EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Securing the iphion IPTV network

van Selst, J.

Award date:
2009

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/773a5fc2-3637-4b5d-9903-9bf0c5bb620c

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science
Computer Science: Security Group

Securing the
iphion IPTV network

by Johan van Selst

Confidential until September 2010

Supervisors:

dr. N. Zannone (TUE)
dr. J.I. den Hartog (TUE)
J.P.P.A. Saman (iphion b.v.)

Acknowledgements

I would like to thank the following people for their assistance:

Nicola Zannone (TUE) and Jean-Paul Saman (iphion), my direct super-
visors, who have read my work countless times and provided valuable
suggestions and feedback throughout the project,

Jerry den Hartog (TUE), Willem Jan Withagen, Merien ten Houten and
Peter de With (iphion) for giving me the opportunity to do this thesis,

Finne Boonen, Peter Minten, Erwin Riemens, Sven Berkvens-Matthijsse,
Marc Olzheim, Martin Poelstra, Jilles Tjoelker and Jan Derk Gerlings, my

iphion colleagues who are developing a great IPTV system,

Jaap van der Woude, for motivating me to continue my studies and finish
my masters’ degree,

and Wynke Stulemeijer, for her unconditional support.

Contents

1 Introduction 13
1.1 Systemoverview 14
1.2 Existing infrastructure oo L 16
1.3 Contribution o 17
1.4 Structure ofthethesis 18

2 Requirements analysis of the iphion system 21
2.1 Backgroundo Lo 22

2.1.1 (Mis)use caseso 22
2.1.2 Goalmodelling 23
2.1.3 Goalreasoning 26
2.2 iphion use and misuse cases 28
2.3 iphiongoalmodel. oL 30
2.3.1 Security 32
2.3.2 Dependability 0. 41
2.3.3 Usability 47
2.3.4 Inter-goal contributions 49
2.4 iphion goalanalysis. L. 52
2.4.1 Summary of alternatives 53
2.4.2 Configurations analysis 55
2.5 SUMMAIY v o e e e e e e 56

CONTENTS

3 Secure communications with TLS 61
3.1 Transport Layer Security 61
3.1.1 TLS authentication. 62
3.1.2 Setup of a Public Key Infrastructure 64

3.2 Deploying TLS at iphion 65
3.2.1 Communications using TLS 66
3.2.2 Secure authentication 68

3.3 Setup of the iphion PKI 71
3.4 Key exposure threats and risks 74
3.5 Key creation, signing and usage policy 78
3.5.1 Development keys 79
3.5.2 Keygeneration 80
3.5.3 Keybackups 81
3.5.4 Keyrevocation L. 83

36 TLSsoftware 84
3.7 Summary e e e e e e e e 86
4 System integrity and secure updates 87
4.1 Secure boot mechanism 88
4.2 Softwareupdates, 90
4.2.1 Application updates (ipkg) 91
4.2.2 Signed executableso 91
4.2.3 Binary filesystem updates 94

4.3 Rescue boot procedure, 95
44 iphionplayer 96
4.4.1 Secure boot mechanism 96
4.4.2 Softwareupdates, 98
4.4.3 Rescue boot procedure 99
4.44 Cryptographickeys. 102
4.45 Bootloader modifications 103
4.46 Rescueimagefeatures 104
447 Legalissues 104
4.4.8 SUMMATY . . . v v v e e e e e e e e 105

CONTENTS

5 Content distribution 107
5.1 Communication streams 107
5.2 Authentication oL oo 109
5.3 Imtegrity 111
5.4 Confidentiality, 114
5.5 Summary e 115

6 Conclusions 119
6.1 Summary e e e e 119
6.2 Recommendations 122
6.3 Furtherwork 123

Appendices

A Glossary 127

B Use and misuse cases 133
B.1 iphion player 133

B.l.l Usecases oo v v v ii i, 133
B.1.2 Misuse cases v i i e 136
B.1.3 Mitigationcases 141
B.2 iphionservers e 142
B.21 Usecases i, 142
B.22 Misusecases 146
B.2.3 Mitigationcases 150

C Key creation manual 153
C.1 Setting up a secure certificate authority 153
C.2 Set up the U-boot certificate 161
C.3 Generating client certificates 164
C.4 Generating server certificates 164
C.5 Generating signed image files for U-boot 165
C.6 Making copies of CDs or sets of CDs for other people (not

U-boot) 166
C.7 Making copies of the U-boot CD 166

7

CONTENTS

Bibliography 169

List of Figures

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.13

3.1
3.2
3.3
3.4
3.5
3.6

simplified iphion network overview

iphion network overview

Misuse case example diagram
Modelling tool example diagram
Reasoning tool example diagram
iphion player use and misuse cases
iphion server park use and misuse cases
Main security goals oL oL
Security goal model tree
Main dependability goals
Dependability goal model tree
Main usability goals
Usability goal model tree
Full goal treemodel
Reasoning tool results

Reasoning tool results (cont.)

Simplified TLS handshake protocol.
X.509 certificate hierarchical overview
Client-server communications using TLS
Shared-secret authentication check
iphion certificate hierarchy

2D barcode representing a part of an RSA private key

9

LIST OF FIGURES

4.1
4.2

5.1
5.2
5.3

6.1

Secure boot architectureo oL L 89
Rescue boot procedure L. 101
A simple iPAP network diagram 108
iphion Token and Key Protocol 111
Flow of tokensand keys 116
iphion communications security 121

10

List of Tables

2.1
2.2
2.3
2.4
2.b

3.1
3.2
3.3
3.4

Misuse case table overview 24
iphion player use case: Authenticate 29
iphion server misuse case: Obtain content 31
Input configuration values 56
Goal result configuration values 57
iphion intermediate certificateuse 73
iphion key pair storageo oL L 74
iphion key pair misuse 76
NIST SP 800-57 key strength comparison 78

11

LIST OF TABLES

12

1. Introduction

In an Internet Protocol Television (IPTV) system a digital television
service is delivered over a public network infrastructure using the Internet
Protocol. Due to the bandwidth required for high quality television streams,
IPTV is best suited for broadband connections or local area networks.
Currently, IPTV is mostly used in controlled private networks such as hotels
(hospitality market).

The start-up company iphion aims at bringing IPTV to the homes via
the public Internet. Their IPTV service will be just as easy to use as
‘conventional’ television, but with the added benefits of interactive Internet
technology. The most important advantages of IPTV are the excellent visual
quality, potential low costs for the user and flexible channel access schemes.

Providing a high-quality IPTV experience to thousands of users simultane-
ously involves the transmission of a huge mount of data to all recipients with
a very short delay. Just delivering this data in time, poses an interesting
technical challenge. Rather than sending a full copy of the stream to each
customer (unicast), iphion decided to use a collaborative delivery network,
where local relays and receivers may send on parts of the data to other local
peers, a method similar to the exchange of data via peer-to-peer networks
[Poe08].

The security of the content delivery network is not a trivial task. The
TV receivers are located in an environment outside iphion’s control (at
somebody’s home, connected to the Internet, possibly behind a firewall),
but will still need to communicate secure, fast and reliable with other
similar devices and with the :phion servers. In addition, television content
providers strongly insist that their material is never made available to
anybody — not even the customer — before it is delivered to the television in
raw (uncompressed) form.

In this chapter we start with an overview of the collaborative IPTV
system that is envisioned by iphion. Then we discuss the existing
infrastructure: aspects that have already been implemented or are currently
under development. This infrastructure sets the context for the thesis.

13

CHAPTER 1. INTRODUCTION

Section 1.3 describes the specific goals of the masters’ project. We conclude
this chapter with an outline of the rest of the thesis.

1.1 System overview

Before we can talk about securing information and communications, it is
important to get an idea of what kind of data is used in the system and how
it is communicated, both internally and externally.

Streaming multimedia content will be provided by various partners and
suppliers, such as SBS and RTL Television. Each content provider will offer
one or more television channels. Ideally the content would be received in a
format that is directly suitable for streaming via iphion’s content delivery
platform, but in some cases the data may need to be transcoded.

The multimedia content streams will be sent from a central iphion server
to the customers via private channels over the public internet. At home the
customers have the iphion player set-top box that they bought, which is
connected both to their internet link and to their television set. The player
receives the multimedia content streams and other information, such as an
electronic program guide, and displays this information at the users’ request
on their television screen. A simplified overview of the communications path
is given in Figure 1.1.

iphion ‘ : '\) v
server iphion ——
set-top boxes

content providers

Figure 1.1: simplified iphion network overview

In reality it is slightly more complicated: the multimedia content streams
will be transmitted via a delivery network of ¢phion controled nodes that
relay the data to all the customers that request it. Relay servers will be
placed on strategic locations within the network, for example at an Internet
Exchange point such as the AMS-IX or BNIX — or in the server room of an
ISP to provide a proxy for all the customers in their network. Customers’
set-top boxes can also relay chunks of data to other clients in their area
that are waiting for the same content (this is the collaborative aspect of
the data distribution). By sending the data in chunks via various paths,

14

1.1. SYSTEM OVERVIEW

congestion of specific links can be avoided, while speed and reliability may
be improved.

The regular television content (specifically that from foreign broadcasters)
may be merged with commercials from local advertisers. These commercials
would replace the commercial slots in the original broadcast. This could be
used for example to broadcast an Australian sports channel with Dutch
commercials, or to present customers in the Netherlands and in Belgium
with the same shows, but with different advertisements from local companies
during the commercial breaks. This feature is only available for channels
where the content provider explicitly supports it.

Multimedia data that is not sent out live, will be stored on iphion servers
and only sent-out to individual customers upon request. However, this
feature will probably not be available at the start. The exact details of
how Video-on-Demand will be deployed are not clear yet. With a limited
amount of timeslots and pre-selected videos, the regular content delivery
network might be used to distribute this data as well.

Apart from pure streaming multimedia content, iphion receives and
distributes data from other sources as well. This will include information
such as program guide details, interactive television, teletext and other
digital services, but also software updates for the system. Most of this data
will not be send out via the distribution network, but is communicated
directly with individual customers in an interactive fashion. The customers
can select specific information whenever they feel like it. To obtain this
information, the set-top box directly contacts a specific sphion server.

The set-top boxes will not only obtain data from the iphion servers, but
will send information back as well. This includes technical data about what
version it runs, how the system operates, what kind of special events occur
(errors, hack attempts etc.), but also regular statistical data about how the
system and the services are used.

Viewing statistics about the requested multimedia content and other
services will be collected by the company. This may be used to provide
customers with personal recommendations (related TV shows, timetable
changes, etc.). The content providers are also very interested in how many
people tune in to their channels and when viewers join or leave a specific
channel. Aggregated viewing statistics will be made available by iphion to
the content providers via a website.

There will also be a website for the customers where they can log in and
customise personal settings. Here they might order additional services or
features. Additionally, settings like the order in which T'V channels appear
on their set-top box or the configuration of ‘parental control’ features could
be modified via this interface.

15

CHAPTER 1. INTRODUCTION

1.2 Existing infrastructure

A large part of the iphion collaborative IPTV system has already been
created. An infrastructure has been developed primarily to meet the
requirements for scalability and efficiency. Security requirements are not
ignored or compromised in this design, but they will have to work inside
the framework that is already set up.

Video data will be streamed by a central server: this server encodes the
stream for transmission over the network and splits the result into small
packets that may be transmitted individually. The underlying format will
be an MPEG Transport Stream [oapmhi00].

The central broadcasting server distributes the data to the iphion relay
servers. The number of these servers will grow with an expanding network.
The relays (or repeaters) will send on data to the clients, the tphion set-top
boxes (STB). The broadcaster, repeaters and STBs take part in a peer-to-
peer network as nodes. Nodes have a dynamic ranking (depending on uplink
speed and relative distance to the source) and each node tries to receive data
from higher-ranked peers.

Data is transmitted on-demand (i.e. pulled rather than pushed): any node
can contact a central service to find out which nodes currently offer the data
that it is interested in and then request a stream from them. When nobody
is interested in a specific stream, it won't be send out. The STBs will only
request and relay traffic for the active channel (that the user is watching),
so that the bandwidth can be used fully to provide high quality video and
audio.

Data packets in the network are transmitted using UDP. A mechanism
to deal with transport errors, congestion control and packet re-ordering
has been designed on application level. The STBs have special provisions
to operate from behind firewalls and NAT-routers (Network Address
Translation).

The collaborative network is only used for distribution of audio and video
content: all other data is handled through separate channels. These channels
generally use a direct TCP connection to a central server — as the network
grows, there may be multiple servers for each service. These servers are
accessed by clients to consult channel information, find peering partners,
browse the electronic program guide (EPG), download software package
updates and obtain other information that doesn’t require high bandwidth.
Figure 1.2 gives a simplified overview of the designed iphion network
infrastructure.

16

1.3. CONTRIBUTION

electronic program guide
cryptographic key server
logging and statistics

- B

iphion | "iaaaaa
collaborative = '_) v
network =——3
steaming N 00 M &L 7T h
server !
live stream r—
iphion v
relay set-top box ———

servers

Figure 1.2: iphion network overview

1.3 Contribution

The objective of the thesis is to analyse and improve the security aspects
of the iphion collaborative IPTV network. The analysis includes deciding
what needs to be secured: Chart the communication streams, the stored
data and potential risks and then decide what needs to be protected.
Additionally, we need to decide how the data should be secured: Information
security is not just about confidentiality of the data, but also requires
availability of the data where and when it is needed and guarantees about
the integrity of the presented information.

For some information streams integrity will be much more important than
confidentiality, while for other data the availability of relevant decryption
keys at the right time and place, will be a real challenge. In many cases
several alternative solutions will be available and we will determine which
is best suited to each situation.

Based on our requirements analysis, we aim to give concrete suggestions
on how to improve the security of the iphion system. This includes the
selection and design of suitable communication protocols, procedures for
the creation and deployment of cryptographic keys and assistance with the
implementation of the suggested improvements. In the thesis, three aspects
of the system are analysed in great detail.

For the authentication of clients and servers in the system, we suggest the
use of Transport Layer Security (TLS) in combination with a identification
scheme based on public-key cryptography. We design a Public-Key
Infrastructure (PKI) to implement this. TLS based communications

17

CHAPTER 1. INTRODUCTION

facilitate authentication, but also offer data integrity and confidentiality
(encryption) support. We suggest the use of TLS where possible and identify
the communication streams where TLS is not feasible.

To ensure the integrity of the software running on the iphion player set-top
boxes we suggest a booting mechanism that performs integrity checks with
each step (on-chip, bootloader, kernel, application software). These checks
are based on digital signatures, also supported by public-key cryptography.
Updates of the software running on the set-top box should preserve this
integrity at all times. A rescue mechanism is designed to restore the
application software install if its integrity is somehow compromised.

The confidentiality, integrity and authenticity of multimedia content streams
in the iphion network can not be established via TLS, because of the
incompatible set-up of the delivery network (a packet-oriented collaborative
infrastructure). We introduce alternative mechanisms to guarantee the
required security of the content data transmissions.

1.4 Structure of the thesis

This thesis is structured as follows:

e Chapter 2 presents the requirements analysis of the system under
development. The focus will be on the security requirements — but
these cannot be analysed without taking the other functional and non-
functional requirements of the system into account as well. From these
requirements we work towards an implementation and decide on the best
design alternatives.

The following chapters each focus on specific aspects of the system. For
some parts of the system we work out exactly how this aspect can be
secured in practice. We deal with encountered implementation restrictions
and explore the protocols that can be used: both for the software and for
the operational aspects (e.g. who needs access to which encryption keys
and how are these to be stored).

e Chapter 3 describes how to use Transport Layer Security (TLS) for client
and server authentication, data integrity and encryption. To support
TLS communications, we set up a Public Key Infrastructure (PKI) for
iphion with keys and certificates for all communication partners, using a
centralised trust hierarchy. A usage policy details how this infrastructure
can be deployed in practice.

e Chapter 4 introduces the infrastructure that allows ¢phion to check and
preserve the integrity of the installed software on the set-top boxes. This

18

1.4. STRUCTURE OF THE THESIS

integrity will be preserved through regular software updates. For the event
that the software integrity is compromised (for example when a regular
update fails to complete successfully), we devise a rescue procedure that
will restore a ‘compromised’ set-top box to a valid, integer 1phion software
installation.

Chapter 5 focuses on the iphion Peer Assisted Protocol (iPAP) that
is used to deliver streaming multimedia content to the set-top boxes.
These communications do not use TCP and therefore TLS cannot be
used for the data exchange. We create an alternative set-up to handle
peer authentication, preserve data integrity and deal with the encryption
of the content data in the iPAP network.

Chapter 6 presents a summary of the work that has been done and
describes how this has helped to create a more secure system. This chapter
will also include a description of what has not been done — either because
it was deemed unnecessary or because of other constraints — and what
tasks are left for future analysis and implementation work.

19

CHAPTER 1. INTRODUCTION

20

2. Requirements analysis of
the iphion system

The tphion collaborative IPT'V system serves a clear purpose: to display
television broadcasts. To clarify in more detail what is needed for good
operation of this system, a list of requirements has been specified. This
includes requirements from the service provider, iphion, from the content
providers (national TV networks) and from the users who will use the
system. The objective of this chapter is to determine the requirements
of the system and translate these into specific implementation tasks.

We start by looking at the functional requirements of the system: what is it
supposed to do. This analysis is mostly done by discussing the system with
the designers and developers at iphion. These requirements are formalised
using the Use Case model [SC02].

Along with the use cases, it is interesting to consider how the system might
be abused by people. This will help to clarify the security considerations
of the system and show what additional system functions will be needed
to mitigate these attacks. An extension to the traditional Use Cases, the
Misuse Case model [SO05], will be used to describe this aspect.

Alternative design decisions can be adopted to protect the system against
abuse. Each decision has a different impact on the qualities of the system.
This demands a trade-off analysis in order to select the best alternative.
For this purpose we use a Goal Modelling technique, which allows for
the representation of software qualities together with design alternatives
[YM94].

When a clear overview of the system has been outlined, formal Goal
Analysis [GMNS03] will be performed using software tools, to interpret
this model and use it to clarify and guide implementation choices. The
analysis should identify options that make it impossible (or difficult) to reach
certain goals. When conflicting aspects are found, a choice may be made
between quality requirements (e.g. choosing for security or for usability).
This analysis can help us choose good implementation solutions.

21

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

2.1 Background

2.1.1 (Mis)use cases

In software engineering use cases models are used to describe a system'’s
behaviour in relation to its environment (the users of the system). These
models are UML diagrams [RHCFO05] that illustrate how a system is
supposed to function. Each case can be recorded in detail using standard
templates, thus leading to a formal definition of the functional requirements
of a system [SCO02]. Use case descriptions are particularly useful when one
has a good idea about what a system is supposed to do, yet it lacks a formal
description of the requirements.

In the use case descriptions, the actors are the users, or external entities
that interact with the system. And each use case describes a specific action,
or sequence of actions, that the system should perform. These actions will
be triggered by the actors.

Standard use case descriptions focus on functional requirements and do not
consider non-functional requirements, such as security requirements. The
conventional use case descriptions can be extended to not only describe the
regular (positive) use cases, but also the negative use cases (misuse cases)
that specify behaviour not desired by the proposed system. From this the
security requirements may be elicited [SO05].

Misuse cases constitute threats to specific use cases: when the actions
misuse case would be execute, it could undermine or disable the desired
functionality described in a use case. For example, the use case order goods
that describes a function of an online store, could be ‘threatened’ by the
misue case steal credit card info (Figure 2.1). The actor in a misuse case
is generally a malicious outsider who wants to attack the system. However,
this actor could also be a regular user who wants to abuse the system.

We add extra use cases to describe the actions that can be taken to mitigate
the attack potential of a misuse case. These use cases are called mitigation
cases. In the previous example, the misuse case could be mitigated by the
additional use case protect card info.

A graphical overview of the misuse cases will be presented using UML
diagrams. The basic elements of misuse cases are: actors, cases and
relationships. Actors are the users of a system, such as iphion customers
and partners; but crooks attempting to hack the system are actors as well.
Actors are depicted as a person in the diagram (even if it may be used
to describe a company). The cases are either use cases (white boxes) or
misuse cases (black boxes). The mitigation cases are use cases as well and
are therefore also represented by white boxes.

22

2.1. BACKGROUND

The relationships (shown as arrows) describe the dependencies between
actors who may trigger an action and the corresponding use case. Use
cases and misuse cases also have relationships between them: a misuse case
generally threatens one or more use cases; use cases can mitigate a specific
misuse case (these use cases are referred to as mitigation cases). Specific use
cases may include other use cases, for example to mitigate threats to this
specific case. The relationship arrows between use/misuse cases will always
include a text to describe the type of relation: threaten, include or mitigate.

> order goods

<<inclOslg>

Customer

Figure 2.1: Misuse case example diagram

After that a more formal description of each use case and misuse case will
follow, using a standard template. This details the actions that compound
a use case, the event that triggers the use case and the threats to the use
case that can be identified.

For the misuse cases the description will also include the stakeholders
and risks of an attack; the potential misuser profile (well-informed insider,
unskilled external opportunist, etc.); and references to the mitigation cases
that may prevent the attack. An overview of all items listed in the use case
description is outlined in Table 2.1.

2.1.2 Goal modelling

Goal-oriented approaches offer a way to describe the requirements of a
system. A goal describes a desired state of affair. Softgoals are used
to model non-functional requirements for a software system [GMNS03].
Softgoals are goals that do not have a clear-cut criterion for their satisfaction:
they are considered satisfied when there is sufficient positive and little
negative evidence for this claim.

These softgoals can be refined and split up into subgoals that describe
specific aspects of a general principle. These subgoals can be fulfilled
by means of tasks. A task represents a particular course of action that
produces a desired effect [MMZ07]. Essentially they are used to describe
the concrete procedure that accomplishes a goal. For example, the softgoal
‘data confidentiality’ may be (partially) refined into the task ‘encrypt
data communications’, which could be implemented using ‘symmetric AES
encryption’.

23

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

Entry Description

Name: Use case identifier

Summary: Short description of the use/misuse case.

Basic path: The actions that the actor(s) and the system go through to

Alternative paths:

Exception path:

Trigger:

Assumptions:

Precondition:
Postcondition:

Threats®:
Mitigation points®:

Mitigation guarantee’:

Related business rule®:

b

Potential misuser profile”:

Stakeholders and risks®:

harm the proposed system.

Actions that are not accounted for by the basic path, but
are still sufficiently similar to be described as variants of
the basic path.

Actions that interrupt the basic path and lead to a different
result without completing the basic path.

The states or events in the system or its environment that
may initiate the use/misuse case. For some cases, the
trigger is just the predicate True, indicating that this event
may occur at any time.

The states in the system’s environment that make the use
case possible.

The system’s state that make the use case possible.

The resulting change in state after the completion of the
basic path.

Misuse cases that threaten this specific use case.

Those actions in a basic or alternative path where misuse
can be mitigated.

The guaranteed outcome of mitigating a misuse case.
If mitigation points are not yet specified in detail, the
mitigation guarantee describes the level of security required
from the mitigation security use cases that will be designed
later.

The business rules that will be violated by the specified
misuse.

This field describes whatever can be assumed about
the misuser, for example, whether the misuser acts
intentionally or inadvertently; whether the misuser is an
insider or outsider; and how technically skilled the misuser
must be.

The major risks for each stakeholder involved in this misuse
case. This may be an abstract textual description, e.g. "the
system is unavailable for several hours”.

?Only included in the use case template
Only included in the misuse case template

Table 2.1: Misuse case table overview

24

2.1. BACKGROUND

AND /OR-decomposition is used to describe the relation between a goal
and its subgoals [ALF93]. If a goal is AND-decomposed, then all the
subgoals must be met in order for the goal to be satisfied. OR-decomposition
is used to indicate that at least one of the subgoals must be satisfied.

Unfortunately the decomposition-approach for modelling and analysing
goals does not work for many domains, where goals can’t be formally defined
and the relationships among them cannot be captured by semantically well-
defined relations such as the AND/OR-decomposition [GMNS03].

Abstract goals such as user satisfaction cannot be fully defined with formal
predicates and the relationship with other (sub)goals is hard to capture using
only AND/OR-relations; even though there may be necessary conditions
that must be met for this goal to be satisfied. Furthermore such an abstract
goal can also be related to other general goals, such as the effectiveness of a
system. The latter contributes towards satisfaction of the former goal, but
this contribution is partial and qualitative.

For another example, let's assume that we have a goal that can satisfy a
security aspect, such as user identification. The implementation fulfilling
this goal is likely to have negative effects on wusability goals, such as
effictency. But this too is just a partial contribution: satisfaction of the
former goal does not deny satisfaction of the other, although it may make it
harder to obtain. Generally we do not strive to an optimal engineering
solution for efficiency, but rather strive for an adequate compromise,
accepting a solution that is “good enough” in (partial) satisfaction of
multiple conflicting goals.

The original goal model can be extended with qualitative relations [GKMPO04].
This makes it possible to describe subgoals that contribute to the satisfaction
of a goal, but do not guarantee fulfilment of the goal: these contributions
can be partial and qualitative. The added qualitative relations may indicate
either positive (+) or negative (-) contributions.

The intuitive meaning of these contributions is that the satisfaction of goal
contributes positively (negatively) to the satisfaction of another goal. A
formal definition is given in [GMS05].

Graphically, softgoals are represented as clouds in goal diagrams, tasks
as hexagons and resources as rectangles. In the rationale diagram,
contributions are specified as arrows with a plus or minus sign (see
Figure 2.2).

A goal graph can be seen as a forest of and/or-trees whose nodes are
connected by contribution relation arcs. Root goals are roots of and/or-
trees, whilst leaf goals are either leaves or nodes which are not part of the
trees.

25

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM
/T\A N /1\0 R

—

positive contribution

>

negative contribution

Figure 2.2: Modelling tool example diagram

2.1.3 Goal reasoning

Initial values represent the evidence available about the satisfaction and the
denial of a specific goal, namely evidence about the state of the goal. For
each goal we considered three values representing the current evidence of
satisfiabilty and deniability of a goal: Full, Partial and None. We admit
also conflicting situations in which we have both evidence for satisfaction
and denial of a goal.

Given a goal graph and an initial values assignment of the so-called nput
goals (typically leaf goals), forward reasoning focuses on the forward
propagation of these initial values to all other goals in the graph.

After the forward propagation of the initial values, the user can look at
the final values of the target goals (typically root goals). The desired
outcome is satisfaction of all of the target goals. Forward reasoning is used
to evaluate the impact of the adoption of different alternatives with respect
to the softgoals of the system-to-be.

Backward reasoning focuses on the backward search of the possible input
values leading to some desired final value, under desired constraints. We set
the desired final values of the target goals, and we want to find possible
initial assignments to the input goals which would cause the desired final
values of the target goals by forward propagation.

The backward reasoning is used to analyze goal models and find the set
of goals at the minimum costs that if achieved they can guarantee the

26

2.1. BACKGROUND

achievement of the desired top goals and softgoals. In other words, we
find among the alternatives of the goal model those with the minimal cost
that allow us to obtain our desired goals.

Analysis tools are available to automate part of the goal reasoning process.
We will be using the Serenity Si* plugin for Eclipse [Bon07]. These Si*
tools offer means to draw goal graphs in Eclipse, using the previously
described composition- and contribution-relationships.

For the goal analysis we use the Serenity Goal-Risk Solver tool [Asn08] that
works with the Serenity plugins in order to facilitate forward reasoning.

In this analysis a (sub)subgoal is considered satisfied (indicated in a green
colour; as shown in Figure 2.3) if all dependant subgoals are satisfied in the
case of AND-decomposition; or if at least one of the subgoals is satisfied in
the case of OR-decomposition.

A subgoal with only positive contributions is also considered satisfied;
a subgoal with only negative contributions is considered to be denied
(indicated in red). If a subgoal has both positive and negative contributions,
it is considered both partially satisfied and partially denied (indicated in
yellow). Since we are doing qualitative analysis, rather than quantitative,
there will be no percentage or threshold for what is ‘good’. In general,
yellow cases warrant closer inspection outside the scope of this tool.

Finally, a goal may also have no contributions whatsoever (indicated in
white), which implies that it is neither satisfied nor denied; but since we
strive to satisfy all goals, this is not a desired result either. The reasoning
for the satisfaction/denial of tasks is the same as that for subgoals.

S:NOTBPARTIAL
softgoal

/Z\
SRARTALIDNG o paRTALIDIFAR Sy DIPARTHL

subgoall subgoalz? subgoal3

+ +

S POTAL|D: N S5 POTAL|D:N! S MO|D:ND
taskl task2 task3

Figure 2.3: Reasoning tool example diagram

As input values for the leaf nodes we will use ‘1’ to indicate that an
implementation is chosen (satisfied) and ‘0’ for those that are not used.
The best result would be if the top goals then colour green when running
the automated analysis. If any goal turns red (goal denied) or white (no

27

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

contributions), then we have done something wrong. If it turns yellow (both
positive and negative contributions), then this is cause for further analysis.

2.2 iphion use and misuse cases

Use cases and misuse cases for the iphion system have been identified
by reading the available documentation about the existing and planned
system, and mostly by interviewing the management and developers at
iphion. They presented a clear view of what kind of misuse of the box
— and especially of the content and other data in the system — should be
prevented.

The iphion player is the set-top box that customers will buy from iphion.
The customer places this box in his home and connects it to their television
and their internet uplink. The box will fetch video content and display it
via the television set. These are the main use cases for the users of this
device.

Authentication (of the device) is required to determine exactly which
content may be displayed; software updates are required to implement new
features or additional security safeguards. Encryption and validation of
all data communication, should prevent both unauthorised use of sensitive
data by third-parties and the use of untrusted input data by regular iphion
players.

validate software

<<intldes> <<mitiga

spread ‘
B <<threaten>> malicious :ot1e

_\Ww\»
(i) <
i/ play content)< <<threaten>>

<<threaten>

obtain content

Content

Provider
<<incldqje>>

' __ insert bad content

<<mitigate>>

Figure 2.4: iphion player use and misuse cases

28

2.2. IPHION USE AND MISUSE CASES

Figure 2.4 shows the use and misuse cases that have been identified for
the iphion player environment. All these use cases have been described in
detail using the standard template (from Table 2.1). We only present the
details of one of these use cases here, in Table 2.2, the others are listed in
Appendix B.1 in full.

Name: Authenticate

Summary: The iphion player (client) authenticates itself to the server and
receives a secure access token for further communication.

Basic path: 1. The client sets up a secure connection to the server.

2. Client and server exchange credentials (securely) and verify
each other’s identity.

3. Server sends a signed session token to the client that it may
use to identify itself to other actors in the system.

Alternative paths:

Exception path: If either client or server supplies invalid credentials, the
authentication is aborted and no token is given.

Trigger: Whenever the client sends an authentication request. It will do
this when coming online or switching to another channel.

Assumptions: Authentication mechanism should protect against replay and
man-in-the-middle attacks. How this is done, is described in
3.2.2.

Precondition: Clients and servers can check credentials of other actors.

Postcondition: The client is now registered and is (the only one) in possession

of a token that grants this specific client access to exchange

information with others for a limited period.

Threats: 1. An attacker can try to steal credentials in order to obtain
access for himself (B.1.2.3). Note that obtaining a token
isn’t enough, because all requests must also be signed with
the client’s private key.

2. An attacker can try to flood the system so that it cannot
obtain access (B.1.2.4).

Table 2.2: iphion player use case: Authenticate

It should be noted that there is no separate mitigation case to counter
get privileges attacks on the authentication process. As noted in this
case description (B.1.2.3), the authentication process itself (B.1.1.1) should
be resilient against such attacks: a proper authentication mechanism will
not grant privileges to unauthorised users. There is no mitigation against
flooding attacks either: an attack that sends more data than the network
path to a specific player can handle, will cause an interruption of the service.
Such an attack might be countered by filters in the network that are placed
in front of the connection path bottleneck (typically the link between a
customer’s home and the network provider), but this is the domain of the
ISP and not of iphion.

The iphion servers obtain video content from the content providers and
redistribute it to the appropriate iphion players. A player should only
receive the content that it has asked for. The servers will provide additional

29

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

‘meta data’ as well, such as an electronic program guide (to the players),
account information (to the customers) and viewing statistics (to the content
providers).

