
 Eindhoven University of Technology

MASTER

Design of a multi-thread ROM-controller

van Woerkom, H.H.A.

Award date:
1995

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c3b66aa6-9967-400b-b424-33451e01fd43

t~
Eindhoven University ofTechnology
Department of Electrical Engineering
Design Automation Section

Design of a Multi-Thread
ROM-controller

Master Thesis
by H. v. Woerkom

May 1994- December 1994
By order of Prof. Dr. -Ing. J.A.G. Jess

Supervised by Ir. H.A. Hilderink

The Eindhoven University ofTechnology is not responsible tor the contentsof training and thesis reports.

Abstract

Designs generated by high level synthesis tools are becoming increasingly complex and
have to execute everfaster. Therefore more and more parallelism has to heused.Present
day controllers are not well-suited to drive a parallel design and they require quite a lot
of overhead.

The Multi-thread ROM-controller is designed specifically for parallel designs. It is based
on a conventional ROM-based controller, but the address decoders have been replaced by
latches, so each ROM-row is driven by a separate latch. This way, multiple ROM-rows
can he drivenat the same time, allowing the controller to have multiple states active
at the same time. A further advantage ofthe Multi-thread ROM-controller is that the
state controllogic Oogic used to advance to the next state or states) can he extremely
simple.

This thesis presents a complete design of a Multi-thread ROM-controller. The state
control logic will he described in VHDL, while a layout of the ROM-core (including
latches) will be presented.

Results indicate that the Multi-thread ROM-controller is an efficient controller, even
for single thread designs. It is smaller and almost as fast as a conventional ROM­
based controller and in a design with 50 states and 30 outputs, the Multi-thread ROM­
controller is about the same size as a random logic controller. In designs with fewer
states or less outputs the random logic controller will be smaller, while in a design
with more states or more outputs, the Multi-thread ROM-controller will be smaller.
The Multi-thread ROM-controller does handle multi-thread designs well, but as other
multi-thread controllers are not readily available or perfonn worse than single thread
controllers, no comparisons are made.

i

Contents

1 Introduetion 1

2 Controller specification 3

3 Basic structure of the Multi-thread ROM-controller 7

4 The state controllogic 9

5 The state controllogic generator 13

5.1 State transition graph .. 13

5.2 Link trees • ~ " • 0 • 0 0 0 13

5.3 backward tree completion 15

5.4 controllogic generation . 18

6 TheROM~re 21

6.1 the ROM-matrix 22

6.2 the latehes 22

6.3 the output-buffers 24

6.4 the precharger . . . 24

6.5 the clock-regulation 24

6.6 total size • 0 0 ••• 0 25

7 Results 27

7.1 Speed 27

7.2 Si ze 30

7.3 Power consumption 32

7.4 Further improvements 33

8 Conc lusions 35

111

IV CONTENTS

A Layouts 39

B VHDL-description example 49

c Description of the fini te state machine input file 53

D Spice results 55

E Finite state machines for size comparisons 65

Chapter 1

Introduetion

In high level synthesis an architecture is designed that can implement a certain be­
havioral description. Such an architecture contains a number oflogic modules (e.g. reg­
isters, adders, multiplexers, multipliers) and interconnect. The modules are controlled
by a controller, which is usually specified as a finite state machine.

The algorithms that are synthesized are becoming increasingly complex and they have
to be executed in ever fewer cycles. To comply with these timing constraints multiple
threads of the algorithm have to he executed in parallel (a thread is a self-contained
part of an algorithm). The controller has to he adapted to accommodate these multiple
threads.

The conventional solutions to accommodate multiple threads are to translate these
multiple thread algorithm into a single thread algorithm, to use a set of communicating
controllers, where each one controls a single thread, or to use distributed controllers.
The first salution has the problem that the translation step can cause a state explosion,
which can cause the controller to become extravagantly large. The second salution causes
a lot of overhead in the communication between the controllers. The third salution has
not yet been properly studied, but it leadstoa large number of (very) small controllers,
which may use up less space than one central controller.

Controllers are usually implemented as either a random logic blockor a PLA- or ROM­
based controller. A random logic blockis ideal for small state machines. The logic can be
highly optimized and the result is a fast and small controller. For larger state machines
a random logic blockis usually larger than a PLNROM-based controller (in [Gerb92]
it is stated that a ROM-based controller becomes more efficient than a random logic
controller if the state machine has 100 or more states).

These problems with the conventional implementations arise from the fact that they
are essentially single-thread solutions, that is, only one state can be active at any time.
A requirement fora multiple thread controller is that morestatescan he active at the
same time. This way all threads can have an active state simultaneously, so each state
in the state machine can be projected onto one state in the multiple thread controller,
which circumvents the problem of state explosion.

The Multi-thread ROM-controller is a controller that can accommodate multiple threads.

1

2 CHAPTER 1. INTRODUCTION

It was devised by H.A. Bilderink (see [Hild93]). It is essentially a ROM-based controller,
but the address decoders have been replaced by latches, so each ROM-row is driven by a
separate latch. This way, multiple ROM-rows can be drivenat the same time. A complete
design of a Multi-Thread ROM-controller hadnotbeen made yet. This thesis presents
such a design and compares it toother possible implementations of controllers.

In chapter 2 the de scription of the fini te state machine is discussed. Chapter 3 deals with
the designs on which the Multi-Thread ROM-controller is based. The projection of the
finite state machine onto the Multi-Thread ROM-controller is discussed in chapter 4.
Chapter 5 deals with the logic that drives the ROM-core and chapter 6 deals with the
implementation ofROM-core. Chapter 7 gives results and compares the designtoother
controller implementations, while Chapter 8 presents conclusions and recommendations.

Chapter2

Controller specification

A controller is an autonorneus module that drives the control signals for the modules in
a chip design. The Multi-thread ROM-controller is a controller specifically designed to
accommodate multiple threads. Internally it functions as a finite state machine that can
handle multiple threads. Branches in the state machine are determined by test-signals,
which, together with the reset-, start- and clock-signals, are the only input signals.

The finite state machine for the Multi-thread ROM controller is defined as a 5-tuple
(S,C,ó,s,f)in which:

S is the set of states.

C is a set of conditionals for use in state transitions. There must be a special conditional
TRUE to represent unconditional state transitions.

ó is the set of triples (S x C x 8) of state transitions. lf (x, CT, y) E fJ then the next state
from x will be y if CT is true.

s is the starting state.

f is the final state.

The operator - is used to indicate that a state can be reached from another state by
one state transition, that is .r _,. y :::;. (x. CT. y) E li. The operator ..:.. is used to indicate
that a state can be reached from another state by any number of state transitions
(this includes zero transitions, so x • x is always true). Fora finite state machine the
following conditions must hold:

This ensures that all states in the finite state machine can actually be used.

The finite state machine can berepresentedas a taken flow graph (see [Eijn91]). The
set of nodes is the set of states S and the set of edges is the set of state transitions b.
In a token flow graph any number of states can have a token. The set Ti contains all

3

4 CHAPTER 2. CONTROLLER SPECIFICATION

nodes that have a token at time i (this is similar to the current state at time i). The set
of successors of set Ti, Ti+l is calculated as follows:

Ti+l ={yES lx E Ti A (x,O',y) E 6 A O'istrue}

To simplify the design ofthe Multi-thread ROM controller, some restrictions are placed
on the finite state machine. There must he a regular path between the starting state
and the final state, that is, any control structure must he fully contained in some other
control structure (a control structure being, for example, an if-then-else construction).
It is not allowed to break out of or in to a control structure.

To formalize this notion, paths will he introduced. A path is a finite state machine that
is regular. A path may contain other paths, that is, the contained path has fewer state
transitions and may have fewer states. This is denoted by C (P c A means A contains
P). If P c A then:

• P must comply with the rules forstarting and final states.

Note that a path does not contain itself, soA 1t A. In the following text A will denote the
finite state machine itself.

Control structures (if-then-else constructions and concurrent sequences) can he recog­
nized by a branch in a pathand a corresponding merge further down the path. Every
branch must have its own path, because that branch itself must also he regular. The
following condition ensures that every branch has a path ofits own, that is, there is only
one state transition from the starting state and that transition corresponds with the
branch. It also ensures that there is a different path that starts and ends at the same
states that the branch starts and ends (3! means "there is exactly one"):

Because every control structure has its own path, the conditions that you cannot break
out of or in to a control structure can he expressed as the condition that a path can
only he reached through its starting state and exited through its final state. For this all
states outside the path are replaced by one souree state and one sink state. The souree
and sink states may have no state transitionstoor from the "inside" of a path (any state
except the starting and final state). For each path P a new state machine Q is defined
with the extra souree and sink states:

• CQ = Cp

• ÓQ = bp U {(sonn:e,O',:r)i:r ESp A y rf. SpA (y,O',:r) E A}u
{(:1:, 0', sink)!:1: E SpA y (/.SpA (a:, 0', y) E A}

CHAPTER 2. CONTROLLER SPECIFICATION 5

• sq = souree

• fq = sink

The state transitions ofQ from souree may only go tospor fp and the transitions to sink
may only come from fp or sp:

-d(source,O",x)EóQX f::. SpA X f::. fp

-,j(x,O",sink)EóQX f::. SpA X f::. fp

Figure 2.1 gives some examples of valid finite state machines. Figure 2.2 gives some
examples ofinvalid finite state machines. Consider the path with states 53, .5'4, Ss in the
left example. The state transition {S2,TRUE, .5'4 } breaks into that path. The right example
is similar. Here the state transition { .5'5 ,TRUE, .5'2} breaks into the path with states St.
82, 84 and Ss.

