
 Eindhoven University of Technology

MASTER

Multi-standard multi-channel channel decoder architecture for mobile applications

Tong, W.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/db26164d-4409-4d4c-91bf-5c93ef921196

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computer Science

MASTER’S THESIS

Multi-Standard Multi-Channel Channel Decoder
Architecture for Mobile Applications

by
W. Tong

Document type: MSc thesis Eindhoven University of Technology (TU/e)
MSc work: Performed at ST-Ericsson, Technology & Tools,

Advanced R&D, HTC Eindhoven
Period of work: Nov 1, 2008 – Aug 18, 2009
Supervisor: Prof. Dr. C. H. van Berkel
Tutor: MSc R.J.M. Nas

Multi-Standard Multi-Channel
Channel Decoder Architecture for

Mobile Applications

Master’s Thesis

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

Abstract

In the context of software defined radio (SDR), multiple radios can run simultaneously on a shared hardware
platform. Flexible Outer Receiver Architecture (FLORA), as a configurable hardware accelerator of this
hardware platform, was designed to handle channel decoding jobs for multiple radios. Each channel
decoding job has its own execution rate and can be started or stopped independently from other jobs by the
user. This thesis presents a design flow to schedule these channel decoding jobs running on FLORA. We
show a compile-time scheduling which can find a hardware partition of FLORA and group several fine-
granularity tasks to a coarse-granularity task. We also propose a run-time scheduling and resource
management which can handle dynamic combinations of the jobs. We and illustrate the usage of these
techniques and calculate schedulability for the combination of (resource models of) DVB-T, DVB-SH, and
LTE channel decoding jobs running on a simulation platform.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

Legal Information

© Copyright ST-Ericsson, 2009. All Rights Reserved.

Disclaimer

The contents of this document are subject to change without prior notice. ST-Ericsson

makes no representation or warranty of any nature whatsoever (neither expressed nor

implied) with respect to the matters addressed in this document, including but not limited

to warranties of merchantability or fitness for a particular purpose, interpretability or

interoperability or, against infringement of third party intellectual property rights, and in

no event shall ST-Ericsson be liable to any party for any direct, indirect, incidental and or

consequential damages and or loss whatsoever (including but not limited to monetary

losses or loss of data), that might arise from the use of this document or the information

in it.

ST-Ericsson and the ST-Ericsson logo are trademarks of the ST-Ericsson group of

companies or used under a license from STMicroelectronics NV or Telefonaktiebolaget LM

Ericsson.

All other names are the property of their respective owners.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Content

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

Contents

 Preface 7

1 Introduction 9

1.1 Overview of Baseband Processing 9

1.1.1 DFE stage 10

1.1.2 Modem stage 10

1.1.3 Codec stage 11

1.2 The FLORA Architecture 11

1.3 Computation Model 13

1.3.1 Synchronous Dataflow Graph 14

1.3.2 Homogenous Synchronous Dataflow Graph 15

1.4 Organization of Thesis 17

2 Problem Statement 19

2.1 Challenges of Scheduling FLORA 19

2.2 Objectives 19

3 Overall Approach 21

3.1 Introduction 21

3.2 Execution Modeling 24

3.3 Scheduling View 27

3.4 Clustering 33

3.5 Scheduling Models 35

3.5.1 Round Robin Scheduling 36

3.5.2 Coupled Scheduling 37

3.6 Resource Management 39

4 Implementation 41

4.1 Introduction 41

4.2 Simulation Platform 42

4.3 Task Modeling 45

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Content

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

4.4 Mapping 48

4.5 Clustering 49

4.6 RR Scheduling 50

4.7 Resource Manager 53

5 Results 55

5.1 Introduction 55

5.2 Dynamic mix of DVB-T and DVB-SH 57

5.3 Dynamic mix of DVB-T, DVB-SH and LTE without RM 60

5.3.1 LTE without coupled scheduling 60

5.3.2 LTE with coupled scheduling 62

5.4 Dynamic mix of DVB-T, DVB-SH and LTE with RM 65

6 Conclusion and Future Work 67

7 Reference 69

Acronyms and Terms 70

Appendix A: Graphs 71

A.1 The implementation independent SDF graph 71

A.2 The implementation aware SDF graph 71

A.3 The single-iteration SVs and combined SV 72

A.4 Analysis model 73

A.5 Coware task graph 74

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Preface

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

7 (75)

Preface

This document is my Master’s thesis and is the result of my graduation project to obtain

the degree of Master of Science with a specialization in Embedded Systems. The project

was started from November 2008 and finished in August 2009. It was carried out in

Advanced R&D group at ST-Ericsson in Eindhoven.

I would like to express my gratitude to Prof. Kees van Berkel for his excellent guidance

and for giving me the opportunity to carry out my research within SDR project in ST-

Ericsson. I would like to thank Rick Nas, who spent many hours to help me understand

FLORA and SDR project. He guided me through all the stages of the research work and

thesis writing. I also like to thank Orlando Moreira for his help with scheduling and the

SDF graph related issues. Without the discussion with him, the result would not be

possible. Finally, I greatly appreciate the support from my family and my girl friend during

past two years. Thanks a lot!

Wei Tong

Eindhoven, August 2009

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Introduction

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

9 (75)

1 Introduction

Nowadays, wireless communication is becoming more and more important in our life.

Various wireless standards, such as 3G standards, GPS, Bluetooth, WIFI, and mobile TV

standards like Digital Video Broadcasting-satellite services to handhelds (DVB-SH), have

been developed to provide the end users with better services and experiences. In the near

future, Long-term evolution (LTE) and ultra-wideband (UWB) are also coming. The wireless

standards are developing and evolving rapidly.

For the cell phone manufacturers, to design the chipset for each standard and to react

rapidly to market requirements have become very challenging. Due to limited battery

capacity of the handsets and the intensive computational workloads in wireless

communication, application specific integrated circuits (ASIC) are often used to carry out

the algorithms. ASICs are hardwired and with limited flexibility. Therefore, manufacturers

have to design different ASICs for various standards. But at present, the life cycle of the

standard is becoming shorter and shorter. Even within this shorter life cycle, the

algorithms of the standard are still evolving. Poor programmability and configurability of

the ASIC force the manufacturers to redesign the chips if they want to use the new

algorithms or design the solution for a new standard.

To meet the demand of the seamless communication between various networks and to

reduce the cost of designing mobile platform, the software defined radio (SDR) is

proposed. It is defined as: "Radio in which some or all of the physical layer functions are

software defined" in [6].

In our project, we mainly focus on SDR baseband processing out of the whole physical

layer. Our ambition is to process multi-standard radio baseband decoding on a shared

hardware platform. In order to achieve the goal, a heterogeneous multiprocessor system

on chip (MPSoC) platform is designed with a balance among flexibility, power consumption

and computational power. As a configurable hardware accelerator, Flexible Outer Receiver

Architecture (FLORA) is one of the subsystems in this platform. FLORA consists of several

configurable subsystems such as Viterbi, Turbo, and De-interleaver, to handle the channel

decoding for different radio standards. To efficiently make use of the multi-standard

multi-channel decoding capability of FLORA, a smart scheduling strategy is desired to

guarantee the real-time performance of the running radio standards. This thesis proposes

a design flow which enables us to non-preemptively schedule multi-radio applications with

a dynamic job-mix on FLORA.

1.1 Overview of Baseband Processing

As shown in Figure 1-1, baseband processing typically consists of 3 stages: digital front

end (DFE), modem and codec.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Introduction

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

10 (75)

RF

ADC

DAC

DFE Codec

M
A
C
/A
p
p
lic
a
ti
o
n
 P
ro
c
e
s
s
in
g

Modem

Digital Baseband Processing

Channel

decoding

Channel

encoding

Figure 1-1 The baseband processing flow

1.1.1 DFE stage

As an enhancement for analog front end (AFE), DFE accounts for the major part of the re-

configurability of the transceiver. By means of various filters, 3 essential functions are

achieved in DEF stage [1][2].

• IQ transposition. Convert the digitalized real signal to complex signal and vice

versa.

• Sample rate conversion (SRC). Convert the digitalization rate to the rate that

fits the current standard.

• Channel selection. Select the proper channel. It includes conversion to

baseband and channel filtering.

Because of the high computational load and similarity among the algorithms of different

wireless standards, DFE is normally implemented in terms of a configurable hardware but

not mapped to a fully programmable processor.

1.1.2 Modem stage

The modem, also called “inner transceiver”, performs several functions such as

modulation, demodulation, mapping, de-mapping, channel estimation, channel

equalization, and so on.

The modem stage gains most from the flexibility in the hardware. This is because:

• The standards are highly diverse and algorithms are rather complex.

• The functions in modem stage involve intensive computational load and

convolution based operations, for instance, FFT and correlation, which can be

efficiently implemented on vector processor.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Introduction

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

11 (75)

• The standard leaves the freedom to manufacturers to design their own

algorithms with better performance, which can be a differentiator from the

others. Also, with the evolvement of the standards, manufacturers need to

adapt algorithms to achieve better performance.

Lots of researches have been done both in software and hardware related with modem

stage in SDR baseband processing.

1.1.3 Codec stage

The codec stage, also called “outer transceiver”, performs bit-based operation such as

(de)interleaving, (de)puncturing, and channel decoding/encoding (Turbo, Viterbi,

ReedSolomon etc.). As seen from Figure 1-1, codec stage can be split into 2 parts

according to the direction of communication. If we take downlink in mobile

communication as an example, in the transmitter (base station) side, redundancy data is

added by means of channel encoding. This enables error correction at the receiver

(mobile) side to improve the reliability of the transmission.

Since only a limited number of functions are required to support multi-standards and

these functions are determined by the standards with little flexibility left to manufacturers,

a hardware accelerator with a medium degree of reconfigurability will be sufficient.

1.2 The FLORA Architecture

In SDR enabled terminals, baseband processing is mapped on a programmable hardware

platform. Such a multi-standard hardware platform is proposed in [3], as shown in Figure

1-2.

Network on Chip

Configurable

Channel filter

Vector

processor

Configurable

channel

decoder

MCMemory

Figure 1-2 Hardware for SDR baseband

A microcontroller (MC) is used to control baseband tasks. The DFE stage can be mapped

on the configurable channel filter. One or several vector processors can handle the multi-

standard modem stages efficiently. And a reconfigurable hardware accelerator accounts

for multi-standard channel decoding (error correction) in codec stage.

In our approach, FLORA is designed to be such a reconfigurable channel decoder. Figure

1-3 depicts the hardware architecture of FLORA.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Introduction

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

12 (75)

The De-interleaver is normally the first part of the decoding chain. It can read the data

from external memory and forward the data to the next engine as a regular DMA. It can

also perform permutation by programming an integrated address generator, which is a

small vector processor. The vector processor in De-interleaver is fully programmable.

The Depuncture unit is needed when convolutional codes are involved in the broadcast

standard (turbo, viterbi). It has several puncturing patterns that result in different code

rates (CR). The Depuncture unit in FLORA is a generic unit that is compliant to several

standards. It is double buffered at input as well as output resulting in non-stalling

dataflow.

The Viterbi decoder and the ReedSolomon decoder are also designed for multiple

standards and both have small input/output buffer. Unlike the Viterbi decoder and the

ReedSolomon decoder, the Turbo decoder have a big input and output buffer. Therefore, it

can work in block mode meaning that it operate in a block based fashion. Each execution

will consume and produce a block of data. The Turbo decoder in FLORA is configurable. By

setting different parameters, it can handle different standards.

The Viterbi, ReedSolomon and Turbo decoders perform real decoding functions, which

remove the redundancy and convert transmission data to user data.

The Descrambler is a multi standard engine compliant to several standards. Every energy

dispersal polynomial can be programmed to a max degree of 31. In one clock cycle it can

generate aone byte of output data.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Introduction

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

13 (75)

dcs2ahb

Turbo

decoder

Viterbi

decoder

RS

decoder
De-

Puncture

De-

Scrambler
CRC

De-

Interleave
WR

DMA

Bridge

64

AXI interface

64

Matrix network

MC

Figure 1-3 The FLORA architecture

The hardware units inside FLORA are connected to a matrix network. The routing of the

connections is decided by the applications mapped on it. The routing will chain several

hardware units together, and they can work simultaneously to execute one or more

applications.

All the hardware units in the FLORA are controlled and configured by an MC. In the low

power context, such as the mobile platform, MC is normally an ARM processor. If some of

the hardware units in FLORA need to decode another standard, the ARM is responsible for

configuring the parameters of the hardware units in FLORA via Advanced Peripheral Bus

(APB) [7]. MC also accounts for the scheduling of the tasks running on the hardware units.

The start time and execution order of the tasks are all decided by the ARM. The input data

of FLORA is from the outside. A multi layer Advanced eXtensible Interface (AXI) bus [7]

glues the FLORA with the rest of baseband processing platform.

