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Abstract

To reach optimal dynamic sharpness on liquid crystal displays, motion blur reduction is nec-
essary. Motion blur on liquid crystal displays exists of two blur components: Display blur
and camera blur. Display blur is a result of the sample and hold characteristic of the display.
Camera blur is caused by objects moving in front of the camera when the shutter is open.
From the mathematical analysis of motion blur, straightforward methods based on IIR and
FIR filtering can be derived, but are sensitive to noise and create artifacts. Heuristic ap-
proaches based on FIR filtering used to reduce noise and artifacts, show large computational
complexity.

Content adaptive filtering is proposed by means of a structure controlled filter, which can
reduce this complexity. Objective and subjective evaluations of this method show a success-
ful reduction of the camera blur. Subjective evaluations learned that improvement is clearly
visible for individual frames, although the perceived sharpness improvement is reduced when
looking at video material. Pre-correction for display blur is not successful using the structure
controlled filtering method, where the filter is trained on display blur simulated training data.

To support hardware efficiency, alternative implementations have been investigated, which
are bounded by constraints. The fixed aperture constraint has significant consequences on
the LUT size and aperture shape. This alternative implementation, although more efficient
in terms of implementation, did not yield significant motion blur reduction. The huge design
freedom of choosing a filter kernel and the lack of design guidelines, make the design of such
a hardware efficient implementation difficult.
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Chapter 1

Introduction

Over the last years the Cathode Ray Tube (CRT) has disappeared rapidly as Television Dis-
play. This disappearance is caused by the advent of Flat Panel Displays. Many types of
flat panel displays can be discriminated such as: liquid crystal display (LCD), plasma dis-
play panel (PDP), organic light-emitting diode display (OLED), light-emitting diode display
(LED). Currently the LCD has the largest share in the consumer market for displays. Mainly
caused by the high performance, low price, light weight and thin depth compared to its com-
petitors.

The motion blur on a liquid crystal display consists of two blur components. The first
component called display blur is caused by the characteristics of the display itself. Camera
blur is the second component due to characteristics of the camera which is used to record
the scene. At the introduction of LCDs, the CRT had one major advantage over LCD. This
advantage occurred when displaying moving objects. Moving objects are perceived less sharp
on an LCD. This is caused by two factors, slow response time of the LC material and the fact
that every LCD pixel emits light during the whole frame time. This last property is called
the sample and hold effect. Recent developments in hardware and software have removed
this advantage. For example developments in LC material and their driving schemes, made
sure that the response time is below the frame period and a lot of effort is spend on further
improvement of the response time. An important technique to reduce the response time is
called Overdrive[Oku93]. This technique compares the luminance of the current pixel with
the luminance of the next(temporal) pixel, based on this difference an ‘overdrive’ value is
applied such that the response time is improved. If we would be able to produce an LCD
with infinitely fast response time, we would still perceive moving objects blurred due to the
sample and hold effect. The sample and hold effect of an LCD is the property that the pixels
emit light during the whole frame time. A pixel of a CRT on the contrary emits light for
a very short time with respect to the frame time. The human visual system (HVS) has a
property called eye tracking. When objects move, the eyes (and head) follow the smooth
motion of the object such that the object has a fixed position on the retina. If the HVS
tracks a moving object, combined with the sample and hold effect of the LCD, causes pixels
to land on different parts of the retina. This produces display blur on the retina because the
eye integrates in the temporal domain. Display blur, with infinite fast response time of the
LCD, leads to the same blurring as a phenomena called camera blur. Camera blur occurs
when objects move in front of a camera when its shutter is open. During this shutter time,
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1.1. PROBLEM DESCRIPTION CHAPTER 1. INTRODUCTION

the object lands on different positions of the photosensitive layer. This causes an amount
blur depending on the motion speed and the camera shutter time.

1.1 Problem description

The main goal of the project is to get optimal dynamic sharpness for an LCD. To be successful
we have to remove both blur components. To reduce display blur several methods have been
proposed: increasing the frame rate[BJP07], inserting black frames between every two input
frames[HOP+04], scanning backlight[Fis01] and motion compensated inverse filtering[KV04].
The last method filters along the motion vectors using an inverse filter. The idea behind
this method is to pre-compensate the image in the direction of motion, in such a way that
the perceived image looks sharp. This requires spatial filtering along the motion vector for
every pixel. An implementation of this method showed a high computational complexity
and only limited improvement in perceived video quality. Therefore this report describes a
method which improves up on earlier work by reducing computational complexity and/or
improving the perceived video quality. The method proposed in this report uses structured
controlled filtering. A structure controlled filter or also called trained filter, is known for its low
computational complexity and ability to improve spatial sharpness of video. Unfortunately
this filter does require a large look up table. Since display blur and camera blur are closely
related, an camera blur reduction filter is also investigated based on the structured filter
approach. We assume that the camera shutter time related to the input video is a known
value. In this document we will investigate whether we should put two structured controlled
filters in cascade, or combine the two filters and reduce camera- and display blur at the same
time.

1.2 Outline

Chapter 2 gives a thorough explanation of motion blur by the use of a mathematical model.
From this mathematical model some straightforward motion blur reduction methods are de-
rived. At the end of the chapter methods are discussed which are specific solutions for the
reduction of camera blur or display blur. The third chapter gives a explanation of the struc-
ture controlled filter. A complete mathematical formulation is used to describe the filter
properties. Chapter 4 proposes the method. First the research on classification of the pixel
neighborhood is documented, where the method is applied on a simplified case. Later the
method is generalized to any case. Since the method generates some artifacts, the reduc-
tion of these are described. Finally the chapter ends with some considerations to reduce the
complexity, which make hardware implementation possible. The quality of the method, is
validated using a perception test in Chapter 5. This test includes 16 candidates evaluating
the results. Chapter 6 gives a summary of the tools used in this projects and gives a descrip-
tion of the workflow. This information can give a quick start for future research based on this
project. In the final chapter the conclusions are formulated.
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Chapter 2

Motion blur

In this chapter motion blur is explained using a mathematical formulation. From this for-
mulation a straight forward motion reduction method is derived. At the end of this chapter
specific solutions for camera blur and display blur are described.

2.1 Motion blur analysis

When we compare the luminance of a CRT pixel with an LCD pixel during a single frame time
we spot a major difference. A CRT is an impulse type display emitting light only a fraction
of the frame time. This is caused by the phosphor of the pixel. It glows for a very short
period after a electron beam ’hit’. In contrast, an LCD pixel emits light during the whole
frame time. In the first model we assume that an LCD pixel has an infinite fast response
i.e. a transition from the lowest luminance level to the highest level or reversed can happen
instantaneous. Suppose the HVS tracks a moving object on an LCD screen, which moves
with a constant speed ~v. This object has an associated displacement vector ~D = ~v.T , where
| ~D| is the number of pixels the object moves between two consecutive frames. The angle of
the vector defines the direction in which the object moves. In Figure 2.1 the x-coordinate of
a horizontally moving object is depicted for a set of consecutive frames. In the left graph,

n− 1 n n + 1
Frame

n− 2 n + 2 n− 1 n n + 1
Frame

n− 2 n + 2

x-pos.
on
lcd

x-pos.
on
retina| ~D|

T

c · | ~D|

Figure 2.1: The position of a horizontally moving object on an LCD(left). Eyetracking this object
causes the object position on the retina depicted on the right. The swift object movement
on the retina causes the eye to integrate the light.

the position of the object on the screen shows the sample and hold effect. This sample and
hold effect combined with the smooth motion of the eye tracking the object, causes the object
movement on the retina shown in the right graph. Between two consecutive frames the object
moves proportional to ~D on the retina. This movement on the retina is perceived as blur,
because the eye acts as a lowpass filter in the temporal domain.
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This averaging effect of the eye can be modeled by integrating the image along the dis-
placement vector. Integrating the image can be modeled by an averaging filter. For example
an object that moves with the speed of 5 pixels per frame, would yield a [15 ,15 ,15 ,15 ,15 ]-filter.
This model can also be used for camera blur. Suppose we would move the object with the
same displacement in front of a camera, this would lead to a similar blurring effect. The
difference is that the integration now takes place on the photo sensitive layer of the camera
instead of the retina. Note that the camera shutter time must be equal to T . When we
calculate the Discrete-Time Fourier Transform of the box rectangular filter using:

H
(
ejθ
)

=
∞∑

k=−∞
h[k]e−jkθ (2.1)

we get:
H
(
ejθ
)

= 1 + e−jθ + e−2jθ + e−3jθ + e−4jθ (2.2)

If we plot the magnitude of the frequency response (Figure 2.2(a)), we can see that this
response contains zeros. These zeros make reconstruction difficult, since frequencies associated
to these zeros are completely removed. When the object has a higher speed and therefore a

π
2 π

|H(ejθ)|

θ
0

dB

0

(a) |H
(
ejθ
)

| of a 5-taps averaging filter

π
2 π

|H(ejθ)|

θ
0

dB

0

(b) |H
(
ejθ
)

| of a 20-taps averaging filter

Figure 2.2: Magnitude of the frequency response of the averaging filter.

larger integration range, the frequency response contains more zeros (Figure 2.2(b)) , which
makes reconstruction even harder.

