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A B S T R A C T

Three dimensional television (3D-TV) is considered to be the next logical
step in the history of television. From SD to HD, the step to 3D-TV adds
a third dimension to the viewing experience. 3D capable display panels
are becoming more and more available for the consumer. Therefore, the
widely available anaglyph format and the increasing availability of 3D
movies creates the need for conversion techniques. First, the anaglyph
format suffers from color reproduction artifacts. To display anaglyph
images on full color 3D display panels, we have evaluated several color
restoration algorithms. Second, the viewing conditions for stereo signals
vary among different situations, and can contribute to an uncomfortable
viewing experience. To this end, we have developed a stereo signal
conversion algorithm, capable of adjusting depth information in the
signal. Third, we have investigated the complexity of the view synthesis
sub-algorithm (which is part of the stereo conversion algorithm) on
a TriMedia TM3282 media-processor and contribute with implemen-
tations of complexity-reduced view synthesis algorithms, including a
newly developed algorithm. Having performed the complexity analysis
for these algorithms, it is concluded that the complexity can be reduced
significantly to about one half. As a result, the development of the new
view synthesis algorithm has led to an invention disclosure [12].
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1I N T R O D U C T I O N

Transitions from analog to digital, and from standard-definition
(SD) to high-definition (HD) television, three-dimensional televi-

sion (3D-TV) is considered to be the next logical step in the history of
television. In media and entertainment, the third dimension gives the
audience the illusion of depth. Objects seem to pop out of the screen, or
they appear far beyond the screen. The film industry is already capable
of producing movies in 3D (either from existing 2D movies or from
scratch). Currently, more and more cinemas have adjusted to show 3D
movies as well.

Figure 1.1: 3D-TV giving the illusion of depth.

However, 3D-TV in the consumer market is one of the more recent
developments. For example, flat display panels with 3D capabilities are
becoming available.

Stereoscopic vision

Humans are capable of judging depth, as they learned relations between
physical positions of objects and the objects in the images seen by the
eyes [13]. These relations include interposition, relative size and motion
parallax and are only small contributions to the depth perception. Key
is that the main mechanism of depth perception involves both eyes.

Each eye will see the same scene from a different perspective. There-
fore, images seen by each eye are slightly different. The brain will try to
combine them into one picture by matching similarities and using small
differences to make judgements on depth. This is known as stereoscopic
vision [5].

However, an image on a display is seen by both eyes. Although
humans are able to extract depth information, there is no stereoscopic
vision possible. To enable stereoscopic vision, it is necessary to provide
each eye with a different image. These images should represent two
perspectives of the same scene with minor deviations similar to the
perspectives that both eyes naturally receive in binocular vision.

Consider Fig. 1.2. Within each eye, points A, B and C produce con-
gruent mappings. At the imaginary position E, both mappings can be
shifted to cover each other. However, point P (in front of the plane)
causes different mappings, which do not cover each other in E. This

1
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2 introduction

difference causes the brain to see that point P is in front of the ABC
plane. In order to reproduce this situation using a 3D display technol-
ogy, point P must be projected on positions p̄ and p̃ for the left-eye
image and the right-eye image, respectively [20].
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Figure 1.2: Natural viewing with two eyes and resulting perception point E.

Display technology

For many years, displays have been capable of showing only single
images at a time. In order to provide each eye with a different image,
several methods have been used. One well known and widely used
method is to display anaglyph images [20].

Nowadays, displays are entering the market, which are capable of
showing multiple images simultaneously to produce stereoscopic vision.
The most common display technologies are lenticular displays, polarized
displays, projection displays and time-sequential displays. Except for the
latter technology (which does not display stereoscopic images truly
simultaneously), these are all time-parallel displays. If these displays
are also capable of showing more than two images simultaneously, the
viewer can also experience horizontal parallax.

Viewing conditions and perception of depth

The viewing conditions can be very different among various situations,
i.e. cinema versus home theater. Consequently, the perception of depth
is also very different between these situations. There are two aspects
that play a key role in depth perception:

• Viewing distance. Increasing the distance between viewer and dis-
play will also increase the depth perception. This means that
the distance between perceived objects increases. Consequently,
decreasing the viewing distance decreases the perceived depth.

• Display size. The display size together with its resolution deter-
mines the pixel pitch. The distance between two neighboring
pixels is different for larger or smaller displays with an equal
resolution. The horizontal inter-pixel distance can even be differ-
ent from vertically adjacent pixels. Image points match the pixel
grid. If the distance between neighboring pixels increases, the real
screen disparity also increases. Therefore, the depth perception is
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1.1 problem description and objectives 3

also different. Here, disparity is defined as the pixel-shift between
the same object in the left and the right images.

The physical condition of the viewer also affects depth perception. If
the eyes are tired, they need more effort to perceive depth.

1.1 problem description and objectives

3D-TV signals come in many flavors (i.e. anaglyphs, stereo signal, etc.).
A stereo signal (or two-view signal) is composed of two signals. These
two signals are in full color and are placed side-by-side. Each signal
is intended for one eye only. However, an anaglyph signal has two
views combined in a single signal. Each perceived view for one eye has
reduced color information, because each eye obtains only color-filtered
information. For our study, we consider both types of input signals:
full-color stereo signal and an anaglyph signal. Both possible input
signals are subject to conversion, such that they can be displayed on
full-color stereo display. The displayed signal is perceived by the user
employing polarized glasses. The problem statement is now detailed
in two ways. First, for anaglyph images, we aim at a conversion of the
color shifted information towards a disparity oriented shift suitable for
feeding the left and right stereo channel. Second, for stereo images, we
aim at a conversion into another stereo signal with which the user can
control the depth perception of the 3D signal.

In the following subsections, for each of the individual problems,
specific requirements and objectives are specified.

Anaglyph format conversion

The anaglyph image format is a well known and still widely used
technique to produce stereoscopic vision. An anaglyph image is a
composition of two images, each in different color. The main advantage
of anaglyph images is that any color display can be used to render it.

The separation of both images is realized by color filters in the
goggles. However, each eye will only see a partial color image, which
is not seen by the other eye (i.e. with red-cyan anaglyph, the left eye
obtains a red color image and the right eye obtains a cyan color image).
Since chromatically opposite colors are used to separate each view in
the anaglyph, original color information is lost.

However, display panels with 3D capabilities are able to display
full-color images for each eye. Since anaglyphs have only partial color
information for each view, conversion to full color images is necessary
to display anaglyph images on these 3D display panels.

The first objective is to determine an anaglyph conversion algorithm,
which is capable of restoring full color signals from a given anaglyph
signal. We address the objective in the sequence of the following steps.
Firstly, the color information in the anaglyph signal is separated. Sec-
ondly, the missing color components are restored. Then, the components
are combined to form two full color signals.
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4 introduction

Stereo signal conversion

Depth perception of 3D content (or stereo content in particular) depends
on the viewing conditions. Visual discomfort can occur with incorrect
viewing conditions. Therefore, adjusting the perception of depth to a
comfortable viewing experience, or enhancing the perception of depth
are several use cases of adjusting depth information in stereo content.

However, display panels are driven by dedicated high-end video
processing platforms. These embedded architectures are specifically
designed for video processing. To add this feature to 3D capable dis-
plays, a stereo signal conversion algorithm is proposed. This algorithm
will be integrated in the next generation platform and imposes several
requirements:

• Dedicated video processing platform. This platform consists of, one or
more powerful TriMedia TM3282 media-processors, a dedicated
co-processor and memory. The conversion algorithm is required
to run on this platform.

• Algorithm complexity. Since a single media-processor has limited
processing capacity, the complexity of this algorithm should be
reduced to a minimum. This algorithm is assumed to take its
place in a multitasking environment.

• Memory bandwidth. Memory bandwidth should be limited to a
minimum.

• Real-time processing. A frame rate of 60 frames per second is
required for real-time processing.

• Intermediate format. To cope with different input and output for-
mats, an intermediate format is defined. This format consists of a
2D reference image and depth image.

• 3D display panel. The stereo signal is displayed on a 3D capable
display panel with an effective resolution of 960x540.