Crooks that attack the iphion servers can be both third-parties or customers
who have direct access to an iphion player set-top box. The types of
attack that can be launched against the server are pretty similar to those
threatening the players: denial-of-service attacks, interception of data
(passively or by actively submitting fake data first) and trying to trick a
server into inappropriate behaviour; possibly even trying to take full control
of the server.

obtain content

Content
Provider

/ distribute content
Je
authenticate clients)& —=threstenss get privileges B T,

Crook

Iphion encrypt data

Servers <<mitigatezx

provide meta data)< obtain data

<<threaten>>

update software
/ <<mitiga .

<<jplude>>

hack server

provide public data reaten>>

<<threate

denial-of-service

Figure 2.5: iphion server park use and misuse cases

An overview of the identified use cases for the iphion servers is shown in
Figure 2.5 and each case has been described in detail in the Appendix B.2
for further reference. To get an impression of these descriptions, the obtain
content misuse case is included here in Table 2.3.

2.3 iphion goal model

In this section we apply the goal modelling approach described in Sec-
tion 2.1.2 to capture and analyse the requirements of the zphion collab-
orative IPTV network. For this analysis, we use a goal graph where the
main goals that we focus on form the roots of a tree.

We focus on three softgoals: security, dependability and usability.
There are other goals, such as those dealing with the overall cost of the

30

2.3. IPHION GOAL MODEL

Name: Obtain content

Summary: Multimedia content is send from content providers to the iphion
servers and then further distributed via iphion’s collaborative
network. At either stage an attacker may try to obtain this
content.

Basic path: 1. A content provider sends data to the iphion server.

2. An attacker manages to intercept this information.

Alternative paths:

1. An iphion server sends out multimedia data to the iphion
network.
2. An attacker manages to intercept this information.

Exception path:

Trigger: Whenever multimedia data is send by the content providers
(B.2.1.1) or iphion servers (B.2.1.2). This happens continuously.

Assumptions: The attacker can intercept or relay data streams on its own
system.

Precondition: -

Postcondition: Restricted multimedia content data ends up with an unautho-

rised party.

Mitigation points:

1. When obtaining media from content providers (B.2.1.1),
a secure channel should be used for the media transport
(B.2.3.1).

2. When distributing media from the iphion servers (B.2.1.2),
all the media should be encrypted (B.2.3.4).

Mitigation guarantee:

Multimedia content is only available to authorised parties.

Related business rule:

Content is only accessible for iphion customers.

Potential misuser profile:

Skilled: The attacker must be able to intercept and/or reroute
internet data streams.

Stakeholders and risks:

Iphion: Full content access might be obtained by people who
never paid for it.

Table 2.3: iphion server misuse case: Obtain content

system, but for now these are considered to be less important and are not
included in the analysis. These goals are decomposed into subgoals, which
may be refined even further.

The decomposition and refinement of goals into subgoals can be continued
until we have tangible goals that can be satisfied through an appropriate
course of action. These courses of action, or tasks, correspond with the use
cases and mitigation use cases that were described in Section 2.2.

Use cases describe specific tasks that need to be achieved to obtain certain
goals, but they are high level descriptions. We will also describe the
concrete methods to fulfil (implement) these tasks. For such a specific
implementation there may be several concrete methods to choose from;
80 any implementation may be decomposed yet further into sub-methods,
leading to additional implementation choices.

Qur goal model is thus divided into three separate layers: Goals, that
describe the non-functional requirements, Tasks, that correspond with

31

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

the use cases, and concrete Implementations, that represent the design
solutions.

The (sub)goals are satisfied if the related tasks are satisfied. Specific use
cases may have positive or negative contributions to more than one goal.
The implementations of a task will offer a positive contribution toward
satisfaction of the use case. But a specific implementation may also have a
positive or negative influence on the satisfaction of other goals.

For example, a softgoal communication confidentiality might be satisfied
by a task encrypt communication, which could be implemented with
Transport Layer Security, TLS, for which concrete implementation choices
might be the application of RSA encryption or Elliptic Curve encryption.

2.3.1 Security

A common definition of information security is also cited in US federal law,
as part of the E-Governance Act, [FIS02]:

“protecting information and information systems from unau-
thorised access, use, disclosure, disruption, modification, or
destruction in order to provide—

e integrity, which means guarding against improper infor-
mation modification or destruction, and includes ensuring
information non-repudiation and authenticity

e confidentiality, which means preserving authorised restric-
tions on access and disclosure, including means for protecting
personal privacy and proprietary information;

e availability, which means ensuring timely and reliable access
to and use of information”

A graphical representation of the security goal decomposition into these
three aspects is depicted in Figure 2.6.

security

confidentiality

‘ integrity ’ availability

Figure 2.6: Main security goals

32

2.3. IPHION GOAL MODEL

2.3.1.1 Integrity

To uphold system integrity, unauthorised system alterations must be
prevented. This refers to both the software systems running on clients and
servers, but also to the data that is exchanged between parties.

Software integrity

Software on both servers and clients will need to be protected against
malicious alterations (hack server B.2.2.4, hack STB B.1.2.2). Software
can not remain static for ever, but needs to be updated with bug fixes and
new features. Care must be taken to validate and test software packages
before deploying them: accidentally installing a package from an unreliable
source — or even a broken package from a trusted source — may have grave
consequences. Updating software on the servers (B.2.3.2) is relatively easy
as they are in a controlled, secure environment. But updating software
on the clients (B.1.1.2) requires an automated validation mechanism to
guarantee that only trusted updates can be installed (B.1.3.1).

Content integrity

Content integrity in the system must be maintained: the content that is
relayed by the network peers and displayed by the sphion players must be
the content that sphion wants to distribute, and not something else inserted
by a malicious party (B.1.2.6). To guarantee content integrity, components
should validate content before using it (B.1.3.2).

Digital signatures

A common method for the validation of digital data is to use secure digital
signatures [KLO07]. A digital cryptographic signature of the data (checksum)
will guarantee that it has not been changed (tampered with) since the data
was signed. Verification of the signature, using public key cryptography,
should also guarantee that the data as it is was indeed signed by the owner
of the corresponding private key. Of course if a signature does not match
the identity (public key) of the signer that was expected, or the data content
does not match the signed checksum, then signature validation fails and the
data must not be used.

There are several possibilities for the infrastructure to facilitate the pro-
cessing of digital signatures. The simple way is to have a dedicated trusted
party sign all the data (the TTP or Trusted Third Party). Validation
of signatures can then be done either by this party as well, or by the
individual recipients using a pre-distributed public key of the signer. This

33

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

first alternative requires that all actors maintain a secure communications
channel with the trusted party. This introduces a real bottleneck in all
secure communications, so only the second alternative is feasible.

A more flexible signing infrastructure allows each individual actor to
generate its own signature. Since there are many actors in the system (iphion
client and server machines), and new actors are introduced frequently, it is
not convenient to distribute everybody’s public key to all others. A better
structure would be a distributed trust system, where individual signing keys
are signed by a trusted authority and actors can exchange their own keys to
others would be better suited. This hierarchical model is called a Public
Key Infrastructure (PKI) [Wei01].

The de-facto standard implementation of a such a PKI used for secure
communications on the internet is the X.509 standard [IT08]. The
X.509 infrastructure include standards for key generation, the storage of
signed keys, signature creation and validation. X.509 is also used for
secure communication over the internet via Transport Layer Security
(TLS, better known under the ’'older’ name SSL; [DA99]). TLS includes
provisions for authenticating of communication partners and establishing
secure connections using temporary encryption keys.

Setting up a PKI infrastructure requires much more work than using a single
trusted party (TTP); however, once rolled out, it scales very well to larger
infrastructures and both theory and practice are well-established and widely
used in the industry. A further advantage is that X.509 combined with
TLS also offers a good solution for actor authentication and establishing
confidential (internet) communications. It is likely less work to set up an
X.509 PKI infrastructure and use it in combination with the large range of
existing tools, than to set up a T'TP for data validation and develop our
own tools to handle this.

2.3.1.2 Confidentiality

To prevent unauthorised disclosure of information, the system should ensure
that users are authenticated, that the relevant information is protected and
that access is only granted to authorised users.

Because multimedia content is distributed rather differently than any other
data in the system, the method of protecting it will be very different as well.
Confidentiality is split up into the following parts.

Multimedia content confidentiality

When distributing multimedia from the iphion servers to the players over
the internet, it will need to be encrypted to preserve confidentiality (B.1.3.3).

34

2.3. IPHION GOAL MODEL

Between the content provider and the iphion servers, it is also possible
to keep multimedia confidentiality by using a secure channel as transport,
B.2.3.1.

Meta data confidentiality

Meta data is always exchanged between a single client and a single server.
This data can be protected either by using a secure channel (B.2.3.1) or by
encrypting it directly (B.2.3.3).

Authentication

The task of user authentication corresponds with the use case authenti-
cate (B.1.1.1). For authentication purposes it is enough to know the identity
of an actor. This can be facilitated by giving all actors an unique user
identification number (UUID). The trick is in communicating this ID with
a prospective partner in a secure way, so that the partner can be reasonably
sure that he is not speaking with somebody else who is pretending to be
you. One way to do this is by not transmitting the ID itself, but using it as a
key in a challenge-response authentication handshake [Sim96]. This type of
authentication is also frequently used as a secure replacement for plain-text
password authentication in internet protocols (IMAP, HTTP).

Another way to do authentication is by using client certificates, where
the actor presents its credentials in the from of a certificate that contains
its name, unique identification number and public key which can be used
for public-key data encryption and digital signatures. This certificate
would be digitally signed by an authoritative trusted party. The X.509
standards defines a common format that can be used to do this [IT08].
This is commonly used in actor authentication over the internet in
combination with the SSL/TLS (Secure Socket Layer, Transport Layer
Security) communication standards [DA99]. Since this is exactly the sort
of application we are interested in, this is a good mechanism should we opt
for certificate authentication. In particular, if we decide to use SSL/TLS for
secure transports, it would be a natural choice to use X.509 certificates for
authentication as well. This motivation will be illustrated with a positive
contribution arrow in the security model, Figure 2.7.

A UUID might be implemented in the set-top box by fixing this number
in a polyfuse register (read-only hardware) of the device. This has the
advantage that it will be practically impossible to modify or fake this ID on
the device. In combination with the built-in crypto hardware and a secret
key that can be stored in unreadable polyfuse registers, we can design
an authentication mechanism that reliably determine whether the iphion
servers are really communicating with a bona fide phion set-top box (see

35

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

Section 3.2.2). Unlike the UUID, the secret key could be shared by all the
devices (in a certain batch). However, the use of UUIDs fixed in hardware
has quite an impact on mass-production, as it means that the production
process would be slightly different for each product.

X.509 client certificates are too large to be stored in a similar fashion.
However these could be stored into NOR (read-only memory) on the set-
top box instead. Unlike the polyfuse registers, the NOR has plenty room
for such data, and cannot be easily tampered with. The memory might be
physically removed from a device, but thanks to digital signatures on the
memory and hardware checks, the device will not function properly if the
NOR has been modified. Storing unique keys in NOR still means that the
production process is slightly different for each box, but programming only
NOR rather than polyfuse registers is much easier and cheaper. To confirm
that the private key is indeed used by an iphion STB, the authentication
check could be combined with the shared secret key described in the previous
paragraph.

Content encryption

The multimedia content is delivered to the clients in a continuous stream
of data packets. The content will be encrypted by the iphion encryption
service and will be decrypted by individual clients that receive the content.
Not all clients may be authorised to receive all content channels and
the content must never be available unencrypted to other parties then
authenticated iphion clients.

The choice for a content encryption method (what to encrypt) is not directly
linked to the choice for a content encryption algorithm: each encryption
scheme can be combined with each algorithm. Therefore, we will discuss
these two aspects of content encryption separately.

Content encryption method

Encryption can be applied in several ways. The simplest way is deploying a
pre-shared key (PSK) that can be used by all clients [AMV96]. This has the
advantage that content can easily be exchanged and send further between
relay servers and between peers themselves without having to decrypt and
encrypt it.

Another method is to encrypt data dynamically per client: each client
would have its own decryption key and all the data can only be read by a
specific client. The advantage of this method is that it is easy to guarantee
that clients will not be able to read data that is not intended for them.
A disadvantage is that relaying of data requires re-encryption of it. This is

36

2.3. IPHION GOAL MODEL

also the encryption scheme that would be used by SSL connections; however
because of the way in which content data is distributed in the system, the
use of SSL is not an option here.

The third method is to encrypt data dynamsically per channel: each channel
would use its own encryption key. Since data access is restricted to which
actors have access to which channels, this will still make it possible to ensure
that clients only get access to the data that they are allowed to read. Data
can still be relayed unchanged, however only on a per-channel basis.

In each of these three cases, encryption keys can, and should be updated fre-
quently. To obtain the necessary key, clients could authenticate themselves
with a general authorisation service which would give them the required
decryption key or set of keys that can be used to decrypt the data that they
are allowed to read. When using the same key everywhere, this key should
be rotated more frequently then when all players use individual decryption
keys.

Content encryption algorithm

Regardless of the chosen method for content encryption, there is another
choice in the algorithm used to implement encryption of the multimedia
stream. The two serious contesters here are AES (the Advanced Encryption
Standard for shared cryptography [NIO1b]) and DVB-CSA (Common
Scrambling Algorithm, a European standard for Digital Video Broadcasting
[Com96]). AES is an open standard that has seen much scrutiny by
international cryptographic experts and is at this moment considered the
standard choice for both regulators and the crypto-industry. CSA has not
been inspected so closely, but some reports suggest that it is not as secure
as originally claimed [WWO04].

DVB-CSA is the de-facto standard for the European broadcasting industry
and although it is weaker, it has not been ‘broken’. CSA is not an open
standard, it is protected by patents and even the specification is only
available through a license agreement [Cus07].

Meta data encryption

To obtain meta data information, individual clients connect directly to a
centralised iphion server. There will be several servers for different types
of data: a server with software updates, another one for the electronic
program guide, etc. One way to send data encrypted to the client is by
completely encrypting the channel over which the communication is sent
(see Section 2.3.1.2), another way is to encrypt only the sensitive blocks of
data.

37

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

The application of a secure channel is not even a feasible option for all the
communications. In particular, communication that must be done from the
bootloader, can only use a simple encryption scheme. The bootloader which
is locked in read-only memory should be able to fetch software to perform
a rescue operation when the software that is installed on the set-up box
somehow becomes unusable (as described in Section 2.3.2.3).

For the direct encryption of meta data the same options are available as for
multimedia content encryption (Section 2.3.1.2): use a pre-shared key or
use tndiwvidual keys per client. However, there is no distinction between
content channels in this communication.

For data that is only accessible to individual clients (such as account
information), general shared keys are not a good option. If we are using
SSL for authentication of clients, it may be convenient to use SSL for
encryption as well: SSL offers a secure data communication channel (see
Section 2.3.1.2).

For the bootloader, only fixed keys (stored in ROM) may be used, but for
other applications key distribution can be performed just like it is done for
the content encryption. Using individual client keys for the bootloader
will make the production of the set-up box more expensive and offers
little security advantage, as the rescue software that would be encrypted
is basically the same for all clients. The rescue mechanism is discussed
in-depth in Chapter 2.3.2.3 Updating set-top box software.

There is no discussion about the algorithm used for the encryption of meta
data. AES (the Advanced Encryption Standard, [NIO1b]) is considered
the best option for the cases where algorithm isn’t pre-determined by the
selected encryption method.

Secure channel

A secure data communications channel may be used for the distribution of
multimedia content and meta data content. In this case there is a point-to-
point connection between two actors and all the communication over this
channel will be encrypted. This is a different concept to the encryption of
data packets as discussed above.

Using secure channels for internet communication is very common. Com-
panies use it to communicate securely between offices and people also use it
for secure online banking and shopping.

There are two common mechanisms to set-up a secure communications
channel on the internet: using a Virtual Private Network (VPN) or using
Transport Layer Security (TLS). A VPN basically creates a large flat
network on top of the existing infrastructure; but additional access controls

38

2.3. IPHION GOAL MODEL

for individual services will need to be added on top of this. Authorisation
will need to be done twice: first for joining the network and again when
connecting to a specific service. TLS is useful for securing individual
connections and has a little more overhead for each new connection:
generally setting up a new connection means that authentication has to
be done again as well.

Neither a VPN solution, nor a TLS infrastructure can be used for content
distribution. For one because setting up direct secure TCP connections
between iphion players will be difficult, but more importantly because
it should be possible redistribute encrypted content that is received from
iphion servers or players ‘as is’ to others: without changing or adding new
encryption.

2.3.1.3 Availability

Keeping all sensitive data stored in a vault is very secure, but rather useless.
Data must be available to authorised users and it should be available directly
when and where it’s needed.

Disruption of the information streams is something to be avoided. We make
a distinction between the different data flows.

Content availability
The multimedia content is obtained from the content providers (B.2.1.1)

and is continuously distributed to the clients via the iphion collaborative
network (B.2.1.2, B.1.1.3).

Meta data availability
Meta data includes ¢phion account information, user settings, viewing

statistics, etc. This data must be available from the iphion servers upon
request (B.2.1.4).

Public data availability
To attract new partners and customers, iphion also has an infrastructure
to provide non-sensitive services, such as a public website and email contact

addresses (B.2.1.5).

39

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

Content delivery network

Delivery of all the multimedia data to the wphion player devices is the task
of the content delivery network. This network should be secure, efficient and
reliable. Several standard mechanisms are available to handle distribution
of the data: Multicast is likely the most efficient solution, since data would
have to be sent only once to each provider and multicast routers would then
relay it to all the interested customers, copying the data stream only when
it is needed. Unfortunately multicast routing is not widely supported by
the existing internet infrastructure: most ISPs do not support this service.
Unicast is the other ‘extreme’: send all data to every individual player.
This causes a huge impact on the bandwidth cost at the sending end (the
1phion server park) as for every client the data stream must be copied and
transmitted again. The implementation can be improved somewhat by using
localized relay servers (located for example at a large ISP) that receive data
only once and re-distributed it to all local clients.

Another alternative is to let the players retransmit part of the data to other
(local) players as well. This type of peer-assisted content distribution is
used by peer-to-peer networks, which are popular for the distribution of
large data files such as films and software images over the internet. By
splitting up the data into chunks, a player could retrieve different chunks of
data from different sources simultaneously. This would require all sources
to have the same data (same encryption) and a format that can be easily
split up into parts. There are a lot of choices left in a peer-assisted protocol:
such as which transport to use (T'CP or UDP), how to sort peers (fastest
first), how to prioritise packets (for near-real-time streaming) and what to
do with lost packets (in a video stream, dropping a few packets is okay).
The background of the collaborative IPTV distribution network that tphion
will be using is discussed at length in [Poe08].

Providing meta data

The distribution of meta data does not share many of the restrictions of
the multimedia content. The amount of data is relatively limited and time-
constraints on the delivery are more relaxed. Confidentiality, integrity and
reliability of the data are still issues of course, but these can be solved by
conventional means of providing data on the internet. All the data that the
players need to access can be made available via secure webservers.

Secure HTTP [Res00] offers standard means of encryption and authenti-
cation (either by passwords or by X.509 certificates). And the techniques
for availability scaling by adding redundant servers or local proxies are well
known.

40

2.3. IPHION GOAL MODEL

The use of secure HT'TP is not limited to (internal) protocols used for
communication between iphion players and servers. This method can also
be used to provide meta data information directly to the customers (such
as account information) and to content providers and partners (viewing
statistics).

Providing public data

Public information that will be published to potential customers and
partners will be published via conventional means: an iphion website. As
mentioned above, keeping data available by scaling webservice solutions
is a pretty standard task nowadays and this should not present any real
difficulties.

2.3.2 Dependability

The original definition of dependability is ‘the ability to deliver service that
can justifiably be trusted’. This definition stresses the need for justification
of trust. An alternate definition provides the criterion for deciding if the
service is dependable: ‘the dependability of a system is the ability to avoid
service failures that are more frequent and more severe than is acceptable’
[ALRLO4].

Dependability encompasses the following attributes:

e availability - readiness for correct service.
e integrity - absence of improper system alterations.

e safety - absence of catastrophic consequences on the user(s) and the
environment

e reliability - continuity of correct service.

e maintainability - ability to undergo modifications and repairs.

The decomposition of dependability into these five subgoals is illustrated in
Figure 2.8. The previous chapter on Security already discussed the two
subgoals availability (in Section 2.3.1.3) and integrity (in Section 2.3.1.1).
The other dependability subgoals are described in this chapter.

41

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

confidentiality

multimedia
content
confidentiality

meta data
confidentiality
+
+
authenticate encrypt
secure
content
channel

OR
OR

A anD
encrypt N
meta data,
t OrR

cont.enc
method
cont.enc
2lgorithm, R

@ dynamlc
SSL client dynamic per client
certificates, per channel

content
integrity

validate \
content

security

T

AND

integrity

software
integrity

validate
software

A
distribute
content .

availability

+X AND

content

availability public data

availability

[AND A
meta data
availability J*

obtain
content

provide
meta data

content
delivery

Figure 2.7: Security goal model tree

2.3.2.1 Safety

It is always possible that something goes wrong with the system, either
accidentally or by malicious intent. In this case the effects for other parts

of the system should be limited.

Safety aspects don’t concentrate on

preventing bad things from happening, but on minimizing the impact when

42

2.3. IPHION GOAL MODEL

dependability

maintainability

reliability
availability

Figure 2.8: Main dependability goals

something does go wrong.

In the communication between peers in the system, corrupted messages
might cause disruption of the communication or even cause certain peers
to stop communication at all. This can be done by messages that either
terminate a session (e.g. a shutdown message), that trigger a bug in the
system (e.g. a buffer overflow) or that cause disproportional load on the
system (e.g. bad video information or cryptographic calculations), etc.

Protocol hardening

To counter these disruptions, the communication protocol should be
designed such that it keeps working even if a single node starts acting
strangely. Peers should also inspect packages superficially before spending
a lot of time processing them (check protocol version and headers before
cryptographic signature, validate signature before handling video content,
etc.). And since it’s never possible to make a perfect protocol the first time
round, it must be possible to upgrade the communication protocol later if
problems are found or if better insights in how to handle certain events
surface later. All these measures are part of the general label protocol
hardening,.

Update set-top box

It is important to keep in mind that protocol updates can only been handled
if the software can be updated. However, part of the system that will be
installed on set-top boxes, will be fixed in hardware — or at least in read-
only memory. This is required for security of the system (the secure chain
or trust should start with something that cannot be modified by others) and
for maintainability of the STB (when a remote software update goes wrong,
there should be a rescue mechanism left to return the box to a functional
state).

43

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

Choices need to be made: which parts of the system should be solidly fixed
and which parts may be modified by software updates that may provide
continued safety. This is discussed in more detail in the section about
maintainability (2.3.2.3), of which the set-top box updating mechanism
also forms an important aspect.

2.3.2.2 Reliability

Even during normal situations, conditions occur that may affect the
performance and functionality of the service. From time to time software
and hardware will need to be upgraded to prevent or fix problems. Network
glitches may occur, servers may need to be moved around when the network
grows and clients may move from one ISP to another.

If the system is reliable then the service will continue to work whenever
possible even when something unexpected happens or when routine mainte-
nance needs to be done. Of course not all interruptions may be prevented:
when a house loses power completely, the iphion player goes down and
when an ISP loses network connectivity, the clients in that network cannot
receive multimedia content. But on the server end, server can be set up
with redundancy and in the content delivery network, connections should
be able to switch over automatically to other peers when one of the peers
becomes unreachable.

Service continuity

Within the range of service continuity there is a distinction between the
different types of service: the player itself, the content delivery service and
the availability of meta data.

To guarantee that the set-top box keeps working, it should have the ability to
perform software upgrades. This means that when problems are discovered,
they can be countered or prevented with an STB update. The update
mechanism should be robust, so that it always leaves the player in a
functional state when the update is done and the downtime should be
minimal: although a reboot can not be avoided in some cases, the service
should continue as long as possible. This mechanism is described in-depth
in a later chapter.

The collaborative content delivery network is designed so that content
can be delivered reliably, in real-time by deploying a network of both iphion
servers and re-distribution by peers (other users) in the network. Whenever
connected peers stop delivery, a player will automatically search for and
switch over to other peers. This mechanism is described in [Poe08]. The

44

2.3. IPHION GOAL MODEL

iphion content delivery servers will be set up with redundancy, so that other
servers can take over when one of the machines has a problem.

For the delivery of meta data, regular web servers will be used. Privileged
data will be served via a secure (https) connection, other data via regular
http services. The methods of setting up reliable (redundant) web services
are well-known and will be deployed by iphion to facilitate service continuity
for the distribution of meta data to the wphion players.

2.3.2.3 Maintainability

Even though a lot of time is spent on planning of the infrastructure, the
hardware and the software involved, they will not be perfect at the time
of the launch. And even if it were perfect, then progressing demands
and insights or the wish for new features and the issues of scaling to a
larger deployment base would still trigger the need for regular updates and
maintenance.

If the sphion servers are set up in a reliable (redundant) way, then it
should be possible, to take one of them offline and perform maintenance
on hardware or software without affecting any of services — as these should
be taken over by other servers.

Update set-top box

Upgrading a set-top box will directly affect the service of this machine and
interrupt the user experience. Still STB upgrades must be possible, to fix
(potential) problems, add new features or improve performance. The system
software and of the protocol that is used to communicate with others may
both change over time.

The hardware itself can not be upgraded as easily. Once a box is sold, the
user will be stuck with that hardware and the only foreseen 'upgrade’ is to
replace the entire system when something should break in the hardware.
There should be operational procedures to replace broken hardware, but
hopefully it won’t happen often.

However there will be new hardware revisions and new boxes that offer
more features than what’s available on the initial release. So any software
update mechanism should be able to deal with different hardware installs
that require different software to run (device drivers and the like).

There are scenarios in which a regular software update mechanism may not
be enough to fix a set-top box: when the updating software itself will no
longer function correctly - or when the system disk will be corrupted so

45

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

badly that it no longer boots, then it will be impossible to perform the
usual software update process.

This kind of corruption could have several causes:

e A bad software update which installed new software that doesn’t work
well (in this specific hardware environment).

A (power) interruption during the software upgrade process: a half-
installed system will not work.

A user intentionally fiddling with the software on the system (e.g. by
removing the flash drive and accessing it externally).

A hacker/virus/worm that somehow managed to write to the disk with
system software.

Several software solutions could be used to tackle this problem. Of course
none of it will help if there is a problem with broken hardware; but working
around software issues should be possible.

e With network boot, the STB fetches software from a remote server
when it is switched on. This is pretty reliable (as long as the internet
connectivity works, but that is required for normal operations anyway).
However main problems with this solution are that the booting time will
be rather long — much longer than what people experience with a regular
TV — and that it will be nearly impossible to update the protocol used
for the booting procedure.

e Using a lightweight client, only a small software environment is pre-
installed on the STB which can never be updated. The software to obtain,
decode and distribute content will run on a remote server. This option is
rather unpractical in the designed environment and suffers from the same
problem that upgrading the communication protocol is near-impossible
without adaptable software on the STB.

e When (automatic) software updates are deployed, then all the
software is pre-installed on the STB anyway. But a small hard-coded
rescue environment is installed that can obtain a fresh install whenever
the software becomes corrupted. As with the network boot, this means a
part of the protocol can never be properly changed.

This last case is a compromise between running with a read-only image and
fetching a full system image on every boot. It is likely the most complicated
solution and hard to secure, but may offer a flexible and fast system if it is
done properly. The solution has little overhead as long as everything works
as it should, and things only get complicated when something goes wrong.

The regular software updating mechanism and the details of the software
rescue procedure are outlined in Chapter 4.

46

2.3. IPHION GOAL MODEL

dependability

X/ X
AND
safety
reliability
integri Iabilit A
integrity availability
A ntamabil
maintainabilit
A AND AND J
+
content .
content availability pUb!IC §§ta
integrity availability +
A AND a protocol
hardening
software
integrity meta d.a.ta N service
Y availability continuity /1
y -
* A 3
+
+

validate obtain provide
software content ublic data,

. A)
distribute provide
content /. meta data +

automatic network
delivery
network
lightweight

Q=D IRon

signatures @

Figure 2.9: Dependability goal model tree

2.3.3 Usability

Usability is the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use [ohsi98, ohsi99]:

47

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

e satisfaction - freedom from discomfort, and positive attitudes towards
the use of the product.

e efficiency - resources expended in relation to the accuracy and complete-
ness with which users achieve goals.

o effectiveness - accuracy and completeness with which users achieve
specified goals.

usability

effectiveness

satisfaction

‘ efficiency '

Figure 2.10: Main usability goals

2.3.3.1 Satisfaction

Satisfaction is a very important aspect. Only if customers and parters are
satisfied with the product and service of iphion, can the project become a
success. Therefore, it is important to get an idea of what others will expect
of the product. This of course directly relates to the user base that iphion
wants to target with its product.

To the customers iphion will be trying to sell something that can replace
their television receiver. For this purpose, the customer system should
function like existing television set extensions do (i.e. similar to a digital
cable modem or satellite decoder). This means for example that start-up
time and zap-delay should be short and that a reasonable range of channels
should be available from the start; to give results that correspond to the
existing television experience of the users.

By the content providers, iphion will be regarded as a broadcaster (cable
company or satellite provider). Content providers will want satisfied users,
they want some viewing statistics and they demand the guarantee that
their content is protected from misuse (B.2.2.1). This can be guaranteed by
either using a private network for delivery — like cable companies do - or by
content encrypting such as satellite companies use. Since we are using the
existing internet infrastructure for delivery, content encryption is the only
option for iphion.

There are several ways to do this, but it will be easiest to convince content
providers to trust an encryption system that they are already familiar with.

48

2.3. IPHION GOAL MODEL

In practice this is DVB-CSA, which is widely used for satellite television
distribution. Digital Video Broadcasting (DVB) is the general name for the
set of European standards for digital multimedia broadcasts (via air, cable
and satellite) and the Common Scrambling Algorithm (CSA) is the standard
encryption algorithm for DVB transmissions [Com96].

2.3.3.2 Efficiency

The system should be operating efficiently — at least in relation to the
resources spent from the user viewpoint. It doesn’t matter if the iphion
player uses resources such as time (of the user to operate the player), energy
(to operate the set-top box) and bandwidth (to obtain and redistribute
data), as long as this stays reasonable and delivers what the user wants: a
good way to watch television.

The main indication for efficiency to the user, is (near) real-time delivery
of the multimedia content (video and audio). As long as all the data can
be processed and delivered to the television with a short latency, the
perceived efficiency will be sufficient. phion’s challenge is to deliver this
target without spending excessive resources.

Any sensible content delivery network will ensure efficient means of
getting multimedia content to the users. The most efficient solution seems to
be multicast, however lack of support in the internet infrastructure make this
solution hard to implement [Poe08]. The ‘next best thing’ would be peer-
assisted content delivery (either via UDP or TCP). However to efficiently
distribute content via unicast only, would require a larger investment on
bandwidth on the server side, as this means the servers will have to send
full duplicates of all channel content to each individual client that is ‘tuned

?

m".

2.3.3.3 Effectiveness

Effectiveness of the system basically means that it should deliver what it
promises: in this case it means that the customer who buys an iphion set-
top box should be able to use it for watching television channels. The related
use case that satisfies this goal is display content (B.1.1.4).

2.3.4 Inter-goal contributions
After considering security, dependability and usability individually, it
should be noted that there are some inter-dependencies as well: tasks and

choices that are made to satisfy one of these goals, may affect the other goals

49

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

effectiveness

satisfaction

‘ efficiency ’

+

short
latency

customer
satisfaction

provider
satisfaction
TV

experience

usage
statistics

display
content

Figure 2.11: Usability goal model tree

as well. When these contributions are negative, they should be examined
more closely.

Content encryption

The addition content encryption is a good example of how security can affect
usability. Encrypting all the multimedia data requires additional processing

50

2.3. IPHION GOAL MODEL

power from both servers, regardless of the chosen implementation, and may
also increase the bandwidth needed to distribute all the data. This clearly
has a negative impact on the efficiency of the system, in particular the
short latency subgoal. This means that the other aspects of the system
which grant a positive contribution to the latency, that is the content
delwery network should be good enough to compensate for this, to still
offer acceptable latency.

Content encryption algorithm

As discussed in Section 2.3.3.1, there is a clear preference from the content
providers for implementing content encryption via DVB-CSA - even though
this may not be the most secure solution. This is due to the fact that
content providers are familiar with CSA: it is the standard for television
distribution via satellite broadcasts in Europe and experiences there are
generally satisfactory. Providers are reluctant to accept an unfamiliar
alternative. Since content encryption is mostly done because the content
providers demand it, ¢phion will implement the encryption algorithm they
desire.