2.2 Motion blur reduction

To demonstrate some straightforward reconstruction methods we limit ourselves to horizontal
motion. For a more formal description of a horizontal filter we use the notation from [dH08]

The luminance of a display signal is denoted by F (~x, n) where ~x is a vector
(
x
y

)
to a pixel

in image n. The luminance output Foh(~x, n) of the filter with an impulse response hh(k) is:

Foh(~x, n) =
∑
∀k

hh(k) · F (~x+ k · ~ux, n),
∑
∀k

hh(k) = 1 (2.3)

where ~ux =
(

1
0

)
is the horizontal unit vector in the pixel grid.

Suppose we would have an image which moves from left to right over the screen with a speed
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of 5 pixels per frame. According to our model this would induce the same amount of display
blur as camera blur under the following conditions. The image would have to move with the
same speed in front of a camera when the shutter time is equal to the frame time. In our
simplified display blur model this can be simulated by applying a lowpass filter to the image
having the following impulse response: hh(k) = 1

5 for 0 ≤ k ≤ 4, or in simplified notation a
[15 ,15 ,15 ,15 ,15 ]-filter. The simulated motion blur shown in Figure 2.3(b) applied to the original
Figure 2.3(a).

(a) Original image

(b) Simulated motion blur

Figure 2.3: Image (b) is the result of the simulation of horizontal motion blur applied on (a). This
simulation is performed by a convolution of (a) and a [ 15 , 15 , 15 , 15 , 15 ] kernel.

The first straightforward reconstruction method would be to isolate the original image
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from the equation describing the linear filtering:

Foh(~x, n) =
1
5
·

4∑
k=0

F (~x+ k · ~ux, n) (2.4)

Rewriting 2.4 we get:

Foh(~x, n) =
1
5
· F (~x, n) +

1
5
·

4∑
k=1

F (~x+ k · ~ux, n) (2.5)

After isolating F (~x, n) from 2.5 we get:

F (~x, n) = 5 · Foh(~x, n)−
4∑

k=1

F (~x+ k · ~ux, n) (2.6)

Equation 2.6 describes a recursive filter, since output values are used as feedback. From this
equation we can define a so called Infinite Impulse Response (IIR) filter. A block diagram of

delaydelaydelay delay

sum

-1 -1 -1 -1

input

output

5

Figure 2.4: Block scheme of an 5-taps Infinite Impulse Response Filter. The delay component stores
a value at the input at time n, and outputs this value at n+1. IIR filters have an impulse
response that is non-zero over and infinite length of time.

this filter can be seen in Figure 2.4. From this filter we can compute the frequency response:

H
(
ejθ
)

=
5

−1− e−jθ − e−2jθ − e−3jθ − e−4jθ
(2.7)

When plotting the magnitude |H
(
ejθ
)
| (Figure 2.5) we can see that this filter is exactly

the inverse of the frequency response of the blur filter (Figure 2.2(a)). When the IIR filter
is applied to the blurred image we do not get the original image (Figure 2.6). The image
is perceived sharper than the blurred image, but it contains artifacts. These artifacts are
caused by quantization. After the blur filter operation, the values are quantized to 8-bit
values. This quantization noise causes small errors when reconstructing the image by means
of an IIR filter. Since the filter in the current configuration is not stable, these errors will
spread throughout the whole image. A stable filter could only be build by this approach,
when the transfer function of the blur filter does not contains zeros. In general the filter
coefficients are quantized as well, hence disturbing perfect reconstruction.

The second solution would be to use a Finite Impulse Response(FIR) filter. These filters
have a finite impulse response and are therefore stable by definition. In Figure 2.7, the block
diagram of such a filter is depicted.
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π
2

π

|H(ejθ)|

θ
0

dB

0

Figure 2.5: The magnitude of the frequency response of the IIR filter. This response is the ideal
inverse of a 5-taps averaging filter. Note that for frequencies 2π/5 and 4π/5 the ampli-
fication is infinite.

Figure 2.6: Image reconstructed by means of an IIR filter. The visible artifacts are caused by am-
plification of quantization noise. Quantization noise arises when the pixel values are
quantized by the blur simulator.

The goal is to design a FIR filter in such a way that its frequency response is a good
approximation for the frequency response of the IIR filter. The FIR filter has to be a approx-
imation because the ideal frequency response requires infinite amplification. First we sample
the magnitude of the frequency response |H

(
ejθ
)
| of the ideal filter. The sampling is done

using L sample points spread equally in the frequency range from 0 until 2π. We call this
sampled frequency response |H[k]|. To these samples we add a linear phase, so we get:

H[k] =
∣∣∣H (ej 2πk

L

)∣∣∣ · e−j L−1
L
πk (2.8)

From H[k] we can derive a linear phase L taps FIR filter, by h[n] = IDFT (H[k]), where
IDFT is the Inverse Discrete Fourier Transform defined as:

h[n] =
1
N

N−1∑
k=0

H[k]ej
2πkn
N (2.9)

The resulting filter is an approximation of the sampled filter, its frequency response is exact
for the sample points. Hence increasing the number of samples gives a better approximation,

9



2.2. MOTION BLUR REDUCTION CHAPTER 2. MOTION BLUR

delaydelaydelay

sum

h(1) h(2) h(n− 1)

input

output

h(0)

Figure 2.7: A Finite Impulse Response filter with n stages. Each stage i has an independent delay
and amplification gain h(i− 1). In general FIR-filters are less efficient compared to IIR-
filters, demand more computation but are stable by definition and are easy to implement.

but increases the computational complexity. As an experiment we sampled the frequency
response using 41 sample points. This results in a FIR filter where the impulse response
contains 41 taps. The result of this approximation for the filter described by Equation 2.4
can be seen in Figure 2.8. If we apply this filter to the blurred image (Figure 2.3(b)) it will

π
2

π

|H(ejθ)|

θ

0

dB

0

Figure 2.8: The solid line depicts the ideal frequency characteristic. The dotted line is the resulting
frequency characteristic of a 41 taps FIR filter. As can be seen, infinite amplification
makes accurate approximation difficult.

result in Figure 2.9, we observe some visible artifacts. These are ringing artifacts caused by
the coarse approximation of the high amplifications in the frequency response. Furthermore
IIR and FIR filtering have the drawback, since they both amplify the high frequencies, they
are enhancing noise. Therefore these methods cannot be applied directly for picture quality
enhancement.

The mathematical analysis for display and camera blur are similar, but their reduction
methods are not. Current methods in the literature for solving these problems are different for
both blur sources, therefore we discuss them separately. These methods are different because
display blur is a phenomena that occurs on the retina, and camera blur occurs on the photo
sensitive layer in the camera.

2.2.1 Camera blur reduction

The camera blur reduction is similar to the restoration of motion blurred photos. Photos
can suffer from motion blur if there is movement when the shutter is open. This motion blur
reduction is a double blind deconvolution problem. Since the signal and the distortion to this
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Figure 2.9: Image reconstructed by means of an 41-taps FIR filter. The artifacts around the sharp
edges are ringing artifacts. These are caused by the coarse approximation of the high
amplification area in the ideal frequency characteristic.

signal is unknown. As an example, it is not possible to discriminate between a blurred detail
and a low frequent detail. The restoration consists of a two step procedure. First the point
spread function (PSF) is estimated. For estimation of the PSF two parameters need to be
derived from the photo, namely the length and the angle. With this information the restora-
tion algorithm can apply inverse filtering according to this PSF. Such an algorithm which
combines both functions is called Blind Deconvolution. Blind deconvolution is prior art in the
area of digital photography and astronomy. A well know algorithm is the RichardsonLucy
deconvolution[Ric72], which uses and iterative procedure for restoring the image. In our case
estimation of the PSF is not necessary, since we have a sequence of images instead of a single
image. From a sequence of images, a motion estimation can be executed. This motion esti-
mation algorithm returns the motion speeds and angles of the objects in the sequence. These
motion vectors can be translated easily into a PSF for every object. Hence PSF estimation
for video simplifies to estimation of the shutter time and the motion. Since inverse filtering
also enhances the noise, Norbert Wiener found a solution for this problem in the 1940s. The
wiener filter provides an ‘optimal’ tradeoff between signal and noise enhancement. Unfortu-
nately a model for noise and signal is necessary when using this filter. For a TV signal such
a model does not exist.
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2.2.2 Display blur reduction

Several methods have been proposed to reduce display blur. They can be categorized in three
groups.

1. Improvement of the response time

2. Reduction of the hold time

3. Inverse filtering

The first category contains methods which reduce the response time of the liquid crystals.
These methods like Overdrive[Oku93] have significantly reduced the response time, as far as
below the frame time. Reducing the response time any further would not significantly im-
prove the image quality, since the motion blur is mainly caused by the hold time of the display.

The second category tries to reduce the hold time. The first method is called Motion Com-
pensated Upconversion[BJP07]. This method performs an upconversion of the frame rate. The
motion compensation is very important, since simply repetition of the frames would not re-
duce the hold time. To explain the method we use the same Figure(2.10) as before. Again

n− 1 n n + 1
Frame

n− 2 n + 2 n− 1 n n + 1
Frame

n− 2 n + 2

x-pos.
on
lcd

x-pos.
on
retina

Figure 2.10: On the left can be seen that Motion Compensated Upconversion reduces the hold time
compared to the original (grey line). This reduction reduces the length of the quick
object shift on the retina. Hence the blur length is reduced.

the graphs show the x-coordinate of a horizontally moving object. The colored lines belong
to the upconverted sequence, whereas the grey line belongs to the original. Because of the
motion compensated upconversion, the object integration distance is decreased by a factor
two. Therefore the display blur is also reduced by a factor two. As can be seen, this method
is very effective, but also expensive in terms of hardware. This because the display must be
able to show the sequence at the necessary frame rate. Besides upconversion using motion
compensated frames, other upconversion methods have been investigated. These methods
insert black[HOP+04], grey or smooth frames. Another method to reduce the hold time is
to use a scanning backlight[Fis01]. The backlight used is brighter than traditional backlight,
but the pixels are only illuminated during a short portion of the frame time. In this way, the
display becomes an impulse type display instead of a sample and hold type, which reduces
the display blur. Unfortunately this method does give flicker.