The second objective is to determine a stereo signal conversion al-
gorithm which is capable of adjusting depth information contained in
stereo signals. The stated requirements should be satisfied. We address
this objective in the sequence of the following steps. Firstly, the signal
conversion algorithm is decomposed into smaller existing algorithms.
Secondly, these existing sub-algorithms are adjusted together to form
this stereo conversion algorithm for stereo content.

The third objective is to determine the implementation and com-
putational complexity of a sub-algorithm onto the dedicated video
processing platform. We address this objective as follows. Firstly, this
part of the algorithm is mapped onto the processing platform. Secondly,
complexity analysis is performed for this algorithm part. And last but
not least, we investigate ways to reduce the computational complexity
of this algorithm part.

1.2 thesis layout

This thesis consists of two parts.

The first part elaborates on anaglyph conversion algorithms in Chap-
ter 2. This chapter describes how anaglyph images are produced and
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1.2 thesis layout 5

is followed by an evaluation of several methods to restore full color
images from them.

The second part elaborates on the stereo signal conversion algorithm.
This algorithm is detailed in Chapter 3. Each sub-algorithm is explained
in depth. Chapter 4 discusses the mapping and complexity analysis
of the last sub-algorithm of the conversion algorithm. Methods to re-
duce the computational complexity are also investigated. Chapter 5

elaborates on a new algorithm, which replaces the last sub-algorithm.
Computational complexity is reduced significantly, and the develop-
ment of this algorithm has led to an invention disclosure [12]. Chapter 6

provides a summary of the previous chapters and concludes with con-
clusions and future challenges.

[ Confidential report ]



[ Confidential report ]



2A N A G LY P H C O N V E R S I O N

Anaglyph images provide stereoscopic vision. An anaglyph image is
a composition of two input images [20] (image from the left-view

position and image from the right-view position). Fig. 2.1 shows how
an anaglyph is created from two full color input images. To perceive
three-dimensional objects, the left eye should only receive the left input
image and the right eye should only receive the right input image.
Therefore, each input image is shown in chromatically opposite colors
(i.e. red is chromatically opposite to green and blue). In conjunction
with appropriate color spectral glasses, each eye receives only one of its
views. Consequently, each eye will only receive a reduced color image.

2.1 anaglyphs

The stereoscopic effect of anaglyph images is only provided using
appropriate anaglyph glasses. Each lens has a chromatically opposite
color filter. These special glasses are necessary to separate the left and
right views contained in anaglyph images. The image intended for
the left eye should not be received by the right eye and vice versa,
otherwise interference occurs.

Left
image

Right
image

Anaglyph
image

B
G

R

B
G

R

B
G

R

Figure 2.1: Composition of an anaglyph image.

Red-cyan anaglyphs

The most common anaglyphs are represented in red and cyan colors.
Consequently, the appropriate glasses have also red and cyan color
filters, which are positioned over the left and right eye, respectively.

7
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8 anaglyph conversion

More recently, the so-called ColorCode anaglyphs are introduced.
The views in these types of anaglyphs are shown in amber and blue
colors. Consequently, the glasses have also amber and blue color filters.
The color information is seen through the amber filter and parallax
information is seen through the blue filter [4].

Color perception

Since each eye only receives a reduced color image, color is perceived
by combining the two images. Therefore, perception of color depends
on the input images. Color input images produce anaglyphs, in which
the viewer perceives color. However, if gray input images are used to
produce anaglyphs, no color is perceived. This leads to color and gray
anaglyphs.

Consider a color anaglyph image. Color is perceived by combining
colors from each separate view. The left eye only receives the red colors
and the right eye only receives cyan colors. The brain has to combine the
separate color information to perceive the true colors of the perceived
image.

Side effects

There are some side effects that can degrade the quality of viewing
anaglyphs. These side effects include:

• Color reproduction. Each eye receives a reduced color image. The
brain has to combine the color images received in both eyes. Gray
anaglyphs contain no color information.

• Ghosting. Non-ideal filters in the color spectral glasses cause in-
formation intended for one eye, to be received by the other eye
also (this is also known as interference).

• Retinal rivalry. The images for left and right eye are too different,
matching similarities fails.

• Brightness. If the brightness difference of same objects in both
views becomes too much, it causes unpleasant viewing.

Regardless of these effects, anaglyphs have been widely used in science
and design where depth perception is useful. Any color display tech-
nology is capable of showing anaglyph images. The viewing glasses
are inexpensive to create.

Producing anaglyphs

In the past, stereo camera systems have been extended by placing a
red color filter in front of the left camera, and a cyan color filter in
front of the right camera. These two images are then projected together
as a single image to form the anaglyph image. Nowadays, an image
processing algorithm is typically used that simulates these color filters.

Consider producing a red-cyan (color) anaglyph image. Eq. (2.1) is
used to create such an anaglyph image and is defined as: rA

gA

bA

 =

 1 0 0

0 0 0

0 0 0

 ·
 rL

gL

bL

+

 0 0 0

0 1 0

0 0 1

 ·
 rR

gR

bR

 , (2.1)
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2.2 restoration methods 9

where

rA, gA, bA are the R, G and B color components of the

anaglyph image,

rL, gL, bL are the R, G and B color components of the left

input image,

rR, gR, bR are the R, G and B color components of the right

input image.
This equation calculates the intensities for the separate primary color

components red (R), green (G) and blue (B). See [22] for a summary
of similar equations. These equations essentially try to reduce the side
effects. This is achieved by changing the contribution of each color
component.

Restoring an anaglyph image back to full color images

Consider a red-cyan (color) anaglyph, created according to Eq. (2.1).
The available color information are the separate color components in the
anaglyph image. The red color component originates from the left-view
image, while the green and blue color components originate from the
right-view image. Consequently, the green and blue color components
are missing for the left-view image and the red color component is
missing for the right-view image.

Restoring the missing color components of each view is based on
the assumption of stereoscopic vision. The images received by the
eyes should represent two perspectives of the same scene with minor
deviations, similar to the perspectives that both eyes naturally receive
in binocular vision. Consequently, the missing color components of
the left-view image can be found in the right-view image. The missing
color component in the right-view image can be found in the left-view
image.

2.2 restoration methods

The missing color components are restored by retrieving them from the
images in each other’s view. A possible restoration method is depicted
in Fig. 2.2.

Anaglyph
image

Restored left
image

Restored right
image

Split

B
G

R

Restore
G and B

Restore
R

B
G

R'

B'
G'

R
R

B
G

Figure 2.2: Proposed separation process of anaglyph images.
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10 anaglyph conversion

Objects which appear closer in one viewpoint, occlude objects further
away. Since the perspective of both views are slightly different, occluded
parts may become visible in the other viewpoint. Consequently, missing
color information of these parts cannot be found in the image of the
other view.

Two restoration methods have been evaluated. The first method
involves a global transformation model. The second method evaluates
the use of a local motion estimation method.

2.2.1 Affine transformation model

In [6], a solution is proposed to improve the quality of colonoscopy
videos. The colonoscope has a monochrome chipset, which records red,
green and blue color components successively and merges them into
one video signal. Due to movements of the camera, misalignment of
the color channels occur. The proposed solution restores this artifact
by first equalizing the color channels, followed by performing camera
motion estimation and compensation.

Approach

The production of an anaglyph can be depicted as the recording of a
colonoscopy video. First, the red color channel is recorded. Second, a
movement of the camera follows, specifically in a horizontal, right direc-
tion. Then, the green and blue color channels are recorded successively
without camera movement in between.

The proposed restoration method is evaluated to restore anaglyph
images.

Implementation aspects

Histogram specification is used to equalize the histogram of red color
channel to the green color channel. This is implemented according
to [21].

To estimate the 6 parameters for the camera motion model, the
framework applied in [6] is used. This framework is available at [16].

Motion of the camera is compensated for each color channel, using
the 6-parameter affine transformation model. The transformed image
may not exactly match the output pixel grid. Therefore, bilinear inter-
polation is used to re-sample the transformed image.

