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Abstract 

In the context of software defined radio (SDR), multiple radios can run simultaneously on a shared hardware 
platform. Flexible Outer Receiver Architecture (FLORA), as a configurable hardware accelerator of this 
hardware platform, was designed to handle channel decoding jobs for multiple radios. Each channel 
decoding job has its own execution rate and can be started or stopped independently from other jobs by the 
user. This thesis presents a design flow to schedule these channel decoding jobs running on FLORA.  We 
show a compile-time scheduling which can find a hardware partition of FLORA and group several fine-
granularity tasks to a coarse-granularity task. We also propose a run-time scheduling and resource 
management which can handle dynamic combinations of the jobs. We and illustrate the usage of these 
techniques and calculate schedulability for the combination of (resource models of) DVB-T, DVB-SH, and 
LTE channel decoding jobs running on a simulation platform. 
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1 Introduction 

Nowadays, wireless communication is becoming more and more important in our life. 

Various wireless standards, such as 3G standards, GPS, Bluetooth, WIFI, and mobile TV 

standards like Digital Video Broadcasting-satellite services to handhelds (DVB-SH), have 

been developed to provide the end users with better services and experiences. In the near 

future, Long-term evolution (LTE) and ultra-wideband (UWB) are also coming. The wireless 

standards are developing and evolving rapidly.  

For the cell phone manufacturers, to design the chipset for each standard and to react 

rapidly to market requirements have become very challenging. Due to limited battery 

capacity of the handsets and the intensive computational workloads in wireless 

communication, application specific integrated circuits (ASIC) are often used to carry out 

the algorithms. ASICs are hardwired and with limited flexibility. Therefore, manufacturers 

have to design different ASICs for various standards. But at present, the life cycle of the 

standard is becoming shorter and shorter. Even within this shorter life cycle, the 

algorithms of the standard are still evolving. Poor programmability and configurability of 

the ASIC force the manufacturers to redesign the chips if they want to use the new 

algorithms or design the solution for a new standard.  

To meet the demand of the seamless communication between various networks and to 

reduce the cost of designing mobile platform, the software defined radio (SDR) is 

proposed. It is defined as: "Radio in which some or all of the physical layer functions are 

software defined" in [6]. 

In our project, we mainly focus on SDR baseband processing out of the whole physical 

layer. Our ambition is to process multi-standard radio baseband decoding on a shared 

hardware platform. In order to achieve the goal, a heterogeneous multiprocessor system 

on chip (MPSoC) platform is designed with a balance among flexibility, power consumption 

and computational power. As a configurable hardware accelerator, Flexible Outer Receiver 

Architecture (FLORA) is one of the subsystems in this platform. FLORA consists of several 

configurable subsystems such as Viterbi, Turbo, and De-interleaver, to handle the channel 

decoding for different radio standards. To efficiently make use of the multi-standard 

multi-channel decoding capability of FLORA, a smart scheduling strategy is desired to 

guarantee the real-time performance of the running radio standards. This thesis proposes 

a design flow which enables us to non-preemptively schedule multi-radio applications with 

a dynamic job-mix on FLORA.  

1.1 Overview of Baseband Processing 

As shown in Figure 1-1, baseband processing typically consists of 3 stages: digital front 

end (DFE), modem and codec. 
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Figure 1-1 The baseband processing flow 

1.1.1 DFE stage 

As an enhancement for analog front end (AFE), DFE accounts for the major part of the re-

configurability of the transceiver. By means of various filters, 3 essential functions are 

achieved in DEF stage [1][2]. 

• IQ transposition. Convert the digitalized real signal to complex signal and vice 

versa.  

• Sample rate conversion (SRC). Convert the digitalization rate to the rate that 

fits the current standard. 

• Channel selection. Select the proper channel. It includes conversion to 

baseband and channel filtering.  

Because of the high computational load and similarity among the algorithms of different 

wireless standards, DFE is normally implemented in terms of a configurable hardware but 

not mapped to a fully programmable processor.  

1.1.2 Modem stage 

The modem, also called “inner transceiver”, performs several functions such as 

modulation, demodulation, mapping, de-mapping, channel estimation, channel 

equalization, and so on.  

The modem stage gains most from the flexibility in the hardware. This is because: 

• The standards are highly diverse and algorithms are rather complex.   

• The functions in modem stage involve intensive computational load and 

convolution based operations, for instance, FFT and correlation, which can be 

efficiently implemented on vector processor.  
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• The standard leaves the freedom to manufacturers to design their own 

algorithms with better performance, which can be a differentiator from the 

others. Also, with the evolvement of the standards, manufacturers need to 

adapt algorithms to achieve better performance. 

Lots of researches have been done both in software and hardware related with modem 

stage in SDR baseband processing. 

1.1.3 Codec stage 

The codec stage, also called “outer transceiver”, performs bit-based operation such as 

(de)interleaving, (de)puncturing, and channel decoding/encoding (Turbo, Viterbi, 

ReedSolomon etc.). As seen from Figure 1-1, codec stage can be split into 2 parts 

according to the direction of communication.  If we take downlink in mobile 

communication as an example, in the transmitter (base station) side, redundancy data is 

added by means of channel encoding. This enables error correction at the receiver 

(mobile) side to improve the reliability of the transmission. 

Since only a limited number of functions are required to support multi-standards and 

these functions are determined by the standards with little flexibility left to manufacturers, 

a hardware accelerator with a medium degree of reconfigurability will be sufficient.       

1.2 The FLORA Architecture 

In SDR enabled terminals, baseband processing is mapped on a programmable hardware 

platform. Such a multi-standard hardware platform is proposed in [3], as shown in Figure 

1-2. 

Network on Chip

Configurable

Channel filter

Vector

processor

Configurable

channel 

decoder

MCMemory

 

Figure 1-2 Hardware for SDR baseband 

A microcontroller (MC) is used to control baseband tasks. The DFE stage can be mapped 

on the configurable channel filter. One or several vector processors can handle the multi-

standard modem stages efficiently. And a reconfigurable hardware accelerator accounts 

for multi-standard channel decoding (error correction) in codec stage.   

In our approach, FLORA is designed to be such a reconfigurable channel decoder. Figure 

1-3 depicts the hardware architecture of FLORA.  
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The De-interleaver is normally the first part of the decoding chain. It can read the data 

from external memory and forward the data to the next engine as a regular DMA. It can 

also perform permutation by programming an integrated address generator, which is a 

small vector processor. The vector processor in De-interleaver is fully programmable.  

The Depuncture unit is needed when convolutional codes are involved in the broadcast 

standard (turbo, viterbi). It has several puncturing patterns that result in different code 

rates (CR). The Depuncture unit in FLORA is a generic unit that is compliant to several 

standards. It is double buffered at input as well as output resulting in non-stalling 

dataflow. 

The Viterbi decoder and the ReedSolomon decoder are also designed for multiple 

standards and both have small input/output buffer. Unlike the Viterbi decoder and the 

ReedSolomon decoder, the Turbo decoder have a big input and output buffer. Therefore, it 

can work in block mode meaning that it operate in a block based fashion. Each execution 

will consume and produce a block of data. The Turbo decoder in FLORA is configurable. By 

setting different parameters, it can handle different standards. 

The Viterbi, ReedSolomon and Turbo decoders perform real decoding functions, which 

remove the redundancy and convert transmission data to user data.    

The Descrambler is a multi standard engine compliant to several standards. Every energy 

dispersal polynomial can be programmed to a max degree of 31. In one clock cycle it can 

generate aone byte of output data. 
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Figure 1-3 The FLORA architecture 

The hardware units inside FLORA are connected to a matrix network. The routing of the 

connections is decided by the applications mapped on it. The routing will chain several 

hardware units together, and they can work simultaneously to execute one or more 

applications.  

All the hardware units in the FLORA are controlled and configured by an MC. In the low 

power context, such as the mobile platform, MC is normally an ARM processor. If some of 

the hardware units in FLORA need to decode another standard, the ARM is responsible for 

configuring the parameters of the hardware units in FLORA via Advanced Peripheral Bus 

(APB) [7]. MC also accounts for the scheduling of the tasks running on the hardware units. 

The start time and execution order of the tasks are all decided by the ARM. The input data 

of FLORA is from the outside. A multi layer Advanced eXtensible Interface (AXI) bus [7] 

glues the FLORA with the rest of baseband processing platform.  

1.3 Computation Model 

In the previous section, we introduce the baseband processing and the FLORA architecture 

for the outer receiver. In this section, we discuss how to model the applications that are 

mapped on FLORA. 
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In SDR baseband processing, several applications can be executed simultaneously. The 

channel decoding parts of these applications are mapped on FLORA. The channel decoding 

parts are called jobs in this thesis. One job may consist of several tasks. In the context of 

SDR baseband, these jobs are normally hard real-time jobs [11]. This means that all the 

jobs must meet their throughput/latency requirements at all times. The guarantee has to 

be made to avoid the unexpected events. Therefore, firstly, the temporal behavior of the 

jobs must be predictable. Secondly, the resource consumption of each job must be well 

known, to arrive at an efficient and correct mapping. 

Due to these purposes, a job model is needed to enable the analysis of the scheduling and 

resource management during the compile time. The job model needs to be abstracted to a 

certain level, such that we can do a quick simulation and verification in the early phase of 

the design, without knowing any unnecessary details. But the model is also required to 

keep proper temporal behavior and reflect resources consumption. A task graph is a good 

way to model these jobs. It includes the computational tasks in the job, and with edges 

between tasks to depict the data flow and dependencies. Synchronous Dataflow Graphs 

(SDF) [8] is a sub set of task graphs. It offers design-time predictability. In section 1.3.1, 

SDF is discussed in detail. Next, in section 1.3.2, we give the detail of homogeneous 

synchronous dataflow graph (HSDF), a special case of SDF.  

1.3.1 Synchronous Dataflow Graph 

As a special case of dataflow graphs, the SDF model was introduced in 1987 by Edward A. 

Lee and David G. Messerschmitt [8]. The definition of SDF was given in [9], as shown 

below: 

Definition 1(SDF Graph): An SDF graph is defined by the tuple ( , , , , , )V E d P I O  where 

• V is a set of actors (vertices/nodes of the graph), 

• E V V⊆ × , is a set of directed edges, 

• d: E → � is a function that specifies the number of initial tokens (delay) on 

an ( , )edge u v E∈ , 

• P: V → � is a function that defines the execution time of an actor v V∈ . 

( )P v is always a constant number during the execution of SDF graph, 

• I : E → � is a function that describes the number of tokens consumed by an 

actor on ( , )edge u v E∈ , 

• O: E → � is a function that describes the number of tokens produced by an 

actor on ( , )edge u v E∈ . 
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Figure 1-4 SDF graph example 

Figure 1-4 shows an example of SDF graph. The vertices/nodes in the graph are called 

actors, which correspond to the tasks in a job. The actor consumes a certain number of 

input tokens and produces output tokens. The number of input or output tokens for each 

firing is specified next to the head or tail of the edges. An actor is always enabled when 

the specified number of tokens is available on all of its input edges.  Once it is enabled, it 

can fire. A worst cast execution time (WCET) is normally used to annotate the firing time of 

the actor. WCET is defined as the maximum length of time the task could take to execute 

on a specific hardware platform. In the illustrations of the SDF graph above, A1 takes 1ms 

to finish an execution.  Once the firing is done, all the input tokens of the actor are 

consumed, and all the output tokens are produced. 

Edges in the SDF graph represent the data dependences between the actors. They can be 

seen as channels or infinite-sized FIFOs, which carry the tokens flowing from an actor to 

another one. Edge may have a number of initial tokens, sometimes called its delay, which 

are depicted as bullets on the edge. Initial tokens on back edge are often used to specify 

the FIFO size between actors. For instance, in the Figure 1-4, the initial tokens between A3 

and A1 can represent that FIFO size between them is 2. Maximally, A1 can fire twice 

before A3 finishes its first execution. A self-edge of an actor means that the actor can’t 

fire again until the previous execution is done. It is used to prevent the concurrent firings 

of same actor and can also represent the state of the actor between firings. 

1.3.2 Homogenous Synchronous Dataflow Graph 

HSDF graph is a special case of SDF graph. It is in a more restricted form than normal SDF 

graph: the execution of every actor in HSDF graph consumes exactly 1 input token and 

produces 1 output token. The definition of HSDF graph is given below. 

Definition 2 (HSDF Graph): An HSDF graph is defined by the tuple ( , , , )V E d P , where: 

• V is a set of actors (vertices/nodes of the graph), 

• E V V⊆ × is a set of directed edges, 

• d: E → � is a function that specifies the number of initial tokens (delay) on 

an ( , )edge u v E∈ , 
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• P: V → � is a function that defines the execution time of an actor v V∈ . 

