "SU-operand" 

This return can be used for returning from a call in a PASCAL routine and from a 
call in a "C" routine. 

First the 8-bits operand releases the indicated number of QUADs for the local vari­
ables. 

Secondly the FP IS restored to the value it had before calling the "high level" 
function. 

Finally program execution is resumed on the address that is found on <TOS>. 

These actions leave the stackpointer pointing to the top element in the list with pa­
rameters. If these parameters have to be ignored, they have to be removed explicitly 
by subtradion of the number of nparameters from the stackpointer. 

- RETURN from subroutine. 

Instruction format: Mret. 

Execution proceeds to the address given in <TOS>. The FP remains unchanged. 

- RETURN from interrupt. 

lnstruction format: Mreti. 

The execution of an interrupt routine is completed. And the processor returns to 
the task it was executing when it was interrupted. The stored processorstatus is 
retrieved from the stack. 

33 



______________________ The definition of an Instructionset. 

- SWAP context. 

Instruction format: Mswap "32-address A", "32-address B" 

The complete processorstatus is stared in a processorstatus frame given by the abso­
lute address. The new processorstatus is loaded from address B. 

- DECRement, TEST and JUMP. 

Instruction format: Mdtj "F-operand A", "F-operand B" 

De variabie addressed by operand A is decremented. If the result of the operation is 
nat zero, control is transferred to the address given by operand B. 

- TRAP. 

Instruction format: Mtrap "im8" instruction. 

Processorstatus is saved on the stack and the interrupt service routine of interrupt 
"im8" is executed. 

Processor handling. 

- Clear Instruction Cache. 

Instruction format: Mcic. Is a valid short instruction. 

All valid tags from the instruction cache are cleared. 

- Update DATA memory. 

Instruction format: Mupm. Is a valid short instruction. 

All entry's in the stack-window are flushed to main memory. 

- Enable Interrupts. 

Instruction format: Menaint "F-operand" 

The F-operand contains a mask. All interrupt levels with a 1 in the mask are enabled. 

- Disable Interrupts. 

Instruction format: Mdisint "F-operand" 

The F-operand contains a mask. All interrupt levels with a 1 in the mask are disabled. 

- Reset 

34 



______________________ The definition of an lnstructionset. 

lnstruction format: Mreset. Is a valid short instruction. 

The external reset line is asserted by the processor. The internal status of the pro­
cessor is maintained. Execution continues with the next instruction. 

- Halt. 

lnstruction format: Mhalt. Is a valid short instruction. 

The processor ceases to execute the next instruction. All data-, address- and control­
lines are tri-stated and the HALT line is asserted. The only exit from this state is 
an external reset or an interrupt on a level that is not masked. 

- Loek. 

lnstruction format: Mlock "count8" 

Count8 specifies the number of instructions( or system cycles or doek cycles. This 
is not yet decided on at this time.) the system busses are locked by the processor. 
Interrupt handling will also be postporred for this period of time. 

For a full description of all instructions and their assigned opcodes is referred to appendix 
with the instructionset description. Here the complete instructionset is listed with all 
possible operand values, including the various bitfield assignments. 

3.3 Remarks. 

Although it was indicated that a more complex type of linkecl-list operands could prove 
very useful, this type of operands is currently not implemented. 
Reasons for this could be the following: 

• Definition of the instructionset consumed far more time than expected, and the exact 
definition of a linked list operand type requires lots of "bit fiddling". 

• The linked list operand could be implemented in full extend. This means that all 
combinations of operands could be possible, and as a consequence of this far to many 
combinations would be available. However once information is available on indexing 
methods used or wanted, a more appropriate set of operands could be created. 

The currently introduced instructionset has however properties which are not directly 
obvious at first. For instanee the following question ( and answer ) could be discussed: 
Has the "C"-processor no PC-relativejump? 

No! Not in the direct sense that there is an opcode or an operand for this action. 

Yes! The instruction Fadd PC, 'operand2' will give a relative branch with the offset 
given by the value of operand2. 

35 



____________________ The definition of an Instructionset. 

Table 3.5: Layout of 1-operand FM instruction in the code stream 

l3ll3ol29l2al27l26l2sl24l23l22l21l2ol19llal17116llsll4l13l12lnllol9lal7l6lsl413l2lll o I 

FM-instruction with 1 Operand 

FM-opcode Operl Format Byte Data 

With 1 Operand of Word Size 

FM-opcode Operl Format 

Word Data 

With 1 Operand of Quad Size 

FM-opcode Operl Format 

Word Data 

If, however, a relative conditional jump neeels to he taken ( or a relative call ), then the 
matter becomes a little more complex. A construction for this woulel be to create the new 
address in <TOS>. And than take the conditional jump with the value in <TOS> as 
the new address. 
It has to be admitted that the last construction is not a very elegant one. But the lacking 
of this type of operand has become clear only after writing the Software model, and after 
the implementation of the HHDL moelels going with the operand unit. If this omission 
woulel be considered serious enough, then it eaulel be implementeel relatively fast. ( As 
long as the design is in the High Level design phase ) There are still opcodes and operanel 
formats available. The appropriated codes for these formats have to be inserted in the 
large case statements in the operand fetchers. ( in the operand unit ) 

36 



__________________ The definition of an Instructionset. 

Table 3.6: Layout of 2-operand FM instruction in the code stream 

l31l3ol29l2sl27l26l2sl24l23l22l2112ol19l1sl17l16l1si14IBI12Ini1DI9Isl7l6lsl4l3l2111 o I 

2 Operand FM-instructions 

Without Operand Data 

FM-opcode Operand 1 Format Operand 2 Format 

With Operand 1 == Byte, Operand 2 == Byte. 

FM-opcode Operand 1 Format Operand 2 Format Operand 1 Byte 

Operand 2 Byte 

Withno Operand 1 data, Operand 2 ==Byte. 

FM-opcode Operand 1 Format Operand 2 Format Operand 2 Byte 

With Operand 1 == Word, Operand 2 == Byte. 

FM-opcode Operand 1 Format Operand 2 Format Operand 2 Byte 

Operand 1 Word 

With Operand 1 == Word, Operand 2 == Quad. 

FM-opcode Operand 1 Format Operand 2 Format 

Operand 1 Word 

Operand 2 Quad 

With Operand 1 == Quad, Operand 2 == Quad. 

FM-opcode Operand 1 Format Operand 2 Format 

Operand 1 Quad 

Operand 2 Quad 

37 



Chapter 4 

A first model description of the 
'' C ''-processor. 

Given the instruction set, defined in the previous chapter, and the first decomposition 
model, it is possible create a software model. With this software processor model is it 
possible to: 

• Test the designed instruction set and test its functionality. This will give an indication 
whether the chosen instruction set is applicable for its purpose or not. 

• Sirree this processor is designed to have a data cache of a very special type. The 
software model would give the possibility of testing the effects of different types of 
implementation. 

Next to these "verification" possibilities the software model also gives information which 
can be of use in future steps of the design process. 

• The software model will give a complete description of the datapath in the processor: 

• All operations and manipulations with the variables are clearly visible in the code. 

• The parameters communicated between routines give information on variables that 
are shared between only two routines. 

• Global variables are an indication of variables that are used in all routines in the 
processor and are thus candidates for registers with a separate bus. 

• The software model will be able to supply verification material for test runs of the 
high level implementation of the processor. The software model is currently also 
able to supply the values that are communicated between the modules. This makes 
it possible to compare the software modules with the hardware modules on a lower 
level. 



-----------------A first model description of the "C"-processor .. 

• And as a aid in further designs on the next level, the software design could give 
guidelines for choosing the decomposition of modules in smaller ones. 

4.1 What will the software model not do? 

The software model will not, or is not able to: 

• Give timing information. None of the actionsof the software modules are related to 
any timing what so ever. As a consequence of this, is it also not possible to detect 
all action that can be executed in parallel. 

• Perform 1/0 on its boundary, as were it the real chip. Core is available as a simple 
array of integers, which is directly used if and when a memory value is needed. This 
also holds for some instructions that control 1/0 pins: Strong examples of these are 
Reset and Loek. 

• Another "disadvantage" of the software model is the use of the operations available 
in the programming language. Multiply, modulo, etc are clone using the fundions 
given by the programming language. These will have to be cocled out on the real chip. 
The emulation will ( or should ) however give the correct results of the calculations. 

4.2 The modules in the "C "-processor. 

The software processor consists of several routines, read modules, that implement the 
processor as a whole. These modules are described in the following part. The modules 
that are of little importance are described only in short detail, others are discussed more 
thoroughly. 
The list is generated by following the generated souree files, these are listed in full in 
Appendix 'Software-listing' ( Which is available upon request ). Some of these souree files 
contain more than one module. 

• ALU 
This module perfarms all operations on the user data. If the processor needs to 
add two operands, is this the part where the operation is clone. Operations can be 
clone in different modes: carry versus nocarry, signed {::} unsigned, boolean {::} logic. 
All operands, regardless the operations required, are considered signed integer. The 
result of the operation is dependant on the selected mode. 
Operations clone during internal actionsin the processor, like the addition of an offset, 
are clone in special dedicated subcircuits. These subcircuits are hidden in statements 
like: SP+=4; ( This increments the stackpointer. ) 

• CODE...EXE 
The "C "-processor runs code ad infinitum, or until the power goes down. This 

39 



A first model description of the "C "-processor.. 

consistsin software of a simple but never ending loop. Since, however, that would be 
a waste of computer time during simulation, the software loop is controlled with some 
termination criteria. In the loop is the first elementary instruction decading clone. 
lnstructions are separated in full quad instructions that start on quad boundary, and 
byte instructions, like the P-instructions, that can start on a byte boundary. 
lf this is the case, then every P-code quadis disassembied by P _exec and the resulting 
P-instructions are executed in sequence. 

• MEM...ACCESS 
For the processor to operate useful, it needs to read data and opcodes from memory, 
after processing some data it has to write the result back to the memory. The rou­
tine get....mem and put....mem are written to execute the actions. Parameters indicate 
the address to be reador written, the size of the operand, and in case of a write also 
the value to be written. 
Tests are made for reading, or writing on not QUAD or WORD boundaries. For 
QUADs is this on multiples of four, WoRDs on multiples of two. lf an action is on 
an off boundary, a warning is given and the result could be correct, but usually this 
is not the case. 
The processor is designed to have instruction cache and data or stack cache. lf they 
where to be implemented, they should be implemented in these routines. But as 
one can deduct for this text: 'Currently no caches are used!' The interfaces to 
the routines: get_stack_cache, put_stack_cache, get_instruction_cache, how­
ever are available as empty routines. Currently they transfer all requests directly to 
get....mem and put....mem. 

• FLAGS 
The results of arithmetic an logic opera ti ons are stored in a status register, more com­
monly called "the flags". The processor will use these flags as separate bits, or as just 
another integer, depending on the instruction format. The routines: flags_to_int 
and int_to__flags convert flagbits to integers and vice versa. Most probably these 
conversions will be very little more than straight wires in hardware. But they are 
needed for the correctness of the program. 

• LOADER 
The model needs food, code, to run on. This code has to be loaded into main core 
before execution can start. The loader routine loads this code from a file on disk. The 
format for the code file is described in appendix "Using the "C "-processor Software 
model". This format is designed specific for this assignment. 

• STORE..R.ESULT 
Once the instruction is completed, the calculated result has to be stored. The 
place to store the result is implied by the souree of the first operand. The routine 
store...resul t takes the calculated value as parameter and stores it at the destination 
which is set by the routine that acquired the first operand ( get_operand_1 ). It also 

40 



---------------- A fi.rst model description of the "C "-processor .. 

takes into account the size and format of the destination. This matches the size of 
the first operand read. 

• LIST..AUX 
The processor has a processor status consisting of a number of registers, the fiags, 
the current opcode and the stack. These items are displayed during execution, to be 
able to follow the processing flow in the processor. On chip are these routines not 
needed. 

• GELOPERAND 
Most instructions refer to one or two operands to perform an action on. The two 
routines get_operand_1 and get_operand...2 are very much alike. They both return 
the value of the operand so desired. Get_operand_i, however, also set the destination 
for the result. It also has to take into account whether the instruction is an instruction 
with one or two operands. ( if it is a one operand instruction than a 16-bit offset 
could be stored in the instruction ) 
Both routines take the operand description from the current instruction and decode 
it into the appropriate fields. From that the resulting operand is fetched. Implied 
conversions and sign-extensions are clone on the fiy. Both routines basically consist 
out of large case statements, in which every type of operand is obtained. 

• INTERP 
This gigantic case statement selects on of the 255 possible opcodes to be executed. 
This is in fact the main controller that executes one instruction. It arranges for the 
operands to be fetched, the operation to be executed, and the result to be stored. 

• GET _OFFSET 
Most types of operands need an offset in their calculation of the operand. Or if 
the operand consists of direct data, the offset equals the operand. The routines 
get_offset_1 and get_offset...2 read these offsets directly from the instruction 
stream. Offsets have 3 possible sizes: 8, 16 and 32 bits. But they are all consid­
ered to be signed. And the 8 an 16 bits offset are sign-extended to a 32 bits value 
before they are returned. 

• G_INT 
This routine contains the main routine that is required in "C ". It calls: 

- The loader. 

- The interpreter. 

4.3 Abstractions from the software model. 

From the now created software model should information be extracted that will guide future 
decisions. This paragraph will indicate what kind of data type resources are used, and what 

41 



----------------- A first model description of the "C "-processor. 

operations work on those resources. This information can be ( and was ) extracted from a 
simple thing like a cross-reference. 

4.3.1 Global variables in the C-processor. 

The "C "-processor has the following global varia bles: 

• registers: 
PC 

SP 

FP 

EFP 

Flags 

used in: 
code_exe, geLoffset_1, _2, 
get_operand_1, _2, interp, 
store...resul t. 

used in: 
get_operand_1, _2, interp, 
store...resul t. 

used in: 
geLoperand_1, _2, interp, 
store ...re sult. 

used in: 
geLoperand_1, _2, interp, 
store...resul t. 

used in: 
alu, flags,get_operand_1, _2, 
interp, store...result. 

• currentjnstruction: 
used in: 

code_exec,get_offset_1, _2, 
geLoperand_1, _2. 

• destination indicators: 
destination_adr 

used in: 
get_operand_1, interp, 
store ...re sult. 

destination...reg 
used in: 

get_operand_1, interp, 
store...resul t. 

42 



----------------- A fi.rst model description of the "C "-processor. 

destination_size 
used in: 

get_operand_1, interp, 
store...resul t. 

• communication between get_offseL1 and get_offset--2 
second_quad 

used in: 
get_offset_1, _2, interp. 

second_quad_read 
used in: 

get_offseL1, _2, interp. 
instruction_bytelree 

used in: 
get_offset_1, _2, interp. 

4.3.2 Local operations in modules on variables. 

The above variables are used in different modules and in different operations. Further 
information can be found in reviewing the operations clone on what variabie in which 
module. This will give information on what operations to implement with each of the 
resources. 
The Flags are only assigned, read and tested. They are not operated on, neither arithmeti­
cally nor logical. 

Current_instruction is assigned in code_exec. And the only othero peration on it is 
BYTE extraction in get_offseL1, _2 and get_operand_1, _2. 

The destination items are reset in code_exec, set in get_operand_! and read in store...resul t. 
Destination...reg is also readininter to check whether the destination is <TOS>. In this 
case the SP should be updated. 

Instruction_byte....free is reset in interp, eventually set in get_offseL1 and read in 
get_offset--2. 

In get_offset_! possible a second quadis read and if this extra quad was only needed for 
a word, second_quad_read indicates that second_quad contains a valid value. This can be 
used in get_offset--2. 

4.4 Remarks 

Certain instructions and/or operations are unsuited for implementation in the software 
model. As a consequence it is possible that in future steps these items will be forgotten. 
For this reason and for reason of completeness are these instructions mentioned here: 

43 



----------------- A first model description of the "C "-processor. 

• RETI, is modeled but not tested. 

• CIC 

• UPM 

• ENAINT 

Interrupts are modeled by just one possible interrupt and accompanying flag. 

• DISINT 

• RESET 

• HALTE 

• LOCK 

For completeness it is mentioned here that the linked list operand type was not modeled 
in this program. 

The model is tested with numerous small code parts, which are listed in an appendix with 
code tests. This appendix is not included, since this would not be of any information to 
the reader of this report. If however so desired the information can be made available. 
In this appendix with information on the usage f the Software model arealso found: 

• The used format for the code-loader and 

• The commandline format of the program. 

44 



Chapter 5 

A high level implementation 
in HHDL 

In the previous chapter the "C "-processor is described by means of the programming lan­
guage "C ", which had certain advantages to it. However one of the disadvantages was the 
lacking of timing or scheduling information and the fact that the execution of the modules 
was performed completely sequentia!. These disadvantages can be overcome by implement­
ing the "C"-processor in HHDL ( Silvar-Lisco, Hardware Description Language ). This 
language offers the capability to describe several subprocesses, which will be ( virtually ) 
executed in parallel. The language is also able to put timing related information in the 
external communication actions of the processes, with respect to the expected operation 
delays. 
Next to the above properties, the development system has the means to make a decompo­
sition of large elements into smaller parts, and at a bottorn level a functional part can be 
modeled by a logic circuit. From these functional decompositions, and further decomposi­
tions still to be made, the ultimate steps willlead to an implementation on silicon, which 
this will hopefully render a real and working "C "-processor. 

First to obtain a working high level description, an inventory is made of the subprocesses, 
with their interfaces, to implement. Since there exists a "C "-routine counterpart of almost 
all modules, there will be no extra formal description of the function of the subprocess. 
The functions not described in the available "C "-routines are the controller parts. And 
thus these parts are the parts that might require some extra attention. The problems are 
to be expected in relating the functioning of the serial flow control in the serial program 
execution to the now parallel execution of the same actions but then controlled by a specific 
controller. 



