
 Eindhoven University of Technology

MASTER

Implementing CTL model checking within the BSN framework

Vaassen, J.H.M.

Award date:
1996

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/991b553e-6fdf-4824-b92a-236aa460160e

t~
Eindhoven University of Technology
Department of Electrical Engineering
Design Automation Section (ES)

Implementing CTL Model Checking

within the BSN framework.

by J .H.M. Vaassen

Master Thesis

performed: May 1995- February 1996
by order of prof.Dr.-Ing. J.A.G. Jess
supervised by ir. G.L.J.M. Janssen

and ir. C.A.J. van Eijk

The Eindhoven University of Technology is not responsible for the contentsof training and thesis reports.

Abstract

Design of electronk circuits is still a growing business. Because the complexity of circuits
grows, there is need for better verification. There are several methods to verify a circuits
actions. One of these methods is symbolic model checking.

Finite State Machines are for example used for controllers. As they grow bigger, the number
of states grows very fast. Therefore it is not possible to enumerate states and sets of states.
To be able to check large FSMs, Binary Decision Diagrams are used to represent these sets
of states. These sets are represented by their charaderistic function. This way, the state
explosion problem can be avoided.

For model checking, a large number of states can be lethal, because sets or even BDDs
representing these setsgetto big. To avoid this, a reachability analysis is done fust to reduce
the number of states. From an initial state, all reachable states are calculated. The set of
reachable states is then used to do model checking.

Symbolic Model Checking is used to check behaviour for Finite State Machines. It is a
technique that uses a hardware language (BSN used by IBM) to describe the operation of a
circuit and a logic (in this case CTL) to describe the desired properties. An implementation
was already written by McMillan for his SMV -system, but for the BSN-language a sirnilar
program should be implemented.

The goal of this project was to build a model checker for BSN. This goal was not completely
reached. The reachability algorithm was implemented, and all CTL-formulas to. Only a
parser to process CTL-input files has not yet been implemented. Some tests were done
to check if the algorithms worked. The results of those tests were good, the algorithms
functioned properly.

iii

Contents

1 Introduetion
1.1 BSN ..

2 Binary Decision Diagrams
2.1 What are binary decision diagrams?
2.2 Using the BOD-package
2.3 Expressing a set of statesas a BOD .

3 Reachability analysis on Finite State Machines
3.1 Introduetion
3.2 Finite State Machines
3.3 The initia! state
3.4 Transition relation . .

3.4.1 Calculation of the transition function.
3.4.2 Alternative implementation .

3.5 The exploration algorithm
3.5.1 Using a Front-set
3.5.2 A more efficient implementation
3.5.3 A closer look at the algorithm .

3.6 Number of reachable states
3.6.1 The arbiter
3.6.2 The Minmax signal processor .

3.7 Results
3.7.1 The arbiter
3.7.2 The rninmax signal processor .

4 Symbolic Model Checking
4.1 Computation Tree Logic
4.2 lmplementation
4.3 V erification with model checking .
4.4 Results

4.4.1 V erification

5 Conclusions
5.1 Reachability .
5.2 Model checking
5.3 Future work . .

V

1
1

3
3
5
6

9
9
9

10
11
12
13
14
15
16
17
17
18
18
18
19
19

25
25
27
31
32
35

39
39
39
39

vi

References

A The bus-arbiter

B Description for Minmax circuit

C BSN operators

41

43

47

51

Chapterl

Introduetion

The design of electronk circuits has assurned enorrnous proportions the last two decades,
frorn the fust microprocessors to the VLSI-designs with rnillions of transistors. When the
cornplexity of design grows, it becornes more difficult to have insight in the exact functioning
of a design. And because a production cornpany cannot afford to distribute hundreds of
thousands of chips with severe errors, their design must be checked before production.

There are several rnethods to check circuits. Methods like simulation or testing using
pattems are possibilities, but only if these pattems are constructed very srnartly. Otherwise
they rnight notcover the full functionality to be checked, or take to rnuch time to be feasible.
For sequentia! circuits, checking is even harder. Because inside the circuit unknown data
could be stored, it is even rnuch more difficult to detect all errors. Syrnbolic Model Checking
offers a salution for this problern.

Syrnbolic model checking uses a description of the circuit as its basis. A transition function
is calculated for all inputs, outputs and intemallatches. On the other hand we use CTL
(Cornputational Tree Logic) to describe a requested time-dependent behaviour of the circuit.
If these two sets of inforrnation are put into the rnodel-checker, it checks if the circuit fulfills
the desired behaviour. lf not, it generates counterexarnples, with which a designer should
be able to correct the circuit.

1.1 BSN

In this rnaster thesis the process of imptementing a model checking algorithrn will be
described. The hardware to be checked is described in the hardware description language
BSN (Boolean Specificatien Networks), a language developed at IBM T.J. Watson Research
Center, New York.
With the BSN language it is possible to describe a digital systern hierarchically at various
abstraction levels. There are two types of modules, called boxes that are used: The Bbox
(behavioural box) and Cbox (connection box). Cboxes define the interconnection between
inputs, outputs and lower level boxes. They are called just like subroutines in a program.
Bboxes are built just like procedures in a program. They rnay have inputs, outputs and
latches, local variables and tables.

1

2 Introduetion

Example Registers are an essential part of FSMs. The next piece of BSN code represents a
n-bit register (0-flipflop). Between double square brackets the parameters are passed. The
latch can be initialized to any value within 0 to 2n -1 through In i tval. The only statement
Q: =D states that the next-state output will become equal to the current-state input.

/* n-bit register */

bbox register[[n, Initval]] (input D[O:n-1];
lateh Q[O:n-1] init Initva1)

{
Q • - D;

}

The fust column of a table defines the variables of the columns, and separates the inputs
from the outputsusinga - > mark. The input-variables may be expressions. An example to
calculate an minimumfora variabie inf forsome series of inputs called IN is implemented
as follows:

table tab
(IN < MIN ->inf)
{

0 ->MIN;
1 ->IN;

}

This table can be read as follows: lf IN<MIN = 0 then infinum will be MIN, that is the
previous minimum. lf IN<MIN = 1 then the infinum will be IN, a new minimum.
Further there are some operators that use a vector in the calculation. These are implemented
as follows: sum : = (op (j : 0 .. n -1) vee [j]) . This action ops the bits in the vee-vector.
The top.instance is the box that is directly visible to the world, for which outputs and inputs
can be used in the rest of the program. The operators for BSN with their meaning can be
found in appendix C.

Chapter 2

Binary Decision Diagrams

2.1 What are binary decision diagrams?

In binary Iogic there are several methods to describe a booiean function or vaiue. Some well
known methods are the sum of cubes notation, the truth-tabie, and the Kamaugh-diagram.
Another method to represent a booiean function is the Binary Decision Diagram. It was fust
really impiemented in a usabie forrn by Bryant [Bry85], [Bry86]. A Binary Decision Diagram
(further referred to as BOD) is a Directed Acyclic Graph (DAG), a graph representation.
Each node has a variabie attached to it, and has exactly two children. The Ieaf nodes are
aiways zero or one nodes. The two edges corning from one node are different, they are
referred to as the THEN-edge, and the ELSE-edge. This way we can represent a BOD-node
as follows:

R

R=X.Y+X'.Y
OT

R = ITE(X,Y,Z)

Figure 2.1: A BOD-node

Each nodewithits children can berepresentedas an IF-THEN-ELSE (ITE) function. lf X is
true then Y eise Z. The nodes Y and Z themseives again can be BOD-nodes with children,
and this way we can build a graph. An exampie is shown in figure 2.2. The booiean function
corresponding to this BOD is:

