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Abstract

The design of a piecewise linear simulator for mixed level simulation of electronic
circuits is a huge task. A lot of different problems have to be solved. Not only the
linearisation of non linearities of circuit elements but also simulation time and data
storage determine the usefulness of the simulator.

All the circuit elements are described by pwl models. The linear complementarity
problem are solved by an algorithm proposed by van de Panne and the solution over time
of the differential equations is calculated by an implicit integration rule chosen by the
user. The algorithm of van de Panne shows fast global convergence properties and the
implemented integration rules have good accuracy and stability properties.

The basic problem of the simulator is finding for each time point a set of linear equations
which represent the behaviour of the simulated circuit. The system matrix changes
continuously during integration, the solution of the linearised system matrix has to be fast
and efficient. On the system matrix an LV decomposition is performed which is solved by
forward-backward substitution. The system matrix is stored sparse, to cope with circuits
which grow larger and larger. Beside of that the circuit is stored in a hierarchical way and
this storage is used to form a bordered block sparse matrix structure. Both the LV
decomposition and the forward-backward substitution make use of the sparse matrix
structure of the system matrix, the hierarchical storage of the circuit and the bordered
block matrix structure.

The simulator is event driven, meaning that during simulation every cell is assigned its
own time step. Every step of the simulation the leafcell with the nearest event is handled.
With this approach only the circuit elements that change will be visited during simulation
and computation time is automatically reduced.

The input nodes are handled in a different way. These nodes are not represented by pwl
models but the user can assign mathematical functions to an input node and the simulator
will compute the signals according to these functions. Because of the general framework
of the simulator, only minor changes in sub-functions had to be made and the generality
of the framework was not affected. With this tool it is possible for the user to assign
values to a node in the task file without changing the circuit structure.

The interfaces to the user are fast and plain to understand. With the aid of a schematic
capture program the user is able to build circuits in a hierarchical way, a structure which
is maintained by the simulator and used to speed up simulation. The signal post processor
visualises clearly the signals of the requested circuit elements and simple operations like
e.g. addition, subtraction and comparison are possible.

At the moment the simulator is in a preliminary state, a lot of tests are performed during
simulation, in spite of this the results until now are promising. The test circuits performed
by the simulator show good results. Still some improvements have to be made. The data
storage of the system matrix can be reduced by leaving out the system matrix and only
storing the LV decomposition. The scaling of the input-output vector and implementation
of a pivot strategy. The step size control of the integration rule can be elaborated.
Research has to be carried out after integration rules which show better stability results
for application of variable step sizes.
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1. Introduction

At the automatic system design group the design of a piecewise linear ( pwl ) simulator is
realised. This program is able to simulate large to very large electronic circuits. The
circuits can be simulated on mixed levels, this means that simulation can be carried out
for example at transistor level, digital level or even at a higher level and also a mixture of
different levels is possible.

Traditionally, circuit simulation programs are based on the Newton Raphson scheme. Non
linear equations are created and during simulation transformed to linear equations. A
drawback of this method is that a solution not always is obtained because of the stringent
convergence properties. A new promising technique makes use of pwl models for the
representation of circuit elements. The pwl simulator gets a pwl description of a non
linear element and solves a set of linear equations. The solution of the pwl description, the
so called linear complementarity problem, is based on an algorithm developed by van de
Panne, which has very good global convergency properties.

For the solution over time, several numerical integration rules have been implemented, to
cope with the differential equations of the pwl model. The trapezium rule and the
backward euler method can be used. But also more sophisticated methods like the two step
backward differentiation method or a two step A-contractive method may be applied,
which both give good stability and accuracy results.

For several years different people have been working on the theoretical and practical
applications of the pwl simulator. A first implementation was finished for 3 years by van
Eijndhoven [9]. Mainly due to the use of this program a better insight was gained in the
advantages and disadvantages of the use of pwl models. Through this experience novel
ideas put up to the building of a new simulator.

The simulator is implemented in C on the HP9000-500 system and is ported to the Apollo
DN3000. The frame of the simulator had already been build when I entered the project.
The main parts I worked at, together with M. van Stiphout, are the DC solution, the
transient analysis and the implementation of the input nodes. The block structure of the
simulator is as follows:

schematic

capture

program

graphic

terminal

~~
~

piecewise

linear

simulator

signal

post

processor

graphic

terminal

plotter

Figure 1.1. The block structure of the simulator

With the aid of the schematic capture program "ESCHER" a circuit is made, the circuit
information is stored in the circuit file. The task file denotes which simulation has to be
carried out, e.g. which circuit, which input signals etc... Another possibility is to enter

Introduction
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the circuit structure in a text file, this feature is still under development. The task file and
the circuit- or text file are input to the simulator. The simulator outputs a file with
general circuit information and a file with signal values. With the aid of a signal post
processor these signals can be visualised on a graphics device or a plotter.
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2. Piecewise linear models

2.1 The implicit notation

The simulator uses the implicit notation for the pwl models, as described by van
Bokhoven [3] and van Eijndhoven [9]. This means that the inputs and outputs are joined
together in one vector, see equation 2.1.

(2.1)

x : vector of inputs and outputs.

au - D.OE-
v,i ~ 0 and v.i = 0

The matrix A n denotes the equation that represents the main behaviour of the pwl model.
The square matrix A 22 denotes the relation between u and u. Via matrices A 12 and A 21

this matrix influences A n during integration. The square matrix A 33 defines several
polytopes and divides the multidimensional space in subspaces. Genera1y with every
subspace has been associated a different An. The matrix A 33 influences An via matrices
A 13 and A 31. If the influences on A n are accounted for, the resulting linear
representation found for the input-output vector is called the jacobian. From the matrix
description it is clear that four different models are possible, with or without dynamic
field and with or without polytope field. For convenience four examples are given:

1) resistor

0= -v + R·J

2) capacitor

o= - V + u + Vinit

u = 1.J
-C

3) inverter

o = -out - i 1 + i 2 + 1
vI = - in + i 1

V 2 = - in + i 2 + 1

4) delay

o = -out

u
1 .·m

delay

- i2 + 1
1. 1

+ ·12 -
delay delay

- i 2 + 1
- i 2 + I

Piecewise linear models
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To avoid ambiguous results of the simulator. the description of pwl models has to satisfy
rules. With the aid of a lexical analyser and parser generator grammar rules are composed.
With the lexical analyser tokens are generated which the parser uses for syntax analysis.
The parser provides error messages in case the user does not use the proper syntax. The
syntax diagrams of the pwl model are depicted in appendix 1.

As an example the pwl model of a block generator is shown:

leafcell block_gen(erator}«(output} out: signal);
« frequency : 0..* default 1 (Hz};

amplitude : default 1;
dc level : default 0;

»;
(* symmetric block generator. 50 % duty cycle *)
($L-}
(* starts (t = 0) at dc_level-amplitude

ampl

O·-t-----t--+---+---f--+---

-ampl

*)
begin

var (out.
zero.l = -1.

du.l =
pl.l =

pl.2 = •
end; (*block gen*)
($L+) -

2.2 Static models

A model is called static. if the pwl variables. u and u. are not present. These models don't
have to be solved by the numerical integration rule. During transient analysis it must be
checked whether by a change of the input variables the pwl model is still valid. if the pwl
model is not any more valid the van de Panne algorithm has to be initiated.

A static model is denoted by the following matrix:

(2.2)

The jacobian is said to be valid. in case the pwl model remains in the subspace of which
the following constraints are satisfied:

Static models
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(2.3)

Do we look at the example of the inverter we see that in case in=O and i I = i 2 = 0, the
model is valid:

o = -out + 1
VI = 0
V2 = 1

Does the input rise from zero to one, then VI turns negative:

o = -out + 1
VI = -1
V2 = 0

For reasons that will be explained in chapter 4, a pivot has to be performed in row 1 and
column 1 of A 33. After the pivot the model gets the following form:

o = -out - in + i I + 1
Vi = in + i 1

v2= -in +i2+1

Now the model is valid, because Vi is positive again:

o = out
VI = 1
V2 = 0

The curve for the relationship between the input and output is depicted in figure 2.1.

out

----1<-1

-----+-:,....-~-ino 1

Figure 2.1. Input-output curve of the inverter

The above example of the inverter is very small, only four sub-spaces are possible. For a
general n . n A 33 matrix, 2n different sub-spaces are possible. Although some sub-spaces
can be empty, it is clear that finding a solution, by searching many of these sub-spaces, is
not efficient. A lot of different algorithms have been designed to handle this problem,
which are shown in van Eijndhoven [9]. The most promising and fitted algorithm to the
problem of circuit simulation was found to be an algorithm designed by van de Panne and
will be presented in chapter 4.

2.3 Dynamic models

A linear dynamic model is denoted by a pwl model without v and i variables. These
models are never treated by the van de Panne algorithm. During transient analysis, a

Piecewise linear models
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proper jacobian is computed with the aid of the integration rule and the pwl variables are
subsequently solved.

A linear dynamic model is represented by the following matrix:

(2.4)

The integration over time takes care for the solution of the relation between u and u. For
the solution of the differential equations an integration rule is applied. The integration
rule can be stated as follows:

f(u, u, t) = 0 (2.5)

With the aid of the integration rule the relation between U and u of the pwl model can be
solved. Eliminating U from:

u= A 21 ·X + A 22·U (2.6)

yields a set of equations which have x and u as unknown, by transforming these equation
in such a way that u remains on the left hand side, we can substitute them in

(2.7)

and a tableau remains which has only x as unknown, by substituting the newly derived
jacobian in the system matrix, x can be solved.

Dynamic models
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3. Global overview of the simulator

3.1 The datastructure

With increasing complexity of IC technology and mixed analog/digital systems designers
ask for the analysis of larger and larger circuits. An important factor is the storage of the
circuit, on the first place to gain speed, but also to reduce algorithms complexity. The
datastructure of the simulator can roughly be divided in two parts. On one hand the
datastructure of the circuit and on the other the datastructure of the system matrix. First
the circuit structure will be dealt with and after that the matrix will be treated.

3.1.1 The circuit

The storage of the circuit is hierarchically arranged in a tree. The circuit is divided in
modules, which form the nodes of the tree. A module can be defined as follows: a module
has exactly one father and one or more children. There are only two exceptions to this
rule, the first one is the root of the tree, which has no father, the second one are the leafs
of the tree, which have no children. The circuit has two different leafs, called leafcells
and inputcells. A leafcell is defined by a pwl description and an inputcell is defined by a
mathematical function. An example of a tree is stated in figure 3.1.

Figure 3.1. The hierarchically storage of the circuit

It is very easy to obtain this circuit structure because the schematic capture program
supports this hierarchically building of the circuit, as well as the network description
language. The datastructure of a module is depicted in figure 3.2. The module structure
contains fields which give information about its identification, relation with the system
matrix and timing information. Several pointers: a pointer to a list which contains the
module definition, a pointer to a list which contains the terminals of the module and three
pointers which point to the father module, to a list of brothers and to a list of children.
Concerning exceptions, the root module structure is exactly the same, the leafcell- and
inputcell structures are basically the same however they have an extension which contain
fields concerning the pwl matrix or the input function.

The datastructure of the inputcell will be treated in chapter 6. The leafcell structure is
denoted in figure 3.3. The first part is equal to the module structure. For convenience the
variables will be explained here. Some of them may not be clear at this moment, they will
be dealt with in the subsequent sections.