____________________ A high level implementation in HHDL. 

5.1 The parts to implement on level 1. 

A fi.rst level of decomposition follows from: 

a) The original decomposition in [Bud88] into high level units. This decomposition only 
lists the channels of interactions of the modules through their data paths. Controller 
information is not available other then through thoroughly examining the given im­
plementation of the high level units. 

b) The module structure of the "C "-model. The routines in the "C "-program give 
indications of which modules ( read functions and/or routines ) interact with one 
another. It also gives indications of what parameters are passed between the modules. 

From this moment on will he assumed that a module will he controlled by modules on a 
"higher" level. With this higher level is referred to the calling sequence as they can be 
found in the "C "-interpreter. A campromise bet ween using the exact signals and using 
all general busses is made. This to prevent too much iterating between adjusting the high 
level decomposition signals withits data paths and controllines and the implementation of 
the high level modules. ( Also known as the 'Yo-Yo' effect.) The tradeoffs in this matter 
are made on an ad-hoc basis. 
The figure with the levell decomposition ( figure 5.1 ) shows the following used modules: 

• Module: REGISTERS 

Interface: 
IN_C input integer 

For loading one of the registers. 

OP_CMD input record 
INSTR_CMD input record 

Gives the next action to perform. The commands can be given by either 
thez instructien unit or the operand unit. 

STAT output record 
Gives the result of the last action clone. 

OUT ....A, 
OUT ...B tri-state integer 

The registers values given on command. It is possible to have different 
values on the outputs. 

INSTR_FC output record 
The instructien unit has through this bus the current value of the pro­
gram counter ready and available for instruction (pre )fetches. 

46 



*"' -:t 

~ ..... 
()1:! 

~ 
@ 
<:lt 
....... 

....... 
0... 
(D 

8 .g 
0 
00 ..... 
c+ ..... 
0 
:::l 

Ei' 
00 

~ 
(i) 
1-j 

0"" ........ 
0 
("'> 
:;.:;-' 
00 

IC 

r---

r--

'---

--
i...--

IU 
IBU8.CIID 
BUS.8TAT 

CLK cu: 
LCACH ci1D CODE.CMD 

STAT CODE.8TIIT 
INS'TRUCTION IN8TitUCT%0N 

BUS. CliO PC f--BU8.8TAT - CUMENT ..INSTRUCTION 

ADDRES8DATA r-- DlRECT. 
OP.CI1D OP.STAT 

SU 

XC. IITA 

lC.STIIT 
lC.CIID 
INSfR.STAT 
lHSTR.CI1D 

BUB.UNIT 

CLIC --< 

EX!C.STAT 
EXEC.CHD 

EX!C.DAT 
EXEC.ADOREAA 

u 
CLOCK 
t.taT 

c 

tHSTRUCTZON.UNIT 

EXEC.8TIIT EXtC.CI1D txEC.~REO.STAT REO.CI1D PC.YALUE 

I 
EU I 

CI1D RU 

EXEC.UHIT MODE ...... IN8TR.C11DlH8TR.PC 
rLA!JS.lH ALU.:tN 

CLK F'LAOS.OU'T ALU.OUT 

8 c 
..___ STAT REO.UNZT 

STATUS A OP.CI1D 

~û: OUT.A OUT.B 
OU l IEXI C.STAJ,iOP! 
STAT 
CI1D 
DIJttc9"'EIWID-t.ta:T 
roRHAT 
BU8.8TAT 
BU8.CI1D 
BU8.DATA 
BU8.ADDRE88 

REO.REO -
CLK KO.ST 

lH.A :01.11 Vall- \Iw\ Vl'thati:lttl'\, C•Prooe• 

r I TITLEI 
L..vel i deoollpoa"aon 
tn l...-- Jdoob. 

~h.x•l no-.n1: ~ 
M C•PflOC•..S 

21. 4.888 

l:r' 
oti" 
l:r' 

f 
fl. 

~· 
........ 
(D 

~ 
~ 
c+ s· 
!;j 

s· 
~ 
~ v 
t""' 



high level implementation in HHDL. 

ALU_IN input record 
The flags to be saved, created by operations in the ALU, by previous instruc­
tions. Not all instructions modify the Flags. 

ALU_OUT output record 
Previous saved Flags are always direct available to the ALU. 

Memory: 
The registers FP, EFP, SP, PC, Flags, TEMP_SAVE. 

Operations: 
Load the registers. 
Write the registers to the buses. 
Write variauts of the SP to the buses. 
lucrement or decrement the SP. 
lucrement the PC. 
Set or Reset specific Flags. 

Comments: 
Due to the totally distinct actions for the FP, EFP and the TEMP _SAVE 
versus the SP, PC and/or Flags, a new decompositionfor the register module 
will be made. 

• Module: EXEC_UNIT 

Interface: 
A, 
B input integer 

The values of the operands to be acted on. 

C output integer 
The resulting value after calculation is clone. 

CMD input record 
Schedules the activity of the module. 

MODE input record 
Gives the format in which the action is performed. 

48 



___________________ A high level implementation in HHDL. 

STATUS output record 
Gives the result of the last action clone. 

FLAGS_[JUT output record 
Direct available value ( status ) of the result of the execution's Flags. 

FLAGS_IN input record 
The Flags input, with the result from previous executions, for use during 
the current execution. 

• Module: OPERAND_UNIT 

Interface: 
OP1, 

OP2 output integer 
The values of the operands to be acted on. 

EXEC...RES input integer 
The resulting value after calculation is clone. 

CMD input record 
Schedules the activity of the module. 

MODE input record 
lndicates the different types of operands to be fetched. This is dependant 
of the instruction type under execution. 

STATUS output record 
Gives the results of the last action clone. 

FORMAT input integer 
Gives the type of F-operands to be fetched. This is a part of the cm­
rent instruction, and contains the operand formats, and possibly a 1-byte 
datafield. 

DIRECT input integer 
During the fetching of the operands extra quads of the instructionstream 
will be passed through this channel. 

49 



high level implementation in HHDL. 

BUS_CMD output record 
Commands for the bus-unit in case the operand unit needs to fetch data 
from external memory. 

BUS_STAT input record 
The status result from a command issued to the bus-unit. 

BUS_ADDRESS input integer 
The address on which the bus-unit needs to put or get data. 

BUS...DATA bidirectional integer 
The data to be transported to and from the bus-unit. 

• Module: BUS_UNIT 

Interface: 
IC-CMD input record 

Requests for new data from the instruction cache are given through this 
path. 

IC...STAT output record 
Resulting status on commands from instruct ion cache. 

IC_ADDRESS input integer 
The address to fetch the instructions from. 

IC...DATA output integer 
The new instruction read. 

INSTR_CMD input record 
General commands given by the global control unit instruction...uni t. 

INSTR...STAT output record 
Status returned to the instruction_uni t. 

EXEC_CMD input record 
Requests for reading or writing of data into main memory. 

50 



-------------------A high level implementation in HHDL. 

EXEC...STAT output record 
Status to be returned to the operand_uni t. 

EXEC...ADDRESS input integer 
Address of the memory location to be read or written. 

EXEC...DAT A bidirectional integeL 
The data to be read or written. This will be data which is flushed out of 
the cache, reread into the cache. Or those items that are outside the cache 
window. 

• Module: INSTRUCTION_UNIT 

Interface: 
BUS_CMD output record 

Commands for the Bus_uni t. 

BUS...STAT input record 
Status of the Bus_uni t. 

CODE_CMD output record 
Commands for the Instruction_cach~. 

CODE...STAT input record 
Status of the Instruction_cache. 

INSTR...ADR output integer 
The address to fetch the next instruction Q U AD from. 

INSTRUCTION input integer 
The result of an instruction fetch by the instructien cache. 

CURRENT ....INSTRUCTION 
output integer 

The instruction quad that is currently being executed by the 
instruction_uni t. 

DIRECT output integer 
The value of an extra quad, read by the instruction_uni t. 

51 



____________________ A high level implementation in HHDL. 

OP _CDM output record 
Scheduling commands for the operand_uni t. 

OP ...ST AT input record 
Status of the operand_uni t. 

EXEc_CMD output record 
Scheduling commands for the execut ion_uni t. 

EXEC....STAT input record 
Resulting status of the execution_unit. It might also contain things like 
flag information. 

EXEC....MODE output record 
Mode information which types the action to he executed. It contains the 
operations ( add, ... , mult ) and the type of the operation. ( signed {::? 

unsigned, logic {::? hoolean, carry {::? no_carry ) 

FLAGS input record 
Status of the flags_uni t. Contains information concerning the values of 
the flags. 

REG_CMD output record 
Commands for the register_uni t. 

REG....STAT input record 
Status results of the register_uni t. 

pc_vALUE input integer 
Direct input from the programcounter. Usually this will he the address of 
the instruction under execution. 

5.2 A next decomposition for the Registermodule. 

The register module contains six distinct items. These six items will he the next level of 
decomposition for the register module. Thus the register module will consist of: 

• A stackpointer. 

• A framepointer. 

52 



____________________ A high level implementation in HHDL. 

~ ., 
!;!ti äH-+--+ 

0<11: 

-~ ~ 
~ ~ d ät-t-t-+--. 

~------~----~~ 1-++--r-r~ 

I 

I 

Figure 5.2: The register module decomposition. 

53 



____________________ ..,. high level implementation in HHDL. 

• An extern al framepointer. 

• The program counter. 

• A flags register. 

• A temporary save location. 

Next to these primary modules, two additional modules are implemented. They will trans­
late the control and status signals of the individual registers into the control and status 
signals available on the exterior the registers module. All commands are mapped into 
one integer bus, as are the status results. Although the given high level implementation 
is equipped with a complete handshake interface ,it will be the intention to execute this 
module in one clockcycle. 
Handshaking is of the very simple type: 

COMMAND =} BUSY =} READY* IDLE 

Hence the synchronization might not be needed in future. On this level of description is 
however no doek used as reference and thus is it a prerequisite of every module to report its 
completion status. In lower level descriptions this might be changed as soon as a clocking 
system is introduced. 

The following sections will describe the implemented registers and "translators" in more 
detail. The decomposition of the registers module and writing the implementation of the 
subcomponents was used as a first exercise with the Silvar-Lisco tools. 

5.2.1 The stackpointer. 

Making an inventory of the operations possible on the SP and of the values to be assigned to 
the A and/or B-bus can be done using the cross-reference of the SP in all the "C "-modules. 

( The items listed give the values to be written on the buses and the internal operation to 
be performed on the SP. ) 

A bus 

SP 
x 
SP-4 
SP 
SP+4 
SP-4 
SP 
SP-4 
SP-8 
SP 

B bus 

x 
SP 
SP 
x 
x 
SP 
SP-4 
x 
SP 
SP-4 

Operation. 

SP-= 4 
SP-= 4 
SP-= 4 

SP+= 4 
SP-= 8 

SP-= 8 

54 



___________________ A high level implementation in HHDL. 

Next to the above "complex" operations, will the following basics be implemented: NOP, 
load, increment, decrement) add value from the C-bus. 

The targeted stackpointer module is one which will be able to perform all three given 
action(s) in the sametransition ( write to A-, B-bus and execute internal action ). This 
will make it possible to activate some processes in parallel during the fetching of the 
operands. This is however not yet investigated at the current level of implementation, but 
there is very little reason to believe that a one-cycle implementation is not possible. 

• Module: SP 

Interface: 
IN_C input integer 

loading the SP. 

CMD input record 
Gives the next action to perform. 

STAT output record 

Gives the result of the last action clone. 

OUT ....A, 
OUT ....B tri-state integer 

SP value, with possible adjustments, given on command. 

Memory: 
The stackpointer 

5.2.2 The framepointer, external framepointer andtemporary 
save location. 

All of these modules are of a very simple type. The only actions are: NOP, load, write to 
the A and/or B-busses. Moreover: All are identical, except for the values they will contain 
during operation. 

There are no transforma ti ons of the contents needed in these registers. The pointer registers 
are used by the operand module, where they act as base registers during some of the 
indexing operations. The temporary save location is primarily used forstoringa new PC­
value before it can be loaded, or the second value used during swap. Either during a value 
swap of values on the stack, or during a swap of processes. 

55 



high level implementation in HHDL. 

It is obvious that these registers are no more then a mere blockof Flip-Flops and tri-state 
busdrivers. In future developments they will easily comply with the one- cycle requirement 
of the register's module. 

• Module: FP ( or EFP, TEMP _SAVE ) 

Interface: 
IN_C input integer 

For loading the register. 

CMD input record 
Gives the next action to perform. 

STAT output record. 
Gives the result of the last action clone. 

OUT ..A, 

OUT ...B tri-state integer. 
The register value written on the bus. 

Memory: 
Framepointer 
External framepointer 
Temporary save location 

5.2.3 The program counter. 

The processor uses the programcounter to address the code to be executed. Next to this 
is it also possible to use the programcounter for reference purposes. Be it inline constants, 
or other fixed data items. And furthermore is it possible to load the program counter 
with new values to infl.uence the flow of the program. To be able to access the program 
counter, without disturbing the calculation of operands, the register is equipped with a 
direct output bus which will always contain a the latest loaded, and hopefully the correct, 
address for fetching the newest code. 

• Module: PC 

Interface: 
IN_C input integer 

For loading the PC. 

56 



____________________ A high level implementation in HHDL. 

CMD input record 
Gives the next action to perform. 

STAT output record 

Gives the result of the last action clone. 

INSTR...PC output integer 
direct available value of the current PC. 

OUT _A, 

OUT ...B tri-state integer 
The register value written on the bus on command. 

Memory: 
The program counter. 

5.2.4 The Flagsregisters. 

During execution of arithmetic, logic and boolean instructions a new result is calculated. 
The result of the calculation can have certain properties which are kept in the Flagsregister. 
The processor in itself has also status items which are used and/or modified by the user. 
This status flags are also kept in the Flagsregister. 
Currently are the following properties maintained: 

Result flags: 

1. Zero. 

2. Carry. 

3. Overflow. 

4. Sign. 

Status flags: 

5. Interrupts enable. 

6. U ser mode. 

The Flags module has the following connections: 

57 



___________________ A high level implementation in HHDL. 

• Module: Flags 

Interface: 
IN_C input integer 

For direct loading the Flags. 

CMD input record 
Gives the next action to perform. 

STAT output record 
Gives the result of the last action clone. 

ALU_IN input record 
Result input directly from the EXEC_UNIT where the flags are calculated. 

ALU_OUT output record 
Direct available value of the current Flags. 

OUT _.A, 

OUT -B tri-state integer 
The value of the Flags given on command. 

Operations: 
Load the flags from the C-bus. 
Load the flags from the ALU. 
Write the contents of the flags to the buses. 
Set or reset specific flags. 

5.2.5 Command and status translators. 

The HHDL is familiar with the concept of a translator. But sirree the translators in the 
register module are slightly different, they are implemented as regular modules with ZERO 
delay. lf the translators have to be kept, in a lower level description, this can he changed, 
and then the translators will become physical parts of the circuit. Be it combinatorial 
parts. 

It would be most convenient to describe the command and status "busses" as regular 
PASCAL records. But the current version of the HELIX-software has problems assigning 
to record structures, na furthermore has HHDL no support for a record of record type 
structure definition. The busses will be, as a consequence of this, of integer type. The 

58 



____________________ A high level implementation in HHDL. 

commands are bitwise encoded in the integer. The exact coding and encoding can he 
found in the module that de:fines the command and status busses for the registers. For 
completeness it is noted that only those bits of the "integer connection" that are used will 
actually be created on chip. For an enumeration of the assignments possible is referred to 
the HHDL-listing of the translators. 

5.3 Decomposition of the operand unit. 

The software description of the "C "-processor gives a clear indication that the operand_uni t 
is nota very simple unit. Even in the software model the unit is already divided into several 
functional parts that cooperate. Therefore is the operand_uni t in de HHDL also expanded 
into several subcomponents, on the :first hardware description level. The components, with 
their interfaces, are listed below and are in accordance with their software model counter­
parts. Some of these interfaces will conneet directly to the interface on the higher level, 
some others will conneet to the subcomponents of the operand_uni t. 

The purpose of the operand unit is to prepare the operands in the instruction, as indicated 
by the operand formats. After they are fetched, they are operated on by the execution 
unit. And :finally the result from the execution unit is again presented to the operand unit. 
This unit has setup the destination for the result, in the previous stage. This could be an 
address in memory, but registers are also valid targets. 

The operand unit does all of the workif the instruction is aF( ull) or a M(ixed) instruction. 
The instruction QUAD is passed to the operand unit as a whole and the operand formats 
are completely decoded in the operand unit. lf the operand unit needs more QUADs from 
the instruction stream it can ask the instruction unit for more QUADs. 
Is the instruction however a P-instruction then the fetching of the operands is assisted by 
the instruction unit. The registers addressed implicitly by the instruction, possibly the SP 
or the FP, are then controlled by the instruction unit. lf the operand requires either an 
offset or immediate data ( both of 8 bit size which is included in the P instruction ), then 
the instruction unit puts this byte in the lower byte field of the currenLinstruction 
bus. Through this channel the extra value can be retrieved by the geLoffset_2 unit for 
operand 2. 
During the construction of operand 1 the geLoperand_1 module will also create the new 
destination for the result, if any is needed. The store...resul t unit shall then be used to 
store the result, when commanded to do so. 

5.3.1 The cache window. 

The cache window has to manipulate the dedicated memory projected in this module. The 
objective of this special cache is to have the last used frame ready and available, and this 
all at the highest speed possible. Currently the real contents of this module is still under 
study. And the actual implementation is in this version no more than just a gateway to 

59 



en 
0 

"Tj 
ot;• 
~ ..., 
('!) 