3

4 Binary Decision Diagrams

H

Figure 2.2: A simple BDD

Why do we use BDDs? In computing, one of the known problems is the growth of
processors, memory etc. When we want to represent some function as a truth-table, this will
cost enormous amounts of memory. It is a very straightforward method, but it (more or less
automatically) also means that it is not really efficient. Cernparing two truth-tables is really
simple, because it is a canonkal notation. This means that given some variabie-ordering in
the table, there is only one way to represent a function. A sum of cubes might be much
smarter to denote some binary function, because we select maximal 50 % of the data. But
cernparing two sums of cubes is much more work. There are various ways to denote two
identical functions, so weneed toflatten all terms and order them to check if two sums are
identical.
BDDs are, given some variabie ordering, a canonical representation of a function. So if we
want to cernpare two BDDs, we only search (DFS or BFS doesn'tmatter) through the graphs,
and cernpare all nodes. This can be done in linear time. The space needed to represent
some function in a BDD varles from function to function. Most functions can be represented
really compact with BDDs, if a good variabie ordering is used. Forsome functions (notably
multiplications) the BDDs grow exponentially in size, no matter what variabie ordering is
used.
There are some methods to shrink a BDDs size [Met95]. One of these methods is by using
so called complemented edges. This means that the value of the BDD to which this edge is
pointing is complemented. Graphical it is denoted with a dot on the edge. There are some
rules when using negative edges, to makesure that the representation stays canonical. Some
configurations of negative edges are not allowed and must be changed to ether equivalent
configurations. These are the rules to make sure canonicity is guaranteed:

1. The TH EN-link of every node must be a non-complemented edge

Using the BOD-package 5

2. The 1-function is represented by a non complemented edge to the only terminal node
(a one-node). The 0-function is a complemented edge to the terminal node.

Of the 8 (= 23) possible configurations for a node, only 4 are accepted in BDDs. The other
4 configurations can be directly translated to one of the fust 4. In figure 2.3 all possibilities
are shown, with the note that the left ones are always chosen.

Figure 2.3: Four pairs of equivalent BDDs

Another algorithm to reduce a BDD is the Reduce algorithm [Bry86]. It contains two rules:

1. If the THEN-edge and the ELSE-edge of a node point to the same subgraph, this node
may be removed from the graph. The edge(s) which pointed to the deieted node will
now point to the subgraph.

2. lf two subgraphs are the same, the pointer to one of them will be directed to the other,
and the subgraph that has no pointer pointing to it, will be deleted.

If we apply this algorithm on the graph repeatedly until no changes are made, then the
graph is canonkal and minirnai, given the variabie ordering.

2.2 Using the BOD-package

The BDD-package is a set of files to be included and linked with your own souree code,
in which an extensive set of functions is described and impiemenled in C. The package
includes alliogicai functions (AND, OR, etc), functions for comparing, building, ordering
and showing BDDs. In this package, Dynarnic Variabie Ordering is also irnplemented. At
fust, BDDs were build and their variabie ordering didn't change during calculations. As a
result, the graphs grew very big, and were not manageable anymore. By ordering variables
during execution of the package, it is in most cases possible to prevent the BDDs from
exploding. Since the ordering is notstatic anymore, it is called Dynarnic Variabie Ordering.
1t is done by some heuristic algorithm, and is almost completely invisible for the user.
However there are options in the program to switch DVO on and off, because for some
actions, the ordering should not change while they are being executed.

6 Binary Decision Diagrams

2.3 Expressing a set of statesas a BDD

lt is worth while, to look a little bit closerat the representation of a set in the BOD-package.
lt is not necessary to represent each element of the set as a BOD. lt is possible to represent a
complete set as a fundion. This is called the charaderistic fundion of a set. lt is defined as
follows:

t> Definition 2.1. [Characteristic function of a set]
Let C be a set and let A Ç C. The charaderistic fundion of A is the function XA : C ---+ IB defined
by:

a _ { 1 ifa E A
XA () - 0 othen.vise (2.1)

0

Each charaderistic fundion can berepresentedas a BOD. Soit is possible to represent a set
of statesas a BOD. That will be necessary to efficiently use large sets without enumerating
them explicitly.

Example Lets look at a set of transitions. lt is not necessary to understand what this means
yet, it is used to show the conneetion between a set of states and its BOD. ln equation 2.2
a set of transitionsis given. lt is defined on four variables (xo, x1 , yo, y1). ln figure 2.4 five
steps are given for building the BOD for this set of states.

(2.2)

The chosen variabie ordering is xo, x1 , yo, y1. At each step one variabie is chosen to be
removed. At the fust level this is xo. The elementsin the set that have a negated xo variabie
will be passed through to the else-edge, after the xo variabie has been removed. Those
elements for which the variabie is not negated are passed through to the then-edge after
the variabie has been removed. This process is repeated recursively until all variables have
been removed. The result graph can be simplified using negated edges and by applying the
reduce-algorithm. BOD 5 in figure 2.4 is reduced, canonkal and optimal given the ordering.

Expressing a set of states as a BDD 7

2 3

4 5

Figure 2.4: Steps building BOD

8 Binary Decision Diagrams

Chapter3

Reachability analysis on Finite State
Machines

3.1 Introduetion

In this chapter, fust some definitions will be given about Finite State Machines (to be
referred to as FSM), and about a particular model for FSM, the Mealy machine. This model is
used for descrihing synchronous state machines. Further on in this chapter the reachability
calculation is explained.

3.2 Finite State Machines

Looking at all electronk circuits, it is possible to make some rough partitions. Analog
circuits are one of them for example. One important partition of electronk circuits is that
of the FSMs. They represent all digital circuits with memory elements. Since each memory
element can only have a discrete number of values (in most cases 2), there is a finite number
of states. In the subsequent discussion only circuits with one doek for all latehes will be
dealt with. The circuit can be (conceptually) split up in two parts. The fust part contains all
the combinational electronks, with inputs and outputs, while the second part exists only of
latehes (memory elements). This can beseen in figure 3.1.
Formally we can define a Mealy machine M as follows:

M (X,Y,S,So,~,A) (3.1)

with

x input alphabet, X Ç 18711

y output alphabet, Y ç JBP

s a finite set of states, S Ç IBn

So the set of initial states, So Ç S

~ the next state relation, ~ : S x X x S

A the output function, A: S x X ---+ Y

When we don't look at the combinationallogic, the number of possible states only depends

9

10 Reachability analysis on Finite State Machines

Regs
Current state Next state

Figure 3.1: Mealy machine

on the number of latches. For the remaining part, the assumption will be made that only
binary latehes are used. Then, the maximum number of statescan be easily calculated as 2n,
with n latehes in the circuit. Depending on the logic, the number of states is only a part of
this maximum, but for instanee for a counter, the set of all possible states, called state space
can grow very large. Because this number grows very rapidly with the number of latches,
taking into account all states when doing model checking gets impossible. This problem is
known as the state explosion problem. To simplify the model checking, or rather to make it
faster or use less memory, only states that can be reached are taken into account. So when
an initia! state (or set of states) is defined, the set of reachable states can be calculated from
it. This process of calculating thesetof reachable statesis called exploration. The rest of this
chapter will treat this process.

"" Definition 3.2. [Set of reaclulble states.J
lf we look at a finite state machine

M = (N,S,So,Ll,A) (3.2)

with symbols like in formula 3.1 then thesetof reaclulble states is thesetof states tlult can be reached
in zero or more steps from So. lf we denote a transition x -+ y for x, y E S, with E(x, y), then the
next formula calculates thesetof reaclulble states y from state x:

Z (x, y) E (x, y) V 3 t (Z (x, t) 1\ Z (t, y)) (3 .3)

Thesetof reachable statesis {yl3xEs0 Z(x, y)}.
0

3.3 The initial state

As clearly can beseen from the algorithms to calculate the set of reachable states, two things
are necessary. First the transition tunetion N, and second the initia! state s0. There are some
options to get these functions. Most of the time it is assumed that alllatehes are set to zero at
initialization of a circuit, through a master reset. This is also the standard option for circuits
described in BSN. There is an option to define some other initia! state for the latches.