1.3 Computation Model

In the previous section, we introduce the baseband processing and the FLORA architecture

for the outer receiver. In this section, we discuss how to model the applications that are

mapped on FLORA.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Introduction

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

14 (75)

In SDR baseband processing, several applications can be executed simultaneously. The

channel decoding parts of these applications are mapped on FLORA. The channel decoding

parts are called jobs in this thesis. One job may consist of several tasks. In the context of

SDR baseband, these jobs are normally hard real-time jobs [11]. This means that all the

jobs must meet their throughput/latency requirements at all times. The guarantee has to

be made to avoid the unexpected events. Therefore, firstly, the temporal behavior of the

jobs must be predictable. Secondly, the resource consumption of each job must be well

known, to arrive at an efficient and correct mapping.

Due to these purposes, a job model is needed to enable the analysis of the scheduling and

resource management during the compile time. The job model needs to be abstracted to a

certain level, such that we can do a quick simulation and verification in the early phase of

the design, without knowing any unnecessary details. But the model is also required to

keep proper temporal behavior and reflect resources consumption. A task graph is a good

way to model these jobs. It includes the computational tasks in the job, and with edges

between tasks to depict the data flow and dependencies. Synchronous Dataflow Graphs

(SDF) [8] is a sub set of task graphs. It offers design-time predictability. In section 1.3.1,

SDF is discussed in detail. Next, in section 1.3.2, we give the detail of homogeneous

synchronous dataflow graph (HSDF), a special case of SDF.

1.3.1 Synchronous Dataflow Graph

As a special case of dataflow graphs, the SDF model was introduced in 1987 by Edward A.

Lee and David G. Messerschmitt [8]. The definition of SDF was given in [9], as shown

below:

Definition 1(SDF Graph): An SDF graph is defined by the tuple (, , , , ,)V E d P I O where

• V is a set of actors (vertices/nodes of the graph),

• E V V⊆ × , is a set of directed edges,

• d: E → � is a function that specifies the number of initial tokens (delay) on

an (,)edge u v E∈ ,

• P: V → � is a function that defines the execution time of an actor v V∈ .

()P v is always a constant number during the execution of SDF graph,

• I : E → � is a function that describes the number of tokens consumed by an

actor on (,)edge u v E∈ ,

• O: E → � is a function that describes the number of tokens produced by an

actor on (,)edge u v E∈ .

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Introduction

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

15 (75)

A1 A2

A3

1

1

1

1
1

2 2

1

1

1

1

1

1

1

1ms

2ms

3ms

Figure 1-4 SDF graph example

Figure 1-4 shows an example of SDF graph. The vertices/nodes in the graph are called

actors, which correspond to the tasks in a job. The actor consumes a certain number of

input tokens and produces output tokens. The number of input or output tokens for each

firing is specified next to the head or tail of the edges. An actor is always enabled when

the specified number of tokens is available on all of its input edges. Once it is enabled, it

can fire. A worst cast execution time (WCET) is normally used to annotate the firing time of

the actor. WCET is defined as the maximum length of time the task could take to execute

on a specific hardware platform. In the illustrations of the SDF graph above, A1 takes 1ms

to finish an execution. Once the firing is done, all the input tokens of the actor are

consumed, and all the output tokens are produced.

Edges in the SDF graph represent the data dependences between the actors. They can be

seen as channels or infinite-sized FIFOs, which carry the tokens flowing from an actor to

another one. Edge may have a number of initial tokens, sometimes called its delay, which

are depicted as bullets on the edge. Initial tokens on back edge are often used to specify

the FIFO size between actors. For instance, in the Figure 1-4, the initial tokens between A3

and A1 can represent that FIFO size between them is 2. Maximally, A1 can fire twice

before A3 finishes its first execution. A self-edge of an actor means that the actor can’t

fire again until the previous execution is done. It is used to prevent the concurrent firings

of same actor and can also represent the state of the actor between firings.

1.3.2 Homogenous Synchronous Dataflow Graph

HSDF graph is a special case of SDF graph. It is in a more restricted form than normal SDF

graph: the execution of every actor in HSDF graph consumes exactly 1 input token and

produces 1 output token. The definition of HSDF graph is given below.

Definition 2 (HSDF Graph): An HSDF graph is defined by the tuple (, , ,)V E d P , where:

• V is a set of actors (vertices/nodes of the graph),

• E V V⊆ × is a set of directed edges,

• d: E → � is a function that specifies the number of initial tokens (delay) on

an (,)edge u v E∈ ,

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Introduction

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

16 (75)

• P: V → � is a function that defines the execution time of an actor v V∈ .

()P v is always a constant number during the execution of HSDF graph.

Figure 1-5 HSDF graph example

Any SDF graph can be transformed to a HSDF equivalent graph [10]. Figure 1-5 is the HSDF

graph after the transformation performed on the SDF graph in Figure 1-4. The reason we

need this transformation is that there are many techniques in HSDF graph that can enable

throughput, latency, and scheduling analysis.

The self-timed execution of the HSDF graph is an execution in which every actor is fired as

soon as it is enabled. We make the conservative assumptions: input data and output space

must be available at the beginning of the firing and input space and output tokens are

released at the end of the firing. The self-timed execution of HSDF graph reflects the task-

level parallelism. The Figure 1-6 shows the self-timed execution of the HSDF graph in

Figure 1-5.

Figure 1-6 self-timed execution of the example in Figure 3-2

With the time elapsing, as seen from the Figure 1-6, the example in Figure 1-5 enters a

periodic regime. This is not a single special case, but a general property of self-timed

executed HSDF graph. It indicates that, for every HSDF graph (or SDF graph, since all SDF

graphs can be transformed to HSDF graphs), after the transient phase, it will always reach

a steady state. This steady state is repeating itself with a certain period, which is found to

be equal to integral multiple of the so-called Maximum Cycle Mean (MCM). Before we

introduce the MCM, we first give the definition of Cycle Mean (CM) [11].

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Introduction

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

17 (75)

Definition 3 (CM): The cycle mean of a cycle c in a HSDF graph (, , ,)G V E d P= is

defined as,

()

()

()
()

()

a Vs c

e Es c

P a
CM c

d e

∈

∈

=
∑

∑
 1.1

where

• C is a set of directed cycles in HSDF graph G. c C∀ ∈ , is a cycle directed from

an actor to itself, and transverses each node in it once.

• Vs: C V→ is a function that specifies all the actors in the directed

cycle c C∈ . ()Vs c V⊆ ,

• Es: C E→ is a function that specifies all the edges in the directed cycle

c C∈ . ()Es c E⊆ .

Based on the definition of CM, the definition of MCM is given below.

Definition 4 (MCM): the Maximum Cycle Mean of HSDF graph (, , ,)G V E d P= is defined

as,

() ()
Gc C

MCM G maxCM c
∈

= 1.2

where C is a set of directed cycles in HSDF graph G.

The guaranteed minimum throughput of the HSDF graph is the inverse of MCM. Thus, if

we use HSDF graph to model a hard real-time job, the throughput can be analyzed by

calculating MCM.

The equation 1.2 shows a straightforward way of calculating MCM. And many polynomial

algorithms are created to find MCM in a HSDF graph [13]. The MCM in Figure 1-5 is 8ms,

same as periodic interval in Figure 1-6. The throughput of this example is
1

125
MCM

= .

Besides throughput requirements, latency is another form of constraint of hard real-time

jobs. Latency constraints can be modeled by the method proposed in [12]. Therefore, in

this thesis, we will only talk about throughput constraints.

In this thesis, all the SDF and HSDF graphs are in self-timed execution. The actors will fire

immediately once they are enabled.

1.4 Organization of Thesis

The rest of the thesis is organized as follows. In chapter 2, we describe the problems we

want to address and the goals we want to achieve. In chapter 3, we motivate and describe

our scheduling approach. In chapter 4 we provide some detailed information related with

our implementation and simulation. In chapter 5, we present our result. Chapter 6

concludes the thesis and discusses the future work.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Problem Statement

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

19 (75)

2 Problem Statement

2.1 Challenges of Scheduling FLORA

FLORA as a configurable hardware accelerator can be seen as a restricted multiprocessor

platform, on which channel decoding part of the radio can be mapped. There are some

hardware-constraints that make the scheduling of the tasks on FLORA more challenging.

The main challenges are specified as follows:

• Limited buffer size. The connections between hardware units in FLORA are

implemented in hardware buffer. Due to the expensive cost of on-chip

memory, the input/output buffer size of each hardware unit in FLORA just

meets or slight exceeds minimum functional requirement. Due to the strict

buffer size constraint, it is impossible to store extra data during the

processing. The flexibility of scheduling is limited because of the restricted

buffering.

• Scheduling overhead. As we mentioned before, FLORA is controlled by MC via

control bus. All the configuration and scheduling commands for FLORA are

sent by MC. If MC treats every hardware unit as a scheduling unit, there will

be a nontrivial scheduling workload for MC. Moreover, if we schedule the

operations of hardware units in a fine granularity (i.e. bit, byte level), MC has

to continuously configure and schedule hardware units. This will cause awful

amount of communication workload. It is desired to find a scheduling strategy

that enables us to schedule several hardware units as a single unit in coarse

granularity (i.e. thousands of bits, bytes).

• Dynamic combination of jobs. In the context of SDR, the end users can

start/stop any radio applications, such as LTE, WIFI, DVB-T, DVB-SH, at any

time. There are various combinations of these applications during run time.

Purely static scheduling is not a good choice here. A proper scheduling

method is needed to handle dynamic combination of the jobs in run time with

the guarantee of hard real-time performance.

2.2 Objectives

This thesis is focusing on overcoming these scheduling challenges for FLORA. In the end,

the following results will be delivered.

• The simulation platform of FLORA will be created using Coware ESL and

Virtual Platform Unit (VPU) technology.

• The behavioral models of different radio applications will be created in

Coware. These applications include DVB-SH, DVB-T, and LTE.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Problem Statement

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

20 (75)

• An online scheduling approach that fits well with the rest of system will be

designed and implemented in Coware.

• The scheduling simulations of the different radio applications as well as

dynamic combination of them will be done using Coware, based on various

mapping of different radio models.

• Finally, a document about the approach, implementation, and simulation

results will be written.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

21 (75)

3 Overall Approach

3.1 Introduction

The problem we want to address in this chapter is finding a scheduling strategy which can

handle a dynamic combination of several hard-real-time jobs running on FLORA. A lot of

research has been done related with scheduling hard-real-time jobs on a multiprocessor

and some achievements have been made. The scheduling strategy proposed in [11]

addresses the problem of how to schedule a dynamic mix of hard-real-time jobs on a

heterogeneous multiprocessor. The hardware model used in [11] is under the assumption

that there are enough buffers for communication and the system is preemptible. But this

is not the case for FLORA. FLORA can’t be easily modeled as an instance of the

multiprocessor system template in [9], simply because that there are too many hardware

constraints in FLORA. These constraints such as limited buffer size, non preemptible

hardware, make our design more challenging. In order to overcome these hardware

constraints, we propose a design flow shown in Figure 3-1 and Figure 3-2.

Our approach consists of 2 parts: compile-time scheduling and run-time scheduling. There

are several advantages of doing partial scheduling during compile time. Firstly, there are

only a limited number of radio applications that will be mapped on FLORA and we have the

knowledge about these radios at compile time. Based on that knowledge, some scheduling

decisions can be made in advance. Secondly, there is no time limitation during the compile

time, so it is possible to reduce the run-time scheduling workload by using complex

algorithms and methods.

From the specifications of the radio standards, the implementation independent SDF

graphs can be derived to describe the temporal behavior of radios. This kind of SDF graph

is not related with the hardware at all. However, once we want to analyze the temporal

behaviors of the radios that are mapped onto FLORA, we need to create the

implementation aware SDF graphs where the hardware constraints, such as buffer size and

processing power are taken into account. We refer to the method that derives the

implementation aware SDF graph from the implementation independent SDF graph and

hardware constraints as execution modeling. The implementation aware SDF graph can

reflect these hardware constraints with extra back edges, initial tokens, and the worst case

execution times (WCET) of the actors.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

22 (75)

The actors in the implementation aware SDF graph are mapped onto some hardware units

in FLORA. These hardware units are all configured and controlled at run time by MC

outside FLORA. If there are multiple jobs mapped on FLORA, MC is also in charge of

scheduling them. To create a scheduler instance in MC for every single hardware unit of

FLORA, we have to face several hurdles, such as limited communication bandwidth

between MC and FLORA, the limited processing power of MC and the awful amount of

scheduling workload. In order to overcome these constraints, we try to avoid treating each

single hardware unit as the basic scheduling unit and try to get rid of low level scheduling

(schedule the tasks working at small granularity). To achieve this, a combined Scheduling

View (SV) is derived from a set of implementation aware SDF graphs that are going to be

mapped on FLORA. This SV is nothing more than a hardware partition of FLORA. Each

partition inside SV consists of several hardware units that can be treated as a single

scheduling unit to reduce the scheduling overhead. The combined SV is shared by all the

jobs mapped on FLORA. Once we have a combined SV, we can virtually map the

implementation aware graph on the scheduling units of the combined SV. Finally,

clustering and coupled scheduling (to be introduced) can be applied to the

implementation aware SDF graphs after virtual mapping. Clustering (to be introduced) and

coupled scheduling can transform the SDF graph from steaming-level granularity (i.e. a

token is a bit or byte) to block-level (i.e. a token is thousands bit or byte) granularity. This

enables us to analyze the SDF graph in a much higher level without losing any real-time

related information. It also helps the online scheduler to schedule the tasks without seeing

any detailed operations. Till this step, the offline scheduling is finished.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

23 (75)

Implementation

independent SDF

graph

Execution

modeling

Hardware

Partition

Radio specification

Computational

modeling

Hardware mapping

information

Implementation

aware SDF graph

Scheduling view

Virtual mapping

Clustering

Coupled scheduling

RR scheduling

Analysis model

Figure 3-1 Compile time design flow

During run time (Figure 3-2), the real-time constraints force the scheduler to make the

scheduling decision in a short time for various combinations of the jobs. Round Robin

scheduler, which is non-preemptive, is chosen for every scheduling unit to handle inter-job

scheduling during run time. Besides Round Robin scheduler, an overall resource manager

is also employed to do admission control to ensure the resource provision and real time

performance of each job.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

24 (75)

Job

activated/stoped

Admissible/

Removable?