Global overview of the simulator
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MODULE
DEFINITION

MODULE
DEFINITION

I module def. list I r next module def. f-------;;-\ next module def. --:>

name I name I
full name L ________ ...J

MODULE type I I

~ instance name inerface link I IL ________ ...J

template name ,.I
module definition

terminal list
~

TERMINAL TERMINAL
actual parameters ~ next terminal I next terminal --:>

module number name I name I
number of columns pin number

~---------j
first column type I I

first row io I I
I I

output column I I

last print sign I I
, L - ...J

father
list brothers

list children
~

MODULE MODULE MODULE
instance name instance name I instance name I
template name I template name I I template name I

1----------1
I I
I I
I I
I I
I IL -l

Figure 3.2. The datastructure of a module

~---------j
I I
I I
I I
I I
I IL -l

~---------j
I I
I I
I I
I I
I IL -l

LEAFCELL
r- last time stepr----------., previous time stepI

I module I prev. prev. time step
I I
I variables I last update
I I next event

times
aero du r

nx

nu
npwl
nsero

matrix
~

u
pwl values udot

inverse matrix

\
udotbar

integration method prevo u

aero v prevo udot
v

vbar
vdot

Figure 3.3. The datastructure of the leafcell

The datastructure
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npwl:
nzero:
matrix:
pwl values:

inverse matrix:
integration method:

zero v:
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array containing timing information,
last time step
previous time step
previous previous time step
last update
next event
binary variable, denoting which elements the user wants
to set to zero during the dc solution.
pwl matrix dimension, number of x elements
pwl matrix dimension, number of u elements
pwl matrix dimension, number of v elements
pwl matrix dimension, number of rows of A 11

pwl matrix
matrix containing the pwl values,
Un, Un, Un, ~n, Un-I. Un-I. Vn, Vn , Vn
(ao·] - bo·hn ·A22 r 1

contains the current integration method,
forward euler
backward euler
trapezium rule
two steps backward differentiation method
two steps A-contractive method
denoting whether a panne event or a dynamic
event is detected and if a panne event occurs it contains the
row of the v element that turned zero.

3.1.2 The system matrix

Basically simulation is the successive solution of the equation A . x = b in which A
represents the system matrix, x the concatenated input-output vector and b the source
vector. The system matrix can become quite large for reasonably sized circuits.
Fortunately, in practice, a lot of entries in the matrix appear to be zero, therefor the
system matrix is stored sparse. This means that zero entries are not stored. The system
matrix is in essence a double matrix, because as well the matrix A as the LU
decomposition of A are stored in the same data structure, see figure 3.4. The storage of A
itself is only in use now for debugging purpose, in the future only the LU decomposition
will b_e stored and the elements of the system matrix will be indirectly derived via the pwl
models. The two vectors situated along the matrix, which point to the first element of a
row or column, are stored in a list during the build-up. After completion these lists are
converted to arrays, so direct access is obtained to the first elements in a row or column.
Also an array is constructed that contains the diagonal elements of the matrix, these
elements are involved in a lot of operations during simulation, so direct access is of
primary importance. An example of a sparse system matrix is shown in figure 3.5.

3.2 The program

The program can roughly be divided in the following tasks:

Global overview of the simulator
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--- next head next head next head

element list '\ element list --> I I

id id I IL ________ ...J

ELEMENT ELEMENT
~ next row next row - ->

next column
~

I next column - ->
row number I I

column number I IL ________ ...J

value
lu-value ELEMENT

next row - ->

I next column - ->
I
I I
I IL ...J

- ->

SPARSE
VECTOR

SPARSE
VECTOR--- next parse vec next sparse vec

value I I

id I IL ________ ..J

-->

Figure 3.4. The datastructure of the sparse system matrix

read simulation task description;
build circuit equations;
match circuit equations;
LU decomposition;
dc solution;
transient analysis;

The most consumin~ task is the transient analysis. Nevertheless the other tasks are
important for a good initialisation of the simulation. The first four functions will be
treated in the next sections, the last two functions i.e. the dc solution and the transient
analysis are dealt with in chapter 4 and 5 respectively.

3.2.1 The task file

The task file describes the simulation task that has to be performed, giving the circuit
name, integration interval, accuracies, etc. With the aid of a lexical analyser and a parser
generator, grammar rules have been constructed, to provide a good interface with the
user. The syntax diagrams of the task file are depicted in appendix 2.

Below an example of a task file is given:

The program
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SPARSE MATRIX

COLUMN HEAD

SOURCE

VECTOR

R
o
w

H
E
A
D

I
rl'.,
I I
L_..J

Figure 3.5. The datastructure of the sparse system matrix

MODULE example;
INPUT lin = PULSE( 1.0, 0.0, 0.0, 1.0, 0.0, 10.0, O.O)[V];
REFERENCE Iref;
OUTPUT Isubmodulel;
TRANSIENT O.O[S], 1.5[S], O.OOI[S];
ACCURACY INTEGRATION (0.le-3, O.5e-l );
INTEGRATION_METHOD ACT;

3.2.2 The construction of the circuit equations

The hierarchical structure of the circuit is also maintained in the system matrix, as
described by Vlach [22]. Each subcircuit contributes to the system matrix a bordered
block diagonal matrix. In the sparse system matrix this occurs as a bordered block
structure, see figure 3.6.

The internal nodes of the subcircuit correspondent to the blocks on the diagonal and the
external nodes correspondent to the bordered oblong matrices. The structure of the matrix
results directly from the hierarchical definition of the system.

The storage of the system matrix as a bordered block diagonal matrix yields nice features
for the LU decomposition and forward-backward substitution which will be treated in
section 3.2.4.

Global overview of the simulator
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Figure 3.6. The bordered block structure of the system matrix

3.2.3 Matching of the circuit equations

At the moment a suitable pivot order is determined by applying a straight-forward
bipartite matching algorithm. In the future this method is to be replaced by a weighted
matching, taking in account sparsity and numerical considerations.

3.2.4 LU decomposition

In the simulator an LU decomposition is implemented, because often only the source
vector b changes while the system matrix A, and thus the LU decomposition remains the
same. On the contrary to the Gaussian elimination method which has to be repleated on
the entire system matrix even if only the source vector changes. For the full LU
decomposition the modified Gaussian elimination method is used. This method transforms
the system matrix in two triangular matrices, a lower ( L ) and an upper ( U ) matrix, to
yield the following equation :

A·x=b + L·U·x=b

This system is solved by the so called backward forward substitution:

L·y=b
U· x = y

(3.1)

(3.2)

It is noticed that the transformation of the system matrix into the triangular form is
underdetermined, n elements can be chosen free. We chose to set the diagonal elements of
L to 1.

the system matrix is taken to be :

aU·xI + a12'X 2 •.. aln,xn =b l
a2l,x I + a22,x 2 ••• a2n'X n =b 2

Starting the transformation of the system matrix into the LU decomposition, the first row
of U is equal to the first row of A and the first column of the lower triangular matrix is
formed by Lil = Ai 1 / U u. Furthermore the first row of A multiplied with Li I has to be

The program
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subtracted from all the other rows. After this step the matrix will have changed to :

un'XI +U12'X 2'" Uln'Xn =CI

12l'X I + a'22'X 2 ••• a'2n'Xn =b'2

By repetition of this transformation, the LV decomposition will be finished after n - I
steps. With this last addition the algorithm to perform an LV decomposition on an n . n
matrix becomes:

for ( j = I; j <= n; j++ ) {
if ( IUj j I==small )

find new Ujj;

for ( i = j+l; i <= n; i++ ) {
lij=/ij/Ujj;

for ( k = j+l; k <= n; k++ )
aij -= lij . Ujk;

}

This full LV decomposition according to Gauss is only performed once, to get an initial
LV decomposition for the simulator. Although the Gaussian elimination method is fast
and straightforward the order of the algorithm is o(n 3 ), for full matrices of size n.

For maintaining the LV decomposition other techniques are used. During simulation the
system matrix is changed to follow non linearities in time or circuit elements, these
changes are small and it is not necessary to recompute the whole LV decomposition. The
LV decomposition based on the method of Crout, differs only slightly from the Gauss
method. The algorithm is based on the following equation:

k = 1, 2, ... , n (3.3)
k-l

Ukj 8kj - p~llkp'Upj

k-l
lik = ( 8 i k - ~ lip'upk ) / ukk

p=l

j k, k+l, ... , n

i = k+l, ... , n

Although the order is the same, Gauss uses the right lower corner of the system matrix to
store information about the LV decomposition, this information has to be build up from
the start of the algorithm. The method of Crout makes use of the information stored in
the Land U matrices, in the right upper and the left lower corner of the matrix, that's
why it is not necessary to perform a full LV decomposition. In case an LV decomposition
is present, the LV decomposition can start at the diagonal with index equal to the
minimum column or row of the new inserted elements. An illustrative picture that well
illustrates the differences of Gauss's and Crout's method can be found in Ruehli [18] and
is depicted in figure 3.7. The property of Crout's method can be used for updating the
LV-decomposition from a leafcell along a path to the root in the hierarchy of the circuit.
This updating can terminate before reaching the root, e.g. if a change of a leafcell only
affects a small part of the total circuit. In this way it is possible to decrease the
computation time for finding a new LV decomposition.

The difficulty behind the algorithm is the avoidance of zero pivots. Encountering a zero

Global overview of the simulator
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[3 no longer accessed

[8J only accessed

iii currently being computed

o modified

o not yet accessed

Figure 3.7. The LU decomposition according to Gauss and Crout

pivot implies the exchange of the currently computed row with another row, which has a
nonzero entry in the column of the pivot. This exchanging of rows in a sparse matrix
structure is time consuming.

An important factor for numerical stability during the LU decomposition is the so called
pivot strategy. It is shown by Wilkinson [23], [24] that growth in element sizes has to be
avoided. This implies that pivots have to be chosen as big as possible. This pivot strategy
has not yet been implemented.

A second important factor is maintaining the sparsity, as the computation time is directly
related with the number of nonzero elements in the system matrix. In Sangiovanni [20] it
is pointed out that minimization of the number of nonzero elements created in A during
the LU decomposition, is a criterion for the selection of a permutation of a row or
column. However the problem of finding a permutation which minimizes the number of
fill-ins, the so called minimum fill-in problem belongs to the class of NP-hard problems.
An heuristic algorithm is proposed by Markowitz which is used by SPICE. The criteria
for pivoting, maintaining accuracy and sparsity, may conflict. A convenient way avoiding
this is using diagonal pivots only.

Another possibility to improve accuracy is the scaling of the x vector ( the vector of
inputs and outputs ). The elements of the x vector can be scaled differently, e.g. scaling
factors of 1O-30r 10-6 , this is done to obtain a system matrix with equal sized elements.
Using this technique it is avoided that during the pivoting process some elements grow
excessively large.

An other method for maintaining the LU decomposition is the rank 1 update, which is
described in Bennet [1] and in Eijndhoven [11]. Suppose the system matrix A has been
decomposed in the matrices L.D·U, where L is a lower triangular matrix, U an upper
triangular matrix and D a diagonal matrix. If A has to be modified by the addition of
X.yt, where X and Yare vectors of length n, then a method is proposed that uses the old
LU decompostion to obtain the modified LU decompostion of A + X.yt, the order of the
method is equal to o(2.n 2).

The rank I update is based on the partitioning of the system matrix into:

The program
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(3.4)

where

H - (3.5)

Do we refer to A as A 1 and take for A 2 :

A 2 = H - l/au.G.F (3.6)

Then the above process repeated on A 2, yields the next column of L, the next row of U
and a22 of D. Further iteration complete the process.

Suppose that we have to deal with the modified matrix A + X.y t . The first column, row
and element of U, Land D respectively, are directly derived. Do we write:

(3.7)

then the abovementioned process can be applied on B 1 to obtain B 2 and B 2 can be
expressed as A 2 + X 2 .y2t• Further repetition completes the process.