Transition relation 11

3.4 Transition relation

As written before, to calculate a set of reachable states, is it necessary to have the transition
function. This must be derived from the specificatien of the circuit. The definition for
transition function is as fellows:

t> Definition 3.3. [Transition function]
Let F be the Boolean function vector of next-state functions F: 1Bm x 1Bn - 1Bn. Let X = {
x1, ... , Xm } be thesetof input variables, S = { s1, .•. , sn} be thesetof current state variables and
T = { t1, ... , tn} be the set of next-state variables. The characteristic function of F, denoted by
1Bm x 1Bn x 1Bn - 18, is defined as

N(X, V, V')= fi (ti:= [i(;r;.,§.))
1<i<n

where [i represents the next-state function for each state bit. N is a functional representation of the
following set:

0

In this definition the input is one of the parameters. But to get all reachable states, all possible
input combinations are to be included. Because trying them all is impossible, the most
simple and correct salution is to quantify the inputs. So all input sequences are included in
the process. Just later when doing model checking, the input sequence is needed to trace
counterexamples. So befere the exploration process is started, the inputs are quantified
from the transition function.

Example The autornaton in figure 3.2 is a simple FSM. It has no inputs, and the outputs
are the state variables themselves.

Figure 3.2: Sample FSM

The transition function belonging to this FSM is given in equation 3.4. The BOD for this
example can be found in figure 2.4. Each of the four terms stands for a transition in the

12 Reachability analysis on Finite State Machines

graph. The x-variables denote current states, and the y-variables denote next-states. lt
would be possible to simplify the equation because second and third term can be fit tagether
to one term. As can beseen from these two terms, only the current state is different, the next
state part of these two terms are equal. This means that these two transitions are pointing to
the same next-state. From a graphical representation it is very straightforward to calculate
a transition function, but Iets look how is it done using only the known equations.

N (;f., JL) = XOXÜÏoY1 + xox1 YOY1 + xox1 YOY1 + xoxo'Yo'fh (3.4)

3.4.1 Calculation of the transition function.

First thing to know is what information is present after the circuit has been read from
file. There are three BDD-vectors constructed from the data in the file. In the fust vector
the input-variables are given. In the second vector the BDDs that express the output as a
function of inputs and latehes are given. The third vector contains the BDDs belonging to
the latches. For each latch there are two BDDs. The fust BDD represents the function of the
latch: fi(;f.,§.), and the second BDD represents the variabie Si·

To build a transition function, not only these BDDs are needed, but also a variabie identifier
for the next state ti. These variabie identifiers will be created, their BDDs will be created,
and they will be stored in a separate array. After this has been done, the real calculation can
start.

As can be seen in Definition 3.2 the transition function is defined as a product over all
state-variables, of an equivalence-function. This is exactly how it is implemented. First for all
state variables the equiv-function is executed upon next-state-variable and next-state-bdd.
Next the result for all state-variables is and-ed into one transition function.

The code for calculating the transition function can be written as is shown in the next
procedure.

BDD Calculate_Trans_Rel (F)
{

}

N = 1;

for (i=O;i<IFI;i++) {

}

R = bdd_equi v (t[i], F[i]l;
N = bdd_and (N, R) ;

return N;

Of course the t[i] and F[i] in the procedure refer to ti and fi in the definitions.

Example Again the example in figure 3.2 will be used to clarify the calculation. First we
look at the separate functions for current-state to next-state transitions. I will write down
the machines transitionsas an array in table 3.1. In this table, x0 and x 1 are the current state
(CS)-variables, while yo and y1 represent the next-state (NS)-variables.

Transition relation 13

Table 3.1: Transitions for sample autornaton
CS NS

XOXJ YO Y1
00 0 1
01 1 1
10 0 0
11 1 1

Frorn this table the current-state to next-state transitions for each bit separately can be
derived:

YO X}

Y1 = xo + XJ

(3.5)

(3.6)

Now we will expand these two relations using the equivalence operator. When we use the
expansion: (a = b) {:} (ab + ab) we can transferm previous equations. Frorn equation 3.5,
equation 3.7 is made. Frorn equation 3.6, equation 3.8 is made. By and-ing equations 3.7
and 3.8, the transition function is obtained. Because there are no inputs, there is no need to
quantify thern.

YO = XJ

Y1 = xo + XJ

N

yox1 + 'Yox1
YI(xo + x1) + Ihxox1
xox1YoY1 +xox1YOY1 + xox1Y0Y1 +xox1YoY1

3.4.2 Alternative implementation

(3.7)

(3.8)

(3.9)

Instead of the linear and-function, we wanted to try to build a tree-like structure, without
changing the order of the variables. To irnplernent this, the calculation procedure was split
up in two parts. The fust part calculates all ternporary results frorn the equiv's and puts
thern in an array. The secend part recursively retrieves thern frorn this array and puts
the transition relation together. The code is given in the next procedures. Cornrnands not
necessary for the function (like functions to free memory) are rernoved frorn the code to
make it more clear.

BDD Calculate_Trans_ReL2 (F)

{

}

for (i=Oii<!Fiii++)
R [i++] = bdd_equi v (t[i], F[i]) i

N = Trans_Calc_Tree (R, i) i

return Ni

BDD Trans_Calc_Tree (BDD equiv_vec[], long len)

14

{

}

Reachability analysis on Finite State Machines

if (< 2)

R equiv_vec[O];
el se
if (equiv_vec_len == 2}

R bdd_and (equiv_vec[O] 1 equiv_vec[l]);
else {

}

long mid_point = len I 2 ;
Rl = Trans_Calc_Tree (equiv_vec1 mid_point) i

R2 Trans_Calc_Tree (equiv_vec + mid_point,
len mid_point} i

R bdd_and (Rl 1 R2} i

return R;

In this way, the calculation was faster and bigger examples could be calculated. In a later
stage, we wanled to calculate the transition function again using the linear list and-function.
Inslead of restoring the old situation by putting the and-function back in the loop, a small
function called Trans_Calc_Lin to and a vector of BDDs was written, and Trans_Calc_ Tree
was replaced with it. To my great pleasure the program accepted much bigger examples
then before. The only way to explain this, is to say that the results of the calculation were
worse because the variabie ordering was constantly being disturbed. The and-ing builds the
transition function but when the equiv-function is executed when the transition function is
not completely calculated, its variabie ordering might be disturbed resulting in a far but
optima! solution. It is amazing that such a little change in implementation made such a big
difference. The new algorithm is the following.

BDD Trans_Calc_Lin (BDD equiv_vec[], long len}
{

}

R bdd_1 (};

while (len--)
R = bdd_and (R, equi v_vec [len]) i

return R;

After testing the different examples with both options, it appeared that it depends on the
chosen example, which method works best. We made a command line option of this choke,
so the user can chose which method to use.

3.5 The exploration algorithm

From definition 3.3 we can quite easily derive an algorithm to calculate the set of réachable
states. As seen in this definition we start with s0. If this is an empty set we don't need to

The exploration algorithm 15

look any further since the set of reachable states will also be empty. lf this is not the case,
the set of reachable states can be calculated from So and the transition function. In each step
of the algorithm we use a part of the already found partial set, and calculate for all states in
this partial set the next states. So each step this partial set will grow until all reachable states
are found. lf this is the case, the search will stop. There are some alternatives in calculating
the reachable state space. 1 will show two of the most cornrnon ones.

3.5.1 Using a Front-set

Set Reach (So, Hl
{

}

R = So;
Front = So;

while (Front) {

}

NexLstates = H (Front) ;
Front = Next_states \ R;
R = R U Next_states;

return R;

In this pseudo code H is the set of transitions, and H (X) calculates the set of next states
for the set X. What is done in this algorithm can be very easy explained. In each step the
next states are calculated from a front-set. This front set contains all next-states that are
calculated for the fust time. A graphical view can be seen in figure 3.3. After a few steps a
set of states already found is created, including So. After calling H (x) on the front part of
this set, some new states are found (the vertical ellipse). A part of that was already part of
thesetof states already found. The rest will act as the new front set, which will be used to
calculate the next states.

NEXT STAlES

STATESPACE

Figure 3.3: Exploration using Front set

This is the minimal set of states to calculate a set of next-states from. Though this looks
quite smart it actually is not that smart at all. The size of a BOD is not necessarily related to

16 Reachability analysis on Finite State Machines

nurnber of states of the set it represents. So it is not necessary to calculate next states frorn a
srnall set of states, it just doesn't matter that rnuch. For the join-operator that joins a set of
already reached states with the new states, the sarnething counts.