2.2.2 3-D Recursive search

3-D recursive search (3DRS) block matching algorithm ([9] and [8])
is an efficient motion estimation method and is extensively used in
motion compensated Frame Rate Conversion (FRC) systems. Instead of
estimating motion between two successive frames (time-domain), 3DRS
is used to estimate screen disparity (spatial domain) between left and
right input images.1

1 For more details regarding 3-D Recursive Search as a disparity estimator, read Section 3.2
on page 18.
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2.2 restoration methods 11

This ’motion’ of objects between the left and right input images is
better known as screen disparity. Screen disparity is the horizontal
distance between two corresponding points in stereoscopic content.

In this solution, 3DRS is used to estimate the screen disparity. This
block-based matching algorithm compares blocks of one image (i.e. left-
view image) to one block of the other image (i.e. right-view image). The
similarity of blocks is determined by the sum of absolute differences
(SAD) and the minimum value depicts the best match. This similarity
measure depends on the brightness constancy assumption. Brightness
of a small region in an image is assumed to remain the same, although
the location may change. However, an anaglyph has only red color
information of the left view, and green and blue color information of
the right view. Depending on the color of the object, the red, green and
blue color components have different intensity levels. Therefore, the
brightness constancy assumption does not hold anymore.

Approach

To cope with intensity differences between color components, two
approaches with the 3DRS algorithm are evaluated:

• Modify pixel intensities of input images. The input images are trans-
formed, either by histogram specification or by filtering using a
high-pass filter. This is prior to disparity estimation.

• Use a different similarity measure. Instead of using the SAD value,
Mutual Information (MI) is used to measure similarity of blocks.
Input images are not changed. See [10] and [14] for more details
on this concept.

modify pixel intensities The input images are filtered, either
by histogram specification or by a high-pass filter.

With histogram specification the red color component is adjusted,
such that its histogram matches with the histogram of the green color
component. Histogram specification is implemented according to [21].

The high-pass filter is a 3×3 spatial box-filter [7] and is defined as:

hHPF =
α

9

 −1 −1 −1

−1 8 −1

−1 −1 −1

 . (2.2)

The gain α = 4 for clearer display and offset of 128 is chosen to adopt
to the range of the input image (8-bit unsigned).

The result of both filters is given in Fig. 2.3. These images have a
resolution of 448x368 pixels. Certain cones appear very dark in the
green color component in Fig. 2.3(d), but appear bright in the red color
component in Fig. 2.3(a). These parts are difficult to match using the
SAD similarity measure. The matching of blocks remains difficult when
intensity levels are adjusted after applying histogram specification.
Alternatively, applying a high-pass filter removes low frequencies and
keeps high-frequency (noisy) artifacts. Since the SAD measure relies
on these low frequencies, block matching can be difficult. Nevertheless,
we have adopted the filtering for implementation, as it yields a more
accurate vector field for 3DRS.
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12 anaglyph conversion

(a) Red color component (b) Histogram specification
of (a) adjusted to (d)

(c) High-pass filtered of (a)

(d) Green color component (e) Histogram specification
of (d) adjusted to (a)

(f) High-pass filtered of (d)

Figure 2.3: Original and filtered color components.

different similarity measure The 3DRS algorithm uses the
similarity measure Sum of Absolute Differences (SAD). This measure is
based on the brightness constancy assumption. Due to brightness differ-
ences between red and green color components, this assumption does
not hold anymore. To cope with these differences, another similarity
measure is used, which is Mutual Information (MI).

Mutual Information depends on the entropy and joint entropy of two
random variables. With stereo images, the random variables are image
pixels taken from each image in a stereo frame. In case of anaglyphs,
pixels are taken from the red color component and from the green
color component. This means that the input images for 3DRS are the
unaltered color components, i.e. no transformation is applied.

Entropy is defined as:

H(A) = −
∑
i∈A

p(i) · log2 p(i) , (2.3)

where

H(A) is the entropy of image A,

p(i) is the probability of i occurring in image A.
The joint entropy H(A,B) is defined similar to the single entropy

of Eq. (2.3). The probability function p(i) is replaced with the joint
probability function p(i, j). Using the definition of entropy and joint
entropy, the Mutual Information is defined as:

MI(A,B) = H(A) +H(B) −H(A,B) , (2.4)

where

MI(A,B) is the Mutual Information between images A and B,

H(A) is the entropy of image A,

H(A,B) is the joint entropy of images A and B.
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2.2 restoration methods 13

The 3DRS algorithm is based on block matching. For every block in
the matching image, several candidate blocks are evaluated using this
similarity measure.

Consider an evaluation of one matching block with a candidate block.
First, the entropy of the matching block is calculated, followed by
calculating the entropy of the candidate block. Then, the joint entropy
is calculated of both blocks. Finally, the Mutual Information of this pair
is calculated.

The entropy for an 8×8 block is calculated according to Eq. (2.3),
where A is limited to a small window, which is positioned such that
the reference block is in the middle. This is depicted as a bold rectangle
centered surrounding candidate block C in Fig. 2.4. The size of this win-
dow can be adjusted to make a tradeoff in disparity-vector quality and
performance. With respect to the implementation, when a window is
larger than a block, it automatically overlaps image data. Consequently,
image data has to be accessed more than once.

C

Figure 2.4: Example of entropy window, symmetrically positioned.

Implementation aspects

In order to use MI as a similarity measure in 3DRS, the probability
functions need to be estimated in the matching images. A normalized
histogram with 20 bins is used, proposed by [10].

The 3DRS algorithm calculates the similarity values between a block
in the matching image and several candidate blocks in the matched
image. The vector associated with the best match is assigned to the
block in matching image. The size of these blocks is 8×8. To calculate
the entropies for the MI similarity measure, a window of 15×15 pixels
is used [10].

Spatial candidate vectors are preferred over temporal and updated
spatial candidates. Therefore, temporal and updated spatial candidates
are given a penalty. Because the candidate vector with maximum MI
value is selected as the best candidate, penalties given to the candidates
should lower the MI value. The range of similarity values of MI differs
from SAD. Therefore, further investigation of the penalties for each
candidate is needed. Currently, a penalty of 0.125 is given to every
temporal and updated spatial candidate.
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14 anaglyph conversion

Estimated computational complexity

Table 2.1 shows the number of operations needed to evaluate the simi-
larity between the current block and the block pointed by a candidate
vector.

operation add/sub abs mul div

Sum of Absolute Differences (SAD) 128 64 0 0

Mutual Information (MI) 1118 0 225 0

Table 2.1: Operation cost estimation for calculating similarity of two 8x8 blocks.

The cost estimation of the similarity measure MI is based on the
implementation with 20 bins and a window of 15×15. Except for the
joint histogram, bin selection for the histogram and the calculation of
the entropies are based on implementation with lookup tables.

The similarity measure MI needs a larger memory. In contrary to SAD
(only two times 64 read accesses occur), MI has to store intermediate
histograms in memory. Also the required lookup tables are stored in
memory. Consequently, more read and write accesses are needed.

2.3 experimental results

Determining a 6-parameter motion model for stereo content, results in
several cases that the transformed color components appear slanted.
In stereo content, objects which are closer to the viewpoint are usually
in the bottom of that image. Objects further away from the viewpoint,
appear usually in the middle or top of that image. Since closer objects
have a larger screen disparity, the global parametric model shifts the
bottom of the image more in horizontal direction compared to the top
of the image. Consequently, the transformed image appears slanted.

Modifying the input images, prior to 3DRS-based disparity estima-
tion, such as histogram specification, does not always reduce the large
difference of pixel intensities between corresponding objects sufficiently.
Consequently, the block-matching algorithm has difficulties with es-
timating disparities. However, removing low frequency components
using a high-pass filter leaves in the high frequencies, but removed
the low ones. See Fig. 2.3(c) and 2.3(f). In Fig. 2.5 disparity images are
shown, where the pixel intensity represents the screen disparity be-
tween matched points. A brighter pixel means a larger screen disparity.
Disparity images are up-sampled to match the frame-resolution. Results
in Fig. 2.5(a), 2.5(b) and 2.5(c) are produced by 3DRS with SAD as the
similarity measure. The latter two figures show results of 3DRS with
transformed input images. Fig. 2.5(d) shows the result of 3DRS with
MI as the new similarity measure and untransformed input images.