Below the algorithm of the rank 1 update is shown, where rk, Ck, qk, Dold, Dn, qn and rn
are variables which help to compute the new LU decomposition economically.

dk = 1
for ( i = 1; i < n+l; i++ ) {

rk = ¥j; Ck = Xj;
Pk - Ck*dk; qk = rk*dk;
Dold = Ajj;
Au += Pk*rk;
qn = qk/An; Dn = An/Dold; rn = rk/Dold;
dk -=qn*Pk;
for ( j = i; j < n+l; j++ ) {

Yj -= rn*Ujj;
Ujj =Ujj*Dn+Pk*Yj;
if ( j = i) continue;
Xj -= ck*Lji;
Lji += qn*Xj;

}

Global overview 01 the simulator
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4. DC-solution

4.1 The linear complementarity problem

The DC-solution is the calculation of the outputs, given the input, for the time point zero.
So a valid solution is searched for:

A· x =b (4.1)

At the beginning all the pwl models are in their initial state, e.g. the output of an inverter
is initially high. Suppose however that the input of the inverter at time zero is high, then
the pwl model has to be transformed and therefor the system matrix changes. So finding a
DC-solution narrows down to moving the leafcells in the right spaces, which are defined
by ASl, AS2, AS3 and bs. This implies the manipulation of the pwl models, such that
given the input values, the matrices A ss have to be changed in such a way that all the v
vectors become positive. This problem is caned the linear complementarity problem ( LCP
) and is well known in mathematics. It is stated as follows:

v=M·i+b

v . i =0
v , i ~ 0

(4.2)

v and i are vectors of length n, b is a given source vector and M is an n . n matrix.
Although this basically is our problem, the implementation in the simulator is different:

A. The matrix M is not present in the simulator, this is done to save storage. A very
huge matrix would be derived, because the matrices A 31 and A IS in the pwl models
influence the values of x and v, they should also be stored:

(4.3)

Now the matrix M is derived by :

(4.4)

In the simulator only the system matrix A is stored and the elements of the matrices
M are indirectly derived via the pwl models.

B. During the solution of the problem, the total pwl model has to be updated. Beside of
that the jacobian of the model can change, this implies a change in the system
matrix and an update for the LU decomposition has to be performed.

For the solution of the LCP, an algorithm is chosen to implement which uses pivots only.
This algorithm is based on a method developed by van de Panne [17], who has based his
method on an algorithm developed by Lemke [13]. Van de Panne's algorithm is more
powerful because only diagonal block pivots are performed and an infeasibility test is
possible during the fun of the algorithm, however at the cost of a more complex code.

The linear complementarity problem
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4.2 The van de Panne algorithm

4.2.1 Determining the basic solution

For the case that b is positive one possible solution of the LCP is given as :

v=b
i=O

(4.5)

The elements of v are called basic variables, elements of i non-basic. In case of one or
more negative elements in b, the problem is extended with a vector a multiplied by an
extra non-basic variable lambda. These two disturb the originally stated problem in such a
way that v becomes positive. The problem becomes now:

v=M·i+b+a·A

v·i = 0 ,\ ~ 0
v, i ~ 0 a ~ 0

(4.6)

By assigning elements of a the value 1 at places that correspond with negative elements of
v, the other elements remain zero, and taking lambda high enough, a solution of the
disturbed problem is :

v = b + a·A
i=O

(4.7)

The goal of the solution process is moving lambda down to zero, to obtain the originally
stated problem.

4.2.2 The pivot process

Before drawing attention to the solution process of the LCP, first the pivoting process, as
the van de Panne algorithm is based on a continues pivoting, will be dealt with. Note that
the pivots mentioned here are basically different from a pivot in an LU decomposition.
The purpose of performing a pivot is exchanging an element of the v vector with an
element of the i vector. In other words pivoting is a basis transformation in which a basis
vector ( ij ) is replaced by a vector ( Vk ) pointing in the direction of a polytope. This
exchanging of vector elements is in fact a motion with the origin through the n­
dimensional space. This space is divided in subspaces by the n polytopes defined by the
matrix M.

The transformation of the matrix through a pivot is straightforward. Suppose we want to
exchange Vk and iI, pivoting on mkl yields the following equations:

m'kl
b'k
m'kj
m'il
b'i
m'ij

= l/mkl
= -bk/mkl
= -mkj/mkl
= mil/mkl
= bi - bk·mil/mkl
= mij - mkj ·mil/mkl

DC-solution

j=I,2, ,n hll
i=I,2, ,n ilk
i=I,2, ,n ilk
i=I,2, ,n ilk
j=I,2, ,n jll

(4.8)
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At this moment it is not yet explained why a particular pivot is chosen to lead to a
solution of the LCP, this will be explained in the next section. However the impact of a
pivot on the LCP can be visualised clearly, see figure 4.1 and 4.2 .
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Figure 4.1. The pivoting process

The spaces that are allowed for v1 and v 2 ( V ~ 0 ) are shaded. It is seen that the double
shaded area is the solution space, v1 and V2 both positive, so the origin ( i =0 ) has to be
moved to the double shaded area. In figure 4.1 VI is negative and V2 zero. By exchanging
v1 and i 1 through a pivot on m 11 we find that v1 is positive but now v 2 has turned
negative. Through a pivot on m22, both VI and V2 become positive and a solution is
found.

Van de Panne allows only diagonal pivots or diagonal block pivots, this is why this
method is called the complementary variant of Lemke, because it is never possible that
corresponding elements of i and v are together in one vector. A diagonal pivot is not
possible if the corresponding mii is zero. In this case a block pivot is performed. A block
pivot is a set of off-diagonal pivots such that after this sequence of pivots Vi and h have
been exchanged, and the condition i and v contain no complementary elements is still
valid. In figure 4.2. we see a block pivot performed.

4.2.3 The solution process

Every iteration step during the solution process a valid range is determined for lambda,
this range is bounded by a lower- ( J ) and an upper bound of lambda (l ). Through
pivoting the lower and upper bounds can be changed. Beside of that every step of the
solution process has its own direction, meaning the bound that is treated, in case of a
lower bound the direction is down and with an upper bound it is up. The aim of the
method is to unblock the increase or decrease of lambda at the critical value.

Initially the direction is set to down, the lower bound is equal to the minimal value

The van de Panne algorithm
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Figure 4.2. The pivoting process

possible, such that v remains non negative:

(4.9)

The upper bound is initially equal to infinity. Next the diagonal element in the row which
causes the lower bound is determined. Two cases arise:

A) The diagonal element is not zero. This element will be used as a pivot, four
possibilities in connection with lambda can appear:

Suppose the direction is down and the pivot has to be performed on row k, see
equation 4.10.

Vk bk + ~'ak 0 ak > 0 bk < 0
n

vk ~ mk·· i . + bk + A'a (4.10)
i=l 1. 1. - k

1 { n }i k mkk vk - ~ mk"' i. - bk - ~'ak
i=li! =m 1. 1.

0 0

With respect to lambda two different cases are recognised:

1 : mkk > 0 A drop of lambda will cause ik to be more positive. So lambda may
further drop, implying a new lower bound. However lambda may not

DC-solution
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rise above the old lower bound, so the upper bound is equal to the old
lower bound. Lambda is unblocked.

2: mkk < 0 A rise of lambda will cause ik to be more positive. So lambda may
further rise, implying a new upper bound. However lambda may not
drop below the old lower bound, so the lower bound is equal to the old
lower bound. Lambda is deflected.

Suppose the direction is up and the pivot has to be performed on row k, see equation
4.11.

bk + X'sk - 0 sk < 0
n
~ mki· i . + bk + X'ski=l ~

(4.11)

i k = mk1k {Vk - £ mk,·i. - bk - X'Sk }
i=1i !=m ~ ~

= 0 = 0

Again with respect to lambda two different cases arise:

3 : mkk > 0 A rise of lambda will cause ik to be more positive, so a new upper
bound is determined. The lower bound is equal to the old upper bound.
Lambda is deflected.

4 : mkk < 0 A drop of lambda will cause ik to be more positive, implying a new
lower bound. The upper bound is equal to the old upper bound.
Lambda is unblocked.

B) The diagonal element is zero. In this case the corresponding i variable ( ik ) is
handled exactly the same as lambda, the i variable is said to be blocked, lambda is
kept at the current blocked value. Initially the direction of ik is set to up, the upper
bound is set to the minimal value possible:

Suppose this minimum is found in row j then:

.* bj +aj'''\*
'k=----

akj

The values of the basic variables are equal to :

(4.12)

(4.13)

(4.14)

If there is no negative element in the critical column a solution is not feasible and
the algorithm terminates unsuccessfully.

Lambda and/or i have to be unblocked, by pivoting. Three possibilities arise:

akj 10: akj and ajk are used as a block pivot, lambda and ik are
unblocked.

See A, ajj is used as a pivot and ik is unblocked. The impact
of the pivot is the same as depicted for lambda.

The van de Panne algorithm
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Now i j is increased and handled exactly the same as ik in case
B, there will be three blocked variables now, lambda, ik and
ij. Depending on the encountered pivots this number may
increase or decrease.

Suppose the non-basic variable can be varied down to zero, then the direction of the
preceding fixed variable should be set to the opposite direction of the non-basic
variable that has become zero.

This pivoting is maintained until lambda and possible blocked i variables have been
moved down to zero. This implies that all bi are greater than zero and the solution for the
originally stated LCP is found.

The algorithm can terminate in three ways:

1) A solution is found for lambda is zero

2) No upper bound for lambda can be found.

3) No upper bound for a non-basic variable can be found.

In the latter two cases it was found by Lemke and Eaves that a solution is infeasible if the
matrix M is copositive plus or belongs to class L. The complementary variant of van de
Panne detects whether a solution is still feasible by examining the critical column for
negative elements. So it is not necessary to establish beforehand whether Mis copositive
plus or belongs to L.

4.3 The program

In this section the program is presented, in a C-like language, as it is implemented for the
simulator. The van de Panne algorithm tries to move lambda down to zero, however the
real problem of the simulator is finding a dc solution. So during the iteration steps of van
de Panne we keep track of the changes in the system matrix A and the source vector band
solve the equation:

L·U·x: b (4.15)

If van de Panne finds that there are no columns on the stack which can be unblocked the
x vector is updated with x. At this place it is appropriate to note that the calculation of x
and x make use of the sparsity of the source vector and the hierarchically stored circuit.
Only leafcells and variables of x are treated which have a change in their corresponding
source vector elements. So latency effects of the simulated circuit are fully exploited and
used to speed up simulation. The updating of the leafcell variables ii and ~ makes use of
these latency effects.

Because the matrix M is not directly available in the simulator, the elements are derived
via the pwl models. Performing a pivot, the value of the element in M is determined by
d Vk/d ij, four possibilities arise with respect to the value of a pivot in the pwl matrix
and the matrix M :

1) The pivot is zero in the pwl model as well as in the matrix M. The van de Panne
algorithm will search for a block pivot.

2) The pivot is non zero in the pwl model and zero in the matrix M. The van de Panne
algorithm will search for a block pivot.

DC-solution
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3) The pivot is zero in the pwl model and non zero in the matrix M. The van de Panne
algorithm will take this element as a pivot only as a row of°+ Au·x + A 12 + ·u + A 13· j + b 1 can be added to the row of the pivot, resulting in a
non zero pivot in the pwl model and the matrix M. If not, the program will perform
an exit and generate an error message. The van

4) The pivot is non zero in both the pwl model and the matrix M. The van de Panne
algorithm will take this element as a pivot.

First some global variables and functions are explained, the pwl model of the leafcells is
extended with lambda and a :

(4.16)

Initially u is zero, so the pwl model reduces to :

0= Au·x + A13· j + bl + "\·al
it =A 2l·X + A 22· j + b2 + "\·a2
v =A31·X + A32·i + b3 + "\·a3

(4.17)

However for users which are not content with this initialisation, the possibility exists to
specify in the task file and/or the pwl description which elements of it have to be equal to
zero. By pivoting on A22, the elements of u and it are exchanged in such a way that all the
elements on the right hand side, call this vector u', are equal to zero. Now the
mathematical problem is exactly the same, the u' is set to zero and the solution process can
be started, afterwards the elements of u' and it' have to be exchanged again. For simplicity
we assume that the user is content with the initialisation u = 0, to avoid complex
formulas, so equation 4.17 is correct.

Furthermore the program is divided in 7 steps, to distinguish the different actions
performed to find a solution, which are also denoted by van Eijndhoven [9]. A variable is
called active if it is the current variable handled by van de Panne. First the program is
presented in a C-like language. the global variables and also the functions depicted with
capitals, which influence leafcells only, will be explained.

Global variables:

lambda
stack

top_leaf
top_col
tOP_dir
min leaf
min row
proper
d
sign
theta
zero i

extra non basic variable.
the stack of van de Panne, containing the leafcells with their
corresponding blocked column and direction.
top of stack leafcell.
blocked column of top of stack leafcell.
direction of blocked variable of top of stack leafcell.
leafcell with minimal negative v.
row in which minimal negative v occurs.
true if v of a leafcell is positive.
number of unblocked rows.
direction of first blocked row on stack.
value of minimal negative v element.
true if current i variable became zero.