No

End

 Yes

Analysis model
Resource

Management

Informing online

RR scheduler

Figure 3-2 Run-time scheduling and resource management

After the Introduction, in section 3.2, the techniques for execution modeling are

described. Next, the method to derive the scheduling view is proposed. A modeling

technique called clustering is described in section 3.4. In section 3.5, we introduce several

scheduling models and describe their properties. We will also highlight the benefits of

using them. The last section focuses on resource manager. The resource model and

admission rules will be explained in detail.

3.2 Execution Modeling

The radios are well described by the standardized specifications. For each radio, a so-

called implementation independent SDF graph can be created from its specification. This

graph only specifies the functional behavior of the radio and doesn’t take hardware

platform that it will be mapped on into account. There are no buffer constraints or

processing times. The FIFO channel between two actors is infinite. Figure 3-3 is the

implementation independent SDF graph for the channel decoding stage of DVB-SH. DVB-SH

is a physical layer standard for delivering IP based media content and data to handheld

terminals such as mobile phones or PDAs. It can work in several modes. The example we

are using is in 8k, 16QAM mode. The code rate (CR) of the De-Puncturer ranges from 3 to

10.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

25 (75)

Frequency

De-Interleaver
softbit softbit softbit

softbit

softbit bit bit

24192 24192 24192 24576
N

48 128
N

48 128

N

48 128 61440 61440 12288 1 1

8K, 16QAM

CR=2/N

3≤N≤10

Time

De-Interleaver

Bit

De-Interleaver

De-Puncture
Turbo

Decoder(1/5)
Descrambler

Figure 3-3 Implementation independent SDF graph for DVB-SH

In the implementation stage, the radio will be mapped onto the hardware platform. The

implementation aware graph of the radio is created based on the implementation

independent graph combined with the hardware mapping information. Some actors will be

split or merged due to the hardware constraints and the execution times of the actors will

be annotated. Importantly, the FIFO channel between two actors is not infinite any more,

since the size of memory or buffer that the channel is mapped on must be limited. The

back edges with the initial tokens on them are often used to model the buffer size

constraint. The number of the initial tokens on the back edge represents the size of the

buffer between two actors. We depict an example of this in Figure 3-4. If there were no

back edge from B to A, then A could fire independently of the consumption times of B (i.e.

A doesn’t need B to release buffer space). Suppose the buffer size between A and B is one

token. In Figure 3-4, there is a back edge with 1 initial token between them to simulate the

buffer constraint. The first execution of A consumes the initial token and the input token.

After the first execution, A can’t fire again even there are input tokens available. The back

edge with an initial on it forces A to keep waiting until B finishes its execution and stores

1 token on back edge. This behavior is just as same as when the buffer size between A

and B is 1.

Figure 3-4 Back edge example

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

26 (75)

Compared with the implementation independent SDF graph, the implementation aware

SDF graph for DVB-SH in Figure 3-5 is more restricted. We set the CR of De-Puncture as

2/9. Only 1 modes of DVB-SH is modeled out of several modes. The corresponding names

and execution times of the actors are shown in Table 3-1. The rectangles behind the

actors indicate the hardware units that the actors are mapped onto. Some actors are

added to model the behavior of the job after mapping. For instance, the De-Interleaver can

only perform either reading or writing at a time. Therefore, the actor Time De-Interleaver

is split to 2 actors: input actor A2 and output actor A3. For Turbo decoder in FLORA, it

first reads a block of tokens and then starts processing them. To model this instant

reading behavior, A6 is added with a zero execution time. Back edges with initial tokens

are used to represent the limited buffer size. The tasks are also annotated with execution

times that are decided by processing power of hardware.

Figure 3-5 Implementation aware SDF graph of DVB-SH

Actor Corresponding Name Execution Time

A1 Freq. De-Interleaver. In 62us

A2 Time De-Interleaver. In 26us

A3 Time De-Interleaver Out 26us

A4 Bit De-Interleaver 20ns

A5 De-Puncture 5ns

A6 Turbo In 0

A7 Turbo Out 108us

A8 De-Scrambler 50ns

Table 3-1Actors and their corresponding names

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

27 (75)

The implementation independent SDF graphs and implementation aware SDF graphs for

DVB-T and LTE are depicted in the appendix.

3.3 Scheduling View

As we mentioned in section 2.1, how to reduce the scheduling overhead is a challenge. In

this section, we focus on how to derive an hardware partition from a set of SDF graphs,

such that several hardware units inside a partition can be treated as a single scheduling

unit and the hard-real-time performance is still guaranteed. Before we go into detail, we

first introduce several definitions.

A Hardware Unit (HU) is an atomic (with respect to actor mapping) hardware block in the

hardware platform. The HUs in FLORA are De-Interleaver, De-Puncture, Viterbi,

ReedSolomo, Turbo, De-Scramble, and CRC.

We classify the HUs according to the types of their input/output buffers. De-Interleaver

has a big input buffer but no output buffer. It is the only HU that can read the data from

external memory outside of FLORA. We refer to it as an input-type HU. Some HUs such as

De-Puncturer, Viterbi, ReedSolomon, De-Scrambler, and CRC, have a small input buffer and

output buffer, we refer to them as streaming-type HUs. The HUs like Turbo have both a

big input and output buffers. We refer to them as block-type HUs. Due to the expensive

cost of on-chip memory, the input/output buffer size of each HU in FLORA just meets or

slightly exceeds minimum required buffer size. “The minimum required buffer size” is

defined as the smallest buffer that can store the number of tokens which enable an atomic

firing of actors for the relevant applications. Therefore, the HU type also reflects the

granularity of the actors mapped to it.

Original Mapping (OM) is a function that takes an actor of the implementation aware SDF

graph as the input and produces a HU that the actor is executed by. For instance, In Figure

3-5, (1)OM A De Interleaver= − .

A Functional Unit (FU) is a list of connected actors. The actors in a FU are sorted in the

same order as the order in which the actors are executed. The FU is expressed by a pair of

parentheses with some actors in it. For instance, (4; 5)A A is a valid FU because they are

sorted in the correct order. But (5; 4)A A is invalid because the order is reversed.

An Iteration (I) is a list of connected FUs. It starts from the actor that reads the data from

the external memory, and ends at the first actor that stores the data back to the external

memory. The external memory is big enough for buffering. Therefore, an iteration out of a

job can be isolated and scheduled individually. The content of the iteration will only be

decided once we have the knowledge of hardware platforms. A job can has several

iterations. The Iterations can be derived from the implementation aware graph. It is

expressed as a pair of square brackets with FUs in it.

A Job Structure (JS) is a list of iterations.

FUs, iterations and JS of a job can be derived from the implementation aware SDF graph.

The method to derive them is called chaining.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

28 (75)

Chaining (C) is a function that takes the implementation SDF graph G as the input and

produces a JS. The function is working as follows:

1 n
a a� are the actors in the implementation SDF graph G and are sorted in the same

order as the order in which they are executed.

m=1;

list<actor> fu;

list<FU> I;

list<Iteration> js;

fu.append(
1

a);

for i=2..n {

 If (())
i

type OM a ==block-type{

 I.append(fu);

 fu.clean_all();//Find an FU, start a new one

 fu.append((
i

a));

 }

 If (())
i

type OM a ==steaming-type{

 if(
1

(())
i

type OM a
−

==block-type){

 I.append(fu);

 fu.clean_all();//Find an FU, start a new one

 fu.append(
ia);

 }

 else

 fu.append(
ia);//update current FU

 }

 If (())
i

type OM a ==input-type

 if(
1

(())
i

type OM a
−

==input-type)

 fu.append(
ia);//update current FU

 else{

 js.append(I);//Store the iteration in JS

 I.clean_all();//Find an Iteraion, start a new one

 fu.clean_all();

 fu.append(
ia)//Find an FU, start a new one

 }

 }

}

I.append(fu);

js.append(I);

If we apply the chaining to the DVB-SH example, we will get following results:

FUs: (1; 2; 3; 4; 5), (6), (7) (8)A A A A A A A and A

Iteration: [(1; 2; 3; 4; 5);(6);(7);(8)]A A A A A A A A

JS: {[(1; 2; 3; 4; 5); (6); (7); (8)]}A A A A A A A A

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

29 (75)

A Hardware Segment (HS) is a set of HUs. These HUs can be connected by a configurable

matrix network. A FU out of a job can be virtually mapped onto a HS. For instance,

(4; 5)A A is a FU of the example in Figure 3-5. The corresponding HS

is (,)De Interleaver De Puncture− − , on which (4; 5)A A can be virtually mapped.

A Scheduling View (SV) is a set of HSs that are mutual exclusive to each other. SV is a

partition of all the hardware units. A HS of the SV, consisting of several HUs, is also called

a scheduling unit. In our approach, an online scheduler is assigned to each scheduling

unit to handle scheduling of the tasks mapped on it. The scheduler in the MC will treat the

scheduling unit as a basic resource unit. If any HU inside a HS is busy, we say this

scheduling unit is busy. The HUs of a HS can run in parallel implicitly to achieve streaming-

level pipeline parallelism. The HSs can also run in parallel to achieve better streaming-level

or block-level parallelism.

SV impacts the scheduling ability of the system in the following aspects:

• Intra-iteration pipelining. If a SV allows each FU in an iteration to be virtually

mapped on its own HS without sharing this HS with other FUs, then the FUs in

this iteration can avoid the conflicts on scheduling unit. They can run in

parallel and be scheduled by different online schedulers. A maximal intra-

iteration pipeline capability is achieved.

• Inter-iteration parallelism. If 2 or more FUs from different iterations don’t have

resource conflicts, in principle, there exists an SV which allows these FUs to

be mapped on different HSs. Then, these FUs can run in parallel, and a

maximal inter-iteration parallelism is achieved.

• The number of schedulers. An online scheduler will be assigned to each HS or

scheduling unit. Therefore, Fewer HSs in an SV means fewer online schedulers

and furthermore, the scheduling overhead is also reduced.

Different SVs may have different impacts on system scheduling ability. On one extreme

side, if the SV only consists of one HS which contains all the HUs, there will also be only 1

scheduling unit and the scheduling overhead is minimized, but in the meanwhile, the

system loses its pipeline and parallelism capability. For example, if we treat all the HUs

inside FLORA as a single scheduling unit, the virtual mapping of iteration

[(1; 2; 3; 4; 5);(6);(7);(8)]A A A A A A A A in DVB-SH will be the one shown in Figure 3-6.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

30 (75)

Figure 3-6 Single scheduling unit example

There will be only one run-time scheduler for FLORA. It only starts the new execution once

the old one is done. The execution of the DVB-SH is in this way: First, the source produces

24192 tokens, and then the scheduler starts the execution of A1. A1, A2 and A3 are

sequentially executed without any pipeline parallelism. After A3 produces a block of

tokens, A4 and A5 (They are executed by different hardware as shown in Figure 3-5) start

streaming the tokens to the input FIFO of Turbo simultaneously. Once all the input tokens

are available, A6 takes all the input tokens from the input FIFO, and pass it to A7 for

processing. After a while, A7 produces all the tokens and A8 steams the tokens to sink.

When A8 finish streaming all the tokens, the source can produce the tokens for the next

round execution and the scheduler starts the execution of the iteration again. It is

noticeable that A1 can’t start next round streaming until A8 consumes 1536 tokens of the

previous round. The reason is that the scheduler treats FLORA as a scheduling unit or

single HS. Before A8 finishes streaming 1536 tokens, from the view of the scheduler, the

FLORA is still busy, thus, it can’t start a new execution.

