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Abstract 

Design of electronk circuits is still a growing business. Because the complexity of circuits 
grows, there is need for better verification. There are several methods to verify a circuits 
actions. One of these methods is symbolic model checking. 

Finite State Machines are for example used for controllers. As they grow bigger, the number 
of states grows very fast. Therefore it is not possible to enumerate states and sets of states. 
To be able to check large FSMs, Binary Decision Diagrams are used to represent these sets 
of states. These sets are represented by their charaderistic function. This way, the state 
explosion problem can be avoided. 

For model checking, a large number of states can be lethal, because sets or even BDDs 
representing these setsgetto big. To avoid this, a reachability analysis is done fust to reduce 
the number of states. From an initial state, all reachable states are calculated. The set of 
reachable states is then used to do model checking. 

Symbolic Model Checking is used to check behaviour for Finite State Machines. It is a 
technique that uses a hardware language (BSN used by IBM) to describe the operation of a 
circuit and a logic (in this case CTL) to describe the desired properties. An implementation 
was already written by McMillan for his SMV -system, but for the BSN-language a sirnilar 
program should be implemented. 

The goal of this project was to build a model checker for BSN. This goal was not completely 
reached. The reachability algorithm was implemented, and all CTL-formulas to. Only a 
parser to process CTL-input files has not yet been implemented. Some tests were done 
to check if the algorithms worked. The results of those tests were good, the algorithms 
functioned properly. 
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Chapterl 

Introduetion 

The design of electronk circuits has assurned enorrnous proportions the last two decades, 
frorn the fust microprocessors to the VLSI-designs with rnillions of transistors. When the 
cornplexity of design grows, it becornes more difficult to have insight in the exact functioning 
of a design. And because a production cornpany cannot afford to distribute hundreds of 
thousands of chips with severe errors, their design must be checked before production. 

There are several rnethods to check circuits. Methods like simulation or testing using 
pattems are possibilities, but only if these pattems are constructed very srnartly. Otherwise 
they rnight notcover the full functionality to be checked, or take to rnuch time to be feasible. 
For sequentia! circuits, checking is even harder. Because inside the circuit unknown data 
could be stored, it is even rnuch more difficult to detect all errors. Syrnbolic Model Checking 
offers a salution for this problern. 

Syrnbolic model checking uses a description of the circuit as its basis. A transition function 
is calculated for all inputs, outputs and intemallatches. On the other hand we use CTL 
(Cornputational Tree Logic) to describe a requested time-dependent behaviour of the circuit. 
If these two sets of inforrnation are put into the rnodel-checker, it checks if the circuit fulfills 
the desired behaviour. lf not, it generates counterexarnples, with which a designer should 
be able to correct the circuit. 

1.1 BSN 

In this rnaster thesis the process of imptementing a model checking algorithrn will be 
described. The hardware to be checked is described in the hardware description language 
BSN (Boolean Specificatien Networks), a language developed at IBM T.J. Watson Research 
Center, New York. 
With the BSN language it is possible to describe a digital systern hierarchically at various 
abstraction levels. There are two types of modules, called boxes that are used: The Bbox 
(behavioural box) and Cbox (connection box). Cboxes define the interconnection between 
inputs, outputs and lower level boxes. They are called just like subroutines in a program. 
Bboxes are built just like procedures in a program. They rnay have inputs, outputs and 
latches, local variables and tables. 
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2 Introduetion 

Example Registers are an essential part of FSMs. The next piece of BSN code represents a 
n-bit register (0-flipflop). Between double square brackets the parameters are passed. The 
latch can be initialized to any value within 0 to 2n -1 through In i tval. The only statement 
Q: =D states that the next-state output will become equal to the current-state input. 

/* n-bit register */ 

bbox register[[n, Initval]] (input D[O:n-1]; 
lateh Q[O:n-1] init Initva1) 

{ 
Q • - D; 

} 

The fust column of a table defines the variables of the columns, and separates the inputs 
from the outputsusinga - > mark. The input-variables may be expressions. An example to 
calculate an minimumfora variabie inf forsome series of inputs called IN is implemented 
as follows: 

table tab 
(IN < MIN ->inf) 
{ 

0 ->MIN; 
1 ->IN; 

} 

This table can be read as follows: lf IN<MIN = 0 then infinum will be MIN, that is the 
previous minimum. lf IN<MIN = 1 then the infinum will be IN, a new minimum. 
Further there are some operators that use a vector in the calculation. These are implemented 
as follows: sum : = (op ( j : 0 .. n -1) vee [ j ] ) . This action ops the bits in the vee-vector. 
The top.instance is the box that is directly visible to the world, for which outputs and inputs 
can be used in the rest of the program. The operators for BSN with their meaning can be 
found in appendix C. 



Chapter 2 

Binary Decision Diagrams 

2.1 What are binary decision diagrams? 

In binary Iogic there are several methods to describe a booiean function or vaiue. Some well 
known methods are the sum of cubes notation, the truth-tabie, and the Kamaugh-diagram. 
Another method to represent a booiean function is the Binary Decision Diagram. It was fust 
really impiemented in a usabie forrn by Bryant [Bry85], [Bry86]. A Binary Decision Diagram 
(further referred to as BOD) is a Directed Acyclic Graph (DAG), a graph representation. 
Each node has a variabie attached to it, and has exactly two children. The Ieaf nodes are 
aiways zero or one nodes. The two edges corning from one node are different, they are 
referred to as the THEN-edge, and the ELSE-edge. This way we can represent a BOD-node 
as follows: 

R 

R=X.Y+X'.Y 
OT 

R = ITE(X,Y,Z) 

Figure 2.1: A BOD-node 

Each nodewithits children can berepresentedas an IF-THEN-ELSE (ITE) function. lf X is 
true then Y eise Z. The nodes Y and Z themseives again can be BOD-nodes with children, 
and this way we can build a graph. An exampie is shown in figure 2.2. The booiean function 
corresponding to this BOD is: 

3 



4 Binary Decision Diagrams 

H 

Figure 2.2: A simple BDD 

Why do we use BDDs? In computing, one of the known problems is the growth of 
processors, memory etc. When we want to represent some function as a truth-table, this will 
cost enormous amounts of memory. It is a very straightforward method, but it (more or less 
automatically) also means that it is not really efficient. Cernparing two truth-tables is really 
simple, because it is a canonkal notation. This means that given some variabie-ordering in 
the table, there is only one way to represent a function. A sum of cubes might be much 
smarter to denote some binary function, because we select maximal 50 % of the data. But 
cernparing two sums of cubes is much more work. There are various ways to denote two 
identical functions, so weneed toflatten all terms and order them to check if two sums are 
identical. 
BDDs are, given some variabie ordering, a canonical representation of a function. So if we 
want to cernpare two BDDs, we only search (DFS or BFS doesn'tmatter) through the graphs, 
and cernpare all nodes. This can be done in linear time. The space needed to represent 
some function in a BDD varles from function to function. Most functions can be represented 
really compact with BDDs, if a good variabie ordering is used. Forsome functions (notably 
multiplications) the BDDs grow exponentially in size, no matter what variabie ordering is 
used. 
There are some methods to shrink a BDDs size [Met95]. One of these methods is by using 
so called complemented edges. This means that the value of the BDD to which this edge is 
pointing is complemented. Graphical it is denoted with a dot on the edge. There are some 
rules when using negative edges, to makesure that the representation stays canonical. Some 
configurations of negative edges are not allowed and must be changed to ether equivalent 
configurations. These are the rules to make sure canonicity is guaranteed: 

1. The TH EN-link of every node must be a non-complemented edge 
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2. The 1-function is represented by a non complemented edge to the only terminal node 
(a one-node). The 0-function is a complemented edge to the terminal node. 