Figure 2.1: Valid finite state machines. Conditions on the edges have no impact on the
validity of the state machines, so they have been left out.

The Multi-thread ROM controller can also be used to implement single thread finite
state machines {state machines that contain absolutely no parallelism). In this case the
restrictions for the fini te state machine are lifted, because some behavioural descriptions
cannot be expressed as a regular single thread finite state machine.

6 CHAPTER 2. CONTROLLER SPECIFICATION

Figure 2.2: Invalid finite state machines. Conditions on the edges have no impact on the
validity of the state machines, so they have been left out.

Chapter3

Basic structure of the
Multi-thread ROM-controller

The Multi-thread ROM-controller is basedon conventional ROM-based controllers. By
applying some changes to the structure of a ROM-based controller the single threaded
nature of the controller can be changed into a mul ti threaded nature.

Conventional ROM-based controllers consist of a ROM-matrix, address decoders and
some logic to determine the next state (see figure 3.1).

ROM matrix

Next
State
Log ie

V buffers t---------__j
---------' Conditionals

I

V to datapath

Figure 3.1: A conventional ROM-based controller

Each ROM-row represents a state. The current state is held in a register (aften called
instruction-pointer), which is log2(#states) wide. This register drives the address de­
coders, so exactly one ROM-row is activated. This rules out multiple active states at the
same time.

By replacing the address decoders with latehes and addressing each ROM-row with a
separate latch (see figure 3.2), morestatescan he made active at the same time. Now the
current state is effectively held in a register that is #states wide. The extra space needed

7

8
CHAPTER 3. BASIC STRUCTURE OF THE MULTI-THREAD

ROM-CONTROLLER

ROM matrix
-ï
--+

I

----l­
j

I -,
--+

I

--+
I

_.J.

I

:
I
I
I

: i I i
I

I

\7 buffers

D to datapath

latehes

s1
s2 Next

s3 State

s4 Log ie

sS
t

ph i

Figure 3.2: Basic Multi Thread ROM-controller structure

for this is offset by the disappearance of the address decoders and the simplification of
the logic to determine the next state (see chapter 4). Also, since more than one state can
be active at the same time, this structure is not subject to state-explosion, caused by
the flatterring of a multiple thread state machine. This results in a smaller number of
states, soa smaller number ofROM-rows is needed.

Chapter4

The state controllogic

In chapter 2 it was seen that the finite state machine can be seen as a taken flow graph.
Each state that has a taken is active. A state passes its taken on toother state(s) at the
beginning of each doek cycle. Control structures can be realised by cantrolling the flow
of the tokens.

A state in the Multi-thread controller is active if its corresponding latch has a "one"
clocked in. Each doek cycle a latch clocks in its input value, so the input of each latch
must be a "zero" if notaken arrives and a "one" if a taken arrives.

A simple sequence of states can be achieved by chaining the latehes (see tigure 4.1). If a
state is active, it passes a "one" to the following state, sa that state will become active in
the next cycle. Inactive states pass a "zero", so the following state will nat be active.

ROM matrix
latehes

\7 buffers
ph i ready'

I i
V to datapath

I

.:1 ..
:i'P
(~g:
J,.,
{~·
.J,
~,i

' ;~~:
'

'
Figure 4.1: Chaining the latehes fora sequence of states

In an if-then-else construction the taken is passed to the left ar to the right branch,
depending on some conditional. The taken must be ANDed with the conditional for one
branch and with the inverse of the conditional for the other branch. This way the taken
passes to one of the branches. At the end of the if-then-else construction bath branches

9

10 CHAPTER 4. THE STATE CONTROL LOGIC

come together. Now the output of bath latehes must be ORed, so a taken from either of
the branches will pass. An example of an if-then-else construction is given in figure 4.2.
The taken passes from Sl to tl (if test is true) or to el (if test is false). The taken flows
through either tl and t2 or through el, e2 and e3 and arrives finally at Sn.

sf
ROM matrix start

I
test~est

tt et

' t t2 e2

\ ' \)3
Sr.1

test

~I
sn (:"ÇJ t2

ph i

Figure 4.2: An if-then-else construction.

A loop construction is a special case of an if-then-else construction. An example is given
in figure 4.3. The taken passes from Sl to LO (the OR gate passes the taken). The taken
then fiows through Ll and L2 to L3. Mter L3 it will be passed to LO if te.~t is true (then
it passes the AND gate and the OR gate), or it will be passed to Snif test is false.

L1
I

' L2
l

' \ l3
tast\ A_

"-_./f tast

Sn

ROM matrix

81
LO
L1
L2
L3
Sn

ph i

Figure 4.3: A loop construction.

I start

I

sn

s1

Concurrent sequences can be started by feeding the output of a latch to two (or even
more) latches. The first state following the concurrent sequence may only execute if all
concurrent sequences are finished. If the slowest of the sequences can be determined,
the sequences can be implicitly synchronized (see figure 4.4, left side). In this case the

CHAPTER 4. THE STATE CONTROL LOGIC 11

tokens from the faster sequences are ignored and only the token ofthe slowest sequence
is passed al ong. If the length of the sequences is not known in advance (this is the case
if some sequences contain loop constructions), some extra logic is needed to wait for all
sequences to end (see figure 4.4, right side). The wait logic will only execute Sn iftokens
from both a2 and b3 have been received.

ROM matrix

ph i

, start
I

si
~.

at b1

' + a2 b2

V
sn

ROM matrix

I i I i

i

-i~if -- ,_

-==t '
I I

I i .l..
I -- -- r-f-

i I

start

S1

~)a a1
a2
b1 i--/ Wait p b2 p Log ie
b3 b

Sn
t

ph i

Figure 4.4: Concurrent sequences. To the left, implicit synchronization, to the right,
explicit synchronization.

The logic in figure 4.5 can he used to explicitly synchronize two sequences. If a token
is received along a2, then X will he activated. Y will be activated when a token passes
along b3. If X and }''are active, a token will he passed to Sn. This causes Sn to he active
the next cycle, which deactivates X and Y.

Snl--f>j

Reset~====>~v

b3-pJ 1

Figure 4.5: Logic for explicit synchronization.

A state can he part of several constructions. In figure 4.6 state X is the ending of an if-

12 CHAPTER 4. THE STATE CONTROL LOGIC

else-then construction, a concurrent sequence and the beginning of a loop. It is important
to note that the consequences of a construction affect the input of a state. The output of
a state is used, but not directly affected by any construction.

dO a

i I
~

eO
I

!

u2 11
1 !

Wait
Log ie u~

~
X (input)

Figure 4.6: State X is part of many constructions.

Chapter 5

The state controllogic generator

The state control logic is generated by a state control logic generator. This generator
generates structural VHDL-descriptions (see [lns88]). The input of the generator is a
tabular description of a symbolic fini te state machine (see appendix C).

5.1 State transition graph

The control flow of the state machine is represented by a taken flow graph. Each node
in the graph can have many edges to other nodes. These edges are kept in a "link tree"
for each node. The link tree is a binary tree that groups edges tothenodes they belang
to (there are forward link trees for outgoing edges and backward link trees for incoming
edges). The link tree is used to create an easily travesable hierarchy of the edges.

As was noted in chapter 4, logic has to be generated for the input of each state. Because
of this it is important to know the possible previous states and the conditions of the
transition. The input file, however, gives information about the next state.

The input file contains state transitions which can be used to incrementally create a
forward state transition graph. This graph gives complete information about the next
state for each possible state. A backward state transition graph can also be generated
from the input file, but this graph does nat contain complete information about the pre­
vious state(s), because it is nat immediately clear what kind of structure a node belongs
to (see section 5.2). An extra parsing step to complete this information is discussed in
section 5.3.

5.2 Link trees

The edges of each node are kept in a link tree. There are two link trees per node, one
link tree for the forward state transition graph and one link tree for the backward state
transition graph.

A forward link tree has four possible kinds of links:

13

14 CHAPTER 5. THE STATE CONTROL LOGIC GENERATOR

• an empty link, an empty square in figures.

• a direct link (linked to the next state), a square with the target state in it.

• an if link (contains a conditional and two references to other links, one for the
true-condition, one for the false-condition), an I node.

• a split link (contains two references toother links), as node.