An example of the third category is Motion Compensated Inverse Filtering(MCIF)[KV04]
which tries to pre-correct the image. This pre-correction is applied in such a way, that the
perceived display blur is reduced. This pre-compensation is based on motion compensated
high pass filtering. For instance a simple 3-tap high pass filter is applied and added to
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the original image. This filter approximates the ideal inverse filter (Like Figure 2.8). The
angle and the gain of this filter depends on motion vectors generated by a motion estimator.
An abstract block diagram of this method can be seen in Figure 2.11. The 3-tap filter is a

input

HPF

motion
estimation

to display

direction

gain

to display

speed

Figure 2.11: Block diagram of Motion Compensated Inverse Filtering. Vectors resulting from motion
estimation of the input frames, control the high pass filter and the gain. The HPF
output is added to the input frame, which result in a pre-corrected output frame. This
pre-correction reduces the display blur visible by the human eye.

trade off to keep computational complexity low enough for real time implementation. But this
simplicity also has its downside. The coarse approximation gave artifacts like overshoots. Also
the gain factor becomes very high when the motion speed increases, this causes two problems.
The high amplification enhances noise. The second problem is the limited dynamic range of
the display. The high amplification causes clipping of pixel values. A simple solution for
the noise enhancement, it to use a image complexity threshold. In low detailed areas of the
image, where the noise is visible, no pre-correction is applied. This is generally no problem,
because blurring of low detailed areas can not be perceived very well.
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Chapter 3

Structure Controlled Filters

A structure controlled filter is also called a trained filter. A structure controlled filter con-
sists of two parts. A training processes and a processes when the filter is applied. The
training process can be performed off-line. The training will be explained using the block
diagram(Figure 3.1). To train the filter we use a large set of images, that represent the pre-

Original
image

Distorded
image

Add blur
and noise

Classifi-
cation

Classcode

LMSE
optimization

per class

Filter coeff.
per class

Store coeff.
for each

class in LUT

Figure 3.1: Block diagram of the training process of the structure controlled filter. Each pixel in
the distorted image is classified depending on local structure. Every class is assigned
coefficients, based on least means square error optimization between the distorted pixel
apertures belonging to the class and their original values.

ferred output quality. These images are distorted such that it matches the distortions we like
to remove. In our case, the images are distorted by blur using an averaging filter, in cascade
with additive noise that models the transmission noise. The training process classifies every
pixel according to the structure of a certain aperture around this pixel. Pixels that fall in the
same class are assigned a filter that minimizes the squared error compared to the ’original’
pixel value from the training set. Finally for every classcode the optimal filter coefficients are
stored in a look up table.

To better understand the least mean square optimization, we define the aperture around
the distorted pixels as the 2-dimensional array FD,c(i, j), and the original pixels as FO,c(j).
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CHAPTER 3. STRUCTURE CONTROLLED FILTERS

Both arrays belong to the same classcode c. The filtered pixels FF,c(j) can be defined as:

FF,c(j) =
n∑
i=1

wc(i)FD,c(i, j) (3.1)

Where wc(i) for 1 ≤ i ≤ n are desired square error optimal filter coefficients. The aperture
contains n pixels, hence we need equal number of filter coefficients. With the index j we can
address all m different pixel apertures which belong to the same class c. The summed square
error between the filtered pixels and the original pixels can be defined as:

(3.2)

e2 =
m∑
j=1

(FO,c(j)− FF,c(j))2

=
m∑
j=1

(
FO,c(j)−

n∑
i=1

wc(i)FD,c(i, j)

)2

(3.3)

To minimize the squared error e2, the first derivative of e2 to wc(k) for 1 ≤ k ≤ n should be
zero.

∂e2

∂wc(k)
=

m∑
j=1

2FD,c(k, j) ·
(
FO,c(j)−

n∑
i=1

wc(i)FD,c(i, j)

)
= 0 (3.4)

The optimal coefficients wc(i) can be found by Gaussian Elimination applied on Equation 3.4.
Which can be seen below:


wc(1)
wc(2)
. . .

wc(n)

 =



m∑
j=1

FD,c(1, j)FD,c(1, j) . . .

m∑
j=1

FD,c(1, j)FD,c(n, j)

m∑
j=1

FD,c(2, j)FD,c(1, j) . . .
m∑
j=1

FD,c(2, j)FD,c(n, j)

. . . . . . . . .
m∑
j=1

FD,c(n, j)FD,c(1, j) . . .
m∑
j=1

FD,c(n, j)FD,c(n, j)



−1

×



m∑
j=1

FD,c(1, j)FO,c(j)

m∑
j=1

FD,c(2, j)FO,c(j)

. . .
m∑
j=1

FD,c(n, j)FO,c(j)


(3.5)

15



CHAPTER 3. STRUCTURE CONTROLLED FILTERS

The resulting optimal coefficients are then stored in the LUT. The block diagram of the
process when we apply the structure controlled filter to distorted images can be seen in
Figure 3.2. First a pixel is classified using exactly the same classifier as the one used in the

Input image

Classifi-
cation

Filter
operation

Output
image

Coeff.
LUT

wc
cFD,c

FD,c FF,c

Figure 3.2: Block diagram of the filtering process of the structure controlled filter. Each pixel in
the input image is classified depending on local structure. According to the resulting
classnumber the filter coefficients are taken from the LUT. Using these coefficients the
pixel is filtered.

training process. From this classification we get a classcode. From this classcode we can
find the corresponding coefficients in the LUT. Using these coefficients the filter operation
is applied. In case the table is not completely filled during the training process, an all-pass
filter acts as a failsafe. So the training process automatically fills empty table entries with an
all-pass filter:

wc(i) =

{
1 if i =

⌈
n
2

⌉
,

0 else
(3.6)

Where we assume that the center pixel has position i =
⌈
n
2

⌉
in the aperture. An empty

table entry could be caused by a couple of reasons. The size of the training set might not be
sufficient, or not representative to the data on which the filter is applied. The matrix on which
the gaussian elimination is applied can be singular, which can not be solved. It is important
to keep the LUT of reasonable size, because an enormous amount of training data might
be necessary to fill the LUT. To estimate whether the LUT is sufficiently filled, one might
perform experiments to see whether the result converges to a certain quality when increasing
the training set. The size of the LUT depends on the number of classes. For example when
using a structure based classifier, the number of classes might be exponential to the number
of pixels used in the classifier. In classifier design lies a tradeoff between classifier quality and
LUT size. In the design of a classifier lies an enormous freedom of choice, for example the
shape of the structure and how structure is encoded to a class.
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Chapter 4

Proposed Method

The method proposed here uses the Structure Controlled Filter for the reduction of motion
blur. MCIF suffers from artifact caused by the coarse approximation of the ideal filter.
These artifacts were suppressed by means heuristics. Implementing these heuristics made
the method computational expensive. Using a structure controlled filter instead of a 3-taps
filter used in Motion Compensated Inverse Filtering might give a better result. Structure
controlled filtering brings adaptivity to noise, edges and texture. Since motion blur consists
of two components, camera- and display blur, we investigate them separately. First, the
camera blur reduction is investigated. Secondly, we try to pre-correct the sequences to reduce
the display blur. To design the Motion Compensated Structure Controlled Filter we used
the following strategy: In the first section we design a filter which can solve a 1-dimensional
case of camera blur with a fixed blur length. In the second section the result of section 1
is generalized to any motion speed and direction. In this section the generalized filter is
applied on real video data and analyzed. The third section describes the artifacts generated
by the method and proposes some artifact reduction solutions. In the fourth section the
generalized filter is applied to pre-correct sequences. The last section describes a hardware
efficient version of the Motion Compensated Structure Controlled Filter.

4.1 Motion blur characterization

The classification is essential to the structure controlled filter method. A accurate classifica-
tion, classifies pixels such that filtering pixels belonging to the same class, require the same
filter coefficients to get the desired result. Unfortunately there is a trade-off between the
classification quality and the LUT size. An accurate classification always results in very large
amount of classes. In this section we investigate different classification methods and apply
them to a fixed amount of camera blur. For the first experiments the structure controlled fil-
ter is being trained by a set of 25 degraded images. The resolution of the images is 1600x1200
pixels, where every pixel is used for the training. This training set is degraded by a horizontal,
5-pixel averaging filter to simulate camera blur. After this blurring some gaussian additive
noise is added. The filter is then applied on a set of five degraded benchmark images. These
images have the same degradation as the training data. An important remark is that the
benchmark images are not part of the training data, because this gives a result which is too
optimistic. As an objective measurement to evaluate the classification, the mean square error
of pixel luminance values is used. As a reference we use the mean square error between the
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(a) windows (b) lighthouse

(c) farm (d) parrots

(e) houses

Figure 4.1: The five images used to benchmark the classification. The benchmark set contains several
common image structures like, high detailed textures, smooth details which are out of
focus, sky, and water. This because the algorithm should perform well on average for
any kind of image structure.
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benchmark images (Figure 4.1) and the degraded benchmark images. Subjective assessment
has also been performed and is discussed later in this chapter.