( )P v is always a constant number during the execution of HSDF graph. 

 

Figure 1-5 HSDF graph example 

Any SDF graph can be transformed to a HSDF equivalent graph [10]. Figure 1-5 is the HSDF 

graph after the transformation performed on the SDF graph in Figure 1-4. The reason we 

need this transformation is that there are many techniques in HSDF graph that can enable 

throughput, latency, and scheduling analysis. 

The self-timed execution of the HSDF graph is an execution in which every actor is fired as 

soon as it is enabled. We make the conservative assumptions: input data and output space 

must be available at the beginning of the firing and input space and output tokens are 

released at the end of the firing. The self-timed execution of HSDF graph reflects the task-

level parallelism. The Figure 1-6 shows the self-timed execution of the HSDF graph in 

Figure 1-5. 
 

Figure 1-6 self-timed execution of the example in Figure 3-2 

With the time elapsing, as seen from the Figure 1-6, the example in Figure 1-5 enters a 

periodic regime. This is not a single special case, but a general property of self-timed 

executed HSDF graph. It indicates that, for every HSDF graph (or SDF graph, since all SDF 

graphs can be transformed to HSDF graphs), after the transient phase, it will always reach 

a steady state. This steady state is repeating itself with a certain period, which is found to 

be equal to integral multiple of the so-called Maximum Cycle Mean (MCM). Before we 

introduce the MCM, we first give the definition of Cycle Mean (CM) [11].  
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Definition 3 (CM): The cycle mean of a cycle c  in a HSDF graph ( , , , )G V E d P= is 

defined as, 

( )

( )

( )
( )

( )

a Vs c

e Es c

P a
CM c

d e

∈

∈

=
∑

∑
  1.1 

where  

• C is a set of directed cycles in HSDF graph G. c C∀ ∈ , is a cycle directed from 

an actor to itself, and transverses each node in it once. 

• Vs: C V→ is a function that specifies all the actors in the directed 

cycle c C∈ . ( )Vs c V⊆ , 

• Es: C E→ is a function that specifies all the edges in the directed cycle 

c C∈ . ( )Es c E⊆ . 

Based on the definition of CM, the definition of MCM is given below. 

Definition 4 (MCM): the Maximum Cycle Mean of HSDF graph ( , , , )G V E d P= is defined 

as, 

( ) ( )
Gc C

MCM G maxCM c
∈

=   1.2 

where C is a set of directed cycles in HSDF graph G.  

The guaranteed minimum throughput of the HSDF graph is the inverse of MCM. Thus, if 

we use HSDF graph to model a hard real-time job, the throughput can be analyzed by 

calculating MCM.  

The equation 1.2 shows a straightforward way of calculating MCM. And many polynomial 

algorithms are created to find MCM in a HSDF graph [13]. The MCM in Figure 1-5 is 8ms, 

same as periodic interval in Figure 1-6. The throughput of this example is
1

125
MCM

= . 

Besides throughput requirements, latency is another form of constraint of hard real-time 

jobs. Latency constraints can be modeled by the method proposed in [12]. Therefore, in 

this thesis, we will only talk about throughput constraints.  

In this thesis, all the SDF and HSDF graphs are in self-timed execution. The actors will fire 

immediately once they are enabled. 

1.4 Organization of Thesis 

The rest of the thesis is organized as follows. In chapter 2, we describe the problems we 

want to address and the goals we want to achieve. In chapter 3, we motivate and describe 

our scheduling approach. In chapter 4 we provide some detailed information related with 

our implementation and simulation. In chapter 5, we present our result. Chapter 6 

concludes the thesis and discusses the future work.
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2 Problem Statement 

2.1 Challenges of Scheduling FLORA 

FLORA as a configurable hardware accelerator can be seen as a restricted multiprocessor 

platform, on which channel decoding part of the radio can be mapped. There are some 

hardware-constraints that make the scheduling of the tasks on FLORA more challenging. 

The main challenges are specified as follows: 

• Limited buffer size. The connections between hardware units in FLORA are 

implemented in hardware buffer. Due to the expensive cost of on-chip 

memory, the input/output buffer size of each hardware unit in FLORA just 

meets or slight exceeds minimum functional requirement. Due to the strict 

buffer size constraint, it is impossible to store extra data during the 

processing. The flexibility of scheduling is limited because of the restricted 

buffering.  

• Scheduling overhead. As we mentioned before, FLORA is controlled by MC via 

control bus. All the configuration and scheduling commands for FLORA are 

sent by MC. If MC treats every hardware unit as a scheduling unit, there will 

be a nontrivial scheduling workload for MC. Moreover, if we schedule the 

operations of hardware units in a fine granularity (i.e. bit, byte level), MC has 

to continuously configure and schedule hardware units. This will cause awful 

amount of communication workload. It is desired to find a scheduling strategy 

that enables us to schedule several hardware units as a single unit in coarse 

granularity (i.e. thousands of bits, bytes). 

• Dynamic combination of jobs. In the context of SDR, the end users can 

start/stop any radio applications, such as LTE, WIFI, DVB-T, DVB-SH, at any 

time. There are various combinations of these applications during run time. 

Purely static scheduling is not a good choice here. A proper scheduling 

method is needed to handle dynamic combination of the jobs in run time with 

the guarantee of hard real-time performance.   

2.2 Objectives 

This thesis is focusing on overcoming these scheduling challenges for FLORA. In the end, 

the following results will be delivered.  

• The simulation platform of FLORA will be created using Coware ESL and 

Virtual Platform Unit (VPU) technology.  

• The behavioral models of different radio applications will be created in 

Coware. These applications include DVB-SH, DVB-T, and LTE.  



 

Multi-Standard Multi-Channel Channel 
Decoder Architecture for Mobile 
Applications 

Master’s Thesis Problem Statement

 

Document ID    Rev Revision Label    2009-08-09  Root Part No. 

© Copyright ST-Ericsson, 2009. All Rights Reserved.  CONFIDENTIAL 

20 (75) 

 

 

• An online scheduling approach that fits well with the rest of system will be 

designed and implemented in Coware.  

• The scheduling simulations of the different radio applications as well as 

dynamic combination of them will be done using Coware, based on various 

mapping of different radio models. 

• Finally, a document about the approach, implementation, and simulation 

results will be written.  
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3 Overall Approach 

3.1 Introduction 

The problem we want to address in this chapter is finding a scheduling strategy which can 

handle a dynamic combination of several hard-real-time jobs running on FLORA. A lot of 

research has been done related with scheduling hard-real-time jobs on a multiprocessor 

and some achievements have been made. The scheduling strategy proposed in [11] 

addresses the problem of how to schedule a dynamic mix of hard-real-time jobs on a 

heterogeneous multiprocessor. The hardware model used in [11]  is under the assumption 

that there are enough buffers for communication and the system is preemptible. But this 

is not the case for FLORA. FLORA can’t be easily modeled as an instance of the 

multiprocessor system template in [9], simply because that there are too many hardware 

constraints in FLORA. These constraints such as limited buffer size, non preemptible 

hardware, make our design more challenging. In order to overcome these hardware 

constraints, we propose a design flow shown in Figure 3-1 and Figure 3-2.  

Our approach consists of 2 parts: compile-time scheduling and run-time scheduling. There 

are several advantages of doing partial scheduling during compile time. Firstly, there are 

only a limited number of radio applications that will be mapped on FLORA and we have the 

knowledge about these radios at compile time. Based on that knowledge, some scheduling 

decisions can be made in advance. Secondly, there is no time limitation during the compile 

time, so it is possible to reduce the run-time scheduling workload by using complex 

algorithms and methods. 

From the specifications of the radio standards, the implementation independent SDF 

graphs can be derived to describe the temporal behavior of radios. This kind of SDF graph 

is not related with the hardware at all. However, once we want to analyze the temporal 

behaviors of the radios that are mapped onto FLORA, we need to create the 

implementation aware SDF graphs where the hardware constraints, such as buffer size and 

processing power are taken into account.  We refer to the method that derives the 

implementation aware SDF graph from the implementation independent SDF graph and 

hardware constraints as execution modeling. The implementation aware SDF graph can 

reflect these hardware constraints with extra back edges, initial tokens, and the worst case 

execution times (WCET) of the actors.  
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The actors in the implementation aware SDF graph are mapped onto some hardware units 

in FLORA. These hardware units are all configured and controlled at run time by MC 

outside FLORA. If there are multiple jobs mapped on FLORA, MC is also in charge of 

scheduling them. To create a scheduler instance in MC for every single hardware unit of 

FLORA, we have to face several hurdles, such as limited communication bandwidth 

between MC and FLORA, the limited processing power of MC and the awful amount of 

scheduling workload. In order to overcome these constraints, we try to avoid treating each 

single hardware unit as the basic scheduling unit and try to get rid of low level scheduling 

(schedule the tasks working at small granularity). To achieve this, a combined Scheduling 

View (SV) is derived from a set of implementation aware SDF graphs that are going to be 

mapped on FLORA. This SV is nothing more than a hardware partition of FLORA. Each 

partition inside SV consists of several hardware units that can be treated as a single 

scheduling unit to reduce the scheduling overhead. The combined SV is shared by all the 

jobs mapped on FLORA. Once we have a combined SV, we can virtually map the 

implementation aware graph on the scheduling units of the combined SV. Finally, 

clustering and coupled scheduling (to be introduced) can be applied to the 

implementation aware SDF graphs after virtual mapping. Clustering (to be introduced) and 

coupled scheduling can transform the SDF graph from steaming-level granularity (i.e. a 

token is a bit or byte) to block-level (i.e. a token is thousands bit or byte) granularity. This 

enables us to analyze the SDF graph in a much higher level without losing any real-time 

related information. It also helps the online scheduler to schedule the tasks without seeing 

any detailed operations. Till this step, the offline scheduling is finished.  
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Figure 3-1 Compile time design flow 

During run time (Figure 3-2), the real-time constraints force the scheduler to make the 

scheduling decision in a short time for various combinations of the jobs. Round Robin 

scheduler, which is non-preemptive, is chosen for every scheduling unit to handle inter-job 

scheduling during run time. Besides Round Robin scheduler, an overall resource manager 

is also employed to do admission control to ensure the resource provision and real time 

performance of each job.  
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Figure 3-2 Run-time scheduling and resource management 

After the Introduction, in section 3.2, the techniques for execution modeling are 

described. Next, the method to derive the scheduling view is proposed. A modeling 

technique called clustering is described in section 3.4. In section 3.5, we introduce several 

scheduling models and describe their properties. We will also highlight the benefits of 

using them. The last section focuses on resource manager. The resource model and 

admission rules will be explained in detail.  

3.2 Execution Modeling 

The radios are well described by the standardized specifications. For each radio, a so-

called implementation independent SDF graph can be created from its specification. This 

graph only specifies the functional behavior of the radio and doesn’t take hardware 

platform that it will be mapped on into account. There are no buffer constraints or 

processing times. The FIFO channel between two actors is infinite. Figure 3-3 is the 

implementation independent SDF graph for the channel decoding stage of DVB-SH. DVB-SH 

is a physical layer standard for delivering IP based media content and data to handheld 

terminals such as mobile phones or PDAs. It can work in several modes. The example we 

are using is in 8k, 16QAM mode. The code rate (CR) of the De-Puncturer ranges from 3 to 

10.  



 

Multi-Standard Multi-Channel Channel 
Decoder Architecture for Mobile 
Applications 

Master’s Thesis Overall Approach

 

Document ID    Rev Revision Label    2009-08-09  Root Part No. 

© Copyright ST-Ericsson, 2009. All Rights Reserved.  CONFIDENTIAL 

25 (75) 

 

 

Frequency

De-Interleaver
softbit softbit softbit

softbit

softbit bit bit

24192 24192 24192 24576
N 

48 128
N 

48 128

N 

48 128 61440 61440 12288 1 1

8K, 16QAM

CR=2/N

3≤N≤10

Time

De-Interleaver

Bit

De-Interleaver

De-Puncture
Turbo

Decoder(1/5)
Descrambler

 

Figure 3-3 Implementation independent SDF graph for DVB-SH 

In the implementation stage, the radio will be mapped onto the hardware platform. The 

implementation aware graph of the radio is created based on the implementation 

independent graph combined with the hardware mapping information. Some actors will be 

split or merged due to the hardware constraints and the execution times of the actors will 

be annotated. Importantly, the FIFO channel between two actors is not infinite any more, 

since the size of memory or buffer that the channel is mapped on must be limited. The 

back edges with the initial tokens on them are often used to model the buffer size 

constraint. The number of the initial tokens on the back edge represents the size of the 

buffer between two actors. We depict an example of this in Figure 3-4. If there were no 

back edge from B to A, then A could fire independently of the consumption times of B (i.e. 