Of the 8 ( = 23 ) possible configurations for a node, only 4 are accepted in BDDs. The other 
4 configurations can be directly translated to one of the fust 4. In figure 2.3 all possibilities 
are shown, with the note that the left ones are always chosen. 

Figure 2.3: Four pairs of equivalent BDDs 

Another algorithm to reduce a BDD is the Reduce algorithm [Bry86]. It contains two rules: 

1. If the THEN-edge and the ELSE-edge of a node point to the same subgraph, this node 
may be removed from the graph. The edge(s) which pointed to the deieted node will 
now point to the subgraph. 

2. lf two subgraphs are the same, the pointer to one of them will be directed to the other, 
and the subgraph that has no pointer pointing to it, will be deleted. 

If we apply this algorithm on the graph repeatedly until no changes are made, then the 
graph is canonkal and minirnai, given the variabie ordering. 

2.2 Using the BOD-package 

The BDD-package is a set of files to be included and linked with your own souree code, 
in which an extensive set of functions is described and impiemenled in C. The package 
includes alliogicai functions (AND, OR, etc), functions for comparing, building, ordering 
and showing BDDs. In this package, Dynarnic Variabie Ordering is also irnplemented. At 
fust, BDDs were build and their variabie ordering didn't change during calculations. As a 
result, the graphs grew very big, and were not manageable anymore. By ordering variables 
during execution of the package, it is in most cases possible to prevent the BDDs from 
exploding. Since the ordering is notstatic anymore, it is called Dynarnic Variabie Ordering. 
1t is done by some heuristic algorithm, and is almost completely invisible for the user. 
However there are options in the program to switch DVO on and off, because for some 
actions, the ordering should not change while they are being executed. 
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2.3 Expressing a set of statesas a BDD 

lt is worth while, to look a little bit closerat the representation of a set in the BOD-package. 
lt is not necessary to represent each element of the set as a BOD. lt is possible to represent a 
complete set as a fundion. This is called the charaderistic fundion of a set. lt is defined as 
follows: 

t> Definition 2.1. [Characteristic function of a set] 
Let C be a set and let A Ç C. The charaderistic fundion of A is the function XA : C ---+ IB defined 
by: 

a _ { 1 ifa E A 
XA ( ) - 0 othen.vise (2.1) 

0 

Each charaderistic fundion can berepresentedas a BOD. Soit is possible to represent a set 
of statesas a BOD. That will be necessary to efficiently use large sets without enumerating 
them explicitly. 

Example Lets look at a set of transitions. lt is not necessary to understand what this means 
yet, it is used to show the conneetion between a set of states and its BOD. ln equation 2.2 
a set of transitionsis given. lt is defined on four variables (xo, x1 , yo, y1). ln figure 2.4 five 
steps are given for building the BOD for this set of states. 

(2.2) 

The chosen variabie ordering is xo, x1 , yo, y1. At each step one variabie is chosen to be 
removed. At the fust level this is xo. The elementsin the set that have a negated xo variabie 
will be passed through to the else-edge, after the xo variabie has been removed. Those 
elements for which the variabie is not negated are passed through to the then-edge after 
the variabie has been removed. This process is repeated recursively until all variables have 
been removed. The result graph can be simplified using negated edges and by applying the 
reduce-algorithm. BOD 5 in figure 2.4 is reduced, canonkal and optimal given the ordering. 
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2 3 

4 5 

Figure 2.4: Steps building BOD 
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Chapter3 

Reachability analysis on Finite State 
Machines 

3.1 Introduetion 

In this chapter, fust some definitions will be given about Finite State Machines (to be 
referred to as FSM), and about a particular model for FSM, the Mealy machine. This model is 
used for descrihing synchronous state machines. Further on in this chapter the reachability 
calculation is explained. 

3.2 Finite State Machines 

Looking at all electronk circuits, it is possible to make some rough partitions. Analog 
circuits are one of them for example. One important partition of electronk circuits is that 
of the FSMs. They represent all digital circuits with memory elements. Since each memory 
element can only have a discrete number of values (in most cases 2), there is a finite number 
of states. In the subsequent discussion only circuits with one doek for all latehes will be 
dealt with. The circuit can be (conceptually) split up in two parts. The fust part contains all 
the combinational electronks, with inputs and outputs, while the second part exists only of 
latehes (memory elements). This can beseen in figure 3.1. 
Formally we can define a Mealy machine M as follows: 

M (X,Y,S,So,~,A) (3.1) 

with 

x input alphabet, X Ç 18711 

y output alphabet, Y ç JBP 

s a finite set of states, S Ç IBn 

So the set of initial states, So Ç S 

~ the next state relation, ~ : S x X x S 

A the output function, A: S x X ---+ Y 

When we don't look at the combinationallogic, the number of possible states only depends 

9 
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Regs 
Current state Next state 

Figure 3.1: Mealy machine 

on the number of latches. For the remaining part, the assumption will be made that only 
binary latehes are used. Then, the maximum number of statescan be easily calculated as 2n, 
with n latehes in the circuit. Depending on the logic, the number of states is only a part of 
this maximum, but for instanee for a counter, the set of all possible states, called state space 
can grow very large. Because this number grows very rapidly with the number of latches, 
taking into account all states when doing model checking gets impossible. This problem is 
known as the state explosion problem. To simplify the model checking, or rather to make it 
faster or use less memory, only states that can be reached are taken into account. So when 
an initia! state (or set of states) is defined, the set of reachable states can be calculated from 
it. This process of calculating thesetof reachable statesis called exploration. The rest of this 
chapter will treat this process. 

"" Definition 3.2. [Set of reaclulble states.J 
lf we look at a finite state machine 

M = (N,S,So,Ll,A) (3.2) 

with symbols like in formula 3.1 then thesetof reaclulble states is thesetof states tlult can be reached 
in zero or more steps from So. lf we denote a transition x -+ y for x, y E S, with E( x, y ), then the 
next formula calculates thesetof reaclulble states y from state x: 

Z (x, y) E (x, y) V 3 t ( Z (x, t) 1\ Z ( t, y)) ( 3 .3) 

Thesetof reachable statesis {yl3xEs0 Z( x, y )}. 
0 

3.3 The initial state 

As clearly can beseen from the algorithms to calculate the set of reachable states, two things 
are necessary. First the transition tunetion N, and second the initia! state s0. There are some 
options to get these functions. Most of the time it is assumed that alllatehes are set to zero at 
initialization of a circuit, through a master reset. This is also the standard option for circuits 
described in BSN. There is an option to define some other initia! state for the latches. 
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3.4 Transition relation 

As written before, to calculate a set of reachable states, is it necessary to have the transition 
function. This must be derived from the specificatien of the circuit. The definition for 
transition function is as fellows: 

t> Definition 3.3. [Transition function] 
Let F be the Boolean function vector of next-state functions F: 1Bm x 1Bn - 1Bn. Let X = { 
x1, ... , Xm } be thesetof input variables, S = { s1, .•. , sn} be thesetof current state variables and 
T = { t1, ... , tn} be the set of next-state variables. The characteristic function of F, denoted by 
1Bm x 1Bn x 1Bn - 18, is defined as 

N(X, V, V')= fi (ti:= [i(;r;.,§.)) 
1<i<n 

where [i represents the next-state function for each state bit. N is a functional representation of the 
following set: 

0 

In this definition the input is one of the parameters. But to get all reachable states, all possible 
input combinations are to be included. Because trying them all is impossible, the most 
simple and correct salution is to quantify the inputs. So all input sequences are included in 
the process. Just later when doing model checking, the input sequence is needed to trace 
counterexamples. So befere the exploration process is started, the inputs are quantified 
from the transition function. 