C;1 

w 

r-3 
)::;" 
('!) 

0.. 
('!) 

8 
~ 
0 
~-
M-o· 
~ 

0 ...... 
M-
)::r" 
('!) 

0 
'ij 
('!) ..., 
~ 
~ 
0.. 
~ 

2. 
M-

r=r t10,r 
STAT 

T I' 
I 

oe 

OPERANO.CONTROLLER 
CLK EXEC.STAT t10DE SlAT CHD 

ST .CHD ST .ST AT 
OPi.HOf.E 0Pf.H09E OP .STAT 0Pi.CI1D OF"F"i.CHDOF"H.STAT OP .STAT 0Pf.CI1D OF"F"f.CHD Of"F"f.STAT CACHE.STAT CACHE.CHD 

•. l L L ~ 
DIRECT~ 

orrs. I orre r ' 
CONT .CI10 CONT .STAT D:IRECT CONT .CHD CONT .SlAT D:IREC 

BYTE.F"REE BYTE.F"REE 
OET.orrsET.i OUAD-2 QUAO.e OET.OF"F"SET.e 

F"OR11AT ,.-- F"ORHAT -
OFf"SET OP.CHD OP.STA1 OFF"SET OP.CHDOP.STAT 

f"ORHAT 
EXEC-RES' 

IN_A; 
OPERi OPERe I 

OI'I'Sf; Ut t _en UH- 11 /\I Utn~T Ul't- ;nu 01'1'- ITI\T ! I - CONT.CI10 f"OR11AT 1- '- CONT -C11D f"ORtiAT 1-
ST '--- CONT.STAT IN-A r-- - CONT-STAT IN-B 

IN-B~ 
CONT -CHUCONT -STAT IN.C .....___ t10DE 

OET-OPERANo-i ....._ t10DE OET-OPERAND.e OP2 i DEST-SIZE DEST-SIZE OP-i 1--- OP-2 REO.R~ DEST-REO DEST.REO 
REO-READ DEST-ADR DEST-ADR 

STORE.RESULT 
REO.LOAD r-- REO-STAT REO-READ r-- READ-2 TOT.REO ~1 

RE0-8TAT '--- STAT.e f--<i 
REO-ST~T 1- CA~-DeTe~ACHE.STAT CACHE_%r:-oei~~-STAT ~ 

READ-i TOT .STAT 
CA~HE-DAT ~CHE-S AT CAOHE-AD CA -CHD CACHE-AD A -CHD STAT.i REO.~ EO-ST 

IIRITE-ST 
8TAT.ST 

OP i 
CA -, I 

8T.AIH 8T-"\T 8T.CMIJ8T-8l AT UI'S.-AUR Of' -UA l OPS.-CMIJ UI 'S.-8111 I UI'!:- CIC Ol'l .UI\1 Uf'I:-CMIJ 01'2-811\T CUNT.8~~T 
-CHD 

-

BU8-ADDRESSBU8-DATA9U$-CHDBU8-STAT 
STAC"-CACHE 

BUS-ADDi88 .l BUS~HD BtS.STAT 
BUS-DATA 

>­
)::;" 

ot;• 
)::;" 

......... 
('!) 

< 
('!) ......... 

~-
......... 
('!) 

~ 
~ 
M-
~ 
M-o· 
~ ...... 
~ 

~ 
~ 
u 
r 



--------------------n. high level implementation in HHDL. 

the bus unit. Items read or written are traded with the bus unit, without any further 
manipulation other then putting words and byte at the proper place in a QUAD. 

One essential fundion the unit does perform is arbitrating the sequence of accesses to the 
memory. It is very likely that this will not be needed in future. At least not for the accesses 
to the cache window. The cache window then has to be implemented as a three ported 
memory: 

• Two for reading, ( at random addresses ) 

• One for writing. ( at possibly one of the read addresses ) 

The cache window could be implemented as a straight "of the shelf" linear cache. This 
is probably the simplest implementation, but also the next to poorest in performance. 
( The poorest would be no cache at all. ) One of the more advanced methods would be 
to implement the cache as a real sliding window on the stack. This could make the top 
elements be very fast addressable, with a further possibility to address elements at random 
in the current stack window. The cache would than be "wrapped around" once the window 
grows out of the cache. One step further would be a cache like the previous one but it is 
supervised by a "storage scheduler". This scheduler process would take care of preparing 
the cache for future changes of the stack, either up or down. Not yet saved data QUADs 
in the cache, which are liable to be used next if the stack grows, should be saved first. 
Values that are needed in the near future when the stack shrinks should be loaded first. 
The author is aware of the fact that the last suggestion is simple one to write down, but 
it is a lot harder to design such a device. 

Once the cache is implemented as a memory module it should also be possible to flush the 
data which was stored in it. For this purpose only a special instruction is created, and this 
is represented in the modules by a specific command. This commands is passed onto the 
stack_cache, through the operand controller. 

• Module: STACK_CACHE. 

Interface: 
( * = ST, OPl, OP2 ) 

*-CMD input record 
Through these lines will the cache be informed about requests for data. It 
is possible that the command will also contain information on the size of 
the requested operand. 

*-STAT output record 
These lines will report the current status for a requested action. 

*-ADR input integer 
The address on which the data request has to act. This address need not 
be aligned on a quad. 

61 



high level implementation in HHDL. 

*_J)ATA output ( for OP!, OP2 ) 
input ( for ST ) 

data to be transported during the request. 

BUS_CMD output record 
Through these lines will the cache be informed about requests for data. It 
is possible that the command will also contain information on the size of 
the requested operand. 

BUS_8TAT input record 
These lines will report the current status for a requested action. 

BUS...ADR output integer. 
The address on which the data request has to act. This address need not 
be aligned on a quad. 

BUS_J)ATA bidirectional integer 
The data to be transported to the main memory during a request. 

CONT_8TAT output record 
CONT _CMD output record 

The interface with the operand_controller. 

5.3.2 The operand fetchers. 

Both operand fetchers are much very alike. The two differences are: 

1. The souree of the operand formats for F-operands. Which varies only in the byte of 
the instruction word. 

2. The destination for the result is set by the get_operand_1 unit. 

First the common elements of their structure are enlightened, then the calculation of the 
destination parameters is discussed. 

Fetching an operand can be subdivided into two classes: 

• Fetching F -operands 

• Others. 

To start with the more simple case ( seen from the operand fetcher ), the others. This 
class contains the fetching of the operands for the different P-instructions and some of the 

62 



-------------------A high level implementation in HHDL. 

M-instructions. Through the mode lines is indicated what type of instruction currently is 
executed. The control of the registers in this case is handled by the instruction controller 
on the highest level. The A- and B-bus will contain the required addresses. 

Get_operand_i is able to acquire the first operand with this address. It also has to create 
the destination for the result from this address. 

Get_operand..2 can be an 8-bit immediate value, or could need an offset to be added to 
the framepointer. This value is extracted from the instruction by the instruction controller 
and passed on through the offset fetcher to get..operand..2. This value is either used as 
operand #2 or is used to construct the effective address for operand #2. Which is then 
fetched from the stack. 

Is the instruction an instruction with F-operands? Then all the workis done in the operand­
unit, except the fetching of a new QUAD from the instruction stream. Dependant on the 
instruction type one or two operands are required. This property of the instruction is 
passed onto operand controller from the instruction unit. The operand controller passes 
this information onto the operand fetchers. The operand fetchers decode their format byte 
which contains the operand format applicableto them. If offsets are needed, get_operand_i 
is allowed to execute first, then if needed get_operand..2 fetches it offset. Currently all 
this is implemented in a complete sequentia! order, this could ( or should ) however be 
changed in the future. 

The decoding of the format is done by extraction of the fields in the operand descriptor. 
Then the actual execution of the operand fetch is done with severallarge case statements 
in which all possible variants of the formats are coded. The interfacing with either the 
stack cache or the registers is done autonomously. On completion the operand controller 
is signaled and the module returns to an idle state. 

The creation of the destination. 

The operand fetcher for the first operand has to perform an extra task when compared to 
the get_operand..2 module. This task however is usually a simple one. When the operand 
is an F -operand the destination is exactly alike the souree operand. Thus if the souree 
was a registerthen the destination will be that same register. Was the souree alocation 
in memory, be it main memory or the stack window, then the destination is that same 
location in memory. 

It is more complicated with the P-operands. Here has to he taken into account whether the 
stack is pushed or popped. This information is however passed onto the operand fetchers, 
by specific operand commands. Get_operand_i then selects the new stack address in one 
of the branches of a case statement. The case selector picks the type of operation and the 
destination address. 

Again another case are the M(ixed)-instructions. With these instructions more manipula­
tion of the data is involved. When the normal destination options are not sufficient, the 

63 



___________________ A high level implementation in HHDL. 

modules are manipulated "manually" hy the instruction unit. For this some extra operand 
commands are introduced. 

• Module: GET _OPERAND_! • 

• Module: GET _OPERAND...2. 

Interface: 
CONT _CMD input record 
MODE input record 
CONLSTAT output record 

Through these channels the operand-controller will steer the get_operand 
unit. 

IN ...A (B) input integer 
lf the operand is one of the registers, or a register is needed during the 
calculation of the operand, this input will supply the register's data. 

OP1 (2) output integer 
Once the operand is calculated, it is passed on to the execut ion_uni t 
through this path. 

FORMAT input integer 
This will contain the part of the instruction which contain the operand 
format. 

CACHE...ADR output integer 
CACHE...DATA input integer 
CACHLCMD output record 
CACHE..STAT input record 

This is the interface with the cache_uni t. This channel will he used to 
fetch the first ( second ) operand, if it is to he found in the cache window 
or the main memory. 

OFF_CMD output record 
OFF __sT AT input record 
OFFSET input integer 

Ahove three lines are the interface to the unit that will get the offset. On 
condusion of the action OFFSET will contain the resulting value. 

REG..READ output record 

64 



___________________ A high level implementation in HHDL. 

REG.STAT input record 
The two lines that will able the geLoperand unit to fetch the register values 
needed during the calculation of the operand. 

For the geLoperand_l unit only. 
DEST ...SI ZE output record 
DEST ..REG output record 
DEST -ADR output integer 

These lines are only available on the get_operand_1 unit. They indicate 
the place where the result of the instruction should he stored. This is a 
direct interface to the store..resul t unit. 

5.3.3 The offset calculation units. 

When using F-operands, and also with certain P-instructions, offset or immediate data is 
used during the construction of an operand. Separate units are created for calculation of 
the offset or immediate valae. Both the get_operand_1 and the get_operand...2 unit have 
their own offset fetcher. Though both modules are more or less alike they differ enough to 
justify the creation of two distinct modules. 

Get_offset_1 uses information from the instruction controller that indicates whether the 
instruction is an one or a two operand instruction. This information indicates the place 
in the instruction for fetching a offset of word size. Furthermore it sets fiags which inform 
the get_offset...2 module of the used partsof the current instruction stream. 
With the flags constructs get_offset_2 the offset for the operand 2 fetcher. After com­
pletion the module involved informs the operand fetcher and the operand controller of its 
current status. 

The value returned to the operand fetcher is completely processed. The resulting value is 
a signed 32 bit integer, sign extended and data extracted according the information passed 
on by the get_operand_1 (2) unit. 

• Module: GET _OFFSET _1. 

• Module: GET .JJFFSET ...2. 

Interface: 
CDNT _CMD input record 
CONT ...STAT input record 

For direct control by the operand_controller 

65 



high level implementation in HHDL. 

FORMAT input integer 
The part of the instruction that contains the operand formats, and a pos­
sibie 1 byte size offset. 

DIRECT input integer 
During the construction of the operands extra data from the instruc­
tionstream could be needed. This action will be executed by the 
instruction..uni t, and the result will be placed on the DIRECT lines. 

BYTE..FREE integer 
QUAD_2 integer 

The above two lines are a means of communicating the status of the 
used instructionstream. They are outputs on get_offset_1 and input on 
get_offset-2. 

OFF _CMD input record 
OFF.J>TAT output record 
OFFSET output integer 

Above three lines are the interface to the get_operand unit that requires 
the offset. On condusion of the action OFFSET will contain the result. 

5.3.4 The store result module. 

Once the operations on the operands are dorre, the "calculated" result has to be stored 
at the indicated destination. The destination is either implied by the instruction: P­
instructions. Or the destination equals the souree of first operand. The store module 
however does not calculate this address itself, it is obtained from the unit that fetches the 
first operand. 

The result has either to be stored in memory or in a registers. U sing the local frame as 
destination would placetheresult in the cache window. But it could also be place in the 
global frame or in the external frame as a consequence of the reference to the external 
framepointer, in which case it would be placed in "real" core. In these last two cases the 
store unit propagates the result to the stack cache unit to be stored, be it in the cache 
window or the main memory. 
Is however the destination a register than the result is placed into the registers via the 
C-bus. The only action taken by the store unit is the handshaking with the register, under 
control of the operand unit controller. 

• Module: STORE..RESULT. 

66 



___________________ A high level implementation in HHDL. 

5.3.5 

Interface: CACHE_A.DRmtput integer 
CACHLDATA output integer 
CACHLCMD output record 
CACHE...STAT input record 

This is the interface with the cache_uni t. This channel will he used to 
write the result of the operation, if it is to be placed in the cache window 
or the main memory. 

DEST ...REG input integer 
DEST ...ADR input integer 

These lines are only available from the get_operand_1 unit. They indicate 
the place where the result of the instruction should be stored. 

IN_C input integer 

The result from the execution unit that is to he stored. 

The Operand unit controller. 

The operand controller is actually quite a simple model. This could of course change in 
future when the sequence of execution is going to be more complex. 
All the operand controller has to do is: Pass parameters to the controlled modules, schedule 
the activation of the subordinate modules, wait fortheir completion, andreturn the status 
of the operand unit as a whole. 
Once the modules are activated, a request could be made for more QUADs from the 
instructionstream. This request is passed on to a higher level, which will indicate when 
the request has been serviced. This indication of completion is passed on to the requesting 
party, which then continues its operations, until finished. 

The interface of the module is: 

• Module: OPERAND_CONTRDLLER. 

Interface: 
For all other modules, described above, in this subcomponent there are the 
following signals. These signals are also described above. 

*-CMD 
*-STAT 

output 
input 

To the two get_operand modules: 

record 
record 

OP1 (2) ...MODE output record 

67 



___________________ A high level implementation in HHDL. 

Next to that are the interface signals to a higher level ( the instruction unit 
and de execution unit ): 
EXEC...STAT input record 

Information about the completion of the execution_uni t. Currently not 
used, but could he needed when in future the operand unit is allowed to 
store a result once the execution unit bas completed its actions. 

STAT output record 
CMD input record 
MODE input record 

To control the operand_uni t controller. 

5.3.6 The interface to the registers module. 

The operand fetchers, and the store...resul t unit, require the contentsof the registers, for 
certain instructions. As explained in a previous paragraph the commands for the registers 
are of a rather complex structure, so a translator would he appropriate. 
The reg_int (erf ace) translator accepts a request for one register, and transfarms it into 
a command on the register commands lines. Once the status of the commanded register 
is returned, this status is passed back to only those modules that are currently addressing 
this register. 
One advantage of the requests made by the geLoperand units, and the store...resul t 
unit, is the fact that the type of the issued commands are the simple types. They are 
either write requests for the busses, or a direct load from the C-bus, nothing more. 

The connections to this module are: 

• Module: REG_INT. 

Interface to the operand modules: 
READ_1 (2) input record 
STAL1 (2) output record 

And to the store...resul t module. 

WRITE...ST input record 
STAT...ST output record 
The above three control sets have different uaming to suggest their connec­
tion. The main difference lies technically in the fact that the READ-* lines 
indicate the register to he written on what bus. The WRITE...ST indicates 
into which register the result has to he written. 

68 



___________________ A high level implementation in HHDL. 

The interface to the register module: 
TOT ...REQ output record 
TOLSTAT input record 

The packed signal lines to indicate one or more requests to the registers, 
and to obtain the results of the issued commands. 

5.4 The execution unit. 

The execution unit consistsof more then what usually is denominated as ALU. In the cur­
rent case this certainly would not be complete. Functionally the execution unit camprises 
an ALU, a shift and extract unitand a multiplexer. 
The AL U is used for the arithmetical and logic operations, ranging from a simple add to 
a 32 by 32 signed division. 
The shift and extract unit is used to manipulate a data word by shifting it signed or 
unsigned, leftor right, or by extrading a partial field and adjusting it totheleast significant 
bit. 
The multiplexer gates one of the operands to the result bus. 

Currently all three partial modules are programmed in one HHDL module, and arenotsplit 
into smaller sub blocks. This could be a next step in decomposition. The commands issued 
to the execution unit activa te the subparts. For the AL U is extra information regarding the 
fundion to perform passed on the mode lines. The other two units are directly controlled 
through the commands issued. 

During arithmetical and logic operations the flags output is updated to represent the status 
of the current value on the result bus. When however a new result is obtained the previous 
flags are not kept unless saved in the flags register in the register module. 

The current software implementation of the execution unit does not give any further details 
regarding the kind of hardware implementation to use. All instructions are executed by 
more or less standard PASCAL statements, for shifts the HHDL routines are used. Due to 
the complete handshaking of all modules there are no time limits placed on the execution 
time of this unit. However this will not be the case when the design is in next steps of 
design. Then more profound algorithms have to be implemented to prevent a bottleneck 
in the execution unit. This is of course more important, time wise, for multiply, divide and 
modulo operations than it will be for add or subtract. 

The interface definition of the execution unit: 

• Module: EXEC_UNIT. 