In the graphical model this preference is indicated by a negative contribution
towards the content provider satisfaction when choosing anything other
CSA. When performing the goal analysis, we will see that the choice for AES
leads to partial denial of the satisfaction subgoal. However, this preference
may shift in the future when new standards become available.

Virtual private network

Apart from the technical issues discussed in Section 2.3.1.2, there is also
an expectancy issue concerning the use of a VPN: The phrase VPN implies
a shared network (under iphion’s control). Users might not be happy to
learn that sphion has a private network that extends to servers behind
their personal firewall. Even though the actual use of this VPN would not
technically differ from an implementation with TLS connections, and only
be used to make the wphion player work as specified, the notion of a VPN
may very well be perceived quite differently by the customers — and as such
have a negative impact on user satisfaction. This expected uneasiness is
much lower with TLS, because this is purely application-based it gives users
the impression that they have more control.

Network boot

One way of making sure that the iphion players always run an up-to-date
version of the software is by letting the boxes fetch a fresh copy of the

o1

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

software from a central server every time they boot. This is a relatively
simple solution from a security point of view. However a main disadvantage
of it is that the time needed to start up a device will increase considerably.
In fact, it would take much longer than other such devices that customers
are used to, such as the television, a cable modem, satellite decoder or
DVD player. One of the usability subgoals was to mimic the television
experience and a netboot would have a negative effect on this expectation.

Cost

We add minimise cost as a softgoal in our analysis: when alternative
options cannot be decided based on security, dependability and usability
aspects alone, the cost of each option (in hardware, bandwidth, imple-
mentation effort, patent licenses, etc.) will often be the deciding factor
that settles the choice. Most implementation tasks will have a negative
contribution towards minimising cost (-), but some choices may have a much
worse effect than others, which will be indicated with double negatives in
the overview (--). The negative contributions have been described in the
previous sections. The two main positive contributions to minimise the cost
will be more paying customers, a likely consequence of satisfied customers,
and more advertisement revenue, which will be boosted by television-like
content display.

The resulting goal model that will be used for our analysis, including all
inter-goal contributions is shown in Figure 2.12.

2.4 iphion goal analysis

Now that we have a goal graph, we will use it for our analysis. We will do
forward goal-risk analysis using the tools described in Section 2.1.3. First
we will draw the entire diagram in the Serenity tool and then we will analyse
the satisfaction of all modelled goals by using different input configurations.

For the goal analysis, there will be a few changes in the diagram with respect
to figure, presented in Section 2.3. When decomposition of different elements
leads to the same alternatives, these alternatives would be shown as a single
item in Figure 2.12; for example the implementation using pre-shared keys
would be used in the decomposition of both content encryption and meta
data encryption. This simplifies the overview, but when doing the analysis
it is important to treat these as distinct solutions: the implementation choice
for content encryption is not (necessarily) linked to the choice for meta data
encryption and the trade-off arguments should be considered separately.

For simplification the choice of an encryption algorithm for the content
encryption is not repeated three times in the overview, once for each

52

2.4. IPHION GOAL ANALYSIS

encryption method. Since the algorithm choice analysis is the same,
regardless of the chosen method, it will only be shown and discussed once.

2.4.1 Summary of alternatives

We will now consider all the alternative choices that are shown in the model
(as OR-decompositions) and give a short analysis of the available options.
For each case we hope to find a best alternative: either by automated goal
analysis via the tools, or by other arguments if our model is not conclusive.

For authentication we have a choice between using UUIDs and SSL (X.509)
client certificates. Either choice will give the same result in goal satisfaction.
And although choices elsewhere may have a further positive effect on the
SSL implementation, there is no negative effect without this.

Initially sphion planned to use unique user identification numbers (UUID)
for authentication of the iphion players (combined with a shared secret
key). The content delivery protocol was already designed to use a unique
ID (peerid) for client identification. However the cost of storing this ID
in polyfuse hardware proved too much. This was also underscored by the
automated analysis as illustrated in Figure 2.13. Once SSL/TLS became
the preferred authentication method for meta data, it was decided to put
a private X.509 key on the STB instead. The X.509 client certificate ID
number will be used as the ID in the content delivery protocol, but the
client certificate will be used for authentication; although the additional
secret key is still required as well for the content delivery protocol. This
means that copying the X.509 key from NOR is not enough to exchange
content. The authentication process is discussed further in Section 3.2.2.

For content encryption the three choices are (2.3.1.2): dynamic per
channel, dynamic per client or using pre-shared keys (PSK). Once again,
either choice may satisfy our goals. In this case, the reason to choose
dynamic encryption on a per channel basis was based on the development
costs and simplification of the security model. Per client encryption would
be more expensive to implement (the cost scales linear with the number of
customers). Using shared keys for all data would make it more important to
guarantee that the right channels only arrive with the properly authorised
users; this opens up more possibilities for interception attacks. Of course
even when using per channel encryption, channel data should still only
arrive at the correct (authorised) destination; but this is more a usability
requirement than a security requirement, since only authorised users would
be able to decode the content.

The next choice is which content encryption algorithm to use. The
choice for dynamic encryption per client (in the previous paragraph) does

53

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

not influence this choice. The two serious contesters here are AES and CSA.
AES may offer better encryption, but CSA is still acceptable as well. The
content providers have a strong preference for DVB-CSA (as explained in
2.3.1.2) and that is the deciding factor here.

For the implementation of a secure channel the choice is between a VPN
(Virtual Private Network) and SSL+PKI (a Public Key Infrastructure using
the Secure Sockets Layer). The choice for SSL has a positive effect on other
aspects of the system that could use an SSL-based solution. However, the
VPN alternative does not have negative effects on any of the security goals
either. The VPN does negatively effect the customer satisfaction, which is
clearly shown by the reasoning tool as well (Figure 2.13).

Validation of multimedia content and software updates will be done using a
digital signatures scheme: either via a Trusted Third Party or by using a
Public Key Infrastructure. Neither option causes problems for other parts
of the system and in practice the difference between those two methods
is quite small. By itself the TTP option could be a simpler solution (see
Section 2.3.1.1). But if we are going to use SSL+PKI for other parts of the
system anyway, it would make sense to use this mechanism to implement
digital signatures as well: the work to add digital signature functionality
based on a PKI when all the PKI ground work has been done, is minimal.

Considering the number of places in this system where authentication, data
validation and encryption would benefit from a SSL implementation with
a supporting public key infrastructure, this looks rather promising. I gave
a presentation at iphion on how such a public key infrastructure might be
set up and used in the system [vS09]. It was then decided to implement
the required infrastructure. Public and private keys will be issued to all
clients and servers in the system under a central certification authority.
Each key can be used to digitally sign data as well and the certificates and
signatures can be verified using the PKI. A full description of the public key
infrastructure for ¢phion is given in Chapter ?77.

In the implementation choice for the content delivery network, one
option (unicast) is clearly more expensive than the others: bandwidth usage
scales linearly with the number of clients. As for the other options, there
is no clear winner to be determined by the aspects that we consider. The
arguments that do determine the best option are largely outside the scope
of this study, but they have been covered extensively in [Poe08]. The option
that was chosen is a peer-assisted solution using UDP as transport layer.

The last choice that we consider is how to keep the software running on the
set-top box up-to-date. The three options are using automatic updates,
a light-weight client or a network boot mechanism. The light-weight client
solution make protocol hardening difficult, because the part of the protocol
that handles the initial communication between the client and its computing

54

2.4. IPHION GOAL ANALYSIS

server can never be modified. A network boot would have a negative impact
on the ‘television experience’ of the customers, as hit would cause long start-
up delays. So the best option is a system that providers for (automatic)
software updates on the STB itself. The effects of the light-weight client
and the automatic update alternatives are shown in Figure 2.13.

2.4.2 Configurations analysis

This section presents the analysis of some configurations in the goal-
analysing tools. Each configuration represents a set of choices for the alter-
natives discussed above. Although all configurations have been considered,
we only include just three possible configurations here, to illustrate the
results. Table 2.4 lists the input values for the tested configurations. In this
overview the value 1 indicates a selected alternative for the input values.
The result of the automated analysis is shown in Table 2.5 and graphically
in Figure 2.13.

The first configuration Con f; uses a light-weight client as the alternative for
maintainability of the set-top box, the other configurations use automatic
updates. Confy uses a virtual private network solution for the confidential
distribution of meta data and unique IDs (UUID) for client authentication,
while the others use the SSL solution for confidentiality and authentication.
Finally, Con f3 is the alternative that gives the best over-all results for each
goal in our system.

We conclude this section with a reflection on the configuration that gives
the best results, as shown in Figure 2.13(c). It is good to see that there are
no more red (goal denied) or orange (partially denied) boxes left. But there
are some yellow results (partially satisfied, partially denied), for which our
qualitative analysis does not give a conclusive result.

Qur analysis indicates that latency is still affected by the cost of content
encryption. Here is a trade-off between security and usability, and it had
been determined that the system really needs this security aspect. This
latency problem will be countered by the efficiency of the content delivery
network, but our general analysis cannot tell if this is good enough: the final
implementations should take care of this. It is also clear from the analysis
that many implementations have a negative effect on minimising the cost
of the system — as one would expect. Where otherwise equal options were
presented, we did choose the one that helps minimising the overall cost of
the system. A closer analysis of the costs of the iphion system is outside
the scope if this document and will be done by others.

95

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

Input values H Confi ‘ Con fo ‘ Confs ‘
authentication

UvuID 0 1

SSL client certificates 1 0 1
content encryption algorithm

CSA 1 1 1
AES

content encryption scheme

pre-shared key 0
dynamic per client 1 1 1
dynamic per channel 0

encrypt meta data

pre-shared key

dynamic per client 1 1 1
secure channel

VPN 0 1

SSL + PKI 1 0 1
digital signatures

T'TP signatures 0 1 0
SSL signatures

content delivery network

unicast 0 0 0
multicast 0 0 0
peer-assisted 1 1 1
webservers 1 1 1
update set-top box

automatic updates 0 1 1
light-weight client 1 0 0
network boot 0 0 0
update servers 1 1 1
usage statistics 1 1 1
display content 1 1 1

Table 2.4: Input configuration values
2.5 Summary

In this chapter the general requirements for the iphion system have
been elicited and analysed. The misuse case model has been used to
identify security requirements and the goal model was used to identify
the relationships between requirements — sometimes positive and sometimes
negative. As a result of this some implementation choices have been shown

56

2.5. SUMMARY

Softgoals H Confi ‘ Con fo ‘ Confs ‘
security

confidentiality S S S
integrity S S S
availability S S S
dependability

reliability S S S
safety S/D S/D S
usability

satisfaction S S/D S
efficiency S/D S/D S/D
effectiveness S S S
cost

more customers S/D S/D S
advertisement revenue S S S

Table 2.5: Goal result configuration values

to be preferred over other options. But in other cases the selection was
not determined purely by the requirements that were considered. These
choices will be made by other arguments — for example based on the ease of
implementation, overall cost or simply by informed executive decisions.

Even when a general decision has been made to go with a specific
implementation option and actually move forward to implement that, there
are still a lot of considerations and choices left open. For example the
choice to implement software updates of the set-top box by using automatic
updates, says very little about the actual mechanism that will be used to do
this. What we have shown earlier is that this choice should not affect other
parts of the system in a negative way. But to make sure that the actual
implementation will indeed be functional and secure, this aspect will need
to be investigated in much more detail.

In the next chapters we will discuss these implementations in detail and
offer a more in-depth analysis of how the infrastructure to handle these tasks
may be designed. Our analysis will focus on the security aspects — but not
disregard the other requirements — and should lead to detailed descriptions
of specific solutions that could be applied and implemented by phion.

o7

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

S i
Non-Fuctional
Requirements ooy effectiveness
+
content
content availability
multimedia integrity
content
confidentiality AND
software advertisement
meta data inte grity meta data revenue
confidentiality avallability |+
N
authenticate validate’ obtain provide
secure software content, ublic data,
Use Cases channel
provide
meta data

delivery

network
Implementation

dynamic
per channel

D z \
.

certificates

Figure 2.12: Full goal tree model
58

2.5. SUMMARY

(a) Conf1

(b) Confa

Figure 2.13: Reasoning tool results

59

CHAPTER 2. REQUIREMENTS ANALYSIS OF THE IPHION SYSTEM

(c) Confs

Figure 2.13: Goal model reasoning tool: Showing the results for the sample
configurations described in Table 2.4

60

3. Secure communications
with TLS

Based on the requirements analysis we decided to to use Secure Sockets
Layer (SSL) in combination with a Public Key Infrastructure (PKI) to
facilitate secure channels that will guarantee meta data confidentiality in
the system. In this section we describe out how SSL works and discuss how
it can be deployed in the iphion environment. First of all, it should be
noted that SSL is actually the old name and that this protocol is nowadays
known as Transport Layer Security (TLS): we will use this name in the rest
of the chapter.

We will also discuss how TLS certificates (or rather X.509 certificates) can
be used in the authentication of iphion players and servers. Authentication
is required for both meta data and multimedia content confidentiality.

The chapter first describes the background TLS communications and
authentication in general (Section 3.1) and then describes how TLS may
be deployed at iphion, both for secure authentication and confidential
communications (Section 3.2). We describe the set up of a Public Key
Infrastructure (PKI) to support the TLS infrastructure (Section 3.3), the
risks of key loss or compromise (Section 3.4) and a policy to securely create,
sign and deploy the keys (Section 3.5). We conclude this chapter with
an overview of the available software tools to handle TLS communications
(Section 3.6).

3.1 Transport Layer Security

Transport Layer Security, or TLS, is the de-facto standard for secure internet
communications [DA99]. It is the successor of SSL (Secure Sockets Layer).
TLS operates on top of TCP/IP in internet connections. A client first
starts a regular TCP connection to a server and after that it starts a TLS
handshake. From that point on, all data sent over the TCP connection
will be encrypted with a session key, so that only the client and server can

61

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

decipher it. Regular application data will be exchanged over this encrypted
communication channel.

Apart from data encryption, TLS can also handle authentication of the
communication partners via public key cryptography, in the initial hand-
shake when a connection is established. TLS can be used to authenticate
the clients, so that the server can decide which clients get access to which
resources. This protocol can also be used for two-way authentication, where
the server also authenticates itself to the client. To take full advantage of
this, all communication partners, clients and servers, should have their own
private keys and a corresponding public key. The public keys can be signed
by a trusted authority, the so-called certificate authority (CA).

In the rest of this section we describe in more detail how TLS works. First
we will look at the authentication handshake mechanism of TLS, which
includes the exchange of a session key for secure communications. Then
we will discuss how a Public Key Infrastructure may be used to ease TLS
deployment.

3.1.1 TLS authentication

Authentication via TLS communication uses public key cryptography. Each
communication partner has its own keypair, consisting of a private (secret)
key part and a corresponding public key part. Although they represent
different parts of the same keys, these parts are generally referred to as a
public and private key. In public key systems, asymmetric cryptography is
used, where data cannot be decrypted with the key that was used to encrypt
it (in contrast with symmetric cryptography). Common algorithms used for
public key cryptography are RSA [Inc02], DSA [NI09] and ECDSA [X905].

With public key cryptography, the public key may be used by anyone to
encrypt data, so that only the owner of the corresponding private key can
decipher it. The owner of the private key can also use this to create a digital
signature for any piece of data, that can be checked by others. With the
signed data and the public key, anybody can verify that the signature must
be created by the person who holds the private key.

When a TLS communication is initialised using public key cryptography,
client and server first exchange public keys. The client then generates a
session key and sends this to the server in a message that is encrypted with
the server’s public key. This session key is usually a key for symmetric
cryptography (since that is faster than asymmetric crypto). Client and
server can then exchange confidential data using this key.

Authentication of the client and server is done when sending the public key.
Along with the public key details, identity information about the sender is

62

3.1. TRANSPORT LAYER SECURITY

given as well. This can be an internet hostname or another unique identifier
for the node. In the 2phion case, each node will have a unique Peer ID that
is used for identification.

To prevent attackers from creating own keys and presenting these with
fake iphion identification, this public information (the public key and
identification details together) are signed using a digital signature from a
trusted party, the certification authority. The signed public information is
generally called the certificate. The key that is used to sign the certificates
needs to be known by both parties in advance. This signature signs both
the public key and the textual identification details of both the certificate
owner and the signature issuer. So if any bit on the certificate is changed, a
signature validation will fail and the entire certificate is considered invalid
and will never be accepted.

Checking the certificate of a communication partner alone, is not enough to
be certain that you are communication with the entity whose identification
is listed in the certificate. After all this certificate is public information
and anybody can copy it. Therefore it is important to check that the
communication partner is also in possession of the corresponding private
key. This can be done by sending an encrypted message and verifying that
the other end can decrypt and use this message. As long as all nodes in the
system keep their private keys well guarded, a communication partner can
be reasonably sure that it is indeed communicating with the node who is
in possession of the one private key and whose identity is listed on the
certificate. This way communication partners can reliably authenticate
themselves.

The full handshake that establishes a secure TLS session, is shown in
Figure 3.1 as a Message Sequence Chart [IT04]. The actors in this figure are
server s, client ¢ and certificate authority a. Nc and Ns are fresh random
values; Pk(u),Sk(u) represent the public and secret key of w; ID(u) is
the identity of u; {M}x indicates encryption (ms) or signing (mo3.47)
of message M using key K and H(M) denotes the hash value of message
M. For every signed message, the recipient should immediately check the
digital signature and abort the connection if it doesn’t match. The action
MS indicates calculation of the Master Secret from the values of PM S, Nc¢
and Ns. After mg all further communication is signed and encrypted using
keys derived from the Master Secret.

A full TLS handshake includes authentication of both communication
partners and the agreement on a fresh Master Secret key. This secret is used
to create the session keys for secure hashing (to preserve data integrity) and
encryption (to preserve data confidentiality).

63

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

msc Establishing a secure connection with TLS
server client
my Nc
ma Ns, {Pk(s)ajD(S)}Sk(a)
ms {Pk(c), ID(c)}sk(a)
my {H(m1,m2,m3)} s(c)
ms {PMS} pi(s)
[0S] [0S]
me ok
mr {data}nrs
I I

Figure 3.1: Simplified TLS handshake protocol.

3.1.2 Setup of a Public Key Infrastructure

A Public Key Infrastructure (PKI) is used to manage trust relationships
and cryptographic keys within an organisation. The PKI defines a set of
policies and procedures needed to create, manage, store, distribute, use and
revoke digital certificates. A digital certificate contains the public key of
a node, combined with the identity of that node and a signature from a
trusted Certificate Authority (CA). The corresponding private key should
be kept secret and only be in possession of the named node.

The trust model in a PKI is strictly hierarchical. Every certificate is signed
with a single trust signature from a node that is above it in the PKI
hierarchy. This can be either the Root Certificate Authority (RCA) or an
Intermediate Certificate Authority. Ultimately the chain of trust signatures
always leads up to the Root CA (which signs the certificates of the main
Intermediate CAs). The Root CA certificate itself is self-signed. Because
the path ends there, every node in the system should be aware of the public
certificate of the Root CA: this is needed to check the chain of trust for any
other certificate that’s encountered.

64

3.2. DEPLOYING TLS AT IPHION

Replacing the certificate of the Root CA may be a very troublesome
operation. It also means that all the certificates in the system that have been
issued previously can no longer be validated against the single new Root CA
certificate. Therefore, either two Root certificates must be checked; or all
old certificates that have been issued must be replaced. Although there
should be a plan to do a Root certificate roll-over when it is required, it’s
better if this situation can be avoided, by keeping the root certificate safe.
For issuing end-point certificates, an intermediate certificate could be used,
and the root certificate would only be needed when a new intermediate
certificate needs to be generated. The intermediate keys would not be used
for authentication or encryption via TLS, but only as singing keys: to sign
the authentication keys of entities in the system (see Figure 3.2).

C Root Key)

Intermediate
Signing Key

Figure 3.2: X.509 certificate hierarchical overview

3.2 Deploying TLS at iphion

At iphion TLS could be used to facilitate communication confidentiality
and the authentication of communication partners. However, TLS alone
is not enough to handle all secure communications for the system. There
are some areas where a TLS solution can not be used, either because the
system is not using TCP for communications® (for example in the rescue
loader and the content distribution), because full TLS support is not possible
due to technical limitations (e.g. in the bootloader environment that is too
restricted), or because we are not doing point-to-point communications (e.g.
in the content distribution). So before discussing how a TLS solution should
be set up, it is important to first identify where and how exactly it can be
used; and where other solutions are needed.

'However, a TLS variation, Datagram Transport Layer Security, could be used for
point-to-point UDP connections.

65

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

In regular internet use, often only the servers use a key-pair for authenti-
cation, while the clients remain anonymous (e.g. https webservers), or use
password authentication instead (e.g. secure imap servers). However for our
purpose it is better if every communication partner has its own key-pair, so
that authentication can (and must) always be done both ways via TLS.

In the following sections we will first determine the areas where TLS can be
applied in the iphion system, both to guarantee data confidentiality and to
authenticate communication partners. We will also list the locations where
TLS is not an option and other solutions will be needed. After this we
describe how exactly TLS may be deployed.

3.2.1 Communications using TLS

First we need to establish where in the communication TLS can and should
be used — and where it is not appropriate. TLS can take care of several
aspects of secure communication: authentication (of the communication
partner), confidentiality (encryption) and integrity (data validation). These
aspects are generally needed together in the system.

We focus on the communication between the iphion servers and clients (set-
top boxes). A main part of this communication consists of the distribution
of multimedia content. For this distribution itself, TLS is not a feasible
solution. This content is distributed over UDP, while TLS only works over
TCP and an important aspects of this distribution is that packets may go
missing without the need for resending them; and that it should be possible
to relay data onwards to other peers without having to encrypt it again
for this specific recipient. Furthermore, the chosen set-top box (STB) does
not have the computing power required to handle the overhead of TLS
encapsulation of the full multimedia data stream — although it will have
to handle data integrity checks and descrambling in some fashion?. Each of
these aspects disqualifies TLS as an option for content distribution.

However TLS can be used in the distribution of the private keys that will
be needed to decrypt the content data on the STB. These keys are valid
for a limited (short) period and every player that receives multimedia data
will need to have the appropriate decryption keys. The keys are issued by
the wphion token server, which authenticates all clients that connect and
issues them decryption keys for the channels they are authorised to view.

TLS can also be used for other meta data that the clients will request from
the iphion servers: the electronic program guide, account status information
etc. Communication of this meta data uses the classic client-server model:

2 An earlier design used SHA-1 message digests for the multimedia stream, but the STB
software could not keep up with that. This was later changed to MD5-HMAC.

66

3.2. DEPLOYING TLS AT IPHION

a player connects to the server from which it wants some information, client
and server each authenticate the other party, the client sends its request
and the server responds with the appropriate information. If everything
goes well, the connection can then be shut down again. For different types
of meta data information, different servers will be used.

The clients will use the same mechanisms to report operational issues to
the iphion servers (start-up notifications, problem reporting, statistical
usage information). The communication is always initiated by the client
that connects to the appropriate server; although the server response may
contain additional queries or requests for the client. The client has to initiate
communications because it may be turned on and off whenever the customer
feels like it; it may be placed behind a restrictive firewall (or even a NAT
home-router) and it may even use a new IP address every time it is switched
on.

Software updates work similarly: each client will periodically check whether
updates are available (for this specific box) and download them when
appropriate. This will also use a TLS connection; however additional
integrity checks are used in this case. To prevent hackers from installing
software on a player’s flash chip, which might disrupt the network, the
installed file system is digitally signed and a file system will only be used
when this signature can be verified. This mechanism is discussed in detail
in Chapter 4.

A special case of secure updates is triggered when an iphion player can no
longer be started up in the normal fashion — for example because the kernel
or root filesystem’s digital signature can not be verified. In that case the
player’s bootloader (which is stored in read-only memory) initiates a rescue
mechanism. First a small rescue operation environment is downloaded from
an tphion server using TFTP (that is without TLS). This environment will
then try to download and install all the data that is needed to restore the
player to a functional box, using regular software update mechanisms. This
layered approach is due to technical limitations: the boot loader must be
very small and with the chosen hardware platform this means that a TCP
stack and TLS implementation are not possible here. TFTP is a UDP-
based protocol without sliding windows (download speed depends on round-
trip times), so even with a high-bandwidth connection downloading this
image may take a while, because the round-trip time for home connections
generally isn’t very short. Therefore, the rescue image should be kept small.
The operational and security aspects of this rescue procedure are further
explained in Section 4.3.

The 2phion players only communicate with other iphion players via the
content distribution network. This is a UDP protocol, so there is no TLS-
based data transport involved and the authentication of partners cannot

67

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

use TLS either. However such communications should also be secure and
preserve the desired aspects confidentiality, integrity and availability. The
1phion content distribution protocol (iPAP) guarantees these requirements.
Players authenticate themselves using public key cryptography, with certifi-
cates issued by the token server, all data is digitally signed using HMAC
with session keys and the multimedia data is encrypted with DVB-CSA,
also using keys that are replaced frequently.

Iphion VPN

- player video=

broadcaster | p===F==== .
multimedia collaborative

network

player video=

keyserver

.
.
S
IS
S
‘Q
multimedia
.
session ke \A
S

EPG/meta data iphion TV
program guide layer —vioed™ |

ware updates

update server

rescue server —Ja® = secure channel (TLS)

-aa-t-ab = encrypted data
over insecure channel

eventlog === unencrypted data
over insecure channel
(raw video / audio data)

Figure 3.3: Client-server communications using TLS

Figure 3.3 shows an overview of the communication between the iphion
servers and iphion set-top boxes and highlights the places where TLS can
be used to secure communications as well as the other communications,
where TLS is not an option and alternatives need to be used instead.

3.2.2 Secure authentication

TLS will also be used to authenticate communications partners in the iphion
system. However, a regular TLS authentication is not enough to reliably
authenticate iphion players: their credentials are stored on the box that is
given to customers and this information may be copied to other systems.

68

3.2. DEPLOYING TLS AT IPHION

In this section we describe the threat in detail and also offer a solution to
reliably authenticate all partners in the ¢phion system.

A connection set up with TLS in the iphion system can guarantee that
you set up a secure connection with somebody in possession of a certificate
issued by the phion certificate authority and the corresponding private key.
To make this work, every node (computer) in the sphion network will need
its own private and public keypair. This includes the set-top boxes that are
sold to customers and placed in somebody’s home environment. The secret
key is installed on this system in such a way that the software can use it
without manual intervention (i.e. no passphrase protection). But when the
STB software is compromised or memory storage is accessed directly (for
example by connecting it to other hardware), the secret key might be read
out. In theory this could be used by an attacker to copy the key to other
locations and set up unauthorised (and untrusted) clones.

It is not simple to launch such an attack, since the STB will only run
software that is digitally signed by iphion, thanks to secure boot-strapping
mechanisms (Section 4.1). Moreover, the iphion servers should notice it
when multiple clients connect from different locations while using the same
credentials. Such heuristics do not offer sufficient guarantees — and it doesn’t
tell you which one is the ‘original’ sphion player. If clients using cloned keys
are detected, the key must be ‘blacklisted’ by the token server, so that it
can no longer be used to obtain tokens to access to the ¢phion network. In
that case the original box will be banned as well. At this point, manual
intervention will be needed to determine which is the original hardware
and which is a clone. The company will need a procedure to handle this
situation, for example by replacing the banned STB.

The only way to have a secure key that cannot be compromised or copied is
by having it stored (in hardware) in a location that can never be modified or
ever read out after it was written. Ideally it should not only be impossible
to access this information from software, but one shouldn't be able to
read this information with hardware tools either. If this hardware device
also supports basic cryptographic operations using this key (encryption,
decryption, signing and signature validation) then it would be possible
to use it in software without ever needing the private key in accessible
memory. The software could send data to the cryptographic hardware, tell
it to encrypt or decrypt and then read out the result.

The selected hardware platform (NXP STB 225) does include such a
cryptographic feature. It can store a key in polyfuse hardware; fuses are
blown when the key is written into a write-only register and it should then
be completely inaccessible and tamper-proof. These registers can either
store three 64-bit TDES keys or one 128-bit AES key (so only for symmetric
encryption).

69

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

Now before getting into the gory details of how such a key can be
programmed during production and later used from software, let’s work
out how we can employ this feature for secure authentication.

The main goal that we want to accomplish with the extra key is a verification
(on the server side) that the connecting client is controlled by a genuine
1phion player set-top box and not some clone (e.g. a PC). If the client can
prove that it can use the embedded secret key, which is also known to the
server, in a TLS session, then we can be reasonably sure that the software
is indeed running on iphion hardware.

To verify this, a simple challenge-response system could be used once a
TLS connection has been established. The server sends a challenge to the
client (a fresh random value), which it should encrypt and send back. To
counter man-in-the-middle attacks (should anyone manage to obtain the
copy of a valid private key), the identity of the client could be included in
this encrypted message as well. The server can then check if the message is
really encrypted by the client he is supposed to be communicating with. As
an extra check, authentication of the server can be verified in the same way,
so that the ¢phion player can be sure he is communicating directly with the
real iphion server.

This shared-secret authentication protocol is presented in Figure 3.4. The
actors are server s and client ¢ who share knowledge of a secret key K. Nc¢
and N's are fresh random values; 7 D(u) is the identity of u; { M}k indicates
encryption of message M using key K. Both partners should check if the
received random values and identities match with their expected values.

msc Key possession proof

server client

mi Ns
ma Ne,{Ns,Nc,I1D(c)}k
ms {Ns,Nc,I1D(s)} i
I I

Figure 3.4: Shared-secret authentication check

Note that even with this setup, all that the server knows is that he client
has access to a genuine iphion client. It is still possible that somebody
is running software on a PC (or even multiple PCs) that only offloads the
challenge-response check to the iphion set-top box. This is a form of man-

70

3.3. SETUP OF THE IPHION PKI

in-the-middle attack that cannot be detected by the authentication server,
but only by the client. However, the tphion server will notice when multiple
clients use the same identification certificates. Operators can then block the
use of this certificate. In Chapter 4 we will describe a mechanism to establish
client integrity. The man-in-the-middle scenario can be prevented if we can
be sure that clients run iphion software that enforce server authentication
as well.

3.3 Setup of the iphion PKI

The certificates used for TLS authentication must be signed by a trusted
(higher level) key. The set-up of a certificate signature tree is strictly
hierarchical: at the top is the Root key for iphion; below that the
intermediate key, which is used to sign the client certificates. There may be
multiple intermediate keys — even multiple levels of intermediate keys. A
question is whether more than one intermediate certificate would be needed
in our system. This section analyses the required X.509 certificates that
iphion will be using and determines the certificate hierarchy that should be
used to support this.

To determine what kind of intermediate keys are needed, we’ll make an
inventory of how the client keys will be used; how and when they are
generated; and when keys might need to be replaced (expiry, revocation).
If this leads to a clear functional distinction, then it would make sense to
have multiple intermediate certificate authorities. But if keys are created
by the same people and the same method each time, then a single signing
key will do.

Keys for the identification of clients (both public and private key parts)
will be stored on the iphion player box in a read-only NOR memory chip.
These keys need to be stored unencrypted, as they need to be accessible by
the system, without manual intervention. They could be stored encrypted
and be automatically decrypted when needed, but since this decryption key
would also be stored in the same location (at least somewhere on the box,
and not on the network), such an encryption would only obfuscate the use
and not add any real security. The ID of a client is a unique number,
that is also used as its PeerID in the content distribution protocol [Min09].
These keys should never change during the lifetime of a player, and it would
arguably be best if it would not be possible to overwrite it at all. This means
that the lifetime (expiry date) of the certificate should be no less than the
expected lifetime of the hardware as part of the iphion system.

Client keys are generated when the devices are produced. Adding the key-
pair to NOR is part of the production process. That means that the keys

71

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

are generally produced in large batches (100 or more) at once. If a client
key is compromised (e.g. used by a cloned device), it should be possible
to disallow further use. This may be done via a certificate revocation list
(CRL), or other blacklist mechanism. Only the iphion servers need to know
which client keys are banned, because clients authenticate themselves via
short-lived authorisation tokens from the token server when talking to
other clients directly.