The link tree is a binary tree where each link contains at most two branches. Conditional
structures ar two concurrent sequences can be expressed by an if or split link. More
complex constructions, such as a multi-way branch or more concurrent sequences can
be expressed by nested links. Figure 5.1 shows an example of a link tree. This example
also shows that the hierarchy of a link tree can be very important.

b

Figure 5.1: Two examples of link trees.

A backward link tree is similar to a forward link tree, but it has five possible kinds of
links:

• an empty link, an empty square in figures.

CHAPTER 5. THE STATE CONTROL LOGIC GENERATOR 15

• a direct link (linked toa previous state), a square with the target state in it.

• a from-if link (linked to a previous state and containing a conditional), a square
with the target state in it.

• an end-iflink (contains two references toother links), an E node.

• ajoin link (contains two references to other links), a J node.

From-if links are similar to direct links, but indicate that the state can only be reached
if some conditions are met (the previous state has one or more if-conditions), whereas a
direct link is an unconditionallink. Note that an end-iflink doesnothave a conditional.
The conditional is used at the beginning of the if construction, while the end-if link
signifies the end of the construction.

Link trees are used to model edges in the state transition graph. A direct forward link
indicates an outgoing edge, while a direct or from-ifbackward link indicates an incoming
edge. Because ofthis, each direct forward link can be coupled to exactly one unique direct
or from-ifbackward link. The other kinds of edges are used for the hierarchy ofthe edges,
but do not directly represent an edge.

5.3 backward tree construction

A single step parser cannot generate a backward link tree, because it cannot determine
if the convergence of two branches should be indicated by an end-if link of by a join
link. The type of link is determined by the kind of construction that it is part of and this
information can only be derived from the complete state transition graph. Instead, the
parser creates a backward link tree without hierarchy (a balanced tree) and uses gather
links (a sixth kind oflink, similar to end-ifandjoin links), G nodesin figures. Later on,
the gather links will be replaced by end-if or jo in links and the hierarchy of the tree will
be changed if necessary.

In chapter 2 paths were introduced to define the structure of the state transition graph.
Now the notion ofpaths can be extended: a path has not only a starting state and a final
state (both can be shared withother paths), but alsoastarting link and a finallink. The
starting link is a link in the forward link tree ofthe starting state, the finallinkis a link
in the backward link tree ofthe final state. A link can only serve as startingor finallink
for one path. An example of some paths is given in figure 5.2 (note that all paths have
starting state S and final state F, only the starting and finallinks differ).

Before the algorithm to complete the backward link tree can execute, all back-branches
(edges to an already visited state, mainly used in loop constructions) must be removed.
This is done with a depth-first search (see [Corm90], page 477-483). The edges are
removed for the duration of the backward tree construction.

Every state has a forward link tree. Every node in that tree elivides the paths that
start at that state in two distinct groups (the left branch and the right branch). There
may be valid paths that contain paths from both branches, but these paths are of no
consequence for the backward tree completion (and, incidentally, cannot have a starting

16 CHAPTER 5. THE STATE CONTROL LOGIC GENERATOR

Path 4 ---r--+-1/ i
!I
/I ,,

I i I
I i I
\ I I

--..._

" "" '\

\
\
I

'\
\

\
\
\

--""!""-Path3
':-T-'--!------;- P ath 5

I
/

/
/

I

/
I

I
I

I

I
I
I
I
I

Figure 5.2: Paths and link trees.

link). Both groups terminateat the samestate (this follows from the regularity of the
state machine) and should he joined by ajoin or end-i{ link.

An algorithm to construct the backward link tree is straightforward. It only has to walk
down a path. Whenever it encounters a branch it has to process both branches (by
recursion). Both branches must merge at the same state and there the correct finallink
can he constructed. Some support functions are defined for the algorithm:

type(x). Returns the type of link x.

find-coupled-link(x). Returns the backward link that is coupled to forward link x.

state(x). Returns the state that x belongs to

backward-root(y) and forward-root(y). Return the root of the backward/forward
link tree of state y.

CHAPTER 5. THE STATE CONTROL LOGIC GENERATOR 17

join-links(xl,.x2,t). Joins two branches and returns thejoining link (this function will
be detailed shortly).

1 TRAVEL-PATH(start-link)
2 if type(start-link) = empty
3 return "de ad end"
4 else if type(start-link) = direct
5 target-link <---- fi.nd-coupled-link(start-link)
6 if target-link = backward-root(state(target-link))
7 start-link <---- forward-root(state(target-link))
8 goto line 2
9 else
10 return target-link
11 else
12 targetl <---- travelpath(left(start-link))
13 target2 <---- travelpath(right(start-link))
14 target-link ._ join-links(target i, target2, type(start-link))
15 goto line 6

In lines 5-8, the algorithm walks down the path (it will continue to do so as long as no
branches or merges are encountered). If it encounters a merging of paths (the target­
link is not the root of the tree, but a leaf of a jo in or end-iflink), it returns to the calling
function in line 10 (a merging signifi.es the end of a path).

In lines 12-15 branches are handled. First the function is recursively called for each
branch. Then both branches are joined by ajoin orend-iflink (depending on type(start­
link)) in line 14. Mter the branches have been merged, the resulting link is processed
just like a normal target-link. Note that both recursive calls should return target-links
from the same fi.nal state. If this is not the case, the fini te state machine is not regular
and an error message is returned.

At first the backward link tree is a balanced tree withgather links (which can be renamed
to ajoin or end-iflink). The direct and from-iflinks are distributed randomly amongst
the leaves of the tree. The backward link tree will always have a gather link subtree
(any path from root to leaf en counters a number of gather links, foliowed by one or more
other types of links). This is maintained by the fact that the arguments targetl and
target2 of jo in-links will never be gather links (the return value target-link in function
travel-path can never be a gather link, because it becomes either a direct or from-iflink
in line 5, or a end-i{ or join link in line 14), but the parents of targetl and target2 will
be gather links (all parents are gather links in the beginning and as soon as they are
renamed, they are used as a target-links themselves in line 14).

The function join-links has to gather the two links under the samegather link and
rename that link to the appropriate type. To support join-links, three functions are
defined:

depth(x). Returns the depth of link x in the link tree.

18 CHAPTER 5. THE STATE CONTROL LOGIC GENERATOR

parent(x). Returns the parent link of link x.

swap(n,xl ,x2). If xl is a child of n, swap the other child of n with x2. If x2 is a child of
n, swap the other child of n with xl.

1 JOIN-LINKS(target], target2, type)
2 if depth(target]) < depth(target2)
3 switch-link ._ parent(target2)
4 else
5 switch-link '- parent(target])
6 swap(switch-link, target], target2)
7 type(switch-link) ~type
8 return switch-link

In lines 2-5 the parent of the link that has the greatest depth is selected (and becomes
switch-link). This ensures that switch-link has only leaves (and no gather links) as
children. Line 6 switches the "foreign" child of switch-link with the other link. After this
the type of switch-link can he changed in line 7.

Figure 5.3 gives an example of the construction of a backward tree. It has the same
structure as the state transition graph of fi.gure 5.2, but the backward link tree of state
F is now a balanced tree with gather links. On the left side is the situation where half
the algorithm has completed, on the right side is the situation where the algorithm has
completed.

At first, the algorithm encounters a split link. This link becomes start-link(]) (the num­
ber between parenthesis is the level of the call to the algorithm). The algorithm recur­
sively calls itself for both branches and encounters aniflink on the left side and a direct
link to state F on the right side. These links become start-link(2a,b). On the left side,
two more start-links are found and the algorithm recurses again. Now the third level
calls walk through states eO and uO and bothencounter a merging of paths at state F.
Both calls assign their finallink to target-link (3a and 3b respectively) and return to
the second level call. The second level call calls join-links to merge both branches (fi.g­
ure 5.3a depiets the situation at this point). The function jo in-links exchanges the link
to eO with the link to S (because uO has a greater depth than eO). Now the gather link is
renamed to an end-iflink and it becomes target-link(2a). Target-link(2b) is the link at
the receiving end of start-link(2b). The second level calls return their target-links and
the first level call can re name target-link(1) to a jo in link. N ow the same backward link
tree as in fi.gure 5.2 is formed (note that both end-i{ andjoin links are symmetrical).

5.4 controllogic generation

The controllogic will be compiled into a structural VHDL description. The ROM-core
is available as a separate component (see chapter 6). The logic function of all inputs
of the latehes can easily he derived from the backward link tree. All direct links are
replaced by the output ofthe previous state. All from-iflinks are replaced by the output

CHAPTER 5. THE STATE CONTROL LOGIC GENERATOR

lsl
~

=i\lllli\~ï
0

target-link(3b) - uO

(a)

s target-link(3b) -r-;;öl

(b)

19

Figure 5.3: Phases in the construction of a backward tree. (a) halfway the algorithm. (b)
is after completion ofthe algorithm.

of the previous state ANDed by the conditional. End-i{ links are replaced by an OR of
bath reference links. Join links are replaced by the output of a wait logic block. This
component, called JOIN, is availiable as a VHDL component. This component is driven
by the logic functions of bath reference links of the jo in link.