Interface to the operand module: 

69 



____________________ A high level implementation in HHDL. 

A, B input record 
C output record 
Interface to the FLAGS register in the register...lllodule. 
FLAGS_OUT output record 
FLAGS_IN input record 

And the complete set handshake and mode signals. 

CMD input record 
MODE input record 
STAT output record 

The above three control sets have different naming to suggest their connec­
tion. The main difference lies technically in the fact that the READ-* lines 
indicate the register to he written on what bus. The WRITE...ST indicates 
into which register the result has to be written. 

The interface to the register...lllodule: 
TOT ...R.EQ output record 
TOLSTAT input record 

The packed signal lines to indicate One or more requests to the registers, 
and to obtain the results of the issued commands. 

5.5 The instruction cache. 

The instruction cache resembles the stack cache in the current state of implementation. It 
is nothing more than an empty funnel through which instructions are passed from the bus 
unit to the instruction unit. 
The instruction cache will service a request from the instruction unit for another QUAD 
in the instruction stream. lf this QUAD is not already available in the onboard memory 
of the cache, a request will be issued to the bus unit. Which will then fetch the requested 
Q U AD from main memory. 
For this cache a linear cache is probably a very good candidate. Memory accesses for 
instruction fetches usually categorize within the principles of locality. The only problem 
will be the determination of a optimal size. Not to big sirree this will be a waist of silicon, 
but not to small or otherwise the number of misses will be too large. 
A more elaborated cache method however could be devised. Sirree execution sequence of 
code can be predicted fairly simple, most likely the next instruction, a (small) prefetch 
queue would be an enhancement with very low costs in terms of silicon. ( if compared with 
the bulk of a linear cache ) 

• Module: LCACHE. 

70 



____________________ A high level implementation in HHDL. 

Interface to the bus unit: 
BUS_CMD output 
BUS-STAT input 
ADDRESS output 
DATA input 

Interface to the instruction unit: 

record 
record 
integer 
integer 

CDDE_CMD input record 
CODE-STAT output record 
INSTR...ADR output integer 
INSTRUCTION output integer 

The set of sïgnals to handshake the data exchange with, the lines to indicate 
the QUAD with, and the lines to retrieve the QUAD through. 

And the complete set handshake and mode signals. 
CMD input record 
MODE input record 
STAT output record 

5.6 The bus unit. 

The bus unit is the unit that takes care of data transfers to and from the main memory. The 
two units that will require this service are: The instruction cache, for fetching instructions. 
And the stack cache in the operand module. The stack cache will use the memory as the 
bottorn end of the stack. Every thing that "falls out of the bottom" of the stack will he 
written into main memory. And when the stack decreases the previously saved data will 
he reloaded into the stack. 

The side which is not deployed in this thesis is the I/0 interface to the external world. 
This part of this module has to interface with the rest of the system in which the "C "­
processor will he used. No thought was given to a possible implementation of this part of 
the module. The advantage of this is that no dependencies for this are build in the code. 
On the other hard are there no restrictions made which would he required for an certain 
interface. There are however some considerations taken into account, which are no more 
that generaL The instruction set contains an instruction that will activate the external 
reset pin ( is found on the Motorola series 680XX ). An instruction is available to control 
mutual exclusion of the external system buses. A Halt instruction will put the processor 
into a sleeping status, refraining from any activity on the buses. These instructions are, 
when issued, at the moment absorbed in the bus unit, and they have no effect what so 
ever. 

As usual the bus unit interfaceswithits master controller and the modules requiring service 

71 



___________________ A high level implementation in HHDL. 

through complete handshake channels. paths are available along which the addresses and 
the data are passed. The data conneetion between operand module and bus unit is a 
bidirectional one, the one with the instruction cache is unidirectional. 

The general controller, the instruction unit, is the main controller of the bus unit. In 
general this will mean that the bus unit is started once, and will only he stopped to 
actuate commands like LOCK, RESET or HALT. Other internal reasons forstopping bus 
accesses are at the moment not programmed. 

The interface definition: 

• Module: BUS_UNIT • 

Interface to the operand module: 
EXEC_CMD input record 
EXEC...STAT output record 
EXEC...ADDRESS input integer 
EXEC....DATA bi direct integer 

Interface to the instruction cache: 
IC_CMD input record 
IC...STAT output record 
IC...ADDRESS input integer 
IC....DATA output integer 

Interface to the FLAGS register in the register module: 
FLAGS__()UT output record 
FLAGS__!N input record 

And the complete set handshake and mode signals: 
CMD input record 
MODE input record 
STAT output record 

72 



____________________ ..,. high level implementation in HHDL. 

5. 7 The instruction unit. 

When we take a look at the top level design of the "C "-processor, can visualize the instruc­
ti on unit as a spider in a web. All of the other modules are controlled by the instructien 
unit. And this clearly states the purpose of the instructien unit: To pull the strings and 
be the general manager of data and control flow. All subunits have a control interface with 
the instructien unit: 

• A command line with one or more COMMANDs and STOP. 

• A status line with at least BUSY and READY. 

The only unit that is controlled in noother way than the above is the bus unit. The bus 
unit takes the actual action commands from either the instructien cache or the stack cache 
from the operand unit. All other units have an interface to the instructien unit that will 
also indicate required modes of operation. 

The instructien cache receives requests for instructions, from the instruction controller, 
located at the indicated addresses. On a miss of the cache the value will be fetched 
from main memory. An additional command to be issuedis the CLEAR command. This 
command follows from the Mcic instruction. 

The register unit is directly controlled during the P-instructions and some of the M­
instructions. During F-instructions the register unit is controlled by the operand unit 
only. 

The execution unit receives the mode of operatien from the instructien unit, This mode 
will set the function of eperation to be clone, and what the type of the eperation is. 
I.e. operatien add, type = signed. Currently this only holds for AL U operations, the 
shift and multiplex operations/commands are indicated through the command line. The 
operand unit receives the type of operands it bas to fetch through its command line. 
Once activated with a certain command, it will autonomously fetch the operands. If the 
instructions are P-instructions then the register unit is controlled directly by the instructien 
unit, and the correct registers valnes are already availableon the A-bus and B-bus. Certain 
operands require more QUADs from the instruction stream. In this case the status of the 
operand unit will indicate a request which has to be serviced by the instructien unit. This 
communication is again performed by means of a fully handshaked data exchange. 

The software model makes a clear distinction between the part of the instruction unit that 
fetches the instructions and the part that decodes and executes the instruction/opcode. 
The first one, the INSTR..FETCH, gets the next instruction to be executed, and does a 
preliminary decode of the instruction. This determines whether the instructien QUAD 
contains one or more P-instructions or one other instruction. In the later case the opcode 
part of the instructien is passed onto the instruction decoder, and the remaining part of 
the instruction is put on the current..instruction lines. In case of P-instructions the P­
opcode is written to the instruction decoder and the next byte is put on the LS Byte of the 

73 



-l 

*"" 

"'lj ...... 
~ 
.: 
'"1 
(!) 

CJ1 

*"" 
~ 
P"" 
(!) 

....... 
~ 
00 
<+ 
'"1 .: 
(") 
<+ c;· 
~ 

CL 
(!) 
(") 
0 
CL 
(!) 
'"1 

CL 
(!) 
(") 

0 s 
"0 
0 
~. 
<+ c;· 
~ 

I a..K 

INSTR-DECODE 

NEXT.READY 

CURRENT.INSTRUCTION 

CURRENT ..IHtTRUCTION DIRECT OP.CHD OP.8TAT OP.I10DE EXEC.8TATEXEC.ct1DEXEC.I10DE f'L.A08 RE0.8TATREO.CHD PC.VALUE 

> 
P"" o:q· 
P"" 
........ 
(!) 

< 
~ 

~· 
........ 
(!) 

~ 
~ 
<+ 
Pl 
<+ c;· 
~ 

s· 
~ 
~ 
u 
t:-< 



____________________ A high level implementation in HHDL. 

current_instruction lines as a possible operand in Immedia te of FP relative instructions. 
This way all opcodes are passed on to the decoder. If a byte in the P-instruction QUAD 
is used as an operand than this is reported to the instruction fetcher through the signal 
operand_used. In these cases the instruction fetcher will skip the byte used as operand. 
The instruction fetcher will also test for NOP fillers. These are not passed onto the decoder, 
but the next opcode from the next QUAD is fetched. 

The transport of the opcodes from the instruction fetcher to the decoder occurs, as in all 
other cases, under control of the standard handshake cycles. If the instruction has any 
actions to undertake on the bus unit, than this is communicated to the instruction fetcher 
as a request on the next...ready status lines, again with the appropriate handshaking. 
During the execution a F(ull) or a M(ixed) instruction the operand unit might require 
extra instruction QUADs to calculate the operands. If this is the case, a request is issued 
through the operand status line, op__stat, to the instruction decoder which passes it on to 
the fetcher. The fetcher in its turn gets the next instruction QUAD from the cache and 
puts it on the direct lines. It furthermore reports the termination of the request to the 
instruction decoder. And this module will pass this information on to the operand unit. 
Where it will be passed on to the requesting operand submodule. 

Next the two sub modules of the instruction_unit are discussed in more detail. 

5.7.1 The instruction fetcher. 

The instruction fetcher is the simpler one of the two modules in the instruction unit. 
It prepares the instruction QUADs for execution by the instruction decoder. For this 
purpose are the instructions classified into two sets: P-instructions and others. If the 
QUAD contains P-instructions the QUAD is subdivided into four BYTEs, which are each 
in sequence handed over to the decoder. The other instructions have the opcode stored in 
the MS BYTE. During the execution of these P-instruction only this MS BYTE is passed 
on to the decoder. 
During the execution of a P-instruction an extra BYTE can be required for an immediate 
operand or an FP relative addressing. In these cases the BYTE, used as data or offset, will 
be skipped and not used for execution. And the next BYTE to the data is transferred to 
the decoder. 
The instruction fetcher fetches the instruction QUAD from the address that is held in 
the programcounter in the register module. A special output port has been created on the 
register module, solely for this purpose. The PC register is updated by commands from the 
decoder which is instructed to do so by the instruction fetcher. When the instruction QUAD 
contains one or more P-instructions then the PC is incremented only at the execution of 
the first P-BYTE. The other instructions ( F(ull) and M(ixed) ) require an increment with 
every executed instruction. 
This module also forces the reset of the micro-processor as a whole. Upon reset the fetch 
unit forces a Mjmp on the opcode lines, and a reset address on the current_instruction 
lines. Thus the processor is forced to start execution at a known address. Currently no 

75 



____________________ A high level implementation in HHDL. 

specific actions are undertaken to reset all submodules. Of this is taken care by the HHDL 
language, and is at this level of decomposition not of any interest. 

• Module: INSTR...FETCH . 

Interface to the instruct ion cache: 
CACHE_CMD output record 
CACHE_STAT input record 
INSTR...ADR output integer 
INSTRUCTION input integer 

Interface to the bus unit. 
BUS_CMD output record 
BUS _.STAT input record 

Interface to the instruct ion decoder. 
NEXT_CMD output record 
NEXT....READY input record 
OPCODE output integer 
OPERAND_USED input boolean 

Data lines to the operand unit. they are not guarded by and handshake or 
ready signals. Handshaking is coordinated by the instructien decoder. 

CURRENT ....INSTRUCTION 

DIRECT 
output 
output 

integer 
integer 

Address line to obtain the current programcounter. Is also not guarded by 
any handshake or ready signals. 

PC_VALUE input integer 

5. 7.2 The instruction decoder. 

The instruction decoder in itself is actually a very simple module. This view however is 
blurred by the enormous amount of instructions that all require a different sequence of 
operation. 
In short: the module consists of only two case statements. In the first case statement 
is checked whether the programcounter should he updated ( incremented ) or not. The 
second case statement decodes the different instructions and schedules the appropriate 
submodules to execute their part of instruction. 
The decading of the instructions can be subdivided into eight large catagories, seven of 
them are executed very simply, the other needs ( a lot of ) extra attention. 

76 



___________________ A h1gh level implementation in HHDL. 

The four simple classes are: 

1. The regular two operand P-instructions. 

2. The regular immediate operand P-instructions. 

3. The regular FP relative operand P-instructions. 

4. The regular two operand F(ull)-instructions. 

With 1-4: 

Here regular denotes the use of the arithmetic and logic instructions, of which the 
shift and extract P- and extract F-instructions are excluded. The mode and type of 
AL U functions can be extracted directly from the opcode, and as a consequence of 
this all opcodes in one class are executed with the same piece of code. Every class 
has only one operand command to indicate the type of operands used. 

5. The next class of instructions are the shift instructions ( P- and F-instructions ) . They 
obtain their operand(s) in the same way as the previous 4 classes of opcodes. But 
the execution unit mode directly is set through the command line and not through 
the mode lines. 

6. The next classis the set with one operand instructions( P-and F-instructions ). They 
are all separately decoded and executed, each instruction bas its own AL U mode and 
type. Every opcode bas its own little piece of code for execution. 

7. This leaves a small class of P-instructions that move data to and from <TOS>. ( 
Ppushi, Ppushfp, Ppopfp, Pswap, Pdup ), and Pextract0(123) Every one of these 
instructions has a specific operand command code, which sets the operand unit into 
the appropriate mode for the fetching and storing the operands. 

8. The last class is the one with all other, not yet included instructions. These are 
mainly M-instructions, but also a few P- and F-instructions. Each of them bas its 
own block of execution code, which are all distinct. For some of the opcodes are 
specific operand commands created. Some opcodes use operand commands that also 
used by the previous seven classes. 

What all classes have in common, at the moment, is the way the execute scheduling of the 
submodules. A module is started by activating its command lines, then the decoder waits 
for the completion of the handshake sequence and deactivates the command line. Only 
then the next unit is executed. As usual with absolute rules there is one exception to the 
rule: 

When a P-instruction is executed the register module is only then deactivated after com­
pletion of the operand unit. 

This is due to the implementation of the register unit and the register module is directly 
controlled by the decoder. When the register module is deactivated the A- and B-bus are 

77 



___________________ A high level implementation in HHDL. 

tri- stated, but the values previously on the bus are needed by the operand unit for the 
calculation of the operands. 

• Module: INSTR..DECODE. 

Interface to the instrrp.ution 
NEXT ...READY output 
OPCODE 
OPERAND_USED 

input 
output 

fetalEEDJ:dexj 
record 
integer 
boolean 

Interface to the operand unit. 
OP _CMD output record 
OP_5TAT input record 
OP ...MODE output record 

Interface to the execution unit. 
EXEG_CMD output record 
EXEC_5TAT input record 
EXEC...MODE output record 

Interface to the register unit. 
REG_CMD output record 
REG_5TAT input record 

Status from the Flags register. 
FLAGS input record 

NEXT_CMD 

They are not guarded by and handshake or ready signals. Handshaking is 
achieved through the REG_CMD and REG_STAT lines. 

5.7.3 Conclusions and/or remarks. 

After a long elaboration on the different modules currently implemented, a few remarks 
and a short 'pre'conlusion seem appropriate. 
As was already predicted in [Bud88], are the modules at the top level of very different 
complexity. The register unit is almost ready to be implemented in ports ( and transistors 
). Whilst the caches on the other hand are not dealt with at all. 
A general valid condusion at this stage can however be that the current set with modules 
gives a good and solid basis to tackle the scheduling problem with. Currently everything 
is still executed in sequence. Note that with some of the modules already some possible 

78 



___________________ A high level implementation in HHDL. 

parallel actions are suggested. 
Some of the problems are treated with a large overkill. I think at the forced complete 
handshake with all modules, and most data busses. In the real model this will certainly 
not be the case. Another case of overkill could be considered the two instruction busses to 
the operand_unit. ( currenLinstruction and direct. This could proveto he overkill 
but the current way of implementation doesnotlead to any restrictions due to not enough 
"bus power" for fast execution. When in a next study is shown that only one is needed, 
then parts only have to be left out, which is simpler then to put it back in, in all previous 
stages. 

>>>> REMARKS <<<< 

As with the software model, are in this model some of the functions not com­
pletely ( or completely not ) defined. The most important fact and items of 
this imcompleteness are: 

• The linked list operands. Since there was already no equivalent of those in either the 
instruction set. As was there also not in the software model. 

• The instructions that manipulate the external bus actions: Loek, Halt, Reset, are 
more or less implemented. They are transported to the module that will he able 
to deal with the appropriate commands. But nothing is executed as part of the 
instructions. 

• The instructionset contained two three operand instructions. They are currently 
totally disregarded in the design. More important is the fact that it will be very 
difficult to implement three operand instructions in the current architecture as one 
cycle actions. This would mean that the instructions be either removed from the 
instructionset, or that their definitions are changed to fit the current architecture. 

• Defined in the instructions set are different high level Calls defined. The HHDL 
instruction decoder only knows the Mcallc instruction. The Mcallp instruction is not 
much work but currently it is not yet included in the code. 

79 



Chapter 6 

Simulation and testing of the HHDL 
models 

In the previous chapter is described how the "C "-processor is decomposed into se ver al 
functional modules. A short description of each of all generated modules is given. It gives 
details of their functionality and of their external I/ 0 definitions. It goes beyond saying 
that these modules need to be tested. 

There are several reason for testing, but the two main reasons are ( to my opinion ): 

1) Verify the correct functioning of the behaviour descriptions in HHDL. More crudely: 
Check whether the modules do what they are supposed to do. 

2) Generate simulation results that can be used to verify future implementations of the 
same module. If the module has more steps of decomposition, or even a direct gate 
realization, the newly created model can be verified against the high level model. 

The Silvar-Lisco package has several ways of simulating and testing the created models. 
The ones used in this thesis are: 

• Direct simulation of the model through the HELIX simulator. 

• And stimulation and observation of the modeland a model driver. 