There is another point in the algorithrn that is not optirnal when using BOOs. That is
the exclusion-operator that is irnplernented as an and not-operation to exclude all already
known states frorn the front set. The and-operation is an expensive BOD-operation, so if
it can be avoided, it should be. Keeping in rnind these two things the algorithrn can be
irnproved. We will see this in the next section.

3.5.2 A more efficient implementation

Set Reach (So, H)
{

}

Rk = 0;
Rk+1 = So;
while (Rk -=/= Rk+1) {

Rk = Rk+1;

Rk+ 1 = So U H (Rk) ;

}
return Rk;

As we can see in this irnplernentation, both disadvantages of the previous algorithrn are
rernoved. In each step the next states are calculated for all reachable states calculated until
now. So set Rk will be rnonotonous non-shrinking. The only state that is not sure to be
found in the next-state calculation is So. So in each step s0 has to be included into the set of
next-states. If the newly calculated set is equal to the set it is calculated frorn, a fixed-point
is found. All reachable states have been found. A graphical exarnple of one step can beseen
in figure 3.4.

STATESPACE

Figure 3.4: Exploration using efficient irnplernentation

Number of reachable stales 17

3.5.3 A closer look at the algorithm

The transition function can be seen as a set of transitions, as stated in section 2.3. To
be able to make a distinction between current-state variables and next-state variables, they
have other identifiers. The ma in action of the reachability calculation, calculating H (Rk),
is nothing else but an and of N (representing the BDD of the charaderistic function of
H) and Rk, or in BDD-terms the and-function applied to N and Rk. The result is a BDD
with current-state and next-state variables in it. The current state variables are not needed
anyrnore, so they will be quantified existentially. The next-state variables will now be
exchanged with their corresponding current state variables, that can be used in the next
loop. If these steps are carried out consecutively and repeatedly until there is no change in
the reachable set graph, the calculation is done.

Example For the given sample autornaton in figure 3.2 the transition function is the
following:

(3.10)

In this equation xo and x1 are the current state variables, and yo and y1 are the next-state
variables. Each term stands for a transition in the graph. If the state 00 is defined as the
initia} state, then the calculation can done as follows.
First we rnultiply N and So. The result is xo'X1YoYI· This is the transition frorn 00 to 01. Since
the start state is notneededit is quantified frorn the result. This leaves y0y1• But the result is
wanted as an expression of current-state variables, so the next-state variables Yn are sirnply
substituted by current-state variables Xn· After taking the union with So the fust step in
the reachable calculation is done. The result is a set with charaderistic function xo. In this
exarnple this step has to be done three more tirnes to calculate the complete set of reachable
states. The ternporary values for Rk, thesetof next-states (NS) and Rk+l can beseen in table
3.2. The last step doesn't add any states to the set, so it functions as a stop-criterion. The set
will be x1 + xo, which is equal to the states 00 and 01 and 11.

Table 3.2: Exploration of sample FSM
Rk NS Rk+1

{(00)} {(01)} {(00),(01)}
{(00),(01)} {(01),(11)} {(00),(01),(11)}

{(00),(01),(11)} {(01),(11)} {(00),(01),(11)}

3.6 Number of reaebabie states

For all exarnples tested I will try to give a calculation how to get the nurnber of reachable
states. This was used to check if the algorithrn works properly. At sorne point this. seerned
so and when camparing calculated nurnber of states with theoretica} values, the difference
between calculated values and theoretica} values grew to big. This was result of an error in

18 Reachability analysis on Finite State Machines

the procedure for calculation of the number of minterros fora BDD. This has been corrected
in the BOD-package.

3.6.1 The arbiter

The number of reachable states for the arbiter can be calculated very easily. A brief
explanation and some schematics for the arbiter are given in appendix A. There are two
latehes in each cell of the arbiter. The number of cells will be n. So the maximum of reachable
statesis (2 · 2)n. The fust latch in each cell contains the wait-value, which checks if a request
is holding more than one time unit and the token has passed. Hence each cell can be zero
or one at any time independently. So these latehes can have maximal zn states. The other
latehes are used to pass a token. This token gives a cell priority to cells with higher fixed
priority when its request is persistent. For the arbiter to work correct, there must only be
one token. This means that only one cell has the token, and all the others cells don't. So
here exactly n states are possible. Since both latehes hold their values independently, the
maximum number of stat es is n . zn.

3.6.2 The Minmax signa! processor

The Minmax signal processor is a simple cell which calculates fora defined number of bits,
the maximum and minimum for a series of numbers fed to it. It also outputs the last input
value. The specific definition for Minmax is given in appendix B. As can be seen in this file,
there are three latch arrays, each having n bits.
When calculating the number of states, there is a number of possibilities to take as starting
point. Let us take the last-register to calculate the result from. The last register holds the last
input value, and min and max registers will contain the minimum and maximum value in
the series. There is one exception to this last rule, when reset is true, the rnax-register will
be filled with zeros, and the min-register will be filled with one' s. In this specific case, last
can hold any value, so that accounts for zn states. In all other cases there are restrictions on
registers. For all inputs, the min register must contain a value smaller then the last register,
and the value contained in the max register must be larger then the last value. So fora certain
input value x, the min-value is restricted to x+ 1 values. The max-value is restricted to zn x
values, all values larger then or equal to x. So the total number of states is given in equation
3.11.

2°-1 2°
#stat es = zn + I: (i + 1) . (zn - i) = zn + I: i . (zn - i + 1) (3.11)

i=O i=l

To get a notion of the growth of this number of states, in table 3.3 somevalues are shown.

3.7 Results

Since reachability is a fust important step on the way to symbolic model checking it seemed
obvious to do some testing on sample circuits. For the tested circuits the number of states
were known, and there were some results from an earlierbuilt model checker by McMillan.
These will be compared with the results we got when running these examples. Also, when
testing the programs, the BDD for the reachability function was looked at. With a little

Results 19

Table 3 3· Nurnber of reachable states ..
#bits I #cells Min ma x Arbiter

1 6 2
10 179482624 10240
20 1.922 ·1017 20971520
30 2.063 ·1026 3.221 ·1010

40 2.215 ·1035 4.398 ·1013

50 2.397 ·1044 5.629 ·1016

60 2.554 ·1053 6.917 ·1019

70 2.743 ·1062 8.264 ·1022

80 2.945 ·1071 9.671 ·1025

analysis, it is possible to cernpare the BOD with the expected function and conclude that
they are the sarne.

3.7.1 The arbiter

For the arbiter the tests as given in the previous sectien are done. The use of time grows
steadily, but at sorne point, where the maximurn allowable memory of the computer is
reached, the time grows exponentially (±65 Mb). This can be seen in figure 3.5. In figure
3.6 the sarne graph is given, without a logarithrnic y-axis. This graph really shows how fast
the used time grows. In figure 3.7 the peak memory use is shown. In this graph, the y-scale
is again logarithrnic, to show the steps in the area frorn 0 to 70 cells. If displayed without
log-axis, it would look like the time-use in figure 3.6.
To support the proposition that the efficient implernentation is indeed more efficient then
the implernentation using a front set, a reachability analysis has been done, using the
different algorithrns. The data are given in table 3.4.