Appendix B gives an example of a VHDL-description generated fora small (eight states)
finite state machine. It does contain some optimizations which are described in chap­
ter 7.4.

20 CHAPTER 5. THE STATE CONTROL LOGIC GENERATOR

Chapter6

The ROM-core

The ROM-core serves two functions: it contains the latehes that hold the current state(s)
and it computes the output vector that belongs to the current state(s). The ROM-core is
a layout that can be generated by the ROM-core generator.

The layout is designed and tested in the COMPASS design environment. It is designed
in 1.2 micron CMOS technology ().is 0.6J.Lm).

The ROM-core contains the following five parts (see figure 6.1):

1 the ROM-matrix

2 the latehes

3 the output-buffers

4 the precharger

5 the clock-regulation

5. Clock-regulator

2. Latehes

4. Precharger 5. Clock-regulator

1 . ROM-matrix 2. Latehes

3. Output buffers

Figure 6.1: Generallayout ofthe ROM-core.

Although the ROM-core is a CMOS circuit, the ROM-matrix itself consist only ofNMOS
transistors. This requires a load device, but CMOS technology does not have suitable

21

22 CHAPTER 6. THE ROM-CORE

load devicesapart from complementary PMOS transistors, which are not suitable fora
matrix (see [Dill88], page 410-422). Other load devices do not yield optimal results and
use a lot of power. A dynamic circuit solves these problems. It is easy to implement and
only uses power when an output switches. The disadvantages are that the outputs are
not available during an entire clock cycle and that there is a minimum clock speed.

During the precharge phase the output lines are charged. This charge is held by parasitic
capacitances. During the output phase some output lines are discharged and the output
becomes valid.

The latehes are stacked on both si des of the ROM-matrix, so the latehes can be twice as
high as a ROM-matrix row (the leftand right latehes service alternating ROM-matrix
rows}.

6.1 the ROM-matrix

The ROM-matrix is a (partially filled) array ofNMOS-transistors. The VSS-powerlines
and the output lines run vertically in metal. The input lines run horizontallyin poly.
Four transistors share a contact from VSS to the N -diffusion (see figure A.1, appendix A).
Nospace is reserved for bulk contacts, unless there are two zero-entries in the matrix,
in which case there is space for a bulk contact (see figure A.2, appendix A).

During the precharge phase all output lines are charged to VDD. At that time all input
lines are low. As soon as the precharge phase is over, one or more input-lines will go
high. Wherever these lines cross N-diffusion a path from VSS to the output-line will
form, so the output-line will discharge. The other output-lines will keep their charge.

If two active input-lines cause the same output-line to discharge, the discharging will
only speed up. This means that the ROM itself does nat require states that, when
simultaneously active, have non-overlapping outputs, although usually the resources
driven by the output-lines do.

A 2 by 2 transistor matrix is 19 À wide and 25 À high.

6.2 the latehes

The latehes are of theMaster-Siave D-flipflop variety. Two designs were made: a small
dynamic flipflop and a static flipflop. The dynamic flipflop is a lot smaller than the static
flipflop, but it requires two non-overlapping clocks.

Bath flipflops have two outputs: the standard Q-output and a version of the Q-output
that is forced low during the precharge phase. The farmer output can be used for the
state controllogic and the latter is used to drive the poly-lines ofthe ROM-matrix. Bath
flipflops have a reset-input, that causes the output to be low. Although this does not
cause the flipflop to reset internally, the control logic guarantees that all flipflops will
clock in a zero-value during the next clock cycle.

The dynamic flipflop (see also [West85], page 204) consists oftwo transmission gates, two
invertars and two NOR-gates (see figure 6.2). The flipflop uses two non-overlapping clocks

CHAPTER 6. THE ROM-CORE 23

(clkl and clk2). During clkl the left transmission gate passes the D-input to the leftroost
invertor. While clkl is low the invertor keepsits value because ofparasitic capacitances.
As soon as clk2 becomes high, the value is passed on to the leftroost NOR-gate (that
acts as an invertor, as long as the reset-input is not triggered). The other invertor and
NOR-gate pass the value to the poly-lines.

Clk1 Clk2 Reset Precharge

D~~o--RoM
a~--------------~

Figure 6.2: Schematic of the dynamic latch.

It is important that the two clocks do not overlap. lf they do, bath transmission-gates
pass their values simultaneously. The effectscan range from skipping a state (because
the output of the latch is passed directly into the next latch) to a complete randomization
of the active states. SPICE-simulations show that some overlap is allowed (because of
the slow reaction-times of the circuits), but using an inverted version of clkl as clk2
does not work.

The layout of the dynamic flipflop is in figure A3, appendix A. The layout is designed
so that multiple flipflops can be stacked vertically. The flipflops share power-lines, so
stacked versions must he mirrored horizontally. Control signals run vertically in metal2.
The Q-output must be routed back to the beginning of the circuit and in order to do so
has to make many detours. This is unavoidable, because the design has to be small and
all layers are used. The design is 29 À high, which is 4 À higher than two rows of the
ROM-matrix, so the rows are padded to account for the difference in height. The last
output gate has wide transistors, to drive the long poly-lines in the ROM-matrix.

The static flipflop consists offour NOR-gates for the master, four NOR-gates for the slave
and a NOR-gate to stop the output during the precharge. The schematic is given in
figure 6.3 (the design of a static Master-Siave D-flipflop is standard and can be found
in [Burg88]).

DT
\7! V 1 cJk

~~

Reset

0--D
f-cJk ><
~~ROM

I I
I I

Reset Precharge

Figure 6.3: Schematic of the static latch.

The layout for this flipflop is given in figure A4, appendix A. The power-lines run hori­
zontallyin metal2 (and are shared by the neighbouring flipflops ifthey are stacked). The

24 CRAPTER6. THEROM-CORE

metal-layer runs mostly vertically, while the poly- and metal2-layers run horizontally.
Because of this the metal2 layer can be used to transport signals over the entire length
of the flipflop. The design is 50 À high, so two flipflops side by side must service two
ROM-matrix-rows (on the other side ofthe ROM-matrix two more flipflops service two
ROM-matrix-rows, so four ROM-matrix-rows, with a total height of 50 À, are serviced
by four flipflops). The metal2-layer can transport the D-input and Q-output from the
innermost flipflop to the outside and the output-line from the outermost flipflop to the
ROM-matrix.

The dynamic flipflop is 211 À wide and the static flipflop is 274 À wide. This means that
two dynamic flipflops are about as wide as 22 ROM-columns and four static flipflops
are about as wide as 58 ROM-columns. Two static flipflops are 160% wider than one
dynamic flipflop, while two dynamic flipflops are 16% higher than one static flipflop.
The extra width ofthe design with static flipflops will only be offset by its advantage in
height in extremely large and impractical designs.

6.3 the output-buffers

The output-buffers are simple invertors. Because ofthe invertars the preserree of a tran­
sistor intheROM-matrix causes a ONE-output, while the absence of a transistor causes
a ZERO-output. Because most states have less ONE-outputs than ZERO-outputs this
reduces the number of transistors needed intheROM-matrix (in a normal design the
total output word of a controller has less than 50% ONE-outputs, so each state in a
parallel configuration has significantly less than 50% ONE-outputs).

The layout of three buffers is given in figure A.5, appendix A The buffers are packed in
groups of three because one buffer is broader than one ROM-matrix column, but three
buffers packed tagether are as broad as three ROM-matrix columns. The output-buffers
are wide transistors (the W/L ratio ofthe PMOS transistor is 12 and the W/L ratio ofthe
NMOS transistor is 9), because they may drive a heavy load.

6.4 the precharger

The prechargeris an array of PMOS transistors. The layout of the prechargeris given
in figure A.6, appendix A. The poly-line that controls the precharger comes from the
clock-regulation.

6.5 the clock-regulation

The clock-signals have to drive a lot of transistors. Because of this the clock signal is
buffered (and inverted) on arrival. This is done by several invertars in parallel. A clock
cycle starts at the down flank of the clock. Similarly, the dual clock design starts at the
down flank of clk1 and the two clocks may not be simultaneously low (this is the result
of the inversion of the clock on en try).

CHAPTER~ THEROM-CORE 25

One of the in vertors feeds the in vertors that are used to derive a nan-inverted doek. The
others drive signal-lines. If possible, two invertars in parallel drive the same signal­
line. All invertars are made of wide transistors. The drive capacity of the invertors is
necessary because each signal-line has up to 0.45pF capacitance (a normal gate has
0.01-0.02pF capacitance)

In figure A. 7, appendix A, the layout of the clock-regulation is given. There is one version
for the dynamic flipflop and a version for the static flipflop.