Example The autornaton in figure 3.2 is a simple FSM. It has no inputs, and the outputs 
are the state variables themselves. 

Figure 3.2: Sample FSM 

The transition function belonging to this FSM is given in equation 3.4. The BOD for this 
example can be found in figure 2.4. Each of the four terms stands for a transition in the 
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graph. The x-variables denote current states, and the y-variables denote next-states. lt 
would be possible to simplify the equation because second and third term can be fit tagether 
to one term. As can beseen from these two terms, only the current state is different, the next 
state part of these two terms are equal. This means that these two transitions are pointing to 
the same next-state. From a graphical representation it is very straightforward to calculate 
a transition function, but Iets look how is it done using only the known equations. 

N (;f., JL) = XOXÜÏoY1 + xox1 YOY1 + xox1 YOY1 + xoxo'Yo'fh (3.4) 

3.4.1 Calculation of the transition function. 

First thing to know is what information is present after the circuit has been read from 
file. There are three BDD-vectors constructed from the data in the file. In the fust vector 
the input-variables are given. In the second vector the BDDs that express the output as a 
function of inputs and latehes are given. The third vector contains the BDDs belonging to 
the latches. For each latch there are two BDDs. The fust BDD represents the function of the 
latch: fi(;f.,§.), and the second BDD represents the variabie Si· 

To build a transition function, not only these BDDs are needed, but also a variabie identifier 
for the next state ti. These variabie identifiers will be created, their BDDs will be created, 
and they will be stored in a separate array. After this has been done, the real calculation can 
start. 

As can be seen in Definition 3.2 the transition function is defined as a product over all 
state-variables, of an equivalence-function. This is exactly how it is implemented. First for all 
state variables the equiv-function is executed upon next-state-variable and next-state-bdd. 
Next the result for all state-variables is and-ed into one transition function. 

The code for calculating the transition function can be written as is shown in the next 
procedure. 

BDD Calculate_Trans_Rel (F) 
{ 

} 

N = 1; 

for (i=O;i<IFI;i++) { 

} 

R = bdd_equi v (t[i], F[i]l; 
N = bdd_and (N, R) ; 

return N; 

Of course the t[i] and F[i] in the procedure refer to ti and fi in the definitions. 

Example Again the example in figure 3.2 will be used to clarify the calculation. First we 
look at the separate functions for current-state to next-state transitions. I will write down 
the machines transitionsas an array in table 3.1. In this table, x0 and x 1 are the current state 
(CS)-variables, while yo and y1 represent the next-state (NS)-variables. 
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Table 3.1: Transitions for sample autornaton 
CS NS 

XOXJ YO Y1 
00 0 1 
01 1 1 
10 0 0 
11 1 1 

Frorn this table the current-state to next-state transitions for each bit separately can be 
derived: 

YO X} 

Y1 = xo + XJ 

(3.5) 

(3.6) 

Now we will expand these two relations using the equivalence operator. When we use the 
expansion: (a = b) {:} ( ab + ab) we can transferm previous equations. Frorn equation 3.5, 
equation 3.7 is made. Frorn equation 3.6, equation 3.8 is made. By and-ing equations 3.7 
and 3.8, the transition function is obtained. Because there are no inputs, there is no need to 
quantify thern. 

YO = XJ 

Y1 = xo + XJ 

N 

yox1 + 'Yox1 
YI(xo + x1) + Ihxox1 
xox1YoY1 +xox1YOY1 + xox1Y0Y1 +xox1YoY1 

3.4.2 Alternative implementation 

(3.7) 

(3.8) 

(3.9) 

Instead of the linear and-function, we wanted to try to build a tree-like structure, without 
changing the order of the variables. To irnplernent this, the calculation procedure was split 
up in two parts. The fust part calculates all ternporary results frorn the equiv's and puts 
thern in an array. The secend part recursively retrieves thern frorn this array and puts 
the transition relation together. The code is given in the next procedures. Cornrnands not 
necessary for the function (like functions to free memory) are rernoved frorn the code to 
make it more clear. 

BDD Calculate_Trans_ReL2 ( F) 

{ 

} 

for (i=Oii<!Fiii++) 
R [i++] = bdd_equi v (t[i], F[i]) i 

N = Trans_Calc_Tree (R, i) i 

return Ni 

BDD Trans_Calc_Tree (BDD equiv_vec[], long len) 
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{ 

} 
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if ( < 2) 

R equiv_vec[O]; 
el se 
if (equiv_vec_len == 2} 

R bdd_and (equiv_vec[O] 1 equiv_vec[l]); 
else { 

} 

long mid_point = len I 2 ; 
Rl = Trans_Calc_Tree (equiv_vec1 mid_point) i 

R2 Trans_Calc_Tree (equiv_vec + mid_point, 
len mid_point} i 

R bdd_and (Rl 1 R2} i 

return R; 

In this way, the calculation was faster and bigger examples could be calculated. In a later 
stage, we wanled to calculate the transition function again using the linear list and-function. 
Inslead of restoring the old situation by putting the and-function back in the loop, a small 
function called Trans_Calc_Lin to and a vector of BDDs was written, and Trans_Calc_ Tree 
was replaced with it. To my great pleasure the program accepted much bigger examples 
then before. The only way to explain this, is to say that the results of the calculation were 
worse because the variabie ordering was constantly being disturbed. The and-ing builds the 
transition function but when the equiv-function is executed when the transition function is 
not completely calculated, its variabie ordering might be disturbed resulting in a far but 
optima! solution. It is amazing that such a little change in implementation made such a big 
difference. The new algorithm is the following. 

BDD Trans_Calc_Lin (BDD equiv_vec[], long len} 
{ 

} 

R bdd_1 (}; 

while (len--) 
R = bdd_and (R, equi v_vec [ len]) i 

return R; 

After testing the different examples with both options, it appeared that it depends on the 
chosen example, which method works best. We made a command line option of this choke, 
so the user can chose which method to use. 

3.5 The exploration algorithm 

From definition 3.3 we can quite easily derive an algorithm to calculate the set of réachable 
states. As seen in this definition we start with s0. If this is an empty set we don't need to 
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look any further since the set of reachable states will also be empty. lf this is not the case, 
the set of reachable states can be calculated from So and the transition function. In each step 
of the algorithm we use a part of the already found partial set, and calculate for all states in 
this partial set the next states. So each step this partial set will grow until all reachable states 
are found. lf this is the case, the search will stop. There are some alternatives in calculating 
the reachable state space. 1 will show two of the most cornrnon ones. 

3.5.1 Using a Front-set 

Set Reach (So, Hl 
{ 

} 

R = So; 
Front = So; 

while (Front) { 

} 

NexLstates = H (Front) ; 
Front = Next_states \ R; 
R = R U Next_states; 

return R; 

In this pseudo code H is the set of transitions, and H (X) calculates the set of next states 
for the set X. What is done in this algorithm can be very easy explained. In each step the 
next states are calculated from a front-set. This front set contains all next-states that are 
calculated for the fust time. A graphical view can be seen in figure 3.3. After a few steps a 
set of states already found is created, including So. After calling H (x) on the front part of 
this set, some new states are found (the vertical ellipse). A part of that was already part of 
thesetof states already found. The rest will act as the new front set, which will be used to 
calculate the next states. 

NEXT STAlES 

STATESPACE 

Figure 3.3: Exploration using Front set 

This is the minimal set of states to calculate a set of next-states from. Though this looks 
quite smart it actually is not that smart at all. The size of a BOD is not necessarily related to 
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nurnber of states of the set it represents. So it is not necessary to calculate next states frorn a 
srnall set of states, it just doesn't matter that rnuch. For the join-operator that joins a set of 
already reached states with the new states, the sarnething counts. 