Private keys for the identification of iphion servers will be stored on the
respective servers. These keys will be stored on standard writeable hard
disks, at least initially. For practical purposes, most of these keys may
be stored unencrypted, as it would be impractical to manually intervene
whenever a service is restarted (e.g. upon a reboot when a machine has
crashed). Better ways to store server keys (e.g. RSA hardware tokens) may
be installed later, although probably only for the most critical systems.
The ID of a server is its internet hostname — as is common with TLS
communications. These hostnames will likely include a keyword describing
the functionality of a service (token server, EPG server) and a protocol
release number. So the server that offers the electronic program guide
for clients running version 1.3, might get the internet hostname ‘epg.1-
3.iphion.net’. The use of a version number in the hostname, not only has
practical implications for legacy compatibility the protocol itself, but it also
implies that the lifetime of server certificates will be limited to the duration
of a development and release cycle.

Server keys are generated when a new server is installed; or as part of
a release cycle, when new hostnames are introduced. So these keys are
generated individually or in small batches. If a server key is compromised
(e.g. intruders obtain temporarily access to a machine), it should be possible
to disallow further use. This may be done by using a blacklist (or CRL)
that clients and servers can access via the internet (OCSP), or that is stored
on the clients. Forcing a new release (number), will also get all clients and
servers to stop accepting a server certificate with the old version number in
the hostname. Servers communicate with other servers via TLS as well as
with the iphion players.

However iphion servers may also communicate securely with other comput-
ers (clients) that are outside sphion’s control. Customers, but also content
and advertising partners, may access information from iphion that is made
available specifically to them: account details, viewing statistics etc. Most
of this information will be provided via secure websites (HTTP over TLS).
Authentication of the clients via iphion-issued certificates would not be
practical in this case. It would even be hard to get the partners to accept
1phion-issued certificates for the servers without causing confusion. This is
because browsers will loudly complain when they encounter a TLS certificate
that was signed by a company whose root certificate is not included in the

72

3.3. SETUP OF THE IPHION PKI

browser distribution. Getting ¢phion’s root certificate included here, would
be a very expensive exercise. So it is probably best to have the key pairs
for these services signed by an external company, whose root certificate is
already included in popular browsers. For the authentication of the clients
(partners), it is more practical to use passphrases generated by iphion,

rather than X.509 certificates.
Root Key

Client Server
Signing Key Signing Key

_I _I \Webserver Keys

client authentication server authentication server authentication
digital signature key agreement key agreement

Figure 3.5: iphion certificate hierarchy

Since the use of client and server keys, is indeed quite different, we will use
distinct intermediate certificate authorities to issue these certificates. This
also means that clients may check if all TLS certificates they encounter
are issued by the server signing authority. Even if a client keypair is
compromised, it could never be used to impersonate an tphion server, since
these have a distinct chain of trust. Figure 3.5 illustrates the different
certificates that will be used in the iphion system. The usage of each
certificate is listed in Table 3.1.

Key Purpose Use frequency
Root Key Sign intermediate keys Hardly ever
Server Signing Key | Sign server certificates New server install
Client Signing Key | Sign client certificates | Occasional large batch

Table 3.1: iphion intermediate certificate use

73

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

3.4 Key exposure threats and risks

The loss of private keys that are used for TLS authentication or certificate
signing are lost, may have a large impact on the iphion system. It would
allow other parties to impersonate iphion machines disrupt large parts of
the network or obtain multimedia content without authorisation.

Some keys are easier to obtain than others, but the impact on the rest of
the system is different as well. The largest impact would be loss of the root
authority key; but the easiest to obtain would be a client authentication
key, which is stored on the distributed boxes. First we will assess usage and
storage of all keys (see the overview in Table 3.2) and then we will discuss
the dangers and risks, and what steps can be taken to recover from such a
loss.

Key type Purpose Private key Public key
Iphion Root Key Only for signing in- | Must be kept off- | Stored on iphion
termediate signing | line at all times player filesystem

keys

and all servers

Client Signing Key

To sign all client
certificates

Can be kept off-
line at all times;

Stored on all iphion
servers

used whenever new
(batch of) players is
produced

Can be kept off-

Server Signing Key | To sign all server Stored on iphion

certificates (EPG, | line at all times; | player filesystem
rescue, ...) used whenever a
new server is in-
stalled
Client Keys To identify an | Stored in NOR | Stored in NOR
iphion player in | (fixed) (fixed)
TLS connections
Server Keys To identify an | Stored on the | Stored on the
iphion (TLS) | server server
server
Webserver Keys To identify an | Stored on the | Stored on the
iphion (HTTPS) | server server
webserver; used
by partners and
customers

Table 3.2: iphion key pair storage

The public certificate of the root certificate authority must be pre-installed
everywhere: this is the root for all trust chains. Although the chain of public
intermediate keys can also be sent along in a TLS handshake, parties should
have these stored locally as well and rely on their own version. The public
root key will be referenced in all secure communications. The private part of
the root key is only needed on rare occasions: whenever a new intermediate

74

3.4. KEY EXPOSURE THREATS AND RISKS

certificate authority key needs to be installed (signed). Since the number
of intermediate CAs is very limited (2) and their life-time very long, this
shouldn’t be needed for long time after the initial creation. However it
is important that the key remains accessible: with functional and secure
backups and if it is encrypted with a passphrase, this access code should
still be reproducible when it’s needed.

The intermediate keys will be needed from time to time. They are used when
new server or client certificates need to be generated. This generation and
signing can be done on a device that is not connected to the network: only
the resulting client/server keys need to be copied to the computers on which
they will be installed. The public certificate of the server signing authority
will also be installed on all clients. Clients should check if server certificates
that they encounter are indeed signed by the server certificate authority: a
client certificate could never be used in a server. Likewise, servers should
check that client certificates are signed by the client certificate authority.
It is theoretically possible to replace the keys for the intermediate CAs in
the future — however since client certificates cannot be replaced via software
updates, it is unlikely that this will ever happen. Additional intermediate
certificate authorities might be added in the future though, if and when
they are needed.

The client and server keys and certificates are only needed on the machine
where they will be used. There is no need to copy public certificates to other
machines, as it can be automatically send along when a TLS connection
is established. The communication partner can then check the certificate
signature to verify that it is a genuine iphion certificate. Client keys are
stored in hardware and cannot be replaced, but server keys can and will be
replaced. Server keys are linked to internet hostnames, which in turn relate
to a specific service and release or protocol version. When this hostname
changes (with each major release), the certificates will be replaced as well.
This limits the life-time of the keys, and thus the impact if these keys
were compromised. The impact of client key compromise is limited by the
combination with a shared secret key in hardware, which is also required in
order to do secure authentication for the iphion content delivery network
(as discussed in Section 3.2.2).

Table 3.3 gives an overview of the consequences of any key compromise.
Here we assume the loss of only a single key. The impact of a compromise
might become much worse, if it is combined with the lose of other secret
keys; such as the software signing key; or the identification secret use for
authentication in the content distribution network. Since the way these
keys are used and stored is rather different, it is unlikely that they are
compromised in the system at the same time. But it is possible that the
safe location of the secure key backups is compromised and that all keys are
lost at once. In that case the only option will be to replace all the private

75

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

Key type Threat Impact Remedy
Iphion Root Key The key may be | Servers and clients | Recall customer
compromised in | can be created | hardware: The
storage or during | that look valid | keys on all players
the brief period in | (mostly useful | and servers
which it is used. for meta-data). | will need to be
Software updates | replaced.
and content
distribution are
not affected as
these require
additional keys.
Client Signing Key | The key is com- | Valid looking | Recall customer
promised in storage | clients can be | hardware: The

or during the brief
period in which it is

created and used to
obtain confidential

keys on all players
must be replaced;

used. meta data (no | on the servers the
content). intermediate CA
certificate must be

updated.

Server Signing Key | The key is com- | Valid looking | Replace all server
promised in storage | servers can be | certificates and
or during the brief | created. Clients | issue a software
period in which itis | may be tricked | update to players
used. into divulging | to distribute the

confidential new intermediate
information. CA certificate.

Client Keys The NOR is read | Unauthorised Block the key on
out (doable for a | clients can | the server side and
reasonably able at- | get access to | replace the box.
tacker). confidential

information.
Server Keys The server in ques- | Valid looking | Issue a software up-

tion gets compro-
mised.

servers can be set
up: but only for
the specific service
and revision that a
key is linked to.

date to players.

Webserver Keys The server in ques- | Valid looking | Revoke the key
tion gets compro- | servers can be set | with the issuer.
mised. up: but only for a | Since most

specific hostname. browsers don't
use OCSP by
default, the old
key may remain
trusted.

Table 3.3: iphion key pair misuse

keys in the system.

In practice it will be rather difficult to replace the keys that are used by

76

3.4. KEY EXPOSURE THREATS AND RISKS

the iphion players for any large batch (e.g. when the client signing key
is compromised). It is technically possible to recall a player and replace
the NOR, but this can not be done via remote software updates. This
will probably mean that a new signing key will be generated and used for
new batches while the old keys phased out. How fast it would be phased
out would depend on the circumstances at the time of the compromise. The
system should be able to handle multiple intermediate certificate authorities.
If multiple intermediate CAs are temporarily required after an incident,
then this should indeed be temporarily: iphion should always strive to
completely remove use of the tainted key. After all the system is only as
secure as its weakest link: as long as a compromised key remains in use, the
system is vulnerable to misuse of this key.

The risk is not limited to leaking copies of private keys: losing access to a
private key will have a grave impact as well — especially for the keys that
can not be easily replaced, the root and intermediate CA keys. To prevent
this, copies of the important keys are needed. These copies will need to be
protected, not just with encryption, but also physically: The copies could be
stored in a safe at someone’s house, rather than lying on a desk in the office.
The problem with encryption of the important keys is that the decryption
key (or passphrase) could still be lost. Since the important keys see only
little use, this is a real risk. Also the media on which the keys are stored,
might become unusable after time. For recovery, it’s probably best to store
unencrypted versions on a reliable (non-digital) medium as well, such as a
print-out of the key on paper. Obviously this version should be well secured.

Of course the keys should also be cryptographically secure for their intended
purpuse as well. Since the boxes are supposed to ‘live’ for several years with
fixed keys, it is important to use cryptographic algorithms that are expected
to remain secure during the entire lifetime of the system. Unfortunately the
iphion players come with small MIPS CPUs, which are slower than anything
you'll find in a modern PC. Besides, public-key cryptography operations are
very expensive (for example when compared to symmetric cryptography).
Operations using keys that are more secure (using larger key lengths), will
be even more expensive. So we are looking for keys that won't be broken
by brute-force attacks for several years yet, but also keys that are not too
large to have a serious negative impact on the performance of the iphion
players.

It is hard to compare the strength of cryptographic algorithms that use
different mathematical properties. It is even harder to predict how long
an algorithm will remain secure. But the recommendations of NIST (the
US National Institute of Standards and Technology) set the standard for
the cryptographic algorithms that all US federal agencies should use to
protect their data, and these recommendations are generally followed by
others as well [BBB'06]. These recommendations assert for example that

7

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

RSA and DSA with 1024-bit keys should not be used after 2010 — but 2048-
bit keys should be fine until 2030. RSA is probably the best known, and
most widely used algorithm for public-key cryptography these days. When
creating certificates, the signing key that is used to sign other certificates
should never use weaker cryptographic algorithms than what is used by the
keys that are getting signed: Using 4096-bit client certificate keys, signed
by a 1024-bit root key makes little sense, as an successful attack on the root
key makes all the client keys ‘worthless’ as well.

3.5 Key creation, signing and usage policy

1phion will be using X.509 certificates for client-server communications via
TLS, this covers most of the client-server communications, as shown in
Figure 3.3. To secure the other client-server communications, public-key
algorithms will be used as well, but without TLS; this will be discussed
later, for the content distribution protocol in Chapter 5 and for the rescue
procedure in Chapter 4. For all secure server-server communications, apart
from the content distribution, TLS will be deployed as well.

For the client and server certificates 2048-bit RSA keys will be used. A 2048-
bit keysize is the minimal recommended secure size from 2010 according
to NIST [BBB'06]. When doing performance test on the iphion player
platform, RSA operations proved to be much faster than DSA (in signing
and verification) and even faster than ECDSA (elliptic curve crypto) in
verification as well, which will be the most common operation. ECDSA
is in fact faster in other operations, but it has also seen less scrutiny via
cryptanalysis and is used much less in real-world applications than RSA.

The public-key cryptography will be combined with symmetric cryptogra-
phy (for data encryption) and secure hashes (e.g. for digital signatures).
These should all use cryptographic protocols of similar cryptographic
strength when combined (or at least not weaker). Once again the NIST
report lists good candidates: AES-128 and SHA-256 (see Table 3.4).

bits of security | symmetric | RSA / DSA | ECDSA | digital sign. hash
80 2TDEA 1024 160-223 SHA-1¢
112 3TDEA 2048 225-255 SHA-224
128 AES-128 3072 256-383 SHA-256
192 AES-192 7680 384-511 SHA-384
256 AES-256 15360 512+ SHA-512

Weaknesses have been found in the SHA-1 algorithm: The 2006 assessment of SHA-1’s
strength against collisions is about 69 bits. In April 2009, this was reduced to 52 bits.

Table 3.4: NIST SP 800-57 key strength comparison

78

3.5. KEY CREATION, SIGNING AND USAGE POLICY

For the keys of the root and intermediate certificate authorities, the key
sizes should be at least as strong. Since these keys are expected to last even
longer and since they will not be used as intensively by the phion players
and other computers in the system, it would be a good idea to use larger key
sizes. However, it doesn’t make sense to choose extremely large numbers:
it should be enough to resist (brute force) attacks for many years to come,
but it should still offer reasonable performance and be acceptable for all
the cryptographic software that iphion plans to use. NIST recommends
not using RSA keys larger than 4096 bits, which is also the limit for some
software (although OpenSSL can handle larger keys).

The digital signatures that are made with these keys, should use a hash
algorithm that corresponds in cryptographic strength with the chosen
public key algorithm. Using a stronger hash function would only delay
computation, for no additional security and deploying a weaker hash
function would decrease security — and in the extreme case allow people
to reuse the existing signatures with their own certificates or messages. For
instance if we have a 2048-bit server key, whose certificate is signed by a
3072-bit RSA intermediate key, then this signature should use at least a
SHA-256 message digest (or comparable algorithm).

As mentioned above, a 2048-bit RSA key is the minimum recommended size
from 2010. Performance tests with the selected hardware platform indicates
that this is usable for authentication and meta data integrity, confidentiality
(but too slow for streaming multimedia integrity checks, as discussed in
Chapter 5). We will be using this algorithm for server and client keys in
the iphion system. As long as we choose the intermediate and root keys
sufficiently large, we can always add stronger keys for peers later, within
the existing system.

The root key will use the maximum recommended keysize, 4096-bit RSA.
And for the intermediate keys (client signing key and server signing key),
we go for a compromise between speed and security and select 3072-
bit keys. Note that clients (the iphion players) will be doing RSA
encryption operations using the server keys (2048-bit), signing operations
using the client keys (also 2048-bit) and only the faster signature verification
operations using intermediate key (once for each connection; 3072-bit) and
the 2phion root key (only once per application; 4096-bit).

3.5.1 Development keys

The root- and intermediate keys will only be used very rarely for normal
operations. However during development they will be used much more.
There will also be servers and clients used for testing in an environment
that is not quite as secure as the production environment.

79

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

Most importantly, in the testing environment, iphion clients and servers will
be fitted with debugging tools. These debugging tools give easy access to
confidential information that is well-guarded in the production environment
(security keys, source code, multimedia content).

Therefore we have decided to set up a full, separated, X.509 certificate
hierarchy for the development environment at iphion. This environment
will use the same types of keys and similar secure procedures for creation
and storage as the production keys. The advantage of this is that during
development everybody involved in the process gains experience that can
later be applied to the production process as well. It may even be
that procedures are improved further based on feedback gathered during
development, so that the production process works even better.

Although the development keys are ‘less secure’, they should not be used
carelessly. Following sound procedures for secure handling of keys will lead
to less problems when handling the production keys.

3.5.2 Key generation

Secure keys that are never needed on the network during normal operations
(the root and intermediate keys), should not be stored on the network during
their creation either. It would be best to have a dedicated, secure device
that generates all the keys and handles signatures (issues certificates). This
device does not need to be connected to the network, does not need to have
a hard disk even, but it does need an input device that contains the required
software and the required signing keys and an output device to store the
generated and signed public/private key pairs.

We appropriate a dedicated computer for this purpose, without hard disk
and without network interface, but with a USB storage interface, a CD
reader/writer and a printer. The CDs will contain the (encrypted) private
signing keys of the root/intermediate certificate authority, a USB stick will
contain the necessary software and the issued keys and certificates will be
written to USB storage. The printer is used to make backups of the private
keys

Since a computer with few external interfaces that is only booted for key
generation/signing will collect little real entropy® (required to generate
random keys), the USB input will always contain a file with random data
from a network server. This prevents operations from getting stalled by the
kernel, when there is not enough entropy available to generate real random

3Entropy for the pseudo-random number generator is generally collected from external
I/O, such as the timing of interrupts from the network card, a microphone, keyboard and
mouse events.

80

3.5. KEY CREATION, SIGNING AND USAGE POLICY

numbers; although such operation would continue once the operating system
gathers enough entropy input later (e.g. by typing random characters on
the keyboard). This external entropy data is merged with the entropy that
the dedicated computer has gathered from other sources, before it does any
cryptographic operations.

As explained in Section 3.3 the private Root and Intermediate keys each
serve a clearly distinct purpose and they are generally not used at the same
time. Therefore we will be storing each key on a separate device (CD-
ROM). When for instance the Client Signing Key is needed to issue client
certificates, the other keys can remain safely in secure storage.

So for each of the intermediate keys, we will need a generation process that
securely creates this CD-ROM (and any backups). For the generation of the
intermediate certificates, the root key will be needed as well. These CDs will
be created using operating system images that were created specifically for
this task. These systems are based on a Ubuntu (Linux) live system install
and will start up with a menu to execute the required tasks. The CDs
themselves will also contain bootable live systems, with menus to perform
tasks that use the specific private keys (e.g. the Client Authority CD will
contain a menu option to create a batch of iphion player keys).

The main managers of iphion will get a copy of the three certificate
authority CDs. Each copy will store the private keys encrypted on disc,
protected with a passphrase that can be entered by the person who will
guard the CD-ROM. The reason to create multiple copies is for redundancy
(availability): only one of the managers needs to be present with a CD for
a specific operation; and production won't be interrupted if one of them
goes away on vacation. Each person will be using his own passphrases, both
to make these easier to remember (it might be a while before the CD is
used and it wouldn’t be useful to add a post-it with the passphrase); and
to reduce the chance that someone would ‘loan’ their copies to someone
else or leave them in the office for general use. The CD menus will include
an option to create an additional copy of a CD (optionally with a different
passphrase).

It was decided that there will be three managers who keep personal copies
of the important keys (in secure storage). There will be different sets for
the keys used in development and the keys used in production. The CD-
ROMs have been created and distributed in May. The full key generation
procedure is detailed in Appendix C.

3.5.3 Key backups

It would be a grave problem if one of the certificate authority keys were
lost for iphion. Basically this would mean that no new certificates could be

81

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

installed, and thus no new servers or tphion player devices could be created.

If this happens, a new X.509 hierarchy (subtree) would need to be set up,
and all existing devices would have to get to know the new keys that are
involved, without discarding the old keys. The practical implications would
be almost as worse as when a key would be compromised. And the operation
might be rather expensive.

Although multiple copies of the secure keys makes it harder to keep each
copy safe (and the least protected copy is the most important), backups are
definitely required to guarantee continued operations. Since CDs might get
corrupted after time or in accidents and passphrases might be forgotten, it
is useful to keep a copy by more conventional means. A key printout on
paper (without encryption) might seem rather insecure at first, but actually
it is quite well understood how a piece of paper might be protected against
misuse (theft) and accidents (fire). Also it doesn’t suffer from technological
progress: the encrypted CDs might need to be replaced within 10 years,
because the CD technology becomes old-fashioned and is abandoned (not
just the device, but also the filesystem and the file format themselves might
change). The paper could even be stored in a bank or with a notary, as it
would hardly ever be used: only in the case that the electronic copies would
fail, is this last resort required.

Typing over multiple pages of hexadecimal characters from paper to recover
a usable electronic version is not a trivial task, with a great chance of
making mistakes. Therefore we wrote a version to let the printout include
progressing checksum values for each line and each page. This way the
location of a typo can easily be traced and fixed when the message is copied.
Next we tried to automate this process by scanning the paper and using OCR
software to recover the data. This actually produced quite good results
(especially when we reduced the character set further). Looking for better
ways to recover a large set of binary data from paper, we came up with
the idea to use 2D data matrix barcodes [idct06]. In this form we could
represent each keypair with one or more pictures rather than a very long
list of hexadecimal numbers — and the computer would do a flawless restore
when we put the image in a scanner. An example created with libdmtx
from a demo key (not used by zphion) is shown in Figure 3.5.3.

The barcodes still rely on specific software, but because of the good results
in converting it back to electronic data, we decided to create both versions: a
full textual printout of the keys (in hexadecimal characters) and a condensed
image in the form of a 2D barcode. These pieces of paper can be generated
by the CD menus and are to be stored securely in a safe, where they can
remain unless the electronic copies of our keys are lost in an incident.

82

3.5. KEY CREATION, SIGNING AND USAGE POLICY

.¥I III

!_._._... Eli
.5‘.':11!'-.-...-!"

(X

: o

n
|
|
oLy

""""'"l-"-l'..llll'l.""""

ol

r!-:

Figure 3.6: 2D barcode representing a part of an RSA private key

3.5.4 Key revocation

If a client or server will be taken offline permanently, the corresponding
certificates should be invalidated as well. The reason to take a machine
or service offline might be because it has been compromised, but it might
also be for operational reasons. In a Public Key Infrastructure certificates
may be invalidated by the authority that had signed the certificate. This
authority issues a so called Certificate Revocation List (CRL) that includes
the certificate serial numbers of all the invalidated certificates. This list and
all updates to it will by signed by the relevant certificate authority (either
client CA or server CA).

Every client and server in the system will check this list during every
TLS handshake and abort a connection if a revoked certificate is offered.

83

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

Therefore, all clients and servers must have access to an up-to-date version
of this CRL. There are basically two ways to access this information: either
by doing an online check with a central CRL server or by using local files
that are updated whenever certificates are added to this list.

The Online Certificate Status Protocol (OCSP) may be used to facilitate
real-time online certificate checks [MAM™99]. Both iphion clients and
servers could use this service to check the validity of certificates offered
by their communication partners.

The main disadvantage of an online check is that it creates a single point
of failure and an additional communication bottleneck: if this service is
unreachable, no TLS communications ill be possible in the zphion system.
The system already includes other critical services, but adding more should
not be done lightly.

The main problem with local lists is that it will be difficult to keep all
the distributed copies up-to-date. A new CRL could be included in a file
system image for the clients, or application data package for servers, but
these images are only updated with the occasional software release. Taking
(old) services offline permanently may frequently be combined with the roll-
out of a new release, but to make a CRL update possible only in combination
with a software release is needlessly restrictive.

Note that clients will not directly communicate with each other via TLS,
so the clients would only need to consult the server CRL. Servers should
check both the client and server CRL. One server in particular: the token
and key server, that grants clients tokens to participate in the collaborative
content distribution exchange (iPAP) and decryption keys to descramble
the delivered content, must always have an up-to-date list of the client
CRL. Revocation information on the other servers and clients is slightly less
critical.

Periodic updates to invalidate obsoleted certificates are considered sufficient
for now. More analysis about the possible impact and extensive testing in
development are necessary before an OCSP service may be rolled out and
deployed for the iphion system in the future.

3.6 TLS software

Support for the TLS protocol suite is available in many modern commu-
nications libraries and for nearly all programming languages. Rather than
trying to implement TLS authentication and encryption ourselves, it makes
sense to use existing tools and libraries for this job. Using existing software
is more secure —as it’s hard to get everything correct when building your own

84

3.6. TLS SOFTWARE

cryptographic solutions— and cost-efficient — because it reduces development
time.

The OpenSSL library is very popular: OpenSSL is an open source library
that has been around for quite a while, it is actively maintained and is
released under a permissive license. The core of OpenSSL has been audited
and approved by the U.S. government for use by federal agencies and
contractors, via the FIPS 140-2 validation process [NI0Ola]. The OpenSSL
toolkit also includes tools to generate X.509 keys and certificates and handle
signing, validation, encryption and revocation of such certificates. Other
cryptographic algorithms that are not used in TLS, are available in the
OpenSSL library as well.

Open source alternatives include GnuTLS, which is newer and includes
less features (e.g. no session support, no elliptic curve cryptography); and
libnss (Network Security Services) which is the successor of the original
implementation of Netscape’s SSL. Both GnuTLS and libnss are libraries
that specifically provide a TLS toolkit, while OpenSSL has evolved into
a more general cryptographic toolkit. This means that OpenSSL is also
better suited for use in the areas where TLS will not suffice — such as the
content distribution network where a Diffie-Hellman key exchange is done.
OpenSSL is also the only one with the FIPS certification, although libnss
has also entered the certification process [Pro09].

OpenSSL had the additional advantage that it is included by default in
the development environment that is used for the iphion players (Open-
Embedded Linux). Unfortunately the version that they use, is rather old
(OpenSSL 0.9.7e from 2005) and has several issues that have led us to
upgrade this to a more recent version (0.9.8g) anyway (OpenSSL 0.9.7
cannot load DER encoded certificates via the general API; and it cannot
handle SHA-2 signed certificates). For the certificate generation procedure
we even had to upgrade to OpenSSL on our server to version 1.0 (0.9.8
cannot handle dates beyond 2038 on 32-bit architectures).

Neither OpenSSL 1.0, nor the stable releases of GnuTLS and libnss, support
the latest TLS v1.2 standard that includes higher-grade cryptographic
algorithms than those used in previous TLS versions [DR08]. However it
should be no problem to update the :phion applications to a newer OpenSSL
version that does include support, when it becomes available in the future.

Another program that did not readily support SHA-2 signed certificates was
curl: an OpenSSL-based application to retrieve data from a webserver. We
have added support for this ourselves and I have submitted a patch to the
developers that will be included in the next release.

85

CHAPTER 3. SECURE COMMUNICATIONS WITH TLS

3.7 Summary

This chapter described how Transport Layer Security (TLS) may be
deployed at sphion to authenticate communication partners and achieve
confidential communications for much of the data exchanges in the system.
However, the use of TLS is limited to TCP connections and will not be used
for the exchange of multimedia content data via iphion’s content delivery
network.

We have set up a secure certificate hierarchy so that TLS communication
partners can reliably identify genuine iphion servers and clients without
the need to keep a record of all individual identification certificates. On the
iphion player devices, these certificates will be stored in read-only hardware
so that these are linked to specific hardware devices. As an additional
authentication mechanism we use hardware crypto support from the STB,
so that the private key alone is not enough to authenticate an iphion client:
this guarantees that the client keys can only be used in combination with
the wphion client hardware.

We have also designed a protocol for secure generation, storage, backup,
usage and replacement of the keys and certificates. The keys that are at
the top of our certificate hierarchy will use more expensive cryptographic
operations, be used less frequently and be stored more securely than the
keys lower in the hierarchy. The root and intermediate signing keys will
never be stored on a network-connected machine. We briefly analysed the
impact should any of the keys get lost or be compromised and we suggested
possible remedies in case this ever happens. We did not analyse the costs
resulting from a possible key compromise.

Finally we discussed the software support to implement the designed TLS
solutions. Although TLS is very standard and generally well-supported,
there are still some minor issues with our chosen approach that require
minor modifications for some standard tools.

86

4. System integrity and
secure updates

In eliciting the requirements of the :phion system, it became clear that we
will need to support software updates of iphion players (Section 2.3.2.3).
Software updates will be used to install protocol updates, new features and
security improvements. To guarantee integrity of the distribution network
and confidentiality of the multimedia content, we should make sure that
the players will only run genuine iphion software and not some modified
version.

In this chapter we will describe a method to implement this requirement
on the iphion player hardware, the NXP STB 225 model. We will also
describe a method to recover from a situation when software integrity has
been compromised. This might happen if an software update is aborted
before completion or when unauthorized modifications have been made to
the software.

An iphion player should be able to join the iphion content distribution
network and display a basic set of channels without the need for external
registration, smartcards or other keys or passwords provided by the user.
In theory, a customer should be able to buy an iphion box of the shelf in a
shop, plug it in to his internet connection and television set and be able to
watch television channels. When a player connects for the first time, it will
be automatically registered by the iphion servers.

This implies that all cryptographic keys and other security controls to get
started need to be present on the box itself and available to the software
that is running on it. As a consequence if somebody can figure out how
iphion’s software works and replace it with his own software, he will be
able to directly access the cryptographic keys and thereby the multimedia
content that is available to the player. Obviously, iphion will try to avoid
this scenario.

It is relatively easy to secure software so that it can never be modified, but
it gets harder when there is also a clear demand for automated remote-
controlled software updates. Since the user will have full control over the

87

CHAPTER 4. SYSTEM INTEGRITY AND SECURE UPDATES

player and its network environment, he might be able to point the box to
an unauthorised source for the software updates. A customer might even be
able to open the box and replace the software that is stored on the hardware
(flash memory) directly.

Apart from a mechanism to fetch and install software updates, we will also
need a mechanism to be sure that the sphion player will only run authorised
software; rather than just starting with whatever is installed. In the next
section we will discuss how system integrity may be checked and guaranteed.
In the following sections we will describe how updates can be done without
losing this integrity.

The initial sections of this chapter describe our research into the possible
options for ensuring software integrity. In the first section we first describe
the security features for software validation, that are readily available in the
set-top box hardware and standard installation. In the following section we
describe three alternative methods to secure software updates. After that
discuss how a rescue boot operation should work.

In the final section of this chapter we describe how these methods may
be applied to improve the security of the iphion set-top box. This
section includes a discussion of the additional functionality that needs to
be incorporated in the system to make this the presented implementation
work well.

4.1 Secure boot mechanism

The STB 225 includes a facility to ensure only verified code can be executed.
Secure boot ensures that only authorised software can be run on the device.
If the software in the device differs by only a single bit, the verification will
fail and the software will refuse to start. The ability to authorise software
is dependent on ownership of a private key. The corresponding public key
is then embedded in the software image itself.

Secure boot is not enabled by default and can only be enabled with
assistance of the hardware providers, as it secures the entire execution chain,
starting with the hard-coded chip that is provided by NXP. Secure boot uses
cryptography to establish a chain of trust between the software elements.
There are five such software elements in the platform:

On-chip ROM

First-stage bootloader: Aboot
Second-stage bootloader: U-Boot
Linux Kernel

Filesystem

ol W

88

4.1. SECURE BOOT MECHANISM

The on-chip ROM is hard-coded into the chip and as such cannot be
changed. This provides the root of the chain of trust. Aboot is a very small
and simple bootloader: it detects RAM and flash chip settings and it will
execute U-boot, which is stored in flash memory (NAND). The second stage
bootloader is more elaborate: U-boot can read and write flash partitions
and even has limited networking capabilities. U-boot will locate the Linux
kernel and root file system partitions. It loads the kernel into memory and
starts it with the correct arguments.

Secure boot works by ensuring that every element of the software verifies the
integrity of the following element before allowing that element to be loaded
and run. So the on-chip ROM verifies Aboot before loading and executing
it, Aboot then verifies U-Boot before that is loaded and executed and so on.
In the STB 225 software, U-Boot verifies both the Linux kernel and one or
more filesystem images.

Changes are detected based on digital message digests. The digest is
generated using the SHA-1 algorithm, which is a cryptographic hashing
function. SHA-1 creates a 160-bit representation of an arbitrary length piece
of data. Although this means cryptographic hashing functions are many-
to-one functions (i.e. multiple source data will map to the same hash),
the algorithm has the property that a single bit change in the source will
produce a very different hash. Thus it is computationally infeasible to find
another source image that will produce the same digest (and in the case
of software, even harder to find an executable source image with the same
digest).

1. Check
On-chip 2. Run "'/.-:;:l\
-
boot ROM NS

Figure 4.1: Secure boot architecture

In order to protect the digest against tampering, it is cryptographically
signed. The algorithm used by the bootloader is RSA, with a 1024-bit keys.
RSA is based on public-key cryptography, in which the signing (encryption)
key is different from the verification (decryption) key. Thus the verification
key cannot be used to recreate the signature, and so it is secure to embed
this key in the device - only the private key needs remain confidential.

Most stages can be signed using a different key if needed, although, the
kernel and file systems need to be signed using the same key since U-Boot
verifies both these stages. The primary bootloader will be signed by the
chip producer, the secondary bootloader by iphion. This is a one-time
operation as and these will never change after production. The primary

89

CHAPTER 4. SYSTEM INTEGRITY AND SECURE UPDATES

bootloader will include the public key needed to validate the signature on
the secondary bootloader. The secondary bootloader will include the key
needed to validate the system images (kernel and root filesystem).