4.1.1 Adaptive Dynamic Range Coding

In the first approach Adaptive Dynamic Range Coding (ADRC) is used to classify the pixels.
This method is described in [KK95]. This classification tries to capture the local image
structure, by encoding whether the luminance of a pixel in the aperture lies above or below
the aperture average. For an aperture which contains the pixels 1 ≤ xi ≤ n we define:

Ci =

{
1 if xi > av,

0 else.
(4.1)

Where the average luminance value av is defined as:

av =
1
n

n∑
i=1

xi (4.2)

When the class bits Ci are placed in a fixed order, this results in a binary representation
of the class number. With this method the number of classes is exponential in the number
of pixels used for classification. This limits the aperture size in practice. The next design
decision is to select an aperture shape. As a first shape we try the diamond shaped 13-points
aperture (Figure 4.2) from [KK95], which will result in 213 = 8192 classes. This diamond is
centered around the pixel which needs to be filtered. Using this aperture shape, the filter is

(a) diamond (b) line

Figure 4.2: Two aperture shapes used to classify and filter the pixels from the distorted input image.
The line aperture performs better at characterizing the structure of the degradation than
the diamond, if positioned parallel to the motion vector. The diamond gives a better
characterization of the local structure.

trained using the training data. Afterwards the structure controlled filter uses this aperture
to classify the pixels and applies the convolution using the same aperture shape and the
coefficients stored in the LUT. From this results we compute the mean square error. See
chapter 3 for more detailed information. As can be seen in Table 4.1, using this diamond
aperture decreases the mean square error results compared to the reference. Classifying the
structure along the degradation might give improvement. This because the blur is caused by a
one-dimensional function, we should use a one-dimensional aperture to catch the structure of
the blur. Therefore we use a line aperture parallel to the motion vector. Using this aperture
shape, the mean square error(Table 4.1) was reduced significantly for all benchmark images
compared to the diamond shaped aperture. The advantage of the classification according
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Image reference diamond line lmse
windows 173.786 144.994 96.293 101.394
lighthouse 97.881 79.929 52.771 56.213
farm 97.233 82.720 58.283 61.616
parrots 36.346 29.830 22.933 24.339
houses 478.271 401.524 248.679 264.241
total 176.703 147.800 95.792 101.560

Table 4.1: The first column shows the mean square error results, of the degraded images without any
enhancement applied. The second and the third column show the results of the structure
controlled filter applied using a diamond and a line aperture. The last column depicts
results from an LMSE-filter applied on the benchmark set.

to the local structure becomes clear when we compare the line aperture based structure
controlled filter, with a Least Mean Square Error (LMSE) filter using the same line aperture.
This filter does not discriminate between structures, so every pixel ends up in the same class.
Hence the optimal coefficients are computed which minimize mean square error for all the
pixels. From the results in the table it is clear that the structure controlled filter outperforms
the LMSE-filter. If we evaluate the mse results in the table we can conclude that the aperture
shape has a lot of influence on the mse scores. Since the design space for such an aperture
shape is very large, we can only evaluate a limited number by hand. Therefore an automated
full search of a part of the design space was executed. The pseudo-code of this algorithm can
be written as:

Algorithm fullsearch(To, Td, Bo, Bd)
Input: To: Set of original Training data, Td: Set of distorted Training data
Input: Bo: Set of original Benchmark data, Bd: Set of distorted Benchmark data
1. for every aperture shape s in the search area
2. then train the filter using To and Td with aperture s
3. Br ← apply the filter to Bd with aperture s
4. calculate mse between Bo and Br

The algorithm starts by selecting an aperture shape which lies within the search area. The
search area is defined as a 19-pixel line, to investigate the possibilities in the direction of the
blur. To reduce the number of possible apertures within the search area only symmetrical
shapes around the center pixel were taken into account. The selected aperture is used to train
the structure controlled filter with a 25-image training set. The second step, is to apply the
structure controlled filter on the benchmark images. From the results the mean square error
is calculated. The algorithm repeats itself until all aperture shapes are processed. In earlier
attempts the filter was trained on the benchmark data only, and applied on the benchmark
data. This was done for efficiency reasons, because training the filter on a large number of
images is time consuming. The assumption made, is that a good classifier which gives a low
mse score for this set, gives a good mse score for any image. This assumption turned out
to be invalid. Using this method it became clear that aperture was optimized only for the
benchmark images only and not for any arbitrary image. Therefore the filter needs to be
trained on a large training set. To find a good tradeoff between the aperture size and the
mean square error both are plotted in Figure 4.3. The actual mean square error results and
the corresponding aperture shape can be seen in Appendix A. The full search was able to
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Figure 4.3: This graph shows the mean square error optimal apertures for each aperture size. All
symmetrical possible apertures within a 19-pixel line are included in the full search. The
aperture consisting of an even number of pixels show a slightly worse result compared to
odd size apertures. This is probably caused by the center pixel not part of the aperture
shape.

find aperture shapes, which reduced the mse significantly compared to the line aperture. To
see whether more mse reduction is possible, the search area was expanded. The search area
was expanded in the direction orthogonal to the motion vector. These pixels might encode
additional valuable information of the neighborhood. This new search area is depicted in
Figure 4.4. To keep the coefficient table within practical size, the number of pixels in each

Figure 4.4: The expanded search area used in the full search, to exploit the fact that pixels orthogonal
to the motion vector might encode useful information, to further reduce the means square
error of degraded images.

aperture is smaller or equal to 19. To keep the number of possible apertures within a practical
limit only symmetrical shapes are used. These shapes are symmetric horizontal and vertical
to the center pixel. To investigate the tradeoff between the aperture size and the mean
square error both are plotted in Figure 4.5. If we compare (Table 4.2) the results from the
extended search area with the 19 pixel line search area, we can see that there is improvement
for apertures which are larger than 11 pixels. When we look at the corresponding shapes in
Appendix B, it can be seen that these shapes use information from the direction orthogonal
to the motion vector. From this can conclude that using information from the structure
orthogonal to the motion can improve the result. Probably it is possible the find a better
aperture shape by enlarging the search area, but the number of different aperture shapes is
exponential in the search area size, and therefore are impractical with a full search algorithm.
To loosen to constraint of the search area size, some more advanced algorithm could be used.
It might be useful to apply Simulated Annealing [KGV83] for searching large a area. Simulated
annealing is a generic, heuristic optimization algorithm used to find an approximation of the
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Figure 4.5: This graph shows the mean square error optimal apertures for each aperture size. All
horizontally and vertically symmetrical possible apertures within the extended search
area are included in the full search.

global minimum of a certain function in a large search area. Since the mean square error
is an objective metric that might not in line with the human perception, to illustrate this
two images are depicted. Figure 4.6(a) is the result of houses enhanced with a 13-pixel
line aperture and Figure 4.6(b) is the result of houses enhanced by the 13-pixel optimal
aperture. The mean square error the former figure is 14% higher, but comparing the figures
visually, there is not much difference. From this search we can conclude that the optimal
aperture shape further reduces the mean square error, although the perceptive image quality
improvement can be limited.

search area 6 7 8 9 10 11 12
line 115.123 105.669 99.548 97.392 91.375 89.623 89.561
extended 115.123 105.669 99.548 97.392 91.375 89.623 85.529

13 14 15 16 17 18 19
line 88.041 88.148 86.733 87.484 86.290 88.107 88.228
extended 84.851 83.861 83.390 83.347 83.404 83.999 85.850

Table 4.2: Mean square error comparison of the 19-pixel line and the extended search area. Up
to 11-pixel apertures the optimal apertures are exactly the same. For larger apertures,
orthogonal pixels further reduce the mse score.

4.1.2 3 Level Adaptive Dynamic Range Coding

This classification method also called Local Ternary Pattern uses three levels to classify each
pixel in the aperture. The levels are defined by whether a pixel lies within a certain threshold
from the average of the aperture, or above or below this window. This method might give
a better classification since it can distinguish between noise and texture. The shortcoming
of ADRC is that small deviations are classified the same as very large deviations from the
aperture average. For an aperture which contains the pixels 1 ≤ xi ≤ n we define:

Ci =


+1 if xi > av + th,

−1 if xi < av − th,
0 else.

(4.3)
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(a) 13-pixel line, mse 248.679

(b) 13-pixel optimum, mse 217.789

Figure 4.6: Benchmark image houses enhanced by structure controlled filtering, using a 13-pixel line
and a 13-pixel optimal aperture. In mse there is a 14% reduction, but there is almost no
visible difference.
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Where the average luminance value av is defined as:

av =
1
n

n∑
i=1

xi (4.4)

When the class bits Ci are placed in a fixed order, this results in a ternary representation of
the class number. Now the table size scales exponential with a base three. Hence we can only
allow very small aperture sizes. A practical aperture size would be 11 pixels. The resulting
table has 311 = 177, 147 entries. Since this table is quite large, the training set was increased
to 145 images with 1600x1200 resolution. For this classification there are two variables. First

16 32 48 64 80 96 112
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93

mse

Threshold th

0 128

95

Figure 4.7: The mean square error results of the three level ADRC as a function of the threshold.
This might give information on how to choose the threshold value. Threshold th = 5
gives the lowest mse score.

how to choose the aperture shape and the second is how to choose the threshold th. Searching
this design space is not practically feasible. Therefore we eliminate one variable by choosing
an 11-pixel optimal ADRC aperture shape(Appendix A, Figure (f)). We assume here that
this aperture will perform well for this method. Since the threshold can have at most 255
values, the mean square optimal value can be calculated easily. From this analysis we can
conclude that the threshold th = 5 is the optimum for the chosen aperture shape in terms of
means square error. The results are depicted in Figure 4.7. If we compare (Table 4.3) this
method to ADRC with the same aperture, we see that there is only a small reduction in mse.
Whereas the look up table is almost 100 times larger. When we look at the perceptive image

Image 3L-ADRC ADRC
windows 90.588 91.334
lighthouse 47.492 49.658
farm 55.230 57.112
parrots 19.058 23.492
houses 221.888 224.380
total 86.851 89.195

Table 4.3: Comparison between structure controlled filtering by means of 3L-ADRC and ADRC
classification. The mse scores of the 3L-ADRC are reduced, at the cost of the LUT being
100 times larger compared to ADRC
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quality we can see that the noise is suppressed. Especially in flat areas for example the sky.
This is because the classification is now able the distinguish noise in flat areas from detailed
textures, that differ in contrast.