There is another point in the algorithrn that is not optirnal when using BOOs. That is 
the exclusion-operator that is irnplernented as an and not-operation to exclude all already 
known states frorn the front set. The and-operation is an expensive BOD-operation, so if 
it can be avoided, it should be. Keeping in rnind these two things the algorithrn can be 
irnproved. We will see this in the next section. 

3.5.2 A more efficient implementation 

Set Reach (So, H) 
{ 

} 

Rk = 0; 
Rk+1 = So; 
while (Rk -=/= Rk+1) { 

Rk = Rk+1; 

Rk+ 1 = So U H ( Rk ) ; 

} 
return Rk; 

As we can see in this irnplernentation, both disadvantages of the previous algorithrn are 
rernoved. In each step the next states are calculated for all reachable states calculated until 
now. So set Rk will be rnonotonous non-shrinking. The only state that is not sure to be 
found in the next-state calculation is So. So in each step s0 has to be included into the set of 
next-states. If the newly calculated set is equal to the set it is calculated frorn, a fixed-point 
is found. All reachable states have been found. A graphical exarnple of one step can beseen 
in figure 3.4. 

STATESPACE 

Figure 3.4: Exploration using efficient irnplernentation 
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3.5.3 A closer look at the algorithm 

The transition function can be seen as a set of transitions, as stated in section 2.3. To 
be able to make a distinction between current-state variables and next-state variables, they 
have other identifiers. The ma in action of the reachability calculation, calculating H ( Rk ), 
is nothing else but an and of N (representing the BDD of the charaderistic function of 
H) and Rk, or in BDD-terms the and-function applied to N and Rk. The result is a BDD 
with current-state and next-state variables in it. The current state variables are not needed 
anyrnore, so they will be quantified existentially. The next-state variables will now be 
exchanged with their corresponding current state variables, that can be used in the next 
loop. If these steps are carried out consecutively and repeatedly until there is no change in 
the reachable set graph, the calculation is done. 

Example For the given sample autornaton in figure 3.2 the transition function is the 
following: 

(3.10) 

In this equation xo and x1 are the current state variables, and yo and y1 are the next-state 
variables. Each term stands for a transition in the graph. If the state 00 is defined as the 
initia} state, then the calculation can done as follows. 
First we rnultiply N and So. The result is xo'X1YoYI· This is the transition frorn 00 to 01. Since 
the start state is notneededit is quantified frorn the result. This leaves y0y1• But the result is 
wanted as an expression of current-state variables, so the next-state variables Yn are sirnply 
substituted by current-state variables Xn· After taking the union with So the fust step in 
the reachable calculation is done. The result is a set with charaderistic function xo. In this 
exarnple this step has to be done three more tirnes to calculate the complete set of reachable 
states. The ternporary values for Rk, thesetof next-states (NS) and Rk+l can beseen in table 
3.2. The last step doesn't add any states to the set, so it functions as a stop-criterion. The set 
will be x1 + xo, which is equal to the states 00 and 01 and 11. 

Table 3.2: Exploration of sample FSM 
Rk NS Rk+1 

{(00)} {(01)} {(00),(01)} 
{(00),(01)} {(01),(11)} {(00),(01),(11)} 

{(00),(01),(11)} {(01),(11)} {(00),(01),(11)} 

3.6 Number of reaebabie states 

For all exarnples tested I will try to give a calculation how to get the nurnber of reachable 
states. This was used to check if the algorithrn works properly. At sorne point this. seerned 
so and when camparing calculated nurnber of states with theoretica} values, the difference 
between calculated values and theoretica} values grew to big. This was result of an error in 
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the procedure for calculation of the number of minterros fora BDD. This has been corrected 
in the BOD-package. 

3.6.1 The arbiter 

The number of reachable states for the arbiter can be calculated very easily. A brief 
explanation and some schematics for the arbiter are given in appendix A. There are two 
latehes in each cell of the arbiter. The number of cells will be n. So the maximum of reachable 
statesis (2 · 2)n. The fust latch in each cell contains the wait-value, which checks if a request 
is holding more than one time unit and the token has passed. Hence each cell can be zero 
or one at any time independently. So these latehes can have maximal zn states. The other 
latehes are used to pass a token. This token gives a cell priority to cells with higher fixed 
priority when its request is persistent. For the arbiter to work correct, there must only be 
one token. This means that only one cell has the token, and all the others cells don't. So 
here exactly n states are possible. Since both latehes hold their values independently, the 
maximum number of stat es is n . zn. 

3.6.2 The Minmax signa! processor 

The Minmax signal processor is a simple cell which calculates fora defined number of bits, 
the maximum and minimum for a series of numbers fed to it. It also outputs the last input 
value. The specific definition for Minmax is given in appendix B. As can be seen in this file, 
there are three latch arrays, each having n bits. 
When calculating the number of states, there is a number of possibilities to take as starting
point. Let us take the last-register to calculate the result from. The last register holds the last 
input value, and min and max registers will contain the minimum and maximum value in 
the series. There is one exception to this last rule, when reset is true, the rnax-register will 
be filled with zeros, and the min-register will be filled with one' s. In this specific case, last 
can hold any value, so that accounts for zn states. In all other cases there are restrictions on 
registers. For all inputs, the min register must contain a value smaller then the last register, 
and the value contained in the max register must be larger then the last value. So fora certain 
input value x, the min-value is restricted to x+ 1 values. The max-value is restricted to zn x 
values, all values larger then or equal to x. So the total number of states is given in equation 
3.11. 

2°-1 2° 
#stat es = zn + I: (i + 1) . (zn - i) = zn + I: i . (zn - i + 1) (3.11) 

i=O i=l 

To get a notion of the growth of this number of states, in table 3.3 somevalues are shown. 

3.7 Results 

Since reachability is a fust important step on the way to symbolic model checking it seemed 
obvious to do some testing on sample circuits. For the tested circuits the number of states 
were known, and there were some results from an earlierbuilt model checker by McMillan. 
These will be compared with the results we got when running these examples. Also, when 
testing the programs, the BDD for the reachability function was looked at. With a little 
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Table 3 3· Nurnber of reachable states .. 
#bits I #cells Min ma x Arbiter 

1 6 2 
10 179482624 10240 
20 1.922 ·1017 20971520 
30 2.063 ·1026 3.221 ·1010 

40 2.215 ·1035 4.398 ·1013 

50 2.397 ·1044 5.629 ·1016 

60 2.554 ·1053 6.917 ·1019 

70 2.743 ·1062 8.264 ·1022 

80 2.945 ·1071 9.671 ·1025 

analysis, it is possible to cernpare the BOD with the expected function and conclude that 
they are the sarne. 

3.7.1 The arbiter 

For the arbiter the tests as given in the previous sectien are done. The use of time grows 
steadily, but at sorne point, where the maximurn allowable memory of the computer is 
reached, the time grows exponentially (±65 Mb). This can be seen in figure 3.5. In figure 
3.6 the sarne graph is given, without a logarithrnic y-axis. This graph really shows how fast 
the used time grows. In figure 3.7 the peak memory use is shown. In this graph, the y-scale 
is again logarithrnic, to show the steps in the area frorn 0 to 70 cells. If displayed without 
log-axis, it would look like the time-use in figure 3.6. 
To support the proposition that the efficient implernentation is indeed more efficient then 
the implernentation using a front set, a reachability analysis has been done, using the 
different algorithrns. The data are given in table 3.4. 