In the first case the described model is compiled and linked with the simulator support 
package. This gives a simulator representation of the model. Pins on the model can be 
stimulated and observed. If the model in fact consists of several interconnected submod­
els, then the interconnections can be stimulated and observed as well. In this way all 
possible input stimuli can be assigned to test wether the model performs according the 
specifications. If this is not the case, then the model( s) has( ve) to be changed. 

The second case, with the model driver, has all the characteristics of the first option. But 
it has an additional circuit, or symbol, with it. This driversymbol a matching pin for every 
pin on the symbol to test. If the testsymbol has an outputpin XXXX, then the drivermodel 



has an inputpin XXXX, and they are connected. The model driver is a regular model in 
the way that it is described in HHDL, but its purpose is to help with the testing of the 
module, and it usually mirrors the actions of the model to test. 

Example. 

• To test a module which interfaces to a master module ( controller ) and several 
child modules ( slaves ). In the first system all modules which have communication 
with the testmodule have to be expressed in simulation commands. This requires 
an exact knowledge of the timing information, and this for all modules with random 
interleaving. This is nota trivial thing to write, especially since the simulator control 
language is not very powerful. 

• In the second case however, is it possible to create one or more subprocesses which 
will each mimic a child module in communication and data. The controller module 
could also be implemented in the drivermodel, in this case the whole system executes 
without interference from the operator. Tests could be build in to check for correct 
operation of the testmodule, and a GO/NO GO test would be the outcome. Less 
futuristic is the system where the role of controller is 'played' by the operator, which 
in his turn checks whether all child modules are activated correctly, and with the 
appropriate requirements. 

It goes beyond saying that the type of testing to select, is dependant of the kind of module 
to test. And that it is certainly dependant on the complexity in communications and the 
complexity of the internal functioning of the model. The more complex the system, the 
harder it is to generate and observer all appropriate signals. ( And this is not only because 
not all signals fit onto one display! ) 

As a guide rule one could say that a system with one channel to control and 2-3 channels to 
observe ( but only observe ) is the maximum that can be efficiently simulated without the 
assistance of a driver model. Are several channels in need of responses to their changes of 
state, then it would be advisable to test each of the channels in turn. The other channels 
will be interfaced by the driver model and will need ( very ) little attention. 

This chapter contains only information on the ways of testing and simulating the imple­
mented modules. No detailed simulator information is given. For this should be referred 
to either a separate appendix to this thesis, or directly to the used sourees which are on 
the Apollo systems in the group. 

6.1 Testing of the registers and the Register Unit. 

Form the above section can be concluded that the register models are of such a low com­
plexity that they can be tested with a simple simulation session. This is the approach 
chosen in this case. A simulator is created with the Silvar-Lisco package, a simulator run 
control file is created. And the results are evaluated. 

81 



__________________ Simulation and testing of the HHDL models. 

This all sounds to good to be true, there is only one flaw to the specific software ver­
sion. The HHDL models do not allow certain constructions of types, which are allowed 
in PASCAL, as types for the 1/0 of the models. Because of this some of these types are 
translated back and forth to strict integers. The exact assignments of bits in the integers 
can be obscure, and thus require some fiddling with large decimal integers. For this reason 
only, the simulator run control file interactsd directly with the register controllines. While 
the values should he assigning values to the global control busses instead. 

While testing the REGISTER unit the model created for the uni-directional tri-state buses 
also needs to he tested. The model for this is simple and so is the testing for the correct 
functioning of the BUSCHECK model. 

6.2 Models tested with a driver model. 

It has already been stated that driver models can be very useful for the testing of more 
complex models. In fact are all models decribed in this thesis of such complexity that they 
justify the use of model drivers to exercise the created models. 

lf a model is tested with a driver then the driver will be used to facilitate the interfacing 
with the handshake channels on the test module (i.e. the moduletotest ). The driver will 
contain several subprocesses which will run in parallel. And when the test module wants 
to communicate with the appropriately "connected" module, the driver will comply with 
the required handshake and service a possible data request. 

The control signals of the test module are not activated by the driver. This is clone through 
a simulation control file, which will write command data on inputs and will activate certain 
controllines. It the test module reports status information to the master ( in this case the 
simulation control file ), then it can proceed with the next step if the required conditions 
are true. 

The modules tested in this way are: 

• Stack. 

• get_offset_1 

• get_offset_2 

• get_operand_1 

• get_operand--2 

• store..resul t 

• bus_unit 

82 



_________________ Simulation and testing of the HHDL models. 

• instructien cache 

• instr_ietch 

• instr _de code 

The next step is to assembie the low level modules into their higher level counterparts and 
to simulate these. This has not yet been clone. But it is very obvious that this will he clone 
in exactly the same environement as it is clone for the smaller submodules. The Operand 
Unitand the Instructien Unit will require far more interfaces for the submodules they 
controL But in general overview are all drivers very much alike. 
The last step should be the assembly of the whole of the "C"-processor. Once all sub­
modules are tested and are found to behave according expectations, the global module 
can be tested. The first and simplest test will be run all the different instructions on the 
simulator model. Every instruction is run in a seperate batch file. And the results should 
be thoroughly checked for errors and/ or incomplete actions. The Software testfiles can also 
be used for this purpose although the bigger ones will require a large amount of processing 
and will produce a lot of data. 

6.3 The results of the simulations. 

The actual results of the simulations are not included in this report. This would serve no 
purpose what so ever. The amount of data is vast ( 3-4 megabytes), and would be only of 
intrest to those that will continue to study on this topic. The result are of course available 
on the system, and can be reviewed there. 

Since the amount of data is large, the essential thing to do during the creation of the 
models and simulators to give thought to the way the results should be represented. If no 
thoughts are given to this detail at the current implementation level then the extraction 
of the valuable information will be very tedious. It is for this reason that ( most ) all 
modules have an abundant quantity of statments that report the status of the module. As 
a consequence of this, one does not need to view all signals in the system to trace the flow 
of execution. If there is a flaw in the design several signals could be traeed to track the 
error down. 

Once the current modules are divided into smaller components it will be unavoidable to 
use the signal values to trace the activity of the system. But up to this point holds the 
former statement too: "It 's not just infomation that counts, it 's valuable information that 
what we're looking for." 

83 



Chapter 7 

Conclusions 

This chapter will contain some specific conclusions regarding the projects undertaken. The 
conclusions drawn from this thesis should ( or could) he used as guidelines for future steps 
in the design of the "C "-processor. One large ( and major part ) of the results is not in 
this document. Largely due to the vast amount of data generated, is chosen fora master 
thesis with as few listings as possible. lf not included listings are needed they are available 
( upon request ) on the Apollo systems of the Digital Systems group. 

7.1 What has been done? 

The instruction set has been defined. 

The designed instructionset is actually divided into two instruction sets. A P-instruction 
set, which is targeted to the specific needs and ca pa hilities of the "C "-processor. And a 
FM-instruction set which has a more general purpose implication for programming with 
this instruction set. 
Effort is made with the P-instructions to have these executed a the highest possible speed. 
All operands are already onboard chip before the execution starts. The instruction are of 
a RISC type. The processor should be able to execute P-instructions within one cycle. 
( with the possible exception of multiply, divide and modulo operations ). 
The FM-instructionset is in the same sense a little more restricted. It does not contain 
instructions which are abundant with extra memory references. The maximum number 
of references per operand is two. One to get the offset of the operand, a second one is 
needed if the operand was given by an indirect format. This gives, all in all, a maximum 
of four references within one instruction. ( two are in the code space in sequence from the 
instruction QUAD, two are in the data space at random) 

A software model has been written. 



________________________________ Conclusions. 

This software model will execute the instructionset that is defined in this thesis. The 
software model was initially created as a preliminary version to the HHDL descriptions. 
lts purpose would be to supply a correct model which was easy to write and did not have 
any timing information related to it. 
In the end it has become more that just a simplestepup to the HHDL version. The software 
model was very useful for gaining insight in the required data structures and the dataflow 
in the design. Next to this it can serve other purposes in the near future. 
If the structural design of the processor resembles the modularity of the software model, 
the software model will be able to give information on the internal values in its components. 
The values in the software model will then relate to the values calculated in the hardware. 

A sequentia! High Level model description is written. 

the relevant information extracted is from the software model. ( with simple tools like a 
cross-referencer, .. ) This information is used to construct several of the data structures 
and is also used to find the relevant data paths in the design. It will also indicate the type 
of operations that will opera te on a data structure. The decomposition of the topmost level 
into smaller components follows the exact decomposition in the software model. Not all 
constructs used in the software model are however allowed in HHDL, so where appropriate 
a conversion is made. Attempts are made to keep the difference as smallas possible. 
The models in HHDL use the, in chapter 2, described handshake for all communication 
actions. The flow of control follows the general control flow of the software model. This 
results in a completely sequentia! execution of the internal modules. At every point in time 
is only one module active. Through the handshake signals is the activity transferred back 
and forth from module to module. This again has the advantage that only one aspect in 
the design has influence on the results of the simulations. It is my opinion that the steps 
in the design should be made with as few varying parameters, per step, as possible. This 
will make the analysis of ( faulty ) results less complex. 

A PL/0 compiler is written and implemented. 

As a test case is a small compiler developed. The PL/0 compiler shows that a compiler 
can be made with the current set of instruction. The compiler will also be helpful to write 
small test programs. The limited syntax of the compiler is a severe limitation. It will not be 
possible to write large and complex programs, but smaller functional tests can be written 
in PL/0. An advantage of the limited syntaxis the short learning period. The syntaxis a 
very small subset of the language PASCAL and thus should not cause problems for any 
one. 

85 



________________________________ Conclusions. 

7.2 What is the current status of the project? 

The instruction set. 

The instruction set has an operational status. Programscan be executed using the given 
instruction set. Space in the code set is still available for future additions and updates of 
the instruction set. 

The software model. 

The software model is able to execute programs in "C "-code. With this execution is it 
possible to trace the internal operations in the modules of the software model. Sirree most 
of these models have a hardware counterpart, it is possible to verify the hardware actions 
against the actions undertaken in the software model. 

The HHDL description. 

The High Level design of the "C "-processor is described in HHDL. Almost all modules 
are tested for correct behaviour. All submodules in the generated model are however 
executed in a completely sequentia! fashion. This means that one a module is started 
by its controller, the controller will wait for the submodule to terminate before starting 
another submodule. It is obvious that this will not he the case in the final design. For the 
time being however is this method a very good approximation of the functioning of the 
system. 

The PL/0 compiler. 

The PL/0 compiler generates "C "-code. With this it is proven that the "C "-code can 
he used by a compiler to generate code. It is however not said that the code is optimal 
or representative for other high levellanguage compilers. And as a consequence of this no 
conclusions on the completeness of the instruction set can be me. Non the less is every 
effort made to make the instruction set complete. 

7.3 Future steps to take. 

Extensively test the software model. 

There are several good reasans for this. 

86 



________________________________ Conclusions. 

1) The software model is not tested to its limits by it current designer, and bugs are 
still around. The problem with these bugs is that they could influence the hardware 
model, since the hardware model was derived from the software model. The sooner 
the bugs in the software model are found, the sooner can they he corrected in the 
hardware models. The penultimate in this would he to find a bug in the software 
model will the chip is already in the processing stadium. 

2) Tests generated for the software model, can also be used as tests for the hardware 
model. And along with goes the fact that almost all responses in both systems should 
be alike. This making the initial testing simple. A recommendation would then be 
to generate a set of small test programs and use these as benchmarks in the initial 
tests of all future steps in the design. 

3) One of the "C "-processor essential charaderistics are the stackwindow and the in­
struction cache. To specify the properties of these parts with motivation, information 
is neededon the effects of size, algorithms, etc. used in those caches. To obtain this 
information simulations of large programs need to be run. From these runs can 
statistics be derived on the performance of the caches. These simulations will require 
less computing power if executed on a high level. Furthermore is it "very" simple 
to write a cache algorithm in a programming language like "C ", and give statistica! 
information from the required reads, writes, and misses. 

Developing high level languages generating "C "-code. 

In the previous section is already emphasized that large quantities of code need to be 
executed. It will be very cumhersome to write all of this code in the devised code format. 
In [Bud88] are even more profound reasons mentioned in favor of high level language 
compilers. For this purpose "C "-code generation compilers should be developed. Currently 
are available in souree text: 

• Small "C"compiler. [Hen84] 

This compiler accepts a subset of the language "C "which is substantial. It will 
certainly he complex enough for the required purposes. The compiler is able to 
compile itself, and this should be a nice task to use as test case. 

The current code generator generates 8086 code, which has very little resemblance 
with the "C "-code. 

• P4 PASCAL compiler. 

This compiler originates from the university where PASCAL originated. It is a full 
implementation of the language ( with some small extensions for a specific system ) 
and the generated code is P4 code. P4 code is very much alike the P-code used in 
current instruction set. 

87 



_______________________________ Conclusions. 

Test the HHDL models to its full extends. 

Was with the software model indicated that it still requires testing. Not all HHDL models 
are tested yet, and so is of course the complete assembly of the modules. The fi.rst objective 
will be to test all modules in their separate environments. 
Once all modules function according their specifications and/ or requirements, the building 
blockss can he put together. And the whole of the design is ready of testing. The vast 
majority of tests will check all communication channels. And once all are found in working 
order, the system can start the execution of single instructions and small programs. 
No sooner than this can he concluded whether the current design is a successful design or 
that another approach should be taken. 

lmplement some of the submodules already on a lower level. 

Some parts in the available design are on forehand already in for extra attention. The 
caches are not in the standard set of design items. One cycle 32x32 bit multipliers and 
dividers are also a challenging task. In a lot of modules 32 bit additions are found. The 
performance of the processor is in large detail dependant on the performance of these 
components. 
Another very essential factor is the space required to implement certain items. From this 
point of view valid questions would be: How large are certain components, with certain 
( adjustable ) parameters? And as final question how much silicon is already taken up by 
caches, multipliers, and other large items? 
lf these components cannot fulfil certain requirements, either the performance will be lower, 
or the design has to he redone to adjust the surrounding modules. This can he prevented 
by starting research on these specific components on lower levels or even on a gate level 
implementation. From this research should follow information which will guide some of 
the future design steps. lt should provide answers to questions as: "Can a combinatorial 
multiplier he used, or should a 32x4 multiplier be used with an extra delay in execution?". 

These results are not essential for the design on the current level of description, but are 
essential to make motivated decisions. ( It does not guarantee that correct decisions 
are made, but only that they are motivated. ) 

7.4 The ultimate question. 

Is the current design feasible? 

The answer to this question should of course be YES! Otherwise 1 year of work would be 
wasted. 

Aside from the above answer is it the authors opinion that from the current stage of 

88 



________________________________ Conclusions. 

development the system can be developed to a real system. There are however a few 
catches to this: 
It could prove that the chip is too complex to be manufactured with the current technology. 
The above studies should give an indication for this. 
It could also prove that the execution speed is lower than expected. This could be due to 
a more cycles per instruction problem. Or it could also be a technology problem. 

But still is it my opinion that from the current design a correct functioning lower level 
design can be made. 

89 



Appendix A 

Bibliography 

[Bud88] Frank Budzelaar. The structured design of a processor for the language C. Mas­
ter's thesis, Eindhoven Universsity of Technology, The Netherlands, may 1988. 

[Das84] Subrata Dasgupta. The design and description of computer architectures. Wiley­
lnterscience" 1984. ISBN 0-471-89616-0. 

[Hen84] James Hendrix. The small-C handbook. S.l. : Reston, 1984. 

[Ker88] Brian W. Kernighan. The C progmmming language. Prentice-Hall, Englewood 
Cliffs, N.J., 1988. 

[Pem82] S. Pemberton. P4 Compiler and assembler/interpreter. Halsted Press, 1982. 

[Wir76] Niklaus Wirth. Algorithms + data structures = Progmms. Prentice-Hall, 1976. 

95 



Appendix B 

Enumeration of the ''C ''-processor 
instructions. 

The following "C "-souree files descibes the exact use of the bits in the instructions. It 
was used to determine which of the formats would be most convenient to implement the 
instructien stream in. 
As a consequence one will find three instructien streams in this listing: A BYTE oriented, 
a WORD oriented, a QUAD oriented. And although the QUAD stream seems to leadtoa 
little waist of instructien space, it is the more useful of the three. 