6.6 total size

Because the matrix-transistors are grouped in 2 by 2 groups, both the number of rows
and the number of columns must be a multiple of two. The size of the design can be
calculated as follows {Ris the number of rows, C is the number of columns):

width :v x Wflipflop + C x lVtransistors + lVoverhead

hóght R X Htransistors + Hclock + Hbuffer

in which:

• x is the number of flipflops that are used horizontally, 2 for the dynam.ic flipflops
and 4 for the static flipflops.

• Wflipflop is the width ofthe flipflop, 211 >. for the dynam.ic flipflop and 274 >. for the
static flipflop.

• Wtransistors is the {average) width ofthe transistors, 10.5 >..

• Woverhe.<trl is some extra space needed for interconnect, 52 >..

• Htmnsistors is the (average) height of the transistors, 12.5 >. for the design with
dynamic flipflops and 14.5 >. for the design with static flipflops.

• H clock is the height of the clock-regulation, 71 >. {the prechargeris just 39 >.high).

• Hbuffn is the height ofthe output-buffer, 189 >..

The total size of the design with dynamic flipflops is:

willth = 474 + 10.5 x ('

hl'igth = 260 + 14.5 x R

The total size of the design with static flipflops is:

width = 1148 + 10.5 x C

heigth = 260 + 12.5 x R

In chapter 7.4 extra buffers will be introduced for extra speed in large designs. Those
buffers will require an extra 272 >. in height per buffer.

26 CHAPTER 6. THE ROM-CORE

Chapter 7

Results

7.1 Speed

One of the design goals of the Multi-thread ROM-controller was an operating speed of
25Mhz. In 40ns the controller should be able to advance to the next state(s) and supply
the outputs. The entire controller could not be simulated by a circuit simulator, because
no circuit extractor for the VHDL controller specification was available. The ROM core,
however, could be simulated, so various controller configurations were simulated by the
Campass Spice circuit simulator.

Preliminary tests showed that the optimum size of the ROM core would be around
100x52 (100 outputs and 52 states). First the speed of the ROM core itself was tested
at various sizes (50x28, 100x28, 50x52 and 100x52). Mter that the performance ofthe
100 x52 ROM core was tested, while there was an output load of 0.4pF (relatively light
load), 1pF (medium laad) and 3pF (cross-chip wires). The last simulation was of a large
core (200x100) with a light load (0.4pF). A ROM core of this size with a heavier load
would be too slow, so extra output buffers (a light laad) should be used.

The Spice results are plotted in appendix D. Both the ROM core version with static
flipflops and the ROM core version with dynamic flipflops have been calculated. In the
figures the clock, the output of a flipflop and the output of a ROM column are plotted.
The clock is the inverse ofthe clock that is supplied to the ROM care (the cycle starts at
the up flank). The start of each clock cycle is printed on the X-axis.

In the first cycle, the circuit is reset by a reset pulse. The input of the flipflop is high
until halfway between cycle 3 and 4, so the output ofthe flipflop will rise in the first half
of cycle 2. The output of the flipflop stays high in cycle 3 and falls in cycle 4. !Ons befare
cycle 5 the input of the flipflop rises again, so the output of the flipflop rises in cycle 5.
The ROM-output rises in the second half of each cycle in which the output ofthe flipflop
is high (cycle 2, 3 and 5). It falls at the beginning of each new cycle (the precharge phase).
The inputs are plotted in figure D.l.

In tables 7.1 and 7.2 the rise and fall times ofthe outputs are given. The rise and fall
times of the outputs of the flipflop are given from the start of each cycle and the rise
and fall times of the ROM-outputs are given from halfway each cycle. In figure 7.1 the

27

28 CHAPTER 7. RESULTS

unloaded designs and the designs loaded with .4pF are compared toeach other. The time
on the Y-axis is the flipflop rise time added totheROM-output rise time. In tigure 7.2
the same is done for the loaded 100x52 designs.

Table 7.1: Rise and fall times of the ROM core with static flipflops. All times are from
the 50% level ofthe clock input to the 70% level ofthe output for rise times and the 30%
level for fall times.

SlZe load flipflop ROM
[pF] nse fall rise fall

[ns] [ns] [ns] [ns]
50x28 0 13 8 10 6
100x28 0 13 8 10 8
50x52 0 14 8 12 8
100x52 0 14 8 12 12
100x52 0.4 14 8 16 12
100x52 1 14 8 18 16
100x52 3 14 8 21 29
200x100 0.4 14 10 22 16

Table 7.2: Rise and fall times of the ROM core with dynamic flipflops. All times are from
the 50% level of the clock input to the 70% level ofthe output for rise times and the 30%
level for fall times.

SlZe load flipflop ROM
[pF] rise fall nse fall

[ns] [ns] [ns] [ns]
50x28 0 6 6 6 6
100x28 0 6 6 8 8
50x52 0 6 6 8 8
100x52 0 6 6 10 10
100x52 0.4 6 6 12 12
100x52 1 6 6 14 16
100x52 3 6 6 17 30
200x100 0.4 6 8 18 18

The tables show that the design with dynamic latehes is the fastest design. Even the
100x52 design with heavy load and the 200x 100 design meet the design criterium.
All designs have a relatively slow ROM-output fall time. This fall time is not really
important, since the ROM-output starts falling at the beginning of a clock cycle and is
readat the beginning of the next clock cycle, so it has twice as much timetofall as it
has to rise.

One important aspect of both designs is that the rise time of the output of the flipflop is
faster than the rise time ofthe ROM-output. By devoting more time to the ROM-output,

CHAPTER 7. RESULTS 29

45

Static 0

Dynamic +
40

35

30

25
+

20

+

+
t5

+ +

+

10

5

0
50x2B 100x2B 50x52 100X52 100x52L 200x100L

Figure 7.1: Speed comparison between the unloaded designs and the designs loaded with
0.4pF.

Figure 7.2: Speed comparison between the various 100x52 designs.

30 CHAPTER 7. RESULTS

a faster design can be realised. This way the two configurations with static flipflops that
do notmeet the design criterium (100x52 with 3pF and 200x100 with 0.4pF) can be
made to work.

Datasheets for the logic gates used by the Campass VHDL-compiler show that any
single basic logic function (AND, OR) can be calculated in 2ns. The wait logic for explicitly
synchronized sequences takes less than 6ns. There are 21ns between the time that the
output of the flipflop becomes available (in the worst case 14ns after the beginning of
the doek cyde) and the time that the input of the flipflop must be valid (5ns befare the
beginning of the next doek cyde, tested with additional Spice-runs). Even three serial
wait logic blocks can produce aresult in this time (three serial wait logic blocks are the
result of a 8-way concurrent sequence). Usually the state controllogic does not become
any more complicated than one or two wait logic blocks and two basic logic functions.

As a comparison, a standard Campass ROM delivers its output in 10 to 20ns (depending
on the size ofthe ROM), induding set up times. The Multi-thread ROM is a bit slower (12
to 36ns, depending on the design and output load), but this includes state transitions.
If the state transition for a standard ROM-controller takes lOns, a standard ROM­
controller can accommodate designs at 33Mhz.

The minimum doek speed at which the Multi-thread ROM-controller can function is
determined by the dynamic parts, the output lines and the dynamic flipflops. The output
lines have a capacitance of 0.03pF (2 rows) to 0.20pF (100 rows). This leads to an
estimation (see [Dill88], page 567) of the minimum doek speed of 120Hz. The starage
nodes in the dynamic flipflop have a capacitance of 0.05pF, which leads to an estimation
ofthe minimum doek speed of 40Hz.

7.2 Size

The ROM core is basically a standard ROM core with flipflops instead of address de­
coders. In table 7.3 the size of a Multi-thread ROM care is compared to a standard
Campass ROM core. Because Campass ROMs have been designed to have many rows
and few columns, the camparisou is made on basis of the number of ROM-cells (the
smallest design with the given number of cells).

The table shows that the design with static flipflops is up to 25% larger than a standard
ROM core. A design with dynamic flipflops is up to 45% smaller, but at moderate sizes
it is about as large as a standard ROM core. Only at extreme sizes is it larger than a
standard ROM care.

Table 7.4 gives an impression of the overall size of the Multi-thread ROM-controller.
For several examples the sizes of the resulting controller are given. The sizes are given
for the ROM core, the state control logic and the total design. For the random logic
implementation, the total design size is an approximation, because the state control
register is not synthesized.

The following examples are used:

Example 1 is a moderately sized multi-thread finite state machine without loops (see

CHAPTER~ RESULTS 31

Table 7.3: ROM core areas and aspect ratios. The ratio column after the Multi-thread
ROM core size compares it to the Gompass ROM core size.