On the other extreme side, if each HS in SV consists of only one HU, there is more

flexibility for the intra-iteration pipeline and inter-iteration parallelism, but we have to

assign a run-time scheduler to every single HU. As a consequence, the scheduling

overhead will increase. For example, if every hardware unit is a scheduling unit in the SV,

the virtual mapping will be different from the example in Figure 3-6, but same as the

example in Figure 3-5. For each scheduling unit, there is an online scheduler. The

execution of the iteration DVB-SH is in this order: A1, A2 and A3 are executed

sequentially. Then A4 and A5 starts streaming the tokens in pipeline. A4 and A5 stop

streaming when the 61440-tokens input buffer of A6 is full. At this time, A1 starts

execution for next round and in the meanwhile A6 starts execution. A6 passes a block of

tokens to A7. Next, A7 processes all the tokens. Finally, A8 streams tokens produced by

A7. In this case, there is a block-level pipeline during the execution. The throughput of

system is higher than the example in Figure 3-6. However, 4 schedulers, instead of 1, are

deployed and the scheduling overhead is increased.

In order to find a proper SV, we need to make a trade off among inter-iteration parallelism,

intra-iteration parallelism and scheduling overhead. In our approach, we are looking for

the SV with fewest hardware segments that offers maximal intra-iteration pipeline and

inter-iteration parallelism.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

31 (75)

Based on these criteria, we select the SV according to following three rules. For a given set

of iterations,

1) Non-resource-conflicting FUs can only be mapped on different HSs of the SV.

2) An FU can be mapped to several HSs. If a FU is mapped to different HSs, it can

only be executed when these segments are all free. We call this coupling and it

requires synchronization between scheduling units.

3) Select solution with fewest HSs in the SV.

1st rule guarantees maximal intra-iteration pipelining and inter-iteration parallelism. 2nd

rule indicates that if a FU is mapped to different HSs, couplings are needed among these

HSs (scheduling units). 3rd rule guarantees the least amount of scheduling overhead, based

above 2 rules.

The SV solution for a single iteration can be derived from a direct virtual mapping of all

the FUs. We refer to this SV solution as single-iteration SV. For instance, the iteration

[(1; 2; 3; 4; 5);(6);(7);(8)]A A A A A A A A in Figure 3-5 can be directly mapped on the

SV[(,),(),()]De Interleaver De Puncturer Turbo De Scrambler− − − . This SV offers best intra-iteration

pipeline capability with fewest HSs or scheduling units. Under this mapping, the system

scheduling ability is as same as the one in Figure 3-5, but with only 3 scheduling units

instead of 4. The scheduling overhead is reduced.

For multiple iterations, the combined SV solution can be derived from several single-

iteration SVs using certain algorithm. Our algorithm is shown below. It has 2 steps: break

down and merge, as shown in Figure 3-7. The break down step is used to guarantee

maximal intra iteration parallelism. For instance, assume the SV for iteration
1
I is

SV1[(,)]De Interleaver De Scrambler− − .
1
I requires De Interleaver− and De Scrambler− to

work simultaneously at streaming level. The SV for iteration
2

I is

SV2[(),(),()]De Interleaver Turbo De Scrambler− − .
2

I requires De Interleaver− and

De Scrambler− to work independently and in the mode of block pipleline. If the

combined SV is [(,),()]De Interleaver De Scrambler Turbo− − , then for
2

I ,

De Scrambler− andDe Scrambler− are in the same scheduling unit, therefore they

can’t be scheduled independently and they lose the block-level pipeline capability. Thus,

according to requirement of SV2, the we first break down the SV1

[(,)]De Interleaver De Scrambler− − to be SV1’ [(),()]De Interleaver De Scrambler− − . We also break

down SV2 according to the requirement SV1. SV2’ is same as SV2. Finally, SV1’ and SV2’

can be easily merged into a combined SV.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

32 (75)

Figure 3-7 Break down and merge

The pseudo code of the algorithm is shown below.

Given single-iteration scheduling views
1 1

1 1
[,]

m
sv hs hs= � ,

2 2

2 1
[,]

n
sv hs hs= � .

Step1: Break down sv1 and sv2 by function break:

'

1
sv =break(sv1,sv2);

'

2
sv =break(sv2,sv1);

Step2: Merge two sv into a combined SV csv:

csv=merge(
'

1
sv ,

'

2
sv).

function break(sv1,sv2){

 SV s=sv1;

 HS tem = ∅ ;

 for i=1..lengthof(sv1){

 tem = ∅ ;

 for j= lengthof (sv2)..1{

 if (j==1){

 s.delete(
1

i
hs);

 s.add(
1

\
i

hs tem);

 tem = ∅ ;

 }

 else{

 s.add(
1 2

i jhs hs∩);

 tem=
1 2

()i jtem hs hs∪ ∩ ;

 }

 }

 }

 return s;

}

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

33 (75)

function merge(sv1,sv2){

 int counter;

 SV s=sv1;

 for i=1.. lengthof (sv2){

 counter=0;

 for j=1.. lengthof (sv1){

 if(
1 2

i jhs hs∩ ≠ ∅){

 s.delete(
1

i
hs);

 s.add(
1 2

i jhs hs∪)

 counter=1;

 break;

 }

 }

 }

 if(counter==0)

 s.add(
2

jhs);

 }

 return s;

}

The single-iteration SVs and combined SV for DVB-SH, DVB-T and LTE is derived as shown

in the appendix A.3. .

3.4 Clustering

In section 3.3, we introduce the derivation of SV from a set of the implementation aware

SDF graphs. Once we have the SV, we can virtually map the tasks to HSs or scheduling

units. If the actors of a FU are mapped to the same HS or scheduling unit, streaming

pipeline will be implicit among these actors. In order to reduce the scheduling overhead

and get rid of unnecessary detailed information to simplify the analysis, we try to

transform fine-granularity SDF graph into coarse-granularity SDF graph. To achieve this, a

modeling technique called clustering is employed.

To apply clustering to the actors in fine-granularity SDF graph, some conditions need to be

met.

• The actors are working at same granularity (i.e. bit, byte).

• The actors are originally mapped on different hardware units and virtually

mapped on the same scheduling unit.

• The buffers before and after these actors are big enough (in block level, i.e.

thousands bits, bytes).

• The buffers’ sizes between actors are at least 2 tokens.

Clustering will merge these actors into a single task. The WCET of the new task will be

calculated according the Latency Rate Severs (LRS) mentioned in [14] as follows:

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

34 (75)

1A An� are the actors going be clustered. The WCETs of them are

1
, ,

A An
T T� respectively. k is the number of the firings to finish streaming a block of

input tokens. The WCET of new task after clustering is
1 1 1,

(,)A An A AnT T k Max T T
−

+ + + ×� � .

For example, suppose there is an iteration [(1; 2);(3)]A A A and the scheduling view is

[(,),()]De Interleaver De Puncturer Turbo− − . A1 and A2 are originally mapped on De-

Interleaver and De-Puncturer respectively, and now they are virtually mapped on

scheduling unit (,)De Interleaver De Puncturer− − . 3A is originally mapped on Turbo

and now virtually mapped on scheduling unit ()Turbo . The implementation independent

graph and graph after virtual mapping are shown in Figure 3-8. The back edge with 2

initial tokens on it indicates the buffer size between A1 and A2 is 2. The back edge with

1000 initial tokens on it indicates the buffer size between A2 and A3 is 1000.

We want to emphasize that even A1 and A2 are virtually mapped on same scheduling unit,

but they are running in parallel implicitly, since they are executed by different hardware

units. The hardware units inside a scheduling unit have streaming pipeline capability.

Figure 3-8 Graphs before clustering

If we want to cluster A1 and A2 as a single task working at block level, we first have to

answer a question: what’s the WCET of the task after clustering? The WCET of A1 and A2

are
1A

T and
2A

T respectively. The buffer size between them is 2. The task after A2 is A3.

There is a 1000 tokens sized buffer between them. The behavior of A3 implies that it can

only start execution after A1 and A2 complete streaming 1000 tokens to its input buffer.

Figure 3-9 Time diagram of the execution

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

35 (75)

The execution of above example is shown in Figure 3-9. If we cluster this 1000 times

repeated streaming behavior of A1 and A2, the buffer pressure before and after A1 and A2

won’t change. The SDF model will be still conservative. After the clustering, the result is

shown in Figure 3-10. Given that A1 and A2 can be executed in pipeline, the WCET of new

task Ac is
1 2 1 2

1000 (,)
A A A A

T T Max T T+ + × .

Figure 3-10 SDF graph after clustering

Compared with Figure 3-8, the SDF graph after clustering in Figure 3-10 omits streaming

level detail and focuses on block level pipeline. The clustering will make scheduling

analysis much easier. We will explain this in the next section.

Clustering can transform the fine-granularity SDF graph to coarse-granularity SDF graph.

But it only works under strict conditions. For some complex SDF graphs (i.e. non-linear

graph, cyclo-static graph), clustering can’t estimate the execution times of the actors after

transformation accurately. In this master graduation project, the execution times of some

actors after transformation, are based on the real experimental data.

3.5 Scheduling Models

On a multiprocessor platform, scheduling the jobs often involves several steps. First, the

tasks of a job need to be assigned to one or more processors. Then the execution order of

the tasks has to be made. Next, the start time of every task needs to be decided by the

scheduler. These scheduling decisions can be made either during compile time or during

run time. In [10], several scheduling strategies have been discussed. The fully dynamic

scheduler makes all the scheduling decisions at run time. It can handle highly dynamic

program behavior by changing the order in which tasks run, and by adjusting processing

loads during run-time. However, the cost of such run-time scheduling decisions is very

high. The fully static scheduling has least amount of run-time overhead, but all the

scheduling decisions have to be made in the compile time. If there are too many jobs and

they can be mixed dynamically at run time, it is a challenge to guarantee that all the tasks

will meet their hard-real-time deadlines.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

36 (75)

Figure 3-11 Trade off between generality and run-time overhead

FLORA is our target hardware platform. It is not a fully programmable multiprocessor

platform, but a configurable hardware accelerator, consisting of several configurable

hardware units controlled by an external MC via the control bus. Due to the non trivial run-

time overhead, we can’t fully dynamically schedule all the tasks during run time. The fully

static scheduling is not a choice either, since there are many kinds of jobs combinations

during run time. If we measure the scheduling methods by run-time overhead and

generality, there are some other scheduling methods between fully dynamic and static

scheduling as shown in Figure 3-11. In order to balance generality and run-time overhead,

Round Robin scheduling and coupled scheduling are used.

3.5.1 Round Robin Scheduling

In the run-time, we need a run-time scheduler to decide the execution order and the start

time of the tasks virtually mapped on a scheduling unit. Round Robin (RR) scheduler is

chosen to be such the run-time scheduler, because it is non-preemptive, easy to

implement and starvation-free.

RR scheduling can be non-preemptive. FLORA doesn’t support preemptive scheduling and

RR scheduling is a good candidate.

RR scheduling is not a complex mechanism and easy to implement. In our approach, the

online scheduler should be as easy as possible, such that the run time decision can be

made in a short time.

RR scheduling is starvation-free. It constantly checks a list of tasks. If the input data is

available on the input channel of a task, the RR scheduler will start its firing. If input data

is not ready, the RR scheduling will skip it and check the next task in the list. This

property indicates that we will always have the upper bound of waiting time under RR

scheduling. This upper bound of the waiting time is called the worst case waiting time

(WCWT). The WCWT of a task a mapped on the scheduling unit SU is equal to the sum of

WCETs of the other tasks in the RR list. The equation is shown below.

() ,

() ()x

Map x SU x a

WCWT a k WCET x
= ≠

= ×∑ 3.1

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

37 (75)

Where ()WCWT a is the WCWT of a,
x

k is the number of times an task x appears in the

RR list, and ()WCET x is the WCET of task x .Based on WCWT, the worst case response

time (WCRT) of actor a can also be derived as shown in below.

() () ()WCRT a WCET a WCWT a= + 3.2

Where ()WCRT a is the WCRT of task a, ()WCET a is the WCET of task a and

()WCWT a is the WCWT of a.

As shown in Figure 3-12, in the SDF graph, the RR scheduling can be incorporated with an

actor W to model the waiting time of task to get the processing resource of scheduling

unit SU (The square box in Figure 3-12). Another actor a is modeling the real processing

time of task. This modeling technique is important for the resource awareness in run time.

Figure 3-12 Round Robin SDF example

3.5.2 Coupled Scheduling

Sometimes the actors out of the same FU, which are pipelined and working at small

granularity, are virtually mapped on different scheduling units. As we mentioned, every

scheduling unit is under the control of its own run-time scheduler. Due to this, the actors

are decoupled and scheduled by more than one scheduler. The streaming flow between

them is broken. However, we want to schedule the actors in same FU at coarse granularity

(i.e., using the clustering technique) to reduce the scheduling overhead. Coupled

scheduling is used to solve this contradiction. Coupled scheduling forces the actors, which

are out of same functional units and mapped on different scheduling units, to synchronize

their first firings, and stream rest of the data in a pipeline mode.