The definitions of several types used for the 
generation of the "C"-processor instructionset. 

first made 28-4-88. WJW. 

typedef 
struct { I* Description of byte type parts *I 

unsigned :8; 
}byte; 

typedef 
union { I* Description of word type parts *I 

unsigned : 16; 
struct {byte wb[2]; 

} wb; 
}word; 

typedef 
union { I* Description of quad type parts *I 

unsigned :32; 



______________ Enumeration of the "C "-processor instructions .. 

struct {word qw[2]; 
}qw; 

struct {byte qb[4]; 
}qb; 

}quad; 

union core{ I* the basic elements of starage 

*I 
byte m8 [ 65536 ]; 
word m16[ 32768 ] ; 
quad m32[ 16384 ] ; 
} mem; 

typedef 
struct { I* Description of a Full operand 

#define 
#define 

unsigned mode :2; 
uni on{ 

struct{ 
uni on{ 

unsigned base_reg :2; 
unsigned data_for :2; 

}source_spec; 
unsigned operand_size :3; 

}regular; 
unsigned mix :5; 

}operand_descr; 
unsigned signed :1; 
}F_operand_select; 

F_OP_signed 1 I* bit 0 
F_OP_unsigned 0 I* bit 0 

for signed operands 
for unsigned operands 

#define F_OP_off8_siz8 0 I* bit 1-3: size of the operand 
#define F_OP_off8_siz16 1 I* and size of the offset 
#define F_OP_off8_siz32 2 
#define F_OP_off16_siz8 3 
#define F_OP_off16_siz16 4 
#define F_OP_off16_siz32 5 
#define F_OP_off32_siz8 6 
#define F_OP_off32_siz16 7 

#define F_OP_base_sp 0 I* bit 4,5: u se the stackpointer 
#define F_OP_base_fp 1 I* bit 4,5: u se the framepointer 
#define F_OP_base_epf 2 I* bit 4,5: u se the extern FP as 
#define F_OP_base_TOS 3 I* bit 4,5: use the Top of Stack 

*I 
*I 
*I 
*I 

as base *I 
as base *I 
base *I 
as base *I 

97 



______________ Enumeration of the "C "-processor instructions .. 

#define F_OP_data_direct 0 I* bit 4,5: u se the direct data 
#define F_OP_data_indir 1 I* bit 4,5: u se the indirect data 
#define F_OP_data_relPC 2 I* bit 4,5: use the PC as base register 
#define F_OP_data_immed 3 I* bit 4,5: use the immediate data 

#define F_OP_mode_rel 0 I* bit 6,7: RELATIVE 
#define F_OP_mode_rel_ind 1 I* bit 6,7: RELATIVE INDIRECT 
#define F_OP_mode_data 2 I* bit 6,7: DATA 
#define F_OP_mode_misc 3 I* bit 6,7: MISCELLANEOUS with 32:32 

#define F_OP_mix_sp32 0 I* register sp 
#define F_OP_mix_rel_sp32 1 I* relativa sp[off32]:32 
#define F_OP_mix_relin_sp32 2 I* relativa [sp [off32]] : 32 
#define F_OP_mix_flags32 3 I* FLAGS 
#define F_OP_mix_imm32 4 I* immediate:32 
#define F_OP_mix_fp32 8 I* register fp 
#define F_OP_mix_rel_fp32 9 I* relativa fp[off32]:32 
#define F_OP_mix_relin_fp32 10 I* relative [fp [off32]] :32 
#define F_OP_mix_direct32 12 I* direct [addr32] 
#define F_OP_mix_efp32 16 I* register fp 
#define F_OP_mix_rel_efp32 17 I* relativa fp[off32] :32 
#define F_OP_mix_relin_efp32 18 I* relativa [efp [off32]] :32 
#define F_OP_mix_indir32 20 I* indirect [[addr32]] 
#define F_OP_mix_pc32 24 I* register PC 
#define F_OP_mix_rel_TOS32 25 I* realtive <TOS>[off32]:32 
#define F_OP_mix_relin_TOS32 26 I* relativa [<TOS>[off32]]:32 
#define F_OP_mix_TOS8 27 I* register <TOS>:8 
#define F_OP_mix_TOS16 27 I* register <TOS>:16 
#define F_OP_mix_TOS32 27 I* register <TOS>:32 
#define F_OP_mix_rel_pc32 27 I* relativa pc[off32] :32 

typedef 
struct { I* condition codes *I 

typedef 
struct{ 

unsigned :8; 
}conditions; 

I* the operand types possible in P Instructien's 
*I 

unsigned :2; 
}P_operand_type; 

#define P_O_op 0 I* 0 operand instructien *I 
#define P_i_op 1 I* immediate data *I 
#define P_fp_op 2 I* FP raferenee for data *I 

op's 

*I 
*I 
*I 
*I 

*I 
*I 
*I 
*I 

*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 

98 



______________ Enumeration of the "C "-processor instructions .. 

#define P_div_op 3 I* diverse oparation sel *I 

typedef 
struct{ I* the actions performed by the alu 

*I 
unsigned :3; 
}ALU_operation; 

#define ALU_add 0 I* addition wlo carry *I 
#define ALU_sub 1 I* subtraction wlo borrow *I 
#define ALU_and 2 I* AND bool+logic *I 
#define ALU_or 3 I* OR bool+logic *I 
#define ALU_xor 4 I* XDR logic *I 
#define ALU_mult 5 I* multiply (un)signed *I 
#define ALU_mod 6 I* module (un)signed *I 
#define ALU_div 7 I* di vide (un)signed *I 

typedef 
uni on{ I* the mode of the oparation to perform. 

*I 
unsigned 
unsigned 
unsigned 
}ALU_mode; 

#define ALU_nocarry 
#define ALU_carry 
#define ALU_unsigned 
#define ALU_signed 
#define Alu_logic 
#define ALU_boolean 

carry:!; 
signed:1; 
boolean:1; 

0 I* oparation without carry 
1 I* oparation with carry 
0 I* unsigned oparation 
1 I* signed oparation 
o I* logic oparation 
1 I* boolean oparation 

*I 
*I 
*I 
*I 
*I 
*I 

typedef 
struct { I* The 

P_operand_type 
ALU_operation 
ALU_mode 
}P_opcode; 

P_code instructien descriptor *I 
P_operand; I* type of operand *I 
alu_code I* alu function sel*l 
P_mode I* clnc, uls, bil *I 

typedef 
struct { I* The P_code instructien *I 

unsigned P_select :2; I* P_indicator *I 
I* must be OOb *I 
P_opcode 
}P_instruction; 

P_function; 

99 



______________ Enumeration of the "C "-processor instructions .. 

typedef 
struct { I* A P_code instructien with a short data field 

*I 
unsigned P_select :2; 
I* must be OOb *I 
P_opcode P_function; 

P _data; byte 
}PD_instruction; 

typedef 
struct { I* The F_code instructien selecter *I 

unsigned :6; 
}F_opcode; 

typedef 
struct { I* The F_code instructien *I 

unsigned F_select :2; 
I* must be 10b *I 
F_opcode F_function; 
}F_instruction; 

typedef 
struct { I* The F_code instructien with 1 operand 

*I 
unsigned F_select :2; 
I* must be 10b *I 
F_opcode F_function; 
F_operand_select F_op; 
uni on{ 

word F_data_16; 
struct{ 

byte F_data_8; 
byte empty; 
}short_data; 

}data; 
}F_1op_instruction; 

typedef 
struct { I* The F_code instructien with 2 operands 

*I 
unsigned F_select :2; 
I* must be 10b *I 
F_opcode F_function; 
F_operand_select F_op[2]; 

100 



--------------En urneration of the "C "-processor instructions .. 

uni on{ 
byte F_data_8; 
byte empty; 
}short_data; 

}F_2op_instruction; 

typedef 
struct { I* The M_code instruction selector *I 

unsigned :6; 
}M_opcode; 

typedef 
struct { I* The M_code instruction *I 

unsigned M_select :2; 
I* must be 01b *I 
M_opcode M_function; 
}M_instruction; 

typedef 
struct { I* The M_code instruction vithout operands 

*I 
unsigned M_select :2; 
I* must be 01b *I 
M_opcode M_function; 
byte empty[3]; 
}M_Oop_instruction; 

typedef 
struct { I* The M_code instruction vith 1 operand 

*I 
unsigned M_select :2; 
I* must be 01b *I 
M_opcode M_function; 
uni on{ 

F_operand_select 
byte 
}field_ i; 

uni on{ 

M_op; 
M_data_8; 

vord F_data_16; 
struct{ 

byte F_data_8; 
byte empty; 
}short_data; 

101 



______________ Enumeration of the "C "-processor instructions .. 

}data; 
}M_1op_instruction; 

typedef 
struct { I• The M_code instructien with 2 operands 

*I 
unsigned M_select :2; 
I• must be 01b •I 
M_opcode M_function; 
uni on{ 

F_operand_select M_op[2]; 
struct{ 

conditions C; 
F_operand_select M_op 
}jump_field; 

}operands; 
}M_2op_instruction; 

typedef 
struct { I* The set of NOP's 

unsigned :6; 
}N_opcode; 

typedef 
struct { I* The N_code instructien •I 

unsigned N_select :2; 
I• must be 11b •I 

N_opcode N_function; 
}N_instruction; 

typedef 
union { I* just the fields with the opcodes 

are merged not the operands *I 
P_instruction P; 
F_instruction F; 
M_instruction M; 
N_instruction Nop; 
struct{ 

unsigned opcode_select :2; 
I* OOb P_code 

10b F_code 
01b M_code 
11b NOP 

•I 
uni on{ I• the active item depends 

102 



______________ Enumeration of the "C "-processor instructions .. 

typedef 
union { 

the opcode_select •I 
P_opcode P_field; 
F_opcode F_field; 
M_opcode M_field; 
N_opcode Nop; 

}op_field; 
}split_fields; 

}opcode; 

op code 

I* The description of an 8 bits 
instructien stream 

•I 
instruction; 

F_operand_select operand; 
byte data_8; I• normal 8 bits data 
byte word_h; I• high part of a word 
byte word_l; I• low part of a word 
byte quad_3; I• byte 3 of a quad, msb 
byte quad_2; I• byte 2 of a quad, 
byte quad_1; I• byte 1 of a quad, 
byte quad_O; I• byte 0 of a quad, lsb 

}instruction_8; 

typedef 
union { I* The description of an 16 bits 

instructien stream 
•I 

I* data information •I 
byte data_8[2]; 
word 
word 
word 

data_16; 
quad_h; 
quad_l; 

I* instructien formats •I 

I* with P_instructions •I 
P_instruction P_i2[2]; 
PD_instruction PD_i1; 
struct{ 

P_instruction P_i1; 
N_instruction Nop; 

}P_i1; 

I* 2 databytes in 1 word *I 
I* normal 16 bits of data •I 
I* the msb word of quad •I 
I• the lsb word of quad •I 

I* 2 executable P_instr. •I 
I* P_instr with data *I 

I* 1 executable P_instr. •I 
I* and a NOP instr. *I 

103 



______________ Enumeration of the "C "-processor instructions .. 

I* with F_instructions •I 
struct{ 

F_instruction 
F_operand_select 

}F_i_begin; 
union { 

F_i; 
F_op1; 

I* the first part of 
F_instr. contains epeode 
and first operand *I 

I* first F_operand. •I 

I* the possible secend part 
of a F_instruction contains 
secend operand and data •/ 

word 
struct{ 

F_data_16; I• secend field is data 

F_operand_select F_op2; I* secend F_operand. *I 
union{ I* and a data field *I 

byte F_data_B;/* with data •/ 
byte empty; I* or is empty •I 

}F _i_end_data; 
}F_i_operand; 

}F_i_end; 

I* with M_instructions •I 
struct{ 

M_instruction 
uni on{ 

M_i; 

I* first part contains 
epeode and possible 
the (first) operand 

I* place for operand or 
data 

conditions c; I* conditions for tests *I 
F_operand_select F_op1; I* first operand •I 
byte M_data_B;/* data field •I 
byte empty; I* not used •I 

}M_i_field2; 
}M_i_begin; 

union { I* secend part contains the 

word 
struct{ 

data_16; 

F_operand_select F_op2; 
uni on{ 

byte data_8; 
byte empty; 
}data_f ield; 

}split; 
}M_i_end; 

secend operand and or 
data ( 8 or 16 ) •/ 

I* secend operand 
I* possible data 

104 



______________ Enumeration of the "C "-processor instructions .. 

}instruction_16; 

typedef 
union { I* The description of an 32 bits 

instructien stream 
•I 

I* data information *I 
byte data_8[4]; I* 4 databytes in 1 quad •I 
vord data_16[2];1* 2 vords in a quad •I 
quad data_32; I* the normal quad •I 

I* instructien formats *I 

I* vith P_instructions *I 
struct{ 

P_instruction 
uni on{ 

P_i1; I* first field alvay P_inst•l 

N_instruction Nop234[3]; I* rest is nop's •I 
uni on{ 

struct{ 
byte data_8; I* data from instr 1 •I 
uni on{ 

N_instruction Nop34[2]; 
I* only one PD_instruction •I 

struct{ 
P_instruction P_i3; 

I* 1PD and 1 P_instruction *I 
uni on{ 

N_instruction Nop4; 
I* last field is NOP *I 

P_instruction P_i4; 

byte 

}field_4; 
}active_34; 

}field_34; 
}data_2; 

struct{ 
P_instruction P_2i; 
uni on{ 

I* 1PD and 2 P_instructions *I 
data_8; 
I• data for instr on field 3 

2 PD instructions 

I* 2nd P_instruction 

105 



______________ Enumeration of the "C "~processor instructions .. 

N_instruction Nop34[2]; 

uni on{ 
struct{ 

byte 

uni on{ 

I* only 2 P_instructions *I 

data_8; 
I* 1 P and 1 PD_instruction*/ 

P_instruction P_i4; 
I* 1 P, 1 PD, 1P_instr. *I 

N_instruction Nop4; 

}field_4; 
}data_3; 

struct{ 

I* 1 P, 1 PD, 1 NOP *I 

P_instruction P_i3; 
I* uptil now 3 P_instr. *I 

uni on{ 
N_instruction Nop4; 

I* last field is NOP *I 
P_instruction P_i4; 

byte 

}field_4; 
}instr_3; 

}active_34; 
}field_34; 
}instr2; 

}active_234; 
}field_234; 

}P_i; 

I* 4 P_instructions *I 
data_8; 
I* data for instr on field 3 

2 P and 1 instructions 

I* with F_instructions *I 

I* 1 quad can contain either 1 2-operand F-instruction 
with some data (8 bits). 
Or 1 1-operand instructien with data 

*' F_1op_instruction F_1i; 
F_2op_instruction F_2i; 

I* with M_instructions *I 
M_Oop_instruction M_Oi; 

106 



______________ Enumeration of the "C "-processor instructions .. 

M_1op_instruction M_1i; 
M_2op_instruction M_2i; 

}instruction_32; 

The following list simply enumerates all possible instruction opcodes with their nummeric 
value. They fit in the above patterns but, it is rather hrad to derive an opcode from that. 

I* file: instr_def.def 

All instructions that are valid for execution by 
the C-processor are in this file. 
They are subdivided in the following types of instruction. 

P-instructions: short and fast P-code instructions, 
with implied stack addressing. 

M-instructions: Those instructions that are not in the 
two classes above. 

F-instructions: With a Full addressing possibility for 
almast all instructions. 

NOP-instruction: Fill for quad's with Pcodes 

P-instructions: 
operations with implied addresses 
<TOS>, <TOS-1>, <TOS-2>. 

And thus have no operands. 

*I 
#define Padd 0 I* add 
#define Paddc 1 I* add with carry 
#define Psub 2 I* sub 
#define Psubb 3 I* sub with borrow 
#define Pland 4 I* logic and 
#define Pband 5 I* boolean and 
#define Plor 6 I* logic or 
#define Pbor 7 I* boolean or 
#define Pxor a I* logic eXclusive OR 
#define Pdup 9 I* duplicate stack top 
#define Pmultu 10 I* unsigned multiply 
#define Pmults 11 I* signed multiply 
#define Pmodu 12 I* unsigned modulo 
#define Pmods 13 I* signed modulo 
#define Pdivu 14 I* unsigned modulo 
#define Pdivs 15 I* signed modulo 

I* 
operations with 1 immedia te operand. 

*I 
#define Paddi 16 I* add 

*I 
•I 
•I 
•I 
•I 
•I 
•I 
*I 
•I 
*I 
•I 
•I 
•I 
*I 
*I 
*I 

*I 

107 



______________ Enumeration of the "C "-processor instructions .. 

#define Paddei 
#define Psubi 
#define Psubbi 
#def ine Plandi 
#define Pbandi 
#define Plori 
#define Pbori 
#define Pxori 
#define Ppushi 
#define Pmultui 
#define Pmultsi 
#define Pmodui 
#define Pmodsi 
#define Pdivui 
#define Pdivsi 

'* 

17 I* add with carry 
18 I* sub 
19 I* sub with borrow 
20 I* logic and 
21 I* boolean and 
22 I* logic or 
23 I* boolean or 
24 I* logic eXclusive OR 
25 I* push immediate data 
26 I* unsigned multiply 
27 I* signed multiply 
28 I* unsigned modulo 
29 I* signed modulo 
30 I* unsigned modulo 
31 I* signed modulo 

operations with 1 operand relative to the 
FP. This gives a local variabie or a parameter. 

*' #define PaddFP 
#define PaddcFP 
#define PsubFP 
#define PsubbFP 
#define PlandFP 
#define PbandFP 
#define PlorFP 
#define PborFP 
#define PxorFP 
#define PpushFP 
#define PmultuFP 
#define PmultsFP 
#define PmoduFP 
#define PmodsFP 
#define PdivuFP 
#define PdivsFP 

'* 

32 '* 
33 '* 
34 '* 
35 '* 
36 '* 
37 '* 
38 '* 
39 '* 
40 '* 
41 '* 
42 '* 
43 '* 
44 '* 
45 '* 
46 '* 
47 '* 

add 
add with carry 
sub 
sub with borrow 
logic and 
boolean and 
logic or 

*' *' *' *' *' *' *' boolean or *I 
logic eXclusive OR *I 
push variabie or param. *I 
unsigned multiply *I 
signed multiply 
unsigned modulo 
signed modulo 
unsigned modulo 
signed modulo 

operations of diverse types. 
this is a weird collection of P_codes, 
and there is as a consequence of that 
very little logic in it's structure. 

*' #define Plnot 
48 '* logic not 

#define Pbnot 49 '* boolean not 
#define Pneg 50 '* negate 
#define Pcomp 51 '* campare 

*' *' 
*' *' 

108 



______________ Enumeration of the "C "-processor instructions .. 

#define PextractO S2 '* extract a subrange *' 
#define Pextract1 S3 '* of bits from <TOS>. *' 
#define Pextract2 S4 '* but this needs 10 bits. *I 
#define Pextract3 ss '* so 8 data and 2 instr. bits *' 
#define Pshl S6 '* shift left *' #define Pswap S7 '* exchange <TOS>, <TOS-1> *' 
#define Pcompi sa I* campare with immediate data *' 
#define PpopFP S9 I* Pop into FP raferenee *' #define Pshru 60 I* unsigned shift right *' 
#define Pshrs 61 I* signed shift right *' 
#define Pcbeek 62 I* check bounds *' 
#define Psel 63 '* select one of two operands *' 

'* 
M-operation instructions 
Mixed instructions. 