4.1.3 Complexity metric

The shortcoming of ADRC mentioned in 4.1.2 is that for example a flat area with some noise
might be classified in the same class as a detailed texture. As a result noise in flat areas
might be enhanced. To prevent this we should also classify the complexity of the pixels in
the neighborhood, because this discriminates noise from textures. In the paper [SZdH08] four
classification methods are presented to fulfill this task:

For a region which contains the pixels 1 ≤ xi ≤ n we define:

• Dynamic Range

DR = max(x1, x2, . . . , xn)−min(x1, x2, . . . , xn) (4.5)

The dynamic range is simply the difference between the pixel with rank 1 and rank n.

• Local Entropy

H = −
N∑
i=1

PR(i) log2 PR(i) (4.6)

Variable PR(i) denotes the probability density function, which can be computed as:
PR(i) = HR(i)/N , where HR(i) denotes the histogram, which can be obtained by
counting how many times a certain luminance value occurs in the image. The luminance
range is divided into regions called bins. Variable i indicates the bin index in the
histogram, N is the total number of bins and R is a local region around the central
pixel of which the entropy is calculated. A region which has a high complexity has a
distributed histogram leading to a high entropy value. If the region is flat like blue sky,
the histogram contains a few peaks, leading to a low entropy value.

• Mean Absolute Difference

MAG =
1

n− 1

n∑
i=2

|x1 − xi| (4.7)

Where x1 is the luminance of the center pixel.

• Standard Deviation

STD =

√√√√ 1
n

n∑
i=1

(xi − av)2 (4.8)

Where av is defined in Equation 4.4.
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To find a suitable complexity measure we make a small comparison between the four possibil-
ities. In this comparison one bit is reserved for complexity classification in combination with
an 13-pixel ADRC optimal aperture. With this complexity bit, we can classify whether a pixel
lies above of below a complexity threshold. In Figure 4.8 we can see the mean square error
results for a range of threshold values for the four different methods. Notice that there are

64 128 192
81.5
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82.5
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83.5

mse

Threshold th

0 256

84

DR
MAG,
H

0 16 32 48 64
0.8 0.98 1.18 1.36 1.55

84.5

STD

Figure 4.8: The mean square error results of several complexity metrics combined with ADRC as a
function of the threshold. Note that there are three different threshold scales. It can
be seen that choosing the right threshold is important for the complexity metric to be
successful.

different scales used on the x-axis. For the complexity metrics: DR, MAG and STD we used
the aperture also used in the classification and the filtering. For the Local Entropy this is not
very suitable since the number of pixels is not sufficient. Hence we enlarged the window to a
7 x 7 square for this complexity metric. From this graph we conclude that all these methods

(a) ADRC (b) ADRC + DR

Figure 4.9: Structure controlled filter with and without a dynamic range included in the classifica-
tion. The noise in the flat areas, such a the rooftop and sky, are suppressed.

have very similar mse characteristics. Also when comparing the results of these methods
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visually, there is almost no difference. Since there is no difference, we pick the method which
is computationally least expensive. This method is Dynamic Range, because this method
does not require divisions or multiplications. In Figure 4.9(b) we see a restored image us-
ing a Dynamic Range threshold of 32, whereas in Figure 4.9(a) an image is depicted where
no complexity metric is applied. We can see that the noise in flat areas is reduced significantly.

The addition of DR coding to the classification doubles the LUT. This can be prevented by
assigning all low complexity pixels to the same class instead of 213 classes. Hence we use the
same mean square error optimal filter coefficients for all low complexity pixels. This method
is successful because visibility of the blur in low complexity areas is reduced. Therefore these
coefficients reduce the noise only in these areas. Using this method the LUT increased by
only one entry. A comparison between these two methods is shown in Figure 4.10. From

64 128 192
81.5

82

82.5

83

83.5

mse

Threshold th
0 256

84

DR

84.5

DR reduced table

Figure 4.10: Reducing the LUT size while using a complexity metric, is done by using a LMSE
filter for all classes which are below the complexity threshold. Note that choosing the
threshold value is much more critical by this method.

this figure we can see that we can reduce the LUT by this method, with only a small mse
difference. Although choosing the threshold value is more critical. For these circumstances
the optimal value is th = 22.

Instead of using a threshold, one could also use k bits for the Complexity classification.
Therefore it is possible to define 2k Complexity levels. Unfortunately this leads to an increase
of LUT size by 2k. Some brief experiments using 4 levels showed limited improvements in
mse. Therefore this has not been further investigated.

4.1.4 Determining training set size

It is not obvious in advance what the required size of the training data is. Therefore a small
experiment is conducted to investigate the optimal training set size. At first the filter is
trained using only one image. This filter is applied on the benchmark set using a 13-pixel
optimal dynamic range aperture. The result is compared by the original benchmark set using
mean square error. In the next iteration, a new image is added to the training set. This is
repeated until the training set contains 145 images. In Figure 4.11 the mse for all training
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Figure 4.11: Mean square error results of the benchmark set as a function of the number of images
in the training set. At some point there are sufficient images in the training set, adding
even more does not increase the mean square error.

set sizes is depicted. It can be concluded that at least 60 images are necessary for a sufficient
training. We can also see that adding even more images to the training set does not increase
the mean square error. We assume that the benchmark set represents arbitrary video material.
Under this assumption the structure controlled filter is trained sufficiently, for arbitrary video
material.

4.2 Extension to 2D motion blur

In the previous section the structure controlled filter was optimized for camera blur with a
fixed speed and a fixed direction. In real life this is not very useful, since there is motion in
all directions and all speeds. For the generalization of the simple case we need to estimate
the motion in the image sequence. For this the 3-Dimensional Recursive Search motion
estimator[dH93] has been used. 3DRS is a high quality true motion estimator that has been
successfully used in consumer products for motion judder reduction. The estimator is able to
estimate the true motion of an object, compared to for example a full search block matcher.
This quality is important, because the quality of the method immediately depends on the
quality of the motion vectors. This because wrong vectors leads to invalid filter operations
to corresponding pixels. Suppose the motion speed would be fixed, then the problem could
be solved by simply rotating the aperture. When rotating this aperture it is necessary to
use interpolation when fetching the pixel values. In the experiments bilinear interpolation is
used. To generalize the method to different blur lengths several possibilities are compared. In
order to make a comparison, the mean square error metric is used again. The benchmark set
is degraded using 5, 10, 15, 20, 25 and 30 pixel blur length in horizontal direction. Afterwards
Gaussian noise is added using a standard deviation (σ) of 5.

4.2.1 Aperture scaling

The first method scales the aperture corresponding to the blur length. Note that the blur
length depends on two factors namely, the motion speed and the camera shutter time. Since
the aperture has a two-dimensional shape, only scaling is applied in the direction parallel to
the blur angle. The filter is trained using data which has been degraded using a fixed blur
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length. In the first experiment the filter is trained on a blur length of 5. When the algorithm
is applied to camera blur where the blur length is larger than 5, the aperture needs up-scaling.
When the algorithm is applied to camera blur where the blur length is smaller than 5, the
aperture needs down-scaling. The scaling is linear, for example when the blur length is 10, the
aperture is scaled using a factor 2. Bilinear Interpolation is used to fetch pixels when using a
scaled aperture. The results of this method can be seen in Figure 4.12. In this figure the mse
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Figure 4.12: Mean square error results of the benchmark set as a function of the blur length. For
all blur lengths the mean square error is reduced. The values have been calculated for
the dots on the line only.

of the degraded benchmark images is depicted(Reference) as well. The aperture used here is a
17 pixel optimal ADRC aperture. For a complexity metric, a Dynamic Range threshold of 32
is used. It can be concluded that there is improvement for all blur lengths. A portion of the
improved houses figure for blur lengths 5, 10, 15, 20, 25 and 30 can be seen in Appendix C. As
can be expected, image reconstruction becomes more challenging for increase of blur length.
This is caused by the number of zeros in the magnitude of the frequency response of the blur
kernel. Image details at these frequencies are completely removed, hence they can not be
restored.