This means that the kernel and filesystem images can be replaced after
production, as long as the new image is also signed with the same RSA
key. However, this key itself may not be changed as it is embedded in the
bootloader. U-boot will need the exact public key that corresponds with
the private key that is used to sign filesystem images: it does not support
signed certificates and can not use the hierarchical delegation of trust within
the public key infrastructure that we have set up (described in Section 3.3).

During a normal boot sequence, U-boot will perform the following steps:

1. check the U-boot header (crc32 and RSA-signature) of the kernel image
in flash and loads it into memory on success.

2. check the U-boot header (crc32 and RSA-signature) of the root filesystem
image from flash.

3. execute the kernel in memory, which will load and mount the root
filesystem image

If any of these steps fail, execution will be aborted and the installed data
images will not be used. The system will then enter the so-called rescue
mode, which is described in Section 4.3.

After researching how the secure boot mechanism of the STB 225 device
works, I gave a presentation about this topic to iphton management and
developers. After the presentation it was decided that we will be using
all the mentioned security features that are supported by the device. The
following sections will describe the options to do software updates and rescue
operations. After that we explain how all these features may be used in
practice: how to update and rescue an iphion player system using the
outlined secure boot features to assure and maintain system integrity.

4.2 Software updates

For regular software updates, we have a lot of flexibility. These updates can
be done from a normal operational environment, that is a complete Linux
system. In the following sections we consider alternative methods such as
per-application update packages and binary filesystem patches. We will also
consider methods to ensure that only software that is distributed by iphion
may be installed and executed.

90

4.2. SOFTWARE UPDATES

4.2.1 Application updates (ipkg)

The Itsy Package Management System (ipkg) is a lightweight software
package management system designed for embedded devices [WAHO06]. The
ipkg method of software updates is already used at ¢phion for the prototype
player devices. These are based on PC hardware, unlike the final iphion
players which will be set-top boxes: initially based on the NXP STB 225
platform, with a flash chip for data storage and a MIPS-based primary CPU.

ipkg is based on the package management of modern Linux distributions,
such as Debian. All the software applications are available as separate
packages and each package may be upgraded individually. The package
manager not only takes care of removing the old version and installing the
new files, but also of shutting down the applications from the package before
upgrading and restarting it afterwards. In this way applications may even
be upgraded without the need to reboot the whole system — which reduces
impact for the user. Of course, the upgrade of certain packages (such as
kernel device drivers) may still require a system reboot.

Unfortunately there are some short-comings of ipkg that became prominent
when preparing deployment for the set-top box clients.

e ipkg is not sufficiently reliable: it does not always leave the system in
a consistent state, especially when the upgrade is interrupted because of
power losses or something similar.

e ipkg would have to modify a filesystem where software is already running,
possibly causing problems with the running software.

e We will want to use all the security features that NXP implements in
the STBs chip and the security features that U-boot offers. To use these
features to their utmost extent, we need to be able to generate signatures
for everything that is not dynamic on the system. The non-dynamic parts
include the kernel and the root filesystem.

e We would like to have all STBs in exactly the same state. This can not
be guaranteed with ipkg as we have no control over where updates are
written in the filesystem partition.

4.2.2 Signed executables

For the Linux kernel we can use a signed and encrypted kernel image that is
updated only in a secure way and can be checked and validated by U-boot
every time before the kernel is loaded.

91

CHAPTER 4. SYSTEM INTEGRITY AND SECURE UPDATES

However we can not use a signed, read-only filesystem for our Linux
installation; primarily because we will want to upgrade individual packages
or files on occasion. Updating the entire filesystem for every minor change
would make updates slow and would require a full machine reboot for every
update.

These packages should be downloaded from an authenticated source over
a secure connection. However this will not make it impossible for users to
read and write to the local filesystem. After all, the enduser will have full
control over the hardware (and the network).

So ideally, the kernel should only execute files of which we can be sure
that they are distributed by us. One way to do that is by using signed
executables. When signing executables every file includes a signed checksum
that can only be generated by a private key in our possession. The checksum
of the binary (SHA-1) and the validity of the signature (RSA) should be
checked by the Linux kernel itself before the binary is executed (using a
hard-coded public key). This signature information may be included in the
ELF headers of the executables.

When signing executables, all shared libraries that are loaded should be
signed as well. Obviously tampering with a library may change the
behaviour of a program just as effectively as changing the program itself.

All Linux kernel modules that are loaded should be validated as well. A
kernel module would be able to trivially circumvent any checks that we
want to enforce in the kernel - or it could just run arbitrary code, like a
userland program might.

All scripts should be checked as well: if we ship out a command interpreter
(shell) or general language interpreter (Python, Perl), then scripts in these
languages are as much a security risk as any binary executable. Checking
the validity of a script’s checksum and signature should ideally be done by
the interpreter itself. This will probably require some custom hacks as well.

4.2.2.1 Trusted executables

There is no support for signed executables, libraries or modules in current
version of the Linux kernel. At the moment there aren’t even any kernel
functions that offer public-key cryptography (such as RSA). However several
projects have added such functionality in the past. The most promising
project is DigSig: this project has fully functional releases and is used by
others [Can05].

DigSig (GPLv2) offers a Linux kernel module that can validate all ELF
executables and shared libraries in a system just before they are executed.
The crypto functions are based on GnuPG and the signing scripts can use

92

4.2. SOFTWARE UPDATES

gpg keyrings and commands. The suite includes scripts to facilitate signing
all executables and libraries in a directory tree.

DigSig uses SHA-1 checksums and RSA-1024 (or 2048 bit) signatures.
Generally this requires a SHA-1 and RSA calculation every time a executable
is started - usually multiple operations since shared libraries are checked as
well. However some of this data may be cached in kernel memory: this
speeds up loading of unmodified files a lot. See the website for some more
performance statistics.

At the moment DigSig is only available as kernel module and has both a soft
(only warn) and hard (prevent execution) mode. To prevent any chicken-
and-egg problem, the module should probably be adapted to make it linked
directly into the kernel with a fixed (hardcoded) RSA keys. This also makes
sure that the module cannot be unloaded.

4.2.2.2 Trusted kernel modules

The second step is only using signed kernel modules. A custom kernel mod-
ule can possible influence the system worse than any userland executable.
The easiest way to prevent this is by not allowing any kernel modules.
However modern Linux installs generally to rely on modules and the STB
225 includes quite some NXP-specific modules as well

There is currently no Linux kernel-support for validating kernel modules.
However Red Hat’s Fedora distribution has been using signed kernel modules
for years (2004-2008).

Fedora-7 and -8 had this feature enabled by default (Fedora-8 is still
supported). Red Hat’s ‘modsign’ kernel patch [How07] will only warn about
insecure modules - not prevent usage; however this is probably easy enough
to change. Mid-2008 these patches from Red Hat were sent upstream for
inclusion in the general Linux kernel. However kernel maintainers didn’t see
much advantage in it and never included the feature. Newer Fedora releases
(9 and 10) no longer include the modsign patches.

Modsign uses the GnuPG cryptographic library [Koc09] with SHA-1
checksums and it assumes a hardcoded (public) RSA key in the kernel.
Performance is less of an issue here because modules are only loaded once
- generally at boot-time. Booting will be slower when many modules are
used. Like DigSig it uses additional ELF headers to store the signature
information. Scripts to sign modules are included in the patches.

93

CHAPTER 4. SYSTEM INTEGRITY AND SECURE UPDATES

4.2.2.3 Trusted scripts

There will be no general interpreters installed on the set-top box. However
there will be a general command interpreter, the /bin/sh shell. This is a
limited ash clone (by busybox) that includes job control and mathematical
functions.

The shell is required for general Linux functions (boot scripts etc.). It is
possible to modify the shell so that it can only be used to run signed scripts
and won’t run as a general command-line interpreter. However, it’s doubtful
if this is worth the effort...

4.2.3 Binary filesystem updates

Instead of signing all individual packages or executables, we can sign the
entire filesystem image with a digital signature. This will be easy to check,
even before a kernel or filesystem is loaded. If as much as a single bit differs,
then the filesystem image would be rejected. Here it doesn’t matter if this
difference occurs in a binary executable, a script or any other data on the
filesystem. This method is simpler and arguably more secure than the two
alternatives discussed previously.

An important advantage of distributing and updating identical filesystem
images is that we can guarantee that each STB is in exactly the same state.
If we know the software revision of a system, we immediately know exactly
what is installed and where in the partition everything is.

Binary filesystem updates are intended to keep the filesystem on all clients
in a consistent state. When an update is required, we will only need to
modify the filesystem blocks where changes are needed.

However, there are also some drawbacks to this alternative:

e We do not want to fetch a full filesystem for each update. Patches should
be generated that are as small as possible, to minimise the delay for users.
Not writing the entire filesystem, but only specific blocks, also lets the
flash memory live longer as the total number of block rewrites is limited.

e A reboot is required after every update. Updates are not limited to
individual packages, but may affect other applications as well, because
write actions are done in filesystem blocks. And the filesystem integrity
should be checked again by the bootloader when the update has finished.

e To prevent having to shut down all the software before on a system during
the upgrade process, we will use an initramfs (memory filesystem) on
the STB, so that the flash is available for writing while software keeps
running. It is not a major issue as most files in the initramfs will be in
use anyway on a running system and therefore loaded in memory already.

94

4.3. RESCUE BOOT PROCEDURE

This means that the memory filesystem does not waste a lot of memory
space by keeping unused files.

e Developers will need to write additional software to create, optimise
(block-based) and apply patches for the flash filesystem.

Even with these drawbacks, this still is the best alternative, both regarding
integrity guarantees and for maintainability.

4.3 Rescue boot procedure

The rescue boot procedure will overwrite the system disk images of an
iphion player device with a fresh image that is obtained from iphion via
the network. This is not the normal method to upgrade an iphion box
(described in Section 4.2), but rather is intended as a safety net in case the
regular method fails. The rescue boot procedure that is described in this
section will use the STB 225 secure boot provisions that are outlined in
Section 4.1.

The bootloader will initiate the rescue operation in one of two cases: if the
kernel or root filesystem on the machine itself are corrupted or if the rescue
procedure is manually triggered by the operator. In the iphion player design
a user can force the rescue procedure by holding down the power button for
at least 5 seconds. This feature will probably not be in the manual, but
may be suggested by the helpdesk.

A gystem image is considered corrupted if the corresponding digital
signature (stored in the file system header) no longer matches the actual
contents of a kernel or file system image. This corruption can occur when a
regular update procedure has gone wrong (for example by network problems
or a power interruption) or when the file system has been changed by
unauthorised parties: either the owner of the device or external hackers.
If a system image has been changed, the bootloader will always refuse to
boot using this image.

When the rescue boot procedure is triggered, the U-boot bootloader will
download, validate and execute a rescue image. Because of technical
limitations of the bootloader (like the lack of a TCP stack), this will only
be a small execution environment. This rescue kernel will then proceed to
download the full system images for the 1phion player. These images will be
validated as well, before writing them to disk, replacing the corrupted data.
The player will then reboot and boot the freshly installed system image.

95

CHAPTER 4. SYSTEM INTEGRITY AND SECURE UPDATES

4.4 iphion player

In this section we will discuss how the secure boot features outlined earlier
(Section 4.1) will be used in combination with software updates (Section 4.2)
and a rescue mechanism (Section 4.3) for the iphion player systems.

For the deployment of these features, several additional facilities need to be
implemented. The required features will be discussed in the second part
of this section. This include the generation and use of extra cryptographic
keys, modifications to the existing bootloader and the development of a
rescue environment (kernel and applications).

We conclude the section with a brief consideration of the legal issues that
affect the protection of the installed software. Conflicting licenses of open
source and proprietary software might lead to unwanted situations if not
handled carefully.

4.4.1 Secure boot mechanism

To facilitate a secure bootstrapping order, every boot step will need to be
validated before it is executed. Booting starts with a hardware chip that
only does self-checks, but is not externally validated during start-up. This
chip will validate the first-stage bootloader, which is also provided by the
hardware supplier (NXP). This step, like everything that follows, includes
checking the checksum of the contents and a digital signature. When this
does not match, execution will halt and the player box is essentially useless
and the player box will need to be returned.

The first-stage bootloader (Aboot) will validate the second-stage bootloader
(U-boot). Aboot includes the public key (provided by iphion) that is needed
to check the digital signature of U-boot. The second-stage bootloader will
be created and signed by iphion, in collaboration with Prodrive' and iphion
together).

The second stage bootloader will load the filesystem and Linux kernels that
are used for normal operations of the machine. These system images will be
created by iphion and therefore U-boot will need to include the relevant
iphion public keys. The private image signing key will always remain
in possession of iphion: nobody outside the company ever need access.
Obviously, this means that U-boot has to be created with the relevant keys
before it can be signed by iphion and embedded into the player device by
Prodrive.

!Prodrive is the partner company that assembles the hardware. This includes the
read-only memory that has the bootloaders.

96

4.4. IPHION PLAYER

For the decryption of a rescue image the bootloader will need an additional
cryptographic key. This will be a symmetric decryption key (AES) that is
the same on all the iphion players (of a specific generation). This key will
be embedded in the bootloader, together with the public key to validate
system images. The rescue image will be signed with the same key as the
normal system images.

The iphion player devices are produced in (large) batches. Within a batch
all devices have the same hardware specifications and will use the same
public key in the bootloader. However when a new batch is created, another
key may be used. The software update mechanism should be adapted so
that it can deal with specific images for specific batch revisions. Since the
hardware may change with each new batch as well, these specific images
should be implemented anyway. Changing the signing key also means that
the impact remains limited if a key would ever be compromised. It does
increase the complexity and the administration of the supporting systems.

4.4.1.1 Signing filesystems

Both the kernel and the application filesystem image will be signed using a
digital signature that can be validated by the bootloader. If either signature
does not match with the image contents or the public key that is known by
the bootloader, the system images will not be used and the bootloader will
start an on-line rescue procedure instead (Section 4.3).

The private key to sign system images can be kept offline. It is only needed
when a new software version is released for the iphion players. For the
signing procedure we can use the secure environment setup that is also used
for signing client and server X.509 certificates (Section 3.3).

The image signing key can be treated as an intermediate certificate, just
like the client and server certificate signing keys. However there is no need
to include this key in our PKI, as the bootloader will not be able to check
the certificate chain anyway. We extend our signing policy to include the
image signing key and a signing procedure. This procedure is completely
analogous to the certificate signing procedure. An additional CD-ROM with
the private key and the appropriate backups are included as well. The
updated procedure is explained in Appendix C.

The public key that corresponds with the private image signing key will
be included in the bootloader that is fixed on all :phion player devices.
This will be hard-coded and cannot be modified after production of the
system. However new production batches (hardware revisions) may use
other signing keys. Since system images are generally linked to hardware
revisions anyway, changing this key for future revisions shouldn’t cause any

97

CHAPTER 4. SYSTEM INTEGRITY AND SECURE UPDATES

problems. However old keys cannot be revoked while they are still used on
old devices that remain active in the iphion network.

The signed filesystem images can be stored online. They will be used in the
production of new players, they are used to create binary patches from old
revisions, and they are placed on the rescue server in case a player needs to
fetch a full fresh system image.

4.4.1.2 Applying binary updates

Given filesystem images for different software revisions, we can generate
binary patches that only included the changes between two revisions. These
patches can then be used by the binary filesystem updates mentioned above.
By only including the differences, the time required to download and apply
(write) this information is greatly reduced.

Still the differences can be quite large. To optimise this process, we try to
minimise the patch in the number of data blocks that are rewritten in the
flash partition. When applying a patch, data can only be erased and written
in full blocks: to even change a single byte, the whole block is erased and
written again. The total number of erase and write operation during the
lifetime of flash storage is limited, even though the limit is pretty large. Still
it is worth the effort to optimise the patch not by minimising the number
of bytes, but the number of blocks that need to be replaced.

Tools to create, optimise and apply these binary patches have been written
and tested at sphion. When a new software release is created, patch
files can be created to update not just from the latest version, but from
older versions as well. These patch files can be stored on the update
server update.iphion.nl, from where they may be retrieved by the update
application running on any ¢phion player system. This retrieval will use TLS
authentication and encryption (via https). The update server will keep a
log that shows which patch has been downloaded by which player. However
the server cannot be sure that a client upgrade was completed successfully,
until the next time that this client contacts the server.

4.4.2 Software updates

Different methods to distribute software updates will be deployed at
1phion. Signed filesystems with binary patches (Section 4.2.3) will be the
standard method to update software on the iphion set-top boxes. For the
iphion servers, software updates using individual signed packages for each
application (Section ?7) will be used. This is also the method that is used
on the older phion player machines, which are Intel PC-based rather than
NXP set-top boxes.

98

4.4. IPHION PLAYER

When public cryptographic keys need to be updated (added or revoked),
then these keys will also be included in the regular updates. These
updates should always be signed with trusted keys in the ¢phion Public
Key Infrastructure, so that the ‘chain of trust’ is always maintained.

4.4.3 Rescue boot procedure

The second stage bootloader providers a rather limited environment.
Usually this bootloader will determine the location of the Linux kernel and
the root file system flash partition, validate the signatures of both system
images and then boot the Linux kernel with the correct parameters. In this
case the bootloader does not do anything network-related.

The U-boot bootloader includes a hard-coded RSA public key that can be
used to check the digital signature. This digital signature in fact signs the
SHA-1 checksum of the content — this is the normal procedure with digital
signatures [NI09]. So the bootloader will do both a checksum calculation
and an RSA validation for the kernel and the rootfs system images. The
bootloader and the RSA public key are stored in read-only flash memory
(NOR) on the system.

If the rescue mode has been triggered, then U-boot will use its networking ca-
pabilities: The bootloader obtains an IP address for the client using DHCP?
and downloads a rescue image for the specific client (based on product
revision number) over TFTP from a central server, rescue.iphion.net.
The downloaded image is compressed, digitally signed and encrypted.

The bootloader does not have a TCP stack, but only a rather limited
understanding of the Internet Protocol (IP) and support for User Datagram
Protocol (UDP). This means that Transmission Control Protocol (TCP)
based protocols such as FTP and HTTP can not be used to transfer
data. TLS (Section 3.1) requires TCP-support as well, and also stronger
cryptographic capabilities, so that is not an option here either. We can use
UDP-based protocols, such as DNS (to find the IP address of the iphion
rescue server) and TFTP (to transfer data).

The Trivial File Transfer Protocol (TFTP) only requires UDP and was
specifically designed for bootstapping limited environments, [Sol92]. TFTP
is usually used for local networks only: it does not support authentication or
encryption in itself and it doesn’t handle large files and retransmissions very
efficiently. So it is rather slow and limited for our use. We can improve the
performance by using the block size option (in the original protocol revision
this is fixed at 512 bytes, but new extensions make this configurable). Tests

2A very limited implementation of DHCP, that is best described as BOOTP (RFC
951).

99

CHAPTER 4. SYSTEM INTEGRITY AND SECURE UPDATES

show that running with a 1024 has a clear positive effect on the speed.
Since the TFTP operation won't be used often, the rescue image can be
kept small, and we can add digital signatures and encryption to the data,
it will be sufficient for our purpose.

To support multiple versions of player hardware via the same TFTP server,
the file name that is requested by the client will include some information
about the client system. In the rescue image naming convention the
1phion product number (pp), generation number (gg) and hardware revision
number (rr) are encoded. The rescue image consists of a kernel and rootfs
(initramfs) concatenated back to back.

The data that is downloaded will be cryptographically signed with the same
key that is used for stored file system images. This is the only public key that
the bootloader will use. If the signature check fails, the rescue operation will
be aborted and the process will start all over again. There is no alternative
to try: if local file systems are corrupted and the rescue procedure fails in
any way, the sphion player will just keep retrying to download and install
a fresh rescue image — until it hopefully succeeds at last.

The rescue image is not just signed, but also encrypted. This prevents
attackers from simply obtaining a copy of the rescue image ‘off the wire’.
Although there is no information in this image that is considered highly
confidential, it should not be too simple for attackers to obtain the data
either. They may still find a way to read the data from the iphion player
once it has been decrypted; but that kind of attack is quite a bit harder
to achieve than simply sniffing the network. For encryption of the data,
symmetric encryption will be used with a shared (fixed) key that is stored
hard-coded in U-boot, together with the public RSA key. For encryption we
use 128bit AES, which is a reasonably good encryption method (strength
comparable to 1024bit RSA, [BBB106]) and the only algorithm natively
supported by our bootloader.

Once the rescue image has been successfully validated and decrypted, it still
needs to be decompressed before it may be used. The image is transferred
with compression in order to minimise the download delay. The given order
(validate, decrypt, decompress) is not only secure, but by checking the
signature first we can also avoid wasting computation time on corrupted
or maliciously injected data.

The unencrypted system image will be loaded into memory. The bootloader
then executes the kernel in this image from its present location. After it has
successfully initialised it will unpack an included root file system (initramfs)
and mount it as memory filesystem. If this step successfully completed the
rescue image is up and running. A graphical overview of the rescue boot
procedure is outlined in Figure 4.2.

100

4.4. IPHION PLAYER

In the rescue environment the firmware download application will be started
after the normal boot operations. This application then downloads the real
kernel and rootfs image from one of iphion’s servers over a secure (TLS)
connection and writes them to flash. Since we now use TLS authentication
as well, this may even be a image that is crafted specifically for this box.
After installation, the system will reboot and execute the newly installed
system. The actions of the normal secure boot sequence will then be
performed (Section 4.1).

Start U- boot

Rescue
Rescue button check
Normal ﬁ
Fa|I
< Validate kernel image - Rescue procedure
Ok
Fail
Validate ramfs image

Ok

obtain ip, gw, dns server via dhcp
resolve ‘rescue.iphion.nl’ via dns
fetch rescue image via tftp
validate rescue image
decrypt rescue image
uncompress rescue image
load rescue kernel

| Load kernel image I‘

\ < Boot Rescue Env._>

Figure 4.2: Rescue boot procedure

When the bootloader downloads a rescue image, there is no authentication
of the communication partners: neither of the client nor of the server.
This leaves the protocol open to man-in-the-middle and downgrade attacks.
Should sphion ever release a (signed) rescue image with a serious security
vulnerability, then users can keep a copy of that image and boot it at any
later time to exploit this vulnerability. Users can not use modified rescue
images, because the cryptographic signature is checked by the bootloader.
As the rescue image is a rather simple environment that fetches the full-
featured filesystems for the player (using two-way authentication), it should
be possible to keep this rescue image secure. Adding authentication features
requires considerable changes to the bootloader, which might introduce
other problems in this critical part of the system. Therefore, it was decided

101

CHAPTER 4. SYSTEM INTEGRITY AND SECURE UPDATES

not to do this in the initial version (see also Section 4.4.5 about other
bootloader modifications).

4.4.4 Cryptographic keys

Several cryptographic keys are added to the system to validate and protect
the operations described in the previous sections. The staged booting steps
use public key cryptography to validate each following step before execution.
The key that is used to sign the second-stage bootloader (U-boot) and
the key that signs the filesystem images will be provided and protected
by tphton. The corresponding public keys are stored (fixed) on the player
device (in read-only flash). And all software that is installed must be on a
filesystem secured by the image signing key.

Another key provided by iphion is used for the encryption of rescue images
that are distributed over an unprotected channel (via TFTP). This is a
shared symmetric key (AES) that is stored on the box, also in the read-
only flash chip. This key does not really provide confidentiality, but merely
obfuscates the transported data. Both the key and the decrypted image can
be read from the player device by a determined attacker.

The U-boot signing key will not be used for anything else. The correspond-
ing key is stored in the Aboot bootloader and only used there. The image
signing and the rescue image encryption keys will be stored in the U-boot
bootloader. U-boot is also the only part of the system that needs to access
these keys. These keys can be the same for all players using the same
hardware, which is very convenient for mass production.

The bootloader versions that are provided by NXP for this system already
includes provisions to include these keys. For digital signatures a 1024-bit
RSA key will be used, for encryption and decryption a 128-bit AES key.
The public part of the RSA key will be included in the bootloader, the
private part is used to digitally sign system images. The AES key will be
used both for encryption (when rescue images are created) and decryption
(by the bootloader). We can just enable these features in U-boot and don'’t
need to change any code for it ourselves. We do need a protocol to securely
generate and store these keys and build a system image digitally signed with
these keys.

We extend the secure TLS key generation process (Section 3.5) with
additional options to generate these two keys on a secure computer as well.
These keys are not directly related to the public key infrastructure and they
will be stored on a separate device (CD-ROM). Extra menu options are
added to create both the RSA and AES key, write these to a CD and create
backups. For regular use a menu option is added to sign rescue file system

102

4.4. IPHION PLAYER

images in the appropriate format that the bootloader will understand. The
full key creation and storage procedure is described in Appendix C.

The AES key that is used by the bootloader to decrypt rescue file images
is very different from the AES key that is stored securely in chip hardware
and used for improved authentication of the iphion players (??). The key
stored in U-boot will only be used by the bootloader and is not considered
quite as secure.

Both keys in the bootloader may safely be replaced by other keys in future
hardware revisions. They are only used to check file system images and
these images will always be linked to specific hardware revisions anyway.
But once player devices are produced with specific keys, these cannot be
replaced: the keys are stored in the bootloader which is located in read-only
flash memory.

4.4.5 Bootloader modifications

Even though we mostly use functionality that is already present in the NXP
version of the U-boot bootloader, some modifications are still required to
use the secure boot and rescue scenarios described in the previous sections.
We try to minimise the necessary modification, to keep our system more
standard (thus better supported) and minimise the chance of breaking
something critical in the bootloader.

Four custom features are still considered necessary:

e Add a simple DNS client (to resolve rescue.iphion.nl)
e Set TFTP packet size option to something larger than 512 bytes
e Include custom RSA and AES keys

e Add a static picture to inform the user while downloading the rescue
images

Luckily, for the DNS implementation a well-tested patch has already been
created by a third party and adding the TFTP blocksize option is rather
trivial. The inclusion of cryptographic keys and a picture is not really a
modification, as this is supported by the standard image. However these
are hardcoded and inclusion means that files need to be changed and the
bootloader recompiled.

The modifications to the bootloader will be coordinated between iphion and
Prodrive, the company that supplies the assembled hardware (including the
bootloader). The U-boot installation itself will be digitally signed as well,

103

CHAPTER 4. SYSTEM INTEGRITY AND SECURE UPDATES

with a key that is included in the primary bootloader. If the bootloader
somehow gets corrupted later, it will not be loaded by the device and the
box is essentially ‘bricked’ and will need to be returned physically. This
bootloader signing is done by iphion and the corresponding public key will
be incorporated in the primary bootloader by the chip manufacturer, NXP.
The keys that are stored in the primary and secondary bootloaders are
fully under the control of sphzon: no other company will get access to the
corresponding private keys.

4.4.6 Rescue image features

Once a rescue image has been loaded on an zphion player system, this rescue
environment will perform the steps necessary to return the system into a
functional state. It will download and restore any corrupted file system
images and will reboot the system when everything is installed.

The rescue image should include at least the following features:

1. Authenticate with an iphion server (using on-box X.509 certificates)
2. Download kernel and file system images over secure link (e.g. https)

3. Write the digitally signed kernel and filesystem image image to flash
(NAND)

4. Reboot

The rescue system can actually do a bit more. This is a fully functional
system environment, which means that it can use all the device drivers and
can play audio and video. This should be used to inform the user about the
progress of the rescue operation (download, validate, install).

The private keys that are used to sign the images (corresponding with the
public keys available in the bootloader and in the rescue image) should not
be kept on a system that is online in the network. All the images can be
signed offline when they are produced, and before they are uploaded to the
rescue server.

4.4.7 Legal issues

There is also a legal threat to the software security of the set-top box. While
many providers of software libraries and hardware chips alike are adamant
that their work should remain untouched and confidential, open source
software suppliers frequently insist that their work (and all derived works)

104

4.4. IPHION PLAYER

must remain open and accessible to everybody. With a single supplier this
apparent conflict of interests would be no problem. However, iphion would
like to use both open source and proprietary software libraries in its system;
along with a lot of software that they developed themselves. This can only
work if the software licenses are compatible. Some of the STB software and
hardware is also protected by patents, this means that there are no real
alternative implementations or licenses available.

A popular open source license, the GPLv3 insists that when their software
is distributed (for example installed on a set-top box), it must still be
possible for the customers to obtain a copy of the source of this code (and
any derived works) and actually let users replace the installed software on
the set-top box, with their own code [FSF07]. In practice this means that
iphton would either have to give up on filesystem signatures, of effectively
publicise the signing key. Such a modified machine might compromise the
functionality of the sphion network and it might leak information that must
remain confidential. This is basically a legal problem, and there is no real
technical solution. To safeguard integrity and confidentiality of the system,
the licenses of all the software (and any hardware as well) that is used
should be considered carefully and it must not be used if it is deemed
a threat. For these reasons, zphion has chosen to avoid GPLv3-licensed
software completely in the code base of its set-top boxes.

Some other open source licenses stipulate that the source of any derived
work must also be open source. This also needs to be handled with care.
There is no problem with opening up some parts of the system that are
written by iphion; but this is not an option for other parts. Especially
parts by others where licenses forbid publishing and the parts that are
considered very important (‘trade secrets’) or that become an easy target
for attacks when published (although there should be no such code in the
iphton system). This license issue may be avoided by integrating parts
of the software system in ways that does not create a derived work, but
keeps them as stand-alone parts. It is something to keep in mind during
development though.

4.4.8 Summary

In this chapter we described a secure mechanism to boot and update
software on the iphion player devices. This mechanism assures integrity
of the software that gets installed and thereby maintains confidentiality
of the authentication key that is embedded in the iphion player hardware.
Without this key parties cannot join the iphion content distribution network
and they will not receive any decryption keys needed to descramble the
distributed multimedia content.

105

CHAPTER 4. SYSTEM INTEGRITY AND SECURE UPDATES

Apart from regular software updates, we also worked out a secure mechanism
to restore a box to a functional state when the software on it becomes
corrupted (either accidentally or by tampering with it). This makes the
software updating system more robust prevents boxes from getting unusable
(‘bricked’) too easily.

To facilitate these procedures we introduced additional cryptographic keys
that will be used during the booting and updating operations. The
previously described key generation and management procedures have been
extended to include provisions for these keys as well (Appendix C).

The outlined mechanism requires some additional software: the bootloader
will need some minor modifications (Section 4.4.5), applications to create
and install software updates need to be created (Section 4.4.1.2) and a
system to perform a full rescue operation for the iphion player is required as
well (Section 4.4.6). This software has now been created by the development
team at iphion.

The added software integrity checks do not guarantee that the iphion
players will only run validated iphion software. The filesystem signatures
are only checked at boot-time. An attacker might manages to hack into
the player while the system is running, by exploiting bugs in the installed
software. He may then install and run his own software. This may continue
unnoticed until the next reboot. If additional software has been installed on
the filesystem, it will be removed with a rescue procedure when the player
restarts. But once a bug has been found, it would be trivial to exploit this
again after each restart.

106

5. Content distribution

As we have seen in Chapter 2, content availability and content confidentiality
are important aspects of the system requirements. Streaming high quality
multimedia content to many customers requires fast and dependable distri-
bution of a lot of data. Keeping this data protected against unauthorized
use implies encryption during transport and proper authentication of those
who will be allowed to decrypt and use this information (Section 2.3.1.2).

The iphion content delivery network is responsible for the timely delivery of
multimedia data to all clients in the network. The network consists of iphion
content servers that transmit and relay traffic and all ¢phion clients that
receive and optionally forward traffic to other clients. Data is distributed
in a collaborative (peer-to-peer like) fashion, rather than sent via unicast
streams from the servers to all the clients.

In this chapter we will take a closer look at the communications protocol
that is used in the content delivery network. In the first section, we briefly
describe the use of these communications. In the following three sections
we describe how security aspects are handled in this protocol: We focus on
authentication, integrity and confidentiality respectively.

5.1 Communication streams

The content delivery network strives to deliver continuous multimedia
streams to a lot of clients in a very short time. The multimedia data is
divided into separate channels, like regular television channels. All users on
the same channel will receive the same content. For each channel there is
one central streaming server that injects the data into the network. This
broadcaster will only send the data to dedicated iphion servers (repeaters).
These repeaters will be placed at strategic locations in the iphion service
network (e.g. at an internet access provider). The repeaters will forward
the data to the clients (zphion players).