*' #define Mret 64 '* return from subroutine *' 
#define Mcall 6S I* call subroutine *' #define Mcallc 66 '* call function or procedure *' 

'* use C calling convention *' 
#define Mjmpc 67 I* jump on condition *' 
#define Mreti 72 I* return from interrupt *I 
#define Mjmp 73 I* jump always *' #define Mswap 74 I* swap process descriptors *' 
#define Mcallp 7S I* call function or procedure *I 

I* Use PASCAL calling convent.*/ 
#define Mcic 80 '* clear instructien cache *' 
#define Mretf 81 '* return from function or pr.*/ 
#define Mtdj 82 '* test, decrement and jump 
#define Mupm 88 '* update memory 
#define Mtrap 89 '* take trap nnn 
#define Mreset 96 '* activate reset line 
#define Menaint 97 '* enable interrupts 
#define Mhalt 104 I* halt processor 
#define Mdisint 10S I* disable interrupts 
#define Mlock 113 I* loek systembuses 

'* F-operation instructions 
Operations with full actdressing modes for both 
operands. 

*' 
*' 
*I 
*' 

*' 
*' 
*' 

*' 

109 



--------------En urneration of the "C "-processor instructions .. 

#define Fadd 128 I• add vith 2 full operands *I 
#define Faddc 129 I• add carry 2 operands •I 
#define Fsub 130 I• subtract •I 
#define Fsubb 131 I• subtract vith borrow •I 
#define Fland 132 I• logic AND •I 
#define Fband 133 I• boolean AND •I 
#define Flor 134 I• logic OR •I 
#define Fbor 135 I• boolean OR •I 
#define Fxor 136 I• XOR •I 
#define Fmove 137 I* move data •I 
#define Fmultu 138 I• unsigned multiply •I 
#define Fmults 139 I• signed multiply •I 
#define Fmodu 140 I* unsigned modulo •I 
#define Fmods 141 I* signed modulo •I 
#define Fdivu 142 I* unsigned divide •I 
#define Fdivs 143 I• signed divide •I 
#define Fcheck 146 I• check bounds •I 
#define Fselect 148 I• select one out of two •I 
#define Flnot 152 I• logic inverse •I 
#define Fcomp 162 I• compare •I 
#define Fbnot 168 I• boolean inverse •I 
#define Fneg 178 I• two's complement •I 
#define Fshl 184 I• shift left •I 
#define Fshrs 188 I• signed shift right •I 
#define Fshru 189 I• unsigned shift right •I 

#define NOP 192 I• no action instructien •I 

I• end file: instr_def.def •I 

B.l Operand formats and their values. 

In this appendix is described the format of the operands. Listed are the possible operands 
and their appropriate value in decimal and binary notation. 

The following notational conventions are used: 

[ ... ] Indicates a memory reference. 

reg Gives the name of a register used for reference or as souree or destination. 

XX[ ... ] Indicates a memory reference with the register XX used as baseregister. 

110 



_____________ Enumeration of the "C "-processor instructions .. 

offnn Is a value of described with nn bits, These nn bits are stored in the codestream. 
If the result however is to be used as an offset, the value in the codestream is 
sign extended to 32 bits. As sign indicator is the most significant bit used of the 
offset stored in the instructionstream. For example an offset off8 with stream 
value 129(dec) will result in an 32 bit value of -127. 

:nnX lndicates the size and sign of the operand the fetch. If the operand is not 32 
bits in size, then it has to be extended before it can be used in the AL U. The 
sign extension flag X indicates whether the extension is signed of unsigned. The 
field nn indicates the memory size of the operand to be fetched. 

nn#immediate:mmX The operand is immedia te data. The size of storage in the 
codestream is indicated by the field nn. The size and sign for the conversion 
are given by mmX. 

dec binary description 

relativa operands 

0 00000000 sp [off8 ] :8 u 
1 00000001 sp [off8 ] :8 s 
2 00000010 sp [off8 ] : 16u 
3 00000011 sp [off8 ] : 16s 
4 00000100 sp [off8 ] :32u 
5 00000101 sp [off8 ] :32s 
6 00000110 sp [off16] :8 u 
7 00000111 sp [off16] :8 s 
8 00001000 sp [off 16] : 16u 
9 00001001 sp [off16] : 16s 

10 00001010 sp [off16] :32u 
11 00001011 sp [off16] : 32s 
12 00001100 sp [off32] :8 u 
13 00001101 sp [off32] :8 s 
14 00001110 sp [off32] : 16u 
15 00001111 sp [off32] : 16s 
16 00010000 fp [off8 ] :8 u 
17 00010001 fp [off8 ] :8 s 
18 00010010 fp [off8 ] : 16u 
19 00010011 fp [off8 ] : 16s 
20 00010100 fp [off8 ] :32u 
21 00010101 fp [off8 ]:32s 
22 00010110 fp [off16] :8 u 
23 00010111 fp [off16] :8 s 
24 00011000 fp [off16] : 16u 

111 



_____________ Enumeration of the "C "-processor instructions .. 

25 00011001 
26 00011010 
27 00011011 
28 00011100 
29 00011101 
30 00011110 
31 00011111 
32 00100000 
33 00100001 
34 00100010 
35 00100011 
36 00100100 
37 00100101 
38 00100110 
39 00100111 
40 00101000 
41 00101001 
42 00101010 
43 00101011 
44 00101100 
45 00101101 
46 00101110 
47 00101111 
48 00110000 
49 00110001 
50 00110010 
51 00110011 
52 00110100 
53 00110101 
54 00110110 
55 00110111 
56 00111000 
57 00111001 
58 00111010 
59 00111011 
60 00111100 
61 00111101 
62 00111110 
63 00111111 

fp [off16] : 16s 
fp [off16]:32u 
fp [off16]:32s 
fp [off32]:8 u 
fp [off32] :8 s 
fp [off32] : 16u 
fp [off32] : 16s 
efp[off8 ]:8 u 
efp[off8 ] :8 s 
efp[off8 ]:16u 
efp [off8 ] : 16s 
efp[off8 ]:32u 
efp [off8 ] : 32s 
efp[off16]:8 u 
efp[off16]:8 s 
efp[off16]: 16u 
efp[off16]:16s 
efp[off16]:32u 
efp[off16]:32s 
efp[off32]:8 u 
efp [off32] :8 s 
efp[off32]:16u 
efp[off32]:16s 
TOS[off8 ]:8 u 
TOS[off8 ] :8 s 
TOS[off8 ]:16u 
TOS [off8 ] : 16s 
TOS[off8 ]:32u 
TOS[off8 ]:32s 
TOS[off16]:8 u 
TOS[off16]:8 s 
TOS[off16]:16u 
TOS[off16]:16s 
TOS[off16]:32u 
TOS[off16]:32s 
TOS[off32]:8 u 
TOS [off32] :8 s 
TOS[off32]:16u 
TOS[off32]:16s 

relativa in direct operands 

64 01000000 
65 01000001 
66 01000010 

[sp[off8 ]] :8 u 
[sp[off8 ]] :8 s 
[sp[off8 ]] : 16u 

112 



____________ Enumeration of the "C "-processor instructions .. 

67 01000011 [sp [off8 ] ] : 16s 

68 01000100 [sp [off8 ] ] : 32u 
69 01000101 [sp [off8 ] ] : 32s 

70 01000110 [sp [off16]] :8 u 

71 01000111 [sp[off16]] :8 s 
72 01001000 [sp[off16]] :16u 

73 01001001 [sp [off 16]] : 16s 
74 01001010 [sp [off 16]] : 32u 

75 01001011 [sp[off16]] :32s 
76 01001100 [sp [off32]] :8 u 

77 01001101 [sp [off32]] :8 s 
78 01001110 [sp [off32]] : 16u 

79 01001111 [sp [off32]] : 16s 
80 01010000 [fp[off8 ]] :8 u 

81 01010001 [fp[off8 ]]:8 s 

82 01010010 [fp [off8 ] ] : 16u 
83 01010011 [fp [off8 ] ] : 16s 

84 01010100 [fp [off8 ] ] : 32u 

85 01010101 [fp [off8 ] ] : 32s 

86 01010110 [fp[off16]]:8 u 
87 01010111 [fp[off16]] :8 s 
88 01011000 [fp[off16]] :16u 
89 01011001 [fp[off16]] :16s 

90 01011010 [fp [off 16]] : 32u 
91 01011011 [fp [off 16]] : 32s 
92 01011100 [fp [off32]] :8 u 

93 01011101 [fp [off32]] :8 s 
94 01011110 [fp [off32]] : 16u 

95 01011111 [fp [off32]] : 16s 
96 01100000 [efp[off8 ]] :8 u 

97 01100001 [efp[off8 ]] :8 s 
98 01100010 [efp[off8 ]]:16u 

99 01100011 [efp[off8 ]] :16s 
100 01100100 [efp[off8 ]] :32u 
101 01100101 [efp [off8 ] ] : 32s 
102 01100110 [efp[off16]]:8 u 
103 01100111 [efp[off16]] :8 s 

104 01101000 [efp [off16]] : 16u 
105 01101001 [efp[off16]] :16s 
106 01101010 [efp[off16]] :32u 
107 01101011 [efp[off16]] :32s 
108 01101100 [efp[off32]] :8 u 
109 01101101 [efp[off32]]:8 s 
110 01101110 [efp [off32]] : 16u 
111 01101111 [efp [off32]] : 16s 

113 



____________ Enumeration of the "C "-processor instructions .. 

112 01110000 [TOS[off8 ]]:8 u 
113 01110001 [TOS[off8 ]] :8 8 
114 01110010 [TOS[off8 ]]:16u 
115 01110011 [TOS[off8 ]]:16s 
116 01110100 [TOS[off8 ]]:32u 
117 01110101 [TOS[off8 ]] :328 
118 01110110 [TOS[off16]] :8 u 
119 01110111 [TOS[off16]] :8 8 

120 01111000 [TOS[off16]]:16u 
121 01111001 [TOS[off16]]:16s 
122 01111010 [TOS[off16]] :32u 
123 01111011 [TOS[off16]]:32s 
124 01111100 [TOS[off32]]:8 u 
125 01111101 [TOS[off32]]:8 8 

126 01111110 [TOS[off32]]:16u 
127 01111111 [TOS[off32]]:168 

Operand5 with direct data, or relative to PC 

128 10000000 [off8 ] :8 u 
129 10000001 [off8 ] :8 8 
130 10000010 [off8 ] : 16u 
131 10000011 [off8 ] : 16s 
132 10000100 [off8 ] :32u 
133 10000101 [off8 ] :32s 
134 10000110 [off16] :8 u 
135 10000111 [off16] :8 s 
136 10001000 [off16] : 16u 
137 10001001 [off16]:168 
138 10001010 [off16] :32u 
139 10001011 [off16] :32s 
140 10001100 [off32] :8 u 
141 10001101 [off32] :8 s 
142 10001110 [off32] : 16u 
143 10001111 [off32] :168 
144 10010000 [[off8 ]]:8 u 
145 10010001 [[off8 ]]:8 s 
146 10010010 [[off8 ]] : 16u 
147 10010011 [[off8 ]] :168 
148 10010100 [[off8 ]]:32u 
149 10010101 [[off8 ]] :328 
150 10010110 [[off16]]:8 u 
151 10010111 [[off16]] :8 s 
152 10011000 [[off16]]:16u 

114 



_____________ Enumeration of the "C "-processor instructions .. 

153 10011001 [[off16]] :16s 
154 10011010 [[off16]] :32u 
155 10011011 [[off16]] :32s 
156 10011100 [[off32]]:8 u 
157 10011101 [[off32]] :8 s 
158 10011110 [[off32]] :16u 
159 10011111 [[off32]] :16s 
160 10100000 pc[off8 ]:8 u 
161 10100001 pc[off8 ]:8 s 
162 10100010 pc [off8 ] : 16u 
163 10100011 pc [off8 ] : 16s 
164 10100100 pc[off8 ]:32u 
165 10100101 pc[off8 ]:32s 
166 10100110 pc[off16] :8 u 
167 10100111 pc[off16]:8 s 
168 10101000 pc[off16]:16u 
169 10101001 pc[off16]:16s 
170 10101010 pc[off16]:32u 
171 10101011 pc[off16]:32s 
172 10101100 pc[off32]:8 u 
173 10101101 pc [off32] :8 s 
174 10101110 pc[off32]:16u 
175 10101111 pc[off32]:16s 
176 10110000 immediate:8 :8 u 
177 10110001 immediate:8 :8 s 
178 10110010 immediate:8 :16u 
179 10110011 immediate:8 :16s 
180 10110100 immediate:8 :32u 
181 10110101 immediate:8 :32s 
182 10110110 immediate:16:8 u 
183 10110111 immediate:16:8 s 
184 10111000 immediate: 16: 16u 
185 10111001 immediate:16:16s 
186 10111010 immediate:16:32u 
187 10111011 immediate:16:32s 
188 10111100 immediate:32:8 u 
189 10111101 immediate:32:8 s 
190 10111110 immediate:32:16u 
191 10111111 immediate:32:16s 

miscellaneous: register and 32:32 operands 

192 11000000 sp 
193 11000001 sp 
194 11000010 sp[off32]:32u 

115 



____________ Enumeration of the "C "-processor instructions .. 

195 11000011 sp[off32]:32s 
196 11000100 [sp [off32] : 32] u 
197 11000101 [sp[off32] :32]s 
198 11000110 flags 
199 11000111 flags 
200 11001000 immediate:32:32u 
201 11001001 immediate:32:32s 
202 11001010 
203 11001011 
204 11001100 
205 11001101 
206 11001110 
207 11001111 
208 11010000 fp 
209 11010001 fp 
210 11010010 fp[off32]:32u 
211 11010011 fp [off32] : 32s 
212 11010100 [fp [off32]] : 32u 
213 11010101 [fp [off32]] : 32u 
214 11010110 
215 11010111 
216 11011000 [off32] : 32u 
217 11011001 [off32] : 32s 
218 11011010 
219 11011011 
220 11011100 
221 11011101 
222 11011110 
223 11011111 
224 11100000 efp 
225 11100001 efp 
226 11100010 efp[off32]:32u 
227 11100011 efp[off32]:32s 
228 11100100 [efp[off32]]:32u 
229 11100101 [efp[off32]]:32u 
230 11100110 [[off32]]:32u 
231 11100111 [[off32]]:32s 
232 11101000 
233 11101001 
234 11101010 
235 11101011 
236 11101100 
237 11101101 
238 11101110 
239 11101111 

116 



____________ Enumeration of the "C "-processor instructions .. 

240 11110000 pc 
241 11110001 pc 
242 11110010 TOS[off32]:32u 
243 11110011 TOS[off32]:32s 
244 11110100 [TOS[off32]]:32u 
245 11110101 [TOS[off32]]:32s 
246 11110110 TOS:S 
247 11110111 TOS:S 
248 11111000 TOS: 16 
249 11111001 TOS: 16 
250 11111010 TOS:32 
251 11111011 TOS:32 
252 11111100 
253 11111101 
254 11111110 
255 11111111 

117 



Appendix C 

A PL/0 compiler for the C-processor 

It is already mentioned several times before: ' It would he very convenient if a compiler 
was available.' When the "C"-processor, under design, should become a real product it is 
inevitable that compilers should he available. One could read [Bud88] on this philosophy. 
For the purpose of testing the created instructionset, and perhaps for testing the effects of 
different cache- mechanisms, a very small and simple but usable compiler is written. The 
PL/0 compiler listed in Chapter 5 of Datastructures + Algorithms = Programs 
by N. Wirth [Wir76] is used as a skeleton, the lexical scanner and language parser were 
retained but the code generation part was rewritten to fit the needs and capabilities of the 
" C "-processor. 
In this appendix the code generation be discussed will, the lexical scanner and the parser 
are thoroughly treated in the hook by Wirth, and thus only a few words are spent on these 
topics. 

C.l The lexica! scanner. 

The lexical scanner is the working horse of a compiler. It collects character strings which 
tagether make a language item. It then translates these items into tokens, where tokens 
can be things like BEGIN-symbol, END-symbol, IDENTIFIER, NUMBER, etc. With 
these tokens are sametimes attributes connected. For instanee the token NUMBER has 
an attribute VALUE which hold the numeric value of the token. An IDENTIFIER has an 
attribute which holds the NAME of the identifier, a integer which indicates the level of 
declaration, a address which gives the offset in the current frame. 

In our specific case the scanner recognizes the reserved words of the language: 

-BEGIN 
- CALL 
- CONST 
-DO 



--------------------A PL/0 compiler for the C-processor. 

-END 
- IF 
- ODD 
-PROCEDURE 
- THEN 
-VAR 

WHILE 

The following items are also recognized: 

identifiers, maximum length is 10. An identifier can only contain alphabetic ebar­
aeters and digits, The first character has to be a character. ( Identifiers are case 
insensitive. ) 

- Numbers in decimal notation. The size is restricted to the system on which the 
compiler is implemented. 

- + for addition. 
- for subtradion or as unary negation operator. 

- * for multiplication. 
- / for integer division. 
- ( and ) for priority in expressions. 
- := is the assignment operator 

= for tests on equal. 
, separator during constant or variabie definition. 

- . program terminator. 
- ! for tests on not equal. 
- < for tests on less. 

> for tests on greater. 
# for tests on less or equal. 

- $ for tests on greater or equal. 
- ; as separator for statements. 

The above mentioned items are read from the input file, symbol by symbol and handed to 
the requester: the parser. 

C.2 The PL/0 parser. 