However, 3DRS-based disparity estimation with MI as the similarity
measure produces equal or better results in comparison to 3DRS-based
disparity estimation with SAD as the similarity measure on high-pass
filtered input.

In the Skydiving sequence, Fig. 2.6 with a resolution of 720×480

pixels, Mutual Information as the similarity measure contributes to find
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2.3 experimental results 15

(a) No transformation applied (b) Histogram specification

(c) High-pass filtered (d) Mutual Information

Figure 2.5: Results of 3DRS-based disparity estimation on transformed Cones
images.

better correspondences. The input images are shown at the top of this
figure.

(a) Red color component (b) Green color component

(c) High-pass filtered (d) Mutual Information

Figure 2.6: Original frames and results of 3DRS-based disparity estimation,
using either pre-filtering (c) or alternative similarity measure (d).
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16 anaglyph conversion

2.4 discussion

Affine transformation model

Estimating and compensating camera motion according to a parame-
terized affine motion model gives very poor results. The restored color
components appear slanted, due to the nature of images. Objects close
to the viewpoint usually appears at the bottom of the image and have
more screen disparity than objects further away from the viewpoint.

Since objects are mostly horizontally offset, the 6-parameter model
seems more than sufficient. This transformation also includes scaling
and rotation, which is for stereo content usually not applicable.

The proposed restoration method is specifically designed for these
colonoscopy videos. These videos contain very little or no depth infor-
mation. A horizontal movement of an object most likely applies to all
other objects within the same image. The colonoscopy camera moves
in arbitrary directions. Therefore, this parametric model is sufficient.
However, for restoring images from an anaglyph, this method is not suf-
ficient. The discontinuities in screen disparities makes this parametric
transformation model insufficient.

3DRS-based disparity estimator

Modifying pixel intensities by high-pass filtering (prior to disparity
estimation) produces significantly better results in comparison to modi-
fying images by histogram specification.

Using a different similarity measure gives also promising results.
However, further improvement by tuning this block-matcher is neces-
sary. More investigation of determining the optimal window size for
entropy calculations, block sizes and the preference of spatial candi-
date vectors over other candidate vectors is necessary to increase the
robustness of this algorithm.

A disadvantage of 3DRS with Mutual Information as a similarity
measure is the computational complexity. For each block, a normalized
histogram must be calculated, and its window is usually larger than the
block. Calculating entropy (given a histogram) and Mutual Information
can be implemented by using a lookup table. Compared to calculating
SAD values, this similarity measure is much more complex.

Both approaches have their strengths and weaknesses. From a com-
plexity point of view, using Mutual Information as a similarity measure
is much more complex, but produces similar or better results.
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3S T E R E O S I G N A L C O N V E R S I O N

This chapter elaborates on the 3D-TV conversion algorithm intro-
duced in the first chapter. This particular conversion algorithm

extracts depth information from the stereo signal. With this depth in-
formation and a reference image, a new stereo signal is created. First,
the concept of adjusting depth information is explained. Subsequently,
each of the steps will be explained in more detail.

3.1 stereo content

In a stereo-view signal, a scene is captured by two cameras. The optical
axes are pointing to the center of the scene, i.e. their optical axes are
converging. In Fig. 3.1(a), such a camera setup is illustrated.

Left
Camera

Right
Camera

offset

center of scene

P

(a) Typical camera setup

offset

screen plane

perceived
depth

p
0

p
1

P

Left eye Right eye

(b) Depth conversion

Figure 3.1: Camera setup (a) and depth conversion (b) in stereo content.

Consider Fig. 3.1(a) with a point P, which is behind the center of
the scene. Point P is captured by both cameras. Since the cameras
are horizontally offset, point P appears also horizontally offset in the
captured images. Point P is projected in the left image on the left,
compared to the position where point P is projected in the right image.
Projection of a point which is in front of the center, appears in opposite
orientation. Projection of a point in the center of the scene, overlap each
other exactly. Projections of point P are depicted in Fig. 3.1(b) as p0 and
p1 on the screen plane.

Consider Fig. 3.1(b) with a point P and its projections p0 and p1. If it
is possible to decrease (or increase) the distance between these projec-
tions, the perceived depth of point P is also decreased (or increased).

This stereo signal conversion algorithm is composed of three steps.
First, the screen disparity is estimated from stereo content. The screen

17
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18 stereo signal conversion

disparity is the distance between the projections of point P in the left
and right image, respectively p0 and p1 . Second, the low resolution
disparity image is filtered and up-sampled to a depth image with frame-
resolution. In the final step, a view synthesis algorithm produces stereo
images from a reference and the frame-resolution depth image. These
step are depicted in Fig. 3.2.

stereo frame input:
left and right views

low resolution
depth image

frame resolution
depth image

stereo frame output:
'modified depth'

disparity estimation

depth processing

view synthesis

Figure 3.2: Overview of stereo signal conversion algorithm.

3.2 disparity estimation

To extract disparity information from a stereo image, a disparity estima-
tor is used. This is also known as the stereo correspondence problem. The
stereo correspondence problem is to find a set of points in one image,
which can be identified as the same points in another image. There are
many algorithms available in literature trying to solve this problem. A
large set of algorithms is evaluated in [19].

3.2.1 3-D Recursive Search

3-D recursive search (3DRS) block matching algorithm ([9] and [8]) is an
efficient motion estimation method and is extensively used in motion
compensated Frame Rate Conversion (FRC) systems. Its efficiency has
proven to satisfy the real-time requirement in consumer electronics.
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3.2 disparity estimation 19

Instead of estimating motion between two successive frames (in the
time-domain), 3DRS is used to estimate screen disparity (in the spatial
domain) between left and right input images.

The 3DRS algorithm is based on two assumptions. First, objects
are larger than a block. This means that each block within the same
object should have the same disparity vector. Therefore, the disparity
vector can be found in one of the neighboring blocks. These disparity
vectors are spatial vectors. Second, objects have inertia. The disparity
that each object has, is assumed to continue over time and can change
gradually, not instantaneously. Hence, disparity vectors of this object
in nearby frames are likely to be the same too. These disparity vectors
are referred to as temporal vectors. Next to the spatial and temporal
vectors, there is also a set with update vectors. The update vectors allow
the algorithm to detect discontinuities in screen disparity. Instead of
taking all possible candidate vectors, this algorithm defines a small
set of candidate vectors, consisting of spatial, temporal and updated
vectors.

The 3DRS algorithm in motion estimation finds motion vectors, that
can be in arbitrary directions. However, 3DRS in disparity estimation
finds disparity vectors, which should be only in the horizontal direction.
This is a consequence of the horizontal offset in the specific camera
setup.

Parameters

In [15] and [2] 3DRS is used as a disparity estimator in stereo video
processing.

• Block size. The block size is chosen as 8x8 pixels.

• Match criterion. The similarity measure is sum of absolute differ-
ences.

• Vector resolution. 1
4 pixel accuracy is used in the horizontal direc-

tion of the disparity image. However, the accuracy in the vertical
direction is limited to integer accuracy only.

• Vector range. Disparities in evaluated stereo content range up to 80

pixels. Vertical disparities are only used to compensate for camera
misalignment of the input images.

• Random updates. Camera misalignment varies only gradually and
therefore, only few random updates in the vertical direction are
needed. In the horizontal direction more random updates are
needed. The distribution of these updates is different from the
3DRS-based motion estimator.

• Scanning directions. Block-wise scanning is performed, zigzagging
from top-to-bottom over the image. In successive passes, scanning
starts at the top or at the bottom of the image.

• Candidate set. Basically, the candidate set consists of 5 candidate
vectors (when scanning from left-to-right and top-to-bottom, see
Eq. (3.1)):

– Two spatial candidates: vectors taken from the block above
and from the block on the left hand side of current block.

– One temporal candidate: a vector taken from position two
blocks to the right and two blocks down the current block.
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20 stereo signal conversion

– Two update candidates: each spatial candidate is updated
with a pseudo random update vector.