The above scaling method is based on the training of a training set degraded by 5-pixel
blur. It might be possible that this “basis” is not optimal. Training on higher-pixel blur using
a scaled aperture might give better results. There is a tradeoff when selecting another training
basis. If the filter is trained on a small blur length, the signal to noise ratio is higher than
training on a large blur length. But training on a higher blur length gives a more accurate
measure of the blur. To find the optimal basis a comparison(Table 4.4) is made based on
the mean square error. From the results we can see that on average a low blur length basis
performs best for low blur lengths and a high blur length basis performs best for high blur
lengths. Instead of scaling it is also possible to add the blur length to the classification.
This requires a set of tables, where each table belongs to a certain speed window. If for
every speed window, an optimal aperture is used, this method could outperform the scaling
method. Although this method would be expensive in terms of LUT size.
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Blur 5 10 15 20 25 30

Basis

5 79.943 191.561 226.485 288.797 327.337 371.215
10 90.638 224.192 235.602 311.963 338.555 393.159
15 84.120 192.681 217.565 281.922 318.494 362.555
20 86.870 204.976 221.448 291.210 322.629 371.154
25 86.670 194.869 219.465 283.378 319.714 363.453
30 88.237 202.854 221.775 289.154 321.886 368.703

Table 4.4: Mean square error comparison under two parameters. The vertical parameter is the blur
length on which the filter is trained. Horizontally, the blur length of the degraded input
material on which the filter is applied.

4.2.2 Extension to motion blur in video

With the identification of the classification method and its extension to arbitrary motion
vectors, we apply the method on real video data to reduce the camera blur. For the classifi-
cation we use a 17 pixel optimal aperture, and a dynamic range threshold of 32. Furthermore
the filter is trained on 5 pixel blur degraded data. The filtering process of the system can
be described using the following block diagram(Figure 4.13). Note that we could only use

Classifi-
cation

Filter
operation

Coeff.
LUT

Aperture
fetch

Motion
estimation

input output

c

wi~v
j

Figure 4.13: Block diagram of Motion Compensated Structure Controlled Filtering. The aperture
fetch depends on the angle and length of the motion vector. According to class c
resulting from classification of aperture j, coefficients wi are taken from the LUT.
These coefficients are used to apply the filter operation on aperture j.

video material from which the camera shutter time parameter is known. If this parameter
is unknown, which is the typical case in TV reception, the parameter needs to be estimated.
The first sequence(Figure 4.14(a))is from the movie Monsters, Inc. This sequence contains
a global vertical pan. Therefore the blur angle is directed upwards. We can see that the
restored sequence(Figure 4.14(b)) contains significantly less camera blur, as the edges of the
digits for example are much sharper. Sequences 4.14(c) and 4.14(e) are recorded with a known
shutter speed. Both sequences are shot using a shutter speed of 315 degrees. This high speed
combined with a horizontal camera pan, gives long blur lengths. We can see that the edges of
the color chart, contain blur. The readability of the blurred text in Figure 4.14(e) is very low.
After restoration we can see that both sequences have been improved in terms of sharpness.
For example, the edges of the color chart are improved. Also the text has become more read-
able. Note that the restoration is executed on the luminance only. The chrominance channels
are not processed.
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(a) original (b) restored

(c) original (d) restored

(e) original (f) restored

Figure 4.14: Camera blur reduction applied on three videos. On the left frames of the original videos
and on the right frames of the enhanced video. Note that the reduction is only applied
on the luminance component.
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4.3 Artifact reduction

When the method is applied on more complex sequences, that have locally different motions
or complexity, artifacts arise. Since these artifacts clearly visible, some measures must be
taken to reduce these artifacts. The artifacts can be categorized in four groups:

1. Noisy edges caused by transitions between high and low complexity areas.

2. Vector field inconsistency, caused by low complexity areas.

3. Blocking artifacts because of low vector field resolution.

4. Halos which occur at object boundaries.

5. Distortions at image boundaries.

The first artifact can be seen in Figure 4.9(b). It can be seen that on the right side of
the tower there is a noisy edge. This noisy edge arises because, the pixels in this area are
classified as part of a complex image part. They are classified as such, because the aperture
also includes some pixels from the tower itself. Therefore this is a high complexity area. To
reduce these noisy edges we could use a weighted dynamic range, where the pixels close to
the center pixel get a higher weight. As such we define a weighted dynamic range, containing
the pixels 1 ≤ xi ≤ n:

yi = (av − xi)wi (4.9)

Where wi is the weight assigned to the according pixel in the aperture.

WDR = max(y1, y2, . . . , yn)−min(y1, y2, . . . , yn) (4.10)

Where av is defined in Equation 4.4. Experiments with this dynamic range weighting showed
that removal of noise is not possible by this method. But the visibility of the edge is reduced,
since the noise gradually decreases further away from high complexity object edges.

Second source of artifacts are generated by the motion estimation. The vector field might
be inconsistent in low detailed image portions. Because the blocks which are being matched
are similar. Fortunately this is not a big problem, since blur in low detailed image portions
is not visible. Hence, it not necessary to correct for it.

The third problem is caused by the fact that the 3-DRS motion estimator is a block based
motion estimator. This means that every block of pixels is assigned the same motion vector.
At the contours of moving objects, these blocks become visible in the restored sequences. To
deal with this problem block erosion is applied on the vector field.

Another problem are the edges of moving objects. In Figure 4.15(a), the camera is fol-
lowing the train, therefore the background contains camera blur and the train is sharp. The
artifacts we are trying to reduce are the ’halo’ artifacts around the contours of the train
cargo. If we look at Figure 4.15(c), we can see the motion vectors of the background. These
motion vectors are indicated by the yellow labeling. The halo artifacts because of the filter
operation that is applied on the pixels just on the boundary of the vector field. The aperture
of these pixels, is partly located on the foreground object. Hence pixels from the foreground
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(a) original (b) reduced (c) vector field

Figure 4.15: The center image shows the result of Halo reduction applied on the left image. On the
right we can see the associated vector field. Halos occur when applying filter operations
at the edges of a vector field.

are used in the convolution. To reduce this effect the motion vectors according to the pix-
els in the aperture should be consistent. The consistency check, is performed by measuring
the deviation from the vector associated to the center pixel. The solution used to correct is
straightforward. When one or more motion vectors are not consistent, the center pixel lumi-
nance value is taken instead of the luminance value(s) from the pixel itself. The result of this
operation can be seen in Figure 4.15(b). More advanced reduction algorithms are possible,
for example extrapolation, but this is not the main focus of this research.

The last kind of artifact appears at the image boundaries, where the aperture might be
partly located outside the image boundary. The straightforward solution used to solve the
fourth kind of artifact could also be applied here.

4.4 Pre-correction for display blur

In this section it is investigated whether a structure controlled filter can pre-correct a sequence
in such a way, that the perceived sequence looks sharp when shown on a sample and hold
display. When training this filter, there are two options.

• Degrade training data by a display blur simulator, and use the original data as the
reference data.

• Pre-correct the training data by a (computationally expensive) algorithm and use this
data as the reference, and use the original data as the degraded set.

We chose to use the first option, since it possible to design a good display blur simulator. The
second option is more comprehensive. Suppose we would be able to pre-correct the training
data, then we would have solved the problem already. It could be that this algorithm would
be very computationally expensive, then structure controlled filtering might give a faster
approximation of the pre-correction. For this display blur simulator there are two basic
properties which need to be simulated. The first property is the sample and hold effect of the
display. Secondly the slow response time of the LC-material. To test a simple proof of concept,
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only the first property is modeled. Hence we assume that the LC-material has an infinite fast
response. Using this simplified model, we can conclude that display blur causes exactly the
same blurring as camera blur with a shutter time of 360 degrees. So we apply the camera blur
reduction filter, with the shutter speed parameter set to 360, to original (non-blurred) data.
When we look at Figure 4.16(b) we can see that the result is not visually pleasing. When

(a) original (b) Pre-corrected

Figure 4.16: On the right, Pre-correction of Monsters, Inc. The distortions are caused by insufficient
training of the classes.

eye tracking the objects in this movie, does not improve the result either. After examination
of the classification of the pixels and their corresponding filter coefficients, it was found that
the results are caused by the training method. Since the filter is trained on simulated display
blur only, classes are sufficiently trained which classify blurred image data. In this image data
the high frequencies are removed, because of the blurring. When we apply the pre-correction
filter, the input data does contain high frequencies. Therefore high frequency image portions
are classified as classes, which have not been trained sufficiently. Insufficiently trained classes,
have coefficients which can cause distortions. To verify this, we depicted an overlay which
encodes the class count as luminance. Where black means a low class count, and white a high
class count. The class count associated to class c is defined as the number of pixels in the
training data, which are classified as class c. Figure 4.17(a) shows the class count overlay of
the pre-corrected image. Compared with the class count overlay(Figure 4.17(b)) of camera
blur reduction of the same video, we can see that the pre-correction uses a huge number of
insufficiently classes.

4.5 Alternative implementations

Alternative implementations of the Motion Compensated Structure Controlled Filter have
been investigated. The benefit of this implementation is that is enables a less complicated
hardware implementation. Although it can be expected that the performance of this imple-
mentation might be reduced. For such an implementation it is important that the aperture
meets the following constraints. The aperture has a fixed shape on a fixed position according
to the centerpixel. This has serious implications on the method described in this report.
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(a) Class count overlay, Pre-correction (b) Class count overlay, Camera blur reduc-
tion

Figure 4.17: For each pixel, the corresponding class count is encoded as the luminance. The class
count associated to class c is defined as the number of pixels in the training data, which
are classified as class c.

For example scaling or changing the rotation of the aperture is no longer possible. For this
method to be successful we need to find an aperture which performs relatively good for every
reasonable blur length in terms of mean square error reduction. It also needs to be suitable for
every rotation angle. We propose to use the aperture depicted in Figure 4.18. This aperture
might be able to classify and filter different blur lengths.