#cells Campass static dynamic
Area Asp. Area Asp. Ratio Area Asp. Ratio

[M.>.2] [W/HJ [M.>.2] [WIH] [M.>.2] [W/H]
256 .56 1.0 .55 3.90 98% .31 1.95 55%
512 .62 .98 .68 3.15 110% .40 1.52 65%
1024 .76 .87 .82 3.79 108% .55 2.11 72%
2048 1.02 .86 1.15 2.72 113% .81 1.45 79%
4096 1.33 .91 1.54 3.65 115% 1.26 2.27 95%
8192 1.98 .74 2.41 2.33 122% 2.04 1.40 103%
16384 2.93 .95 3.66 3.54 125% 3.52 2.41 119%

figure E.1). It has 28 states and 15 outputs.

Example 2 is the flat version of example 1 (because there are no loops, no state explosion
occurs) and is given in figure E.2. This example has 30 states and 15 outputs.

Example 3 is a small finite state machine with parallelloops (see figure E.3). It has 23
states and 16 outputs.

Example 4 is a large m ulti-thread fini te state machine with 127 states and 137 outputs.
The state machine is given in figure E.4.

Example 5 is the same state machine as example 4, but is contains only 70 outputs.
This gives an impression ofthe overhead caused by the partition of a controller in
two separate controllers (see chapter 7.4).

Example 6 is the state machine of example 2 with two extra 10-state sequences in­
serted, resulting in a state machine with 50 states and 11 outputs. This example
can he used to campare the Multi-thread ROM-controller toa random logic imple­
mentation.

Example 7 is the state machine of example 6 with 33 outputs.

The table shows that an implementation of example 7 (50 states, 33 outputs) with a
Multi-thread ROM-controller with dynamic flipflops is smaller than a random logic
implementation. In [Gerb92] it is stated that a ROM-controller of about 100 states
will he as small as a random logic implementation. One of the clear advantages of the
Multi-thread ROM-controller is the amount of non-ROM area (state controllogic and
interconnect). In [Gerb92] that area is an average 93% of the ROM-area, while for the
Multi-thread ROM-controller that area is an average 65% and when consiclering only
large controllers cantairring "simple sequences" (example 5 and 6), that area is only 45%.
This shows that the Multi-thread ROM-controller is also a good alternative for standard
ROM-controllers.

32 CHAPTER~ RESULTS

Table 7.4: Overall sizes of the ROM controller. The sizes are given fora random logic
design (if possible), a static flipflop Multi-thread ROM-controller and a dynamic flipflop
Multi-thread ROM-controller. For example 5 and 6 the sizes have been adjusted to
negate unnecessary overhead that the chipcompiler generated.

name design ROM care state logic overall
[MÀ2] [MÀ2] Area Aspect

[M"\2] [W/HJ
example 1 random - .36 .43 .88
example 1 static 0.83 .06 1.37 1.54
example 1 dynamic .42 .09 .78 1.05
example 2 static .79 .05 1.28 1.59
example 2 dynamic .43 .07 .74 1.06
example 3 static .73 .09 1.29 1.64
example 3 dynamic .39 .11 .88 1.48
example 4 static 1.93 (3x) .09 7.70 .91
example 4 dynamic 1.58 (3x) .10 6.70 .59
example 5 static 1.53 (3x) .11 6.25 .73
example 5 dynamic 1.09 (3x) .10 4.86 .44
example 6 random - .64 .73 1.08
example 6 static 1.07 .06 1.70 1.26
example 6 dynamic .56 .11 1.02 .81
example 7 random - 1.49 1.61 1.18
example 7 static 1.24 .06 1.92 1.42
example 7 dynamic .74 .09 1.24 .98

7.3 Power consumption

The last performance criterium is the power consumption. The power consumption of
bath Multi-thread ROM cores is given in tables 7.5 and 7.6. There is one column for
normal "single thread" usage (only one state is active) and one column for heavy usage
(five states are active). For normal usage, 25% ofthe outputs are active (a high percentage
for a single state) and for heavy usage all outputs are active. Therefore the power
consumption can be considered an upper bound estimation for the given designs.

The tables show that the dynamic flipflop designs use less power if they are unloaded,
but they use more power if they must drive a laad. This is caused by the fact that the
dynamic design is somewhat faster than the static design. Because of this it uses more
power when the outputsneed to be driven. When the outputs are nat loaded, little power
is drawn and the advantage of the dynamic design Oess transistors) shows.

A standard Campass ROM-cell uses about Sm W per output, if the outputs are loaded
with 3pF. It is designed for 16 outputs average, so it uses about 130m W. The Multi­
thread ROM care uses less power when it is loaded with 3pF.

CHAPTER 7. RESULTS 33

Table 7.5: Power usage of the ROM core with static flipflops. The light usage column
indicates power usage when one state is active and 25% of the outputs is active. The
heavy usage column indicates power usage when five states and all outputs are active.

s1ze load light usage heavy usage
[#rows x# cols] [pF] [mW] [mW]
50x28 0 6.69 10.35
100x28 0 8.47 15.79
50x52 0 11.13 16.30
100x52 0 14.40 20.57
100x52 0.4 17.11 37.76
100x52 1 21.32 56.09
100x52 3 33.99 106.27
200x100 0.4 34.35 50.00

7.4 Further improvements

Sirree a lot of state machines use more than 100 states and some may use more than 200
outputs, the Multi-thread ROM-controller may have to be divided into several smaller
parts. One salution is to combine the outputs of several separate parts with OR-gates,
but this presents a wiring problem, resulting in an excessive use of area (about 6 times
the area of the ROM core in a 128-output design).

It is easier to insert a buffer in the output lines. This buffer separates the ROM core
above and below the buffer. The buffer can be effected by using the output of a ROM
co re as an input for the output line of the second ROM co re. The NMOS transistor that
processes the output ofthe first ROM core can he putjust after the output buffers offirst
ROM core. The drain ofthat transistor can be directly connected to the output line ofthe
second ROM core (resulting in the layout of figure A.9). Because the NMOS transistor
is wide, it can easily drive the output line. Spice simulations show that the extra delay
incurred by the buffer is about 1ns.

To reduce the number of outputs, one has to split the ROM core in parts with half the
number of outputs each. Each part uses the samestate controllogic, but the total number
of latehes has doubled. The total amount of wiring will increase, but not by much (few
extra wires are needed). Because ofthe latehes and some overhead, the new design will
be about 60% larger with static flipflops and about 45% larger with dynamic flipflops.

Another impravement is that the chaining of latehes to the next state is taken care of
in the ROM-core, eliminating any overhead the chipcompiler could add. Only routing to
multiple latches, to the state controllogic and to different parts of the ROM-core is left
to the chipcompiler.

34 CHAPTER 7. RESULTS

Table 7.6: Power consumption of the ROM care with dynamic flipflops. The light usage
column indicates power usage when one state is active and 25% of the outputs is active.
The heavy usage column indicates power usage when five states and all outputs are
active.

si ze laad light usage heavy usage
[#rows x #cols] [pF] [mW] [mW]
50x28 0 5.59 9.15
100x28 0 8.28 14.87
50x52 0 9.47 13.84
100x52 0 14.90 21.42
100x52 0.4 21.97 45.05
100x52 1 26.75 67.98
100x52 3 39.23 116.83
200x100 0.4 44.08 58.97

Chapter8

Conclusions

The Multi-thread ROM-controller offers an elegant salution for the implementation
of multi-thread algorithms. It circumvents the problem of state-explasion that single­
thread controller implementations have and it doesn't require the overhead that com­
municating single-thread controllers require_

Dynamic flipflops with transmission gates and two non-overlapping clocks are best suited
as latehes in the Multi-thread ROM-controller. They deliver the best performance (in
size and speed) at the cost of little extra power and some extra logic to genera te the two
clocks.

The Multi-thread ROM-controller also offers small solutions for single-thread algo­
rithms. At about 50 states and 33 outputs, the Multi-thread ROM-controller becomes
as efficient as a random logic controller, while conventional ROM-controllers reach the
sameefficiency as random logic controllers at about 100 states. The small size comes from
an efficient ROM-core coupled with very little state controllogic (most state transitions
require just a simple conneetion to the next state).

One of the problems of the Multi-thread ROM-controller is that its capacity is some­
what limited. If the ROM-core contains over 100 states, it becomes increasingly slow.
Fortunately this problem can be overcome (at the costof a lns delay and some extra area)
by partitioning the controller and using the output of the first partition as an input for
the second partition. The number of outputs is also limited (200 outputs is a maximum).
This problem can be overcome by implementing two parallel controllers, each of which
computes a different half ofthe outputs (ifthey are fed the same inputs, both controllers
should run identically).

35

36 CHAPTER 8. CONCLUSIONS

Bibliography

[Burg88] P. BURGER. Digital design, a practical course. John Wiley & sons, Inc, 1988.

[Corm90] T.H. CORMEN, C.E. LEISERSON, AND R.L. RIVEST. Introduetion to algorithms.
MIT Press, 1990.

[Dill88] T.E. DILLINGER. VLSI engineering. Prentice Hall, 1988.

[Eijn91] J.T.J. VAN EIJNDHOVEN, G.G. DE JONG, AND L. STOK The ASCIS Data Flow
Graph: Semantics and Textual Format. Eut report 91-e-251, Eindhoven
University ofTechnology, June 1991.