To speed up content delivery and avoid congestion, data will be split up
into packets which may be delivered to the user via different paths. These

107

CHAPTER 5. CONTENT DISTRIBUTION

repeater 1 repeater 2
client 1 client 2 ~ client 3
client 4 ~ client b

Figure 5.1: A simple iPAP network diagram

packets are the standard units of an MPEG-2 Transport Stream (MPEG-
TS) [oapmhi00]. The packets are delivered via a peer-assisted protocol: All
clients may forward received packets to other local clients as well, rather
than all of them fetching the same content from a remote iphion server.
So a client may receive packets for a single stream from different sources
(repeaters or other clients). Figure 5.1 shows an example of the content
data streams in a part of the network.

All multimedia data may be forwarded unmodified to all clients: there is no
client-specific data in the content itself. And although the protocol strives
to deliver all the data to all the clients (with retransmits via the same or
alternative routes where necessary), it may happen that a client doesn’t
receive all the data in time. In this case the client will display what it
has and may need to skip audio or video frames when there are bits of
data missing. Packets may also be received out-of-order, in which case they
will be reordered by the recipient. This distribution network is dynamic,
especially at the client end: players may be turned off or change to another
channel at any time.

When a client wants to start fetching content, it will first need to find
out how to contact iphion servers that relay data streams for the selected
channel. Standard channel list information is available from a central iphion
server, the ‘profile server’. This list includes information about the iphion
repeaters offering channel streams. Typically a client will retrieve this list
via TLS (https) right after start-up. The channel names from this list will

108

5.2. AUTHENTICATION

be presented to the user who may then select a channel to watch.

When a channel has been selected, the client will contact one of the iphion
relay servers listed for that channel. In response to a channel join message,
the relay server will present the client with a selection of active peering
partners from which it may obtain the channel’s multimedia stream. It is
up to the client to contact the peers (these can be either repeaters and other
clients) and query them for the actual content. The client may later query
the relay server again to obtain an updated list of possible peers.

The iphion Peer Assisted Protocol (iPAP) is the UDP-based protocol that
is used for all the control and data messages related to the actual content
exchange [Min09]. The use of UDP implies that all communications are
packet based, rather than stream based like TCP. UDP messages have less
overhead than TCP, but UDP does not include automatic message integrity
checking, packet retransmits and data ordering. All communications
between clients and relay servers and between clients themselves use iPAP
messages over UDP. To maintain a functional network the source and the
integrity of all these messages should be verifiable. Fake control messages
might disrupt the content delivery protocol that is highly dependant on
collaboration among peers.

Multimedia content should only be exchanged between clients that are
authorised to handle (receive) the multimedia stream of a specific channel.
However, in addition to the authentication controls in the iPAP protocol,
the content will also be encrypted. This means that attackers intercepting
some of the content during transmission will not be able to use it. The
content won’t even be stored in plain format on the sphion player: it will be
decrypted using hardware features right before it is decoded and displayed.
This makes it hard, even for an iphion customer, to obtain the data in a
re-usable format. The keys that are required for content decryption will be
distributed out-of-band, i.e. not via the collaborative iPAP network.

5.2 Authentication

When a client has selected a specific channel, it may not contact the
relevant repeater directly. It first needs to contact a central authentication
server that will check whether this client is authorised to join the selected
channel. If the server is satisfied with the client’s credentials, it will grant
the client a temporarily authentication token that it need to present in all
its communications with repeaters and other clients.

The authentication server is called the zphion Tokens and Key Server
(iTKP). Communication with this server is not done via iPAP, but via
a direct TLS link between client and server. Apart from the regular TLS

109

CHAPTER 5. CONTENT DISTRIBUTION

authentication, the extended authentication using the secret STB-embedded
key (Section 3.2.2) will always be used in this registration step as well.

The iTKP server will need to perform the same AES secret key operation
as the STB in order to verify the challenge-response authentication. The
server could use an hardware device that can perform AES operation without
disclosing the secret key to the software; just like the clients do. We could
even use a dedicated STB platform as a backend for this, or if that is not
fast enough, another hardware AES device (e.g. PCI or USB based). In this
way, even if the iTKP server gets compromised, an attacker would only have
temporary access to AES operations, but wouldn't be able to steal this key
and use it to ‘clone’ an iphion player machine in software. The same holds
true for the STB clients: As long as an attacker has access to the device (via
a backdoor or other attack), he can participate in the protocol by using the
STB’s AES operations for his own purposes, even without knowing the key.

The iTKP server will use a central database to look up the channel access
rights of each client. It will also check if a client has been administratively
blocked (temporarily or permanent; for whatever reason). If the iTKP server
does not grant access, then it will not be possible for the client to join
the requested channel and it will not be able to take part in any content
exchange.

If the client is authorised, it will receive a temporarily authorisation token
that is signed by the iTKP server and that is valid only for this client
and a specific channel group. The token will be accepted by all iphion
repeaters and other clients who also have content for the listed channel
group. Client tokens will not be accepted by the broadcaster though: only
iphion repeaters may connect directly with a broadcaster. Whenever this
token expires or the client wishes to change to a channel that is not included
in the selected group, the client needs to reconnect with the iTKP server
and go through the authentication procedure once again.

Figure 5.2 shows a graphical overview of the iTKP authentication and
token request. First the standard and extended TLS authentication steps
are preformed: after each step both client and server validate each others
credentials. Then the client sends a request to indicate it wants to join
a specific channel. The request includes the client peer identifier 7D(c),
a client’s temporary public key PK(c), and the channel group identifier
chan. These three items will also be included in the token, together with an
expiration time stamp expiry. This token is signed by the iTKP server. In
the following sections we will extend this exchange further with additional
information from the server, such as the temporary content decryption keys
(Section 5.4).

The expiry time of a token will be relatively short, initially this will be set at
10 minutes for both players and repeaters. But this value may be changed

110

5.3. INTEGRITY

msc iTKP exchange

client server

TLS authentication

extended authentication

ID(c), PK(c),chan

{ID(c), PK (c), chan, expiry} s (s)

additional information

Figure 5.2: iphion Token and Key Protocol

in the future as 1phion gains experience with this system. The token expiry
should not be extended because the iTKP server cannot handle the traffic:
the correct solution for that would be to upgrade the hardware or add more
servers. Tokens are only used for the authentication of clients and repeaters
in the iPAP network.

To make sure that the expiry timestamps work as designed, all peers
in the network should have synchronised clocks. All servers and clients
will be running the Network Time Protocol (NTP) to keep their system
clocks synchronised. iphion will be running its own NTP servers, so that
synchronisation will not depend on external servers and networks. It is more
important that all peers keep the same time, than that this time exactly
matches Coordinated Universal Time (UTC).

5.3 Integrity

Validation of message integrity and its original source is important in the
content distribution protocol (iPAP). If one can feed clients or repeaters
misinformation about what other peers are offering or requesting, then they
will start sending the wrong data to the wrong peers. It is important that
both repeaters and clients only act upon messages that are genuine and

111

CHAPTER 5. CONTENT DISTRIBUTION

discard fake or outdated data. Invalid messages should be reported to a
central logging server (‘eventlogger’).

To preserve the integrity of messages between peers we use keyed-Hash
Message Authentication Codes (HMAC) [KBC97]. The HMAC of a message
is calculated from a cryptographic hash function of the data and a secret
key that is only know to the two communication partners. HMACs use
symmetric cryptography which is much faster than the asymmetric (public
key) cryptography that is generally used for digital signatures. Since the
processing power of the set-top boxes is rather limited and there is a lot of
data to be exchanged for multimedia streaming, this reduced overhead is
very welcome.

This leaves the question of how to securely establish a temporary shared
key between two peers that is needed to use HMAC. We accomplish this
using the Diffie-Hellman (DH) key agreement protocol [Res99]. This
enables two communication partners to agree on a fresh secret key, without
ever having to send this key over the network.

For speed and simplicity, the public DH parameters will be pre-generated
by the iTKP server and are send along with a successful client registration.
The DH input values that are determined by the peers with need to be
exchanged via an initial message that allows data and source validation, but
does not use an HMAC itself. Since this is only one message, we will use a
more expensive public key-based digital signature here: the peer signs this
initial message with its own private key.

The corresponding public key could be sent along in this message as well.
Rather than using the ‘hard-coded’ X.509 certificates that are used in TLS
communications, we will be using distinct key pairs here. This has a couple
of advantages: it allows us to use temporary client keys that can be replaced
periodically; this lets us use smaller keysizes (for faster operations) and we
don’t need to send full X.509 certificates. Initially we plan to use 1024-bit
RSA keys for this operation. Such keys are large enough to be secure and
yet small enough to work well on the set-top boxes. Since these keys are
not hard-coded like the box identifiers, but dynamically generated, it will
be easy to replace these keys with others (larger key sizes) later.

The client’s public key should be signed by a trusted authority. In this case
that will be the iTKP server. The client public key will be presented to
this server during registration and the full public key will be included in
the authentication token that is generated and signed by the iTKP server.
When a client presents this token in its signed communication with a new
peer, the peer can match the signature of this message with the public key
in the token and the signature on the token with the public key of the iTKP
server. Every peer will already know the public key of the iTKP server from
its earlier contact with this server. This key wzll be a part of our established

112

5.3. INTEGRITY

X.509 certificate hierarchy. The public certificate of the iTKP server will be
signed by iphion’s server signing authority.

Note that although all information in the initial crypto set-up message
between two peers is public, it cannot be re-used in later replay attacks.
The public values for the DH key exchange correspond with private values
that are only known by the identified peers. A third party listening in
would not be able to calculate the secret key that will be used in HMAC
generation [Res99]. Therefore, an attacker cannot use this information to
later inject fake messages: Because the HMACs would be incorrect, the
injected messages would still be ignored.

Once an HMAC key has been securely established by two peers, all further
communications between these peers will use messages that include a keyed
hash of this message (the HMAC). The other party will verify this HMAC
when it receive a message and must ignore the message if the HMAC does
not match the content, or if the used key has expired. The established key
expires once the validation of the token that was used to establish it expires.
At that point a fresh DH key agreement setup is required.

The HMAC is calculated from both the agreed key and the message digest
of the data. For the earlier PC-based prototypes, tphion used the SHA-1
message digest algorithm. However this proved to be too expensive for the
set-top boxes: they could not process the incoming packets fast enough.
Therefore, iphion will be using the M D5 message digest algorithm [Riv92]
on the first generation set-top boxes. MDS5 is an algorithm that can be
executed fast enough by the STB and although it has some known issues
with pre-image resilience, there are no known attacks against use in HMAC
operations [SLdWO08]. TLS uses both these algorithms as well: each TLS
message includes either a MD5-HMAC or SHA1-HMAC for message integrity
checks [DA99]. If MD5 later proves no longer to be sufficient for this
application, then the protocol can be changed via a software update on
both clients and servers, replacing MD5-HMAC with something better.

The Diffie-Hellman key exchange between peers and the use of MD5-HMAC
for message integrity enables clients to verify that a message has been sent
by a specific peer and was delivered intact. It makes data injection and
modification from untrusted sources impossible. However, it does not tell
us anything about the original source, when a message gets relayed — this
source being the broadcaster, in the case of multimedia content data. A
compromised client might inject its own data and its peers would not be
able to tell. A rogue peer could theoretically even scramble injected data
using the active content keys; or descramble the original content and forward
it without encryption. Of course, the mismatch with content from other
peers will be noticed quickly. And once a rogue peer is detected, it will
immediately get banned and won’t receive any more communication tokens.

113

CHAPTER 5. CONTENT DISTRIBUTION

Still, it would be better if a signature from the original source were included
in the data, so that sphion players could recognize and automatically reject
injected multimedia content.

5.4 Confidentiality

The control messages that are exchanged in the iPAP protocol are not
considered confidential. However the multimedia content that is distributed
in MPEG-TS blocks via iPAP should remain confidential. The multimedia
data should only be made available to authorized users. Earlier in
Section 5.2 we established how such users may be authenticated.

All nodes in the content delivery network will trust the temporary autho-
rization tokens and exchange data with authenticated peers. However it
remains possible that attackers intercept this data (either in-traffic or at a
set-top box) and forward it to an unauthorized computer. To make sure
that this is not enough, the content itself will be encrypted as well.

In Section 2.3.1.2 we considered alternative implementations for content
encryption and later decided to use the Common Scrambling Algorithm
(CSA) for data encryption (Section 2.4.1). The chosen iphion player devices
have hardware support to decrypt CSA scrambling. This means the feature
can be implemented with manageable overhead.

The distinction between scrambling and encryption is not very important
here and we will use both terms to refer to the same operation. Nowadays,
‘scrambling’ usually refers to operations on analog signals rather than digital
data, with digital audio and video thrown in for historical reasons. However
some properties of CSA scrambling are relevant: most of the meta data
in the MPEG-TS stream is not encrypted (stream id, sequence numbers,
flags, etc.); all data blocks will be encrypted and decrypted independent of
each other; and the encrypted data has exactly same size as the decrypted
version.

One of the arguments against CSA was that it was not believed to be as
strong cryptographically as other algorithms, such as AES. If we are going
to deploy this, it is important to still rotate the keys frequently. To facilitate
key rotation, messages encrypted with CSA include a key indicator bit: This
signifies that either the ‘odd’ or the ‘even’ key is used. This flag toggles
whenever the key is changed. The iphion players should know in advance
what the next ‘even’ or ‘odd’ key will be that they should be using.

When DVB-CSA is used for satellite broadcasts, then it is customary to
generate the key from two input sources (key parts): one part that is kept
for longer periods (say, a month) and distributed out-of-band (this can be on

114

5.5. SUMMARY

a physical smartcard sent by the post) and a part that rotates very frequently
(for instance every 10 seconds) and is distributed in-band (included in the
data stream). This means that if the key and its components are discovered
at any point, then an attacker will be able to decipher the content stream
for the duration of that month, because all the short-time key updates will
be available to him as well. However, because only a small amount of data
is encrypted using the same key, it is still hard to launch a successful attack.

This does not apply to our situation: because we are not limited to a single
data channel, we can use unrelated key-updates and distribute them out-of-
band via secure (online) channels to the player. There is no need to include
any keys in the data stream itself. An advantage of this is that it allows us
to use longer-lived keys: for example keys expiring in minutes rather than
seconds. Although there are currently no known (documented) attacks to
break CSA encryption, there is also little public cryptanalysis available on
the algorithm. We will be keeping the key-rotation as a precaution.

Keys will be issued to the clients by the 2phion Token and Key Protocol
server (iTKP). Initially key rotation will be done with the same frequency
as authentication token expiries (every 10 minutes). Although the protocol
does not rely on these two to be related, it will be convenient if clients
only need to contact the server once every 10 minutes to renew both
token and key. The authentication mechanism used by iTKP for issuing
tokens is the same as for issuing keys: TLS authentication combined with
a challenge-response check using the unreadable hardware encryption key
(Section 3.2.2).

The keys themselves will not be created by the iTKP server, but by
a dedicated secure service, the keymaster. The keymaster periodically
generates new CSA keys for each channel (64-bit random numbers!). The
keymaster forwards these keys via secure channels to the scrambler and
the iTKP server. The per-channel scrambler performs the actual DVB-CSA
encryption. This is done before data is send to the channel broadcaster
and distributed via iPAP. Figure 5.3 illustrates the distribution flow of
the generated keys and authentication tokens in the i¢phion network. This
simplified overview does not show the token exchange between peers in the
iPAP network nor the complex collaborative content stream exchanges.

5.5 Summary

Multimedia content confidentiality is one of the main requirements from
the content suppliers who will use the ¢phion network. The content should

! Part of the 64-bit CSA key is used as checksum and may be derived from the message:
only 48 bits are truly unknown

115

CHAPTER 5. CONTENT DISTRIBUTION

[stream source]