An example is given in Figure 3-13. Suppose the iteration is [(1; 2)]A A and the

scheduling view is[(),()]De Interleaver De Puncturer− − . In the implementation independent

SDF graph, A1 and A2 are streaming data at small granularity (i.e. bit, byte). They are

virtually mapped on ()De Interleaver− and ()De Puncturer− respectively. The buffer size

between A1 and A2 is 2 tokens. A1 and A2 are scheduled by different schedulers. We are

trying to avoid the low level scheduling, such that the scheduler doesn’t have to decide

the start time of each firing. The clustering serves this purpose. It omits the detailed

information, and binds a block of firings together. Therefore, the scheduler only needs to

worry about the starting time of the first firing. However, clustering can’t be directly

applied to the actors virtually mapped on different scheduling units because some of the

conditions mentioned in section 3.4 are not met.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

38 (75)

Figure 3-13 SDF graphs before coupled scheduling

If we use the coupled scheduling to synchronize the first executions of A1 and A2, then

the online schedulers only need to decide the start time of first firings of A1 and A2 and

make the next decision after the completion of streaming 1000 tokens. The coupled

scheduling is shown in Figure 3-14. After the source produces input tokens, A1 starts

waiting until the online scheduler gives the processing resource (There might be other

actors mapped and running on ()De Interleaver− and()De Puncture−). The actor that models

the waiting times of A1 is named W1. When W1 is done, A1 gets the processing resource,

and in the meanwhile, activates the actor that models waiting times of A2, named W2. The

edge from W2 to A1 indicates that A1 won’t start until W2 is done (A2 gets the processing

resource). W2 continues until the online scheduler gives the processor to A2. Now, A1 and

A2 are holding their processing resources and start their first firing. The first firings are

synchronized.
1

 1
0
0
0

Figure 3-14 SDF graph after coupled scheduling

After the coupled scheduling, we can apply clustering on A1 and A2. The result is depicted

in Figure 3-15. Note, the graph in Figure 3-15 is self-timed executed. Therefore, A1’and

A2’ will start simultaneously.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

39 (75)

Figure 3-15 SDF graph after clustering

According to the rules of clustering, the WCET of A1’ and A2’ are
1'A

T and
2'A

T , where

1' 2' 1 2
1000 (,)

A A A A
T T Max T T= = × +

1A
T .

In order to keep the jobs being scheduled independent from each other, we want

emphasize that the coupled scheduling is only used as an intra-job scheduling. Therefore,

the actors need to be coupled are always in the same job and won’t cause the deadlock.

The drawback of the coupled scheduling is the cost of synchronization. In the above

example, if A2 doesn’t get the control of the processor, A1 can’t start even it is holding

the processing resources. There is a period during which A1 is wasting the processing

resources without doing anything except waiting for A2. The cost of synchronization must

be taken into account.

3.6 Resource Management

During run time, the end users can start a new radio application at any time. However, the

hardware resources of FLORA are limited. If there are too many radios running on FLORA,

there is no guarantee for temporal behaviors of all the radios. Therefore, an online

resource manager (RM) is designed. Whenever a start request arrives, RM will check

whether the new job can be accepted or not, according to the admission rule. If the hard-

real-time behavior of new application and the other running applications can still be

guaranteed, the RM will inform the online scheduler to scheduler the new application. If

not, the start request will be denied by RM.

In order to measure the usage of the hardware resource for each application, we need to

create a model of the resource consumption for each application. There are two major

resources involved in FLORA: hardware units and the buffer used by Turbo decoder.

However, in this thesis, a scheduling unit is treated as a basic processing unit. Therefore

we will model scheduling units instead of hardware units as the processing resources. A

SDF graph J, which has been clustered and coupled scheduled, is mapped on a combined

SV S, where
1

[,]
n

S su su= � . The resource consumption of J can be modeled as:

1
() [, , , ,]

n

i o

su su J J
rc J T T M M= �

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Overall Approach

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

40 (75)

Where
1su

T to
nsu

T are WCETs of the actors mapped on
1
,

n
su su� ,

i

J
M and

o

J
M are the

amount of Turbo’s input and output buffer space that occupied by J.

The admission rules can be built on the top of this resource consumption model. Suppose

the total amount of input and output Turbo buffers are
i

M and
o

M respectively, the

combined SV is
1

[,]
n

su su� . Let
1 m

J J� be a set of clustered and coupled scheduled

SDF graphs, with the resource consumption models
1 mJ J

rc rc� . If a new SDF graph

1m
J

+
that has the resource consumption model

1mJ
rc

+
 is admissible, it must meet the

following admission rules:

1) WCRT of each task must be smaller than its relative deadline (RD). The WCRT can

be calculated according to equation 3.1 and 3.2.

2)

1

1
k

m
i i

J

k

M M
+

=

≥∑

3)

1

1
k

m
o o

J

k

M M
+

=

≥∑

Once the new job is accepted, the RM will inform the online scheduler to add the new job

in the RR list.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

41 (75)

4 Implementation

4.1 Introduction

In this chapter, we will show how to implement the modeling and scheduling techniques in

the simulation system. The RTL implementation of FLORA is available and the accurate

verification can be carried out, but to build the real implementations of jobs (DVB-T, DVB-

SH, and LTE) and the schedulers around the RTL implementation is not easy. The trade-off

has to be made among the cost, simulation speed and accuracy as shown Figure 4-1.

Figure 4-1 abstraction

In order to cut the cost and increase the simulation speed, a simulation system with a

moderate accuracy is created by Coware ESL (electronic system level) 2.0 tools [15]. ESL

2.0 refers to a second generation of ESL solutions, which aim to facilitate the design and

development of processor-centric, software-intensive products with complex interconnect

and memory architectures.

The simulation flow is shown in the Figure 4-2. From the implementation aware SDF

graphs, we create the non-functional task models in Coware. The task model we build

keeps the same temporal behavior as the behavior of its corresponding implementation

aware SDF graph, without specifying any detailed functional operations. The techniques

such as coupled scheduling and clustering are applied to these task models. Besides the

task models, a FLORA simulation platform is also designed. The task models of DVB-T,

DVB-SH, and LTE will be mapped onto this simulation platform. The tasks of run-time RR

scheduler and RM are also created and mapped onto simulation platform. The simulation

system is formed by all the task models and the simulation platform. It can capture the

temporal behaviors of these applications that are mapped onto simulation platform, such

that we can verify our approach based on the simulation results.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

42 (75)

Figure 4-2 Simulation flow

4.2 Simulation Platform

To model FLORA architecture, we use platform creator from Coware ESL 2.0 in GUI or in

command line interface (CLI). They are equally functional. But the scalability of CLI is

better, since we can use scripts to automate the design. Therefore, our simulation

platform is created by platform creator CLI.

Coware ESL provides some standard libraries. To model the FLORA, we will use some

components from standard Coware libraries. The components in the Coware libraries

include memory, bus, Virtual Processing Unit (VPU) etc. These components have a set of

standard interfaces and can be assembled to form a simulation hardware platform.

Hardware units of FLORA, such as De-Interleaver, De-Puncture are modeled by VPU. VPU is

a processing abstract resource for a number of tasks. It is the model of processing unit to

reason about the temporal behavior of the tasks running on it. A VPU has its own task

manager. The tasks that run on a VPU are controlled by its task manager. The model of

De-Interleaver in the FLORA is created by following codes:

::pct::open_library SCML_TM_VPU

::pct::open_library SCML_BL

::pct::open_library GenericIPlib

::pct::open_library PV_BL

::pct::open_library AVF_BL

::pct::instantiate_block SCML_TM_VPU:scml_tm_vpu_no_interrupt . InterLeaver

::pct::set_param_value InterLeaver "Template Arguments" nbr_of_memory_ports 1

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

43 (75)

::pct::set_param_value InterLeaver "Template Arguments" BUSWIDTH 64

Table 4-1 Open libraries and instantiate blocks

Not only the hardware units, but also the external memory and MC outside FLORA need to

be modeled. The external memory can be an instance of memory block in GeniricIPlib. The

MC can be modeled as another VPU, on which control tasks like RM and the online

schedulers are running.

All the components in FLORA, MC, and the external memory, can be connected by bus or

FIFO channel. The bus we select is in AVF_BL library, which is defined by OCP standard.

The OCP bus has a standard interface where the VPUs and memory can be connected. It

also has an arbiter to schedule the communication requests from all the VPUs. The bus

consumes some cycles to transfer the data from the sender to receiver. In our case, it is

from VPU to external memory and vice versa. The VPU can access external memory via the

bus, but it must be aware of the range of the addresses where the memory is mapped. The

following piece of codes shows how to do the memory map in CLI.

#memory map

::pct::add_target X_MEM/MEM

::pct::add_initiator InterLeaver/p_mem\[0\]

::pct::set_address InterLeaver/p_mem\[0\]:X_MEM/MEM 0

Table 4-2 Memory

After the memory mapping, from the view of p_mem port of De-Interleaver, the starting

address of external memory is 0. The procedure of creating simulation platform is shown

in Figure 4-3.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

44 (75)

Figure 4-3 Flow of creating virtual platform

There are also some other components such as clock generator and the restart generator.

Clock generator decides the frequency of the system. In our case, the FLORA is clocked at

200MHz. The FLORA model in Coware is shown in Figure 4-4. We want to emphasize that

the connections between the VPUs in this step are not established. This is because the real

FLORA uses a matrix network to connect the hardware units. The actual routing of

connections is not determined until the applications are mapped onto the FLORA.

Therefore, in the simulation platform, making these connections is left to the mapping

step.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

45 (75)

Figure 4-4 FLORA model

4.3 Task Modeling

The term task modeling refers to the modeling of a job as a set of tasks that can

communicate with other tasks. This model of the job can be either a functional or a

nonfunctional model. We are focusing on the scheduling of the tasks, meaning that the

functional details are not our main focus. We only need the model that can capture the

certain properties of the job, such as the amount of processing time required to execute

the task and the amount of data that is required to be transferred to perform certain

operations. Task model in Coware is created based on implementation aware SDF graph,

where the actors are annotated with execution time and the numbers of tokens consumed

and produced are specified. Each actor in SDF graph can be modeled as a single task in

Coware. The edges in SDF graph is modeled as the ste_tm_fifo_channel. Compared with

scml_tm_fifo_channel in the standard Coware library, some new APIs are added in

ste_tm_fifo_channel, such as the function to check the occupied and available space in the

FIFO.

The language used to do task modeling is SystemC. A task is modeled as a SystemC

thread. For communication with other tasks, this thread is part of a sc_module. This

module can have ports for communication with other tasks. The communication happens

over channels. The software can access a task-modeling API to annotate execution times

and traffic to be generated and to pass control over to other tasks. Each task has a priority

which can be used by the scheduler and tasks can be grouped in jobs. A job is identified

by its job ID. The task-modeling API is the API for communication of the tasks with the

task manager. The task manager controls the states of the tasks it manages. There are

several states for a task as shown in Figure 4-5.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

46 (75)

TM_TASK_CREATED

TM_TASK_SUSPENDED TM_TASK_READY

TM_TASK_RUNNING TM_TASK_WAITING

TM_TASK_DESTROYED

tm_start

tm_destroy

tm_resume

tm_suspend

activate
tm_wait

tm_wait(event/time)

wait done

Figure 4-5 Task states

More detailed information about the state of the task can be found in [16]. Once a task

graph of an application has been created, it can be mapped unto one or more VPU in the

simulation platform. The default mapping of a task graph is that all the tasks are mapped

on a single VPU. The sample code of a typical streaming task is shown below.

virtual void task(){

 while(true){

 //waiting for the input token and output space

 while(!(p_get->nb_can_get()&&p_put->nb_can_put()))

 tm_wait(1);

 //consume some time before gets the input token

 tm_consume(delay_before_get);

 p_get->nb_get(data);

 //consume some time for processing the token

 tm_consume(processing_delay);

 //consume some time before puts the output token.

 tm_consume(delay_before_put);

 data_out= process(data);

 p_put->nb_put(data_out);

 }

}

Table 4-3 Streaming task model

The task starts with checking whether there is input token in the input channel and output

space in output channel. If not, it will stay in the TM_TASK_WAITING state for one clock

cycle, and then join the ready queue again, waiting for the local scheduler (on the VPU that

the task is mapped on) to activate it. It repeats the checking behavior until there are input

token and output space. Once the input token is ready and output space is available, the

task consumes some time to get the input token, and then start processing it. After the

output token is produced, it puts the output token to the output channel. The whole task

is an infinite while loop, it repeats streaming single token until there are no input token or

no output space. All the tasks are modeled based on the framework in Table 4-3.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

47 (75)

For some tasks working at coarse granularity, the amount of input tokens and output

space that need to be checked is a block of tokens. After all task models are built in

SystemC, we can compile them and an “xml” file will be generated as a task library.

There are still a few steps left: to instantiate the task blocks and connect them by using

ste_tm_fifo_channel. The tasks are connected in the same order as the order they are

executed in. The whole procedure is done in tcl script and platform creator CLI. A sample

code of creating DVB-SH application is shown below.