The program



impr_Ieafs
xbar leafs

operations:

list of improper leafs.
list of leafcells with nonzero x.
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push( leaf, column, dir)

pop( leaf)

The steps of the program:

push leafcell, blocking column and direction
on the top of the stack
pop leafcell from the top of the stack

DC-solution



dc-solutionO
{
step]: sparse solve( 0 );

for ( all leafcells ) {
INIT LEAF( leaf, proper, min leaf, min row, lambda);
if ( ! proper) put leaf in impr_leafs; -

page 25

step2 :

step3 :

step4 :

stepS:

step6 :

step7 :

}

}
if ( impr_leafs not empty) {

for ( all leafs in impr leafs) INIT PANNE( leaf );
push( min_leaf, lambda, down); -
push( min_leaf, min_row, up );

}
while ( no solution) {

if (top col == lambda)
for( all leafs in impr_Ieafs ) GEN_SOVRCE( leaf, 0 );

else
GEN SOVRCE( top leaf, 0 );

sparse solve( 0); -
compose xbar_leafs;
d =number of unblocked rows on stack;
sign = direction of first blocked rowan stack;
if ( d == 0) {

for ( all leafs in xbar leafs)
CALC THETA(leaf, min leaf, max theta, min row);- - - -

(} = maximal theta;
min_leaf =leaf with maximal theta;
min row = row with maximal theta;
if ( 9"== infinite) {

Lemke cannot solve; exit;
}
update xvec;
for ( ailleafs in xbar leafs)

CALC_STEP( leaf, zero_i);
if ( top_col == lambda)

lambda += top dir· (};
if ( top_col == lambda && top_dir == down && lambda == 0)

solution found;
else if ( top_col != lambda && top_dir == down && zero_i)

pop( top_leaf );
else

push( min_leaf, min_row, up );
}
else {

for ( d leafcells on stack) {
PANNE_PIVOT( leaf);
update system matrix;
LV decomposition update;

}
pop d leafs;
top_ dir *= sign;

}
}
for (impr_leafs not empty) END_PANNE( leaf);

The program
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The leafcell functions:

INIT LEAF: it = A21'X + b2

V=ASI'X+bs
If v variable is negative then mark this cell improper.
Keep track of minimal v value, corresponding leafcell and row.
Store them in lambda, min_leaf and min_row.

INIT PANNE: Initialise the vector a, an element of a equals one if v is
negative else zero. At the same time add lambda to the negative v
variable.

GEN SOURCE: if active variable is lambda then b = a·
if active variable is i j then b = A IS[j]

SIGN: return sign of d Vk/d i j

if blocked variable is lambda then d Vk/d ij = ASI[k, .]-x + a3[k]
if blocked variable is ij then d Vk/d ij = A3I[k, .]·x + A 33[k,j]

CALC THETA: Calculate vand maximal theta:
if leafcell is proper then ii = A 31'X
if blocked variable is lambda then v= A 31'X + a3
if blocked variable is i j then v= A SI'X + A 33[., j]
if ( v > 0 A v·dir < 0) then (J = max(-v /v·dir )

CALC STEP: if leaf is proper: it = A 21·x·(J·dir
if blocked variable is lambda: it = ( A 21'X + a 2 ).()·dir
if blocked variable is i j : it = ( A 21 ·x + A 23[., j] ).(}.dir

if blocked variable is i j : i j + i j + (J·dir
else v = v + v·(J·dir

PANNE PIVOT: determine pivot in pwl matrix,
if zero then exit
else perform pivot operation in pwl matrix
give update vectors for rank I update.

END PANNE: al = a2 = as = 0;

4.4 Examples

In this section two examples will be given to illustrate the van de Panne algorithm. The
examples have already been used in section 4.2 to illustrate the behaviour of pivots. In the
first example a matrix M is denoted with nonzero diagonal elements, the second one
illustrates the actions of van de Panne if a zero pivot is encountered. The examples are
self explanatory, so further comment is not necessary.

example 1 :

1)
l~..\<m .. J=l
dir = down
pivot m 11

DC-solution
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2)

IsA~1 ~ ~=1

dir = down
pivot m22

3)

-(J) < ,,\ s 1 ~ .-\=0
dir = down
solution found

lliHalU~b+~a.-\nH'l'i}2JHaVI 1/2 1/2 1/2 -1/2 1/2 -1/2
V2 1/2 _ 1/2 1/2 1/2 1/2 -1/2

example 2:

1)

IsA<(J) ~ ~=1

dir = down
pivot m 12

~~alueE+ai'iltJ±'2M-ffVI -1_ 0 0 1 -1 1
V2 __1__1/2 -1 1 1/2 0

2)

~
IT

1 i2 b
0 1 1
1 1 3/2

IsA<(J) ~=1

-(J)<il=1/2 ~ i 1 =1/2
dir = up
pivot m2I

3)

-(J) < A~ 1 ~ .-\ = 0

Examples



dir = down
solution found

DC-solution
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5. Transient analysis

5.1 Introduction

The transient analysis is the solution over time of the outputs, given the inputs. Once
more a valid representation and solution is searched for:

A(t)·x(t) = b(t) (5.1)

The problem of determining the solution over time of the circuit equations can be
brought back to solving the pwl models of the leafcells. This means determining for every
time step the jacobian that has to be inserted in the system matrix. More precisely the
relation between U and it of the pwl model has to be solved:

0= A ll'X + A 12'u + A IS·i + bl
U = A 21 .x + A 22 ·U + A 2s·i + b 2
v = A S1 'x + AS2'U + Ass·i + bs

where: A 11 is an m·n matrix m ~ n
A 22 is a P'p matrix
A 33 is a q.q matrix

(5.2)
(5.3)
(5.4)

Depending on x and u, the solution of the LCP will be affected. In case an element of v
turns out to be negative, the van de Panne algorithm has to be restarted, this will be
explained in more detail in section 5.7. However every solution of the LCP will yield
i = 0, so the pwl models simplify to :

o= A ll'X + A 12'U + b 1
U = A 21 .x + A 22 ·U + b2
V = A 31 ·X + A32'U + b3

(5.5)
(5.6)
(5.7)

In general there are no closed form solutions for the calculation of u, so we must resort to
numerical solutions. An integration rule defines the relation between u and it for a
particular time point and can be stated as follows:

f ( u, it, t) == 0 (5.8)

The solution process of the pwl models can shortly be denoted as follows. With the aid of
the integration rule u is eliminated from equation 5.6, this will yield p equations which
have u and x as unknown. By expressing u in x and substituting u in equation 5.5, we find
the new jacobian and source vector, x is solved from the system matrix and now u, it and
v in the pwl models can be solved.

For the solution over time of the pwl models various numerical integration methods are
available. The integration rules are used to solve differential equations u= f(u, t), these
rules have to be efficient even if the systems are not smooth. The differential equations
may lack smoothness, for example because of rapidly varying differentiable terms, a
situation which is often encountered in circuit analysis. We want to use methods which
can solve these problems efficiently, in the simulator several linear multistep methods
have been implemented, more specificly these integration rules are:

Introduction
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forward euler
backward euler
trapezium rule
two step backward differentiation method
two step optimal A-contractive method

In the first sections 5.2 until 5.6 an overview of the properties of linear multistep methods
are presented. Hereafter the program and circuit oriented problems will be dealt with and
finally some examples are given.

5.2 Linear multistep methods

Usually integration is performed for a time interval [0. T]. The linear multistep ( MS )
methods divide this interval in several time pieces so a series of time points to. t 1•...• tn is
obtained. In the following sections we will assume that the step size h is constant. so a
uniform grid of [-values { [= n·h : n =0.1 •... } is obtained. The MS methods can be
expressed as :

~ a.·u . - h' ~ b.·u . - ai-a l n-l i-O l n-L

A lot of different methods are possible. however by accuracy and stability constraints
only some are useful in practice. Because the methods compute an approximation of the
real solution. the parameters have to be investigated. to determine which values give the
best accuracy and stability results. Perhaps the most well known methods are :

forward euler
backward euler
trapezium rule

: Un - Un -l - h'Un -l = 0
: Un - Un -l - h,un = 0
: Un - Un -l - h/2,(un + un-I> = 0

The MS methods are divided in two classes:

the explicit methods: bo = 0, in this class Un is directly derived
from the integration formula.

the implicit methods: bo" O. in this class Un as well as Un have to be solved.

It is seen that the forward euler method belongs to the explicit methods and the backward
euler and trapezium rule to the implicit. Although the forward euler method is
straightforward. Un is directly derived. it is not often used because of the poor accuracy
and stability results. In spite of that it is often used as a start up for other methods, like
for example for the trapezium rule. As for the implicit methods Un as well as Un have to be
solved. so finding a solution takes more effort then in case of the explicit methods, on the
other hand they give good accuracy and stability results.

In the following sub-sections some general properties of MS methods will be derived.
which can mainly be found in Ruehli [18].

5.2.1 Accuracy properties

The accuracy of an integration rule is defined by the local truncation error ( LTE).

Transient analysis
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definition: The LTE of an integration rule is the difference between the computed value
Un and the exact value of the solution u(tn), assuming that no previous errors
have been made.

The MS methods are often designed to calculate exact the solution of a polynomial of
order k. This is denoted in the order of the method.

definition: An MS method of order k implies that the local truncation error equals zero
for integration of a polynomial with maximum degree k.

Dahlquist proved that only linear multistep methods which are of order up to two can be
linearly stable in the entire left half plane, which is called A-stability. Let us therefor
restrict ourselves to methods which are of order up to two, since we will investigate A­
stable formulas only.

The requirement that an MS method should be of order k, imposes some constraints1 on
the parameters ai and bi. Assume we have a smooth test functIon f(t), then the Taylor
expansion of f(t) at time point h is:

f (h) = f (0) + h·!'(O) + ~f"(O) + ~'f"'(O) + o(h 4 )
2 .,l

I'(h) = 1'(0) + h·f"(O) + ';-.f"'(O) + o(h 3 )

The linear multistep methods of order two can be expressed as :

By substituting Uri by f (2h), Un -l by f (h) and Un -2 by f (0) it follows:

(S.IO)

(5.11)

(5.12)

(5.13)

,/
i

Now the m~thod will be of order 2, incase the expressions before f(O), £'(0) and £"(0)
equal zero, thus:

(5.14)

and the LTE will be equal to:

(S.15)

1. By Ruehli a general formula, in moment form. is derived for a k order MS method. which can simply be
transformed to the above derived constraintll.

AO =0. Am =-m·Bm-l. m =1,2•...• k

Linear multistep methods
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Another constraint is the normalisation constraint, as proposed by Ruehli [18]:

~ b. - ai-a ~ (5.16)

The accuracy property together with the normalisation constraint generate four
constraints, so second order two steps methods depend on two free parameters.

Introducing two new parameters, c = -a 1 and d =b 1. the integration parameters for
second order accuracy can be expressed as :

ao = 0.5.( I + c )
al = -c
a2 = -0.5·( I - c )

bo =0.25·( 2 + c - 2·d )
bl = d
b 2 =0.25·( 2 - c - 2·d )

(5.17)

The local truncation error is often expressed as proposed by Peano :

where: k = the order of the method
Ck +1 = the error constant

and Ck+l = 1/3 - 1/2·d

(5.18)

Note that the expression of the LTE of a k-th order method implies that the error can be
driven to zero as h is made smaller and smaller. On the other hand taking a small h will
slow down the simulation, so an MS method exhibiting a small error constant allows
"larger" step sizes.

The earlier mentioned rules exhibit an error constant of :

FE:
BE:
TR:

C2 =-1/2
C2 = 1/2
Ca = 1/12

k=1
k=1
k=2

5.2.2 Stability properties

The global truncation error ( GTE) determines the stability of the integration rule.

definition: The GTE of an integration rule is the difference between the computed value
Un and the exact value of the solution u(tn ), assuming that only the initial
condition is known exactly.