A doesn’t need B to release buffer space). Suppose the buffer size between A and B is one 

token. In Figure 3-4, there is a back edge with 1 initial token between them to simulate the 

buffer constraint. The first execution of A consumes the initial token and the input token. 

After the first execution, A can’t fire again even there are input tokens available. The back 

edge with an initial on it forces A to keep waiting until B finishes its execution and stores 

1 token on back edge. This behavior is just as same as when the buffer size between A 

and B is 1.  

 

Figure 3-4 Back edge example 
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Compared with the implementation independent SDF graph, the implementation aware 

SDF graph for DVB-SH in Figure 3-5 is more restricted. We set the CR of De-Puncture as 

2/9. Only 1 modes of DVB-SH is modeled out of several modes. The corresponding names 

and execution times of the actors are shown in Table 3-1. The rectangles behind the 

actors indicate the hardware units that the actors are mapped onto. Some actors are 

added to model the behavior of the job after mapping. For instance, the De-Interleaver can 

only perform either reading or writing at a time. Therefore, the actor Time De-Interleaver 

is split to 2 actors: input actor A2 and output actor A3. For Turbo decoder in FLORA, it 

first reads a block of tokens and then starts processing them. To model this instant 

reading behavior, A6 is added with a zero execution time. Back edges with initial tokens 

are used to represent the limited buffer size. The tasks are also annotated with execution 

times that are decided by processing power of hardware.    

 

Figure 3-5 Implementation aware SDF graph of DVB-SH 

Actor Corresponding Name  Execution Time 

A1 Freq. De-Interleaver. In 62us 

A2 Time De-Interleaver. In 26us 

A3 Time De-Interleaver Out 26us 

A4 Bit De-Interleaver  20ns 

A5 De-Puncture 5ns 

A6 Turbo In 0 

A7 Turbo Out 108us 

A8 De-Scrambler 50ns 

Table 3-1Actors and their corresponding names 



 

Multi-Standard Multi-Channel Channel 
Decoder Architecture for Mobile 
Applications 

Master’s Thesis Overall Approach

 

Document ID    Rev Revision Label    2009-08-09  Root Part No. 

© Copyright ST-Ericsson, 2009. All Rights Reserved.  CONFIDENTIAL 

27 (75) 

 

 

The implementation independent SDF graphs and implementation aware SDF graphs for 

DVB-T and LTE are depicted in the appendix.  

3.3 Scheduling View 

As we mentioned in section 2.1, how to reduce the scheduling overhead is a challenge. In 

this section, we focus on how to derive an hardware partition from a set of SDF graphs, 

such that several hardware units inside a partition can be treated as a single scheduling 

unit and the hard-real-time performance is still guaranteed. Before we go into detail, we 

first introduce several definitions. 

A Hardware Unit (HU) is an atomic (with respect to actor mapping) hardware block in the 

hardware platform. The HUs in FLORA are De-Interleaver, De-Puncture, Viterbi, 

ReedSolomo, Turbo, De-Scramble, and CRC.  

We classify the HUs according to the types of their input/output buffers. De-Interleaver 

has a big input buffer but no output buffer. It is the only HU that can read the data from 

external memory outside of FLORA. We refer to it as an input-type HU. Some HUs such as 

De-Puncturer, Viterbi, ReedSolomon, De-Scrambler, and CRC, have a small input buffer and 

output buffer, we refer to them as streaming-type HUs. The HUs like Turbo have both a 

big input and output buffers. We refer to them as block-type HUs. Due to the expensive 

cost of on-chip memory, the input/output buffer size of each HU in FLORA just meets or 

slightly exceeds minimum required buffer size. “The minimum required buffer size” is 

defined as the smallest buffer that can store the number of tokens which enable an atomic 

firing of actors for the relevant applications. Therefore, the HU type also reflects the 

granularity of the actors mapped to it. 

Original Mapping (OM) is a function that takes an actor of the implementation aware SDF 

graph as the input and produces a HU that the actor is executed by. For instance, In Figure 

3-5, ( 1)OM A De Interleaver= − . 

A Functional Unit (FU) is a list of connected actors. The actors in a FU are sorted in the 

same order as the order in which the actors are executed. The FU is expressed by a pair of 

parentheses with some actors in it. For instance, ( 4; 5)A A is a valid FU because they are 

sorted in the correct order. But ( 5; 4)A A  is invalid because the order is reversed.  

An Iteration (I) is a list of connected FUs. It starts from the actor that reads the data from 

the external memory, and ends at the first actor that stores the data back to the external 

memory. The external memory is big enough for buffering. Therefore, an iteration out of a 

job can be isolated and scheduled individually. The content of the iteration will only be 

decided once we have the knowledge of hardware platforms. A job can has several 

iterations. The Iterations can be derived from the implementation aware graph. It is 

expressed as a pair of square brackets with FUs in it. 

A Job Structure (JS) is a list of iterations.  

FUs, iterations and JS of a job can be derived from the implementation aware SDF graph. 

The method to derive them is called chaining. 
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Chaining (C) is a function that takes the implementation SDF graph G as the input and 

produces a JS. The function is working as follows:  

 

1 n
a a� are the actors in the implementation SDF graph G and are sorted in the same 

order as the order in which they are executed.  

m=1;  

list<actor> fu; 

list<FU> I;  

list<Iteration> js; 

fu.append(
1

a ); 

for i=2..n { 

     If ( ( ))
i

type OM a ==block-type{ 

         I.append(fu); 

         fu.clean_all();//Find an FU, start a new one 

 fu.append((
i

a )); 

     } 

     If ( ( ))
i

type OM a ==steaming-type{ 

 if(
1

( ( ))
i

type OM a
−

==block-type){ 

  I.append(fu); 

  fu.clean_all();//Find an FU, start a new one 

  fu.append(
ia ); 

 } 

 else 

  fu.append(
ia );//update current FU 

     } 

     If ( ( ))
i

type OM a ==input-type 

 if(
1

( ( ))
i

type OM a
−

==input-type) 

  fu.append(
ia );//update current FU 

 else{ 

  js.append(I);//Store the iteration in JS 

  I.clean_all();//Find an Iteraion, start a new one 

  fu.clean_all(); 

  fu.append(
ia )//Find an FU, start a new one  

            } 

     } 

} 

I.append(fu); 

js.append(I); 

 

If we apply the chaining to the DVB-SH example, we will get following results:   

FUs: ( 1; 2; 3; 4; 5), ( 6), ( 7) ( 8)A A A A A A A and A  

Iteration: [( 1; 2; 3; 4; 5);( 6);( 7);( 8)]A A A A A A A A  

JS: {[( 1; 2; 3; 4; 5); ( 6); ( 7); ( 8)]}A A A A A A A A  
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A Hardware Segment (HS) is a set of HUs. These HUs can be connected by a configurable 

matrix network. A FU out of a job can be virtually mapped onto a HS. For instance, 

( 4; 5)A A is a FU of the example in Figure 3-5. The corresponding HS 

is ( , )De Interleaver De Puncture− − , on which ( 4; 5)A A can be virtually mapped.  

A Scheduling View (SV) is a set of HSs that are mutual exclusive to each other. SV is a 

partition of all the hardware units. A HS of the SV, consisting of several HUs, is also called 

a scheduling unit. In our approach, an online scheduler is assigned to each scheduling 

unit to handle scheduling of the tasks mapped on it. The scheduler in the MC will treat the 

scheduling unit as a basic resource unit. If any HU inside a HS is busy, we say this 

scheduling unit is busy. The HUs of a HS can run in parallel implicitly to achieve streaming-

level pipeline parallelism. The HSs can also run in parallel to achieve better streaming-level 

or block-level parallelism. 

SV impacts the scheduling ability of the system in the following aspects: 

• Intra-iteration pipelining. If a SV allows each FU in an iteration to be virtually 

mapped on its own HS without sharing this HS with other FUs, then the FUs in 

this iteration can avoid the conflicts on scheduling unit. They can run in 

parallel and be scheduled by different online schedulers. A maximal intra-

iteration pipeline capability is achieved.  

• Inter-iteration parallelism. If 2 or more FUs from different iterations don’t have 

resource conflicts, in principle, there exists an SV which allows these FUs to 

be mapped on different HSs. Then, these FUs can run in parallel, and a 

maximal inter-iteration parallelism is achieved.   

• The number of schedulers. An online scheduler will be assigned to each HS or 

scheduling unit. Therefore, Fewer HSs in an SV means fewer online schedulers 

and furthermore, the scheduling overhead is also reduced. 

Different SVs may have different impacts on system scheduling ability. On one extreme 

side, if the SV only consists of one HS which contains all the HUs, there will also be only 1 

scheduling unit and the scheduling overhead is minimized, but in the meanwhile, the 

system loses its pipeline and parallelism capability. For example, if we treat all the HUs 

inside FLORA as a single scheduling unit, the virtual mapping of iteration 

[( 1; 2; 3; 4; 5);( 6);( 7);( 8)]A A A A A A A A  in DVB-SH will be the one shown in Figure 3-6.  
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Figure 3-6 Single scheduling unit example 

There will be only one run-time scheduler for FLORA. It only starts the new execution once 

the old one is done. The execution of the DVB-SH is in this way: First, the source produces 

24192 tokens, and then the scheduler starts the execution of A1. A1, A2 and A3 are 

sequentially executed without any pipeline parallelism. After A3 produces a block of 

tokens, A4 and A5 (They are executed by different hardware as shown in Figure 3-5) start 

streaming the tokens to the input FIFO of Turbo simultaneously. Once all the input tokens 

are available, A6 takes all the input tokens from the input FIFO, and pass it to A7 for 

processing. After a while, A7 produces all the tokens and A8 steams the tokens to sink. 

When A8 finish streaming all the tokens, the source can produce the tokens for the next 

round execution and the scheduler starts the execution of the iteration again. It is 

noticeable that A1 can’t start next round streaming until A8 consumes 1536 tokens of the 

previous round. The reason is that the scheduler treats FLORA as a scheduling unit or 

single HS. Before A8 finishes streaming 1536 tokens, from the view of the scheduler, the 

FLORA is still busy, thus, it can’t start a new execution.   

On the other extreme side, if each HS in SV consists of only one HU, there is more 

flexibility for the intra-iteration pipeline and inter-iteration parallelism, but we have to 

assign a run-time scheduler to every single HU. As a consequence, the scheduling 

overhead will increase. For example, if every hardware unit is a scheduling unit in the SV, 

the virtual mapping will be different from the example in Figure 3-6, but same as the 

example in Figure 3-5. For each scheduling unit, there is an online scheduler. The 

execution of the iteration DVB-SH is in this order: A1, A2 and A3 are executed 

sequentially. Then A4 and A5 starts streaming the tokens in pipeline. A4 and A5 stop 

streaming when the 61440-tokens input buffer of A6 is full. At this time, A1 starts 

execution for next round and in the meanwhile A6 starts execution. A6 passes a block of 

tokens to A7. Next, A7 processes all the tokens. Finally, A8 streams tokens produced by 

A7. In this case, there is a block-level pipeline during the execution. The throughput of 

system is higher than the example in Figure 3-6. However, 4 schedulers, instead of 1, are 

deployed and the scheduling overhead is increased.  

In order to find a proper SV, we need to make a trade off among inter-iteration parallelism, 

intra-iteration parallelism and scheduling overhead. In our approach, we are looking for 

the SV with fewest hardware segments that offers maximal intra-iteration pipeline and 

inter-iteration parallelism. 
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Based on these criteria, we select the SV according to following three rules. For a given set 

of iterations, 

1) Non-resource-conflicting FUs can only be mapped on different HSs of the SV. 

2) An FU can be mapped to several HSs. If a FU is mapped to different HSs, it can 

only be executed when these segments are all free. We call this coupling and it 

requires synchronization between scheduling units. 

3) Select solution with fewest HSs in the SV.  

1st rule guarantees maximal intra-iteration pipelining and inter-iteration parallelism. 2nd 

rule indicates that if a FU is mapped to different HSs, couplings are needed among these 

HSs (scheduling units). 3rd rule guarantees the least amount of scheduling overhead, based 

above 2 rules. 