::pct::new_project

::pct::open_library SCML_TM_PL

::pct::open_library $::env(STE_LIB)/STE_LIB.xml

::pct::open_library ../Tasks/DVB_SH_Tasks/sh_flora_tasks.xml

::pct::open_library ../Tasks/Scheduler_Tasks/Scheduler.xml

::pct::open_library ../Tasks/RM_Tasks/RM.xml

source ../procedure.tcl

::pct::instantiate_block sh_flora_tasks:sSource /HARDWARE sh_1_Source

::pct::instantiate_block sh_flora_tasks:sSink /HARDWARE sh_1_Sink

::pct::instantiate_block sh_flora_tasks:sSymbolDI /HARDWARE sh_1_SymbolDI

::pct::instantiate_block sh_flora_tasks:sTimeDI_mem /HARDWARE sh_1_TimeDI

::pct::instantiate_block sh_flora_tasks:sBitDI /HARDWARE sh_1_BitDI

::pct::instantiate_block sh_flora_tasks:sDePuncture /HARDWARE sh_1_DePuncture

::pct::instantiate_block sh_flora_tasks:sTurbo /HARDWARE sh_1_Turbo

::pct::instantiate_block sh_flora_tasks:sDeScrambler /HARDWARE sh_1_DeScrambler

intra_connect HARDWARE sh_1_Source p sh_1_SymbolDI p_get f_softbit_8 3024 false

data

intra_connect HARDWARE sh_1_SymbolDI p_put sh_1_TimeDI p_get f_softbit_8 3024

false data

intra_connect HARDWARE sh_1_TimeDI p_put sh_1_BitDI p_get f_softbit_8 3072 false

data

intra_connect HARDWARE sh_1_BitDI p_put sh_1_DePuncture p_get f_softbit_8 2 false

data

intra_connect HARDWARE sh_1_DePuncture p_put sh_1_Turbo p_get f_softbit_8 2 true

data

intra_connect HARDWARE sh_1_Turbo p_put sh_1_DeScrambler p_get f_byte 8 true data

intra_connect HARDWARE sh_1_DeScrambler p_put sh_1_Sink p f_byte 8 true data

::pct::save_system 1_sh_task_graph.xml

Table 4-4 Connecting the tasks

The DVB-SH task graph is shown in Figure 4-6. This task graph is derived from the

implementation aware graph and they have the same temporal behaviors. The clustering

and coupled scheduling have not been imposed on the task graph in Figure 4-6.

Figure 4-6 DVB-SH task graph

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

48 (75)

4.4 Mapping

The task graph will be finally mapped onto the simulation platform created in section 4.2.

It is a static mapping, since the hardware units are all configurable hardware accelerators

which are designed only for specific tasks. Therefore, in the mapping stage, we only need

to map the tasks to the corresponding VPUs (hardware units) and make the connections

between tasks that are mapped on different VPUs. When communicating tasks are split

over multiple VPUs, the original connection has to be refined. Instead of a direct

connection, the communication needs to happen over the hardware of the system. For this

purpose, a driver is put between the task and the VPU port that connects to the hardware

of the system. Driver is a special channel that enables the communication of tasks with the

platform and the communication between tasks running on different VPUs. When drivers

are connected to the memory ports of the VPU, they need to produce TLM2 transactions.

For convenience, the SCML_TM_VPU library provides an scml_tm_post_tlm2_transactor

module. This module provides a simple post interface for TLM2 transactions and it

handles the TLM2 communication on the VPU ports.

Figure 4-7 DVB-SH De-Inteaver mapping

Suppose we map the task graph of DVB-SH application in Figure 4-6 onto FLROA

simulation platform, the tasks such as SymbolDI, TimeDI, and BitDI are mapped on De-

Interleaver VPU block as shown in Figure 4-7. The connection between BitDI and

DePuncture is replaced by the drivers on BitDI side and DePuncture side. TimeDI is

communicating with the external memory. A memory driver is assigned. An

scml_tm_post_tlm2_transactor module named i_post_txn is also used to bridge the

protocol gap between memory driver and memory port of VPU.

The overview of the mapping is shown in Figure 4-8. Compared with the simulation

platform in Figure 4-4, the hardware blocks in Figure 4-8 are connected by sc_fifo. The

sc_fifo together with the drivers in the hardware blocks, act as the communication channel

between tasks mapped on different hardware blocks.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

49 (75)

Figure 4-8 overview of simulation system after DVB-SH mapping

4.5 Clustering

Clustering is a technique to transform a streaming-level SDF graph into block-level SDF

graph. There are some conditions need to be met before apply the cluster to tasks

(mentioned in section 3.4). The task graph model we created in section 4.3 is derived from

the implementation aware graph that is working at small granularity. The streaming task

model in Table 4-3 is checking if the single input token and space for single output token

are available for each execution (firing). If the scheduler has to take care of every checking

and firing, the scheduling overhead will be huge. But instead, if we can cluster the

thousands of firings of a task, the task only need to check if there are thousands of input-

tokens and space for thousands of output-tokens, and then task keeps firing for

thousands of times. The scheduler now only needs to decide the start time of the first

firing instead of every firing. Therefore, the scheduling overhead reduced is reduced by

clustering. If we take streaming task model in Table 4-3 as an example, the clustered

model of it is shown in Table 4-5.

virtual void task(){

 while(true){

 if(counter == 0){

while(!(p_get->nb_checkread(data_size_in_softbits)&&p_put->nb_

checkwrite (data_size_out_softbits)))

{

 if(!p_get-> nb_checkread(data_size_in_softbits))

 tm_wait(p_get->ok_to_get());

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

50 (75)

 if(!p_put-> nb_ checkwrite (data_size_out_softbits))

 tm_wait(p_put->ok_to_put());

 }

 }

 //consume some time before gets the input token

 tm_consume(delay_before_get);

 p_get->nb_get(data);

 //consume some time for processing the token

 tm_consume(processing_delay);

 //consume some time before puts the output token.

 tm_consume(delay_before_put);

 data_out= process(data);

 p_put->nb_put(data_out);

 count++;

 if (counter == data_size_in_softbits)

 counter=0;

 }

}

Table 4-5 Clustered task model

There is a counter in clustered task model to record the number of tokens it has

processed. Suppose the numbers of input tokens and output tokens in a block are

data_size_in_softbits and data_size_out_softbits respectively. The task starts with checking

whether all the input tokens are ready and the output space is big enough. If no, the task

constantly puts itself in the TM_TASK_WAITING state until the input tokens and output

space are available. Then it pulls a token from input channel, and processes it, finally

produces it. After steaming a token, the counter is updated. In the next iteration, the task

is aware that there must be some tokens left in the input channel, it won’t check the input

channel again, but continues steaming the data. It won’t stop the steaming behavior until

the counter is equal to the block size (data_size_in_softbits), meaning that a block of

tokens have been consumed by the task. Then the counter is reset, and the next round

block-level processing begins with the checking of input channel and output channel.

4.6 RR Scheduling

We already created a method to derive a combined SV from a set of implementation aware

graphs. Every scheduling unit has a RR scheduler responsible for the scheduling of the

tasks running on this scheduling unit. In the implementation, every hardware unit of

FLORA is modeled as a VPU, which has a local RR scheduler that can decide the execution

order of the tasks mapped on it. But the local RR scheduler is only in charge of one VPU. In

order to schedule several VPUs which belong to same scheduling unit as a whole, another

remote scheduler is implemented as a task running in another VPU named centralized

controller. The communication between tasks and remote scheduler happens over sc_fifo

channel. An example is shown in Figure 4-9. Suppose De-Interleaver is a scheduling unit.

Two jobs are virtually mapped on it. Job A consists of tasks TA1 and TA2. Job B consists of

a single task TB. Job A and B are scheduled by a RR mechanism.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

51 (75)

Assume first TA1 is activated by the local RR scheduler. Then it sends a start request to

the remote RR scheduler via sc_fifo. If there is no task running on De-Interleaver, the

remote RR scheduler will start TA1. TA1 first checks if the input tokens and output space

are available. If not, TA1 will return the control to the remote RR scheduler immediately. If

yes, it will continuously stream a block of tokens. After all the tokens are processed by

TA1, local scheduler starts TA2. When TA2 is done, it will return the control to the remote

RR scheduler. Next TB is activated by local RR scheduler. It will ask for start permission

from the remote RR scheduler. If there is no job running, the remote RR scheduler will

start TB immediately. After TB is done, it returns the control to the remote RR scheduler.

The remote scheduler guarantees that in the same time, only the tasks of same job can be

activated by the local RR scheduler. Local RR scheduler only worries about the execution

order and the start time of the tasks inside the same job. Our model is data driven model.

If the input tokens of TA2 are not ready, TA2 won’t appear in the ready queue. Therefore,

the local RR scheduler can guarantee that the tasks of the same job are activated in the

correct order.

Figure 4-9 Scheduling scheme

The communication between the task and the remote RR scheduler needs to be specified

explicitly as shown in Table 4-6. The task starts with sending start request to remote RR

scheduler. It won’t start until the start command is given by remote RR scheduler. Once

the task gets the processor, it checks whether a block of input tokens and the space for a

block of output tokens are available. If not, it will return the control of VPU to remote RR

scheduler. If yes, it will jump out of the loop, and starts steaming the tokens. After a block

of tokens is processed, the task resets the counter to 0, and notifies remote scheduler

that it is done.

The remote RR scheduler is implemented as task running on a VPU. The main function is

depicted in Table 4-7. The scheduler responds to the start request from the tasks. It

activates the job in a RR mechanism.

virtual void task(){

while(true){

 if(count == 0){

 while(true){

 //start request

 start_put->nb_put(1);

 //Waiting for the remote scheduler to start the application

 while(!start_put->nb_can_put())

 tm_wait(start_put->ok_to_put());

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

52 (75)

 //Check whether there is input.

if(p_get->nb_checkread(data_size_in_softbits)&&p_put-

>nb_checkwrite(data_size_in_softbits))

{

//if everything is ready, jump out of the loop, start the

//application

 break;

}

 //Otherwise, return the control to Scheduler

 tm_consume(2);

 while(!end_put->nb_can_put()){

 tm_wait(end_put->ok_to_put());

 }

 end_put->nb_put(1);

 }

 }

 //consume some time before gets the input token

tm_consume(delay_before_get);

p_get->nb_get(data);

//consume some time for processing the token

tm_consume(processing_delay);

//consume some time before puts the output token.

tm_consume(delay_before_put);

data_out= process(data);

p_put->nb_put(data_out);

count++;

if(count== data_size_in_softbits){

 count=0;

 while(!end_put->nb_can_put()){

 tm_wait(end_put->ok_to_put());

 }

//if any of input, output space or back pressure is not available,

//return the control to Scheduler

 end_put->nb_put(1);

 }

 }

}

Table 4-6 Task model communicating with RR scheduler

virtual void task(){

while(true){

for(i=intlev_running_app_pt_list.begin();i!=intlev_running_app_pt_list

.end();i++){

// start the job

if((*(i->start_get_pt))->nb_can_get()){

(*(i->start_get_pt))->nb_get(tem);

 //waiting for the signal that the tasks is done.

 while(!(*(i->end_get_pt))->nb_can_get())

 tm_wait((*(i->end_get_pt))->ok_to_get());

 (*(i->end_get_pt))->nb_get(tem);

}

}

tm_wait(1);

 }

}

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

53 (75)

Table 4-7 Remote RR scheduler

4.7 Resource Manager

The resource manager (RM) is employed to do the admission control during run time. A

new job can be activated by the end user at any time. Once it is activated, it will send its

resource consumption information to RM. The RM has a function called check_resource().

The check_resource function takes resource consumption model of new job as the input,

calculates the throughputs of all the jobs. If all the throughput constraints can be met, the

new job is accepted. The RM will inform the remote RR schedulers to add the new job into

its RR list. In our implementation, there are 2 remote RR schedulers responsible for De-

Interleaver scheduling unit and Output scheduling unit respectively. The RM in Table 4-8

notifies both schedulers to add a new job.

void RM::task() {

while(true){

 if(app_request_get->nb_can_get()){

app_request_get->nb_get(new_app);

if(check_resource(new_app)){

allocate_resource(new_app);

//tell the schedulers that new app are added to system.

while(!add_intlev_app_put->nb_can_put())

tm_wait(add_intlev_app_put->ok_to_put());

add_intlev_app_put->nb_put(new_app);

while(!add_output_app_put->nb_can_put())

tm_wait(add_output_app_put->ok_to_put());

add_output_app_put->nb_put(new_app);

}

else{

cout<<sc_time_stamp() <<", We can't schedule this application

with job_id:"<<(int)new_app.job_id <<endl;

}

 }

 }

}

Table 4-8 RM example

check_resource function calculates the throughputs of the jobs based on the MCM of the

HSDF graphs and the WCWT of the tasks. If the throughputs of all the jobs meet the

requirements, the function will return true. Otherwise it will return false.