3.7.2 The minmax signal processor

In figure 3.8 the time use for reachability calculation of the rninrnax signal processor is
shown. It shows three lines, fust the time used to calculate the sequentia} model, this
includes getting the inputs, calculating the initia} state, calculating the dornain of alllatch
bits, and then calculating the transition function. The secend line in the graph shows the
time for exploration, and because (no matter how rnany bits) the search is always done in
four steps, this time is regularly very low, cornpared to the time to calculate the sequentia}
model. The third line is an equation that approximates the total calculation time. The
equation is: Time (rns) = 3700 + 9.5 · /)2·2 (b is #bits). So in this area the time use is still
polynornial with a reasonable order. But as the program is using BOOs and heuristics,
nothing can be said about the cases not calculated. The enorrnous peak in the graph proves
that there is no guarantee of time/memory use whatever. The memory use is given in
figure 3.9. The peak seen in the time-use graph can also beseen here, but is rnuch smaller
cornpared to the peak in the time graph. This graph can also be read as a graph for the
maximurn nurnber of BDD-nodes, as there is a streng conneetion between used memory

20

1000

100

10

time (s)

1

0.1

0.01
10

160 I

140

120

100

time (s) 80 r-

60

40

20

0 I

10

Reachability analysis on Finite State Machines

20

Arbiter Reachability

30 40
#cells

build seq. model -
explor

50 60 70

Figure 3.5: Reachability time use

Arbiter Reachability
I I I I I I

build seq. mod l -
explor~ · · · • -

-

-

-

-

-

-
.. " . ~

J -

20 30 40 50 60 70
#cells

Figure 3.6: Reachability time use

Results 21

Arbiter Reachability

10

mem (Mb)

1

10 20 30 40 50 60 70
#cells

Figure 3.7: Reachability peak memory

Table 3.4: Implementation duferences
#cells Memory-use Time-use

(kb) (s)
Front Eff. Front Eff.

2 267 267 0.09 0.16
10 337 337 0.40 0.33
20 417 351 4.69 1.60
30 503 425 11.61 5.50
40 650 580 35.69 16.15
50 1004 790 67.68 29.61
60 2964 1635 211.61 46.04
61 4116 2191 264.66 51.43
62 - 2183 - 53.37
67 - 48898 - 282.49

22 Reachability analysis on Finite State Machines

300

250

200

time (s) 150

100

50

0
10 20

Minmax Reachability

.
' •,
'•
'•
'•
'•

30

.. .. ·.
40 50

#bits

build seq
explore · · · •

approximation

'• . .
60 70

Figure 3.8: Reachability time use

80

and nurnber of nodes. Also a relation can be seen between the time use and the nurnber of
nodes. This is plot in figure 3.10. The little diarnonds are the actual nurnber of nodes used,
the dotted line is a rnoving average over 7 points. A linear approximation results in the next
function:

#nodes ~ 981 x time(s)

Soabout 1000 nodes a second are calculated I used.

Results

Minmax Reachability
18 .----.----.-----.-----.-----.----.-----.----~

16

14

12

10
memory (Mb)

8

6

4

2

ok=~~~==~--_i __ _i __ ~--~--~

500

400

#nodes 300
(x 1000)

200

100

10 20 30 40 50 60 70
#bits

Figure 3.9: Reachability memory use

Minmax Reachability

0
0 .

0 ,"0

.. ··~o
. 0

0 ~.····~ 0
0 : 0

0 .-1,>.,.'0
o.~·"'<'>~ o

~~· ·~<::t§} 0 0

#nodes o
o o avg

0

•••••• 0

.· ~·ö 0

0

80

50 100 150 200 250 300 350 400 450
time (s)

Figure 3.10: Reachability memory versus time

23

24 Reachability analysis on Finite State Machines

Chapter4

Symbolic Model Checking

There is a nurnber of techniques to verify the operation of an electronk circuit. Simulation
is, looking at the cornplexity of it, a simple technique. But for larger circuits, the nurnber
of possible inputs or input sequences grows that big, that simulation cannot be done in
acceptable time, without missing to rnuch errors. lt is a fact that simulation, when not done
exhaustively, rnight not find all errors in a circuit. So there is a need foranother possibility
for checking electronk circuits.
Syrnbolic Model Checking is a technique to verify properties of an electronk circuit. First a
model is needed to describe the circuit. This can be a behaviaral description, or a hardware
description on gate-level. On the other hand a language is necessary to describe properties
one wants to verify. This chapter will discuss a language to describe the latter one. For
sequentia! circuits a time-dependent description is needed. So it is necessary to include
sorne time-conception in this model. The class of time-dependent rnodels for verification of
electronk circuits is called ternporallogks. One of the temporallogies is CTL.

4.1 Computation Tree Logic

CTL is one of the most cornrnon model checking languages. It knows sorne operators to
describe time-dependent behavior. They lookalike the PTL operators, with one difference.
Because for each state multiple successors are allowed, there is an adaption made. Each of
the PTL operators is extended with a path descriptor. This says that sorne predkate must
hold for at least one path, or that sarnething must hold for all paths. The set of operators
is surnrnarized in the table 4.1. Of course the simple boolean operators like and, or, not and
cornbinations of these three arealso allo wed. The predicates pand q used in table 4.1 must of
course have boolean values. The result of a CTL forrnula is always a boolean value. Nesting
of operators is also allowed.
The sernantks of a CTL forrnula is defined with respect to a labeled directed graph, called a
CTL-structure. Forrnally a CTL structure is a quadruple M = (S, R, A, L), where

1. S is a finite set of states

2. Ris a binary relation onS. Fors, t E S sRt rneans that t is a irnrnediate successar of s.

3. A is a set of atomie forrnulas.

25

26 Symbolic Model Checking

Table 4.1: CTL operators

Operator description
AGp for all paths p holds in every state
EGp for at least one path p holds in every state
AFp for all paths, eventually p holds
EFp for at least one path, eventually p holds
AXp for all paths, p holds in the next state
EXp for at least one path, p holds in the next state
pAVq for all paths p holds until q holds
pEU q for at least one path p holds until q holds

4. L : A --+ 25 is a function that maps each atomie formula into the set of states in which
the formula holds.

Let now s be a state in the CTL structure M = (S, R, A, L). With M and s we associate
a computation tree, rooted as s and with an edge from node t to u or tRu. Given a CTL
formula j, we write (s I= f for M) to state that the formula j holds in the computation tree
derived from M and rooted at s.

The next semantics for CTL will clarify this:

sl=f <:::=::} s in L(f), fan atomie formula

s I= ·f <:::=::} s 'ti= f
sl=f/\9 <:::=::} s I= f and s I= 9

sI= AXj <:::=::} 'lipaths(so,sh .. .),s1 I= f

sI= EXj <:::=::} 3path(so,sJ, ...),sll= f

sI= AGj <:::=::} \i paths \i n>O(so, SJ, • · .), Sn I= J

sI= EGj <:::=::} 3path'lin>o(so,sl, ...),sn I= f

sI= AFj <:::=::} 'lipaths3n>o(so,S], ...),sn I= f

sI= EFj <:::=::} 3path3n~o(so, SJ, ...), Sn I= f

s!=JAU9 <:::=::} \i paths (3n>O(SQ, SJ,· ·.),Sn F 9 and \io-:::.j<nSj F j)

sI= jEU9 <:::=::} 3path(3n>o(so,sJ, ...),sn I= 9and 'lio<j<nSj I= f)

There is a clear correspondence between PTL and CTL. The CTL operator is in fact a
PTL-operator with prefix A or E. And the choices for A as prefix meaning for alt \i and E
meaning exists, 3 are not coincidental at all.

Example Let us look at a simple traffic-light. There are two roads, one running from north
(N) to south (S), and one from east (E) to west (W). At the intersection there are four lights,
one for each direction. The lights for traffic coming from the north are coupled to those

lmplementation 27

coming frorn the south. Lights for east and west are also identical. The input variables
are tratficdir that indicate traffic coming from the given direction. The output variables are
Color dirs indicating the co lor of the light for the given directions. A safety CTL-statement
could be:

AG •(GreenEw A GreenNs) (4.1)

This CTL-forrnula states that at no time alllights may be green. To state that if traffic arrives
from some direction, it will eventually get a green light, the next CTL statement could be
constructed:

AG AF ((trafficE V trafficw):::} GreenEw) A

AG AF ((trafficN V traffic5):::} GreenNs)

(4.2)

(4.3)

It is possible to express some CTL operators in others. This means that only a few operators
have to be irnplernented.
Table 4.2 gives the conversions from CTL-forrnulas toother CTL-forrnulas. When some loop
reierences are excluded, a small set of forrnulas can be chosen to be irnplemented. The rest
then can be expressed as a h.mction of these expressions.

Table 4.2: Some conversion for CTL operators

forrnula abbreviates
pVq •(•p A •q)
AX.p -,EX •p
AFp • EG •p
EFp True EU p
AGp •(True EU •p)
pAU q •((•q EU •(p V q))v EG •q)

So this leaves just a few forrnulas to irnplement. Those are EX p, EG pand p EU q.