The SV solution for a single iteration can be derived from a direct virtual mapping of all 

the FUs. We refer to this SV solution as single-iteration SV. For instance, the iteration 

[( 1; 2; 3; 4; 5);( 6);( 7);( 8)]A A A A A A A A in Figure 3-5 can be directly mapped on the 

SV[( , ),( ),( )]De Interleaver De Puncturer Turbo De Scrambler− − − . This SV offers best intra-iteration 

pipeline capability with fewest HSs or scheduling units. Under this mapping, the system 

scheduling ability is as same as the one in Figure 3-5, but with only 3 scheduling units 

instead of 4. The scheduling overhead is reduced. 

For multiple iterations, the combined SV solution can be derived from several single-

iteration SVs using certain algorithm. Our algorithm is shown below. It has 2 steps: break 

down and merge, as shown in Figure 3-7. The break down step is used to guarantee 

maximal intra iteration parallelism. For instance, assume the SV for iteration 
1
I  is 

SV1[( , )]De Interleaver De Scrambler− − . 
1
I  requires De Interleaver− and De Scrambler− to 

work simultaneously at streaming level. The SV for iteration 
2

I  is 

SV2[( ),( ),( )]De Interleaver Turbo De Scrambler− − . 
2

I  requires De Interleaver−  and 

De Scrambler− to work independently and in the mode of block pipleline. If the 

combined SV is [( , ),( )]De Interleaver De Scrambler Turbo− − , then for
2

I , 

De Scrambler− andDe Scrambler−  are in the same scheduling unit, therefore they 

can’t be scheduled independently and they lose the block-level pipeline capability. Thus, 

according to requirement of SV2, the we first break down the SV1 

[( , )]De Interleaver De Scrambler− −  to be SV1’ [( ),( )]De Interleaver De Scrambler− − . We also break 

down SV2 according to the requirement SV1. SV2’ is same as SV2. Finally, SV1’ and SV2’ 

can be easily merged into a combined SV. 
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Figure 3-7 Break down and merge 

The pseudo code of the algorithm is shown below. 

 

Given single-iteration scheduling views 
1 1

1 1
[ , ]

m
sv hs hs= � ,

2 2

2 1
[ , ]

n
sv hs hs= � . 

Step1: Break down sv1 and sv2 by function break:  

'

1
sv =break(sv1,sv2); 

'

2
sv =break(sv2,sv1); 

Step2: Merge two sv into a combined SV csv:  

csv=merge(
'

1
sv ,

'

2
sv ). 

function break(sv1,sv2){ 

 SV s=sv1; 

 HS tem = ∅ ; 

 for i=1..lengthof(sv1){ 

  tem = ∅ ; 

  for j= lengthof (sv2)..1{ 

        if (j==1){ 

   s.delete(
1

i
hs ); 

                s.add(
1

\
i

hs tem ); 

               tem = ∅ ; 

        } 

   else{ 

          s.add(
1 2

i jhs hs∩ ); 

          tem=
1 2

( )i jtem hs hs∪ ∩ ; 

        } 

              }  

 } 

 return s; 

} 
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function merge(sv1,sv2){ 

    int counter; 

            SV s=sv1; 

     for i=1.. lengthof (sv2){ 

     counter=0; 

     for j=1.. lengthof (sv1){ 

           if(
1 2

i jhs hs∩ ≠ ∅ ){ 

                              s.delete(
1

i
hs ); 

                                      s.add(
1 2

i jhs hs∪ )   

                                      counter=1; 

                              break; 

           } 

               } 

          } 

          if(counter==0) 

     s.add(
2

jhs ); 

     } 

     return s; 

}

 

The single-iteration SVs and combined SV for DVB-SH, DVB-T and LTE is derived as shown 

in the appendix A.3. . 

3.4 Clustering 

In section 3.3, we introduce the derivation of SV from a set of the implementation aware 

SDF graphs. Once we have the SV, we can virtually map the tasks to HSs or scheduling 

units. If the actors of a FU are mapped to the same HS or scheduling unit, streaming 

pipeline will be implicit among these actors. In order to reduce the scheduling overhead 

and get rid of unnecessary detailed information to simplify the analysis, we try to 

transform fine-granularity SDF graph into coarse-granularity SDF graph. To achieve this, a 

modeling technique called clustering is employed.  

To apply clustering to the actors in fine-granularity SDF graph, some conditions need to be 

met. 

• The actors are working at same granularity (i.e. bit, byte). 

• The actors are originally mapped on different hardware units and virtually 

mapped on the same scheduling unit. 

• The buffers before and after these actors are big enough (in block level, i.e. 

thousands bits, bytes). 

• The buffers’ sizes between actors are at least 2 tokens.  

Clustering will merge these actors into a single task. The WCET of the new task will be 

calculated according the Latency Rate Severs (LRS) mentioned in [14] as follows: 
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1A An� are the actors going be clustered. The WCETs of them are 

1
, ,

A An
T T� respectively. k  is the number of the firings to finish streaming a block of 

input tokens. The WCET of new task after clustering is 
1 1 1,

( , )A An A AnT T k Max T T
−

+ + + ×� � . 

For example, suppose there is an iteration [( 1; 2);( 3)]A A A and the scheduling view is 

[( , ),( )]De Interleaver De Puncturer Turbo− − . A1 and A2 are originally mapped on De-

Interleaver and De-Puncturer respectively, and now they are virtually mapped on 

scheduling unit ( , )De Interleaver De Puncturer− − . 3A  is originally mapped on Turbo 

and now virtually mapped on scheduling unit ( )Turbo . The implementation independent 

graph and graph after virtual mapping are shown in Figure 3-8. The back edge with 2 

initial tokens on it indicates the buffer size between A1 and A2 is 2. The back edge with 

1000 initial tokens on it indicates the buffer size between A2 and A3 is 1000.  

We want to emphasize that even A1 and A2 are virtually mapped on same scheduling unit, 

but they are running in parallel implicitly, since they are executed by different hardware 

units. The hardware units inside a scheduling unit have streaming pipeline capability.  

 

Figure 3-8 Graphs before clustering 

If we want to cluster A1 and A2 as a single task working at block level, we first have to 

answer a question: what’s the WCET of the task after clustering? The WCET of A1 and A2 

are 
1A

T and 
2A

T  respectively. The buffer size between them is 2. The task after A2 is A3. 

There is a 1000 tokens sized buffer between them. The behavior of A3 implies that it can 

only start execution after A1 and A2 complete streaming 1000 tokens to its input buffer.  

 

Figure 3-9 Time diagram of the execution 
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The execution of above example is shown in Figure 3-9. If we cluster this 1000 times 

repeated streaming behavior of A1 and A2, the buffer pressure before and after A1 and A2 

won’t change. The SDF model will be still conservative. After the clustering, the result is 

shown in Figure 3-10. Given that A1 and A2 can be executed in pipeline, the WCET of new 

task Ac is 
1 2 1 2

1000 ( , )
A A A A

T T Max T T+ + × .  

 

Figure 3-10 SDF graph after clustering 

Compared with Figure 3-8, the SDF graph after clustering in Figure 3-10 omits streaming 

level detail and focuses on block level pipeline. The clustering will make scheduling 

analysis much easier. We will explain this in the next section.  

Clustering can transform the fine-granularity SDF graph to coarse-granularity SDF graph. 

But it only works under strict conditions. For some complex SDF graphs (i.e. non-linear 

graph, cyclo-static graph), clustering can’t estimate the execution times of the actors after 

transformation accurately. In this master graduation project, the execution times of some 

actors after transformation, are based on the real experimental data.   

3.5 Scheduling Models 

On a multiprocessor platform, scheduling the jobs often involves several steps. First, the 

tasks of a job need to be assigned to one or more processors. Then the execution order of 

the tasks has to be made. Next, the start time of every task needs to be decided by the 

scheduler. These scheduling decisions can be made either during compile time or during 

run time. In [10], several scheduling strategies have been discussed. The fully dynamic 

scheduler makes all the scheduling decisions at run time. It can handle highly dynamic 

program behavior by changing the order in which tasks run, and by adjusting processing 

loads during run-time. However, the cost of such run-time scheduling decisions is very 

high. The fully static scheduling has least amount of run-time overhead, but all the 

scheduling decisions have to be made in the compile time. If there are too many jobs and 

they can be mixed dynamically at run time, it is a challenge to guarantee that all the tasks 

will meet their hard-real-time deadlines.  
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Figure 3-11 Trade off between generality and run-time overhead 

FLORA is our target hardware platform. It is not a fully programmable multiprocessor 

platform, but a configurable hardware accelerator, consisting of several configurable 

hardware units controlled by an external MC via the control bus. Due to the non trivial run-

time overhead, we can’t fully dynamically schedule all the tasks during run time. The fully 

static scheduling is not a choice either, since there are many kinds of jobs combinations 

during run time. If we measure the scheduling methods by run-time overhead and 

generality, there are some other scheduling methods between fully dynamic and static 

scheduling as shown in Figure 3-11. In order to balance generality and run-time overhead, 

Round Robin scheduling and coupled scheduling are used.  

3.5.1 Round Robin Scheduling 

In the run-time, we need a run-time scheduler to decide the execution order and the start 

time of the tasks virtually mapped on a scheduling unit. Round Robin (RR) scheduler is 

chosen to be such the run-time scheduler, because it is non-preemptive, easy to 

implement and starvation-free.  

RR scheduling can be non-preemptive. FLORA doesn’t support preemptive scheduling and 

RR scheduling is a good candidate. 

RR scheduling is not a complex mechanism and easy to implement. In our approach, the 

online scheduler should be as easy as possible, such that the run time decision can be 

made in a short time.  

RR scheduling is starvation-free. It constantly checks a list of tasks. If the input data is 

available on the input channel of a task, the RR scheduler will start its firing. If input data 

is not ready, the RR scheduling will skip it and check the next task in the list. This 

property indicates that we will always have the upper bound of waiting time under RR 

scheduling. This upper bound of the waiting time is called the worst case waiting time 

(WCWT). The WCWT of a task a mapped on the scheduling unit SU is equal to the sum of 

WCETs of the other tasks in the RR list. The equation is shown below.  

( ) ,

( ) ( )x

Map x SU x a

WCWT a k WCET x
= ≠

= ×∑             3.1 
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Where ( )WCWT a is the WCWT of a, 
x

k is the number of times an task x appears in the 

RR list, and ( )WCET x is the WCET of task x .Based on WCWT, the worst case response 

time (WCRT) of actor a can also be derived as shown in below. 

( ) ( ) ( )WCRT a WCET a WCWT a= +                                    3.2 

Where ( )WCRT a is the WCRT of task a, ( )WCET a is the WCET of task a and 

( )WCWT a is the WCWT of a.  

As shown in Figure 3-12, in the SDF graph, the RR scheduling can be incorporated with an 

actor W to model the waiting time of task to get the processing resource of scheduling 

unit SU (The square box in Figure 3-12). Another actor a is modeling the real processing 

time of task. This modeling technique is important for the resource awareness in run time.  

 

Figure 3-12 Round Robin SDF example 

3.5.2 Coupled Scheduling 

Sometimes the actors out of the same FU, which are pipelined and working at small 

granularity, are virtually mapped on different scheduling units. As we mentioned, every 

scheduling unit is under the control of its own run-time scheduler. Due to this, the actors 

are decoupled and scheduled by more than one scheduler. The streaming flow between 

them is broken. However, we want to schedule the actors in same FU at coarse granularity 

(i.e., using the clustering technique) to reduce the scheduling overhead. Coupled 

scheduling is used to solve this contradiction. Coupled scheduling forces the actors, which 

are out of same functional units and mapped on different scheduling units, to synchronize 

their first firings, and stream rest of the data in a pipeline mode.  