[Gerb92] L. GERBAUX AND G. SAUCIER. Automatic synthesis of large Moore
sequencers. Integration, the VLSI journal, 13:259-281, September 1992.

[Hild93] H.A. RILDERINK AND J.A.G. JESS. ROM-based Multi Thread Controller. In
IFIP Workshop on Logic andArchitecture Synthesis, pages 231-241,
Grenoble, December 1993. Institute National Polytechnique de Grenoble.

[lns88] Institute of Electrical and Electranies Engineers, New York. IEEE Standard
VHDL Language Reference Manual, ieee std. 1076-1987 edition, 1988.

[West85] N. WESTE AND K. ESHRAGHIAN. Principles o{CMOS VLSI design, a systems
perspecive. VLSI systems. Addison-Wesley, 1985.

37

38 BIBLIOGRAPHY

Appendix A

Layouts

from latch-

U'l
U'l
>
l

-from latch

Figure A. I: Layout ofthe ROM-matrix transistors.

39

40

from latch-+

UJ.
UJ.
>
!

!
0
c

'1:l
c

APPENDIXA. LAYOUTS

;-from latch

Figure A.2: A bulk contact.

APPENDIX A. LAYOUTS 41

"-reset

Figure A.3: Layout ofthe dynamic flipflop.

42

< rn
rn
l

APPENDIX A. LAYOUTS

Figure A.4: Layout of the static flipflop.

APPENDIX A. LAYOUTS 43

0 0 0
c: c: =

"d "d "d

= = =
I I I - ~ ~ = = = (1) (1) (1)

! ! !

-vnn

-vss

Figure A.5: Layout ofthe buffers.

44

elk-

APPENDIX A. LAYOUTS

.._yDD

,_vss

Figure A.6: Layout of the precharger.

APPENDIXA. LAYOUTS 45

--elk

reset -+ •••••fY-1~-+~////I.W////I.Iw~ -+reset

-.elk

-+elk

elk-+

-+elk

Figure A.7: Layout ofthe clock-regulation for static flipflops.

46

reset

clk2-

clkl --+

<: en en
1

APPENDIX A. LAYOUTS

-clkl

--+Clkl

Figure A.S: Layout ofthe clock-regulation for dynamic flipflops.

APPENDIX A. LAYOUTS

0 0 0
~ ~ ~

-vss

.-precharger

Figure A.9: Layout ofthe buffer between two ROM cores.

47

48 APPENDIXA. LAYOUTS

AppendixB

VHDL-description exam.ple

Figure B.l gives an exam ple of a m ulti-threaded fini te state machine that executes two
loops in parallel (or one loop if a is true).

b

I

/

I
/

Figure B.l: Example multi-threaded finite state machine.

The following VHDL-description will be generated for this example (at some points
extra comments have been added).

library ieee;
use ieee.std_logic_ll64.all;
library compass_lib;

49

50 APPENDIX B. VHDL-DESCRIPTION EXAMPLE

use compass_lib.compass.all;

-- The join entity is for explicit synchronisation of concurrent
-- sequences
entity JOln is

port (st : in bit; inl : in bit; in2
elk: in bit; outp : out bit);

end join;

architecture JOln of join is

in bit; reset

signal tll, tl2, tl3, tl4, t21, t22, t23, t24 : bit;

in bit;

-- These components are part of the COMPASS design library and
-- signify an invertor, two NOR-gates and an AND-gate.
component in0ld2

port (i : in bit; zn : out
end component;
component nr02dl

port (al : in bit; a2 in
end component;
component nr03d2

port (al : in bit; a2 in
end component;
component an02d2

port (al : in bit; a2 in
end component;
begin

ull in0ld2 port map (inl,
ul2 nr02dl port map (elk,
ul3 nr02dl port map (tl4'
ul4 nr03d2 port map (tl3'
u21 in0ld2 port map (in2,
u22 nr02dl port map (elk,
u23 nr02dl port map (t24'
u24 nr03d2 port map (t23'
u30 an02d2 port map (tl4'

end join;

library ieee;
use ieee.std_logic_ll64.all;
library compass_lib;
use compass_lib.compass.all;

bit) i

bit; zn out bit) i

bit; a3 in bit; zn out

bit; z out bit) i

tll) i

tll, tl2);
tl2, tl3) i

st, reset, tl4) i

t21) i

t21' t22) i

t22, t23) i

st, reset, t24) i

t24, outp);

bit) i

define the ROM-controller with four outputs. Reset resets all
latches, start starts the state machine. The dynamic latehes
are used, so two clocks (elk and nclk) are required

entity ram is
port (nclk : in bit; elk in bit; reset : in bit; a in bit;

APPENDIX B. VHDL-DESCRIPTION EXAMPLE

end rom;

b : in bit; c in bit; start : in bit; oO
ol : out bit; o2 : out bit; o3 : out bit);

architecture rom of rom is
-- inputs of the latehes
signal dO, d3, d4, d6, d7 bit;
-- signals that carry the outputs of the latehes
signal f2, f3, fS, f6, f7 : bit;
-- extra signals for the wait logic
signal eO, el, e2 : bit;
signal VDD BIT.- 'l';

signal VSS : BIT := '0';

-- deelare the ROM-core (an external layout)
component roml

out bit;

port (dO : in bit; d3 : in bit; d4 : in bit; d6 : in bit;

51

d7 : in bit; clkl : in bit; clk2 : in bit; nclkl : in bit;
nclk2 : in bit; resetl : in bit; reset2 : in bit;
vd in bit; vs : in bit; q2 : out bit; q3 : out bit;
qS : out bit; q6 out bit; q7 out bit; oO : out bit;
ol : out bit; o2 out bit; o3 out bit);

end component;

component join
port (st : in bit; inl : in bit; in2

elk: in bit; outp : out bit);
end component;

begin
d3 <= (start or I 0 I) i

d4 <= ((f3 and a) or (fS and b)) i

dO <= ((f3 and not a) or (f2 and c));

in bit; reset

state s
state eO
state tO

internal dS <= f4; state el

in bit;

internal assignments are handled inside the roml component
el <= f7;
e2 <= ((f2 and not c) or (fS and not b));
d6 <= eO; state f

internal dl <= fO; state t 1
internal d2 <= fl; state t2

d7 <= f3; state uO
ul : roml port map (dO, d3, d4, d6, d7, elk, elk, nclk, nclk,

reset, reset, VDD, VSS, f2, f3, fS, f6, f7,
oO, ol, o2, o3) ;

u2 : join port map (f6, el, e2, reset, elk, eO);
end rom;

52 APPENDIX B. VHDL-DESCRIPTION EXAMPLE

AppendixC

Description of the fini te state
m.achine input file

The description of the fini te state machine is a text file. The same format was
previously used to describe single thread state machines. For single thread state
machine state transitions with the same condition may not occur. For multiple thread
state machines this restrietion is lifted, but a number of single thread tools will not
work with multiple thread input files.

Lines starting with a dot indicate a command. There are five commands:

.inputvars <name>+ Defines the narnes of the input signals .

. outputvars <name>+ Defines the narnes of the output signals .

. mv Contains information about the number of input variables, the number of output
variables and the number of symbolic states. It has the following parameters:

<totaLvariables> This is <inpuLvariables> + 3
<input_ variables> The number of input signals of the finite state machine

<output_ variables> The number of output signals of the fini te state machine

<old_states> The number of symbolic old states preceded by a"-" sign
<new...states> The number ofsymbolic new states preceded by a"-" sign

.p <#transitions> Specifies the number of state transitionsin the state transition
table .

. end Signifies the end of the file

The other lines define the state transition table. Each line ofthe state transition table
is composed of four entries:

<input_values> In this string the values ofthe input signals are given for the state
transition described by the current line. For each signal (in the order indicated by
the ".inputvars" statement) the value is given. The value can be ''1'' "0" or '-' (don't
care).

53

APPENDIX C. DESCRIPTION OF THE FINITE STATE MACHINE INPUT FILE

<old_state> This is the name ofthe old state for the state transition described by the
current line.

<new _state> This is the name of the new state for the state transition described by
the current line.

<output_ values> In this string the values of the output signals are given for the state
transition described by the current line. For each signal (in the order indicated by
the ".outputvars" statement) the value is given. The value can be "1" "0" or '-'
(don't care).

The state machine in appendix B can bedescribed by the following input file:

. inputvars a b c

.outputvars oo ol o2 o3

.mv 0 3 -8 -8 4

.p 11

s uO 0000
0-- s eO 0000
1-- s tO 0000

uO ul 0000
-0- ul f 0000
-1- ul uo 0000

eO el 0000
el e2 0000

--0 e2 f 0000
--1 e2 eO 0000

tO f 0000
.end

AppendixD

Spice results

6~,---------,---------,---------,---------,-----~

cycle 1 cycle 2 cycle 3 cycle 4

D-lnput
reset ••••·
Clock •····

cycle 5

Figure D.l: Input signals for SPICE simulations.