4.2 Implementation

Next the irnplementations for the last three CTL-operators will be given. These calculations
were shown by Ernerson and Clarke [ECI81] to be characterizable as fixed point calculations.
Let's fust introduce the functional representation: r = Ày.f is the function J, with each
occurrence of yin it replaced by the parameter of r. For example if r = >.y.(x V y), then
r(Jalse) =(x V false) =x.
A fixed point of a functional r is any p such that r(p) = p. For example a fixed point of
r = >.y.(x V y), is (x V y), because r(x V y) =x V (x V y) =x V y. Fora monotonic functional
two special fixed-points can be defined. The greatest fixed point is the union of all fixed
points, and the least fixed point is the intersection of all fixed points. How can this be of any
use for irnplementing CTL-formulas. First let's look at the operator EG p. EG pis logically

28 Symbolic Model Checking

equivalent to (pi\ EX EG p). now we can see EG p as a greatest fixed point functional
T = >.y.pi\EXy.

Because we are checking only finite automata, the fixed point computation can be character
ized as the limit of a series. This can be obtained by iterating the corresponding functional.
These are given in equations 4.4 and 4.5.

EGp
pEUq

ni(>.y.(p 1\ EXy))i(true)

Ui(>.y.(p V (q 1\ EXy))i(Jalse)

(4.4)

(4.5)

The y in formula 4.4 is repesented in the program as Y k· The size of the set represented
by Yk is monotonically decreasing for growing kuntil forsome k,Yk = Yk+l· So instead
of calculating the union of all Y h it is more efficient to calculate Y k until Y k = Y k+l· The
implementation is given in the next paragraph. The fust assignment of Y k can be changed
to decrease the number of steps by one. The original algorithm starts with the true-function
(bdd_1). By filling in p, the number of iterations is decreased with 1. This can be done
because EX 1 = 1, so Y1 = p.

BDD EG (BDD p)
{

}

y k = bdd_1 () i

do {
Yk+1 = bdd_and (p, EX (Yk)) ;

if (BDD_EQUAL_P (Yk, Yk+1))

break;
Yk = Yk+1 i

} forever;
return Yki

Example Again using the traffic-light example the next CTL-formula wi11 be checked: EG
(RedEw). So the algorithm wi11 select all cells for which at least one path RedEw is always
true. First in figure 4.1 the finite state machine wi11 be given. In each node the color of the
light for north-south and east-west are given. The values at the edges are the input values.
EW Represents traffic from east or west, NS represents traffic from north or south.

In the original algorithm the fust step would be to select all states. In the implemented
version the fust step is toselect all states that satisfy RedEw· This is shown in figure 4.2.

The second iteration selects all states which satisfy RedEw 1\ EXRedEw· This is shown in
figure 4.3. The third iteration shows all states which satisfy RedEw 1\ EX (RedEw 1\ EXRedEw).
This is the sameset as after iteration 2, and it can also beseen in figure 4.3.

For the EU-algorithm a similar piece of code is written in the next paragraph.

Implementation 29

Figure 4.1: Traffic-light FSM

Figure 4.2: Traffic-light after one step

Figure 4.3: Traffic-light after two or more steps

30

BDD EU {BDD p, BDD q)
{

}

Yk = bdd_O {) ;

do {
sl = bdd_and {p, EX (Yk));

Yk+1 = bdd_or {q, sl);

if (BDD_EQUALP (Yk, Yk+1))

break;
Yk = Yk+1 i

} forever;
return Yk;

Symbolic Model Checking

As can be seen, all implementations for forrnulas can be expressedas fixed-point calculations
using the EX operator.This operator has yet to be implemented.
First Iets look what the use of this operator means. If the following expression needs
checking: EX p, what do we want to get as a result? Obviously the problem is to find a set of
states, or a state, for which one of its successors satisfies p. So if we have all states that satisfy
p, the problem would be reduced to finding all predecessors of these states. So instead of
using the image like in the reachability analysis, the pre-image is used. The set of states that
satisfy p is represented by p.

The second part of the problem is to get the pre-image function. The transition relation
has already been used in the reachability calculation. Soit is known if there is a transition
from a state x to a state y. In the inverse transition relation there must then be a transition
from y to x. This can be realized by exchanging all varia bles. So each current-state variabie
x is exchanged with its next-state variabie y.

Example In the traffic-light example there is a transition from R/R to R/G (see figure 4.1).
In the pre-image there will be a transition from R/G to R/R. If a FSM would be builtfora
pre-image, it would be the same as the FSM corresponding to the image, but with all edges
reverted.

The rest is just the and-ing of the two representing functions. The current state variables
can be quantified from the result of the and-operation. What remains is not yet the result as
desired because it is still expressed in next-state (or should I say previous-state) variables.
So substituting current-state variables for the others completes the process.

The model checking algorithm can be implementeel without using the reachability
calculation. That seems tosave some time, but if we don't restriet thesetof states to thesetof
reachable states the model checking algorithm only accepts little circuits. For larger circuits
the model checker will run out of memory. This can be clearly seen in table 4.2. The results
in the second column are retrieved from [Mcm93]. It is not known why there are no results

Verification with model checking 31

beyond 12 cells. The data from our own program are put in the third and fourth column.
The data from the third column is retrieved from the program without using reachability.
McMillan's program was irnplemented in C and executed on a Sun3, our program was also
irnplemented in C but executed on a HP 9000/735 on 99 MHz.

Table 4.3: Run tirnes for model checking

#cells McMillan bsn2mc bsn2mc
R R

time (s) time (s) time (s)
3 0.6 1.1 0.16
5 1.5 1.2 0.22
7 3.5 2.9 0.36
9 5.4 3.4 0.87

10 6.9 5.1 1.39
12 11.0 8.6 2.64
15 - 25.6 5.53
20 - 166.6 15.76
30 - - 51.42
40 - - 98.24
50 - - 261.33
60 - - 437.49

4.3 Verification with model checking

Verification is another way to check if a circuit works as wanted. Also it is possible to check
if two circuits have the same functionality. For combinational circuits this is very easy. First
for all outputs of both circuits the functionality of each output is written down, as a function
of the inputs. Then two outputs that should have the same value can be compared. If the
circuits outputs are represented as BDDs, it's just a case of camparing all BDDs, which can
be done in constant time of the number of BDDs. For very large circuits it is possible to
use cutpoints, a technique where the circuit is split up in smaller blocks, that should be
compared with each other.
For sequentia! circuits, this technique cannot be used just like that. The BDDs for the
combinational part of the circuits can be calculated, but if the latehes contain different
values, the previously mentioned technique is worthless. But having irnplemented some
form of model checking, the following method can be used.

First the assumption is made, that both circuits have the same inputs and outputs,
otherwise they can't be compared at all. Define a new circuit, containing the circuits that
are to be compared. Conneet the inputs in such a way that each input of the fust circuit is
connected withits corresponding input of the second circuit. These inputs will be defined
to be the new inputs for the new circuit. For all outputs, a pairwise equivalence-function
is used, and so each output is compared with its equivalent output on the other circuit.

32 Symbolic Model Checking

Conneet all outputs of these equivalence gates with the input of a multi-input and-gate. This
will be the only output (let us call it Identical) of the new circuit. Figure 4.4 shows the new
circuit.

IN 0 INO r--

IN
CIRCUIT OUTO --

Lf\ -- -
1 INl

I ..__
Identi I '

A I ' ,=LJ -- '
cal

' N2 IN2 OUTl r--I
- r--

r-- ..__

INO
CIRCUIT OUTO

--
INl I

I
B I --

IN2 OUTl

Figure 4.4: Verification circuit

Then a CTL formula can be stated: So => AG ldentical. This formula only holds if for
all inputs, all outputs of both circuits are identical. The CTL-formula can be checked by
checking if (AG ldentical) covers So . If this is the case, than So is an initial state for which
both circuits have identical behaviour. This means also that there might be other states
for which the machines act identically. Because symbolic model checking is used, it is not
necessary to try all input combinations, or to find a correspondence between latehes in both
sub-circuits. Actually the programs are that transparent, that it is possible to compare two
descriptions on completely different logkal levels (for example compare a net-list with a
behavioural description). The disadvantage of this technique is that the size of the BDD for
the new circuit grows very large. So it is not yet possible to do verification on very large
circuits.