The stability of MS methods is determined by applying the test equation:

it = A'U with Ais constant and complex

Substitution of it == A'U leads to the following form for the MS methods:

~ Bi'u . - h' ~ b.·A'U . - ai=a n-~ i-a ~ n-~

Transient analysis
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By rewriting equation 5.20 and replacing h·"\ by q it follows that:

~ ( a; - q·b. )'u . - 0i-O ~ ~ n-~
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(5.21)

Which is called the linear constant coefficient difference equation. The solutions are of
the form:

d.
u -nLzI?

n ~
i 1,2, ... ,m (5.22)

where: zi are the distinct roots of ~ ( a· - q'b; )·zp-i
i-O ~ ~

di are the algebraic multiplications.

Now unconditional stability is defined as :

definition: The MS method is said to be unconditional stable at q if all solutions { Un } of
5.21 are bounded for fixed h > 0 as n+lD

Note that an MS method is unconditional stable if and only if equation 5.21 satisfies the
root condition, i.e. IZj I ~ 1 for all i and if IZj I = 1 then Zj is simple. The set S of all q's at
which the formula is stable is called the stability region.

The requirement that an MS method should be unconditional stable is very hard, and in
practise, no MS method satisfies this condition. Unconditional stability has the whole
complex plane as stability region. That's why other stability regions were searched for
which are derived in such a way that S is adapted to the practical application of the
integration rule.

Several restricted stability regions are:

A-stability:

Ao-stability:

AD-stability :

A rx -stability :

Stiff-stability:

Stable in the entire left half complex plane.

Stable on the negative real axis.

Stable in some specified domain D, which in some sense is "large"
enough.

Derived from AD-stability, where D consists of all qlO such that
I 7f - arK q I < lX, 0 < ex <7f/2

Derived from AD-stability, where D consists of a general rectangular
domain containing most of the left half complex plane.

The stability regions for the FE, BE and TR rule are depicted in figure 5.1. It is seen that
FE has a very small stability region and has almost no practical use. The BE and TR rule
show good results and are both A-stable.

Now it is good to remind that for circuit simulation, A-stability is a first requisite. The
right half complex plane might be unusable for the whole or partly, however this part is
not necessary for the operation of an integration rule because a circuit signal can not grow
unbounded. Note that in this case lambda would be positive. However reducing the
stability region beyond the left half complex plane implies reducing the general use of the
simulator.

Linear multistep methods
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1m q
2

FE: 11 + q I < 1

-2

1m q

2.1 .I .I .I

,I ,I ,I "
,I ,I /; /'

i ,1,1 / .,.

. ~ / /
/ / ,I /

/ / / /
,I ,I ,I ,I

,I ,I ,I ,I

,I ,I ,I ,I

,I / ,I /

_~ .1.1_;1..1 /
I 1 I < 1
11-ql

BE:

1m q
.I .I .I 2

.I .I .I .I
.I .I .I .I

.I .I .I .I 1.I .I I .I
.I .I .I .I

.I I / .I

11 + q/2 I -~ /-1- .I 0 1
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11 - q/2 I .I .I
.I .I .I .I

I / .I .I -1I I I .I
I I .I .I

I I / /
/ I / / -2I I .I /

Figure 5.1. Stability regions for numerical integration rules

5.2.3 Contractivity properties

By Nevanlinna [15] a method is proposed which is said to be contractive if all solutions of
the test equation u= "\·u generated by the method are not only bounded but also non
increasing.

definition: A linear multistep method is contractive at q if for solutions of

~ ( a. - q·b. )'u . = 0
i=O ~ ~ n-~

we have IIUnl1 '!l: IIUn - 111 for all n = p, p+l, ...
where Un = (Un-p+lo Un - p +2, ..• , Un )

The concepts related to stability can also be applied to contractivity. Thus a formula is
said to be A-contractive if it is contractive for all q, Re q '!l: O. If we have a formula which
is said to be A-contractive then by induction II Un II '!l: II Up -1 U for all n and thus we have
A-stability. In contrast to A-stability, A-contractivity is a local property to n and can be
analysed easier then A-stability properties.

Clearly, if a method is contractive then by induction IIUnli '!l: IIU01 for all n:

i~llai-q'bil - lao - q'bol ~ 0 (5.23)

Transient analysis
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An MS method is contractive at q = 0 if and only if:

and contractivity at q = (J) if and only if :

bO - ~ Ib·1 ~ 0
i-1 1.

(5.24)

(5.25)

(5.26)

The method is A 0 contractive if and only if it is contractive both at q = 0 and q :::: m. Le.
only as 5.24 and 5.25 are satisfied.

The method is said to be A-contractive if it is contractive for all q in the left half-space.
It has this property if and only if it is A 0 contractive and:

i~1( a1 + b1'~ )1/2 - ( a6 + b6'~ )1/2 ~ a

The inequality 5.26 is obtained. if the contractivity condition is applied on the imaginary
axis with q = iy. so n = y 2 •

Second order accuracy and normalisation require that ( written in moment form):

k
B = L; f)lI}. b .

m i=a 1. J

A 0::::0

A =m

f). =
1.

Al=bo=l A2=2.Bl

k
L; f)lI}·(-a. )

i=a 1. 1.

( t n - t n _i ) / hn

For the two steps method the condition for contractivity at z = 0 is :

a 0 > 0 A ai < 0 i = 1. 2 (5.27)

A condition which is just slightly stronger then equation 5.24. then equation 5.26 is
equivalent to:

2
F(~) = L; (-a.)·[ 1 + ( b?/a? )'q ]1/2 - (5.28)

i-I 1. 1. l.

aO'[ 1 + ( b~/a~ ).~ ]1/2 ~ 0

For n + O. i.e. when analysing contractivity on the imaginary axis near q = O. one finds
that:

(5.29)

It follows that F :t O. however second order conditions imply F ~ O. So the only possible
solution that can be achieved is F = O.

For given values of the ai satisfying A 0 :::: 0 and AI:::: 1 we seek the unique extremum of
the quadratic function F (bi). which must be a maximum. subject to the constraints Bo = 1
and B 1 = A 2/2. in an attempt at making F =O. The maximum F =F max is taken at :

bi :::: ( i + ~A2 )( -ai ). i = O. 1.2 (5.30)



page 36

and F max turns out to be zero identically in the ai's. Furthermore F < 0 for any other bi'S,
thus the solutions found are the only two step A-contractive methods. So we find one
extra constraint and the two step A-contractive methods will depend on one free
parameter, for which we can choose c = -al. Comparing the results with equation 5.17 we
see that the parameter c = 2.d 1/ 2 :

1
ao = "2( 1 + c)

al =-c

I
a2 = -"2( I - c )

O~c~l

bo = ~( 2 + c - c 2
)

bl = 1 c 2
"2

b 2 = ~( 2 - c - C2 )

(5.31)

For c = I and c =0 we obtain the trapezium rule with step length h and the trapezium
rule with step length 2h respectively.

Un - Un-l - ;.( Un + Un-I) = 0 (5.32)

(5.33)

5.2.4 Numerical damping

Another important property is the numerical damping of an MS method, intuitively
numerical damping can be viewed as excessive stability.

definition: Numerical damping ( or amplification) is the decrease ( or increase) in the
amplitude which results from applying the numerical method to a lossless
resonance circuit ( poles at ti"\ ).

The test equation that is used, is given by :

u= i ·,.\.u with Ais real (5.34)

This equation has no inherent damping and thus the damping of the numerical response
must be attributed to the integration method.

(5.35)o

Un =:ez we get
2
1: ( 8.. - i·).·h·b. )·z2-i = 0

i-O ~ ~

8.. - i·).·h·b. ).~ ~ un _i

For the analysis of the test circuit we use a two step MS method, .the characteristic
equation will be :

2
1: (

i=O
with

ZI,2 =

The roots of this equation are, with q = h·"\:

-( al - i·q·bl ) t (R - i.1 )1/2

2.( ao - ;.q.bo ) (5.36)

Transient analysis
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The complex square root in equation 5.36 has two values given by :

( . )1/2 = ( R 2 + [2 )1/4.e i.(9+krr)

where: () = i·tan-1(l/R) and k =0, I

(5.37)

(5.38)

We are interested in the modulus of the principal root of the oscillatory solution to
measure the amplitude decay as a function of t = nh, the two amplitude functions being:

(A2 +q2.B2 )n!2
Un = I z1,2 I

n
= [2(ag +q2b5 )]n

where: A = -aO·al - q2.b o·b 1 t (R 2 + [2 )1!4.(ao·cos() + q·bo·sin{})
B = (al·bO - ao.b 1 ) t( R 2 + [2 )1/4.(ao·sin{} +q.bo'cos{})

Do we apply the test equation to the BE method then we find:

I
z = ....,..-------,-.......

I - ;·I\·h

which correspondents to an exponential decay of :

U = Iz In = ( I.)n =:l ( I _ .-\2.h 2 )n / 2
n ( I + 'P.h 2 )lj 2

(5.39)

(5.40)

This shows why the BE method is not suitable for large time steps h, since the numerical
damping depends exponentially on h.

In figure 5.2 the response is depicted for a lossless resonance circuit, the same experiment
is performed in Ruehli. The amplitude for the BE method is so strongly damped that the
solution vanishes after very few cycles. The performance of the BDF2 method is also
poor. Do we look at the optimal ACT2 method we see that the numerical damping is
better. The TR rule exhibits no damping, it shows an error with an oscillatory behaviour.

The damping is dependent of the step size, here a step size of 0.5 sec. is used which yields
about 12 points per cycle. Reducing the step size to 0.1 sec.( about 60 points per cycle)
will yield a much better result with respect to the numerical damping for the ACT2 and
BDF2 method, while the numerical damping of the BE method remains poor, see figure
5.3.

Linear multistep methods
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10050o

BE~~
o-J-1---"':::::::==-rI-~----"------===:=;::1=
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Figure 5.2. The damping for a loss1ess resonance circuit for h =0.5

1 TR

ampl

0.75

0.5 h ==0.1

0.25

o-t-~-~--r-----r----.--
o 50 100 150cycles

Figure 5.3. The damping for a loss1ess resonance circuit for h = 0.1
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5.3 Two step backward differentiation method

A particular class of the MS methods is called the backward differentiation methods
which are defined as :

~ a.' u . - h' bO. (z = 0 (5 .41)
i=O ~ n-~ n

By the normalisation constraint it is found that bo == 1. The two steps backward
differentiation method (BDF2 ) is characterised by :

(5.42)

The three accuracy constraints, see equation 5.14 determine the three parameters of
BDF2:

ao == 3/2
al = -2
a2 == 1/2

and the error constant of the LTE is :

C3==1/3

The stability properties can be found from equation 5.21 :

( 3/2 - q ).z2 - 2·z + 1/2 == 0

For all q we search the regions where the roots satisfy IZi I s: 1.

(5.43)

(5.44)

-~~---±-O--~----'2~-----=3---7

Figure 5.4. The stability region for the BDF2 method

As seen from the picture, the BDF 2 method is A-stable and therefor applicable in the
simulator.

5.4 Two step A-contractive methods

The two step A -contractive methods are restricted by 5 constraints, so they depend on one
free parameter, see equation 5.31. An A-contractive method having certain optimality
property in terms of a bound for the global truncation error, see Nevanlinna [15] is given
for c = 2/3:

5 2 1 h 5 . h 2 . h 2 . 0o,un - 'Y'Un-1 - O'Un -2 - ·V·un - 'V'Un-1 - ·V·Un - 2 =

Two step A-contractive methods
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This method is of order 2, A-contractive and thus A-stable, for this reasons it is actually
implemented in the simulator.

The stability properties can be found from equation 5.21.

55222 12( - .q )·z + ( - - .q ).z + ( - - .q) = 0o-g- 1""~ 09
(5.45)

S.S Integration with variable time step

Until now we investigated the integration rules under the presumption that a uniform
grid ( tn }, tn = n·h is used. In practice this presumption does not hold and a variable grid
( tn }, whose now time step is hn = tn - tn-1 and for which we define tn - tn-j = hn'{}j, is
used.