ppmc e RS

—> Content Stream
~~~»  Hncrypted Content Stream

- — Raw Content Data
| television l )
------- > HEncryption Keys

> »  Protocol Tokens

Figure 5.3: Flow of tokens and keys

only be made available to authorized customers and then only for the
designated purpose (displaying it on the television screen). The signal
that is sent to the television is completely clear, raw data that can be
copied, stored or relayed — without restrictions via High-bandwidth Digital
Content Protection (HDCP) or similar protocols. However the compressed
high quality MPEG-encoded audio and video streams will not be available
to the customers: these will be sent encrypted to the iphion player devices,
where they will be decrypted and decoded in hardware before sending the
result to the video output.

Content distribution is handled by the iphion Peer Assisted Protocol (iPAP)
[Min09]. This protocol has been extended with authentication tokens that
are issued by a central authentication server. These temporary tokens are
granted only to clients that are allowed to access a specific channel. When
establishing an iPAP communication, peers can quickly verify that their
communication partners are authorized to handle specific channel data via
this token, without the need to consult a central database or server. HMAC
codes are used with all iPAP messages to show that the messages indeed
originate from authorized peers and they have not been tampered with in-
transit.

For the decryption of the multimedia content, ¢phion players also need

116



5.5. SUMMARY

to obtain channel-specific temporary cryptographic decryption keys. Unlike
the tokens, these keys are never used in the iPAP protocol, but only on each
individual client that has to obtain these keys from the central keyserver.
Both key and token distribution rely on TLS with the extended device
authentication that was described in Section 3.2.2.

117



CHAPTER 5. CONTENT DISTRIBUTION

118



6. Conclusions

This thesis started with the analysis of the security requirements for the
iphion collaborative IPTV network. We have described risks that threaten
the network and devised solutions that may mitigate those risks. Where
multiple solutions were available, we analysed which alternative would best
suit the specific situation.

Several of the selected security solutions were worked out in detail.
We analysed how a general method might be applied in the particular
environment of the iphion system, then designed a concrete path for
the implementation of this solution and assisted in the completion of the
actual production. The topics that were analysed thoroughly are TLS
authentication and communications, set-top box software integrity and the
security of streaming multimedia content.

In the next section, we describe the results of the security requirements
analysis and the proposed solutions. Following that, we give concrete
recommendations to mitigate some security risks there were disclosed in
our analysis. And finally, we highlight other parts of the system that were
not yet addressed in detail by our analysis. Work on these aspects should
continue in order to identify risks and establish proper mitigation measures.

6.1 Summary

iphion realizes that security is an essential requirement for their IPTV
system to enter in the business. Our analysis addresses the security aspects
of the system. We started with eliciting the security requirements. Initially,
we look at what the system should do (functional requirements). Each of
these actions may be attacked by ‘crooks’ who seek to disrupt the system
or obtain privileged data. This leads to additional requirements, needed to
mitigate those attacks. These mitigation cases should be regarded in their
proper context, not just from a security viewpoint, but also considering
other aspects of the system, such as usability and dependability and of
course financial aspects. Fulfilling the requirements of each of these goals

119



CHAPTER 6. CONCLUSIONS

requires a compromise in the implementation choices. Through qualitative
analysis we tried to find the solutions that best satisfy all goals (Chapter 2).

The solutions that we came up with after the goal analysis are still very
general and leave much room for choices in the actual implementation.
We did a more detailed analysis of several proposed solutions. In the
following three chapters we describe concrete designs for the security of
several components in the phion system.

To preserve the integrity and confidentiality of meta data communications,
Transport Layer Security (TLS) will be used. Meta data is the term used
for all information that is not directly related to the exchange of multimedia
content, such as profile data, electronic program guides, software updates
and status reports. TLS will also be used to authenticate the clients and
servers in the system, with use of a public key infrastructure (PKI) and
personal keys for each of the actors. Extended authentication includes
an additional step on top of the regular TLS authentication that requires
cryptographic hardware support of the ¢phion player device. This makes it
much harder to fake an identity. Not all servers will authenticate themselves
using this extra step, nor will they be able to perform this check for clients
(Chapter 3).

Software integrity is difficult to guarantee in a situation where a potential
attacker has full control over a system environment (the ¢phion player) and
its network. An attacker might disassemble the hardware and read or write
data to the flash chip directly, thus bypassing all checks of running software.
However, we can check the integrity of this data storage at start-up and can
make sure that the device only boots with an iphion-approved (signed)
filesystem. All software updates (both incremental and in rescue mode)
should be digitally signed as well. Attackers may still be able to replace the
client software, but only with iphion-issued system versions. This does not
prevent an attacker from exploiting vulnerabilities in the iphion software
itself: the system should be designed to prevent and detect possible attacks
(Chapter 4).

Maintaining multimedia content confidentiality and integrity in the iphion
system poses some interesting challenges. One problem is the unorthodox
way the content data is delivered: via a distributed collaborative network
rather than a direct TCP stream from a server. Another issue is the
limited processing power of the iphion player platform that makes it
practically impossible to use public key cryptography for encryption or
digital signatures for the content stream. We achieve our goals by using
a central authentication server and temporary keys, both for peer-to-peer
communication integrity and for content data encryption (Chapter 5).

Figure 6.1 shows an overview of the communication streams in the tphion
network. It illustrates the differences between the data that is exchanged

120



6.1. SUMMARY

via secure channels (i.e. TLS) and the communications that are secured by
other means: the multimedia content streams and the client rescue images.

secure channel
(TLS)

—=# = encrypted data

Figure 6.1: iphion communications security

During the work on this thesis, two presentations have been given for the
company in which intermediate results were presented, along with several of
the recommendations listed in Section 6.2. One presentation focused on the
application of TLS and the implementation of a Public Key Infrastructure
for the iphion system. The other presentation analysed the secure boot
features of the NXP set-top box and presented recommendations about the
use of these features, including signed file system images and the outlined
rescue boot procedure.

Throughout this project there has been a good dialogue and collaboration
with the developers at iphion — and in some cases with developers at
Prodrive as well (the set-top box hardware supplier). Although this project
was more about analysis and design rather than implementation, some code
has been produced as a by-product and was committed directly into the
company’s code repository. Bugs reported regarding the cryptographic code
of the NXP hardware drivers and the curl https library, lead to fixes in
those projects. Other work that did not make it into this thesis, including
practicality tests, performance measurements and literature citations, has
been published on the company’s intranet site.

The result of the good collaboration with phion developers is that
many of the recommendations listed in the next section have already
been implemented by the company. As a consequence the first batch of
iphion player devices was recently produced and delivered. These include
the required hardware support for the secure boot features described in
Section 4.4.1 — and a client key pair in NOR flash as well as the hardware
AES key, both used for extended authentication outlined in Section 3.2.2.

121



CHAPTER 6. CONCLUSIONS

Still under development is, for example, the iTKP protocol for client
authentication and the secure distribution of tokens and keys used to
distribute and decrypt multimedia content data.

6.2 Recommendations

The detailed analysis of three aspects of the system security, leads to several
concrete recommendations. The other aspects that were not covered in
this report should be investigated further. Specific suggestions for further
analysis will be listed in the next section.

e Set up a public key infrastructure and issue certificates for all nodes
in the network to be used for authentication via TLS; this includes a
separate certificate hierarchy for the development environment and the
production environment. Use a separate signing authority for client and
server certificates.

e Honour the policy document that describes the secure use of these keys
and the procedures for creating, signing and storing certificates and
private keys (Appendix C).

e Use TLS authentication, integrity checking and encryption for all client-
server communications that use TCP.

e Use the on-chip crypto features of the set-top box for extended authenti-
cation of the iphion players and the iphion iTKP server.

e Consider the use of this feature for the authentication of other client-
server communications as well.

e Use all of the secure boot features of the set-top box, so that every boot
step validates integrity of the next step before executing it.

e Specifically, use digital signatures for the bootloader software, bootloader
environment, operating system kernel and the filesystem containing
software and configuration data. Generate and store the required keys
for these signatures responsibly.

e Use a secure software update mechanism that can preserve the digital
signatures: with each update the file system signatures must be updated
as well.

e Use a software rescue procedure (where the entire system is reinstalled)
that also checks digital signatures of the rescue image and checks and
preserves digital filesystem signatures.

122



6.3. FURTHER WORK

e Use different signing keys when deploying new hardware revisions in the
future.

e Encrypt all streaming multimedia content data via DVB-CSA. Consider
switching to DVB-AES later when it is more widely used and supported.

e Use temporary, short-lived content encryption keys, handed out by a
central client authentication server.

e Use temporary authentication tokens from a central server for peer
authentication in the iPAP protocol, because the set-top boxes cannot
handle certificate-based authentication fast enough.

e Use MD5-HMAC integrity codes on all iPAP messages and use Diffie-
Hellman key agreement to establish a key for MD5-HMAC, because
the set-top boxes cannot handle digital signatures based on public key
cryptography fast enough. The set-top boxes cannot handle SHA1-HMAC
either.

6.3 Further work

This thesis has mostly focused on the security of the iphion player.
However, security of the servers is at least as important. In some ways
it may be considered even more important, because a single compromised
server might affect a large part of the clients. There were several reasons
to focus on the clients first though. A lot of the player security depends
on features that need to be available in hardware (private keys, bootloader
features), which means this needs to be planned before the players can
go into production. While on the servers, most of the security features
will be implemented completely in software (or generic add-on hardware),
which means it is easier to improve and update later on. Another reason
is that general internet server security — firewalls, secure communications,
software updates, package management, etc. — is a more common and well
understood problem. Even though the current iphion server security may
not have been analysed in-depth, people are satisfied that at least some
sensible basic protection is in place.

Still, there is more work to be done on server security. In the future iphion
servers will be placed at several remote locations in varying environments
and they will need to communicate securely with each other — and be
manageable from iphion headquarters. For software updates, the servers
will use application updates via a Debian-like package management system.
These updates should be protected with digital signatures from iphion as
well.

123



CHAPTER 6. CONCLUSIONS

New server machine installations may not become a daily event, but the
addition of new services might. It may become impractical to follow the
current secure certificate signing policy for each server certificate. Therefore
we have been considering pre-generated server certificates, specifically for
broadcasters and repeaters, that can be stored encrypted in a temporary
storage until they are needed. To keep a clear policy distinction, these
certificates may be issued by a new intermediate certificate authority.

Another aspect of the iphion certificate hierarchy that needs further work is
the certificate revocation procedure. At the moment certificate revocation
lists (CRLs) can only be distributed via software updates. This is not a very
flexible method and might not suffice if revocations are needed frequently —
although it is not expected that they will be. In fact, for remotely taking
an abusive or malfunctioning client out of the network, it is enough to ban
the client in the iTKP server: without tokens or decryption keys the player
can no longer participate in the content exchange network, nor can it play
(decrypt) any multimedia content.

This thesis did not address the handling of customer data. The company
may collect a lot of data about customer behaviour: at what times do people
watch television, what programs do they watch, when exactly do they switch
channels etc. iphion plans use this data to provide personalised customer
suggestions in the future (e.g. about upcoming television shows). Customers
will consider this information personal data and expect iphizon to handle it
responsibly (i.e. not use it for anything other than what is required for the
technical functionality of the network).

However this data is also of interest to zphion’s partners: broadcasting
companies would like to see aggregated viewing statistics and advertisers
are very interested in when exactly people do or do not ‘zap’ away to other
channels during commercial breaks. The company will need to decide what
data to collect exactly, what to present to third parties and how to guarantee
that specific data cannot be traced back to individual users. This may
become harder if sphion decides to offer pay-per-view features in the future
as well. A clear privacy policy should be drafted and presented to the
customers.

Besides intentional use, there may be unintended use of the data as well.
Customers will know with whom (which IP addresses) they are exchanging
data: this means that these people are watching the same channel at the
same time. These IP addresses might also be traced back to individuals
(putting an address into a search engine is a good start). Although
peering in the iphion network is based on network locality rather than
geographic locality, these two frequently coincide. So one might learn what
the neighbours are watching. Another problem is the internal database
with viewing information: even if iphion does use it responsibly, a hacker

124



6.3. FURTHER WORK

who might obtain access could still abuse the information. For example for
burglars it might be interesting to know when people turn on the television
(when they get home) and turn it off again (when they go to sleep). This
kind of behaviour might also be of interest to law enforcement agencies, who
could confiscate a copy of the collected data.

125



CHAPTER 6. CONCLUSIONS

126



A. Glossary

AES

broadcaster

CSA

decoder

decrypter

DVB

encoder

Advanced Encryption Standard, an U.S. standard (FIPS
197) symmetric encryption algorithm for data encryption.
It’s considered fast and secure by modern standards; suit-
able for large sets of data. Also known as Rijndael.

See streaming server.

Common Scrambling Algorithm, an European standard
encryption algorithm (ETSI 289) used in DVB transmis-
sions for the encryption of multimedia streams. CSA
was specifically designed for fast DVB encryption and
decryption and it is the most commonly used algorithm
in this context.

The iphion service running on an iphion player that decodes
a multimedia stream as received from the iphion network to
a format that can be displayed on a regular television. This
service will be implemented by dedicated STB hardware.

The iphion service running on an iphion player that de-
crypts a multimedia stream received from the iphion net-
work. This will be implemented by dedicated STB hard-
ware.

Digital Video Broadcasting, a set of open standards for the
distribution of digital television. DVB standards are issued
by ETSI and the DVB protocols are mostly used in Europe.
Its North-American counterpart is ATSC.

The iphion service that transcodes a multimedia stream as
provided by a content supplier into a multimedia stream
fit for distribution over the iphion network: an MPEG-
TS formatted stream. There will likely be a dedicated
encoder for every TV channel. If the content provider
sends us data in the correct format for distribution over

127



APPENDIX A. GLOSSARY

the iphion network (hopefully most will), then no encoder
will be needed for this channel.

encrypter The iphion service that encrypts a multimedia stream
(MPEG-TS) using the chosen encryption format (CSA) and
private keys that are generated by the key master. All
channels will likely have their own encrypter.

eventlog The iphion service that collects activitiy data from the
iphion players. This includes both regular operational
information (such as channel change requests) for statistical
analysis as exception reports that may indicate a problem
with the device or the network.

EPG Electronic Program Guide, information about all available
TV program information. This is collected by the EPG
service from information made available by the broadcasters
and presented in a GUI by the iphion players.

ETSI European Telecommunications Standards Institute, a stan-
dardisation organisation responsible for the DVB digital
television standard - and many other standards such as
GSM (Global System for Mobile communications), DECT
(Digital Enhanced Cordless Telecommunications) and TETRA
(Terrestrial Trunked Radio).

IETF Internet Engineering Task Force, an independant open
standards organisation, with no formal membership require-
ments. IETF working groups have published many stan-
dards regarding the Internet Protocol. IETF standards
are known as RFCs (Request For Comments), although not
every document publish as an RFC describes a standard.

IP Internet Protocol. An open standard (RFC 791) for
communicating data in a packet switched network. This
is the basic network for distributing data over the internet.
The upper layer protocols TCP and UDP are built on top
of IP.

iPAP iphion Peer Assisted Protocol, the protocol that handles
the collaborative distribution of multimedia content over
the network. This protocol will be implemented both on
the iphion players and the broadcaster and relay services.

iphion player The set-top box that customers will buy and hook up
to their internet connection and television, so that they
can receive multimedia content via iphion’s collaborative

128



iphiserv

IPTV

iTKP

key master

MPEG

MPEG-2

MPEG-TS

NAT

network. At the moment, each player can only be tuned in
to one channel at once, but later versions may include PVR
(Personal Video Recorder) support.

Old name for the token server.

Internet Protocol Television, any system where a digital
television service is delivered using an internet (IP) infras-
tructure.

iphion Token and Key Protocol, the protocol to issue tokens
and keys to authenticated clients. Tokens are needed to
participate in the iPAP data exchange, keys to decrypt the
obtained multimedia content.

or key generator, the iphion service that continuously
generates keys for the encryption of multimedia content.

Moving Picture Experts Group, an international standard-
isation organisation that deals with the compression and
transmission of audio and video data. MPEG also refers
to the open standards designed by this group. MPEG
standards include MP3 (MPEG-1, audio layer 3 com-
pression format) and MPEG-4 AVC (or H.264; for video
compression).

An open standard (ISO/IEC 13818) for the compression
and transport of broadcast-quality television. This is the

chosen standard for DV B, but also for other systems such
as ATSC, SVCD and DVD.

MPEG Transport Stream, an open standard (ISO/IEC
13818-1 or H.222.0) describing a communications protocol
for the distribution of audio, video and data. This is part
of the MPEG-2 standards set. In MPEG-TS, the MPEG-
encoded multimedia data is split into small packets (of 188
bytes) for transport over an unreliable network. In the
iphion collaborative network MPEG-TS chunks are used in
groups of 7 packets (1316 bytes), that fit in a single UDP
packet.

Network Address Translation, also called masquerading:
a common technique used to connect multiple devices to
the internet using a single IP address. A NAT router
(e.g. ADSL or cable modem) will monitor outgoing traffic
from the private network to the internet and make sure
that response traffic from the internet is directed to the

129



APPENDIX A.

GLOSSARY

NIST

ORC

player
PVR

relay server

repeater

RSA

SSL
STB

correct local server. When NAT is used, unsollicited packets
from the internet directly to a local server behind the
NAT router is not possible. That is: any packet that
isn’t send in response to a previous query won’t reach its
destination. When two peers, both behind a NAT router,
want to communicate with each other, they can use an
iphion supernode to relay their communication.

National Institute of Standards and Technology, the mea-
surement standards laboratory of the U.S. Department of
Commerce. NIST CSD is the Computer Security Division,
which has publish several Federal Information Processing
Standards (FIPS) about the use of cryptography. Although
the standards are only binding for U.S. government agencies
and government contractors, they are generally accepted by
a wider audience.

An implementation of the iPAP service for both servers
(broadcaster, repeater) and clients (iphion player).

See iphion player.

Personal Video Recorder, a device that records video in
digital format for later playback. PVR functionality is not
present in the current generation iphion player, but it is
planned for later revisions.

or repeater, an iphion service that relays (encrypted)
multimedia data from the broadcaster to the iphion players.
Relay servers generally serve a specific part of the network
and are strategically placed in the network. A relay server
could be placed on a local internet exchange or in the
serverpark of an ISP to serve the customers of that ISP.
Each relay service is expected to handle multiple channels.

See relay server.

An algorithm for public-key cryptography, named after its
inventors, Rivest, Shamir and Adleman. First published in
1978, it is still one of the most popular algorithms for digital
signatures and public-key encryption [AMV96].

Secure Sockets Layer, the predecessor of TLS.

Set-Top Box, also known as the iphion player: the box
that customers will buy and hook up to their internet
connection and television, so that they can receive TV
content.

130



streaming server The iphion service that sends out the (encrypted)

supernode

TCP

TLS

token

token server

UDP

multimedia content to the relay services. There may be
multiple streaming servers for different channels.

An iphion relay service or normal iphion player node that
communicates with an other peer on behalf of a requesting
peer. It solves the problem when two players, both behind a
NAT router, cannot communicate directly with each other.

Transmission Control Protocol, an open standard (RFC
793) for transmission of two-way communication streams
over the internet. TCP guarantees reliable, error-free,
ordered delivery of bytes between two nodes. TCP is
used in the iphion network for all communication, except
the exchange of multimedia content in the collaborative
network. For all secure transmissions, TCP is combined
with SSL.

Transport Layer Security, an open standard (RFC 5246) for
establishing secure (encrypted and authenticated) point-to-
point connections over a public internet network. This relies
on a public/private key infrastructure where public keys
(TLS certificates) are signed by a central authority (Certifi-
cate Authority). All data sent over an TLS connection will
be encrypted with a temporary (symmetric) session key.

A digital passkey that identifies an iphion player and
indicates permission to exchange multimedia content for a
specific channel. Tokens are issued and digitally signed by
the token server and are only valid for a short period
(£15 minutes). After this period the player will need to
authenticate itself again with token server.

or key server, the iphion service that authenticates iphion
players, determines which content can be made available to
each client and distributes tokens for peer authentication
in the iphion collaborative network and crypto keys for
decryption of multimedia content (DVB-CSA).

The token server will also tell iphion players which peers
they can contact to obtain data for the television channel
they are tuned in to. The protocol to communicate with
the token server is called iTKP.

User Datagram Protocol, an open standard (RFC 768)
for transmission of data in packets (datagrams) over the
internet. UDP uses a simple transmission model without

131



APPENDIX A.

GLOSSARY

VoD

X.509

guaranteeing reliability or ordering. UDP can be used both
for one-to-one (unicast) communication and one-to-many
transmission (multicast, broadcast). UDP unicast is used
in the iphion collaborative network for the distribution of
multimedia data. This allows the iphion software to use
optimised algorithms for re-sending of missing or corrupted
packets (or ignoring them if time is running short).

Video on Demand, a system where the customers can select
a movie or television program whenever they wants to view
it — in contrast to a regular television broadcast where
the programming is pre-determined by the broadcaster and
everybody who is tuned in to a channel watches the same
content simultaneously.

An ITU standard for the set up of a public key infrastruc-
ture. In particular it defines standard formats for public
key certificates (X.509 certificates). A certificate contains
not just a public key, but also the name/identifier of the
subject and of the issuer, the validity period and other
information. This data is digitally signed with the private
key of the issuer.

132



B. Use and misuse cases

B.1 iphion player

B.1.1 Use cases

B.1.1.1 Authenticate

Name:
Summary:

Basic path:

Alternative paths:
Exception path:

Trigger:

Assumptions:
Precondition:

Postcondition:

Authenticate

The iphion player (client) authenticates itself to the
server and receives a secure access token for further
communication.

1. The client sets up a secure connection to the server.

2. Client and server exchange credentials (securely)
and verify each other’s identity.

3. Server sends a signed session token to the client
that it may use to identify itself to other actors in
the system.

If either client or server supplies invalid credentials,
the authentication is aborted and no token is given.
Whenever the client sends an authentication request.
It will do this when coming online or switching to
another channel.

Authentication mechanism should protect against
replay and man-in-the-middle attacks.

Clients and servers can check credentials of other
actors.

The client is now registered and is (the only one)
in possession of a token that grants this specific
client access to exchange information with others for
a limited period.

133



APPENDIX B. USE AND MISUSE CASES

Threats:

1.

An attacker can try to steal credentials in order
to obtain access for himself (B.1.2.3). Note that
obtaining a token isn’t enough, because all requests
must also be signed with the client’s private key.

. An attacker can try to flood the system so that it

cannot obtain access (B.1.2.4).

B.1.1.2 TUpdate set-top box

Name:
Summary:

Basic path:

Alternative paths:

Exception path:

Trigger:
Assumptions:
Precondition:

Postcondition:

Threats:

Update stb

When new features or bug fixes are available for
the iphion player, the software on the stb should be
updated to the newer version.

1.

The player (client) asks the update server if there
are updates available.

. The server validates the request and determines

which updates are required.

The server send a batch of updates to the client.
The client installs all patches and reboots to use
the new software.

If no updates are available, the other steps are
ignored and the client will proceed with its normal
service.

. If the update process is aborted while writing the

data, the client will request a full update (reinstall)
next.

Whenever the client requests a software update. Each
client must do this periodically.

If completed successfully, the client is running the
latest software version.

An attacker may attempt to install unauthorised code
instead of the expected updates (B.1.2.1).

B.1.1.3 Fetch content

Name:

Fetch content

134



B.1. IPHION PLAYER

Summary:

Basic path:

Exception path:

Trigger:

Assumptions:
Precondition:
Postcondition:
Threats:

B.1.1.4 Display

Name:
Summary:

Basic path:

Exception path:

Trigger:

Assumptions:
Precondition:

Video data is obtained via a collaborative network
from multiple sources: iphion relay servers and other
(end-point) peers in the network.

1. The customer selects a TV channel on the iphion
player.

2. The player asks the iphion server where to find
peers who offer this data.

3. The player securely exchanges credentials with the
selected peer(s).

4. The player asks these peers for the video data.

5. Content is delivered to the player.

Whenever a client fetches content. Often clients will
be fetching data continuously while there are turned
on.

Iphion video data is sent to the player.

1. Attackers may try to make it impossible to fetch
any data (flood system, B.1.2.4),

2. send bad content instead of the expected video data
(B.1.2.6), or

3. liberate a copy of the data (B.1.2.5).

content

Display content
The main objective of the iphion player is to display
live video of the T'V channel that the user has selected.

1. Decrypt the video/audio stream.

2. Decode the video/audio stream to TV format.

3. Output data to the T'V.

When data is not available in a timely fashion, an
error message with some suggestions may be shown
(e.g. "plug in network cable”).

Whenever the player has obtained video content.
Often clients will be displaying content continuously
while there are turned on.

The content and the required decryption keys are
available to the player.

135



APPENDIX B. USE AND MISUSE CASES

Postcondition:

Threats:

Video output will continue to be displayed (and
optionally redistributed to others) as long as content
data and keys are available.

1. Malicious hackers may try to hack into the box
and break functionality, obtain keys or decrypted
stream (B.1.2.2).

2. The TV data is send out in the clear, but recoding
is not trivial and this isn’t a threat that iphion cares
about.

B.1.2 Misuse cases

B.1.2.1 Spread malicious code

Name:
Summary:

Basic path:

Alternative paths:

Exception path:
Trigger:

Assumptions:

Precondition:
Postcondition:

Mitigation points:

Spread malicious code

An attacker may send malicious code to a player

masquerading as a regular software update.

1. A crook intercepts an update request from a client

(e.g. by DNS poisoning or network sniffing).

2. The crook sends a software update in the expected

format.
3. The client installs this software and reboots.

4. The crook now has full control over the player and

its private data (crypto keys).

Whenever the client requests software updates

(B.1.1.2).

The attacker can intercept or relay queries to its own
system. This is trivial when attacker and player-owner

collaborate.

The attacker obtains full control over a player.

1. When fetching updates (B.1.1.2), the client should
check if it has a connection with a trusted server

(SSL certificiate check).

2. Before installing updates the client must validate
that the software originates from iphion (by

checking a digital signature; 77).

Mitigation guarantee: A player won't install untrusted software.
Related business rule: The players will operate as specified.

136



B.1. IPHION PLAYER

Potential misuser profile:

Stakeholders and risks:

Skilled: The attacker must know the protocol and
format of software updates and must be able to
intercept and/or reroute connections.

1. Customers: Malicious code may disrupt operation
of the protocol and cause problems for other
players.

2. Iphion: Malicious code may be used to facilitate
other types of misuse such as hacking into the
player.

B.1.2.2 Hack set-top box

Name:
Summary:

Basic path:

Alternative paths:
Trigger:

Assumptions:

Precondition:
Postcondition:
Mitigation points:

Related business rule:
Potential misuser profile:

Hack stb

Malicious hackers may try to hack into a player
system and disrupt normal operation, such as content
displaying.

1. A crook sends malicious data to a player to try
and trick the player into doing what he wants (e.g.
exploiting buffer overflow).

2. If successful the attacker may be able to execute
his own code and/or disrupt normal operation of
the player.

Whenever the client is switched on and connected to
the network.
The attacker can connect to the iphion player. This
may be tricky when it is behind a masquerading
firewall, but trivial when attacker and owner
collaborate.

The attacker may obtain full control over a player.

1. The player should run up-to-date code with the
latest bugfixes (B.1.1.2). This doesn’t fully prevent
attacks, but makes them a lot harder.

2. The player should discard data packets that aren’t
relevant to its operation with as little fuss as
possible.

The players will operate as specified.

Varies. Script-kiddies may try to use standard hacking

tools against the player. Tracking regular security

updates should mitigate this. Advanced hackers may
try to exploit bugs in iphion’s own software.

137



APPENDIX B. USE AND MISUSE CASES

Stakeholders and risks:

B.1.2.3 Get privileges

Name:
Summary:
Basic path:

Trigger:

Assumptions:

Precondition:
Postcondition:

Mitigation points:

Related business rule:

Potential misuser profile:
Stakeholders and risks:

B.1.2.4 Flood system

Name:
Summary:

e Customers: A hacked box may cease to function
completely.

e Iphion: A larger scale hack may bring down the
complete network.

Get privileges
Access should only be granted to trusted clients.

1. A normal authentication setup is observed by an
attacker.

2. The keys exchanged give the attacker full access to
the protocol data and to the (protected) content.

Whenever the client authenticate itself to the servers

(B.1.1.1). This happens at regular intervals and

whenever it switches channels.

The attacker can intercept communication between

a player and the iphion server. This is trivial when

attacker and player-owner collaborate.

An attacker has complete access to participate in the

protocol and can decrypt all data that is exchanged.

The attacker gets full access even though he never paid

for it.

Authentication procedure should be set up so that

even with full access to the data exchange, no

information is leaked that others can use to obtain

access to the network or the data (B.1.1.1).

The network and content are accessible to customers

only.

Iphion: Full access may be granted to people who
never paid for it.

Flood system
Flooding a player with lots of data packets causes a
denial-of-service attack.

138



B.1. IPHION PLAYER

Basic path:

Alternative path:

Trigger:
Assumptions:
Precondition:

Postcondition:

Mitigation points:

Related business rule:

Potential misuser profile:

Stakeholders and risks:

B.1.2.5 Obtain content

Name:
Summary:

Basic path:

Trigger:
Assumptions:

1. The client requests meta data or multimedia
content.

2. Attackers send lots of irrelevant data to the client.

3. Network download gets congested and the client is
unable to receive the requested data (in a timely
fashion).

By sending specially crafted packets (e.g. crypto

setup) the player will perform expensive calculations

for each packet before it can decide to discard it as

invalid.

Whenever a client is turned on and requests data from

the network.

The player will be so busy handling invalid packets
that normal operation comes to a halt.

When receiving packets it should be simple and
efficient to decide which packets can be quickly
discarded (B.1.1.3). This helps, but may still not be
enough to counter a flood attacked.

The players will operate as specified - even under
extraordinary circumstances.

Unskilled: = Bandwidth flooding doesn’t require
technical know-how and cannot be prevented by
the system. More sophisticated attacks do involve
knowledge of the protocol and system.

e Customer: The player may stop working without a
clear indication of the cause.

e Iphion: Servers may also be flooded, causing an
outage for many players at once.

Obtain content
Content is distributed over the network. An attacker
may intercept this and decode it.

1. The attacker participates in the data exchange and
receives the content directly from peers.

2. The attacker intercepts regular data exchanges and
obtains the content this way.

Whenever a client is fetching content.

139



APPENDIX B. USE AND MISUSE CASES

Precondition:
Postcondition:

Mitigation points:

Related business rule:

Potential misuser profile:
Stakeholders and risks:

Content is available to non-customers and may be
distributed to more people.

1. Non-customers shouldn’t be able to participate in
the content distribution network (B.1.1.1).

2. Content data should be encrypted so that even if it
is intercepted, it cannot be decoded by an attacker
(B.1.1.4).

3. Content decryption keys shouldn’t be available
directly to customers, so that they cannot share
these keys with others.

The network and content are accessible to customers

only.

Skilled, providing content is properly protected.

Iphion: Full access may be granted to people who

never paid for it.

B.1.2.6 Insert bad content

Name:
Summary:

Basic path:

Trigger:
Assumptions:

Precondition:
Postcondition:

Mitigation points:

Related business rule:

Insert bad content

People may distribute their own data using the iphion
distribution network. This isn’t limited to video
content.

1. The attacker participates in the data exchange and
submits alternative content rather than the content
from the iphion servers.

2. This content may be distributed further by the
peers receiving it.

Whenever a client is fetching content.

The attacker can generate content in the appropriate

format.

1. Iphion players and network are used for the
distribution of unauthorised data.

2. Iphion players may display inappropriate video
streams.

All content data received should be validated -to make

sure it originates from the iphion servers- before it is

relayed or displayed by the player (B.1.2.5, B.1.1.3).

The iphion network should deliver the content from

the providers to the customers.

140



B.1. IPHION PLAYER

Potential misuser profile:

the right format for distribution.

Stakeholders and risks:

e Customers: May receive unwanted data - or may

not be able to receive the data they want.

e Iphion: The network won’t deliver the data to the

customers.

B.1.3 Mitigation cases

B.1.3.1 Validate software

Name:
Summary:

Basic path:

Exception path:

Trigger:

Mitigation:

Validate software

Before running software on the iphion client, the client
should verify that it is indeed software created by
iphion for this client.

1. Software is read from disk or via the network.

2. The software is validated by the iphion player (e.g.
via digital signatures).

3. Iphion player runs the validated software.

If the software cannot be validated, or doesn’t validate

correctly, then it must not be used. The iphion player

should then try to obtain other software via an update

(B.1.1.2).

Whenever software is loaded from a local or remote

source.

Prevents crooks from effectively spreading malicious

code (B.1.2.1).

B.1.3.2 Validate content

Name:
Summary:

Basic path:

Validate content

Before distributing or displaying multimedia content
via the iphion client, the client should verify that it is
indeed content distributed by iphion for this client.

1. Receive multimedia data from peers via the iphion
network.

2. Validate integrity and origin of the content (e.g.
via digital signatures).

3. Display and optionally relay the content data.

141

Skilled: content would have to be generated in exactly



APPENDIX B. USE AND MISUSE CASES

Exception path:

Trigger:
Mitigation:

If the multimedia content cannot be validated, or
doesn’t validate correctly, then it must not be used.
The iphion player should then re-try to obtain content
(B.1.1.3), possibly from other sources.

Whenever multimedia data is obtained.

Prevents crooks from effectively spreading bad content
(B.1.2.6).

B.1.3.3 Encrypt content

Name:
Summary:

Basic path:

Exception path:

Trigger:
Mitigation:

Encrypt content

The multimedia content distributed by iphion will
be encrypted to prevent unauthorised parties from
obtaining and using it.

1. iphion server encrypts the multimedia content.

2. iphion servers distribute the content via the iphion
collaborative network.

3. iphion clients decrypt the content before displaying
it.

If an iphion client receives content that it cannot

decrypt, then it should discard this data and re-try

to obtain the content (B.1.1.3).

Whenever multimedia data is distributed.

Prevents crooks from obtaining content (B.1.2.5).

B.2 iphion servers

B.2.1 Use cases

B.2.1.1 Obtain content

Name:
Summary:

Basic path:

Obtain content

Multimedia data is obtained from content providers.
For each channel a continuous stream will be
provided. The method of data provision may differ
per provider/channel.

1. Data is sent from the content provider to the iphion
network.
2. All streams are processed individually by iphion
Servers.
3. Encoded data is sent out into the collaborative
iphion network by the broadcaster(s).
142



B.2. IPHION SERVERS

Exception path:
Trigger:
Assumptions:

Precondition:
Postcondition:
Threats:

Whenever a client is fetching content.
A reliable (internet) connection between the content
providers and iphion is available.

Multimedia streams are received and processed.

1. Attackers may try to make it interrupt the
reception (e.g. flood the system, ?7),

2. send bad content instead of the expected video data
(B.1.2.6), or

3. liberate a copy of the multimedia data (B.1.2.5).

B.2.1.2 Distribute content

Name:
Summary:

Basic path:

Exception path:
Trigger:
Assumptions:

Precondition:
Postcondition:
Threats:

Distribute content
Encrypted multimedia data is distributed by the
broadcaster(s) and relay servers to the iphion players.

1.

Whenever a client is fetching content.
A reliable (internet) connection between the content
providers and iphion is available.

Multimedia streams are received and processed.

1. Attackers may try to make it interrupt the
reception (e.g. flood the system, B.1.2.4),

2. send bad content instead of the expected video data
(B.1.2.6), or

3. liberate a copy of the multimedia data (B.1.2.5).

B.2.1.3 Authenticate clients

Name:
Summary:

Authenticate clients
All iphion servers should verify client credentials
before granting access to data or resources.

143



APPENDIX B. USE AND MISUSE CASES

Basic path:

Exception path:

Trigger:
Assumptions:
Precondition:

Postcondition:
Threats:

1. An iphion player connects to one of the iphion
Servers.

2. Both player and iphion server exchange credentials
(in a secure way).

3. The client requests specific data.

4. The server only returns the requested data if the
authenticated client is authorised to access this
information.

e If the client credentials cannot be verified, the
connection should be aborted by the server.

e If the server credentials cannot be verified, the
connection should be aborted by the client, even
if there is no alternative to obtain this data (retry
later).

o If the client is authenticated, but not authorised to
have the requested data, the server should refuse
access.

Whenever a client requests data from one of the iphion

SErvers.

A secure mechanism must be in place for clients and

servers to authenticate each other.

Attackers may try to obtain authorization by
supplying false credentials. Proper checks will prevent
this.

B.2.1.4 Provide meta data

Name:
Summary:

Basic path:

Provide meta data

The iphion players need more than just content
data: electronic program guide, software application
updates, account information, etc. Furthermore other
system data needs to be made available to other
parties, such as statistics and performance reports.

1. An iphion player requests a certain type of meta
data, directly from a specific server.

2. The server checks if the client may access this data
and responds with the requested information.

144



B.2. IPHION SERVERS

Exception path:

Trigger:
Assumptions:

Precondition:
Postcondition:

Threats:

1. An iphion employee or (content) partner requests
a data directly from a specific server.

2. The server checks if the client may access this data
and responds with the requested information.

Meta data will be fetched periodically and whenever
a user switches channels.

Clients are properly connected to the network and
servers offer the relevant services.

Data is only made available to those who are
authorised to access it.

1. The main threat is crooks trying to obtain data
that they shouldn’t have access to (B.1.2.5).

2. The other threats that apply to public data services
(B.2.1.3) apply here as well.

B.2.1.5 Provide public data

Name:
Summary:

Basic path:

Alternate path:

Exception path:

Trigger:
Assumptions:
Precondition:
Postcondition:
Threats:

Provide public data
Iphion offers services to third-parties, such as a general
website for potential customers and content partners.

1. A visitor connects to a public iphion service.

2. The visitor checks the authentication offered by the
iphion service with a trusted third party.

3. The visitor requests data.

4. The iphion service returns the requested public
data.

The authentication step may be omitted (e.g. by using

HTTP rather than HTTPS).

1. If authentication,
connection.

2. If the requested data isn't public, the iphion server
must refuse access.

Whenever a request is sent to a public iphion service.

the visitor may abort the

If public and restricted data are distributed using
the same service, caution should be taken to prevent
leaking restricted data to unauthorised visitors.

145



APPENDIX B. USE AND MISUSE CASES

B.2.2 Misuse cases

B.2.2.1 Obtain content

Name:
Summary:

Basic path:

Alternative paths:

Exception path:
Trigger:
Assumptions:

Precondition:
Postcondition:

Mitigation points:

Mitigation guarantee:

Related business rule:
Potential misuser profile:

Stakeholders and risks:

B.2.2.2 Get privileges

Name:

Obtain content

Multimedia content is send from content providers to
the iphion servers and then further distributed via
iphion’s collaborative network. At either stage an
attacker may try to obtain this content.

1. A content provider sends data to the iphion server.
2. An attacker manages to intercept this information.

1. An iphion server sends out multimedia data to the
iphion network.
2. An attacker manages to intercept this information.

Whenever multimedia data is send by the content
providers (B.2.1.1) or iphion servers (B.2.1.2). This
happens continuously.

The attacker can intercept or relay data streams on
its own system.

Restricted multimedia content data ends up with an
unauthorised party.

1. When obtaining media from content providers
(B.2.1.1), a secure channel should be used for the
media transport (B.2.3.1).

2. When distributing media from the iphion servers
(B.2.1.2), all the media should be encrypted
(B.2.3.4).

Multimedia content is only available to authorised