An example is given in Figure 3-13. Suppose the iteration is [( 1; 2)]A A  and the 

scheduling view is[( ),( )]De Interleaver De Puncturer− − . In the implementation independent 

SDF graph, A1 and A2 are streaming data at small granularity (i.e. bit, byte). They are 

virtually mapped on ( )De Interleaver−  and ( )De Puncturer−  respectively. The buffer size 

between A1 and A2 is 2 tokens. A1 and A2 are scheduled by different schedulers. We are 

trying to avoid the low level scheduling, such that the scheduler doesn’t have to decide 

the start time of each firing. The clustering serves this purpose. It omits the detailed 

information, and binds a block of firings together. Therefore, the scheduler only needs to 

worry about the starting time of the first firing.  However, clustering can’t be directly 

applied to the actors virtually mapped on different scheduling units because some of the 

conditions mentioned in section 3.4 are not met.   
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Figure 3-13 SDF graphs before coupled scheduling 

If we use the coupled scheduling to synchronize the first executions of A1 and A2, then 

the online schedulers only need to decide the start time of first firings of A1 and A2 and 

make the next decision after the completion of streaming 1000 tokens. The coupled 

scheduling is shown in Figure 3-14. After the source produces input tokens, A1 starts 

waiting until the online scheduler gives the processing resource (There might be other 

actors mapped and running on ( )De Interleaver−  and( )De Puncture− ). The actor that models 

the waiting times of A1 is named W1. When W1 is done, A1 gets the processing resource, 

and in the meanwhile, activates the actor that models waiting times of A2, named W2. The 

edge from W2 to A1 indicates that A1 won’t start until W2 is done (A2 gets the processing 

resource). W2 continues until the online scheduler gives the processor to A2. Now, A1 and 

A2 are holding their processing resources and start their first firing. The first firings are 

synchronized.  
1
  
 1
0
0
0

 

Figure 3-14 SDF graph after coupled scheduling 

After the coupled scheduling, we can apply clustering on A1 and A2. The result is depicted 

in Figure 3-15. Note, the graph in Figure 3-15 is self-timed executed. Therefore, A1’and 

A2’ will start simultaneously. 
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Figure 3-15 SDF graph after clustering 

According to the rules of clustering, the WCET of A1’ and A2’ are 
1'A

T  and
2'A

T , where 

1' 2' 1 2
1000 ( , )

A A A A
T T Max T T= = × +

1A
T . 

In order to keep the jobs being scheduled independent from each other, we want 

emphasize that the coupled scheduling is only used as an intra-job scheduling. Therefore, 

the actors need to be coupled are always in the same job and won’t cause the deadlock.  

The drawback of the coupled scheduling is the cost of synchronization. In the above 

example, if A2 doesn’t get the control of the processor, A1 can’t start even it is holding 

the processing resources. There is a period during which A1 is wasting the processing 

resources without doing anything except waiting for A2. The cost of synchronization must 

be taken into account.  

3.6 Resource Management 

During run time, the end users can start a new radio application at any time. However, the 

hardware resources of FLORA are limited. If there are too many radios running on FLORA, 

there is no guarantee for temporal behaviors of all the radios. Therefore, an online 

resource manager (RM) is designed. Whenever a start request arrives, RM will check 

whether the new job can be accepted or not, according to the admission rule. If the hard-

real-time behavior of new application and the other running applications can still be 

guaranteed, the RM will inform the online scheduler to scheduler the new application. If 

not, the start request will be denied by RM. 

In order to measure the usage of the hardware resource for each application, we need to 

create a model of the resource consumption for each application. There are two major 

resources involved in FLORA: hardware units and the buffer used by Turbo decoder. 

However, in this thesis, a scheduling unit is treated as a basic processing unit. Therefore 

we will model scheduling units instead of hardware units as the processing resources. A 

SDF graph J, which has been clustered and coupled scheduled, is mapped  on a combined 

SV S, where
1

[ , ]
n

S su su= � . The resource consumption of J can be modeled as: 

1
( ) [ , , , , ]

n

i o

su su J J
rc J T T M M= �  
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Where 
1su

T to 
nsu

T are WCETs of the actors mapped on
1
,

n
su su� , 

i

J
M and 

o

J
M are the 

amount of Turbo’s input and output buffer space that occupied by J.  

The admission rules can be built on the top of this resource consumption model. Suppose 

the total amount of input and output Turbo buffers are 
i

M and
o

M respectively, the 

combined SV is
1

[ , ]
n

su su� .  Let 
1 m

J J� be a set of clustered and coupled scheduled 

SDF graphs, with the resource consumption models
1 mJ J

rc rc� . If a new SDF graph 

1m
J

+
that has the resource consumption model

1mJ
rc

+
 is admissible, it must meet the 

following admission rules: 

1) WCRT of each task must be smaller than its relative deadline (RD). The WCRT can 

be calculated according to equation 3.1 and 3.2. 

2) 

1

1
k

m
i i

J

k

M M
+

=

≥∑  

3) 

1

1
k

m
o o

J

k

M M
+

=

≥∑  

Once the new job is accepted, the RM will inform the online scheduler to add the new job 

in the RR list. 
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4 Implementation 

4.1 Introduction 

In this chapter, we will show how to implement the modeling and scheduling techniques in 

the simulation system. The RTL implementation of FLORA is available and the accurate 

verification can be carried out, but to build the real implementations of jobs (DVB-T, DVB-

SH, and LTE) and the schedulers around the RTL implementation is not easy. The trade-off 

has to be made among the cost, simulation speed and accuracy as shown Figure 4-1.  

 

Figure 4-1  abstraction 

In order to cut the cost and increase the simulation speed, a simulation system with a 

moderate accuracy is created by Coware ESL (electronic system level) 2.0 tools [15]. ESL 

2.0 refers to a second generation of ESL solutions, which aim to facilitate the design and 

development of processor-centric, software-intensive products with complex interconnect 

and memory architectures.  

The simulation flow is shown in the Figure 4-2. From the implementation aware SDF 

graphs, we create the non-functional task models in Coware. The task model we build 

keeps the same temporal behavior as the behavior of its corresponding implementation 

aware SDF graph, without specifying any detailed functional operations. The techniques 

such as coupled scheduling and clustering are applied to these task models. Besides the 

task models, a FLORA simulation platform is also designed. The task models of DVB-T, 

DVB-SH, and LTE will be mapped onto this simulation platform. The tasks of run-time RR 

scheduler and RM are also created and mapped onto simulation platform. The simulation 

system is formed by all the task models and the simulation platform. It can capture the 

temporal behaviors of these applications that are mapped onto simulation platform, such 

that we can verify our approach based on the simulation results.  
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Figure 4-2 Simulation flow 

4.2 Simulation Platform 

To model FLORA architecture, we use platform creator from Coware ESL 2.0 in GUI or in 

command line interface (CLI). They are equally functional. But the scalability of CLI is 

better, since we can use scripts to automate the design. Therefore, our simulation 

platform is created by platform creator CLI.  

Coware ESL provides some standard libraries. To model the FLORA, we will use some 

components from standard Coware libraries. The components in the Coware libraries 

include memory, bus, Virtual Processing Unit (VPU) etc. These components have a set of 

standard interfaces and can be assembled to form a simulation hardware platform. 

Hardware units of FLORA, such as De-Interleaver, De-Puncture are modeled by VPU.  VPU is 

a processing abstract resource for a number of tasks. It is the model of processing unit to 

reason about the temporal behavior of the tasks running on it. A VPU has its own task 

manager. The tasks that run on a VPU are controlled by its task manager. The model of 

De-Interleaver in the FLORA is created by following codes: 

 

::pct::open_library SCML_TM_VPU 

::pct::open_library SCML_BL 

::pct::open_library GenericIPlib 

::pct::open_library PV_BL 

::pct::open_library AVF_BL 

::pct::instantiate_block SCML_TM_VPU:scml_tm_vpu_no_interrupt . InterLeaver 

::pct::set_param_value InterLeaver "Template Arguments" nbr_of_memory_ports 1 
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::pct::set_param_value InterLeaver "Template Arguments" BUSWIDTH 64 

 

Table 4-1 Open libraries and instantiate blocks 

Not only the hardware units, but also the external memory and MC outside FLORA need to 

be modeled. The external memory can be an instance of memory block in GeniricIPlib. The 

MC can be modeled as another VPU, on which control tasks like RM and the online 

schedulers are running. 

All the components in FLORA, MC, and the external memory, can be connected by bus or 

FIFO channel. The bus we select is in AVF_BL library, which is defined by OCP standard. 

The OCP bus has a standard interface where the VPUs and memory can be connected. It 

also has an arbiter to schedule the communication requests from all the VPUs. The bus 

consumes some cycles to transfer the data from the sender to receiver. In our case, it is 

from VPU to external memory and vice versa. The VPU can access external memory via the 

bus, but it must be aware of the range of the addresses where the memory is mapped. The 

following piece of codes shows how to do the memory map in CLI.  

 

#memory map 

::pct::add_target    X_MEM/MEM 

::pct::add_initiator InterLeaver/p_mem\[0\] 

::pct::set_address   InterLeaver/p_mem\[0\]:X_MEM/MEM 0 

 

Table 4-2 Memory 

After the memory mapping, from the view of p_mem port of De-Interleaver, the starting 

address of external memory is 0. The procedure of creating simulation platform is shown 

in Figure 4-3. 
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Figure 4-3 Flow of creating virtual platform 

There are also some other components such as clock generator and the restart generator. 

Clock generator decides the frequency of the system. In our case, the FLORA is clocked at 

200MHz. The FLORA model in Coware is shown in Figure 4-4. We want to emphasize that 

the connections between the VPUs in this step are not established. This is because the real 

FLORA uses a matrix network to connect the hardware units. The actual routing of 

connections is not determined until the applications are mapped onto the FLORA. 

Therefore, in the simulation platform, making these connections is left to the mapping 

step.  
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Figure 4-4 FLORA model 

4.3 Task Modeling 

The term task modeling refers to the modeling of a job as a set of tasks that can 

communicate with other tasks. This model of the job can be either a functional or a 

nonfunctional model. We are focusing on the scheduling of the tasks, meaning that the 

functional details are not our main focus. We only need the model that can capture the 

certain properties of the job, such as the amount of processing time required to execute 

the task and the amount of data that is required to be transferred to perform certain 

operations. Task model in Coware is created based on implementation aware SDF graph, 

where the actors are annotated with execution time and the numbers of tokens consumed 

and produced are specified. Each actor in SDF graph can be modeled as a single task in 

Coware. The edges in SDF graph is modeled as the ste_tm_fifo_channel. Compared with 

scml_tm_fifo_channel in the standard Coware library, some new APIs are added in 

ste_tm_fifo_channel, such as the function to check the occupied and available space in the 

FIFO. 

The language used to do task modeling is SystemC. A task is modeled as a SystemC 

thread. For communication with other tasks, this thread is part of a sc_module. This 

module can have ports for communication with other tasks. The communication happens 

over channels. The software can access a task-modeling API to annotate execution times 

and traffic to be generated and to pass control over to other tasks. Each task has a priority 

which can be used by the scheduler and tasks can be grouped in jobs. A job is identified 

by its job ID. The task-modeling API is the API for communication of the tasks with the 

task manager. The task manager controls the states of the tasks it manages. There are 

several states for a task as shown in Figure 4-5.  
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TM_TASK_CREATED

TM_TASK_SUSPENDED TM_TASK_READY

TM_TASK_RUNNING TM_TASK_WAITING

TM_TASK_DESTROYED

tm_start

tm_destroy

tm_resume

tm_suspend

activate  
tm_wait

tm_wait(event/time)

wait done

 

Figure 4-5 Task states 

More detailed information about the state of the task can be found in [16]. Once a task 

graph of an application has been created, it can be mapped unto one or more VPU in the 

simulation platform. The default mapping of a task graph is that all the tasks are mapped 

on a single VPU. The sample code of a typical streaming task is shown below. 

 

virtual void task(){ 

    while(true){ 

    //waiting for the input token and output space 

 while(!(p_get->nb_can_get()&&p_put->nb_can_put())) 

      tm_wait(1); 

 //consume some time before gets the input token 

   tm_consume(delay_before_get); 

      p_get->nb_get(data); 

       //consume some time for processing the token 

      tm_consume(processing_delay); 

       //consume some time before puts the output token. 

      tm_consume(delay_before_put); 

 data_out= process(data); 

      p_put->nb_put(data_out); 

   } 

} 

 

Table 4-3 Streaming task model 

The task starts with checking whether there is input token in the input channel and output 

space in output channel. If not, it will stay in the TM_TASK_WAITING state for one clock 

cycle, and then join the ready queue again, waiting for the local scheduler (on the VPU that 

the task is mapped on) to activate it. It repeats the checking behavior until there are input 

token and output space. Once the input token is ready and output space is available, the 

task consumes some time to get the input token, and then start processing it. After the 

output token is produced, it puts the output token to the output channel. The whole task 

is an infinite while loop, it repeats streaming single token until there are no input token or 

no output space. All the tasks are modeled based on the framework in Table 4-3. 
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For some tasks working at coarse granularity, the amount of input tokens and output 

space that need to be checked is a block of tokens. After all task models are built in 

SystemC, we can compile them and an “xml” file will be generated as a task library.   

There are still a few steps left: to instantiate the task blocks and connect them by using 

ste_tm_fifo_channel.  The tasks are connected in the same order as the order they are 

executed in.  The whole procedure is done in tcl script and platform creator CLI. A sample 

code of creating DVB-SH application is shown below.  