3.7.2 The minmax signal processor 

In figure 3.8 the time use for reachability calculation of the rninrnax signal processor is 
shown. It shows three lines, fust the time used to calculate the sequentia} model, this 
includes getting the inputs, calculating the initia} state, calculating the dornain of alllatch
bits, and then calculating the transition function. The secend line in the graph shows the 
time for exploration, and because (no matter how rnany bits) the search is always done in 
four steps, this time is regularly very low, cornpared to the time to calculate the sequentia} 
model. The third line is an equation that approximates the total calculation time. The 
equation is: Time (rns) = 3700 + 9.5 · /)2·2 (b is #bits). So in this area the time use is still 
polynornial with a reasonable order. But as the program is using BOOs and heuristics, 
nothing can be said about the cases not calculated. The enorrnous peak in the graph proves 
that there is no guarantee of time/memory use whatever. The memory use is given in 
figure 3.9. The peak seen in the time-use graph can also beseen here, but is rnuch smaller 
cornpared to the peak in the time graph. This graph can also be read as a graph for the 
maximurn nurnber of BDD-nodes, as there is a streng conneetion between used memory 



20 

1000 

100 

10 

time (s) 

1 

0.1 

0.01 
10 

160 I 

140 

120 

100 

time (s) 80 r-

60 

40 

20 

0 I 

10 

Reachability analysis on Finite State Machines 

20 

Arbiter Reachability 

30 40 
#cells 

build seq. model -
explor 

50 60 70 

Figure 3.5: Reachability time use 

Arbiter Reachability 
I I I I I I 

build seq. mod l -
explor~ · · · • -

-

-

-

-

-

-
.. .. . . .. .. . .. " . ~ ... ........... 

J ......... -

20 30 40 50 60 70 
#cells 

Figure 3.6: Reachability time use 



Results 21 

Arbiter Reachability 

10 

mem (Mb) 

1 

10 20 30 40 50 60 70 
#cells 

Figure 3.7: Reachability peak memory 

Table 3.4: Implementation duferences 
#cells Memory-use Time-use 

(kb) (s) 
Front Eff. Front Eff. 

2 267 267 0.09 0.16 
10 337 337 0.40 0.33 
20 417 351 4.69 1.60 
30 503 425 11.61 5.50 
40 650 580 35.69 16.15 
50 1004 790 67.68 29.61 
60 2964 1635 211.61 46.04 
61 4116 2191 264.66 51.43 
62 - 2183 - 53.37 
67 - 48898 - 282.49 
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80 

and nurnber of nodes. Also a relation can be seen between the time use and the nurnber of 
nodes. This is plot in figure 3.10. The little diarnonds are the actual nurnber of nodes used, 
the dotted line is a rnoving average over 7 points. A linear approximation results in the next 
function: 

#nodes ~ 981 x time(s) 

Soabout 1000 nodes a second are calculated I used. 
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Chapter4 

Symbolic Model Checking 

There is a nurnber of techniques to verify the operation of an electronk circuit. Simulation 
is, looking at the cornplexity of it, a simple technique. But for larger circuits, the nurnber 
of possible inputs or input sequences grows that big, that simulation cannot be done in 
acceptable time, without missing to rnuch errors. lt is a fact that simulation, when not done 
exhaustively, rnight not find all errors in a circuit. So there is a need foranother possibility 
for checking electronk circuits. 
Syrnbolic Model Checking is a technique to verify properties of an electronk circuit. First a 
model is needed to describe the circuit. This can be a behaviaral description, or a hardware 
description on gate-level. On the other hand a language is necessary to describe properties 
one wants to verify. This chapter will discuss a language to describe the latter one. For 
sequentia! circuits a time-dependent description is needed. So it is necessary to include 
sorne time-conception in this model. The class of time-dependent rnodels for verification of 
electronk circuits is called ternporallogks. One of the temporallogies is CTL. 

4.1 Computation Tree Logic 

CTL is one of the most cornrnon model checking languages. It knows sorne operators to 
describe time-dependent behavior. They lookalike the PTL operators, with one difference. 
Because for each state multiple successors are allowed, there is an adaption made. Each of 
the PTL operators is extended with a path descriptor. This says that sorne predkate must 
hold for at least one path, or that sarnething must hold for all paths. The set of operators 
is surnrnarized in the table 4.1. Of course the simple boolean operators like and, or, not and 
cornbinations of these three arealso allo wed. The predicates pand q used in table 4.1 must of 
course have boolean values. The result of a CTL forrnula is always a boolean value. Nesting 
of operators is also allowed. 
The sernantks of a CTL forrnula is defined with respect to a labeled directed graph, called a 
CTL-structure. Forrnally a CTL structure is a quadruple M = (S, R, A, L ), where 

1. S is a finite set of states 

2. Ris a binary relation onS. Fors, t E S sRt rneans that t is a irnrnediate successar of s. 

3. A is a set of atomie forrnulas. 

25 
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Table 4.1: CTL operators 

Operator description 
AGp for all paths p holds in every state 
EGp for at least one path p holds in every state 
AFp for all paths, eventually p holds 
EFp for at least one path, eventually p holds 
AXp for all paths, p holds in the next state 
EXp for at least one path, p holds in the next state 
pAVq for all paths p holds until q holds 
pEU q for at least one path p holds until q holds 

4. L : A --+ 25 is a function that maps each atomie formula into the set of states in which 
the formula holds. 

Let now s be a state in the CTL structure M = ( S, R, A, L ). With M and s we associate 
a computation tree, rooted as s and with an edge from node t to u or tRu. Given a CTL 
formula j, we write (s I= f for M) to state that the formula j holds in the computation tree 
derived from M and rooted at s. 

The next semantics for CTL will clarify this: 

sl=f <:::=::} s in L(f), fan atomie formula 

s I= ·f <:::=::} s 'ti= f 
sl=f/\9 <:::=::} s I= f and s I= 9 

sI= AXj <:::=::} 'lipaths(so,sh .. . ),s1 I= f 

sI= EXj <:::=::} 3path(so,sJ, ... ),sll= f 

sI= AGj <:::=::} \i paths \i n>O( so, SJ, • · .), Sn I= J 

sI= EGj <:::=::} 3path'lin>o(so,sl, ... ),sn I= f 

sI= AFj <:::=::} 'lipaths3n>o(so,S], ... ),sn I= f 

sI= EFj <:::=::} 3path3n~o(so, SJ, ... ), Sn I= f 

s!=JAU9 <:::=::} \i paths (3n>O( SQ, SJ,· ·.),Sn F 9 and \io-:::.j<nSj F j) 

sI= jEU9 <:::=::} 3path(3n>o(so,sJ, ... ),sn I= 9and 'lio<j<nSj I= f) 

There is a clear correspondence between PTL and CTL. The CTL operator is in fact a 
PTL-operator with prefix A or E. And the choices for A as prefix meaning for alt \i and E 
meaning exists, 3 are not coincidental at all. 

Example Let us look at a simple traffic-light. There are two roads, one running from north 
(N) to south (S), and one from east (E) to west (W). At the intersection there are four lights, 
one for each direction. The lights for traffic coming from the north are coupled to those 
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coming frorn the south. Lights for east and west are also identical. The input variables 
are tratficdir that indicate traffic coming from the given direction. The output variables are 
Color dirs indicating the co lor of the light for the given directions. A safety CTL-statement 
could be: 

AG •(GreenEw A GreenNs) ( 4.1) 

This CTL-forrnula states that at no time alllights may be green. To state that if traffic arrives 
from some direction, it will eventually get a green light, the next CTL statement could be 
constructed: 

AG AF ((trafficE V trafficw):::} GreenEw) A 

AG AF ((trafficN V traffic5):::} GreenNs) 

(4.2) 

(4.3) 

It is possible to express some CTL operators in others. This means that only a few operators 
have to be irnplernented. 
Table 4.2 gives the conversions from CTL-forrnulas toother CTL-forrnulas. When some loop 
reierences are excluded, a small set of forrnulas can be chosen to be irnplemented. The rest 
then can be expressed as a h.mction of these expressions. 