parties.

Content is only accessible for iphion customers.

Skilled: The attacker must be able to intercept and/or

reroute internet data steams.

1. Iphion: Full content access might be obtained by
people who never paid for it.

Get privileges

146



B.2. IPHION SERVERS

Summary:

Basic path:

Trigger:
Assumptions:
Precondition:

Postcondition:

Mitigation points:

Related business rule:

Potential misuser profile:

Stakeholders and risks:

B.2.2.3 Obtain data

Name:
Summary:

Basic path:

Alternative paths:
Exception path:
Trigger:

Assumptions:

Precondition:
Postcondition:

Access privileges should only be granted to trusted
clients.

1. An attacker connects to the authentication server,
pretending to be an iphion client.

2. The server grants the attacker access (keys) to the
multimedia content and other restricted data.

Whenever an attacker connects to the authentication

service.

The attacker gets full access to iphion data even
though he never paid for it.

Authentication procedure should be secured so that
only real iphion customers can obtain authorised data
access (B.1.1.1).

The content is accessible to customers only.

Iphion: Full access may be granted to people who
never paid for it.

Obtain data

Apart from multimedia content, the iphion servers
provide a lot of additional restricted data. An attacker
may intercept this data while authorised clients access
it.

1. An iphion client or partner requests information
from an iphion server.

2. The server sends out the requested data.

3. An eavesdropping attacker obtains a copy of the
data.

Whenever restricted data is send from an iphion server
to an authenticated client.

The attacker can intercept or relay data streams on
its own system.

Restricted iphion data ends up with an unauthorised
party.

147



APPENDIX B. USE AND MISUSE CASES

Mitigation points:

Mitigation guarantee:

Related business rule:

Potential misuser profile:

Stakeholders and risks:

B.2.2.4 Hack server

Name:
Summary:

Basic path:

Alternative paths:
Trigger:
Assumptions:

Precondition:
Postcondition:

Mitigation points:

When providing access to restricted data (B.2.1.4),
the data itself should always be send out encrypted
(B.2.3.3).

Restricted meta data is only available to authorised
parties.

Corporate data is only accessible for iphion customers.
Skilled: The attacker must be able to intercept and/or
reroute internet data steams.

1. Iphion: Full data access might be obtained by
people who never paid for it.

Hack server

Malicious hackers may try to hack into an iphion
server disrupt its normal operation or use this as a
stepping stone to obtain privileged data.

1. A crook sends malicious data to a server to try
and trick the player into doing what he wants (e.g.
exploiting buffer overflow).

2. If successful the attacker may be able to execute his
own code and/or disrupt operation of the server.

True: iphion servers are always online (B.2.1.5).

The attacker can connect to the iphion server. Servers
that cannot be reached from the internet are not
directly affected by this attack (but they may be
attacked via other servers).

The attacker may obtain full control over an iphion
server. This can be used to obtain access to data and
clients as well.

e The servers should recognise and discard invalid
input.

e Server software should be developed and installed
with security in mind.

e Server software should be updated as new versions
become available (B.2.3.2).

e Access to the servers should be limited to what’s
absolutely necessary.

e The servers should be monitored for abnormal
behaviour.

148



B.2. IPHION SERVERS

Related business rule:
Potential misuser profile:

Stakeholders and risks:

The servers will operate as specified.

Varies. Script-kiddies may try to use standard hacking
tools against the player. Tracking regular security
updates should mitigate this. Advanced hackers may
try to exploit bugs in iphion’s own software.

e Customers: A hacked server may disrupt services
for all clients.

e Iphion: A successful hack may bring down the
complete network and cause serious reputation
challenges.

B.2.2.5 Denial-of-Service

Name:
Summary:

Basic path:

Alternative path:

Trigger:
Assumptions:
Precondition:

Postcondition:

Mitigation points:

Denial-of-Service

Sending invalid or too many packets may cause a
server to become unresponsive to regular requests, this
constitutes a denial-of-service attack.

1. A client requests meta data or multimedia content.

2. Attackers send lots of bogus requests to the server.

3. The server is too busy handling all bogus requests,
so that it is unable to respond to valid requests in
a timely fashion.

By sending specially crafted packets (e.g. crypto

setup) the server will perform expensive calculations

for each packet before it can decide to discard it as

invalid.

True: iphion servers are always online to handle

requests (B.2.1.5).

The server will become unresponsive and clients
relying on this server will not operate as they should.

e When receiving packets it should be simple and
efficient to decide which packets can be quickly
discarded.

e Simple requests shouldn’t cause a disproportional
workload for the server.

e The relay network should be set up so that
disruption of a part of the network should not affect
the rest of the network.

e Enough bandwidth should be available to avoid
congestion.

149



APPENDIX B. USE AND MISUSE CASES

Related business rule:

Potential misuser profile:

The servers will operate as specified - even under
extraordinary circumstances.

Unskilled:  Bandwidth flooding doesn’t require
technical know-how and cannot be prevented by
the system. More sophisticated attacks do involve

Stakeholders and risks:

knowledge of the protocol and system.

clear indication of the cause.

e Iphion: A successful hack may bring down the

complete network.

B.2.3 Mitigation cases

B.2.3.1 Secure channel

Name:
Summary:

Basic path:

Exception path:

Trigger:

Mitigation:

Secure channel

Multimedia content from the content providers may
be sent to the iphion servers by means of a secure
channel.

1. A secure channel is set up between a content
provider and iphion.

2. Multimedia content is sent to the iphion servers via
this channel.

If a secure channel can not be set up, then content

may not be sent from the content provider.

Whenever a connection with a new content partner is

established.

Prevents crooks from obtaining unencrypted content

that is exchanged between providers and iphion

servers (B.2.2.1).

B.2.3.2 Update server software

Name:

Update server software

150

e Customer: Players may stop working without a



B.2. IPHION SERVERS

Summary:

Exception path:

Trigger:

Mitigation:

New features and bug fixes must be installed on the
servers as they become available. These can be either
in external software packages or in phion’s own code.

1. New software becomes available.

2. A migration path is worked out (how to shut down,
install, validate, restart) the software updates.

3. The software is first tested in a non-production
environment.

4. Software is installed on the production platform.

5. Software is activated on the production platform.

In some cases it may be necessary to temporarily run

servers with both the old and new version of specific

software to ease migration of the clients.

New software versions may be released by third

parties, or by the development team at sphion.

This counters attacks based on weaknesses found in

software and protocol; specifically those targeted at

the server (B.2.2.4).

B.2.3.3 Encrypt data

Name:
Summary:

Basic path:

Exception path:

Trigger:
Mitigation:

Encrypt data

Information that is provided to authenticated visitors
must be encrypted to prevent other from obtaining
the data.

1. A visitor connects to an iphion server.

2. The visitor is authenticated by the server (and vice
versa).

3. A means of data encryption is agreed between the
parties.

4. Data is requested (encrypted).

5. The requested data is sent encrypted.

1. Either party may abort the session if the other
cannot be authenticated.

2. The server won't send any data if the requesting
party isn’t authorised.

Whenever somebody requests restricted information.

Prevents crooks from obtaining restricted information

that is offered by the iphion servers (B.2.2.3).

B.2.3.4 Encrypt content

151



APPENDIX B. USE AND MISUSE CASES

Name:
Summary:

Basic path:

Exception path:

Trigger:

Mitigation:

Encrypt data
Multimedia content distributed by the iphion servers
must be encrypted to prevent unauthorised access.

1. An iphion server obtains multimedia data from a
content provider.

2. The multimedia data is encrypted.

3. The encrypted data is distributed via the iphion
collaborative network.

Whenever multimedia data is relayed (that is:
continuously).

Prevents unauthorised parties from obtaining multi-
media content data that are distributed by the iphion
servers (B.2.2.1).

152



C. Key creation manual

The secure certificate authority is a secure computer and peripherals,
without any hard disks, network connections or any other means by which
information can be retrieved from it by accident or by malicious users.

The computer itself stores no information at all; therefore, it does not need
to be the same computer that acts as a secure certificate authority each
time. All that is required is that is has a correct time set in the BIOS, and
that no peripherals are connected to it except those that are described in
this document.

C.1 Setting up a secure certificate authority

The process of setting up a secure certificate authority is quite involved.
The steps that need to be taken are described below. To complete these
steps successfully, you will require the following items:

e A secure computer. This computer must only contain the following pieces
of equipment:

— Motherboard, processor, graphics card, memory: the bare necessities
of what make a computer a computer.

— At least four USB ports, or, if the computer does not have that many
USB ports, create more ports using a USB hub.

— A CD-RW or DVD-RW drive must be present.

A keyboard.

A Canon MP150 printer, connected via USB. Other printers cannot be
used unless the software is patched to support other makes and models.

A monitor needs to be attached to the computer. The computer will
display only text modes.

Three USB stick of at least 512MB in size each.

153



APPENDIX C. KEY CREATION MANUAL

e At least three (but probably twelve) CDs or DVDs.

Specifically, the computer MUST NOT contain a harddisk, and no wired
or wireless networks may be attached to the computer.

Build an Ubuntu live system image

This image is require to be able to boot the secure machine in each of the
steps that are required to build a certificate chain.

To create this image, go to the support/ca-boot-systems directory in an
iphion GIT repository checkout on your normal work station, and type:
./gen-chroot.sh

Build an image of the live system

This builds a squashfs image of the Ubuntu live system. It also builds a
ISO file that contains this squashfs image and some small things to make
the system bootable.

Create the necessary images by typing: ./gen-live-cd.sh

Build a USB stick which will create the root certificate CD

You will now need to build a USB stick, that you will need to boot on a
secure computer as described earlier in this document. The procedure that
the USB stick executes is described in detail below.

First, build the USB stick by typing: ./install-root-generator-on-stick.sh

The script will ask you to insert a USB stick into the computer once it is
ready to deploy the bootable image into a stick. Insert a USB stick that is
at least 512MB in size into your work station. WARNING: this stick will
be completely wiped of all data! Make sure that nothing that you want to
keep is on the stick!

Once the stick is inserted, the program will ask you for the device name (it
will give a menu with suggestions). Type the name of the device, and the
program will install the image onto the stick.

Boot the USB stick on a secure computer

Now, turn off the secure computer if it was on. Make sure that there are
no CDs and DVDs in the computer. Unplug all USB devices except for the
optional USB hubs, the keyboard and the printer.

154



C.1. SETTING UP A SECURE CERTIFICATE AUTHORITY

Plug in the USB stick that you have created. Now, turn on the computer,
verify that the time and date in the BIOS are set correctly (to UTC
time), and make it boot from the USB stick.

At the USB stick’s boot prompt with the iphion logo, press ENTER, or wait
30 seconds for an automatic boot.

The USB stick will now create the root RSA key (this takes some time).

Once the stick is done with the certificate generation, you are ready to burn
CD sets for the root certificate. Each set of CDs belongs to a single person.
Each person gets a set of CDs (at least one, more for safety purposes, in
case a CD gets damaged).

To start the procedure, make the recipient of the CD set to type in a
passphrase, which he or she can remember easily, but is not easy to guess.
The system will now generate an ISO image with an encrypted private root
key on it. It will now ask you whether you want to write the result to a
CD or DVD. You will need a blank CD or DVD to store the root certificate
and its boot system on. Insert the medium into the computer and type y
to confirm.

When the burning of the CD is finished (open the drive manually if the CD
drive is closed), take out the CD and write Root certificate on it, along
with the text original CD or CD copy depending on whether this is the
first CD that you have built or a copy. Also write on it For production
or For development, depending on what the CA will be used for. Finally,
write the current date on the CD.

When you have finished writing, the system will ask you whether you want
to burn this specific CD again. Burn the CD as many times as you see fit,
for this specific person. When the person has sufficient copies, type n at the
prompt.

The system will now ask you whether you want to create another set of CDs.
If there are more people that need to receive the root certificate, repeat the
procedure in the paragraph above after typing y at the prompt.

Be sure to burn backup copies of the CD or DVD: this type of storage
medium will not last forever and scratches easily. You can burn multiple
CDs or DVDs by repeatedly typing y at the burn prompt.

Once you are done and you have created enough copies of the root CD (be
sure to remove the last CD before you do the next step), type n at the
prompt that asks you whether you want to create another CD set. Now,
press CTRL-ALT-DEL to reboot the computer. Once the computer has
rebooted, remove the USB stick. The USB stick is not required any longer
and can be used in other steps of this procedure.

155



APPENDIX C. KEY CREATION MANUAL

Boot a root certificate CD on the secure computer

Insert one of the root certificate CDs into the secure computer and boot the
computer from it. At the CDs boot prompt, press enter or wait 30 seconds
for an automatic boot.

Once the CD has booted, it will wait until you insert a USB script stick into
it. You will need to create such a stick in the next step.

Create a root certificate script stick

On your work station, you will need to create a USB script stick which will
work with the root CD to build the intermediate certificates.

To build such a stick, type: ./install-root-ca-menu-on-stick.sh

The script will ask you to insert a USB stick into the computer once it is
ready to deploy the script image onto a stick. Insert a USB stick that is at
least 512MB in size into your work station. WARNING: this stick will be
completely wiped of all data! Make sure that nothing that you want to keep
is on the stick!

Once the stick is inserted, the program will ask you for the device name (it
will give a menu with suggestions). Type the name of the device, and the
program will install the image onto the stick.

Print the root certificate private data on paper

Insert the USB script stick that you have just built into the secure computer.
The computer will now ask which USB stick you want to use. Enter a device
name from the suggestions menu.

The script stick will be started, and it will ask for the passphrase that
unlocks the root private key that is stored on the CD. Enter it. If the
passphrase is entered incorrectly, you will get lots of errors, and the stick
will be rejected. Enter the device name again to retry.

A menu will now be dispput. Option a of this menu is the print option. Be
sure that, before you type a, you turn on the printer, that it is connected to
the secure computer, and that there is sufficient paper in it (you will need
about ten pages).

Now, type a. The printer will print a dump of the root certificate’s private
data in a hexadecimal format with checksums. This dump is the root
certificate’s private key in an unencrypted form: if you type in the private
key and compile it back to binary format, you will have access to the root
private key without a passphrase. Take great care where you store this

156



C.1. SETTING UP A SECURE CERTIFICATE AUTHORITY

paper copy! Beware: the printer prints the first page first, of course, but
it stacks the papers in reverse order on its collection tray. The pages are
numbered, so this is not that much of an issue. Stapling the pages together
preserves their order nicely.

Then, type e. The printer will print a dump of the root certificate’s private
data in a 2D barcode format. This dump is also not encrypted. Take great
care where you store this paper copy! Beware: the printer prints
the first page first, of course, but it stacks the papers in reverse order on its
collection tray. The pages are NOT numbered, so you’ll need to number
the pages yourself. Stapling the pages together preserves their order nicely.

Now, type d to store the root certificate’s public information on the USB
stick.

Create the client and server intermediate certificate USB
sticks

Now, choose option b from the menu. The script will ask you on which
USB stick you want to install the CD creator for the client intermediate
certificate. Insert a second USB stick, wait a while until the kernel detects
the stick, and press ENTER to reprobe the list of the USB sticks. Now,
choose the correct device from the menu.

The stick will now be filled with the correct data. When the root certificate
menu reappears, the stick can be removed from the secure computer. Lay
this stick aside for a moment.

Now, choose option c from the menu. The script will ask you on which
USB stick you want to install the CD creator for the server intermediate
certificate. Insert a third USB stick, wait a while until the kernel detects
the stick, and press ENTER to reprobe the list of the USB sticks. Now,
choose the correct device from the menu.

The stick will now be filled with the correct data. When the root certificate
menu reappears, the stick can be removed from the secure computer. Lay
this stick aside for a moment, with the client CD creator stick that you
already put aside.

Now, choose q in the menu. Remove the USB script stick from the secure
computer. Then, press CTRL-ALT-DEL to reboot the computer. Take out
the root CD when it is ejected from the system and close the tray.

Also take out the USB script stick. Insert the USB script stick into your
desktop computer and copy the root public key information (cacert.pem,
cacert.der and index.txt) in the rootCA directory to the appropriate
directory in the Git repository. For production usage, copy the information

157



APPENDIX C. KEY CREATION MANUAL

to support/certificates/production/root/. For development usage,
copy the information to support/certificates/development/root/.

Create the client intermediate certificate CD

Now, reboot the computer and boot from the client certificate authority CD
creator USB stick (the first one that you put aside).

Once the USB stick has booted, it will allow you to burn one or more CDs
or DVDs sets with the client intermediate certificate authority on it. It
will ask you for a passphrase to protect the private key data with. Type a
passphrase that you can easily remember but is difficult to guess. Press y
at the burn prompt each time you want to burn a CD or DVD.

When the burning of a CD is finished (open the drive manually if the
CD drive is closed), take out the CD and write Client intermediate
certificate on it, along with the text original CD or CD copy depending
on whether this is the first CD that you have built or a copy. Also write on
it For production or For development, depending on what the CA will
be used for. Finally, write the current date on the CD.

Once you are done and you have created enough copies of the client CD set
(be sure to remove the last CD before you do the next step), type n at the
burn prompt. If you want to create another CD set for another person, type
y at the prompt, otherwise type n.

Now, press CTRL-ALT-DEL to reboot the computer. Once the computer
has rebooted, remove the USB stick. The USB stick is not required any
longer and can be used in other steps of this procedure.

If more CD sets are required, one of the client CDs can be booted to create
another CD set.

Create the server intermediate certificate CD

Now, reboot the computer and boot from the server certificate authority
CD creator USB stick (the second one that you put aside).

Once the USB stick has booted, it will allow you to burn one or more CDs
or DVDs sets with the server intermediate certificate authority on it. It
will ask you for a passphrase to protect the private key data with. Type a
passphrase that you can easily remember but is difficult to guess. Press y
at the burn prompt each time you want to burn a CD or DVD.

When the burning of a CD is finished (open the drive manually if the
CD drive is closed), take out the CD and write Server intermediate
certificate on it, along with the text original CD or CD copy depending

158



C.1. SETTING UP A SECURE CERTIFICATE AUTHORITY

on whether this is the first CD that you have built or a copy. Also write on
it For production or For development, depending on what the CA will
be used for. Finally, write the current date on the CD.

Once you are done and you have created enough copies of the server CD
set (be sure to remove the last CD before you do the next step), type n at
the burn prompt. If you want to create another CD set for another person,
type y at the prompt, otherwise type n.

Now, press CTRL-ALT-DEL to reboot the computer. Once the computer
has rebooted, remove the USB stick. The USB stick is not required any
longer and can be used in other steps of this procedure.

If more CD sets are required, one of the server CDs can be booted to create
another CD set.

Boot from the client intermediate certificate CD

Boot the secure computer from the client intermediate certificate CD. Once
the CD has finished booting, it will ask for a USB script stick to be inserted.

On your work station, type: ./install-client-ca-menu-on-stick.sh to
create such a stick. The script will issue a warning that no client certificate
requests have been placed on the stick image. This warning can be ignored.

Insert the generated stick into the secure computer. Choose the correct
device name from the menu that appears.

The stick will ask for the passphrase of the private key data that is on the
stick. Enter this.

Now, type a. The printer will print a dump of the client intermediate
certificate’s private data in a hexadecimal format with checksums. This
dump is the client intermediate certificate’s private key in an unencrypted
form: if you type in the private key and compile it back to binary format, you
will have access to the client intermediate private key without a passphrase.
Take great care where you store this paper copy! Beware: the
printer prints the first page first, of course, but it stacks the papers in
reverse order on its collection tray. The pages are numbered, so this is not
that much of an issue. Stapling the pages together preserves their order
nicely.

Then, type d. The printer will print a dump of the client intermediate
certificate’s private data in a 2D barcode format. This dump is also
not encrypted. Take great care where you store this paper copy!
Beware: the printer prints the first page first, of course, but it stacks
the papers in reverse order on its collection tray. The pages are NOT

159



APPENDIX C. KEY CREATION MANUAL

numbered, so you'll need to number the pages yourself. Stapling the pages
together preserves their order nicely.

From the menu, choose option c to copy the client intermediate certificate
public information to the USB script stick.

Once the printing has finished, choose q from the menu. Now, reboot the
computer.

Take out the USB script stick. Insert the USB script stick into your desktop
computer and copy the client intermediate CA public key information
(cacert.pemand cacert.der) in the clientCA directory to the appropriate
directory in the Git repository. For production usage, copy the information
to support/certificates/production/client/. For development usage,
copy the information to support/certificates/development/client/.

Boot from the server intermediate certificate CD

Boot the secure computer from the server intermediate certificate CD. Once
the CD has finished booting, it will ask for a USB script stick to be inserted.

On your work station, type: ./install-server-ca-menu-on-stick.sh to
create such a stick. The script will issue a warning that no server certificate
requests have been placed on the stick image. This warning can be ignored.

Insert the generated stick into the secure computer. Choose the correct
device name from the menu that appears.

The stick will ask for the passphrase of the private key data that is on the
stick. Enter this.

Now, type a. The printer will print a dump of the server intermediate
certificate’s private data in a hexadecimal format with checksums. This
dump is the server intermediate certificate’s private key in an unencrypted
form: if you type in the private key and compile it back to binary format, you
will have access to the server intermediate private key without a passphrase.
Take great care where you store this paper copy! Beware: the
printer prints the first page first, of course, but it stacks the papers in
reverse order on its collection tray. The pages are numbered, so this is not
that much of an issue. Stapling the pages together preserves their order
nicely.

Then, type d. The printer will print a dump of the server intermediate
certificate’s private data in a 2D barcode format. This dump is also
not encrypted. Take great care where you store this paper copy!
Beware: the printer prints the first page first, of course, but it stacks
the papers in reverse order on its collection tray. The pages are NOT

160



C.2. SET UP THE U-BOOT CERTIFICATE

numbered, so you'll need to number the pages yourself. Stapling the pages
together preserves their order nicely.

From the menu, choose option c to copy the server intermediate certificate
public information to the USB script stick.

Once the printing has finished, choose q from the menu. Now, reboot the
computer.

Take out the USB script stick. Insert the USB script stick into your desktop
computer and copy the server intermediate CA public key information
(cacert.pemand cacert.der) in the serverCA directory to the appropriate
directory in the Git repository. For production usage, copy the information
to support/certificates/production/server/. For development usage,
copy the information to support/certificates/development/server/.

C.2 Set up the U-boot certificate

We use U-boot on the player set-top-boxes. The system allows the signing
of images that are booted, and also of other files that are loaded by U-boot.
For this purpose, we require a CD that contains the necessary components
to be able to sign files.

Build a USB stick which will create the U-boot certificate CD

You will now need to build a USB stick, that you will need to boot on a
secure computer as described earlier in this document. The procedure that
the USB stick executes is described in detail below.

First, build the USB stick by typing: ./install-uboot-generator-on-stick.sh

The script will ask you to insert a USB stick into the computer once it is
ready to deploy the bootable image into a stick. Insert a USB stick that is
at least 512MB in size into your work station. WARNING: this stick will
be completely wiped of all data! Make sure that nothing that you want to
keep is on the stick!

Once the stick is inserted, the program will ask you for the device name (it
will give a menu with suggestions). Type the name of the device, and the
program will install the image onto the stick.

Boot the USB stick on a secure computer
Now, turn off the secure computer if it was on. Make sure that there are

no CDs and DVDs in the computer. Unplug all USB devices except for the
optional USB hubs, the keyboard and the printer.

161



APPENDIX C. KEY CREATION MANUAL

Plug in the USB stick that you have created. Now, turn on the computer
and make it boot from the USB stick.

At the USB stick’s boot prompt with the iphion logo, press ENTER, or wait
30 seconds for an automatic boot.

The USB stick will now create the U-boot certificate files. It will produce
four files, and each of them will have to be encrypted. Therefore, the
procedure will ask you to enter your passphrase eight times!

Once the stick is done with the certificate generation, you are ready to burn
CDs that contain the U-boot certificate.

The system will now generate an ISO image. It will then ask you whether
you want to write the result to a CD or DVD. You will need a blank CD
or DVD to store the certificate and its boot system on. Insert the medium
into the computer and type y to confirm.

When the burning of a CD is finished (open the drive manually if the CD
drive is closed), take out the CD and write U-boot certificate and AES
keys on it, along with the text original CD or CD copy depending on
whether this is the first CD that you have built or a copy. Also write on it
For production or For development, depending on what the certificate
will be used for. Finally, write the current date on the CD.

When you are finished writing, the system will ask you whether you want
to burn this specific CD again. Burn the CD as many times as you see fit,
for each person that needs copies. When you have made sufficient copies,
type n at the prompt.

Be sure to burn backup copies of the CD or DVD: this type of storage
medium will not last forever and scratches easily. You can burn multiple
CDs or DVDs by repeatedly typing y at the burn prompt.

Once you are done and you have created enough copies of the root CD (be
sure to remove the last CD before you do the next step), type n at the
prompt that asks you whether you want to create another CD set. Now,
press CTRL-ALT-DEL to reboot the computer. Once the computer has
rebooted, remove the USB stick. The USB stick is not required any longer
and can be used in other steps of this procedure.

Create a U-boot certificate script stick

On your work station, you will need to create a USB script stick which will
work with the U-boot CD.

To build such a stick, type: ./install-uboot-menu-on-stick.sh

The script will ask you to insert a USB stick into the computer once it is
ready to deploy the script image onto a stick. Insert a USB stick that is at

162



C.2. SET UP THE U-BOOT CERTIFICATE

least 512MB in size into your work station. WARNING: this stick will be
completely wiped of all data! Make sure that nothing that you want to keep
is on the stick!

Once the stick is inserted, the program will ask you for the device name (it
will give a menu with suggestions). Type the name of the device, and the
program will install the image onto the stick.

Print the U-boot files on paper

Insert the USB script stick that you have just built into the secure computer.
Boot from this USB stick.

The stick will ask for the U-boot certificate and AES key CD. Insert this
CD into the computer and press ENTER. Once the CD has been mounted,
the stick will need to decrypt the files that it requires. For this purpose,
you will need to enter the passphrase to unlock the files four times.

A menu will now be dispput. Options a and b of this menu are the printing
options. Be sure that, before you type a or b, you turn on the printer, that
it is connected to the secure computer, and that there is sufficient paper in
it (you will need about three pages per print option).

Now, type a. The printer will print a dump of the U-boot files. The printed
files are not encrypted in any way. Take great care where you store
this paper copy! The pages are not related to each other in any way, so
their order is not important.

Then, type b. The printer will print a dump of the U-boot files in a 2D
barcode format. This dump is also not encrypted. Take great care where
you store this paper copy! The pages are not related to each other in
any way, so their order is not important.

Now, type c to store the public and private U-boot files information on the
USB stick. If the CD was not already mounted, the script will you to do so.

Choose q from the menu. Now, reboot the computer.

Take out the USB script stick. Insert the USB script stick into your
desktop computer and copy the U-boot public information in the public
directory (all the files that are present there) to the appropriate directory
in the Git repository. For production usage, copy the information to
support/certificates/production/u-boot/. For development usage,
copy the information to support/certificates/development/u-boot/.

The private directory contains files that are not suitable for storage in the
Git repository, but may be required by the party that produces the STB.

163



APPENDIX C. KEY CREATION MANUAL

The setup is now complete

You have now created five types of CDs: a root certificate authority CD, a
client certificate authority CD, a server certificate authority CD, a U-boot
certificate CD and a U-boot image signing CD. Futhermore, hardcopies have
been printed on paper for the most crucial data on the CDs.

C.3 Generating client certificates

To generate client certificates for Iphion player, you must boot the secure
computer with the client intermediate certificate authority CD.

The client private keys are generated on the secure computer, however
the client IDs that will be used in the common name and as certificate
ID number, need to be generated first on a network-connected com-
puter (to be sure these are unique and to directly store them in the
network database). The common name (client identification) will be of
the form numberQusers.iphion.nl. These IDs are generated with the
prepare_peer_ids script, which use is outside the scope of this document.

Next, on your workstation, make sure your GIT checkout is up-to-date and
then build a USB stick with the ./install-client-ca-menu-on-stick.sh
program, which requires the peers_ids_file with a list of fresh unique IDs
as its arguments.

Insert the USB stick into the secure computer, choose the correct USB stick
device name, enter the passphrase to unlock to private key and choose option
b from the menu. The certificates will now be signed by the intermediate
authority.

Next, choose q from the menu. Remove the USB stick and plug it into
your work station. There, run the ./read-back-client-usb-stick.sh
/dir/to/place/certificate/files to copy the certificates from the USB
stick to the specified directory and update the serial information in the GIT
repository.

C.4 Generating server certificates

Server certificates don’t use a unique number as ID, but rather use the
internet hostname. This should be a combination of the service and
the software version for which the certificate will be used. For example:
epg.1-1-3.iphion.nl.

Server certificates are not generated on the secure computer, but rather
on the server where they will be used (or equivalent environment). Only

164



C.5. GENERATING SIGNED IMAGE FILES FOR U-BOOT

the server certificate requests will be copied. Generate a server key and
certificate request with the ./generate_server_keyreq.sh script, adding
the hostname with the -i option. Copy the certificate requests to a local
directory on your workstation.

Make sure your GIT checkout on your workstation is up-to-date and
then build a USB stick with the ./install-client-ca-menu-on-stick.sh
program, which requires the list of all request files as its argument.

You must boot the secure computer with the server intermediate certificate
authority CD. Insert the USB stick into the secure computer, choose the
correct USB stick device name, enter the passphrase to unlock to private
key and choose option b from the menu. The certificates will now be signed
by the intermediate authority.

Next, choose q from the menu. Remove the USB stick and plug it into
your work station. There, run the ./read-back-server-usb-stick.sh
/dir/to/place/certificate/files to copy the certificates from the USB
stick to the specified directory and update the serial information in the GIT
repository. Now copy the signed server certificate to the correct location on
the server.

C.5 Generating signed image files for U-boot

To generate signed image files for U-boot, you must boot the secure
computer with the U-boot menu stick, as described below.

On your work station, make sure your Git checkout is up-to-date and then
build a USB stick with the ./install-uboot-menu-on-stick.sh program,
now with the files to sign as its arguments. The extensions of the files
must be correct. Currently, only files that end in .uImage, .bin and
.mipsel _boot are supported.

Insert the USB stick into the secure computer and boot from it. The CD
will require the U-boot certificate and AES key CD to be inserted into the
secure computer once it has booted. Do so and press enter. The encrypted
files now need to be decrypted, which requires you to enter your passphrase
four times.

From the menu that appears, choose d. The files on the stick will now be
signed. Two versions are generated per input file, one encrypted, one not
encrypted.

Now, choose q from the menu and reboot the computer. Take out the script
stick and ingsert it into your computer. The signed files will have been stored
on the stick, probably under /media/casper-rw/signed files.

165



APPENDIX C. KEY CREATION MANUAL

C.6 Making copies of CDs or sets of CDs for other
people (not U-boot)

Whatever you do: do NOT copy CDs in your desktop computer! The CDs
contain sensitive information (albeit encrypted with a passphrase) that are
not allowed to leave the secure computer environment.

To make a copy of a CD, boot the secure computer from that CD. Then, on
your desktop PC, produce the corresponding script stick for the USB. When
the CD asks for the script stick, insert the stick into the secure computer.
In the menu, choose the option to create a copy of the CD (the option letter
differs depending on which CD you are trying to copy).

The script will now prompt you for a stick device name. Insert a second
USB stick (the contents will be wiped, be careful), wait until the kernel
detects the stick, and then press ENTER to reprobe the USB sticks. Now,
enter the correct device name at the prompt.

When the menu reappears, type q to stop the USB script stick, and press
CTRL-ALT-DEL to reboot the computer. Take out the CD when you are
prompted to do so. Press enter afterwards. When the computer is rebooting,
remove the USB script stick from the computer, but leave in the other USB
stick and boot from that.

The USB stick, once booted, will ask you for the passphrase that will unlock
the private data on the stick. This is the same passphrase as is needed for
the CD that you are trying to copy. The stick will now ask you whether
you want to make a copy of the CD. Answer y. The stick will now ask for
a new passphrase. If you are making a backup for yourself, enter the same
passphrase as above. If you making a copy for somebody else, have that
other person enter their passphrase.

You can now burn as many copies as you think is necessary. Enter n at the
prompt when you are done burning the last required CD. You now have
the option of burning another CD set for somebody else with a different
passphrase. Enter y if you want to burn another set. Enter n to stop the
copying operation; reboot the computer with CTRL-ALT-DEL now.

C.7 Making copies of the U-boot CD

Whatever you do: do NOT copy CDs in your desktop computer! The CDs
contain sensitive information (albeit encrypted with a passphrase) that are
not allowed to leave the secure computer environment.

To make a copy of a CD, boot the secure computer with the U-boot script
stick, which can be created using the . /install-u-boot-menu-on-stick.sh

166



C.7. MAKING COPIES OF THE U-BOOT CD

script. Once the menu appears (after inserting the original CD and
unlocking the files on it), choose option e. You will be asked for a new
passphrase. You will need to enter this eight times. A new CD image will
now be created. When the prompt appears that asks you whether you want
to burn the image, take out the original CD and replace it with a blank one.
Press y now, and subsequently, type either cd or dvd depending on the type
of the blank medium.

You can now burn as many copies as you think is necessary. Enter n at the
prompt when you are done burning the last required CD. You now have
the option of burning another CD set for somebody else with a different
passphrase. Enter y if you want to burn another set. Enter n to stop the
copying operation; you will be returned to the menu, after you are asked to
replace the original CD in the drive.

167



APPENDIX C. KEY CREATION MANUAL

168



Bibliography

[ALF93]

[ALRLO4]

[AMV96]

[Asn08|
[BBB*06]

[Bon07]
[Can05]

[Com96|

[Cus07]

[DA99)]

Anne Dardenne Axel, Axel Van Lamsweerde, and Stephen
Fickas, Goal-directed requirements acquisition, Science of
Computer Programming, 1993, pp. 3-50.

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and
Carl Landwehr, Basic concepts and tazonomy of dependable
and secure computing, IEEE Transactions on Dependable and
Secure Computing 1 (2004), no. 1, 11-33.

Paul van Oorschot Alfred Menezes and Scott Vanstone,
Handbook of applied cryptography, ch. 12 - Key Establishment
Protocols, CRC Press, 1996.

Yudis Asnar, Si* goal risk framework tool, 2008.

Elaine Barker, William Barker, William Burr, William Polk,
and Miles Smid, Recommendation for key management, Tech.
Report 800-57, National Institute of Standards and Technology
(NIST), 2006.

Alessio Bonetti, Si* user’s guide, Tech. report, 2007.

Ericsson Research Canada, Distributed security infras-
tructure and digital signatures in the kernel, 2005,
http://disec.sourceforge.net/.

EBU/CENELEC/ETSI Joint Technical Commitee, Support
for use of scrambling and conditional access (CA) within
digital broadcasting systems, Tech. Report 289, European
Telecommunications Standards Institute (ETSI), 1996.

ETSI DVB Custodian, DVB scrambling technology
licence and non-disclosure agreement, 2007,
http://www.etsi.org/WebSite/document/Algorithms/Licence. SCRAM.doc.

T. Dierks and C. Allen, The TLS protocol: version 1.0, Tech.
Report RFC 2246, IETF Network Working Group, 1999.

169



BIBLIOGRAPHY

[DROS]

[FIS02]

[FSF07]

[GKMPO4]

[GMNS03]

[GMS05]

[HowQ7]

[idct06]

[Inc02]

1T04]

[IT08]

[KBC97]

[KLO7]

T. Dierks and E. Rescorla, The TLS protocol: wversion 1.2,
Tech. Report RFC 5246, IETF Network Working Group, 2008.

Federal information security management act, no. 44 U.3.C,,
Sec 354, United States Code, 2002.

Inc Free Software Foundation, Gnu general public license,
version 3.

Paolo Giorgini, Manuel Kolp, John Mpylopoulos, and Marco
Pistore, Methodologies and software engineering for agent
systems, ch. The Tropos Methodology: an overview, Kluwer
Academic Publishing, 2004.

Paolo Giorgini, John Mylopoulos, Eleonora Nicchiarelli, and
Roberto Sebastiani, Formal reasoning techniques for goal
models, Journal of Data Semantics 1 (2003), 1-20.

Paolo Giorgini, John Mpylopoulos, and Roberto Sebastiani,
Goal-oriented requirements analysis and reasoning in the
tropos methodology, Engineering Applications of Artificial
Intelligence 18 (2005), 159-171.

David Howells, Kernel module signing
(modsign), 2007, http://lwn.net/Articles/222162/,
http://cvs.fedora.redhat.com/viewvc/rpms/kernel /F-
8/7root=extras.

ISO/IEC Joint Technical Committee 1 ‘Information Technology’
/ Subcommittee 31 ‘Automatic identification and data capture
techniques’, Data matriz bar code symbology specification,
no. 16022, ISO/IEC, 2006.

RSA Security Inc., PKCS 1: RSA cryptography standard
v2.1, Tech. report, 2002.

Telecommunication Standardization Sector ITU-T, Message
sequence chart (msc), no. Z.120, International Telecommuni-
cation Union ITU, 2004.

, Public-key and attribute certificate framework, no.
X.509, International Telecommunication Union ITU, 1988-2008.

H. Krawczyk, M. Bellare, and R. Canetti, HMAC: Keyed-
hashing for message authentication, Tech. Report RFC 2104,
IETF Network Working Group, 1997.

J. Katz and Y. Lindell, Introduction to modern cryptography,
Chapman and Hall/CRC Press, 2007.

170



BIBLIOGRAPHY

[Koc09]

[MAM+99]

[Min09]

[MMZ07]

[NIO1a]

[NI01b]

[N109]

[0oapmhi00]

[0hsi98]

[ohsi99]

[Poe08]

[ProQ9]

[Res99]

Werner Koch, GNU priwacy guard (GnuPG), 2009,
http://www.gnupg.org/.

M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams,
X.509 internet public key infrastructure online certificate
status protocol (ocsp), Tech. Report RFC 2560, IETF Network
Working Group, 1999.

Peter Minten, tphion peer assisted protocol (1PAP) v3.

Fabio Massacci, John Mylopoulos, and Nicola Zannone, An
ontology for secure socio-technical systems, Handbook of
Ontologies for Business Interaction, The IDEA Group, 2007.

Information Technology Laboratory (NIST-ITL), Security
requirements for cryptographic modules, Tech. Report 140-2,
National Institute of Standards and Technology (NIST), 2001.

, Specification for the advanced encryption standard
(AES), Tech. Report 197, National Institute of Standards and
Technology (NIST), 2001.

, Digital signature standard (dss), Tech. Report 186-3,
National Institute of Standards and Technology (NIST), 2009.

ISO/IEC Joint Technical Committee 1 ‘Information Tech-
nology’ / Subcommittee SC 29 ‘Coding of audio picture
multimedia and hypermedia information’, Generic coding of
moving pictures and associated audio wnformation, no.
13818, ISO/IEC, 2000.

ISO Technical Committee 159 ‘Ergonomics’ / Subcommittee
4 ‘BErgonomics of human-system interaction’, Ergonomic
requirements for office work with wisual display terminals
(vdts), no. 9241, ch. 11: Guidance on Usability, ISO, 1998.

, Human-centred design processes for interactive
systems, no. 13407, ISO, 1999.

M.L. Poelstra, Analysing and improving iphion collaborative
IPTV, Master’s thesis, Eindhoven University of Technology,
2008.

The Mozilla Project, Network security services (NSS), 2009,
http://www.mozilla.org/projects/security /pki/nss/.

E. Rescorla, Daiffie-Hellman key agreement method, Tech.
Report RFC 2631, IETF Network Working Group, 1999.

171



BIBLIOGRAPHY

[Res00]

[RHCF05]

[Riv92]

[SCO02]

[Sim96]

[SLAWOS]

[SO05]

[S0192]

[vS09]

[WAHO06]

[Wei01]

[WW04]

[X905]

[YMo4]

, HTTP over TLS, Tech. Report RFC 2818, IETF
Network Working Group, 2000.

Manny Rayner, Beth Ann Hockey, Nikos Chatzichrisafis, and
Kim Farrell, OMG wunified modeling language specification,
Version 1.3, 1999 Object Management Group, Inc, 2005.

R. Rivest, The M D5 message-digest algorithm, Tech. Report
RFC 1321, IETF Network Working Group, 1992.

Victor F.A. Santander and Jaelson F. B. Castro, Deriving use
cases from organizational modeling, Proceedings of the IEEE
Joint International Conference on Requirements Engineering
(RE’02), 2002.

W. Simpson, PPP challenge-handshake authentication pro-
tocol, Tech. Report RFC 1994, IETF Network Working Group,
1996.

Marc Stevens, Arjen Lenstra, and Benne de Weger, Vulnera-
bility of software integrity and code signing applications to
chosen-prefiz collisions for MDS5.

Guttorm Sindre and Andreas L. Opdahl, Eliciting security
requirements with misuse cases, Requirements Engineering 10
(2005), no. 1, 34-44.

K. Sollins, The TFTP protocol (revision 2), Tech. Report RFC
1350, IETF Network Working Group, 1992.

Johan van Selst, iphion crypto key policy.

Carl  Worth, Steve  Ayer, and Jamey = Hicks,
Itsy package management system, 2006,
http://www.handhelds.org/moin/moin.cgi/lpkg.

Joel Weise, Public key infrastructure overview.

Ralf-Philipp Weinmann and Kai Wirt, Analysts of the DVB
common scrambling algorithm.

Accredited Standards Committee X9, The elliptic curve digital
signature algorithm (ECDSA ), Tech. Report X9.62, American
National Standards Institute, 2005.

Eric S. K. Yu and John Mylopoulos, From E-R to ‘A-R’ -
modelling strategic actor relationships for business process

172



BIBLIOGRAPHY

reengineering, Proceedings of 13th Int. Conf. on the Entity-
Relationship Approach (ER’94), number 881 in Lecture Notes
in Computer Science, Springer-Verlag, 1994, pp. 548-565.

173



	Acknowledgements
	Contents
	List of figures
	List of tables
	1. Introduction
	2. Requirements analysis of the iphion system
	3. Secure communications with TLS
	4. System integrity and secure updates
	5. Content distribution
	6. Conclusions
	A. Glossary
	B. Use and misuse cases
	C. Key creation manual
	Bibliography