Since we can not scale or rotate the aperture, we have to use the classification for this
problem. Since the number of bits used in the classification is limited, we chose the bit
assignment in Table 4.5. The local structure is encoded by ADRC using 17 pixels from the

Property Bits
structure 17
speed 4
angle 2
total 23

Table 4.5: The division of the bits used for classification. The total number of bits is limited by a
practical LUT size. Exploiting the symmetry of the aperture, the angle can be classified
in 32 different parts.

neighborhood. To classify the speed four bits are reserved which can classify each speed
into 16 different windows. When we look at the angle only two bits are reserved. Because
the aperture is symmetrical in the horizontal and vertical direction, we can already encode
four angles. Since the aperture is nearly symmetrical in the two diagonal directions, we can
encode eight angles. With the two additional angle bits it is possible to classify four angle
regions within 45 degrees. This leads to a 32 level angle adaptive filtering. To benchmark the
performance of this method, the benchmark set is used together with the mse metric. The
filter is applied on the benchmark set which is degraded by 5,10,15,20,25 and 30 pixel blur.
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Figure 4.18: Proposal for a fixed aperture shape, which might be invariant to different blur lengths
and rotations. The symmetry of the shape is important to reduce the LUT size, since
it makes rotations and mirrorings of the coefficients possible.

This test is conducted under a 0,15,30 and a 45 degree angle. The results from Figure 4.19
are compared to the degraded benchmark set (reference) and the best result using aperture
scaling, described in Section 4.2.1. The mse scores show only a minor improvement is obtained.
The largest improvement occurs at 20 pixel length for the 0 and 45 degree angle. It shows
that the aperture dependents on the blur length. When we analyze the effect on the angle
of the aperture, we can see that 15 and 30 degree performs worst. This is likely caused by
the fact that the pixels in the aperture are misaligned to the blur direction. This alternative
implementation, although more efficient in terms of implementation, does not yield significant
improvement. The huge design freedom of choosing a filter kernel and the lack of design
guidelines, make this approach difficult.
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Figure 4.19: The mean square error result of the method. Results are depicted for six different blur
lengths. As a reference the mse results of the unprocessed images and the results of the
aperture scaling method are shown. The results of the method using the fixed aperture
are drawn for four different angles.
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Chapter 5

Subjective Perception Test

When we apply the method on real video data(Figure 4.14) we can see that there is improve-
ment. This improvement is clearly visible when we compare individual frames of the original
and the processed sequences. Unfortunately this improvement is less visible when we play the
video data. The subjective perception test was executed, to see if the visual difference holds
while viewing sequences. The visual difference might be reduced, because viewers attention
might not be focussed on image portions that contain camera blur. Second problem is the
display blur caused by the display used to show the sequences to the subjects. A third issue
which might influence the visual difference, is the human visual system tracking the moving
objects. The first section describes the experimental setup of the test. The second section
describes the results of the test. Finally the conclusions which can be made from the results,
and some additional discussion.

5.1 Experimental setup

In this experiment subjects were shown six different sequences, where the original and the cam-
era blur reduced sequence were shown on two displays side by side, based on a left/right ran-
dom permutation. An individual frame of these six sequences can be seen in Appendix D.The
subjects were asked to judge which sequence was perceived sharper. They were able to choose
between three options; Left display, Right display or No difference. For this experiment the
algorithm used a 17 pixel optimal aperture, using a dynamic range threshold set to 32. Fur-
thermore, measures were taken to reduce the artifacts described in Section 4.3. The training
process of the structure controlled filter was based on a 145-image set. The displays used in
this experiment have a 100Hz refresh rate. To reduce the display blur, picture rate conversion
was done by a motion compensated upconverter. These displays also consisted of a scanning
backlight with an effective duty cycle of 40% of the frame time. A small summary of the
sequences can be seen in Table 5.1

The sequences are either film or video. The film sequences were shot at 25 progressive
frames per second, therefore it needs a factor 4.0 upconversion. The video sequences were
first deinterlaced to obtain 50Hz progressive sequences. Motion compensated upconversion
with a factor 2.0 yielded 100 Hz sequences. For all sequences Overdrive was applied to make
sure correct luminance levels were obtained at the end of each frame period.
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Seq. V/F Upconv. Shut. Playtime

1 Film 4.0 180◦ 5.5 sec.
2 Film 4.0 180◦ 3.1 sec.
3 Film 4.0 180◦ 4.0 sec.
4 Film 4.0 288◦ 11.7 sec.
5 Video 2.0 270◦ 5.4 sec.
6 Video 2.0 315◦ 4.9 sec.

Table 5.1: The sequences used in the subjective perception test. Depending on whether the material
is film or video a different upconversion is necessary. From this material the camera
shutter angle is known, this a crucial variable for estimating the blur length.

5.2 Results

The experiment was conducted on 16 subjects which lead to the result in Table 5.2. In this

Seq. Left No diff. Right
1 1 1 14
2 4 4 8
3 4 7 5
4 7 4 5
5 7 4 5
6 8 4 4

Table 5.2: Results of the subjective perception test. The green colored cells represent on which screen
the enhanced sequences were shown. The red cells represent on which screen the original
sequences were shown.

table each cell consists the number preferences which the participants gave to that cell. The
green color depicts the enhanced sequence, and the red cell depicts the original sequence. To
make a distinction between the participants which might be expert or non-expert viewers,
for each participant a score is calculated. The score is based on the answers the person gave.
A preference for the processed sequence adds +2 to the score, a preference for the original
sequence adds -2 to the score and a ‘no difference’ answer adds -1 to the score. The individual
scores can be seen in Table 5.3(a). The distinction is made using a threshold, where the expert

Person 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Score 6 4 -5 -6 2 6 1 9 6 0 -3 -3 -3 -7 3 6

Table 5.3: For each of the subjects an individual score was assigned. This score could be a metric
to separate the experts from the non-experts. Initially the score starts at 0. For each
preference for the original sequence a -2 is added to the score, for each preference for the
processed sequence answer +2 is added to the score and for a ’no difference’ answer -1 is
added to the score.

viewers have a score which is higher or equal to 2. In this way we get eight experts and eight
non-expert. From this classification we can derive separate results for both groups. These
will be discussed in the next section.
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(a)

Seq. Left No diff. Right
1 0 0 8
2 0 1 7
3 1 6 1
4 1 4 3
5 6 2 0
6 6 1 1

(b)

Seq. Left No diff. Right
1 1 1 6
2 4 3 1
3 3 1 4
4 6 0 2
5 1 2 5
6 2 3 3

Table 5.4: Subjective perception test results for expert(a) and non-expert(b) viewers. The discrim-
ination is based on the individual score. Subjects which are assigned a score greater or
equal to two are considered experts.

5.3 Conclusions

When we look at Table 5.2 we notice that the camera blur reduction of the first sequence is
perceived sharper by almost all subjects. In this sequence the camera was panning across a
detailed area, hence the viewers attention was probably focussed on the moving details and
was able to see the enhancement. The second sequence was perceived sharper by twice as
many subjects as the original sequence was preferred. Also some subjects found it hard to see
any difference. This is probably caused by the camera following a moving object. Therefore
the object has a fixed position on the screen and the background is moving. Likely most
viewers have been focussed on the static object instead of the moving background, making
the difference difficult to see. This effect was much stronger in sequences three and four
where the camera followed a much larger object. From the results we can see that there no
significant perceived sharpness difference between the improved and the original sequence.
Sequence five and six are both sequences where the camera follows a moving train. These
sequences differ in shutter speed, whereas the fifth and the sixth sequence have a 270◦ and
a 315◦ shutter speed respectively. In these sequences the moving background contains highly
detailed areas, like text and colored checkerboard patterns. Also the moving train was not
located in the center of the sequence. This might be the reason why both sequences have a
slightly better preference for the improved sequence.

We conclude from the results that the perceived sharpness also depends on the expertise
of the viewer and the sequence we look at (Table 5.4). From the expert viewer results, it is
clear that determining the sharpness of sequence one, two, five and six gave a clearly visible
sharpness difference. But sequence three and four get a high ‘no difference’ vote, caused by
the low detailed moving background, and the big static foreground.

5.4 Discussion

There were some visible artifacts in the enhanced sequences. Future work might concentrate
on how these artifacts influence the perception of sharpness. It might also be interesting
how the results would be, if the participants were given some additional information prior
to the test. This information could be directions where to look for. Comments from the
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participants in this experiment learned that sharpness comparison was difficult. This because
simultaneous comparison of moving objects is difficult, since it is only possible to focus at
one detail at the time. After focussing on a detail, at the other display this detail might be
gone or changed in scale, rotation or location. A solution might be to use shorter sequences.
Shorter sequences would decrease the delay between the repetition of the detail, this makes
comparison more easy. Another option might be to use a split screen where one half displays
the original sequence and the other half the improved sequence. Although this method has
other disadvantages. Since the content is split, it is not possible to compare exactly the same
moving details. Also the transition line between original and processed content might be
visible. When using split screen, visibility might influence the object tracking.
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Workflow and Tooling

This chapter describes the hardware and software tools used in this project. All these software
tools are developed within Philips Research. A short summary of the software and hardware
is described in the first section. The second section describes the complete workflow of the
structure controlled filtering method in detail. All the steps and the tools used in these steps
are described.

6.1 Tools

• PFSPD
Philips File Standard for Pictorial Data(PFSPD) is a file format which has been used
throughout the project. PFSPD has been developed to get efficient and easy file access.
This is a file format for uncompressed sequences and supports progressive and interlaced
video files. Several color formats are supported such as: YUV 4:4:4, 4:2:2, 4:2:0 and
RGB 4:4:4. Pixels can be encoded as 8, 10, 12, 14 & 16 bit per pixel. Furthermore
additional components can be added easily. For example adding x and y components
of a motion vector field.