Table 4.2: Some conversion for CTL operators 

forrnula abbreviates 
pVq •( •p A •q) 
AX.p -,EX •p 
AFp • EG •p 
EFp True EU p 
AGp •(True EU •p) 
pAU q •((•q EU •(p V q))v EG •q) 

So this leaves just a few forrnulas to irnplement. Those are EX p, EG pand p EU q. 

4.2 Implementation 

Next the irnplementations for the last three CTL-operators will be given. These calculations 
were shown by Ernerson and Clarke [ECI81] to be characterizable as fixed point calculations. 
Let's fust introduce the functional representation: r = Ày.f is the function J, with each 
occurrence of yin it replaced by the parameter of r. For example if r = >.y.(x V y), then 
r(Jalse) =(x V false) =x. 
A fixed point of a functional r is any p such that r(p) = p. For example a fixed point of 
r = >.y.(x V y), is (x V y), because r(x V y) =x V (x V y) =x V y. Fora monotonic functional 
two special fixed-points can be defined. The greatest fixed point is the union of all fixed 
points, and the least fixed point is the intersection of all fixed points. How can this be of any 
use for irnplementing CTL-formulas. First let's look at the operator EG p. EG pis logically 
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equivalent to (pi\ EX EG p). now we can see EG p as a greatest fixed point functional 
T = >.y.pi\EXy. 

Because we are checking only finite automata, the fixed point computation can be character
ized as the limit of a series. This can be obtained by iterating the corresponding functional. 
These are given in equations 4.4 and 4.5. 

EGp 
pEUq 

ni(>.y.(p 1\ EXy))i(true) 

Ui(>.y.(p V (q 1\ EXy))i(Jalse) 

(4.4) 

(4.5) 

The y in formula 4.4 is repesented in the program as Y k· The size of the set represented 
by Yk is monotonically decreasing for growing kuntil forsome k,Yk = Yk+l· So instead 
of calculating the union of all Y h it is more efficient to calculate Y k until Y k = Y k+l· The 
implementation is given in the next paragraph. The fust assignment of Y k can be changed 
to decrease the number of steps by one. The original algorithm starts with the true-function 
(bdd_1). By filling in p, the number of iterations is decreased with 1. This can be done 
because EX 1 = 1, so Y1 = p. 

BDD EG (BDD p) 
{ 

} 

y k = bdd_1 ( ) i 

do { 
Yk+1 = bdd_and (p, EX (Yk) ) ; 

if (BDD_EQUAL_P (Yk, Yk+1)) 

break; 
Yk = Yk+1 i 

} forever; 
return Yki 

Example Again using the traffic-light example the next CTL-formula wi11 be checked: EG 
(RedEw ). So the algorithm wi11 select all cells for which at least one path RedEw is always 
true. First in figure 4.1 the finite state machine wi11 be given. In each node the color of the 
light for north-south and east-west are given. The values at the edges are the input values. 
EW Represents traffic from east or west, NS represents traffic from north or south. 

In the original algorithm the fust step would be to select all states. In the implemented 
version the fust step is toselect all states that satisfy RedEw· This is shown in figure 4.2. 

The second iteration selects all states which satisfy RedEw 1\ EXRedEw· This is shown in 
figure 4.3. The third iteration shows all states which satisfy RedEw 1\ EX ( RedEw 1\ EXRedEw ). 
This is the sameset as after iteration 2, and it can also beseen in figure 4.3. 

For the EU-algorithm a similar piece of code is written in the next paragraph. 
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Figure 4.1: Traffic-light FSM 

Figure 4.2: Traffic-light after one step 

Figure 4.3: Traffic-light after two or more steps 
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BDD EU {BDD p, BDD q) 
{ 

} 

Yk = bdd_O {) ; 

do { 
sl = bdd_and {p, EX (Yk)); 

Yk+1 = bdd_or {q, sl); 

if (BDD_EQUALP (Yk, Yk+1)) 

break; 
Yk = Yk+1 i 

} forever; 
return Yk; 

Symbolic Model Checking 

As can be seen, all implementations for forrnulas can be expressedas fixed-point calculations 
using the EX operator.This operator has yet to be implemented. 
First Iets look what the use of this operator means. If the following expression needs 
checking: EX p, what do we want to get as a result? Obviously the problem is to find a set of 
states, or a state, for which one of its successors satisfies p. So if we have all states that satisfy 
p, the problem would be reduced to finding all predecessors of these states. So instead of 
using the image like in the reachability analysis, the pre-image is used. The set of states that 
satisfy p is represented by p. 

The second part of the problem is to get the pre-image function. The transition relation 
has already been used in the reachability calculation. Soit is known if there is a transition 
from a state x to a state y. In the inverse transition relation there must then be a transition 
from y to x. This can be realized by exchanging all varia bles. So each current-state variabie 
x is exchanged with its next-state variabie y. 

Example In the traffic-light example there is a transition from R/R to R/G (see figure 4.1). 
In the pre-image there will be a transition from R/G to R/R. If a FSM would be builtfora 
pre-image, it would be the same as the FSM corresponding to the image, but with all edges 
reverted. 

The rest is just the and-ing of the two representing functions. The current state variables 
can be quantified from the result of the and-operation. What remains is not yet the result as 
desired because it is still expressed in next-state (or should I say previous-state) variables. 
So substituting current-state variables for the others completes the process. 

The model checking algorithm can be implementeel without using the reachability 
calculation. That seems tosave some time, but if we don't restriet thesetof states to thesetof 
reachable states the model checking algorithm only accepts little circuits. For larger circuits 
the model checker will run out of memory. This can be clearly seen in table 4.2. The results 
in the second column are retrieved from [Mcm93]. It is not known why there are no results 
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beyond 12 cells. The data from our own program are put in the third and fourth column. 
The data from the third column is retrieved from the program without using reachability. 
McMillan's program was irnplemented in C and executed on a Sun3, our program was also 
irnplemented in C but executed on a HP 9000/735 on 99 MHz. 

Table 4.3: Run tirnes for model checking 

#cells McMillan bsn2mc bsn2mc 
R R 

time (s) time (s) time (s) 
3 0.6 1.1 0.16 
5 1.5 1.2 0.22 
7 3.5 2.9 0.36 
9 5.4 3.4 0.87 

10 6.9 5.1 1.39 
12 11.0 8.6 2.64 
15 - 25.6 5.53 
20 - 166.6 15.76 
30 - - 51.42 
40 - - 98.24 
50 - - 261.33 
60 - - 437.49 

4.3 Verification with model checking 

Verification is another way to check if a circuit works as wanted. Also it is possible to check 
if two circuits have the same functionality. For combinational circuits this is very easy. First 
for all outputs of both circuits the functionality of each output is written down, as a function 
of the inputs. Then two outputs that should have the same value can be compared. If the 
circuits outputs are represented as BDDs, it's just a case of camparing all BDDs, which can 
be done in constant time of the number of BDDs. For very large circuits it is possible to 
use cutpoints, a technique where the circuit is split up in smaller blocks, that should be 
compared with each other. 
For sequentia! circuits, this technique cannot be used just like that. The BDDs for the 
combinational part of the circuits can be calculated, but if the latehes contain different 
values, the previously mentioned technique is worthless. But having irnplemented some 
form of model checking, the following method can be used. 