Most circuits exhibit stiffness, which implies widely separated eigenvalues. Suppose a
circuit has an exact solution of the form:

(5.46)

and ~1 = I and A2 = 106 • Note that to capture the behaviour of the solution an integration
of 5 sec. is needed to find the response of A1. To observe the response for "\2, a time step
is needed of 10-6 sec., for uniform time steps this implies 5 106 time points for the total
integration. However with a variable grid the response for ~2 can be captured in 5 steps of
10-6 sec. and after that 5 time steps of 1 sec. are used to capture the behaviour of ..\t. In
this way a lot of computational effort can be saved. Unfortunately not all the MS
methods can be applied with variable step size. For example the FE method shows
growing oscillation when applied with variable step size.

So again the question rises what are the accuracy, the stability and the A-contractivity
properties of the MS methods. In the subsequent part of this section two methods are
proposed to maintain second order accuracy for the BDF2 and the ACT2 methods as
found in Sangiovanni [20] and Dahlquist [7].

The BDF2 method:

In Nevanlinna [15] it is experimentally proved that the BDF2 method is not A-stable
when an increasing step size sequence is applied. For second order methods we derived
the coefficients of the two steps MS methods in section 5.2.1. When a variable grid is used
for the time step, the computation of the coefficients becomes more complicated and
depends on the time steps.

The BDF2 method can be expressed as:

(5.47)

Let us consider a general polynomial of order 2 :

Applying the integration rule yields:

ao'( Co + C1·tn + C2·t~ ) + a1'( Co + C1·t n-1 + C2·t~-1 ) +

Transient analysis
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Substituting tn-l = tn - h n and tn -2 = t n - hn - hn-l yields:

ao + al + a2 = 0
al·h~ + a2'( hn + hn-l ) = -hn
al·h n + a2'( h n + hn - l ) = 0

and we find the following expressions for the parameters of the BDF2 method:

(5.50)

ao =
2·hn + hn - l

hn + hn - l
(5.51 )

-hn - hn-l

hn - l

h~
a 2 = ....-----..,.,.-.--""

h n - l ·( h n + h n - l )

The ACT2 methods:

The ACT 2 method can become instable by a bad combination of time dependence
(lambda depends on t ) of the problem and step size changes. For the ACT2 methods an
extension is defined, by the requirement that the contractivity norm be constant with
respect to n, i.e. independent of the step size changes. Furthermore, if the methods are
expressed in terms of a special, uniquely chosen weighted average of the current step size
and the previous step size:

(5.52)

then the ai coefficients too are constant with respect to n.

The ACT2 methods can be written as:

and the formula parameters are:

(5.53)

1ao = .( I + c )
L:

al =-c
1

a 2 = - 2"'( 1 - c )

1
bO,n = 4'( 1 + C + Un + Vn )

1
b l,n =2'( 1 - Un )

1
b2,n = 4'( 1 - C + Un - vn )

(5.54)

with: Un = ( 1 - c2 )I( 1 + en.c )2

Vn = e~'c,( 1 - c 2 )I( 1 + en.c )2

and for A-contractivity : 0 scsI

Integration with variable time step
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The local truncation error relative to h~ satisfies:

* * h*s '''( *)E (to) = -Cs,o' o'u to

where the error constant:

* 1 * *)CS,o = 0'( As,o + 3.B 2,0

is expressed in the moments :

*
2

* )3· a . *
2 * . )2· b .A3 n = ~ ( 8i n B2 n ~ ( 81 n, i=O , ~,n , 1=0 , ~,n

(}O n 0 (}l = ( 3 + 3' IOn )/( 3 + 2' IOn ) (}2 n, ,n ,

For the optimal ACT2 method, c = 2/3, the parameters become:

(5.55)

(5.56)

(5.57)

aO = 5/6
al = -2/3
a2=-1/6

h~ = 5/6.ho + 1/6.ho - 1

5
Vn = ,-;;;-.,..--------.,-

( 3 + 2.en )2

2 2Un = "J'".enovn

bo,n = 5/12 + 1/4.( Un + Vn )
bl0 = 1/2.( 1 - Uo )

b 2:n = 1/12 + 1/4.( Un - vn )

(5.58)

5.6 Time step control

Until now nothing has been told about the time step control, there has to be found a
mechanism to derive a new time step. The time step control causes the step to increase
(decrease) whenever the error was over- ( under- ) estimated. Variable step sizes are
often used to control the magnitude of the local truncation error and also to minimize the
computation time, the time step must be chosen as large as possible provided that the
desired accuracy is achieved. Two methods to derive the new step size will be presented,
the first one is proposed in Ruehli [18] and the second one in Sangiovanni [20]

method according to Ruehli :

The local truncation error can be compared with a user defined tolerance T for the local
error. The object is to search an hn +1 for which LTEn =T, thus:

h - ( T )1/k+l h
n+l - ILTEnl . n

where: T = user defined accuracy

(5.59)

This strategy causes the step to increase ( decrease ) whenever the error was over-

Transient analysis
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(under-) estimated. LTEn is derived by passing the k-th degree lagrange interpolation
polynomial through Xn-k -1 .....Xn-l and evaluating it at tn, this yields

d. =
~,n

k+l
IT (t -t .)/(t .-t.)

n n-J n-~ n-Jj=1 i!=j
i 1, ... , k+l

(5.60)

For the two steps second order MS methods with uniform step sizes, we find after
evaluating equation [5.60] and noticing that tn = tn-l + h n • tn -2 = tn-l-hn·(lJ2,n-l-1 and
tn-s = tn-l - hn·(Bs,n-l- I }:

(5.61)

and.

(5.62)

1
where: CS,n = 0'( As,n + 3.B 2,n}

The LTE of the BDF2 method specialises to,

BDF2: (5.63)

and the LTE of the ACT2 method relative to h: specialises to:

ACT2:
'"

-6,Csn () } . h'" (5.64)LTE (tn) = '" *'..[ x tn - xe(tn] relative n
Bl,n·B2,n·lJs,n

(5.65)

method according to Sangiovanni :

By Sangiovanni a method is described which is used by SPICE 2. The LTE of an MS
method is used to find the new step size as follows:

C hk +1

ILTE I = I k+l' n+l.uk+1(t }I +hk +2
n+l (k+l)! n+l

transforming equation 5.65 yields:

h I
(k+l}!.T 11/ k +1

n+l S
Ck+l'Uk+l(tn+l)

where T is a user defined accuracy for the LTE.

(5.66)

The only unknown term is Uk+1(tn+l}, as it cannot be computed exactly, an approximation
is used that is called "divided differences" :

Time step control



Un+l - Un
DDl(tn+l) = -.-----­

hn+l

By Dahlquist [7] it is shown that:

Uk +1 (tn+I> = (k+l)!·\DDk+l(tn+l)\

and the new step size will be :
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(5.67)

(5.68)

(5.69)

Given a step hn+l, Un+l is calculated. Then DDk+l(tn+l) is computed and hn+l is checked
with inequality 5.69. If h n +1 satisfies the test it is accepted and commonly h n +2 is set equal
to the right hand side of 5.69. If hn+l does not satisfy the test, h n +1 is rejected and a new
hn+l is given by the right hand side of 5.69.

Finally a convenient estimation for the local truncation error has to be defined. A bound
for T, the user defined accuracy, is given as a combination of the absolute and relative
error:

(5.70)

5.7 The program

This section is divided in two parts. First some general concepts and formulas of the
program will be stated. Thereafter the program will be presented in a C-like language.

General concepts and formulas:

The formulas that are actually implemented in the simulator, have been treated in the
preceding sections, for the sake of completeness they are restated here:

FE:
BE:

TR:

BDF2:

un - Un-l - hn'Un-l = 0
un - Un-l - ~'Un = 0

un - un-l - -;.( Un + Un-I) = 0

aO.n,un - al.n·Un-l + a2.n·Un-2 - hn,un = 0

-hn - hn-l

hn-l

ACT2: ~'Un - }'Un-l - ~'Un-2 - h:'( bO.n,un + bl.n,Un-l + b2.n·Un-2 ) = 0

Transient analysis
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bO,n = 5/12 + 1/4.( Un + Vn) bl,n = 1/2.( 1 - Un) b2,n = 1/12 + 1/4·( Un - Vn )

The framework of the program is designed such that a general integration over time is
generated. In this way it is easy to add other integration methods without changing the
total program. For this purpose all the leafcell operations are performed by special
functions, so changes in the integration rule or pwl models will only change (some of)
these functions, and are not visible in the main program.

The simulator is event driven, meaning that during simulation every cell is assigned its
own time step. Every step of the simulation the leafcell with the nearest event is handled.
Here the nearest event is defined by the minimum of the so called dynamic event or panne
event, meaning:

1) dynamic event: The leafcell has a dynamic event in case it reaches the end of a time
step interval, this implies that a new time step for the leafcell has to be calculated. In
case the new time step is different from the previous time step a new jacobian and
source vector is generated. The LU decomposition is updated and finally the pwl
variables are updated

2) panne event: The leafcell has reached a boundary of a polytope, one or more elements
of v have become zero, so the leafcell has to be handled by the van de Panne
algorithm. Note that a treatment by the van de Panne algorithm yields no progress in
time, at this time point a new valid jacobian is searched for. The elements of x, u, li
and v are recomputed and integration has to be restarted in case of a discontinuity in
li was detected, otherwise integration is continued normally.

The advantage of an event driven simulation is exploiting the latency of the circuit. The
circuit elements which are active have an event and are subsequently handled by the
simulator. During simulation a list is composed of the fanout of the circuit elements
currently being handled. The simulator will only handle those circuit elements which
have an event and which belong to the list of the fanout.

For the operation of the BE method and the TR rule, we need to know the values of the
leafcell variables at tn-I. At time point zero and after a van de Panne event if the event
cannot be solved by a simple pivot, these values are not present. They have to be preceded
by an explicit integration rule, for this purpose the FE method is implemented. The same
applies to the BDF 2 and the ACT2 methods, however we need also to know the values at
tn -2, so these methods are preceded by the FE method and the TR rule.

For the calculation of the jacobian and the source vector the following strategy is applied.
Not the actual variables of the leafcell are used but the divided differences:

Xn =
Xn - Xn -l

Un =
Un - Un -l

(5.71)
hn hn

Un =
lin - Un -l vn =

Vn - Vn -l

hn hn
Xn = Xn - Xn-l bn = bn - On-l

The pwl model, together with the general two step MS method gets the following form:

The program
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0= A ll'Xn + A 12'Un
ft n =A 21,Xn + A 22'Un
vn =A31'Xn + A32'Un

ao,un + ( ao + al )'~'Un-l + a2·k·Un-2 - bo·hn·ftn - ( bo + bl )'Un-l - b2'Un-2 =0

Eliminating ft n from equation 5.73 with the aid of the integration rule yields:

(5.72)
(5.73)
(5.74)

(5.75)

(5.76)

This elimination is only possible in case the inverse of the matrix ao'! - hn·bo·A 22 exists.
In general the time step of the simulator is very small. preventing the matrix to
degenerate. The matrix will approximately be equal to the identity matrix multiplied by
ao. Eliminating Un from equation 5.72. using equation 5.76 yields:

(5.77)

Now the jacobian and the source vector are found as:

(5.78)

(5.79)

Insertiug the jacobian and the source vector in the system matrix and solving x yields x.
Now the leafcell variables can be calculated:

(5.80)

ft n =A 21'Xn + A 22'Un
ii = A31'Xn + A 22'Un

(5.81)
(5.82)

At this moment the step size control is not to elaborated. It is assumed that the integration
rules are of first order. this implies that the local truncation error is easy to determine and
depends on the second derivative of U :

(5.83)

In this estimation. the error constant is set equal to one. in practice this may be to
conservative. In future this estimation has to be more elaborated. choosing a suitable step
size saves computation time, and a method as described in section 5.6 may be used.

However the new step size calculated with equation 5.83 sometimes yields a value that is

Transient analysis
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to big. For example suppose the signal on a node represents a sine wave and the
simulation arrived at a top value, the second derative will equal zero and a large step size
will be the result. For this reason is checked, during integration, whether J changes "fast"
and if so the dynamic event of the leafcell is set back to :

. Un
dynamiC event = tn + --r'-·hn +1

Ui
(5.84)

Note that the jacobian and the source vector of the concerning leafcell are not affected
and remain the same during this operation.