55

56

6

5 r·------~rf----- -
: f

4

3

2

cycle t cycle 2 cycle 3

APPENDIX D. SPICE RESULTS

cycle 4

Output
a-output

Clock

,·········f"i----

: ;:
i f 1
' '

cycle 5

Figure D.2: SPICE results fora 50x26 ROM with static flipflips.

6

cycle 1 cycle 2 cycle 3 cycle 4

Output
a-output

Clock

cycle 5

Figure D.3: SPICE results fora 50x26 ROM with dynamic flipflips.

APPENDIX D. SPICE RESULTS

6 .--.----------.----------,.----------.----------.-------~

5 :" ·------r·------

4
r \
' '

3

2

Output­
a-output ---­

Ciock -----

r n---
1 ;

' '
'

'
' '
' ' ' ' ' ' ' '

' '
' ' ' ' ' ' ' ' '

ol=~==~======~~====--_jL-~==~--~--~~====~=·====~
cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

Figure D.4: SPICE results fora 50x50 ROM with static flipflips.

6 .--.----------.-----------.----------.----------.-------,

cycle 1 cycle 2 cycle 3 cycle 4

Output­
a-output ----­

Ciock -----

cycle 5

Figure D.5: SPICE results for a 50x50 ROM with dynamic flipflips.

57

58 APPENDIX D. SPICE RESULTS

6r--r----------~---------,-----------r----------.-------.

5

4

3

2

r· ·····~··i\'------
: ::

.
' . .
' ' .

Oulput
0-output

Clock

r···~····/1'--··

! ~

(

j
I l

: I

oC=~~====~====~~~~~~~~===±~==~
cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

Figure D.6: SPICE results fora 100x26 ROM with static flipfl.ips.

6r--r----------.----------.r----------.----------.-------.

cycle 1 cycle 2 cycle 3 cycle 4

Output
a-output

Clock

cycle 5

Figure D.7: SPICE results fora 100x26 ROM with dynamic fl.ipfl.ips.

APPENDIX D. SPICE RESULTS

6r--r----------.----------.,----------.----------.-------,
Output­

a-output ----·
Clock ••·••

5 1=--.:..:·········· r ~--~-~ ·~n------- ,.,_,_ ___ _

4

3

2

'
'

cycle 1

1

I
!

cycle 2 cycla 3 cycle 4 cycle 5

'' '' ' .

f

!

Figure D.8: SPICE results fora 100x50 ROM with static flipflips.

6r--.----------.----------,,----------.----------.-------,

5

-- .

2

'.
\[
~

l
t~

:····; .. ,~;.::;~ .. "'"'"'"' .. -r-'-~~·:::~::;:,. •.•••• -f·'\-;.-f'\"""'

Output
a-output

Clock

:\ I :
i\ ; :i

:! 1 i : !::::::, :i 1 f

; : :,·:;
·.;·::[u

aL-~·--~====~==~--~~~--~~~===±==~~
cycla 1 cycle 2 cycle 3 cycle 4 cycle 5

Figure D.9: SPICE results fora 100x50 ROM with dynamic flipflips.

59

60 APPENDIXD. SPICERESULTS

6 .--.-----------.-----------.-----------.----------.--------,

5

4

3

2

0

' '
'
'
' ' '
' ' ' ' ' ' '.
\ ~

t _____ _
cycle t

r·------,n---------

: f :
~ f

i !

cycle 2 cycle 3 cycle 4

Output­
a-output ----·

Clock -----

:·······-·f~ .. ---' r
' .

cycle 5

Figure D.lO: SPICE results for a 100x50 ROM with static flipflips. All outputs drive a
capacitance of 400pF.

6

.......
4

3

2

'.
,.

\ ~
~

~
!l

Output
a-output

Clock

r .. i"~;;:.~--------.,..--'-'<:~-~'~o~-.::--------p,,...-f-'."- :· .. ;.:.::~.:~----

!i :
il :
:i . ' :i
. : ! ! :i

j,i :I
I ~ i
' .:.,: .,
L____ ::

OL_~~====~==~--~~~~~~~===±====~
cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

Figure D.ll: SPICE results fora 100x50 ROM with dynamic f:lipflips. All outputs drive
a capacitance of 400pF.

APPENDIX D. SPICE RESULTS

6,--,----------,-----------.----------.----------.-------·

r·······n---------
. ' .
~ i l . ' '

4 ~ : \

I ,
3

2

cycle 1 cycle 2 cycle 3 cycle 4

Output­
a-output ----·

Clock

:·····-- --:~---­
: ::
: (:
I :

cycle 5

61

Figure D.l2: SPICE results fora 100x50 ROM with static flipflips. All outputs drive a
capacitance of lnF.

6,--,----------,-----------.----------.----------,-------·

5

3

2

cycle1 cycle 2 cycle 3 cycle 4

Output­
a-output ----·

Clock

:· .. r:.:;,....:t ___ _

: f ~ ; { .

~ i
::
. '

! ~
i l
'' ; :

cycle 5

Figure D.l3: SPICE results fora 100x50 ROM with dynamic flipflips. All outputs drive
a capacitance of lnF.

62 APPENDIX D. SPICE RESULTS

6 .--.----------.----------.-----------.----------~------.

cycle 1 cycle 2 cycle 3 cycle 4

Output­
a-output ----­

Ciock ··-··

cycle 5

Figure D.l4: SPICE results fora 100x50 ROM with static flipfiips. All outputs drive a
capacitance of 3nF.

6 .-~-----------.-----------r-----------r----------~-------,

5

4

3

2

.,

n
!\
j 1
i!
; :

~ I
. .
' .
'

'

.
'
'
' ' .
'

Output­
a-output ---­

Ciock ··•··

r-·---
. .
' .

f f
. !

. ' . ' . ' . '

f f
; : . ' ..
~ [

l i

0 L__i-=====~====L-----i:----~----j_----~~·~~--~-=--~;-~-=--=--~·-=t ____ _J~
cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

Figure D.l5: SPICE results fora 100x50 ROM with dynamic fiipfiips. All outputs drive
a capacitance of 3nF.

APPENDIX D. SPICE RESULTS

6,-,---------.---------.---------.---------.------.

------ ·/r--------1- ---~~oo~T---------r· --------\

4
' '

f ~
' '

f \
' ' ' '

3

2

cycle 1 cycle 2 cycle 3 cycle 4

Output-­
a-output ----·

Clock -----

:····---·-;:----
: (:

' '

cycle 5

63

Figure D.l6: SPICE results fora 200x100 ROM with static fiipfl.ips. All outputs drive a
capacitance of 400pF.

6,-,---------.---------.---------.---------.------.

cycle 1 cycle 2 cycle 3 cycle 4

Output-­
a-output ----·

Clock -----

cycle 5

Figure D.17: SPICE results fora 200x100 ROM with dynamic fiipfiips. All outputs drive
a capacitance of 400pF.

64 APPENDIX D. SPICE RESULTS

AppendixE

Finite state m.achines for size
• com.par1sons

s
I
j:

/ .. ""'
.$ s
l j

.s s.
l
B

I \
s s

s s
\ I

\~
M

I
s

j

s
l
B

I \
s
j

s

s
•/
M

\ j

\~
J

I
s
t

output

s
j

s
j

s

Figure E.l: Moderately sized multi-thread state machine.

65

66 APPENDIX E. FINITE STATE MACHINES FOR SIZE COMPARISONS

I

s

$'

1
a,·

I \
s $

1
S', ·'·a

..... // x ""'
$ s ,s s
I I 1

· ,s< ·: s<,
I. 1

S .S'

""';
M
j

s

<S • s
I
$ 5<
',/'
M
1
s

s s

""'' M

s

output

Figure E.2: Moderately sized flat state machine.

APPENDIX E. FINITE STATE MACHINES FOR SIZE COMPARISONS 67

Input

~:!!ll~';l![}
I

i{~l-ilt\
I

\
I
\

I
i

\

'I ;;
\/. ,_)

.. ' I ~

CIJ~Ii/
·y

' Output

Figure E.3: Multi-thread state machine with loops.

68 APPENDIX E. FINITE STATE MACHINES FOR SIZE COMPARISONS

in~ ut

/F"..
s 8
$ s--1 'S'-s
j' ., T l I

ss ss s
(j i l I

ss s $ s
I ' i I s s s s s
I I I I I

s s s s s
I I i i j

s s s s s
I I I I l

s s s s s
I l I I I

s s s s s
I I I I I

s s s s s
\ I i I

s s ss
j j j

s s s s
I I i I

s s s s
• j

j ' s s s s
' j I I

s s s s
j j j j

.S S s s
j j j j

ss s s
j ,. j j

s s s s
J ·,.

s s
\~I t(

j

s
j j

s s
j j

s s
j j

s s
j

s s
j j

s s
j j

s s
j j

Figure E.4: Large multi-thread state machine.