First the assumption is made, that both circuits have the same inputs and outputs, 
otherwise they can't be compared at all. Define a new circuit, containing the circuits that 
are to be compared. Conneet the inputs in such a way that each input of the fust circuit is 
connected withits corresponding input of the second circuit. These inputs will be defined 
to be the new inputs for the new circuit. For all outputs, a pairwise equivalence-function 
is used, and so each output is compared with its equivalent output on the other circuit. 



32 Symbolic Model Checking 

Conneet all outputs of these equivalence gates with the input of a multi-input and-gate. This 
will be the only output (let us call it Identical) of the new circuit. Figure 4.4 shows the new 
circuit. 

IN 0 INO r--

IN 
CIRCUIT OUTO --

Lf\ -- -
1 INl 

I ..__ 
Identi I ' 

A I ' ,=LJ -- ' 
cal 

' N2 IN2 OUTl r--I 
- r--

r-- ..__ 

INO 
CIRCUIT OUTO 

--
INl I 

I 
B I --

IN2 OUTl 

Figure 4.4: Verification circuit 

Then a CTL formula can be stated: So => AG ldentical. This formula only holds if for 
all inputs, all outputs of both circuits are identical. The CTL-formula can be checked by 
checking if (AG ldentical) covers So . If this is the case, than So is an initial state for which 
both circuits have identical behaviour. This means also that there might be other states 
for which the machines act identically. Because symbolic model checking is used, it is not 
necessary to try all input combinations, or to find a correspondence between latehes in both 
sub-circuits. Actually the programs are that transparent, that it is possible to compare two 
descriptions on completely different logkal levels (for example compare a net-list with a 
behavioural description). The disadvantage of this technique is that the size of the BDD for 
the new circuit grows very large. So it is not yet possible to do verification on very large 
circuits. 

4.4 Results 

The program is capable of checking CTL-formulas for outputs of a circuit. Somelimes it is 
therefore necessary to create extra outputs to check latehes without direct outputs. It also 
might be necessary to include a little logic to calculate temporary results, because the parser 
has notbeen implemented. · 
The arbiter is a circuit for which results were known, and some comparison with previous 
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checking can be done. McMillan stated three desired properties for this circuit. They are: 

1. No two acknowledge outputs are asserted simultaneously 

2. Every persistent request is eventually acknowledged 

3. Acknowledge is not asserted without request 

Another property that can be checked with respect to efficiency is, that if there is at least 
one request, there must be an acknowledge. All properties can be translated to CTL. This 
results in the next formulas: 

1. V;::h AG -.(ac~A ackj) 

2. V;AG AF (req; =>ac~) 

3. V;AG (ac~ =>req;) 

These formulas were implemented in two parts: one part in the BSN circuit-description file 
to create extra outputs, the CTL-part in the program for really doing the model checking. 
The following functions deelare the subsequent checks for formulas: 

/* No two acknowledge outputs are asserted simultaneously */ 
bbox proposition1[[n]] (input ack[O:n-1];output only1on) 
{ onlylon:= (+(i:O .. n-1) ack[i]) <= 1; } 

Proposition 1 claims that: 'L::i=O .. n-l ack[i] <= 1, the number of acknowledges is zero or one. 
That is the same as to deelare that no two acknowledges can be set at the same time. The 
part that is put in the program code is the following: 

r =AG (m, the_outputs[O]); 

This claims that for model m, output[O] must satisfy the AG operator. What is really checked 
can beseen in the next function: AG ('L::i=l..n ack[i] <= 1). This is equivalent to the desired 
expression. 
The BOD that can be drawn shows a functions, that demands that only token register is 
set, i.e. there is only one token. This BOD can be seen in figure 4.5. When the function 
that is expected is known and not too complex, it can be deduced from the graphical 
representation. 

The second formula is more difficult to check. In this case it is not possible to sum or and 
the results in the circuit, so for each cell there must be a separate output. 

/* A persistent request will eventually be acknowledged */ 

bbox prop2 [ [n]] (input req[O :n-1], ack[O :n-1]; output ctl [0 :n-1]) 
{ (i:O .. n-1) ctl[i] := ack[i] I A req[i]; } 
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Mut_Ex(ack) 

0 

0 

Figure 4.5: BDD for property 1 (maximum 1 ack) 
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In the program for each cell fust AG AF is calculated, and then an and is done over all 
outputs in array ctlout2. The r that is the return value of Bdd_Trans_Calc_Lin is the 
wanted result. This BOD is 1, so this property is always satisfied. 

for (tesLcount = nr_tesLbits; tesLcount; tesLcount--) 
ctlout2[test_count-1] =AG (m, AF (m, the_outputs[test_count])); 

r = Bdd_Trans_Calc_Lin (ctlout2, nr_tesLbits); 

The third and fourth property are constructed in a sirnilar way. They both use only one 
output port. 
In figure 4.6 both time used for reachability calculation and for model checking (including 
reachability calculation) are shown. As can be seen, at fust the model checking doesn't 
cost rnuch more time, but if the nurnber of cells grows, the time needed earlier grows to 
larger values. This sarne effect can be seen in figure 4.7 where the memory used for model 
checking in early stages is only a little bigger, but for large nurnber of cells, the nurnber of 
nodes suddenly grows rnuch bigger. For 54 and 58 bits the model checking algorithrn needs 
more memory than allowed, so the program exits with an out-of-memory rnessage. 

arbiter model checking 
450 I I I I I 1 

400 Reach- _ 
Model cpec~ing 

350 -

300 -

250 -
time (s) 

200 -

150 -

100 -... .... 
50 ... -

../' 

0 l I I 

0 10 20 30 40 50 60 70 
#cells 

Figure 4.6: Model checking vs Reachability time use 

4.4.1 Verification 

For verification the arbiter as wellas the minrnax-processor have been used. In both cases 
there were two identical versions of the circuit used for verification. Only the narnes of the 
variables were different. Just up to a relatively little nurnber of bits/ cells the verification 
works. The data for rninrnax are given in table 4.4.1. The results for the arbiter are given 
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Figure 4.7: Model checking vs Reachability memory use 

Table 4.4: Verification of Minmax processor 

#bits #nodes Memory Time 
(kb) (s) 

1 314 268 0.18 
2 1634 270 0.21 
4 9335 496 5.84 
6 22291 865 14.97 
8 34208 1160 27.04 

10 46528 1527 48.93 
12 59957 2189 65.36 
14 73510 2534 82.86 
16 85929 2683 112.78 
18 115457 3329 152.02 
20 - 40000 636521 
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in figure 4.8. Both results are calculated using thesetof reachable statesas a restrietion for 
verification. 

Arbiter verification 
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Figure 4.8: Verification time use 
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Chapter 5 

Conclusions 

5.1 Reachability 

The program is quite able to do reachability analysis for not too large circuits. This is done 
in reasanabie time, without excessive memory use. Clearly the heuristics leave their traces 
in the results, where in the rniddle of a test range the use of time and memory suddenly 
increases sharply, but decreases almast as fast as it increased. Also another sequence of 
actions in calculating the transition relation makes a big difference in maximurn size of the 
circuit. Since the results does not change it is clearly the variabie ordering that rnight be 
different. An extra option has been added to set the way the transition relation is calculated. 
It differs frorn exarnple to exarnple which way works faster. 
Cornpared to other tests, this program does reachability calculation a lot faster, and can 
handle rnuch more states. Introducing sorne algorithrns that combine calculations made it 
even faster. 

5.2 Model checking 

In this part of the program we didn't fully irnplernent the algorithrn. It is possible to 
do model checking, but only on outputs. The possibilities until now rernain restricted to 
entering the model properties in the program and cornpile and link thern. For tests run, the 
results are ok. Tirnes are slightly better cornpared to tests done by McMillan. 