 

::pct::new_project 

::pct::open_library SCML_TM_PL 

::pct::open_library $::env(STE_LIB)/STE_LIB.xml  

::pct::open_library ../Tasks/DVB_SH_Tasks/sh_flora_tasks.xml 

::pct::open_library ../Tasks/Scheduler_Tasks/Scheduler.xml 

::pct::open_library ../Tasks/RM_Tasks/RM.xml 

source ../procedure.tcl 

 

::pct::instantiate_block sh_flora_tasks:sSource /HARDWARE sh_1_Source 

::pct::instantiate_block sh_flora_tasks:sSink /HARDWARE sh_1_Sink 

::pct::instantiate_block sh_flora_tasks:sSymbolDI /HARDWARE sh_1_SymbolDI 

::pct::instantiate_block sh_flora_tasks:sTimeDI_mem /HARDWARE sh_1_TimeDI 

::pct::instantiate_block sh_flora_tasks:sBitDI /HARDWARE sh_1_BitDI 

::pct::instantiate_block sh_flora_tasks:sDePuncture /HARDWARE sh_1_DePuncture 

::pct::instantiate_block sh_flora_tasks:sTurbo /HARDWARE sh_1_Turbo 

::pct::instantiate_block sh_flora_tasks:sDeScrambler /HARDWARE sh_1_DeScrambler 

 

intra_connect HARDWARE sh_1_Source p sh_1_SymbolDI p_get f_softbit_8 3024 false 

data 

intra_connect HARDWARE sh_1_SymbolDI p_put sh_1_TimeDI p_get f_softbit_8 3024 

false data 

intra_connect HARDWARE sh_1_TimeDI p_put sh_1_BitDI p_get f_softbit_8 3072 false 

data 

intra_connect HARDWARE sh_1_BitDI p_put sh_1_DePuncture p_get f_softbit_8 2 false 

data 

intra_connect HARDWARE sh_1_DePuncture p_put sh_1_Turbo p_get f_softbit_8 2 true 

data 

intra_connect HARDWARE sh_1_Turbo p_put sh_1_DeScrambler p_get f_byte 8 true data 

intra_connect HARDWARE sh_1_DeScrambler p_put sh_1_Sink p f_byte 8 true data 

::pct::save_system 1_sh_task_graph.xml 

 

Table 4-4 Connecting the tasks 

The DVB-SH task graph is shown in Figure 4-6.  This task graph is derived from the 

implementation aware graph and they have the same temporal behaviors. The clustering 

and coupled scheduling have not been imposed on the task graph in Figure 4-6. 

 

Figure 4-6 DVB-SH task graph 
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4.4 Mapping 

The task graph will be finally mapped onto the simulation platform created in section 4.2. 

It is a static mapping, since the hardware units are all configurable hardware accelerators 

which are designed only for specific tasks. Therefore, in the mapping stage, we only need 

to map the tasks to the corresponding VPUs (hardware units) and make the connections 

between tasks that are mapped on different VPUs. When communicating tasks are split 

over multiple VPUs, the original connection has to be refined. Instead of a direct 

connection, the communication needs to happen over the hardware of the system. For this 

purpose, a driver is put between the task and the VPU port that connects to the hardware 

of the system. Driver is a special channel that enables the communication of tasks with the 

platform and the communication between tasks running on different VPUs. When drivers 

are connected to the memory ports of the VPU, they need to produce TLM2 transactions. 

For convenience, the SCML_TM_VPU library provides an scml_tm_post_tlm2_transactor 

module. This module provides a simple post interface for TLM2 transactions and it 

handles the TLM2 communication on the VPU ports. 

 

Figure 4-7 DVB-SH De-Inteaver mapping 

Suppose we map the task graph of DVB-SH application in Figure 4-6 onto FLROA 

simulation platform, the tasks such as SymbolDI, TimeDI, and BitDI are mapped on De-

Interleaver VPU block as shown in Figure 4-7. The connection between BitDI and 

DePuncture is replaced by the drivers on BitDI side and DePuncture side. TimeDI is 

communicating with the external memory. A memory driver is assigned. An 

scml_tm_post_tlm2_transactor module named i_post_txn is also used to bridge the 

protocol gap between memory driver and memory port of VPU. 

The overview of the mapping is shown in Figure 4-8. Compared with the simulation 

platform in Figure 4-4, the hardware blocks in Figure 4-8 are connected by sc_fifo. The 

sc_fifo together with the drivers in the hardware blocks, act as the communication channel 

between tasks mapped on different hardware blocks. 
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Figure 4-8 overview of simulation system after DVB-SH mapping  

4.5 Clustering 

Clustering is a technique to transform a streaming-level SDF graph into block-level SDF 

graph. There are some conditions need to be met before apply the cluster to tasks 

(mentioned in section 3.4). The task graph model we created in section 4.3 is derived from 

the implementation aware graph that is working at small granularity. The streaming task 

model in Table 4-3 is checking if the single input token and space for single output token 

are available for each execution (firing). If the scheduler has to take care of every checking 

and firing, the scheduling overhead will be huge. But instead, if we can cluster the 

thousands of firings of a task, the task only need to check if there are thousands of input-

tokens and space for thousands of output-tokens, and then task keeps firing for 

thousands of times. The scheduler now only needs to decide the start time of the first 

firing instead of every firing. Therefore, the scheduling overhead reduced is reduced by 

clustering. If we take streaming task model in Table 4-3  as an example, the clustered 

model of it is shown in Table 4-5. 

 

virtual void task(){ 

   while(true){ 

       if(counter == 0){ 

while(!(p_get->nb_checkread(data_size_in_softbits)&&p_put->nb_ 

checkwrite (data_size_out_softbits))) 

{ 

     if(!p_get-> nb_checkread(data_size_in_softbits)) 

     tm_wait(p_get->ok_to_get());  



 

Multi-Standard Multi-Channel Channel 
Decoder Architecture for Mobile 
Applications 

Master’s Thesis Implementation

 

Document ID    Rev Revision Label    2009-08-09  Root Part No. 

© Copyright ST-Ericsson, 2009. All Rights Reserved.  CONFIDENTIAL 

50 (75) 

 

 

    if(!p_put-> nb_ checkwrite (data_size_out_softbits)) 

     tm_wait(p_put->ok_to_put()); 

    } 

       } 

 //consume some time before gets the input token 

  tm_consume(delay_before_get); 

  p_get->nb_get(data); 

  //consume some time for processing the token 

  tm_consume(processing_delay); 

  //consume some time before puts the output token. 

  tm_consume(delay_before_put); 

 data_out= process(data); 

  p_put->nb_put(data_out); 

 count++; 

 if (counter == data_size_in_softbits) 

  counter=0; 

    } 

} 

 

Table 4-5 Clustered task model 

There is a counter in clustered task model to record the number of tokens it has 

processed. Suppose the numbers of input tokens and output tokens in a block are 

data_size_in_softbits and data_size_out_softbits respectively. The task starts with checking 

whether all the input tokens are ready and the output space is big enough. If no, the task 

constantly puts itself in the TM_TASK_WAITING state until the input tokens and output 

space are available. Then it pulls a token from input channel, and processes it, finally 

produces it. After steaming a token, the counter is updated. In the next iteration, the task 

is aware that there must be some tokens left in the input channel, it won’t check the input 

channel again, but continues steaming the data. It won’t stop the steaming behavior until 

the counter is equal to the block size (data_size_in_softbits), meaning that a block of 

tokens have been consumed by the task. Then the counter is reset, and the next round 

block-level processing begins with the checking of input channel and output channel.    

4.6 RR Scheduling 

We already created a method to derive a combined SV from a set of implementation aware 

graphs. Every scheduling unit has a RR scheduler responsible for the scheduling of the 

tasks running on this scheduling unit. In the implementation, every hardware unit of 

FLORA is modeled as a VPU, which has a local RR scheduler that can decide the execution 

order of the tasks mapped on it. But the local RR scheduler is only in charge of one VPU. In 

order to schedule several VPUs which belong to same scheduling unit as a whole, another 

remote scheduler is implemented as a task running in another VPU named centralized 

controller. The communication between tasks and remote scheduler happens over sc_fifo 

channel. An example is shown in Figure 4-9. Suppose De-Interleaver is a scheduling unit. 

Two jobs are virtually mapped on it. Job A consists of tasks TA1 and TA2. Job B consists of 

a single task TB. Job A and B are scheduled by a RR mechanism.  
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Assume first TA1 is activated by the local RR scheduler. Then it sends a start request to 

the remote RR scheduler via sc_fifo. If there is no task running on De-Interleaver, the 

remote RR scheduler will start TA1. TA1 first checks if the input tokens and output space 

are available. If not, TA1 will return the control to the remote RR scheduler immediately. If 

yes, it will continuously stream a block of tokens. After all the tokens are processed by 

TA1, local scheduler starts TA2. When TA2 is done, it will return the control to the remote 

RR scheduler. Next TB is activated by local RR scheduler. It will ask for start permission 

from the remote RR scheduler. If there is no job running, the remote RR scheduler will 

start TB immediately. After TB is done, it returns the control to the remote RR scheduler. 

The remote scheduler guarantees that in the same time, only the tasks of same job can be 

activated by the local RR scheduler. Local RR scheduler only worries about the execution 

order and the start time of the tasks inside the same job. Our model is data driven model. 

If the input tokens of TA2 are not ready, TA2 won’t appear in the ready queue. Therefore, 

the local RR scheduler can guarantee that the tasks of the same job are activated in the 

correct order.  

 

Figure 4-9 Scheduling scheme 

The communication between the task and the remote RR scheduler needs to be specified 

explicitly as shown in Table 4-6. The task starts with sending start request to remote RR 

scheduler. It won’t start until the start command is given by remote RR scheduler. Once 

the task gets the processor, it checks whether a block of input tokens and the space for a 

block of output tokens are available. If not, it will return the control of VPU to remote RR 

scheduler. If yes, it will jump out of the loop, and starts steaming the tokens. After a block 

of tokens is processed, the task resets the counter to 0, and notifies remote scheduler 

that it is done.  

The remote RR scheduler is implemented as task running on a VPU. The main function is 

depicted in Table 4-7. The scheduler responds to the start request from the tasks. It 

activates the job in a RR mechanism.  

 

virtual void task(){ 

while(true){ 

    if(count == 0){ 

 while(true){ 

  //start request 

  start_put->nb_put(1); 

  //Waiting for the remote scheduler to start the application  

  while(!start_put->nb_can_put()) 

   tm_wait(start_put->ok_to_put()); 
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  //Check whether there is input. 

if(p_get->nb_checkread(data_size_in_softbits)&&p_put-

>nb_checkwrite(data_size_in_softbits)) 

{ 

//if everything is ready, jump out of the loop, start the 

//application 

  break; 

} 

  //Otherwise, return the control to Scheduler 

  tm_consume(2); 

  while(!end_put->nb_can_put()){ 

   tm_wait(end_put->ok_to_put()); 

  } 

  end_put->nb_put(1); 

 } 

    } 

 //consume some time before gets the input token 

tm_consume(delay_before_get); 

p_get->nb_get(data); 

//consume some time for processing the token 

tm_consume(processing_delay); 

//consume some time before puts the output token. 

tm_consume(delay_before_put); 

data_out= process(data); 

p_put->nb_put(data_out); 

count++; 

if(count== data_size_in_softbits){ 

 count=0; 

      while(!end_put->nb_can_put()){ 

       tm_wait(end_put->ok_to_put()); 

 } 

//if any of input, output space or back pressure is not available, 

//return  the control to Scheduler 

 end_put->nb_put(1); 

    } 

  } 

} 

 

Table 4-6 Task model communicating with RR scheduler 

 

virtual void task(){ 

while(true){ 

for(i=intlev_running_app_pt_list.begin();i!=intlev_running_app_pt_list

.end();i++){ 

// start the job 

if((*(i->start_get_pt))->nb_can_get()){ 

(*(i->start_get_pt))->nb_get(tem); 

 //waiting for the signal that the tasks is done.  

      while(!(*(i->end_get_pt))->nb_can_get()) 

      tm_wait((*(i->end_get_pt))->ok_to_get()); 

      (*(i->end_get_pt))->nb_get(tem); 

} 

} 

tm_wait(1); 

        } 

} 
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Table 4-7 Remote RR scheduler 

4.7 Resource Manager 

The resource manager (RM) is employed to do the admission control during run time. A 

new job can be activated by the end user at any time. Once it is activated, it will send its 

resource consumption information to RM. The RM has a function called check_resource(). 