4.4 Results

The program is capable of checking CTL-formulas for outputs of a circuit. Somelimes it is
therefore necessary to create extra outputs to check latehes without direct outputs. It also
might be necessary to include a little logic to calculate temporary results, because the parser
has notbeen implemented. ·
The arbiter is a circuit for which results were known, and some comparison with previous

Results 33

checking can be done. McMillan stated three desired properties for this circuit. They are:

1. No two acknowledge outputs are asserted simultaneously

2. Every persistent request is eventually acknowledged

3. Acknowledge is not asserted without request

Another property that can be checked with respect to efficiency is, that if there is at least
one request, there must be an acknowledge. All properties can be translated to CTL. This
results in the next formulas:

1. V;::h AG -.(ac~A ackj)

2. V;AG AF (req; =>ac~)

3. V;AG (ac~ =>req;)

These formulas were implemented in two parts: one part in the BSN circuit-description file
to create extra outputs, the CTL-part in the program for really doing the model checking.
The following functions deelare the subsequent checks for formulas:

/* No two acknowledge outputs are asserted simultaneously */
bbox proposition1[[n]] (input ack[O:n-1];output only1on)
{ onlylon:= (+(i:O .. n-1) ack[i]) <= 1; }

Proposition 1 claims that: 'L::i=O .. n-l ack[i] <= 1, the number of acknowledges is zero or one.
That is the same as to deelare that no two acknowledges can be set at the same time. The
part that is put in the program code is the following:

r =AG (m, the_outputs[O]);

This claims that for model m, output[O] must satisfy the AG operator. What is really checked
can beseen in the next function: AG ('L::i=l..n ack[i] <= 1). This is equivalent to the desired
expression.
The BOD that can be drawn shows a functions, that demands that only token register is
set, i.e. there is only one token. This BOD can be seen in figure 4.5. When the function
that is expected is known and not too complex, it can be deduced from the graphical
representation.

The second formula is more difficult to check. In this case it is not possible to sum or and
the results in the circuit, so for each cell there must be a separate output.

/* A persistent request will eventually be acknowledged */

bbox prop2 [[n]] (input req[O :n-1], ack[O :n-1]; output ctl [0 :n-1])
{ (i:O .. n-1) ctl[i] := ack[i] I A req[i]; }

34 Symbolic Model Checking

Mut_Ex(ack)

0

0

Figure 4.5: BDD for property 1 (maximum 1 ack)

Results 35

In the program for each cell fust AG AF is calculated, and then an and is done over all
outputs in array ctlout2. The r that is the return value of Bdd_Trans_Calc_Lin is the
wanted result. This BOD is 1, so this property is always satisfied.

for (tesLcount = nr_tesLbits; tesLcount; tesLcount--)
ctlout2[test_count-1] =AG (m, AF (m, the_outputs[test_count]));

r = Bdd_Trans_Calc_Lin (ctlout2, nr_tesLbits);

The third and fourth property are constructed in a sirnilar way. They both use only one
output port.
In figure 4.6 both time used for reachability calculation and for model checking (including
reachability calculation) are shown. As can be seen, at fust the model checking doesn't
cost rnuch more time, but if the nurnber of cells grows, the time needed earlier grows to
larger values. This sarne effect can be seen in figure 4.7 where the memory used for model
checking in early stages is only a little bigger, but for large nurnber of cells, the nurnber of
nodes suddenly grows rnuch bigger. For 54 and 58 bits the model checking algorithrn needs
more memory than allowed, so the program exits with an out-of-memory rnessage.

arbiter model checking
450 I I I I I 1

400 Reach- _
Model cpec~ing

350 -

300 -

250 -
time (s)

200 -

150 -

100 -...
50 ... -

../'

0 l I I

0 10 20 30 40 50 60 70
#cells

Figure 4.6: Model checking vs Reachability time use

4.4.1 Verification

For verification the arbiter as wellas the minrnax-processor have been used. In both cases
there were two identical versions of the circuit used for verification. Only the narnes of the
variables were different. Just up to a relatively little nurnber of bits/ cells the verification
works. The data for rninrnax are given in table 4.4.1. The results for the arbiter are given

36

1e+06

100000

10000
#nodes

1000

100

Symbolic Model Checking

Arbiter Model Checking vs Reachability

.. ··.·
... ··

Reach
Model checking

10 L---~----~----~----~----~----~--~
0 10 20 30 40 50 60 70

#cells

Figure 4.7: Model checking vs Reachability memory use

Table 4.4: Verification of Minmax processor

#bits #nodes Memory Time
(kb) (s)

1 314 268 0.18
2 1634 270 0.21
4 9335 496 5.84
6 22291 865 14.97
8 34208 1160 27.04

10 46528 1527 48.93
12 59957 2189 65.36
14 73510 2534 82.86
16 85929 2683 112.78
18 115457 3329 152.02
20 - 40000 636521

Results 37

in figure 4.8. Both results are calculated using thesetof reachable statesas a restrietion for
verification.

Arbiter verification

Time-

200

150

time (s)

100

50

0 L---~~-L--~----L---~---L---J----L---~--~
0 5

1Cancelled after 17 hrs

10 15 20 25 30
#cells

35

Figure 4.8: Verification time use

40 45 50

38

Chapter 5

Conclusions

5.1 Reachability

The program is quite able to do reachability analysis for not too large circuits. This is done
in reasanabie time, without excessive memory use. Clearly the heuristics leave their traces
in the results, where in the rniddle of a test range the use of time and memory suddenly
increases sharply, but decreases almast as fast as it increased. Also another sequence of
actions in calculating the transition relation makes a big difference in maximurn size of the
circuit. Since the results does not change it is clearly the variabie ordering that rnight be
different. An extra option has been added to set the way the transition relation is calculated.
It differs frorn exarnple to exarnple which way works faster.
Cornpared to other tests, this program does reachability calculation a lot faster, and can
handle rnuch more states. Introducing sorne algorithrns that combine calculations made it
even faster.

5.2 Model checking

In this part of the program we didn't fully irnplernent the algorithrn. It is possible to
do model checking, but only on outputs. The possibilities until now rernain restricted to
entering the model properties in the program and cornpile and link thern. For tests run, the
results are ok. Tirnes are slightly better cornpared to tests done by McMillan.

5.3 Future work

• Irnplernenting a parser to read property-files and process thern.

• Extending the CTL to a more powerful version with possibilities for entering resttic
tions on times, and with macro's and more understandable coding. Statements as
given in [Pay94], [BBD94] and [BLP95] can be used as exarnples.

• Introducing cutpoints into the routines to handle bigger circuits.

• Irnplernenting routines to deterrnine a counterexarnple if the desired properties are
not met by a circuit.

39

40 Conclusions

References

[EC181] Emerson E.A. & E.M. Clarke,
Synthesis of synchronization skeletons for branching time temporallogic.
Logic of Programs: Workshop, Yorktown Heights, NY, May 1981,
Lecture Notes in Computer Science, volume 131. Springer-Verlag, 1981

[Bry85] Bryant R.E.,
Symbolic Manipulation of Boolean Fundions Using Graphical Representation.
Proceedings 22th Design Automation Conference,
June 1985; pp 688-694

[Bry86] Bryant R.E.,
Graph Based Algorithms for Boolean fundion Manipulator.
In: IEEE Transactions on Computers Volume C-35(8), pp 677-691, August 1986.