The PL/0 parser of the recursive deseend type. This makes it very easy to implement a 
structure of routines which recognizes the language definition. The code generation has 
to be fitted into this structure of routines. This is also relatively simple since the parser 
clearly indicates which language element is being translated, and when the programmer 
has a clear idea of what to do with each of the statements, the two match up very well. 

119 



____________________ A PL/0 compiler for the C-processor. 

A language which is to be compiled with this method has to comply with certain restrictions 
in its grammar and its context sensitivity. For specific information on this topic is referred 
to [Wir76, paragraph 5.1 to 5.4], or to mostother textbooks on compilers for more general 
information on recursive deseend compiling. 
The main language items recognized by the parser are: 

• Constant declarations. 

• Variabie declarations. 

• Procedure declarations. 

• Block statement. 

• Assignment statement. 

• If statement. 

• While statement. 

• Procedure call statement. 

• Expressions consisting of: 

- terms 

- factors 

- conditions. 

Once these items are recognized by the parser, the last thing the compiler has to do, is to 
generate the code which is needed for the execution of this language element. 

C.3 The code generation. 

The original PL/Ocompiler is equipped with a code generator which selectsits instructions 
from a small subset of the P-codes. All of the P-codes in the literature can be classified 
as STACK oriented instructionsets. This code generator has to be replaced by one that 
generates instructions chosen for the "C "-code instructionset. 
The code generation is dorre in two steps. In the first step is code generated which maps 
to the "C "-code on a very simple way. But the code generator ignores the fact that 
some codeworcis can contain more that just one instruction. and that for different sizes of 
operands, different versions of instructions are available. This also makes it very simple 
to generate the addresses that go with the jumps, or to fill them in later on during the 
compilation. For this reason also, is the whole memory image of generated code kept 
in memory. The advantage to this is that jump addresses can directly be filled in once 
the jump addressis known, and thus no labels are needed for updating in a second pass. 

120 



_____________________ A PL/0 compiler for the C-processor. 

The disadvantage is that the maximum amount of generated code is limited to the space 
reserved for code in the compiler. The amount of code ho wever that can be generated is 
fairly large, and the compiler is simple. These two would validate the assumption that the 
memory space will be more that adequate for almost all programs to be written in PL/0. 

C.3.1 The instructions generated. 

The following instructions are used in the first step of the code generation. With them 
is the "C "-code instruction sequence that is generated in the second pass. Some of the 
instructions are already "C "-code instructions, and herree they need no translation, they 
will only be packed into quads when that is possible. 

Direct usabie "C "-code instructions: 

• Pneg { negate <TOS> } 

• Padd { add <TOS>+ <TOS>-1} 

• Psub {sub} 

• Pmult { multiply} 

• Pdiv { divide} 

• Mret { return from subroutine} 

• Mretf { return from function or procedure } 

• callf { call a function or procedure } 

• calr { call routine without frame } 

• Jmp 

PL/0-Instructions that need to be translated. 

• lit 

• JPC 

{ load a constant } 

Dependant on the si ze of the constant the use "C "-code is: 

Ppushi <constant> 
If the constant is in the interval-128 <= <constant> <= 127. 

Fmove <TOS>, 32:<constant16> 
In all other cases. 

{ jump on condition of a test } 

Before it is possible to make a jump, conditions to jump on have to be set. This 
is clone with an extra instruction. Possible conditions to jump on are: 

{ test in jumps codes } 
jmp_test =( 

Lequ 
,Lneq 

{ test for equality } 
{ test for unequality } 

121 



____________________ A PL/0 compiler for the C-processor. 

• lod 

,tJss 
,Lgtr 
,tJeq 
,Lgeq 
,Lodd 
); 

{ test for less } 
{ test for greater } 
{ for less or equal} 
{ for greater or equal } 
{ is TOS odd or even } 

lf the expression is a comparision then the conditions are set by doing a Pcomp 
instruction. This instruction subtracts < TOS > and < TOS - 1 >, does not 
leave the result of the subtradion on the stack, but does affect the flags. The 
conditions are specific tests on the ZERO and CARRY flag. 

For the test on ODD the < TOS > is ancled with 1 and a jump on ZERO is 
taken, as the representative of the even condition. 

As with the unconditional jump, the addresses for the jumps are fixed on 16 bit 
addresses. Si nee some of the jumps are forward jumps. N ot all addresses can be 
resolved at first. For this purpose a new pass through the intermediate code is 
needed. There are several other solutions for this. The one currently used was 
the fasted to program, and requires very little code. 

Thus the instruction is either: 

Pcomp 

Mjmpc <condition>, <address16> 

or for the ODD condition: 

Plandi 1 

Mjmpc Z, <address16> 

{ load a variabie on the stack } 

This code is used as the generic instruction for loading the value of a variabie 
on the stack. Sirree PL/Ois a language with a specific scope for every variable, 
different variables are to be found in different stack frames. This in contrast 
with the "C "-language which has only the global and local variables which it 
can access. The globals are in the "outermost" frame, whilest the local variables 
are located in the current stackframe. 

Currently is this exactly what is supported by the current version of the PL/0 
compiler. As a consequence of this it is notallowed tonest procedures. Although 
the compiler syntax and parser are propely equipped for handeling nested pro­
cedures, the code generation part is not yet capable of generating code to go 
with the syntax. The problem lies in finding the address of intermediateframes 
to address. For this some extra code has to be generated, which will link all 
frames together. A excellent example of the straightforward implementation of 

122 



--------------------A PL/0 compiler for the C-processor. 

• sto 

• int 

• opr 

these framescan he found in: PASCAL IMPLEMENTATION, The P4 
compiler by Pemberton and Daniels. [Pem82] 

So for the time being only two levels of variables are accessible: Global and local 
varia bles. 

Global variables are recognized by a indicated difference in lex-level of -1. The 
address going along with it is the offset in the data space. For hardwiring the 
address, the base address of the data space has to he added. The instruction 
used is: 

Fmove <TOS>, [<address16>]:32 

Local variabie are in the current frame, and can thus he addressed through the 
frame pointer. Local variables can he identified by a difference in lex-level of 0. 
The address indicates the offset to the FP, if FP is situated at the bottorn of 
the frame. This is the case after a regular procedure call. The instruction used 
IS: 

PpushFP <frameoffset> 

With the last instruction is of course, implied that the offset of the address 
is found within an offset of 127 quads from the frame pointer. In the current 
PL/Oshould this not cause any problems, since the creation of a 127 items in 
the current frame requires 127 separate declarations of varia bles. If, ho wever, 
arrays are implemented this could case some problems. But for variables of this 
si ze the External frame pointer was added to the processor. 

The remarks made for the lod generic instruction also hold for the sto instruc­
tion. 

For global references is the instruction used: 

Fmove [<address16>]:32, <TOS> 

For local references: 

PpopFP <frameoffset> 

{ increment the stackpointer } 

This instruction is a sort of leftover from the original PL/0-code version. It is 
currently not used however. And there thus is there no direct translation for it. 

{ not yet defined instructions } 

This instruction was used as a generic operation instruction. The parameters 
indicated what type of operation was to he performed. Currently it is used as 
an instruction to test some of the extensions to he made to the instruction set. 
If the expansion is in accordance with the requirements a new enumerated field 
is added to the above instructions. Currently there are no such extensions. 

123 



____________________ A PL/0 compiler for the C-processor. 

C.3.2 CAUTION with addressing of items. 

The ad dressing in the "C "-processor is dependant on the item to be accessed. If the item 
is on the stack and is referenced through either SP or FP than the offset quantity is QuA Ds. 
However, if the item is not referenced thru either SP or FP than all can be addressed with 
byte offsets. 
Since in the PL/0- compiler all items are off QUAD size, this means that hardwired ad­
dresses for either jumps or references in the global frame have to be byte addresses, of 
which the lower 2 bits are always zero. The addresses are then obtained by multiplying the 
QUAD address by 4. References on the stack are not multiplied by 4, since all references 
are expressed in QUADs. 

C.4 Remarks about extensions and improvements to 
the PL/0-compiler. 

The current compiler is no more or less than the skeleton given in [Wir76]. Improvements 
can be made in either optimizing some ( or most ) of the code generation, or by extending 
the language with extra features. Of both will he given an example below. But heit said 
that there are more than just these. 

C.4.1 Peephole code optimisation. 

Consicier the following expression: 

C :=A+ B 

( Where A, B and C are found in the local frame ) 
Currently the code for this would he: 

PpushFP<offseLA> 
PpushFP<offseLB> 
Padd 
Ppop <offseLC> 

2 bytes 
2 bytes 
1 byte 
2 bytes 

Which requires 7 bytes and ( probably ) 4 cycles. 

With use of the instruction PaddFP the code stream would be: 

PpushFP<offseLA> 
PaddFP <offseLB> 
Ppop <offseLC> 

2 bytes 
2 bytes 
2 bytes 

124 



--------------------A PL/0 compiler for the C-processor. 

Which requires 6 bytes and ( probably ) 3 cycles. 

This is only a small example of what can be dorre by adding more instructions to the 
possible output of the PL/0-compiler. It also has to effect that more of the instrucbons 
of the processor are being used, and herree would the testing of possible cache algoritms 
become more realistic. 

C.4.2 Extending the language. 

Currently the language has procedures which are called without parametersandreturn no 
result value. Various programming methods however arebasedon recursive programming, 
for w hich the parameters and return val u es are more or less essen ti al. 
The parameters can be bypassed by devoting global narnes to the input parameters, and 
than the first this to do in the called procedure is to copy the global values into local 
variables. This frees the global parameters/variables, and they can be reused. 
The return value could also be handled this way, but the modification to the compiler to 
implement functions will be very modest. 
The object definition has to be expanded with an entry for a function, and so has the 
reserved word list. The parser has to be enriched with an if-then part that tests for a 
FUNCTION token. Once this is found the processing continues as if a procedure was 
found. 
The main difference are in: 

• Calling the function: An extra field is left open on the stack before the function blode 
is called. 

• When an assignment to the function name is made, the address generated with the 
variabie name will not be in the local frame but to this extra created space. 

The result of all this is that after the function call the < TOS > value will contain the 
function result. 

C.4.3 Other changes. 

Other possible changes to the compiler are given by the questions acompanying in [Wir76, 
chapter 5]. Unfortunately the answers are not in the hook. 
More demanding "improvements" are to be made to the conversion from the intermediate 
code to the "C "-code. Currently this is dorre in a disorganized fashion. Cleaning up would 
give the compiler a better performance and a nice implementation. 

Making changes to this compiler will be a good experience for those that are going to tackle 
the bigger problems for this processor. Rewriting the code generators for the P4 compiler, 
or for the Small-" C "compiler 

125 



Appendix D 

The UNIX features used during the 
development of the system 

The original SL2010 package is developed to run under the Apollo operating system Aegis. 
This system is more or less like Unix some of its features are better, some of them are 
worse. 
One feature which is certainly better on the Unix system is the writing of script files. For 
this are man more tools available than there are under Aegis. For this purpose and for the 
convenience of Unix are all used commands "transferred" to the Unix environment. 
Transporting the tools encompasses nothing more then executing the SL2010 commands 
from an Aegis script. An Aegis shell is characterized by the command #!I com/ sh on the 
first line. Scripts of this kind can be called by either Aegis or Unix shells, commandline 
parameters are passed correctly. 
U sing the above features, script file are set up that will automate the compilation and 
linking of the generateel modules. As an additional bonus to this are the compiler and 
linker in the SL2010 package ( remote) runable from sites which do nothave a licence for 
the package. 

D.l U sing the m4 package. 

The programming language HHDL is a PASCAL based language. Most structures are 
exact copies of their counterparts in PASCAL. The extensions toPASCAL are however 
large and complex. Most of these have to do with mapping variables to connections in the 
hardware design. Or they are used to convert the sequentia! nature of PASCAL into a 
semi parallel model, fit to execute a hardware model. 
Due to restrictions in the used HHDL compiler are there restrictions placed on the usage 
of the scheduling statements. They are allowed in only two places: 

• In the main body of the component. 

• And in the asynchronous sections with the component. 



__________ The UNIX features used during the development of the system . 

It is however not allowed to use these statements in procedures of functions. 
This causes a great deal of problems sirree it is very customary to put often used parts of 
code in small subroutines. In HHDL is this not always possible. 

To prevent the code from growing immensely the m4 macro expander is used to place this 
code inline. The places to put this code is indicated by "macro calls". As a consequence 
of this the resulting code file will still he quite large. But the amount of code is derived 
in a different fashion. Possible errors in "macro sub routines" are easier to correct, sirree 
they need fixing in only one place. Not every place of the samecode has to he changed by 
hand 

A second instanee where the use of the macro expander became very useful was the "fix)' 
for the "feature" in the WAITFOR statement. The initial interpretation was that this 
statement would wait for the required conditions to become true. If they were already true 
then the statement would be skipped. It turned out that the statement would first wait 
for the line to have a transition, and only then was the condition checked. One possible 
way to correct the risen problem was to go through all modules and fix the code with an 
IF-statement to test the condition first. 
With the m4 expander another approach was taken: 
A macro TESTWAlTPOR was created, and this new macro was used at allinstances where 
the required test was needed. 

A third example lies in the communication and the handshaking that goes with it. Cur­
rently many tests are of the shape: test for ready, give command, wait for busy, wait for 
ready, deactivate command. It is possible to write the full code every time this is needed. 
It would however be more convenient to put it in a subroutine. Alas is this not possible, 
due to the restrictions. So for most of these instances is a macro written which will do all 
handling of the handshaking. The parameters of the macro indicate the condition and the 
lines to check. 

D.2 Using the SCCS system. 

When creating a large and complex system it is usually a big problem to keep track of all 
changes made. Which changes are made very, when and how. 
Unix has a set of tools which will do most of the above mentioned tasks. The SCCS system 
( SoURCE CODE CONTROL SYSTEM ) creates an archive in which it keeps all the souree 
files. The system keeps information on the changes made to all souree files. 

• Who made them? 

• Wh en we re they made? 

• What is changed? 

Next to that is it possible to use some of this information in the souree itself, which will 
indicate version numbers etc. will running the programs. 

127 



UNIX features used during the development of the system . 

Another facility that comes with the SCCS system is the management. If somebody 
( Whom is authorized to do so ) wants to change the source, he or she issues a request 
which is only honored when nobody elseis currently using the filefora change action. 
The system makes it possible toshare souree without to much trouble of keeping the correct 
set of programs and files without denying people the strict right to make changes. And 
thus if this system is used with the required tools, some problems can be prevented. 

In the current design are only the HHDL sourees in the SCCS file system. It will be the 
plan to use the SCCS system also for the software model, the testfiles. And perhaps it 
would also be wise to use it for the compilers and other tools which are going to be written. 

D.3 The used files and directories. 

A design directory is created in which the 812010 package will work and put it required 
files. This directory is also used as root for all other subdirectories in the design. 
For every module at the top level is a subdirectory created in which all files belonging to 
this part of the design are stored. 

The following extensions are used: 

.hdl A HHDL souree file 

.hd4 The macro extension of the matching .hdl file. This file is created by running 
the .hdl version through the UNIX m4 package. A file neecis m4 expansion if 
it has the string ( *M4*) on the first line of the original .hdl file . 

.lis The output listing of the HHDL compilation of the matching .hdl file. 

_drv.hdl The model is tested with the aid of a driver. The driver could also have the 
macro expanded version. 

_drv .hd4 Driver m4 version . 

. simlink U sed for batch controller linking of the module. It contains all interactive 
commands to make a model for testing . 

. bat Input control file used for redirection during simulation of a module. It will 
usually contain the comrnands to start the simulation, and to terminate the 
execution. Assignments, etc. are made in the accompanying .scl file . 

.log The redirected output of the simulation of a module. This will be the regular 
screen output. 

128 



__________ The UNIX features used during the development of the system . 

. scl 'The simulation control file which is read by the HELIX simulator, once it starts 
up . 

. bsc The HELIX simulator produces an output file with entered HELIX commands 
which should be reuseable. Unfortunately are there some bugs, and is the file 
more or less useless . 

. trc The Helix simulator has an option to switch on tracing. The resulting output 
can be found in this file . 

. fel The output of the simulation can be printed nicely formatted on paper. For this 
is a control file needed. The program FORMT does however contain several 
bugs, and the controllanguage is not easy to use . 

. fmt The output of the FORMT program is written to this file. It is a ready printable 
verswn. 

The directories used for the modules are: 

bus: The bus interface. 

exec: The execution unit. 

icache: The instruction cache. 

instr: The instruction unit. With instruction fetcher and instruction decoder. 

operand: The operand unit. It contains offset fetchers, operand calculators, store 
result, stack window cache, the controller and a "translator". 

package: All defined interfaces have their signal values defined in packages. Some of 
the general definitions can be found in the files: 

def.hdl 
gen.hdl 

registers: The register module camprises several modules. All registers are include, 
as are the command and status translatars 

total: All modules put together should render a working system. most of the com­
mands to make and/or initially test the system as a whole can be found here. 

129 



UNIX features used during the development of the system . 

Other used directories are: 

com: For developing the designs several script files are developed. ( nothing really 
fancy) 

dbase: Of compilations and linking tries a log is kept. The intention is to create a 
database from it. The database should keep version of tested and changed files 
in line with one another. 

def: Files which are often includes, or contain standard remarks are found here. 

hplt: Plotter output is kept here .. plt for plot files, .plt.opt for optimized plotfiles. 

macro: Standard macro texts ready for usagein other modules. They can be include 
with the m4 processor. 

sccs: The Unix SourCe Control System is used to keep so line in the created souree 
files. Currently are only the HHDL files entered in this system. But the simu­
lator control files should be entered too. Once this is clone, it will be possible to 
keep record of simulator and the used HHDL versions and the used simulator 
vers10ns. 

130 