The check_resource function takes resource consumption model of new job as the input, 

calculates the throughputs of all the jobs. If all the throughput constraints can be met, the 

new job is accepted. The RM will inform the remote RR schedulers to add the new job into 

its RR list. In our implementation, there are 2 remote RR schedulers responsible for De-

Interleaver scheduling unit and Output scheduling unit respectively. The RM in Table 4-8 

notifies both schedulers to add a new job.  

 

void RM::task() { 

while(true){ 

 if(app_request_get->nb_can_get()){ 

app_request_get->nb_get(new_app); 

if(check_resource(new_app)){ 

allocate_resource(new_app); 

//tell the schedulers that new app are added to system. 

while(!add_intlev_app_put->nb_can_put()) 

tm_wait(add_intlev_app_put->ok_to_put()); 

add_intlev_app_put->nb_put(new_app); 

while(!add_output_app_put->nb_can_put()) 

tm_wait(add_output_app_put->ok_to_put()); 

add_output_app_put->nb_put(new_app); 

} 

else{ 

cout<<sc_time_stamp() <<",   We can't schedule this application 

with job_id:"<<(int)new_app.job_id <<endl; 

} 

         } 

    } 

} 

 

Table 4-8 RM example 

check_resource function calculates the throughputs of the jobs based on the MCM of the 

HSDF graphs and the WCWT of the tasks. If the throughputs of all the jobs meet the 

requirements, the function will return true. Otherwise it will return false.  

The overview of the simulation system is shown in Figure 4-10. 
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Figure 4-10 Overview of simulation system 
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5 Results 

5.1 Introduction 

To verify the approach, we created the task models for DVB-T, DVB-SH, and LTE in Coware 

ESL2.0. These task models are mapped onto the simulation platform of FLORA. The matrix 

inner connections of FLORA are configured to match the connections required by the 

applications. We can also calculate the combined SV of these 3 applications. The SV and 

routing are shown in Figure 5-1. There are 4 scheduling units, from SU1 to SU4. Each of 

them has an online RR scheduler, running on the centralized controller. The 

communication between scheduling units and the remote RR scheduler happens over 

sc_fifo (dash line in Figure 5-1).  Besides the online RR schedulers, a RM is also created in 

centralized controller, to perform the admission control.  

We want to emphasize that these applications do not share the buffers of the Turbo 

decoder. Instead, each of them has its own buffers of the Turbo decoder, such that these 

applications won’t depend on each other. For instance, LTE and DVB-SH both are using 

Turbo decoder. If they are sharing Turbo input buffer, the tasks of LTE can’t start filling 

Turbo input buffer until the data of DVB-SH application in Turbo input buffer are emptied. 

This delays the execution of the LTE, but most importantly, makes the application highly 

depends on each other. To simply our scheduling method, we allow the application to 

have its own Turbo buffers.  
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Figure 5-1 the routing and the combined SV 

In the simulations, we want to show how the RR scheduler and RM handle the dynamic mix 

of several radios. Several scenarios will be simulated:  

• DVB-T and DVB-SH are mapped on FLORA and scheduled by online RR 

schedulers.  

• DVB-T, DVB-SH, and LTE are mapped on FLORA and scheduled by online RR 

schedulers without RM.  

• DVB-T, DVB-SH, and LTE are mapped on FLORA and scheduled by online RR 

schedulers with RM.  
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5.2 Dynamic mix of DVB-T and DVB-SH 

Before we explain the result of the simulation, let’s first look at Table 5-1. The source of 

DVB-T produces a block of tokens every 800us.  For DVB-SH, the source produces a block 

of tokens every 400us. In the real implementation, the heart beat for both DVB-T and DVB-

SH is 924us. The reason we tune the frequency of sources higher than 1/924us is that we 

want increase the workload FLORA and reduce its idle time. This won’t change the WCRT 

of tasks or the worst case throughput of the application. The throughput constraints are 

same for both applications, which require a block of output tokens every 924us. For DVB-T 

application, the scheduling units SU1 and SU4 are coupled. For DVB-SH application, the 

scheduling units SU1, SU2 and SU4 are working independently from each other.  

 SU1 SU2 SU3 SU4 

 
 

Virtual Mapping 

t_1_SymbolDI 
t_1_BitDI 

t_1_Depunctuer 
t_1_Viterbi 
t_1_ByteDI 

t_1_ReedSolom
on 

   
 

t_1_Descrambler_dummy 
t_1_DeScrambler 

 
DVB-T 

Source period: 800us 
Throughput: 1/924us 
Mode: 8K, 64QAM 

Execution Time 300us   186us 

 
Virtual Mapping 

sh_1_SymbolDI 
sh_1_TimeDI 
sh_1_BitDI 

 
sh_1_Turbo 

  
sh_1_Descrambler 

DVB-SH 
Source period: 400us 
Throughput: 1/924us 

8K, 16QAM 
CR: N=9 

 
Execution Time 

 
180us 

 
108us 

  
10us 

Table 5-1 DVB-T and DVB-SH virtual mapping and execution times 

Based on the analysis model of DVB-T and DVB-SH (please see Appendix), it is proved that 

there are enough resources on FLORA to run DVB-T and DVB-SH in parallel as shown in 

Table 5-2. The MCMs for DVB-T and DVB-SH are smaller than 924us. In the first simulation, 

we will run DVB-T and DVB-SH under RR schedulers to show how the RR scheduler works. 

The simulation result is shown in Figure 5-2 and Figure 5-3. 

SU1 SU2 SU3 SU4  

WCWT WCET WCWT WCET WCWT WCET WCWT WCET 

MCM 

DVB-T 180us 300us 0 0 0 0 10us 186us 490us 

DVB-SH 310us 180 0us 108us 0 0 186us 10us 490us 

Table 5-2 Schedulability analysis for DVB-T and DVB-SH 
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The overall executions of DVB-T and DVB-SH are shown in Figure 5-2. With the online RR 

scheduler, the application can be activated and stopped dynamically. The DVB-SH and 

DVB-T are both activated at very beginning. At around 800us of the time line, DVB-SH is 

stopped. The DVB-T application owns all the resources of FLORA. At around 3.4ms, DVB-

SH is activated again. The RR schedulers add the DVB-SH to their scheduling lists. There is 

also inter-jobs parallelism among different scheduling units. At 4.9ms, SU1 is busy with 

DVB-T and SU2 is working on DVB-SH.  

t_1_Descrambler in red bubble B1 and sh_1_ Descrambler in blue bubble B2 are producing 

output data for DVB-T and DVB-SH respectively. Following the timeline, after 4.9ms, they 

produce the output data periodically. Arrow 1 and arrow 2 indicate the maximal gap 

between 2 continuous output blocks. They are smaller than 924us. In this simulation 

graph, the throughput requirements for DVB-T and DVB-SH are met.  

SU1

SU2

SU4

800us 3.4ms

DVB-SH is 

stopped
DVB-SH is started

Inter Jobs

parallelism

4.9ms

DVB-T

DVB-SH

2

1

B2

B1

 

Figure 5-2 Dynamic mix of DVB-T and DVB-SH 

If we zoom in on the first 700us, the execution trace will be the one shown in Figure 5-3. 

At the beginning, DVB-T and DVB-SH are activated. The RR scheduler of scheduling unit 

SU1 selects the DVB-T application and starts the application.   
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The streaming-level parallelism inside the same scheduling unit can be seen in Figure 5-3. 

For example, from 100us to almost 300us, t_1_ByteDI, t_1_Depuncture and t_1_Viterbi are 

streaming the data at small granularity simultaneously. Although these 3 tasks are 

virtually mapped on the same scheduling unit SU1, the hardware units inside SU1 are 

working in the streaming level pipeline. 

At about 300us, DVB-T is done. The RR scheduler on SU1 immediately starts DVB-SH. 

There is block-level pipeline among SU1, SU2 and SU4. For instance, at the 500us of the 

timeline, SU1 and SU2 are working in a pipeline mode where SU2 is busy with the 

execution of last round of sh_1_Turbo, and SU1 is busy with sh_1_SymbolDI and 

sh_1_TimeDI in current round. 

 

Figure 5-3 Starting phase of DVB-T and DVB-SH 

In this simulation, 2 applications are sharing the FLORA. They are scheduled in RR 

mechanism. There are enough resources for both DVB-T and DVB-SH on FLORA. The 

combination of them can be handled by the RR schedulers and they can meet the 

throughput constraint. There is no deadlock, missing deadline or starvation. 
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5.3 Dynamic mix of DVB-T, DVB-SH and LTE without 
RM 

In this section, we want to simulate a dynamic mix of DVB-T, DVB-SH, and LTE. We want to 

emphasize that FLORA was designed for broadcasting standards such as DVB-T and DVB-

SH. Therefore, the buffer sizes in FLORA are tailored for these applications. For the cellular 

standard like LTE, we are still in the exploration phase. The buffer size of each hardware 

unit for LTE channel is not decided yet. Different buffer size can result in different 

scheduling methods. 

According to the buffer size of Turbo decoder, the LTE application can be scheduled in 2 

ways. In the implementation independent SDF graph of LTE in Figure A. 4 (please see 

Appendix), for each firing, the source produces a transport block (TB), which consists of 

13 code blocks (CB). Functionally, the tasks such as SubDI, Turbo and CRC consume one 

CB per firing. If we set the input buffer size of Turbo to be 1 CB, then the SubDI and Turbo 

are processing data at CB level. SubDI and Turbo can be synchronized by coupled 

scheduling to finish processing a TB (13 CBs) data together. The buffer size is reduced to 

one CB, but the coupled scheduling will consume extra time to synchronize SubDI and 

Turbo and increases the workload of SU1. If we set the input buffer size of Turbo to be 1 

TB (13 CBs), the SubDI can continuously process all 13 CBs and then store the 13 CBs to 

the input buffer of Turbo. Next Turbo continuously processes all 13 CBs. No coupled 

scheduling is needed, but the buffer size is increased. The implementation aware graphs 

of both cases are shown in Appendix. The virtual mapping and execution times for both 

cases are shown in the Table 5-3. 

 SU1 SU2 SU3 SU4 

 
Virtual Mapping 

lte_1_rSubDI 
lte_1_wSubDI  

 
lte_1_Turbo 

 
lte_1_CRC 

 
 

LTE 
Turbo with a TB size 

buffer 
Source period: 1ms 
Throughput: 1/1ms 
Category: 4, 20MHz  

Execution Time 
 

377us 
 

600us 
 

100us 
 

 
Virtual Mapping 

lte_1_rSubDI 
lte_1_wSubDI 

 
lte_1_Turbo 

 
lte_1_CRC 

 
 

LTE 
Turbo with a CB size 

buffer 
Source period: 1ms 
Throughput: 1/1ms 
Category: 4, 20MHz 

 
Execution Time 

 
600us 

 
600us 

 
100us 

 

Table 5-3 LTE virtual mapping and execution times 

5.3.1 LTE without coupled scheduling 

We first do a simulation of the dynamic mix of DVB-T, DVB-SH and LTE. The input buffer 

size of the Turbo decoder is 1 TB. RM is not assigned.  

The simulation result is shown in Figure 5-4. SU1 and SU2 are not coupled in this 

simulation. This can be seen from bubble B1 and Bubble B2 in Figure 5-4. lte_1_rSubDI 

and lte_1_wSubDI stream 13 CBs to the input buffer of SU2 (Turbo decoder). After the 

buffer is full, SU2 continuously processes all the CBs. SU1 and SU2 are not coupled. They 

are scheduled independently. 
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Based on the MCM calculation of analysis models (please see appendix), it shows that LTE 

can’t be scheduled with DVB-T or DVB-SH by this scheduling method as shown in Table 5-4 

and Table 5-5. The MCMs for LTE in both cases are bigger than 1000us. LTE can’t meet 

throughput requirement. There are several indications that can be found in Figure 5-4. The 

task lte_1_CRC is virtually mapped on SU3, which produces the output of LTE application. 

If we follow the timeline, before the DVB-SH is started, lte_1_CRC produces an output 

block every 1ms (The time interval of arrow 1), which just meets throughput requirement 

of LTE. At 3ms, DVB-SH is added to system. The period of producing a block of output 

data for lte_1_CRC is increased to more than 1ms, as indicated by arrow 2. After DVB-T is 

started at around 5ms, it takes more time for LTE to produce the output data. There are 

even no output tokens produced by lte_1_CRC from 8ms to 9ms (in the position of the red 

question mark).  