The overview of the simulation system is shown in Figure 4-10.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Implementation

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

54 (75)

Figure 4-10 Overview of simulation system

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

55 (75)

5 Results

5.1 Introduction

To verify the approach, we created the task models for DVB-T, DVB-SH, and LTE in Coware

ESL2.0. These task models are mapped onto the simulation platform of FLORA. The matrix

inner connections of FLORA are configured to match the connections required by the

applications. We can also calculate the combined SV of these 3 applications. The SV and

routing are shown in Figure 5-1. There are 4 scheduling units, from SU1 to SU4. Each of

them has an online RR scheduler, running on the centralized controller. The

communication between scheduling units and the remote RR scheduler happens over

sc_fifo (dash line in Figure 5-1). Besides the online RR schedulers, a RM is also created in

centralized controller, to perform the admission control.

We want to emphasize that these applications do not share the buffers of the Turbo

decoder. Instead, each of them has its own buffers of the Turbo decoder, such that these

applications won’t depend on each other. For instance, LTE and DVB-SH both are using

Turbo decoder. If they are sharing Turbo input buffer, the tasks of LTE can’t start filling

Turbo input buffer until the data of DVB-SH application in Turbo input buffer are emptied.

This delays the execution of the LTE, but most importantly, makes the application highly

depends on each other. To simply our scheduling method, we allow the application to

have its own Turbo buffers.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

56 (75)

Figure 5-1 the routing and the combined SV

In the simulations, we want to show how the RR scheduler and RM handle the dynamic mix

of several radios. Several scenarios will be simulated:

• DVB-T and DVB-SH are mapped on FLORA and scheduled by online RR

schedulers.

• DVB-T, DVB-SH, and LTE are mapped on FLORA and scheduled by online RR

schedulers without RM.

• DVB-T, DVB-SH, and LTE are mapped on FLORA and scheduled by online RR

schedulers with RM.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

57 (75)

5.2 Dynamic mix of DVB-T and DVB-SH

Before we explain the result of the simulation, let’s first look at Table 5-1. The source of

DVB-T produces a block of tokens every 800us. For DVB-SH, the source produces a block

of tokens every 400us. In the real implementation, the heart beat for both DVB-T and DVB-

SH is 924us. The reason we tune the frequency of sources higher than 1/924us is that we

want increase the workload FLORA and reduce its idle time. This won’t change the WCRT

of tasks or the worst case throughput of the application. The throughput constraints are

same for both applications, which require a block of output tokens every 924us. For DVB-T

application, the scheduling units SU1 and SU4 are coupled. For DVB-SH application, the

scheduling units SU1, SU2 and SU4 are working independently from each other.

 SU1 SU2 SU3 SU4

Virtual Mapping

t_1_SymbolDI
t_1_BitDI

t_1_Depunctuer
t_1_Viterbi
t_1_ByteDI

t_1_ReedSolom
on

t_1_Descrambler_dummy
t_1_DeScrambler

DVB-T

Source period: 800us
Throughput: 1/924us
Mode: 8K, 64QAM

Execution Time 300us 186us

Virtual Mapping

sh_1_SymbolDI
sh_1_TimeDI
sh_1_BitDI

sh_1_Turbo

sh_1_Descrambler

DVB-SH
Source period: 400us
Throughput: 1/924us

8K, 16QAM
CR: N=9

Execution Time

180us

108us

10us

Table 5-1 DVB-T and DVB-SH virtual mapping and execution times

Based on the analysis model of DVB-T and DVB-SH (please see Appendix), it is proved that

there are enough resources on FLORA to run DVB-T and DVB-SH in parallel as shown in

Table 5-2. The MCMs for DVB-T and DVB-SH are smaller than 924us. In the first simulation,

we will run DVB-T and DVB-SH under RR schedulers to show how the RR scheduler works.

The simulation result is shown in Figure 5-2 and Figure 5-3.

SU1 SU2 SU3 SU4

WCWT WCET WCWT WCET WCWT WCET WCWT WCET

MCM

DVB-T 180us 300us 0 0 0 0 10us 186us 490us

DVB-SH 310us 180 0us 108us 0 0 186us 10us 490us

Table 5-2 Schedulability analysis for DVB-T and DVB-SH

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

58 (75)

The overall executions of DVB-T and DVB-SH are shown in Figure 5-2. With the online RR

scheduler, the application can be activated and stopped dynamically. The DVB-SH and

DVB-T are both activated at very beginning. At around 800us of the time line, DVB-SH is

stopped. The DVB-T application owns all the resources of FLORA. At around 3.4ms, DVB-

SH is activated again. The RR schedulers add the DVB-SH to their scheduling lists. There is

also inter-jobs parallelism among different scheduling units. At 4.9ms, SU1 is busy with

DVB-T and SU2 is working on DVB-SH.

t_1_Descrambler in red bubble B1 and sh_1_ Descrambler in blue bubble B2 are producing

output data for DVB-T and DVB-SH respectively. Following the timeline, after 4.9ms, they

produce the output data periodically. Arrow 1 and arrow 2 indicate the maximal gap

between 2 continuous output blocks. They are smaller than 924us. In this simulation

graph, the throughput requirements for DVB-T and DVB-SH are met.

SU1

SU2

SU4

800us 3.4ms

DVB-SH is

stopped
DVB-SH is started

Inter Jobs

parallelism

4.9ms

DVB-T

DVB-SH

2

1

B2

B1

Figure 5-2 Dynamic mix of DVB-T and DVB-SH

If we zoom in on the first 700us, the execution trace will be the one shown in Figure 5-3.

At the beginning, DVB-T and DVB-SH are activated. The RR scheduler of scheduling unit

SU1 selects the DVB-T application and starts the application.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

59 (75)

The streaming-level parallelism inside the same scheduling unit can be seen in Figure 5-3.

For example, from 100us to almost 300us, t_1_ByteDI, t_1_Depuncture and t_1_Viterbi are

streaming the data at small granularity simultaneously. Although these 3 tasks are

virtually mapped on the same scheduling unit SU1, the hardware units inside SU1 are

working in the streaming level pipeline.

At about 300us, DVB-T is done. The RR scheduler on SU1 immediately starts DVB-SH.

There is block-level pipeline among SU1, SU2 and SU4. For instance, at the 500us of the

timeline, SU1 and SU2 are working in a pipeline mode where SU2 is busy with the

execution of last round of sh_1_Turbo, and SU1 is busy with sh_1_SymbolDI and

sh_1_TimeDI in current round.

Figure 5-3 Starting phase of DVB-T and DVB-SH

In this simulation, 2 applications are sharing the FLORA. They are scheduled in RR

mechanism. There are enough resources for both DVB-T and DVB-SH on FLORA. The

combination of them can be handled by the RR schedulers and they can meet the

throughput constraint. There is no deadlock, missing deadline or starvation.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

60 (75)

5.3 Dynamic mix of DVB-T, DVB-SH and LTE without
RM

In this section, we want to simulate a dynamic mix of DVB-T, DVB-SH, and LTE. We want to

emphasize that FLORA was designed for broadcasting standards such as DVB-T and DVB-

SH. Therefore, the buffer sizes in FLORA are tailored for these applications. For the cellular

standard like LTE, we are still in the exploration phase. The buffer size of each hardware

unit for LTE channel is not decided yet. Different buffer size can result in different

scheduling methods.

According to the buffer size of Turbo decoder, the LTE application can be scheduled in 2

ways. In the implementation independent SDF graph of LTE in Figure A. 4 (please see

Appendix), for each firing, the source produces a transport block (TB), which consists of

13 code blocks (CB). Functionally, the tasks such as SubDI, Turbo and CRC consume one

CB per firing. If we set the input buffer size of Turbo to be 1 CB, then the SubDI and Turbo

are processing data at CB level. SubDI and Turbo can be synchronized by coupled

scheduling to finish processing a TB (13 CBs) data together. The buffer size is reduced to

one CB, but the coupled scheduling will consume extra time to synchronize SubDI and

Turbo and increases the workload of SU1. If we set the input buffer size of Turbo to be 1

TB (13 CBs), the SubDI can continuously process all 13 CBs and then store the 13 CBs to

the input buffer of Turbo. Next Turbo continuously processes all 13 CBs. No coupled

scheduling is needed, but the buffer size is increased. The implementation aware graphs

of both cases are shown in Appendix. The virtual mapping and execution times for both

cases are shown in the Table 5-3.

 SU1 SU2 SU3 SU4

Virtual Mapping

lte_1_rSubDI
lte_1_wSubDI

lte_1_Turbo

lte_1_CRC

LTE
Turbo with a TB size

buffer
Source period: 1ms
Throughput: 1/1ms
Category: 4, 20MHz

Execution Time

377us

600us

100us

Virtual Mapping

lte_1_rSubDI
lte_1_wSubDI

lte_1_Turbo

lte_1_CRC

LTE
Turbo with a CB size

buffer
Source period: 1ms
Throughput: 1/1ms
Category: 4, 20MHz

Execution Time

600us

600us

100us

Table 5-3 LTE virtual mapping and execution times

5.3.1 LTE without coupled scheduling

We first do a simulation of the dynamic mix of DVB-T, DVB-SH and LTE. The input buffer

size of the Turbo decoder is 1 TB. RM is not assigned.

The simulation result is shown in Figure 5-4. SU1 and SU2 are not coupled in this

simulation. This can be seen from bubble B1 and Bubble B2 in Figure 5-4. lte_1_rSubDI

and lte_1_wSubDI stream 13 CBs to the input buffer of SU2 (Turbo decoder). After the

buffer is full, SU2 continuously processes all the CBs. SU1 and SU2 are not coupled. They

are scheduled independently.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

61 (75)

Based on the MCM calculation of analysis models (please see appendix), it shows that LTE

can’t be scheduled with DVB-T or DVB-SH by this scheduling method as shown in Table 5-4

and Table 5-5. The MCMs for LTE in both cases are bigger than 1000us. LTE can’t meet

throughput requirement. There are several indications that can be found in Figure 5-4. The

task lte_1_CRC is virtually mapped on SU3, which produces the output of LTE application.

If we follow the timeline, before the DVB-SH is started, lte_1_CRC produces an output

block every 1ms (The time interval of arrow 1), which just meets throughput requirement

of LTE. At 3ms, DVB-SH is added to system. The period of producing a block of output

data for lte_1_CRC is increased to more than 1ms, as indicated by arrow 2. After DVB-T is

started at around 5ms, it takes more time for LTE to produce the output data. There are

even no output tokens produced by lte_1_CRC from 8ms to 9ms (in the position of the red

question mark).

SU1 SU2 SU3 SU4

WCWT WCET WCWT WCET WCWT WCET WCWT WCET

MCM

DVB-T 377us 300us 0 0 0 0 0 186us 677us

LTE 300us 377us 0us 600us 0 100us 0 0 1277us

Table 5-4 Schedulability analysis for DVB-T and LTE without coupled scheduling

SU1 SU2 SU3 SU4

WCWT WCET WCWT WCET WCWT WCET WCWT WCET

MCM

DVB-SH 377us 180 600us 108us 0 0 0 10us 1157us

LTE 180us 377us 108us 600us 0 100us 0 0 1265us

Table 5-5 Schedulability analysis for DVB-SH and LTE without coupled scheduling

From the simulation combined with the calculation from the analysis models, we come to

conclusion that LTE can’t be scheduled with DVB-T or DVB-SH by our approach if the input

buffer size of Turbo is 1 TB. The potential solution is to double the input buffer size of

Turbo. That will reduce the MCM and improve the throughput of LTE. But on-chip memory

is expensive. 2-TB buffer can be around 450K bytes. The trade-off has to be made between

them.

Without the RM doing the admission control, the applications that are dynamical mixed

don’t have the guarantee for their temporal behaviors.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

62 (75)

Figure 5-4 Dynamic mix of DVB-T DVB-SH and LTE without coupled scheduling

5.3.2 LTE with coupled scheduling

This simulation is also about the dynamic mix of DVB-T, DVB-SH and LTE. The input buffer

size of the Turbo decoder is 1 CB. The coupled scheduling is used in this simulation. RM is

not assigned. Based on the MCM calculation of analysis model (please see appendix), it

shows that LTE can be scheduled with DVB-T but not DVB-SH by this scheduling method,

as shown in Table 5-6 and Table 5-7. For the combination of DVB-T and LTE, the MCMs for

them just meet the throughput requirement. For the combination of DVB-SH and LTE, LTE

just meets throughput requirement, but DVB-SH can’t.

SU1 SU2 SU3 SU4

WCWT WCET WCWT WCET WCWT WCET WCWT WCET

MCM

DVB-T 600us 300us 0 0 0 0 0 186us 900us

LTE 300us 600us 0us 600us 0 100us 0 0 1000us

Table 5-6 Schedulability analysis for DVB-T and LTE with coupled scheduling

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

63 (75)

SU1 SU2 SU3 SU4

WCWT WCET WCWT WCET WCWT WCET WCWT WCET

MCM

DVB-SH 708us 180 600us 108us 0 0 0 10us 1488us

LTE 180us 600us 108us 600us 0 100us 0 0 998us

Table 5-7 Schedulability analysis for DVB-SH and LTE with coupled scheduling

The simulation result is shown in Figure 5-5 and Figure 5-6. Same as previous simulation,

LTE is started at the beginning. At around 3.5ms, DVB-SH is injected to the system. The RR

schedulers of the scheduling units decide the execution order and start time of all the

tasks. At around 6.9ms, DVB-T is added to system. Now 3 applications are running

together. Based on the worst case throughput calculation from analysis models, LTE can’t

be scheduled with both DVB-T and DVB-SH. But due to the short simulation time, this is

not shown in Figure 5-5.