While the scanning direction changes, the positions of candidate
vector blocks are mirrored.

The candidate set CS of the 3DRS-based disparity estimator for a
block at position ~x = (x,y)T in frame n, is defined as:

CS (~x,n) =



~d
(
~x+ (0, −1)T ,n

)
,

~d
(
~x+ (−1, 0)T ,n

)
,

~d
(
~x+ (2, 2)T ,n− 1

)
,

~d
(
~x+ (0, −1)T ,n

)
+ ~u,

~d
(
~x+ (−1, 0)T ,n

)
+ ~u


, (3.1)

where ~d (~x,n) is the vector of a previously calculated block. This is
depicted in Fig. 3.3. The spatial and temporal candidates are taken from
position S and T , respectively. C denotes the current block. The update
vector ~u is chosen randomly from update set U:

U =


1
4~xu, 1

2~xu, ~xu, 2~xu,

−1
4~xu, −1

2~xu, −~xu, −2~xu,

~yu, −~yu

 , (3.2)

where ~xu = (1, 0)T and ~yu = (0, 1)T . According to [15], integer accuracy
in vertical disparity is sufficient. Sub-pixel accuracy in the vertical
direction does not add more accuracy in the horizontal direction.

S

S C

T

x

y

Figure 3.3: Relative position of candidates in 3DRS (excluding updated candi-
date vectors).

3.2.2 Experiments

The 3DRS algorithm is mainly used in estimation of motion between
successive frames. However, stereo signals have different characteristics,
compared to mono-view signals. Therefore, using this algorithm to
estimate screen disparity, requires several adjustments to suit dispar-
ity estimation on stereo signals. Several experiments are performed
to determine the optimal parameters for the 3DRS-based disparity
estimator.
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3.2 disparity estimation 21

Remove Vertical Updates

experiment The update set is changed, such that it contains no
vertical updates. The update set U is limited to:

U =

{
1
4~xu, 1

2~xu, ~xu, 2~xu,

−1
4~xu, −1

2~xu, −~xu, −2~xu

}
. (3.3)

motivation Stereo signals are captured by two cameras. Since the
cameras are only horizontally offset and vertically aligned, disparity
vectors should have pure horizontal components only.

result The disparity vector field shows inconsistency in the tem-
poral direction. The vectors are also inaccurate. Since only horizontal
updates are applied, the algorithm tries to find the best match on the
same frame-line. The quality of disparity vector field is deteriorated sig-
nificantly. Therefore, the assumption on vertically alignment of cameras
is not valid. Adding a few vertical updates to the set, led to accurate
vectors and much less inconsistency in the vector field. The recommen-
dation is to leave in the vertical updates. According to [15], this can be
limited to integer updates only.

Remove Zero Vector Candidate

experiment The zero-vector candidate is removed from the candi-
date set.

motivation In motion estimation, the zero vector candidate has
a special meaning. This candidate contributes to achieve true motion
vectors in static scenes, consider a newsreader sitting behind a desk.
However, in disparity estimation, this zero vector has no special mean-
ing anymore. This vector is even likely to occur than any other vector.

result Tests have shown that result of the disparity estimator has
increased quality. The zero vector candidate can introduce errors in the
disparity vector field. It mainly occurs in homogeneous areas. Removing
this candidate improves the result. This is also recommended by [15].

Static scenes have also static disparity vectors. To extend the candidate
set with a candidate that is similar to the zero-vector candidate, the
zero-vector temporal candidate could be selected. However, this is a
temporal vector, which depends on all previous calculations.

Add More Horizontal Updates

experiment The update set is extended with several more horizon-
tal updates. I.e. the update set is modified to:

U =



1
4~xu, 1

2~xu, ~xu, 2~xu,

−1
4~xu, −1

2~xu, −~xu, −2~xu,

~yu, −~yu

1
4~xu, 1

2~xu, ~xu, 2~xu,

−1
4~xu, −1

2~xu, −~xu, −2~xu


. (3.4)
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22 stereo signal conversion

Two out of eighteen vectors are vertical updates (compared to two out
of ten). Therefore, the distribution of updates has changed.

The candidate set is also extended with two more updated spatial
candidates.

motivation More candidate vectors are updated with a horizontal
update. Consequently, the convergence speed of vector should increase.
Fewer vertical updates are applied, but are essential for camera mis-
alignments. Furthermore, adding two more updated candidate vectors
to the candidate set should increase the convergence speed.

result Extending the candidate set and update set significantly
increases the convergence speed. However, adding candidates to the
candidate set is more computationally expensive. For each block in the
matching image, two more blocks in the matched image are evaluated.

Adding even more updated spatial candidates did not increase the
convergence speed significantly.

Add Occlusion Correction

experiment Occlusion detection and correction is added, prior to
disparity estimation of the next frame.

motivation Stereo frames are taken from two camera positions.
Since these images are taken from different perspectives, objects closer
to a viewpoint may occlude (parts of) other objects in the other view-
point. Therefore, certain areas are only visible in one of the two images.
These areas are called occlusion areas. The 3DRS algorithm tends to
assign disparity vectors belonging to the foreground object to occlusion
areas. However, occlusion areas are part of the background and should
have corresponding disparity vectors.

result The implementation of occlusion detection is based on Left-
Right Checking (LRC), proposed in [11]. This implies that disparity
vectors are estimated in two directions. Disparity vectors are estimated
from the left to the right image, and in the opposite direction. The
implementation of dis-occlusion detection is based on replacing the
foreground vector with the nearest background vector on the same line.
These steps are performed on the result of the disparity estimator. As a
post-processing step on the disparity vector field, occlusion handling
increases the accuracy of disparity vectors near edges of objects. Conse-
quently, this increases the quality of depth image. However, it has not
been evaluated extensively and needs further investigation (i.e. which
blocks are considered to be occluded?).

3.2.3 Results

Fig. 3.4 shows results of several experiments conducted previously. The
top two images are the input images of the disparity estimator.

The outcome of the estimator is shown in bottom four images. Dis-
parity vectors are shown in color, as well as white arrows. The color
intensity is a measure for the disparity vector length. The images are
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3.2 disparity estimation 23

mostly blue, which means a disparity vector is pointing towards right.
However, on the bottom of these images, yellow color is visible. This
color means a disparity vector towards left.

The difference between including a zero vector candidate or not, is
shown in the middle two images (Fig. 3.4(c) and Fig. 3.4(d) respectively).
If the disparity estimator also evaluates the zero vector candidate, errors
are introduced in the disparity vector field. This results in holes in the
vector field. This supports the conducted experiments in [15].

Adding more horizontal updates gives also little differences in the
disparity vector field. Convergence is increased by adding updated
candidates. The images shown at the bottom (Fig. 3.4(e) and Fig. 3.4(f)),
have clear differences. However, using different content makes this
difference less visible.

(a) Left-view image (b) Right-view image

(c) With zero vector candidate (d) Without zero vector candidate

(e) 10 update vectors (f) 18 update vectors

Figure 3.4: Input frames (a), (b) and results of several experiments (c), (d), (e)
and (f) with various 3DRS parameters.

3.2.4 Discussion

The 3DRS algorithm creates a small set of disparity vectors. Each vector
consists of a horizontal component and a vertical component.

First, vertical updates are necessary to assure much more reliable
disparity vectors. Second, vertical accuracy is limited to integer accuracy.
This means, that no interpolation in the vertical direction is needed to
determine the sub-pixel values. Next, adding more updates and adding
two more candidates increased the convergence speed significantly.
However, adding even more candidates had little influence.

The characteristics of stereo-view content are very different from
mono-view content for determining point correspondences. Several
experiments show that 3DRS algorithm can be adopted from motion
estimation to disparity estimation. However, to determine the optimal
parameters for the 3DRS-based disparity estimator, more tests are
needed (i.e. is quarter pixel accuracy sufficient?).
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24 stereo signal conversion

3.3 from disparity vectors to depth image

3.3.1 Horizontal disparity as depth

The disparity estimator produces disparity vectors, which are composed
of horizontal and vertical components. However, the horizontal vector
component only is the determining factor for the screen disparity.