SU1 SU2 SU3 SU4  

WCWT WCET WCWT WCET WCWT WCET WCWT WCET 

MCM 

DVB-T 377us 300us 0 0 0 0 0 186us 677us 

LTE 300us 377us 0us 600us 0 100us 0 0 1277us 

Table 5-4 Schedulability analysis for DVB-T and LTE without coupled scheduling 

SU1 SU2 SU3 SU4  

WCWT WCET WCWT WCET WCWT WCET WCWT WCET 

MCM 

DVB-SH 377us 180 600us 108us 0 0 0 10us 1157us 

LTE 180us 377us 108us 600us 0 100us 0 0 1265us 

Table 5-5 Schedulability analysis for DVB-SH and LTE without coupled scheduling 

From the simulation combined with the calculation from the analysis models, we come to 

conclusion that LTE can’t be scheduled with DVB-T or DVB-SH by our approach if the input 

buffer size of Turbo is 1 TB. The potential solution is to double the input buffer size of 

Turbo. That will reduce the MCM and improve the throughput of LTE. But on-chip memory 

is expensive. 2-TB buffer can be around 450K bytes. The trade-off has to be made between 

them. 

Without the RM doing the admission control, the applications that are dynamical mixed 

don’t have the guarantee for their temporal behaviors.  
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Figure 5-4 Dynamic mix of DVB-T DVB-SH and LTE without coupled scheduling 

5.3.2 LTE with coupled scheduling 

This simulation is also about the dynamic mix of DVB-T, DVB-SH and LTE. The input buffer 

size of the Turbo decoder is 1 CB. The coupled scheduling is used in this simulation. RM is 

not assigned. Based on the MCM calculation of analysis model (please see appendix), it 

shows that LTE can be scheduled with DVB-T but not DVB-SH by this scheduling method, 

as shown in Table 5-6 and Table 5-7. For the combination of DVB-T and LTE, the MCMs for 

them just meet the throughput requirement. For the combination of DVB-SH and LTE, LTE 

just meets throughput requirement, but DVB-SH can’t. 

SU1 SU2 SU3 SU4  

WCWT WCET WCWT WCET WCWT WCET WCWT WCET 

MCM 

DVB-T 600us 300us 0 0 0 0 0 186us 900us 

LTE 300us 600us 0us 600us 0 100us 0 0 1000us 

Table 5-6 Schedulability analysis for DVB-T and LTE with coupled scheduling 
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SU1 SU2 SU3 SU4  

WCWT WCET WCWT WCET WCWT WCET WCWT WCET 

MCM 

DVB-SH 708us 180 600us 108us 0 0 0 10us 1488us 

LTE 180us 600us 108us 600us 0 100us 0 0 998us 

Table 5-7 Schedulability analysis for DVB-SH and LTE with coupled scheduling 

The simulation result is shown in Figure 5-5 and Figure 5-6. Same as previous simulation, 

LTE is started at the beginning. At around 3.5ms, DVB-SH is injected to the system. The RR 

schedulers of the scheduling units decide the execution order and start time of all the 

tasks. At around 6.9ms, DVB-T is added to system. Now 3 applications are running 

together. Based on the worst case throughput calculation from analysis models, LTE can’t 

be scheduled with both DVB-T and DVB-SH. But due to the short simulation time, this is 

not shown in Figure 5-5.  

The coupled scheduling between SU1 and SU2, as an example, can be seen from task 

execution traces inside bubble B1 and bubble B2. The LTE tasks lte_1_rSubDI and 

lte_1_wSubDI are coupled with lte_1_Turbo. They process the data at the CB level pipeline 

and steam a whole TB (13 CB) data to next stage.  
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Figure 5-5 Dynamic mix of DVB-T DVB-SH and LTE with coupled scheduling 

The coupled scheduling is more obvious if we zoom into the time period from 5.5m to 

7.4ms, as shown in Figure 5-6. It is noticeable that execution trace in bubble C2 is slightly 

different from its neighbors: the ones in bubble C3 and bubble C4. If we look vertically, 

analyze bubble C2 and C1 together, we will find the reason. The tasks in bubble C1 is 

sh_1_Turbo, which belongs to DVB-SH. During a small period, SU2 is occupied by 

sh_1_Turbo. For LTE application, SU1 and SU2 are coupled. When the tasks of LTE in 

bubble C2 are holding the processing resources of SU1, they still have to wait until 

sh_1_Turbo in bubble C1 is done. This is the cost of coupled scheduling.  

Not only this, in the Table 5-3, LTE with coupled scheduling takes more execution time in 

SU1 compared with LTE without coupled scheduling. This is because of the coupled 

scheduling. The coupled scheduling forces SU1 to slow done, since SU2 can’t process the 

data as fast as SU1.  
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From the simulation combined with the calculation from the analysis models, we come to 

conclusion that LTE with coupled scheduling can be scheduled with DVB-T, but not DVB-

SH. The coupled scheduling for LTE needs smaller input buffer of Turbo decoder. 

However, LTE with coupled scheduling can’t be scheduled with DVB-SH, since DVB-SH can’t 

meet is throughput requirement in the worst case scenario. The coupled scheduling brings 

synchronization cost between SU1 and SU2. If the other application has a big task in SU2, 

it will be a waste that the LTE tasks in SU1 is doing nothing but just waiting for SU2. The 

coupled scheduling also slows done the SU1 because that the SU2 consumes more time to 

process a CB data.  

SU1

SU2

SU3

SU4

SU1

SU1

C1

C2C3 C4

 

Figure 5-6 zoom-in graph of Dynamic mix of DVB-T DVB-SH and LTE with coupled 
scheduling 

5.4 Dynamic mix of DVB-T, DVB-SH and LTE with RM 

In this simulation, for LTE, we set the input buffer for Turbo to be a TB. No coupled 

scheduling is imposed on LTE. RM is added to the simulation platform. The result is shown 

in the Figure 5-7.  
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The LTE application starts execution from the very beginning. In the middle, DVB-SH 

application sends the start request to RM. The RM checks if there are enough resources by 

calculating the CMC of the analysis models for LTE and DVB-SH. It turns out LTE won’t 

meet throughput requirement if DVB-SH is added. Therefore, RM refuses the request of 

DVB-SH. At around 9.5ms, LTE is done, and then DVB-SH asks for the start. RM calculates 

the CMC of analysis model for DVB-SH again. The result is that DVB-SH can meet its 

throughput requirement. Then RM informs the RR schedulers. The RR schedulers add DVB-

SH in there scheduling lists and DVB-SH starts execution. Later on, at around 11ms, the 

DVB-T also asks for permission from RM. The RM checks the resources again, and asks the 

RR schedulers to add the DVB-T application in their scheduling lists. The DVB-T is started 

and running with DVB-SH simultaneously.  

 

Figure 5-7 Dynamic mix of DVB-T, DVB-SH and LTE with RM 
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6 Conclusion and Future Work 

In this thesis, we present a design flow for scheduling hard-real-time applications with a 

dynamic job-mix on FLORA. The scheduling consists of two parts: compile-time scheduling 

and run-time scheduling.  

During compile time, an implementation independent SDF graph for each radio is created 

according to the radio’s specification. Next, an implementation aware SDF is derived from 

the implementation independent SDF graph combined with the hardware mapping 

information. Then we developed a method to derive a combined SV, which is an optimal 

hardware partition for the scheduling ability of FLORA, from a set of implementation aware 

SDF graphs.  Furthermore the implementation aware graph is virtually mapped on the 

scheduling units of the SV. Clustering, coupled scheduling and RR scheduling are applied 

to the actors in the SDF graph after virtual mapping. In the end, an analysis SDF model for 

reach radio is generated.   

During run time, the RR schedulers and RM are added. The RR scheduler accounts for 

scheduling the tasks mapped on a scheduling unit. Dynamic start and stop of jobs can 

happen at run time. In order to guarantee the resource provision for the running jobs and 

the new coming job, a RM is designed. The RM checks the availability of current resources, 

and calculates the MCM from the analysis SDF model of each job.  If the admission rules 

can be met, the new job will be accepted and scheduled. If not, the new job will be denied.  

A simulation system is built to verify our approach. We choose the Coware ESL tool to 

setup the simulation system. The Coware task models for DVB-T, DVB-SH and LTE are 

created. We applied compile time scheduling techniques to these task models. 

Furthermore, a simulation hardware platform for FLORA is also built. The task models 

after compile time scheduling, are mapped on the simulation platform. Based on various 

mappings, we demonstrated how the run-time RR schedulers and RM are working in the 

final results.  

With the results as the proof, the research objective that was formulated in 0 is considered 

to be sufficiently answered.  

Although the dynamic combination of several radios can be handled by FLORA now, there 

are still some issues deserve further research. These include: 

• We didn’t prove that the algorithm used to derive the combined SV from a set 

of single-iteration SVs is deterministic. If it is not, the combined SV will 

depend on the sequence of the calculation. This may result in several 

combined SVs for a set of applications. 
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• Clustering can only combine the actors and estimate the execution time of the 

new combined actor under very strict conditions. The SDF graph of an 

application can be more complex such that it can’t meet strict conditions for 

clustering. For instance, the implementation aware graph of DVB-SH in Figure 

3-5 has a cyclo-static expression for De-puncture. For these complex graphs, 

we can’t calculate accurate execution times for each actor by the techniques 

mentioned in the clustering step. Instead, in this thesis, most execution times 

of the tasks after clustering are based previous experiments.  

• The coupled scheduling brings synchronization cost. In some worst scenario, 

the synchronization cost can affect the performance of all the applications.  

• The implementation of the online schedulers of the simulation system is not 

well formed. This can be improved by using standard Coware API. Coware has 

a better pre-defined API for scheduling. This is not well used in the 

implementation.  
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Acronyms and Terms 

 

3G Third Generation 

API Application Programming 

Interface 

DVB-T Digital Video Broadcasting - 

Terrestrial  

DVB-SH Digital Video Broadcasting – 

Satellite services to 

Handhelds 

ESL Electronic System Level 

FLORA Flexible outer receiver 

architecture 

HU Hardware unit 

HS Hardware segment 

HSDF Heterogeneous 

synchronous data flow 

JS Job structure 

LTE Long term evolution 

MC Micro-controller 

OM Original mapping 

RM Resource manager 

RR Round Robin 

RD Relative deadline 

SV Scheduling view 

SDR Software defined radio 

SDF Synchronous data flow 

WCET Worst case execution time 

WCRT Worst case response time 

WCWT Worst case waiting time 
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Appendix A: Graphs 

A.1 The implementation independent SDF graph 

Implementation independent SDF graphs for all the applications are shown as below. For 

DVB-SH, see page 25. 

 

Figure A. 1 Implementation independent SDF graph for DVB-T 

 

Figure A. 2 Implementation independent SDF graph for LTE 

 

A.2 The implementation aware SDF graph 

The implementation aware SDF graphs for all the applications are shown as below. For 

DVB-SH, see page 26. 
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Figure A. 3 Implementation aware SDF graph for DVB-T 

 

Figure A. 4 Implementation aware SDF graph for LTE with TB sized Turbo input 
buffer 

 

Figure A. 5 Implementation aware SDF graph for LTE with CB sized Turbo input 
buffer 

A.3 The single-iteration SVs and combined SV 

Iterations for DVB-T are [( 1; 2; 3; 4)]D D D D ,[( 5; 6; 7; 8)]D D D D  

Single-iteration SVs for DVB-T are 

[( , , , )]De Interleaver Depuncture Viterbi Descrambler− , 

[( , , )]De Interleaver ReedSolomon Descrambler−  
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Iteration for DVB-SH is [( 1; 2; 3; 4; 5);( 6);( 7);( 8)]A A A A A A A A  

Single-iteration SV for DVB-SH is [( , ),( ),( )]De Interleaver De Puncture Turbo De Scrambler− − −  

Iterations for LTE is [( 1);( 2); ( 3)]L L L  

Single-iteration SV for LTE is [( ),( ),( )]De Interleaver Turbo CRC−  

From the single-iteration SVs, we can derive combined SV for DVB-T, DVB-SH and LTE. It 

is[( , , , ),( ),( ),( )]De Interleaver Depuncture Viterbi ReedSolomon Turbo Descrambler CRC− . 

 

A.4 Analysis model 

The Analysis models are shown below. The clustering and coupled scheduling are applied. 

 

Figure A. 6 Analysis model for DVB-SH 

 

 

Figure A. 7 Analysis model for DVB-T 
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Figure A. 8 Analysis model for LTE without coupled scheduling 

 

Figure A. 9 Analysis model for LTE with coupled scheduling 

A.5 Coware task graph 

For DVB-SH, please see page 47. 

 

Figure A. 10 Coware task graph for DVB-T 
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Figure A. 11 Coware task graph for LTE 
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