5.3 Future work 

• Irnplernenting a parser to read property-files and process thern. 

• Extending the CTL to a more powerful version with possibilities for entering resttic
tions on times, and with macro's and more understandable coding. Statements as 
given in [Pay94], [BBD94] and [BLP95] can be used as exarnples. 

• Introducing cutpoints into the routines to handle bigger circuits. 

• Irnplernenting routines to deterrnine a counterexarnple if the desired properties are 
not met by a circuit. 

39 
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Appendix A 

The bus-arbiter 

The arbiter is a circuit to control access for a nurnber of devices to a bus. There is a fixed 
order of priority, the cell that has the lowest nurnber has the highest priority and will go 
fust. But there is sorne fairness included in the circuit. lf a request persists for maximurn of 
2·N times, with N the nurnber of cells, its request wi11 be granted. This is done by using a 
wait register. lf a requestfora certain cell is present at the time there is a taken in the sarne 
cell, and there is a cell with a higher priority requesting the bus, then the wait register is 
set. lf the request still holds the next time the taken is present, the cell gets absolute priority 
above all other cells. There is one peculiarity in the circuit. Geert Janssen discovered this 
when he was analyzing the circuit for his Phd. thesis. lf a request is dropped, at the sarne 
time it gets granted through a persist, no acknowledge is set at that moment. So one access 
possibility is waisted. This error can be fixed with a simple adaption made to the circuit. 
The and-gate with inputs frorn bath registers, of which the output has the name persist[i], 
must be expanded with another input, and this input must be the request-signa!. In the next 
BSN-description the defined persist must be 

#define persists(i) (W [i] & T [i] & req [i] ) . 

The definition in BSN for the arbiter is the following : 

I* McMillan's definition. *I 
#define persists(i) (W[i] & T[i]) 

I* Registers are to be connected externally. *I 
I* n >= 1 *I 
bbox arbiter[[n]] (input req[O:n-1], 

W[O:n-1], 
T[O:n-1]; 

output ack[O:n-1], 

(i:O .. n-1) { 

@T[O:n-1], 
@W[O :n-1] 

43 
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/* Round-robin taken scheme. */ 

/* Cyc1ic shift-register {rotate towards higher index) */ 

@T[ {i+1) % n] := T[i]; 

} 

} 

/* Waiting for next-time taken around? */ 

@W [i] : = req [i] & {W [i] I T [i] ) ; 

ack [i] : = req [i] & 

{ /* It 1 S my turn {1owest index has priority): */ 
( & ( j : 0 .. i -1 ) "'req [ j] ) 

) ; 

/* Nobody (else) is persistent: */ 

& ( & ( j : 0 .. n -1) "'pers is t s ( j ) ) 
persists{i) /* I am the persistent request */ 

/* n-bit register. */ 

bbox ster[[nl Initval]] { input D [ 0 : n -1 ] i 
latch Q[O:n-1] init Initval) 

{ 

Q D; 
} 

/* The complete arbiter circuit. */ 

cbox ARBITER[[n]] (input req[O:n-1]iOUtput ack[O:n-1]) 
{ 

net W[O:n-1], @W[O:n-1] I T[O:n-1] I @T[O:n-1] i 

taken: ster[[n 1 0b1]] (@T 1 Tl; 
wait:register[ [n,O]] (@W, W); 
arbiter[[n]] (reql w, T1 ack, @T, @W); 

top_instance ARBITER [ [N]]; 

A single cell of the arbiter is depicted in figure Al. 
The total circuit is shown in figure A2. 

The BSN-implementation for the arbiter, and both figures Al and A2 were written and 
put at my disposal by G. Janssen. 
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token_ln overrlde_out grant_ln 

req_in ack_out 

token_out override_in grant_out 

Figure A.l: One cell of the arbiter 
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oven1clo_out granl_ln 

req[O] --+--4,req_ln Cell 0 ock_ou,tl---- ack[O] 

token_out oven1de_ln grant_out 

token_ln oventde_out grant_ln 

req[1] --f-"""*req_ln Cell1 ock_outt--- ack[1] 

req[n-1] --f---req_ln Cell n-1 ock_outt--- ack[n-1] 

gr.,t_out 

0 

Figure A.2: The arbiter 



AppendixB 

Description for Minmax circuit 

The Minmax signa] processor is an electronk circuit to calculate some statistkal data on a 
stream of data. The circuit calculates the minimum and maximum of the input data, and the 
average between maximum and minimum. There are three control inputs: 

1. CLEAR sets all registers to zero, except for MIN, which is set to all one's, representing 
the maximal value possible. 

2. define the handling of the data. lf ENABLE is 1 and RESET is zero, the circuit accepts 
data and stores it in the registers. The output is equal to the average of MIN and MAX. 

The BSN-description is given in the next paragraph. The parameter N in the top_instance is 
the number of bits for each register. 

bbox Min_Max_3[[n]] 

{ 

input CLEAR, ENABLE, RESET; 
input IN[1:n], 
LAST[ 1 :n], 

MIN [ 1 :n] I 

MAX[1:n]; 

output OUT[l :n]; 
output $LAST[1:n], $MIN[1:n] I $MAX[1:n]; 
) 

local sup[1:n], inf[1:n], avg[1:n]; 
loc al ones [ 1: n] ; 

ones := extend (1, n); 

table sup_tab 
(IN > MAX -> sup} 

0 -> MAX; 

1 > IN; 

table inf_tab 
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(IN < MIN -> inf) { 
0 -> MIN; 
1 -> IN; 

/* Average: sum I 2: *I 
avg I I - ·- sup + inf; 

tab1e tab 
(CLEAR, ENABLE, RESET -> 

1, x, x -> 

0 I 0 I -> 

1, 1 -> 

0 -> 

OUT, $LAST, $MAX, $MIN) 

0 I 01 0 I ones; 
LAST, LAST, 

IN, IN, 
avg, sup, inf; 

bbox Register [ [n, m]] (input IN [ 1: n]; 1atch OUT [ 1: n] 
init m* (2**n-1)) 

OUT IN; 

bbox sink (input A) 
{ 

.- A; 

cbox Min_Max [ [n]] 

net LAST [ 1 :n]; 

input CLEAR, ENABLE, RESET; 
input IN [ 1 :n]; 
output OUT[1:n]; 
output MIN[1:n], MAX[1:n]; 
) 

net $LAST[1:n], $MIN[1:n], $MAX[1:n]; 

Min_Max_3 [ [n]] 

Register[ [n, 0]] 
Register[ [n,1]] 
Register[ [n, 0]] 

(CLEAR, ENABLE, RESET, IN, $LAST, $MIN, $MAX, 
OUT, LAST, MIN, MAX); 

(LAST I $LAST); 
(MIN I $MIN) ; 
(MAX, $MAX); 

top_instance Min_Max[[N]]; 
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A graphical view howthecircuit might look is given in figure B.l. Thethreecells MIN, LAST 
en MAX areN-bit registers with a reset-input. The control-unit contains some combinatorial 
logic that selects one of its inputs, or calculates the average of the MIN and MAX registers. 

The BSN-implementation for the Minmax signal processor has been written by G. Janssen . 

IN(l..N] 
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~-LAST CONTROL 

UNIT 

1 

T 1 ~ 
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I 
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T 
I 

Figure B.l: Circuit for Minmax 
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AppendixC 

BSN operators 

This appendix will give a short overview of the BSN-operators that are used in the examples: 

Table C.1: BSN operators 
Symbol Meaning 

I or 
& and 
= equal 
1\ not 
"= notequal 
<= less or equal 
>= greater or equal 
> greater 
< less 

&& exor 
+ sum 
% modulo 
I I concatenate 
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