• PV
Pfspd View(PV) can display images from a pfspd sequence using Xwindows or MS
windows. It provides an easy to use graphical interface to view individual images from a
pfspd sequence. Also support several options to influence how the images are displayed.

• PP
Pfspd Player(PP) plays images from a pfspd sequence on the MS windows platform in
real-time. Through the command line options it is possible to specify many options.
For example display multiple files using horizontal or vertical splits.

• PTS
Pfspd Tool Shop(PTS) provides a variety of tools for creating, manipulating and analyz-
ing PFSPD files. The tool can create many test patterns or synthetic motion sequences.
For manipulation there are options like: crop, scale, affine, (de)interlace, and rotation.
For image analysis it includes: histogram, statistics, file comparison and error metrics.

• VIDPROC
VIDeo PROCessing software, is a program that is designed to help understand the
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video processing algorithms in [dH08]. The software enables processing of various se-
quences to: estimate motion, resolution upconversion, frame-rate conversion, sharpness
enhancement, add noise, noise reduction, fourier transform and popular video file format
conversions.

• VIPLIB
VIdeo Processing LIBrary(VIPLIB) is a C-library which contains many video post pro-
cessing algorithms. Like Color conversion, deinterlacing, image enhancement, motion
estimation, interpolation, image scaling and noise reduction.

• DRC
DRC is an implementation of the structure controlled filter. This implementation can
be found in the development version of VIPLIB.

• BIGGRID
The BiG Grid project (led by partners NCF, Nikhef and NBIC) aims to set up a grid
infrastructure for scientific research. This research infrastructure contains compute clus-
ters, data storage, combined with specific middleware and software to enable research
which needs intensive computing power or data storage.

• VISA
VIdeo Sequence Availability is a database which contains video sequences and images of
the Philips video- and image processing R&D community. This database aims to provide
an easily accessible inventory of the available sequence and image source material, as well
as the knowledge we have about it. By storing, maintaining, and making the information
available in a centralized way, is assured that the sequences, images, knowledge, and
experience, are optimally distributed and remain available even after the people who
contributed them have left.

6.2 Workflow

This section describes the steps taken to make motion compensated structure controlled
filtering possible.

6.2.1 Obtaining the training set

To generate the training set the following steps have been taken: First the images have to be
translated into the PFSPD format, this can be done by:
pts translate

After this operation, it is very convenient to concatenate all the separate files to a sequence.
To do the concatenation use:
pts cat

The resulting PFSPD file is in the RGB 4:4:4 format. Since we apply the camera blur
reduction on the luminance only, we need to convert to the YUV 4:2:2 format. This can by
done by:
pts convert -yuv422
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To degrade the PFSPD files with the simulated motion blur, we use: pts filter

Afterwards gaussian noise is added tot the sequence using VIDPROC.

6.2.2 Preparing input data

We could apply the algorithm on either real input data or synthetic input data. For synthetic
input data we could use images which are manually degraded by a motion blur model. This
data can be processed as described in the previous subsection, but afterwards motion vectors
need to be added to the file. Using the PFSPD library, a simple programs can we written
which can fulfill this task. When using real input data, it is very convenient to use sequences
from VISA. These sequences are already in the PFSPD format and useful file information is
available. To add true motion vectors to the sequence, the 3DRS motion estimator could be
used. This estimator is available in VIPLIB.

6.2.3 Algorithm evaluation

There are two ways to benchmark the results. One could either use objective evaluation or a
subjective evaluation. For objective evaluation, the mean square error metric could be used.
Note that this is only possible when reference material is available. To execute mean square
error comparison use:
pts cmp -mse

The other option is to do subjective evaluation. Displaying single frames PV could be used,
or when analyzing the video in real time is necessary you could use PP.

6.2.4 Searching for optimal apertures

The full search described in this report needs a lot of computing power. Fortunately the search
can be parallelized, since there are no data dependencies. Each mean square error evaluation
for each of the apertures could be processed independently. To exploit this parallelism the
full search was executed on BIGGRID. This computing grid is able to process thousands of
processes in parallel.
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Conclusions

From the mathematical analysis of motion blur, some straightforward reduction methods can
be derived. The first method uses an Infinite Impulse Response(IIR) filter. This method
has a frequency characteristic which is the exact inverse of the motion blur model. Unfor-
tunately this IIR-filter is very sensitive to noise. The second method uses a Finite Impulse
Response(FIR) filter. For this filter, the frequency characteristic is an approximation of
the ideal inverse blurring frequency characteristic. Although this method is less sensitive to
quantization noise because of stability, it suffers from ringing effects caused by the coarse
approximation of the frequency characteristic.

Motion Compensated Inverse Filtering(MCIF) uses FIR filtering to reduce camera blur
and display blur. Heuristics applied to reduce artifacts caused by frequency characteristic
approximation make the method computationally expensive. Motion Compensated Structure
Controlled Filtering can reduce the camera blur without the computational complex heuris-
tics for artifact removal used in MCIF. The performance of a motion compensated structure
controlled filter depends mainly on the classification.

In classifier design there is a lot of design freedom. Aperture shapes, structure encoding
and complexity metrics can improve the mean square error and the subjective sharpness. Ob-
jective and subjective evaluations of this method show a successful reduction of the camera
blur. Subjective evaluations learned that improvement is immediately visible for individual
frames, although the perceived sharpness improvement is reduced when looking at video ma-
terial. This is caused by viewers attention on image portions which do not contain camera
blur, some remaining display blur on the displays used to show the videos and difficult com-
parison because of the movement in the details.

Pre-correction for display blur is not successful by the structure controlled filtering method,
where the filter is trained on display blur simulated training data. Since the filter is trained
on simulated display blur only, classes are sufficiently trained which classify blurred image
data. In this image data the high frequencies are removed, because of the blurring. When we
apply the pre-correction filter, the input data does contain high frequencies. Therefore high
frequency image portions are classified as classes, which have not been trained sufficiently.
Insufficiently trained classes, have coefficients which can cause distortions.
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To support hardware efficiency, alternative implementations have been investigated. The
fixed aperture constraint has significant consequences on the LUT size and aperture shape.
This alternative implementation, although more efficient in terms of implementation, did not
yield significant improvement. The huge design freedom of choosing a filter kernel and the
lack of design guidelines, make this approach difficult.

Further research could concentrate on further improvement of the classification, since a
good classifier is key in this method. For example the aperture search could be executed on
a larger search area. A more advanced implementation of the artifact reduction algorithm,
could remove the visible artifacts. This would alienate the question whether artifacts influ-
ence the sharpness perception, during a subjective test.
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Appendix A

Full search results

Each figure shows the optimal aperture shape for a fixed number of pixels in the aperture.
Also the resulting mean square error for the total benchmark set is depicted.

(a) 6 pixel shape, mse 115.123 (b) 7 pixel shape, mse 105.699

(c) 8 pixel shape, mse 99.548 (d) 9 pixel shape, mse 97.392

(e) 10 pixel shape, mse 91.375 (f) 11 pixel shape, mse 89.623

(g) 12 pixel shape, mse 89.561 (h) 13 pixel shape, mse 88.041

(i) 14 pixel shape, mse 88.148 (j) 15 pixel shape, mse 86.733

(k) 16 pixel shape, mse 87.484 (l) 17 pixel shape, mse 86.290

(m) 18 pixel shape, mse 88.107 (n) 19 pixel shape, mse 88.228
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Appendix B

Full search results 2

Each figure shows the optimal aperture shape for a fixed number of pixels in the aperture.
Also the resulting mean square error for the total benchmark set is depicted.

(a) 6 pixel shape, mse 115.123 (b) 7 pixel shape, mse 105.699

(c) 8 pixel shape, mse 99.548 (d) 9 pixel shape, mse 97.392

(e) 10 pixel shape, mse 91.375 (f) 11 pixel shape, mse 89.623

(g) 12 pixel shape, mse 85.529 (h) 13 pixel shape, mse 84.851

(i) 14 pixel shape, mse 83.861 (j) 15 pixel shape, mse 83.390
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APPENDIX B. FULL SEARCH RESULTS 2

(k) 16 pixel shape, mse 83.347 (l) 17 pixel shape, mse 83.404

(m) 18 pixel shape, mse 83.999 (n) 19 pixel shape, mse 85.850
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Appendix C

Scaling Benchmark

(a) distorted (b) restored

Figure C.1: 5-pixel horizontal blur

(a) distorted (b) restored

Figure C.2: 10-pixel horizontal blur
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APPENDIX C. SCALING BENCHMARK

(a) distorted (b) restored

Figure C.3: 15-pixel horizontal blur

(a) distorted (b) restored

Figure C.4: 20-pixel horizontal blur

(a) distorted (b) restored

Figure C.5: 25-pixel horizontal blur

53



APPENDIX C. SCALING BENCHMARK

(a) distorted (b) restored

Figure C.6: 30-pixel horizontal blur
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Appendix D

Subjective Perception Test
Sequences

(a) sequence 1

(b) sequence 2
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APPENDIX D. SUBJECTIVE PERCEPTION TEST SEQUENCES

(c) sequence 3

(d) sequence 4

56



APPENDIX D. SUBJECTIVE PERCEPTION TEST SEQUENCES

(e) sequence 5

(f) sequence 6
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