As long as the step remains the same, the jacobian need not be recomputed. Only the
source vector will change, and the new x can be computed. However in case a step
changes the jacobian as well as the source vector changes. Normally the changes of the
system matrix are small, to avoid recomputing a whole new LU decomposition for the
system matrix, an update is performed on the old LU decomposition. The method is based
on a general update of the system matrix of the form:

(5.85)

where A is an n.n matrix
X, Yare n.m matrices with m « n

In Bennet [I], see also section 3.2.4, an algorithm is pl.;sented to modify the Land U
matrices which enables this to be done in about 2·m·n 2 operations in the general case. The
matrices X and Yare derived from the pwl model as follows:

I n +1 = Au + hn +l·A12·( ao'!- hn+1·bo·A22 r 1.A21
I n = Au + hn·A 12'( ao'! - hn·bo·A 22 r1·A 21

oj = bo·A l2'£ hn+d ao·l - hn+1·bo·A22 r 1.A21 - hn·( ao· - hn·bo·A22 r 1.A 21 ]

X=A12
Y =b o'[ hn+d ao'! - hn+1·bo·A22 r 1

- hn·( ao· - hn·bo·A22 r 1 ]·A21

(5.86)

(5.87)
(5.88)

The update as it is implemented in the simulator is a rank I update meaning that X and Y
have to be n·l "matrices", these vectors will mainly be sparse. Most pwl models only need
a rank I update, in case of a rank n update the rank I update is performed n times, in
formula form with n equals update_nbr we obtain:

Xli, update nr] = A 12[i, update nbr] (5.89)
Y[upd_nr, j] = bo'( hn+1·invn+dupdate_nbr,.] - hn·invn[update_nbr, .]. )·A21[" j] (5.90)

The operation of the program:

The transient analysis can roughly be divided in two main parts, the integration over time
and the van de Panne algorithm. Furthermore the integration over time can be divided in
an explicit- and an implicit integration step. Finally the implicit integration step can be
divided in four parts, (1) the time step determination, (2, 3) depending on a change in the
time step an update or no update for the system matrix and (4) an update for the leafcells
which are influenced by the current leafcell.

For a good understanding of the program the relevant variables are explained:

The program



cur leaf:
next event:
xbarbar leafs:
panne_event:

restart_integration:

step_changed:

update_ nbr :

rtvec, cvec :

current leaf that is handled by the integration rule.
the time at which the next event of the leafcell occurs.
list with leafcells having oX" O.
boolean denoting whether the current leafcell has
a panne event or a dynamic event.
boolean denoting whether the current leafcell is
restarted with an explicit or implicit integration rule.
boolean denoting whether the current time step
is equal to the previous time step.
integer denoting how many rank 1 updates have to be
performed.
sparse vectors containing the update for the
jacobian and LU decomposition.
( ao'! - bo·hn·A 22 r l

•
absolute and relative error.
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Below the program of the transient analysis is given, the function
van_deJanne( cur_leaf) is elaborated on the next page, and after that the leafcell
functions will be explained:

Transient analysis



transient analysisO
{
step]: for ( allleafcells ) I_INIT( leaf );

tn = next_event;
while ( tn ~ stop time) {

step 2 : if ( panne_event ) (
van_de_Panne( cur_leaf );

else {
if (restart integration) (

step 3 : update module variable X n =Xn-l + hn,xn
I GEN BDOT(cur leaf. On+l );
sparse_solve( Xn+l );-
update circuit variables;
compose xbarbar_leafs;
update with sparse vector X;
for ( allieafs in xbarbar_Ieafs ) (

I UPD PWLVARS( leaf ),'
I-CALC PWLDER( leaf ),'
ir( leaf /= cur_leaf) 1_REC_ EVENT( leaf) ..
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step 4 :

step 5 :

step 6 :

step 7 :

} }

}
update module variables Xn = Xn-l + hn,xn;
I UPD- PWLVARS( cur leaf);
1-STEPSIZE( cur leaf. step changed);
if( step changed"){ -

for (update nbr--) (
I RANK] UPD( cur leaf. rtvec, cvec ),'
update--.iacobian( rtvec, cvec ),'
ludec_upd( rtvec. cvec),'

}
I GEN BDOT( cur leaf.on+l)"
recompute_xbar( Xn+l );

}
else (

I GEN BooT( cur leaf.on+I>;
sparse_solve( Xn+l );-

}
update circuit variables X n = Xn-l + hn,xn;
compose xbarbar leafs;
update with sparse vector Xn+l;
for ( allieafs in xbarbar leafs) {

if ( leaf != cur leaf) (
I UPD PWLVARS( leaf );
I-CALC PWLDER( leaf);
I REC_ EVENT( leaf );

}
else (

I CALC PWLDER( cur leaf);
I EVENT( cur_leaf); -

}
}

}
output_signals;
t n = next_event;

The program



1_INIT( leaf) :

van_de_panne( cur_leaf)
(

I UPD PWLVARS( cur leaf);
1-INIT- PANNE( cur leaf);
PUSH( cur leaf, lambda, down );
PUSH( cur_leaf, row, up );
start van de Panne at step 3;
END PANNE( cur leaf);
update circuit variables Xn = Xn-l + hn·xn;
compose xbarbar_leafs;
update with sparse vector Xn+l;

for ( allieafs in xbarbar leafs) {
if ( leaf != cur leaf) {

I UPD PWLVARS( leaf );
I-CALC PWLDER( leaf );
I REC_ EVENT( leaf );

}
else (

I CALC PWLDER( cur leaf);
1-EVENT( cur leaf); -- -

}

}

The leafcell functions:

initialise the leafcell.
if no U variables then next_event = stop time.
else
hn =0
next event = 0

I GEN BDOT( leaf, On+l ): Un-l = Un
- - Un = A 21,Xn + A 22'Un + b2

On+l = A 12·invn+l' (-(ao + al )'~'Un-l
Tln+l

I_UPD_PWLVARS(leaf): Un=Un-l +hn,un
Vn = Vn-l + hn,vn

I_CALC_PWLDER( leaf): Un+l = see equation 5.76
Vn+l = A:n.Xn+l + AS2,Un+l
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determine dynamic step:
~n+l = A 21'Xn+l + A 22'Un+l

maxi ~n I
dynamic step = I' I 'hn+l- max Un+l
determine panne step:

• -Vn _
panne step =mm (~ : vn<O )

- Vn+l
next_event = tn + min( dynamic_step,panne_step )

Transient analysis
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1_STEPSIZE( leaf, step_changed) : ~n = A 21'Xn + A 22 'Un

ea + max( IUn I )·er )1/2
hn +1 = ( max( IUnl )
return step_changed

I_RANK1_UPD( leaf, rtvec, cvec): cvec[i] = A 12 [i, update_nbr]
rtvec[j] = bo'( hn+1·invn+l[update_nbr, .]­

hn·invn[update_nbr, .] )·A21[" j]

I_EVENT( leaf):

I_INIT_PANNE( leaf) :

END_ PANNE( leaf) :

~n+1 = A 21'Xn+l + A 22oUn+l
determine panne step:

• -Vn _
panne step = mm( __ : vn<O )

- Vn +l

next_event = tn + min( hn+1> panne_step )

al =0;
a2 = -ub;
as=-vb;

a1 =a 2 = as =0;

The program



page 52

5.8 Examples

In this section some examples will be treated, to show the properties and operation of the
simulator. The first example can be found in Ruehli [18], it is used to denote the
differences in the damping of the MS methods. The second example is a phase locked
loop on digital level. The third and fourth examples are a seven stage ring oscillator on
circuit level and on digital level respectively. On the following five pages the the circuits
and the relevant signals will be pictured. Thereafter the statistics generated by the
simulator will be showr. and the results of the different drcuits will be compared.

I

R

~V2

-3
R = 9.80410

Cl = 1

C2 = 2.04

-3
L = 4.95110

Figure 5.5. The Landman circuit
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Figure 5.6. The response of the Landman circuit with different integration rules
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Figure 5.7. The response of the Landman circuit for different integration rules

The Landman circuit is derived from Ruehli [19], as an example for the damping of the
different integration rules. The Landman circuit exhibits equations which are stiff with
an eigenvalue ratio of·IOO. The large time step chosen in the example give a clear view of

.. the numerical damping of the integration rules.

For the trapezium rule, the propagation of the errors is clearly visible, while the
overdamping of the BDF2 method and the BE method is also clearly visible. Figure 5.7
shows the good response for the ACT2 method and shows the desirable properties for
practical computation with an appropriate choice of the time step.
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Figure 5.8. The phase locked loop
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Figure 5.9. The response of the phase locked loop
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Figure S.10. The seven stage ring oscillator, analog
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Figure S.l1. The response of the seven stage ring oscillator
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out

Figure 5.12. The seven stage ring oscillator, digital
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Figure 5.13. The response of the seven stage ring oscillator
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STATISTICS

F=='
pro...p.erties 1 2 3 4 5

matrix information
Number of modules 5 683 15 15 1
Number of leafcells 4 602 14 14
Matrix size 10 618 65 14 1
Number of nonzero matrix elements 27 2271 468 29 3
Percentage of nonzero matrix elements 27.0 % 0.6% 11.1 % 14.8 % 36.0
Number of fill-ins generated 9 1653 228 15 2

r.-- -- --
lu decomposition

Number of fulliu decompositions 1 1 1 1
Number of lu-crout decompositions 0 1160 192 114 3
Number of dyadic updates 257 2634 1732 128 37
Average update vector size 1.2 1.0 1.0 0.5 1.
Average number of changed matrix elements 13.2 13.9 165.5 1.3 10.
~~ae percentage of changed elements 49.0 % 0.6% 35.4 % 4.6% 28.5

forward backward substitution
Number of sparse forw.-backw. substitutions 3350 6112 4593 364 8
Number of multiplications / fb-subst. 22.2 19.7 278.7 1.9 3.

r-- changes xdot
Average number of changes in xdot 9.0 0.0 58.8 0.0 0
Average number of 1eafcells reached 3.0 0.0 12.6 0.0 1

pivots (_.
Number of pivots done for DC solution 0 340 21 3
Number of pivots during transient analysis 0 2204 192 118 2--

events and timing
Number of pw1 events 0 580 ill

57 1
Number of dynamic events 3602 707 5863 64 3
simulation CPU time (seconds) 68 10731 1504 18

1 = Landman

2 = greatest common diviser

3 = analog seven stage ring oscillator

4 = digital seven stage ring oscillator

5 = phase locked loop

At this moment the statistics are in a preliminary stage. Not all the features of the
simulator can be derived from the table. As far as the statistics are sufficient the
following properties can be derived:

- The dynamic events generated by the simulator differ from circuit to circuit. As
expected, a large number of events is generated for the Landman circuit and the
analog seven stage ring oscillator, while for the other circuits which are digital the
generated events are considerably less.

- The full LU decomposition is only performed once at the beginning of the simulation.
Thereafter only partial LU decompositions are performed, by the LU decomposition
according to Crout and the rank 1 update ( dyadic update ). It is noticed that the
average percentage of changed matrix elements is a measure for the computation time
of the LU decomposition update. With respect to the sparse forward backward
substitution we notice that the number of multiplications is a measure for the effort
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the simulator has to perform to find a solution for the system matrix every time a
forward backward substitution is performed. The greatest numbers are found for the
Landman circuit, the analog oscillator and the phase locked loop. This is related with
the large number of non zero matrix elements for these circuits.

- It is noticed that the van de Panne algorithm finds fast a DC solution, only a small
number of pivots has to be performed. The number of pivots done during the transient
analysis per pwl event are also small. Especial attention may be drawn to the analog
seven stage ring oscillator, which shows that every pwl event is solved by exactly one
pivot.

- The required CPU time needed for the analog oscillator and the GCD circuit are
somewhat disappointing. Leaving out the checks which are performed during
simulation will certainly speed up simulation. Beside of that improvements can be
made for some updates which are performed during transient analysis.