Due to possible misalignment of stereo cameras, disparity vectors
can have arbitrary disparity components, both horizontal and vertical.
The vertical component is expected to be small. However, for disparity
(or depth), only the horizontal component is considered. The vertical
component is necessary for the 3DRS-based disparity estimator to
perform reliable.

To store the disparity in a depth image, sub-pixel accuracy should
be kept. Assuming a vector range of ± 80 pixels with quarter pixel
accuracy, the disparity can be described using at least 10 bits (including
sign bit). Consequently, a 10 bit depth image is needed. In [2], the
disparity range is automatically adjusted to full 8 bit range of depth
image. However, this also adjusts the depth information originally
contained in the input content.

Consider estimating disparities with quarter-pixel accuracy. To main-
tain the accuracy within the depth image and to store it as an inte-
ger value, disparity values are multiplied by 4. Each disparity vector
~d = (dx,dy)T is converted to a disparity valueDv according to Eq. (3.5):

Dv

(
~d
)

=
1

accuracy
dx + offset , (3.5)

where accuracy is 0.25 (for quarter-pixel accuracy) and offset is equal
to 512 (for unsigned 10-bit depth images). Subtracting an offset of 512

and a division by 4 is needed to retrieve the stored disparity.

3.3.2 Depth processing

The resolution of the depth image is much lower than the reference
image. For each 8x8 block of pixels in the image, one disparity value
is calculated. However, a frame-resolution depth image is required.
Therefore, image up-sampling is needed.

The depth information is related to the reference image. This informa-
tion determines the perceived depth position of each pixel (or object).
Therefore, the objects in the depth image should align with the corre-
sponding objects in the reference image. In [18], a depth up-sampling
method is introduced, which consists of cross bilateral filters and cross
bilateral up-samplers.

Bilateral filters

A bilateral filter is an edge-preserving smoothing filter. Bilateral fil-
ters have a wide range of applications: tone management, exposure
correction, noise reduction, etc [17]. A bilateral filter is defined as:

I
′
p =

∑
q∈Swp,q · Iq∑

q∈Swp,q
, (3.6)
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3.3 from disparity vectors to depth image 25

where

wp,q = s(||p− q||)r(Ip − Iq) .

A bilateral filter is a non-linear filter which not only utilizes the
domain properties, but also range properties. An output image I‘p is
a weighted average of pixels at position q from input image Iq in a
neighborhood S of position p. The weight calculation depends on a
spatial distance function s and intensity range function r. The weights
defined by the range function decreases with increasing intensity dif-
ferences. In this way, edges are preserved. The weights defined by
the spatial distance function decreases with increasing distance (i.e.
Gaussian filter).

A bilateral filter has two kinds of weights. These weights are deter-
mined by the spatial and range functions and are based on one image.
In a cross bilateral filter (CBF) the weights come from two kinds of
images.

To up-sample the depth image, cross bilateral up-sampler is used.
For each pixel in the low resolution depth image, 4 new depth values
are calculated. Thus each repetition doubles the resolution. The contri-
bution of a depth value is determined by the content of the reference
image. This procedure is depicted in Fig. 3.5. The small squares in the
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Figure 3.5: Cross bilateral up-sampling procedure.

centers have twice the resolution of the big squares. The low resolution
depth image is shown on the left. The reference image is shown in
the middle, for which both resolutions are needed. On the right, up-
sampled depth image is produced, according to the following equation:

fp =

∑
q∈Swp,q ·Dq∑

q∈Swp,q
, (3.7)

where

wp,q = f(|sp − cq|) .

For example, f1 is a weighted average of depth values d1 through
d4. The weights are defined by the differences between s1 and the
corresponding cq. The weight is large with small differences, and is
small with large differences.

Up-sampling procedures

To increase the resolution, this cross bilateral filtering technique is used
to filter and up-sample the depth image. The edges in a depth image
should match the edges in the reference image. Using a cross-bilateral
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filter, the edges in the reference image are preserved in the depth image.
It smooths the pixels in the depth image, but it limits the smoothing
to ’similar regions’ in the reference image. This means that the weights
of the range function are not based on the depth image, but on the
reference image.

Down-
sample

CBF CBU CBU CBU

reference
image

depth
image

960x544

960x544120x68 240x136 480x272120x68

120x68

240x136

480x272

depth
image

Figure 3.6: Depth processing chain, proposed in [18]

[18] proposes a step-wise approach to up-sample the depth image.
Each step performs up-sampling by a factor of 2 both horizontal and
vertical. This is depicted in Fig. 3.6. It is composed of a cross bilateral
filter (CBF) and three cross bilateral up-samplers (CBU). Different filter
configurations produces different results. For each filter or up-sampler
an aperture can be specified.

The last stage in the up-sampling process is very computational
intensive. The number of addressed pixels is 64 times higher than the
image before up-sampling. To reduce the complexity, this stage can be
replaced by a median-based block erosion stage.

Depending on the quality of the low resolution disparity image, each
CBF or CBU can be assigned different apertures. The aperture affects
the size of the kernel of each filter [18]. To improve the quality of
inaccurate disparity images, an extra dilation filter can be added after
the first CBF or CBU. A dilation filter grows objects within the disparity
image and is defined as:

D
′
p,q =

1
max

i,j=−1

[
Dp+i,q+j

]
, (3.8)

where D is the depth image and p,q determines the position within the
disparity image. Consider a foreground object in a disparity image with
an inaccuracy (i.e. a hole in the edge). The dilation filter causes the hole
to be filled with the disparity values of the foreground object. However,
the remaining of the object has grown to much now. To reduce the
introduced error, the following up-samplers try to correct the disparity
values.

3.3.3 Results

Fig. 3.7 shows the intermediate and final results of the depth up-
sampling procedure.
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(a) Reference image (b) Depth image (8x8)

(c) Depth image (4x4) (d) Depth image (2×2)

(e) Depth image (1x1) (f) Depth image (BE i.s.o CBF)

Figure 3.7: Intermediate and final results of depth up-sampling procedure.

The quality impact of replacing cross bilateral up-sampling process
in the last stage by a median-based block erosion is very low. The
difference is shown in Fig. 3.7(e) and Fig. 3.7(f).

3.3.4 Discussion

The depth up-sampling procedure proposed by [18] produces very
sharp depth images and is well suited for this algorithm. These images
are also aligned with the reference images. The quality of the result
depends on the quality of the disparity vector field, resulting from the
3DRS-based disparity estimator.

However, in certain situations, this up-sampling procedure produces
artifacts, when the difference in luminance values between foreground
and background objects is small. The depth value of the foreground
object is then also projected into the background object. The range
function has weights defined for luminance differences. These weights
can be adjusted to suit different types of content.
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3.4 view synthesis

A view synthesis algorithm uses a reference image with a corresponding
disparity image to synthesize an output image. This algorithm maps
every pixel in the reference image to a new location according to its
disparity value. This type of algorithm is commonly called a Depth-
Image-Based Rendering (DIBR) algorithm.

A general parallactic disparity mapping formula is defined in [1]. This
formula is used to synthesize images from a reference image. Consider
the image captured by the left camera in Fig. 3.1 on page 17 and a cor-
responding disparity image is provided. Then, the projected points in
the synthesized (right) image are determined by the mapping formula
in Eq. (3.9). This formula is defined as:

s1 = s0 + γ (−d1 + δ) , (3.9)

where

γ is the depth gain,

δ is the screen plane offset,

d1 is the disparity value.
Both γ and δ are control parameters. The γ parameter controls the

range of observed depths. The δ parameter controls which part of the
image will appear on the screen plane. However, in this solution these
parameters have a fixed value, namely γ is equal to one and δ is equal
to the offset value of Eq. (3.5).

Since only a reference with disparity image is available, two output
images are synthesized to create stereoscopic vision. These two images
resemble a viewing position horizontally left to the reference image
(left-view image), and a viewing position horizontally right to the
reference image (right-view image). Mapping of pixels only takes place
in horizontal direction, there is no vertical displacement.