[Jan90] fanssen G.L.J.M.,
Hardware Verification using Temporal Logic: A Practical View.
IMEC-IFIP International Workshop on Applied Formal Methods for Correct VLSI
Design 1988,
Houthalen, Belgium; 13-16 November 1989,
Editor : Dr. Luc Claesen,
Amsterdam : Elsevier Science Publishers B.V. 1989

[Mcm93] McMillan K.L.,
Symbolic Model Checking.
Kluwer Academie Publishers, Norweil Massachusetts 1993

[Pay94] Payer Michael,
CVE: Circuit Verification Environment,
Format Verification for an Industrial Design Environment.
Siemens AG Munich 1994,
Internat Report,
Personal Communication

[BBD94] Beer Ilan & Shoham Ben-David, Daniel Geist, Raanan Gewirtzman, Michael Yoeli,
Methodology and System for Practical Format V erification of Reactive Hardware.
IBM Science & Technology,
Haifa, Israel 1994,
Intemal Report,
Personal Communication

41

42 References

[BLP95] Bormann]org & Thomas Filkorn,]org Lohse, MieTwel Payer, Gerd Venzl, Peter Warkentin,
CVE : An Industrial Format Verification Environment
Siemens Corporate R&D,
Munich Gennany 1995,
Personal Conmmnication

[Met95] Mets Arjen,
Format Verification of Sequentia} Circuits Using Implicit State Enumeration.
IBM Research Division,
T.J. Watson Research Center,
Yorktown Heights, NY 10598,
Intemal Report RC 19894 (88043) 1/6/95,
Personal Comrnunication

Appendix A

The bus-arbiter

The arbiter is a circuit to control access for a nurnber of devices to a bus. There is a fixed
order of priority, the cell that has the lowest nurnber has the highest priority and will go
fust. But there is sorne fairness included in the circuit. lf a request persists for maximurn of
2·N times, with N the nurnber of cells, its request wi11 be granted. This is done by using a
wait register. lf a requestfora certain cell is present at the time there is a taken in the sarne
cell, and there is a cell with a higher priority requesting the bus, then the wait register is
set. lf the request still holds the next time the taken is present, the cell gets absolute priority
above all other cells. There is one peculiarity in the circuit. Geert Janssen discovered this
when he was analyzing the circuit for his Phd. thesis. lf a request is dropped, at the sarne
time it gets granted through a persist, no acknowledge is set at that moment. So one access
possibility is waisted. This error can be fixed with a simple adaption made to the circuit.
The and-gate with inputs frorn bath registers, of which the output has the name persist[i],
must be expanded with another input, and this input must be the request-signa!. In the next
BSN-description the defined persist must be

#define persists(i) (W [i] & T [i] & req [i]) .

The definition in BSN for the arbiter is the following :

I* McMillan's definition. *I
#define persists(i) (W[i] & T[i])

I* Registers are to be connected externally. *I
I* n >= 1 *I
bbox arbiter[[n]] (input req[O:n-1],

W[O:n-1],
T[O:n-1];

output ack[O:n-1],

(i:O .. n-1) {

@T[O:n-1],
@W[O :n-1]

43

44 The bus-arbiter

/* Round-robin taken scheme. */

/* Cyc1ic shift-register {rotate towards higher index) */

@T[{i+1) % n] := T[i];

}

}

/* Waiting for next-time taken around? */

@W [i] : = req [i] & {W [i] I T [i]) ;

ack [i] : = req [i] &

{ /* It 1 S my turn {1owest index has priority): */
(& (j : 0 .. i -1) "'req [j])

) ;

/* Nobody (else) is persistent: */

& (& (j : 0 .. n -1) "'pers is t s (j))
persists{i) /* I am the persistent request */

/* n-bit register. */

bbox ster[[nl Initval]] { input D [0 : n -1] i
latch Q[O:n-1] init Initval)

{

Q D;
}

/* The complete arbiter circuit. */

cbox ARBITER[[n]] (input req[O:n-1]iOUtput ack[O:n-1])
{

net W[O:n-1], @W[O:n-1] I T[O:n-1] I @T[O:n-1] i

taken: ster[[n 1 0b1]] (@T 1 Tl;
wait:register[[n,O]] (@W, W);
arbiter[[n]] (reql w, T1 ack, @T, @W);

top_instance ARBITER [[N]];

A single cell of the arbiter is depicted in figure Al.
The total circuit is shown in figure A2.

The BSN-implementation for the arbiter, and both figures Al and A2 were written and
put at my disposal by G. Janssen.

45

token_ln overrlde_out grant_ln

req_in ack_out

token_out override_in grant_out

Figure A.l: One cell of the arbiter

46 The bus-arbiter

oven1clo_out granl_ln

req[O] --+--4,req_ln Cell 0 ock_ou,tl---- ack[O]

token_out oven1de_ln grant_out

token_ln oventde_out grant_ln

req[1] --f-"""*req_ln Cell1 ock_outt--- ack[1]

req[n-1] --f---req_ln Cell n-1 ock_outt--- ack[n-1]

gr.,t_out

0

Figure A.2: The arbiter

AppendixB

Description for Minmax circuit

The Minmax signa] processor is an electronk circuit to calculate some statistkal data on a
stream of data. The circuit calculates the minimum and maximum of the input data, and the
average between maximum and minimum. There are three control inputs:

1. CLEAR sets all registers to zero, except for MIN, which is set to all one's, representing
the maximal value possible.

2. define the handling of the data. lf ENABLE is 1 and RESET is zero, the circuit accepts
data and stores it in the registers. The output is equal to the average of MIN and MAX.

The BSN-description is given in the next paragraph. The parameter N in the top_instance is
the number of bits for each register.

bbox Min_Max_3[[n]]

{

input CLEAR, ENABLE, RESET;
input IN[1:n],
LAST[1 :n],

MIN [1 :n] I

MAX[1:n];

output OUT[l :n];
output $LAST[1:n], $MIN[1:n] I $MAX[1:n];
)

local sup[1:n], inf[1:n], avg[1:n];
loc al ones [1: n] ;

ones := extend (1, n);

table sup_tab
(IN > MAX -> sup}

0 -> MAX;

1 > IN;

table inf_tab

47

48 Description for Minmax circuit

(IN < MIN -> inf) {
0 -> MIN;
1 -> IN;

/* Average: sum I 2: *I
avg I I - ·- sup + inf;

tab1e tab
(CLEAR, ENABLE, RESET ->

1, x, x ->

0 I 0 I ->

1, 1 ->

0 ->

OUT, $LAST, $MAX, $MIN)

0 I 01 0 I ones;
LAST, LAST,

IN, IN,
avg, sup, inf;

bbox Register [[n, m]] (input IN [1: n]; 1atch OUT [1: n]
init m* (2**n-1))

OUT IN;

bbox sink (input A)
{

.- A;

cbox Min_Max [[n]]

net LAST [1 :n];

input CLEAR, ENABLE, RESET;
input IN [1 :n];
output OUT[1:n];
output MIN[1:n], MAX[1:n];
)

net $LAST[1:n], $MIN[1:n], $MAX[1:n];

Min_Max_3 [[n]]

Register[[n, 0]]
Register[[n,1]]
Register[[n, 0]]

(CLEAR, ENABLE, RESET, IN, $LAST, $MIN, $MAX,
OUT, LAST, MIN, MAX);

(LAST I $LAST);
(MIN I $MIN) ;
(MAX, $MAX);

top_instance Min_Max[[N]];

49

A graphical view howthecircuit might look is given in figure B.l. Thethreecells MIN, LAST
en MAX areN-bit registers with a reset-input. The control-unit contains some combinatorial
logic that selects one of its inputs, or calculates the average of the MIN and MAX registers.

The BSN-implementation for the Minmax signal processor has been written by G. Janssen .

IN(l..N]

CLEAR
ENABLE

RESET

~ MAX

~-LAST CONTROL

UNIT

1

T 1 ~
;

L-[9-- MIN
I
I

T
I

Figure B.l: Circuit for Minmax

.....

MAXII .. N]

LAST[l..N]

f-' OUT[l..N]

MIN(l..N]

50 Description for Minma.x circuit

AppendixC

BSN operators

This appendix will give a short overview of the BSN-operators that are used in the examples:

Table C.1: BSN operators
Symbol Meaning

I or
& and
= equal
1\ not
"= notequal
<= less or equal
>= greater or equal
> greater
< less

&& exor
+ sum
% modulo
I I concatenate

51