The coupled scheduling between SU1 and SU2, as an example, can be seen from task

execution traces inside bubble B1 and bubble B2. The LTE tasks lte_1_rSubDI and

lte_1_wSubDI are coupled with lte_1_Turbo. They process the data at the CB level pipeline

and steam a whole TB (13 CB) data to next stage.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

64 (75)

Figure 5-5 Dynamic mix of DVB-T DVB-SH and LTE with coupled scheduling

The coupled scheduling is more obvious if we zoom into the time period from 5.5m to

7.4ms, as shown in Figure 5-6. It is noticeable that execution trace in bubble C2 is slightly

different from its neighbors: the ones in bubble C3 and bubble C4. If we look vertically,

analyze bubble C2 and C1 together, we will find the reason. The tasks in bubble C1 is

sh_1_Turbo, which belongs to DVB-SH. During a small period, SU2 is occupied by

sh_1_Turbo. For LTE application, SU1 and SU2 are coupled. When the tasks of LTE in

bubble C2 are holding the processing resources of SU1, they still have to wait until

sh_1_Turbo in bubble C1 is done. This is the cost of coupled scheduling.

Not only this, in the Table 5-3, LTE with coupled scheduling takes more execution time in

SU1 compared with LTE without coupled scheduling. This is because of the coupled

scheduling. The coupled scheduling forces SU1 to slow done, since SU2 can’t process the

data as fast as SU1.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

65 (75)

From the simulation combined with the calculation from the analysis models, we come to

conclusion that LTE with coupled scheduling can be scheduled with DVB-T, but not DVB-

SH. The coupled scheduling for LTE needs smaller input buffer of Turbo decoder.

However, LTE with coupled scheduling can’t be scheduled with DVB-SH, since DVB-SH can’t

meet is throughput requirement in the worst case scenario. The coupled scheduling brings

synchronization cost between SU1 and SU2. If the other application has a big task in SU2,

it will be a waste that the LTE tasks in SU1 is doing nothing but just waiting for SU2. The

coupled scheduling also slows done the SU1 because that the SU2 consumes more time to

process a CB data.

SU1

SU2

SU3

SU4

SU1

SU1

C1

C2C3 C4

Figure 5-6 zoom-in graph of Dynamic mix of DVB-T DVB-SH and LTE with coupled
scheduling

5.4 Dynamic mix of DVB-T, DVB-SH and LTE with RM

In this simulation, for LTE, we set the input buffer for Turbo to be a TB. No coupled

scheduling is imposed on LTE. RM is added to the simulation platform. The result is shown

in the Figure 5-7.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Results

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

66 (75)

The LTE application starts execution from the very beginning. In the middle, DVB-SH

application sends the start request to RM. The RM checks if there are enough resources by

calculating the CMC of the analysis models for LTE and DVB-SH. It turns out LTE won’t

meet throughput requirement if DVB-SH is added. Therefore, RM refuses the request of

DVB-SH. At around 9.5ms, LTE is done, and then DVB-SH asks for the start. RM calculates

the CMC of analysis model for DVB-SH again. The result is that DVB-SH can meet its

throughput requirement. Then RM informs the RR schedulers. The RR schedulers add DVB-

SH in there scheduling lists and DVB-SH starts execution. Later on, at around 11ms, the

DVB-T also asks for permission from RM. The RM checks the resources again, and asks the

RR schedulers to add the DVB-T application in their scheduling lists. The DVB-T is started

and running with DVB-SH simultaneously.

Figure 5-7 Dynamic mix of DVB-T, DVB-SH and LTE with RM

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Conclusion and Future
Work

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

67 (75)

6 Conclusion and Future Work

In this thesis, we present a design flow for scheduling hard-real-time applications with a

dynamic job-mix on FLORA. The scheduling consists of two parts: compile-time scheduling

and run-time scheduling.

During compile time, an implementation independent SDF graph for each radio is created

according to the radio’s specification. Next, an implementation aware SDF is derived from

the implementation independent SDF graph combined with the hardware mapping

information. Then we developed a method to derive a combined SV, which is an optimal

hardware partition for the scheduling ability of FLORA, from a set of implementation aware

SDF graphs. Furthermore the implementation aware graph is virtually mapped on the

scheduling units of the SV. Clustering, coupled scheduling and RR scheduling are applied

to the actors in the SDF graph after virtual mapping. In the end, an analysis SDF model for

reach radio is generated.

During run time, the RR schedulers and RM are added. The RR scheduler accounts for

scheduling the tasks mapped on a scheduling unit. Dynamic start and stop of jobs can

happen at run time. In order to guarantee the resource provision for the running jobs and

the new coming job, a RM is designed. The RM checks the availability of current resources,

and calculates the MCM from the analysis SDF model of each job. If the admission rules

can be met, the new job will be accepted and scheduled. If not, the new job will be denied.

A simulation system is built to verify our approach. We choose the Coware ESL tool to

setup the simulation system. The Coware task models for DVB-T, DVB-SH and LTE are

created. We applied compile time scheduling techniques to these task models.

Furthermore, a simulation hardware platform for FLORA is also built. The task models

after compile time scheduling, are mapped on the simulation platform. Based on various

mappings, we demonstrated how the run-time RR schedulers and RM are working in the

final results.

With the results as the proof, the research objective that was formulated in 0 is considered

to be sufficiently answered.

Although the dynamic combination of several radios can be handled by FLORA now, there

are still some issues deserve further research. These include:

• We didn’t prove that the algorithm used to derive the combined SV from a set

of single-iteration SVs is deterministic. If it is not, the combined SV will

depend on the sequence of the calculation. This may result in several

combined SVs for a set of applications.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Conclusion and Future
Work

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

68 (75)

• Clustering can only combine the actors and estimate the execution time of the

new combined actor under very strict conditions. The SDF graph of an

application can be more complex such that it can’t meet strict conditions for

clustering. For instance, the implementation aware graph of DVB-SH in Figure

3-5 has a cyclo-static expression for De-puncture. For these complex graphs,

we can’t calculate accurate execution times for each actor by the techniques

mentioned in the clustering step. Instead, in this thesis, most execution times

of the tasks after clustering are based previous experiments.

• The coupled scheduling brings synchronization cost. In some worst scenario,

the synchronization cost can affect the performance of all the applications.

• The implementation of the online schedulers of the simulation system is not

well formed. This can be improved by using standard Coware API. Coware has

a better pre-defined API for scheduling. This is not well used in the

implementation.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Reference

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

69 (75)

7 Reference

[1] T. Hentschel, M. Henker, G. Fettweis, The Digital Front-End of Software Radio

Terminals, IEEE Personal Communications Magazine, 6-12, 1999.

[2] N. Boumaaz, et al. Simplified design for digital front end using random sampling

in software defined radio architecture, Wireless Technology, 2006

[3] Kees van Berkel et al, Vector Processing as an Enabler for Software-Defined Radio

in Handheld devices. EURASIP Journal on Applied Signal Processing, (16), 2005.

[4] E. Tell, A. Nilsson, D. Liu, A Programmable DSP core for Baseband Processing, in

IEEE-NEWCAS Conference, Jun 2005

[5] http://www.design-reuse.com/articles/15703/silicon-ip-for-programmable-

baseband-processing.html

[6] http://www.sdrforum.org/pages/aboutSdrTech/whatIsSdr.asp

[7] http://www.arm.com/products/solutions/AMBAHomePage.html

[8] E. Lee and D. Messerschnitt. Synchronous data flow. In Proceedings of the IEEE,

1987.

[9] M. Bekooij et al. Dataflow analysis for real-time embedded multiprocessor system

design. In Proc. Int’l Workshop SCOPES, LNCS 3199. Springer, Sept. 2004

[10] S. Sriram, and S. Bhattacharyya. Embedded multiprocessors: Scheduling and

Synchronization, Marcel Dekker, Inc., 2000.

[11] Moreira et al. Scheduling multiple independent hard real time jobs on a

heterogeneous multiprocessor. Proceedings of the 7th ACM & IEEE international

conference on Embedded software, 2007.

[12] Moreira and M. Bekooij. Self-timed scheduling analysis for real-time applications.

EURASIP Journal on Advances in Signal Processing, 2007

[13] Dasdan. Experimental analysis of the fastest optimum cycle ratio and mean

algorithms. ACM Transactions on Design Automation of Electronic Systems,

9(4):385-418, Oct. 2004.

[14] M. Wiggers, M. Bekooij, and G. Smit. Modelling Run-Time Arbitration by Latency-

Rate Servers in Data Flow Graphs. In Proc. Int’l Workshop on Software and

Compilers for Embedded Systems (SCOPES), April 2007.

[15] www.coware.com

[16] Task modeling and virtual processing unit user’s guide.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Acronyms and Terms

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

70 (75)

Acronyms and Terms

3G Third Generation

API Application Programming

Interface

DVB-T Digital Video Broadcasting -

Terrestrial

DVB-SH Digital Video Broadcasting –

Satellite services to

Handhelds

ESL Electronic System Level

FLORA Flexible outer receiver

architecture

HU Hardware unit

HS Hardware segment

HSDF Heterogeneous

synchronous data flow

JS Job structure

LTE Long term evolution

MC Micro-controller

OM Original mapping

RM Resource manager

RR Round Robin

RD Relative deadline

SV Scheduling view

SDR Software defined radio

SDF Synchronous data flow

WCET Worst case execution time

WCRT Worst case response time

WCWT Worst case waiting time

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Appendix A: Graphs

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

71 (75)

Appendix A: Graphs

A.1 The implementation independent SDF graph

Implementation independent SDF graphs for all the applications are shown as below. For

DVB-SH, see page 25.

Figure A. 1 Implementation independent SDF graph for DVB-T

Figure A. 2 Implementation independent SDF graph for LTE

A.2 The implementation aware SDF graph

The implementation aware SDF graphs for all the applications are shown as below. For

DVB-SH, see page 26.

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Appendix A: Graphs

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

72 (75)

Figure A. 3 Implementation aware SDF graph for DVB-T

Figure A. 4 Implementation aware SDF graph for LTE with TB sized Turbo input
buffer

Figure A. 5 Implementation aware SDF graph for LTE with CB sized Turbo input
buffer

A.3 The single-iteration SVs and combined SV

Iterations for DVB-T are [(1; 2; 3; 4)]D D D D ,[(5; 6; 7; 8)]D D D D

Single-iteration SVs for DVB-T are

[(, , ,)]De Interleaver Depuncture Viterbi Descrambler− ,

[(, ,)]De Interleaver ReedSolomon Descrambler−

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Appendix A: Graphs

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

73 (75)

Iteration for DVB-SH is [(1; 2; 3; 4; 5);(6);(7);(8)]A A A A A A A A

Single-iteration SV for DVB-SH is [(,),(),()]De Interleaver De Puncture Turbo De Scrambler− − −

Iterations for LTE is [(1);(2); (3)]L L L

Single-iteration SV for LTE is [(),(),()]De Interleaver Turbo CRC−

From the single-iteration SVs, we can derive combined SV for DVB-T, DVB-SH and LTE. It

is[(, , ,),(),(),()]De Interleaver Depuncture Viterbi ReedSolomon Turbo Descrambler CRC− .

A.4 Analysis model

The Analysis models are shown below. The clustering and coupled scheduling are applied.

Figure A. 6 Analysis model for DVB-SH

Figure A. 7 Analysis model for DVB-T

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Appendix A: Graphs

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

74 (75)

 CRCTurbo

De-Interleaver+

Depuncture+Viterbi+

ReedSolomon

L1

SubDI

1 1 1

1

Sink

1
WL2

L2

Turbo WL2
L3

CRC
WL1

1 1 1 11

11 1

1

Sourc

e

1

1

1

1ms

377us

1

600us 100us

Figure A. 8 Analysis model for LTE without coupled scheduling

Figure A. 9 Analysis model for LTE with coupled scheduling

A.5 Coware task graph

For DVB-SH, please see page 47.

Figure A. 10 Coware task graph for DVB-T

Multi-Standard Multi-Channel Channel
Decoder Architecture for Mobile
Applications

Master’s Thesis Appendix A: Graphs

Document ID Rev Revision Label 2009-08-09 Root Part No.

© Copyright ST-Ericsson, 2009. All Rights Reserved. CONFIDENTIAL

75 (75)

Figure A. 11 Coware task graph for LTE

	Abstract
	Legal information
	Contents
	Preface
	1. Introduction
	2. Problem statement
	3. Overall approach
	4. Implementation
	5. Results
	6. Conclusion and future work
	7. Reference
	Acronyms and terms
	Appendix A