3.4.1 Disparities to Perceived Depth

Fig. 3.8 shows the relation between screen disparities and perceived
depth. It also shows the relation between two points on the screen plane.
If a point Q is perceived behind the screen plane, the projected point
in the right-view image appears on right-hand-side of the projected
point in the left-view image. If a point Q is perceived in front of the
screen plane, the projected point in the right-view image appears on
the left-hand-side of the projected point in the left-view image.

The perceived depth of point Q depends on the screen disparity d,
the eye separation e, and on the viewing distance z. This relation is
according to two formulas in [13] and are defined as:

p =
z

e
|d| − 1

(3.10)

for perceived depth behind the screen plane, and

p =
z

e
|d| + 1

(3.11)

for perceived depth in front of the screen plane. Where
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screen plane

p
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Q
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z

(a) Point Q perceived behind the screen
plane

screen plane

p

d

Q

e

z

(b) Point Q perceived in front of the
screen plane

Figure 3.8: Screen disparities related to perceived depth.

p is the perceived depth,

z is the viewing distance,

e is the eye separation,

d is the screen disparity.
Table 3.1 shows screen disparities in pixels, assuming a 46 inch

display with an effective resolution of 960×540 pixels. The distance
between a viewer and screen plane is set to the recommended viewing
distance of 2×Width.

screen recommended desired required required

size viewing depth disparity disparity

(16:9) distance (cm) (cm) (mm) (pixels)

46" 204 cm 50 cm 12.6 mm 11.9 px

100 cm 21.1 mm 19.9 px

204 cm 32.0 mm 30.2 px

102 cm 21.3 mm 20.1 px

Table 3.1: Screen disparities for display with horizontal resolution of 960 pixels,
interpupillary distance 64 mm.

If one wants to perceive a point 50 cm behind the screen plane, the
screen disparity in pixels should be equal to 11.9 pixels.
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3.4.2 Visibility

Consider a set of objects in an object space. Two points in the space
are visible to each other, if the line segment between those two does
not intersect any object. This is depicted in Fig. 3.9. The object space is

c
0

reference view

A

B

C

D

A

B C

D

Object space

Focal plane

Image plane

(a) Reference-view position

c
0

c
1

c
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c
2

virtual view virtual view

occlusion dis -occlusion

A

B

C

D A

B

C

D

A

B C

D A D

B C

dis -occlusion occlusion

(b) Left-view and Right-view position

Figure 3.9: Visibility problem with occlusion and dis-occlusion areas.

shown from the top, viewpoints are in the focal plane. Fig. 3.9(a) shows
viewpoint c0 of the reference image. If the viewpoint is changed from
c0 to c1, occlusion and dis-occlusion areas become apparent. These
are indicated on the right side in Fig. 3.9(b). The viewpoint changes to
the right, but line segment BC moves to the left (shown in the image
plane, bottom of the image). Next to that, the same line segment BC is
also stretched, which is called a magnification. However, changing the
viewpoint from c0 to c2, occlusion and dis-occlusion areas are on the
opposite sides. Line segment BC has become shorter, which is called a
minification.

The direction of change in the viewpoint determines which areas will
be occluded and dis-occluded, determines which directions each object
will move and determines whether objects stretch (magnifications) or
shrink (minifications). The larger the depth difference between points
A and B and points C and D, the larger the occlusion and dis-occlusion
areas will be, respectively.
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Occlusion areas

Consider the right-view position in Fig. 3.9(b). A part of the area on
the left of point A is covered. This part is occluded by a foreground
object. In order to correctly synthesize these images, only those pixels of
objects should be displayed, which are only visible from the viewpoint.

Dis-occlusion areas

Consider the right-view position in Fig. 3.9(b). A part of the area on
the left of point D, which is not visible in the reference view, becomes
visible. This part is dis-occluded and are also referred to as holes.

A view synthesis algorithm using a reference image and disparity im-
age, has to cope with occlusion and dis-occlusion areas. Discontinuities
in disparity values causes these areas to occur. Occlusion areas can be
handled automatically, by making sure that the occluded background
is never displayed in the output images. Dis-occlusion areas become
visible in synthesized views. Ideally, these areas are filled with true
background information. However, this information is not available.
Therefore, an in-painting method is required.

3.4.3 Architecture of Existing Algorithm

The algorithm is composed of three steps:

• Warping and occlusion handling. Pixels are mapped, or warped, to
a new location. In stereo content, only horizontal displacement
takes place. With proper warping, occlusion areas can be handled
automatically.

• Re-sampling. Warped pixel values are not always perfectly aligned
with the pixel grid of the output image. Therefore, a re-sampling
procedure is needed. This algorithm calculates the contribution
of each input pixel to several output pixels. This referred to as
splatting.

• Dis-occlusion handling. During pixel warping, dis-occlusion areas
exist, and need to be filled using an in-painting method. This
algorithm uses background extrapolation. The closest background
value is copied into each dis-occlusion area.

These steps are depicted in Fig. 3.10. Depth information is shown
at the top. A disparity value equal to the offset δ has a perceived
depth equal to the viewing distance. Consequently, no displacement
of corresponding pixels is involved. The disparity of the foreground
object leads to a displacement of pixels, shown by diagonal arrows
during warping. The displacement is relative to the spatial position of
the input pixel. See Eq. (3.9).

An output image is produced line-by-line. First, all pixels of one
line are warped and re-sampled. Subsequently, dis-occlusion areas are
filled. This is repeated for each line. The algorithm produces two output
images: one image for the left-view position and one image for the
right-view position. Therefore, producing lines is interweaved. After
producing a line for left-view image, the same line for right-view image
is produced.
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Figure 3.10: Architecture of view synthesis algorithm.

Warping and Re-sampling

During pixel warping stage, the displaced pixel may not exactly match
the output pixel grid. Therefore, a re-sampling procedure is needed.
Two re-sampling procedures have been evaluated:

• Nearest neighborhood. The closest output pixel is chosen to assign
the pixel value. Although this is a very cheap procedure to do
re-sampling, it produces visible artifacts in the temporal direction.

• Splatting with integral weights. A pixel value on the output grid
is calculated as a sum of weighted input samples. These weights
are defined by the intersection of the reconstruction filter area
and the pre-filter area. The reconstruction filter area is defined
by the midpoints surrounding the corresponding warped pixel.
The pre-filter area is centered on the output grid pixel. This is
depicted in Fig. 3.11.

output grid pixel

pre-filter

input sample &
reconstruction filter

og
m

og
m +1

og
m -1

y
n-1

y
n

y
n+1

midpoints

Figure 3.11: Splatting (re-sampling) with integral weights.

Warping pixels and re-sampling is considered to be one step. Each
time a pixel is warped, it is immediately re-sampled to the output
image.

The output pixel value is a sum of weighted input pixel values. For
example, input sample yn−1 contributes mostly to output pixel on grid
position ogm−1, but also contributes to output pixel ogm, although
with a small area.
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Occlusion and Dis-occlusion Handling

In case of producing the right-view image, output pixels are produced
from right-to-left. The left-view image is produced from left-to-right.
This direction is important in determining (dis-)occlusion areas.

Consider Fig. 3.9(b) and producing the right-view image in position
c2. Dis-occlusion areas are on the right-hand-side of foreground objects,
where occlusion areas occur on the left-hand-side. In order to determine
whether occlusion or dis-occlusion occurs during warping, the last
warped position is recorded. If the next pixel (which is left to previous
pixel) is not beyond the last warped position, occlusion occurred (thus
belongs to background). Re-sampling of this pixel should be avoided.
Therefore, the new warped position is adjusted to the last warped
position.

If the new warped position is not occluded, the midpoints deter-
mine the areas for the contribution to output pixels. In case the dis-
tance between midpoints becomes too large, dis-occlusion occurs. See
Fig. 3.12(a). Therefore, the midpoints are adjusted before splatting.
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(a) Mapping pixel y1 and detecting dis-occlusion
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(b) Warping pixels y0 and y1 after midpoint adjustments and mapping next
pixel

Figure 3.12: Dis-occlusion handling during mapping, warping.