Transient analysis
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6. Input nodes

6.1 Introduction

For the construction of the circuit. every building block is transformed to a pwl model.
For the input nodes it is possible to create models that perform the function chosen by the
user. The use of pwl models for input nodes implies that the user has to change the circuit
structure with the aid of the schematic entry program. every time he wants to test the
circuit in a different way. By creating the possibility to assign functions to an input node
in the task file. the user can change input functions fast and efficient without affecting
the circuit.

6.2 The functions

The input functions that are implemented have been derived from SPICE. Below the
functions are listed. for every function the values. the example for the task file and use
by the transient analysis and the van de Panne algorithm are denoted:

constant value: function.
assigns a constant value to a node.

example.
lin = 5[V];

use.
not evaluated by van de Panne and transient analysis.

sine wave: function.
f(x) =Vo + VA.e-(t-TD).THETA.sin(2'7!".FREQ.(t+TD»

example.
lin =SINE ( VA. YO. FREQ. TD. THETA )[A];

where: VA = amplitude
VO =offset
FREQ = frequency
TD = delay time
THETA =damping factor

use.
only evaluated by transient analysis.

pulse function: function.
multi function for clock or pulse generation. see figure 6.1.

The functions
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input file:

:Figure 6.1. The pulse function

example,
lin =PULSE ( VA, VO, FREQ, TD, TR, PW, TF)[X];

where: VA =amplitude
VO =offset
FREQ = frequency
TD =delay time
TR =rise time
PW =pulse width
TF =fall time

use,
this function is evaluated by the van de Panne algorithm as well
as the transient analysis.

function,
this function is described in a file containing user defined
time points and values, which are interconnected by line straight
segments.

example,
lin = linput_filename[V];
every line of the file contains subsequently one time point and
corresponding value.

use,
this function is evaluated by the van de Panne algorithm as well
as the transient analysis.

6.3 Adjustments to the simulator

In this section the difference of the inputcells with the leafcells in regard to the transient
analysis and the van de Panne will be treated. Because of the general construction of the
simulator only leafcell functions will change, which will be called inputcell functions in
the subsequent part of this section, see also section 4.3 and 5.7. The simulator does not
know what type of leafcell it is dealing with, the leafcell could be a pwl model or an
inputcell. However all the information about inputcells is known and the transient
analysis and the van de Panne algorithm derive this information indirectly. Inputcells
emulate pwl behaviour.

Input nodes
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INPUTCELL
r----------..,
~ I

I module I
I I
I variables I
I I

times last time step
input name previous time step

function prevo prevo time step

me name last update
file pointer next event
parameters

\integration method
gamma

time slice
sero v

VA
VO

FREQ
TD

THETA/TR
PW
TF

Figure 6.2. The data structure of the inputcell

The data structure for the inputcell is depicted in figure 6.2. From the figure it is seen
that the inputcell has no pwl matrix and corresponding pwl variables. the input values are
directly derived from the function that is applied. Because of this the update functions
for the pwl model are not necessary for the inputcell.

The contribution to the system matrix of an inputcell consists of one entry. During
simulation this element stays the same. only the source vector can change. So the rank 1
update in the transient analysis is not needed and therefor the variable step changed is
always false for inputcells. remind however this does not imply that the stepsize for an
inputcell does not change.

In case of a dynamic event. the inputcell reaches the end of a time step interval. this
implies that a new time step for the inputcell has to be calculated. After that a new source
vector 0 is generated and a new x is determined.

In case of a panne event. the inputcell has reached a discontinuity and will be handled by
the van de Panne algorithm. For the van de Panne algorithm the inputcell is extended
with a variable "gamma". Gamma is the maximum allowed theta that the inputcell
communicates to the van de Panne algorithm.

A detailed description of some inputcell operations will be shown below. subsequently the
sine wave. the pulse function and the input file will be dealt with:

1) the sine wave:

transient analysis.

Adjustments to the simulator



I INP STEPSIZE:

I INP GEN BOOT:

I INP EVENT:

2)the pulse function:

transient analysis,

ea + Ix I·er 1/ 2
hn +l =( . )

X

bn +l =e(TD - tn+l)·THETA.sin(2:n.FREQ.(tn+l + TD»

_e(TD - tn)·THETA.sin(2'7r.FREQ.(tn + TD»

next_event = tn + hn+1
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INP SIGN:

I_INP_STEPSIZE: hn +l =the time duration of the next pulse segment
e.g. suppose tn is at the boundary between TR and PW
then hn +1 = PW etc.

I_INP_GEN BOOT: Only if the current pulse segment is TR or TF, On+l

will have a value.
if TR On+l =VA/TR
if TF On+l = -VA/TF

I INP EVENT: next event = tn +( next pulse segment)
determine panne event
if pulse segment after next event is TR or TF and
TR =0 or TF =0, panne_event is true.

van de Panne algorithm,

INP GEN SOURCE: if active variable is lambda
- if TR 0 =VO + VA - x

if TF 0 = VO - x
else

0=0

if ( gamma =0 )
sign = I

else
sign =0

INP_CALC_THETA: {} =gamma

INP_CALC STEP: if ( gamma == theta_min)
gamma = 0
zero i = I

else
zero i =0

3) the input file:

transient analysis,

I_INP_ STEPSIZE :

I INP GEN BOOT:- - -
I INP EVENT:

hn+1 =tn+l - tn

On+l = (value (tn+l) - value (tn)/hn +1

next event = tn + hn+1
read input file (tn+b value(tn+l) )
if (tn == tn +l ) then panne_event is
true.

Input nodes



van de Panne algorithm,

INP GEN SOURCE: if active variable is lambda
- 0 = value(tn+l) - x

else
0=0

INP SIGN: see pulse function.

INP_CALC_ THETA: see pulse function.

INP CALC STEP: see pulse function.

Adjustments to the simulator
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7. Conclusions

At the moment the simulator is ready, however in a preliminary state. The size of the
simulator as it is implemented at the moment is about 12000 lines and the compiled
version takes about 250 Kbytes. With respect to the operation of the simulator the
following properties are observed:

- The circuit is stored in a hierarchical way this storage is used to form a bordered block
matrix structure, a structure which is maintained during simulation. The sparse matrix
structure, the hierarchical storage of the circuit and the bordered block matrix
structure reduce automatically the number of operations involved with the LU
decomposition and the forward backward substitution.

- The van de Panne algorithm, which computes the solution of the linear
complementarity problem, shows fast convergence properties.

- The van de Panne algorithm and the transient analysis have a general framework and
changes e.g. in the integration rule, are executed fast and concern only small sub­
functions.

- The simulator is event driven, leading automatically to simulation of only those parts
of a circuit which possibly can change. This leads to considerably savings of
computation time during simulation

- The choice of the integration method, backward euler, trapezium rule, two step
backward differentiation method or two step A -contractive method, is difficult to
make and depends on the application. Theoretical considerations, with respect to
constant time step, give preference to the trapezium rule. The properties of the
trapezium rule are : simple to apply, stability in the entire left half complex plane,
second order, a small error constant and no damping. However do we apply a variable
step size, as is implemented for the simulator, then also the two steps A-contractive
method and the two steps backward differentiation method, which are more complex
then the trapezium rule, show good results.

- The applicati n of the input nodes yields a nice feature for the users. The
implementation is small and straightforward, only small sub-functions are involved. A
basic set of functions is available and if desired new functions can be added fast.

During simulation a lot of time consuming tests are performed, e.g. every time the LU
decomposition changes a check for the correctness of the new LU decomposition is
performed. It is certain that leaving out these tests, simulation will speed up
considerably. Some of the sub-functions can be made faster and smarter, as there are the
time step control and the application of a pivot strategy. With respect to the data structure
some improvements can be added, e.g. the data structure of the input nodes can be
reduced or storing only the LU decomposition in the sparse matrix structure will reduce
storage considerably.

Concerning the integration rules, more research has to be carried out after the properties
of the implemented rules. Beside of the implemented methods, other ones could be used,
like for example the one leg implementation of the ACT methods as proposed by Ruehli
[18]. Research has to be carried out after a strategy that could be used for the
implementation of an automatically change of integration rule, as proposed in
Sangiovanni [20].

As is noticed the simulator is working and yields good results. Although some
improvements have to be carried out, the simulator can handle all feasible circuits.

Conclusions
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SSS :
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Leafcell description language ( NDML subset )

opthead :-r headpart~ {parpart r»

headpart :

lea/key

LEAFCELL_ keywd

SYSTEM_ keywd

termlist

termdecl :

E atlrlist~~ sigtyp I r»
'-------)0.1t~s~-------'

attrlist



attrbute

page 68

INPUT_ keywd

OUTPUT_keywd

INOUT_ keywd

UNUSED_ keywd

terms

terminal :

sigtyp

ELECTR_ keywd f---;1"'""""~

SIGNAL_keywd

/parpart :

LPARM BRACKET RPARM BRACKET

/parlist

/pardecl :t idlist ~ fparspec I r'
idlist :

~ idlist
~.

, ID

Appendix 1 : Lea/cell description language ( NDML subset)



/parspec :

valspec :

4 bound H RANGE_TOKEN H bound ~

bound :

de/spec

matrix def

select stat

reference_del :

page 69

REFERENCE_ keywd

/ixed_matrix_de/

VAR_ keywd 1--------'

fixed matrix def

matrix_de/Jart

4 var_decl H rowlist ~



var decl :

varUst :

varid

idsel :

idext

rowlist :

1, "'8r'"
~rowlist~

row:-r rowid H eq_token HW';rowel_list~.;

~------",,:"'~I error~ -

Appendix 1 : Lea/cell description language ( NDML subset)
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rowid

ZERO_keywd

DU_keywd

PL_keywd

rowel list :

~I~~ roweLlist~- rowel

rowel :

page 71

statUst :

~ statlist

stat :

}~)%r; stat

-....--....;~ assign_stat

remove stat

I'-----'~ pivot_stat 1----1

init cond stat

assign_stat:

-4 matrixel_id H ASSOP~

elsepart :--r ELSE- keywd •H '!allist r ~

remove stat :

-4 REMOVE_keywd H matrixel_id~



pivot_stat :

4 PIVOT_keywd H matrixel_id~

rnatrixel id

select stat:

4 case_part H otherwise_part ~

caseJart :

clause :

4 CASE_keywd~ matrix_def~

otherwiseJart :--r OTHERWISE_keywd H matrix_def I J"
- )0

init cond stat :

4INITIALyeywOrd H init_var~

init var

DU_keywd

iconst :

---+jCON ~

Appendix 1 : Lea/cell description language ( NDML subset)
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expr

hexpr

TIMESOP

fun

--..---~ SIN FUN

t----+t COS FUN

I'-~ LN FUN

MIN FUN

MAX FUN
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eminlst :

~ ~~eminlst , expr

emaxlst :

~ ~~emaxlst , expr

4RELOPl~

Appendix 1 : Lea/cell description language ( NDML subset)
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Appendix 2 Simulation task description language

sections

section

intvalpartTRANSIENT

I'-------+i REFERENCE

t------+i INTEGRAnON METHOD

'----------~ZERO UDOT f-----------/

----.:------~MODULE

I'-------+i NORMALIZE

intvalpart :

normlist

elmnt



norm elmnt :

termlist

page 76

elmnt

term elmnt :

4 PATHNAME H selector~ term_value~

term value

PATHNAME

1'------+1 VOLTAGE 1------1

I'----~CURRENT 1------1

arg_list :

~ arg_elmnt~ dimension~



dimension :

VOLTAGE

CURRENT

selector :

output_elmnt :

OUTPUT

OUTPUT

'-----.,;~ OUTPUT

levlist

page 77

lev elmnt :

~NUMBER~

syslist :

elmnt

sys_elmnt :

4PATHNAME~

accuracylist :

accuracylist accu elmnt



accu elmnt

----.,--~ VARIABLE

I'-~:.I EQUAnON

accu value :

accu value

page 78

parameterlist :

parameterlist

parameter_elmnt :

4 PATHNAME~ parameter_value ~

parameter_value :

NUMBER 1----;>..--+

VOLTAGE

CURRENT

referencelist

referencelist refer elmnt

refer_elmnt :

4PATHNAME~

irule :
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