After splatting, midpoints are adjusted again and information about
dis-occlusion area is added to a list for deferred processing. This is
depicted in 3.12(b).

The difference between two successive midpoints is a measure for dis-
occlusion detection. If the difference is larger than 1 pixel, dis-occlusion
is detected. However, this would lead to many small dis-occlusion
areas, where small magnifications occur. By increasing the threshold
from 1 to 1.5 pixel difference [3] (internal document), the number
of dis-occlusion areas decreased significantly. This also affects the re-
sampling procedure: one input sample can now affect at most three
output samples. Therefore, the re-sampling procedure is modified. The
contribution to the third output pixel is also calculated.

Background extrapolation is used to fill dis-occlusion areas. The
closest background pixel to the foreground object is used to fill in
this area. As with re-sampling of warped pixels, contributions to each
output pixel in dis-occlusion areas are calculated and assigned.
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3.4.4 Picture Quality

To address the picture quality of this algorithm, the reference image
and its disparity image is depicted. See Fig. 3.13, which are used by [23].

(a) Reference image (b) Disparity image

Figure 3.13: Image plus depth frames from ballet sequence.

The most visible artifacts are the horizontal streaks. In Fig. 3.14

these artifacts are shown. These streaks are the consequence of dis-
occlusion handling. The edge of the foreground object in the disparity
image matches the edge in the reference image. However, edges in the
reference image are not infinitely sharp and are in the discrete domain.
Therefore, dis-occlusion area is filled using mostly foreground object
pixels!

(a) Highlighted area one (b) Highlighted area two

Figure 3.14: Artifacts in synthesized views.

This artifact is reduced by transforming the disparity image prior to
synthesizing the two views. The transformation consists of a horizontal
dilation filter, followed by a horizontal blur filter. The consequence
is, that foreground objects in the disparity image grow, and therefore,
covers the corresponding objects in the reference image. The blur filter
causes the dis-occlusion area to be distributed over multiple smaller
dis-occlusion areas. Therefore, dis-occlusions are filled with multiple
background pixels. The quality of the synthesized views is significantly
improved. See Fig. 3.15.

The dilated disparity value Dd at position ~x = (x,y)T , is defined as:

Dd (~x) =
3

max
i=−3

D
(
(x+ i,y)T

)
, (3.12)
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(a) Highlighted area one (b) Highlighted area two

Figure 3.15: Pre-processing depth image improves quality of synthesized views.

where D (~x) is the original disparity value. The horizontal blur filter is
a 1×3 box-filter defined as:

hhor.LPF =
1

4

[
1 2 1

]
. (3.13)

The in-painting method (background extrapolation) assumes a ho-
mogeneous area surrounding the foreground object. In cases where
the background is not homogeneous, visible artifacts occur like one is
depicted in Fig. 3.15(b).

3.4.5 Input perspective versus output perspective

The intermediate format consists of a reference image and a depth
image. The reference image is either the left view or the right view
from the stereo signal. From a perspective point of view, this may not
be the best choice. The view synthesis algorithm produces two new
views based on the information in the intermediate format. One view
on the left side, s

′
0, and one view on the right side, s

′
1, is produced, w.r.t.

the reference image. This is depicted in Fig. 3.16(a). The perspective

spatial position

s
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s
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s
1
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0
'

(a) Images on positions s
′
0 and s
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1 are

created solely on image plus depth
from position s0
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′
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′
1

Figure 3.16: Example of spatial positions of left and right perspectives, which
changes with image-plus-depth view synthesis.

has changed by producing left-view and right-view images using the
intermediate format.

In order to maintain the perspective of the input material, one could
synthesize the reference view that is in the exact middle of s0 and
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s1. Furthermore, the disparity image should match this synthesized
reference image.

Another way to maintain the perspective, is to generate one view
with the left-view image as reference image and generate the other
view with the right-view image as the reference image. This is depicted
in Fig. 3.16(b). The black arrows indicate the spatial distance from
each view position. In comparison to Fig. 3.16(a), the spatial distance
of both views to the reference image becomes smaller. Consequently,
occlusion and dis-occlusion areas also become smaller, and therefore,
fewer artifacts are visible.

To improve picture quality, both input images can be used to generate
each output image. This is also depicted in Fig. 3.16(b) with the gray
arrows. See Fig. 3.17 for an illustration. The images of left-view and

(a) Left-view image (b) Right-view image
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(c) Combine two warped images, dis-occlusion areas re-
duced

Figure 3.17: Synthesize view from warped left-image and warped right-image
to improve picture quality in dis-occlusion areas.

right-view positions are warped to the desired view-position. Conse-
quently, the foreground object (tree) is warped to exact same position
in both output images. The dis-occlusion areas are on different sides.
Therefore, dis-occlusion areas (i.e. from left-view warped image) can be
filled with information of the other warped image (i.e. from right-view
warped image).

This only holds when the new spatial positions are between the
existing view positions. This method requires two disparity images,
one for each view.
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4A R C H I T E C T U R E M A P P I N G

Previous chapter defined a complete processing chain for a stereo
signal conversion algorithm. [15] and [18] show that complexity

analysis has been performed on 3DRS-based disparity estimator and
joint-bilateral depth up-scaling, respectively. The complexity of exist-
ing view generation algorithm (also referred to as Integral Weights
algorithm) has not been analyzed yet. This chapter elaborates on this
existing view synthesis algorithm, which will be mapped onto a spe-
cific high-end video processing platform, completed with complexity
analysis.

4.1 target platform

The existing view synthesis algorithm is mapped onto a high-end
video processing platform. This platform consists of multiple TriMedia
TM3282 media-processors with co-processor support.

The TriMedia TM3282 media-processor has a Very Long Instruction
Word (VLIW) architecture. This processor can also access the Motion
Estimation and Motion Compensation 1 (MEMC1) co-processor. Both
access main memory via the memory interface. See Fig. 4.1. Table 4.1
gives an overview of the main architectural features of the TM3282

processor.

TriMedia
TM3282

Co-proc
MEMC1

Memory

memory interface

co-processor
   interface

Figure 4.1: Schematic overview of high-end video processing platform.

Next to the RISC-like operations, the instruction set also contains
custom operations that can improve performance. These custom opera-
tions include operations with subword parallelism (i.e. dual-operations
or quad-operations) and ’two-slot’ operations. This last type of opera-
tions uses two neighboring issue slots and therefore, are specified with
at most 4 source registers and 2 destination registers. These custom
operations are extensively used and almost all the operations can be
individually guarded. The media-processor also contains two cache
memories, one for data and one for instructions.

The TM3282 is connected to the MEMC1 co-processor through a
separate co-processor interface. The co-processor provides efficient

37
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architectural feature quantity

Architecture 8 issue slot VLIW

guarded RISC-like operations

pipelined processor design

Address width 32 bits

Data width 32 bits

Register file 128 general purpose registers

SIMD capabilities 1×32-bit, 2×16-bit, 4×8-bit

Instruction cache 32 Kbyte, 128-byte lines

8-way set-associative

LRU replacement policy

Data cache 32 Kbyte, 128-byte lines

4-way set-associative

LRU replacement policy

Table 4.1: Architectural features of TM3282 media-processor.

access to two-dimensional video images and has a cache-based design.
Both are connected to main memory via the memory bus. This enables
the TM3282 processor to offload work to the co-processor and become
more a ’control’ processor. The co-processor has a fixed instruction
set which comprises of operations for different types of applications,
specifically for motion estimation and compensation. Next to that, also
specific operations related to H.264 codec are available.

The algorithm is mapped onto this media-processor. Currently, it is
unsure whether or not the co-processor can help to enhance the execu-
tion of the view synthesis algorithm. Next to mapping and complexity
analysis, usage of co-processor is evaluated.

4.2 mapping algorithm to platform

In previous chapter, the details of the existing view synthesis algorithm
are explained. This algorithm is mapped onto the TriMedia TM3282

media-processor and several implementation aspects are discussed.

4.2.1 Implementation Aspects

Fixed-point Notation

A full HD frame has a resolution of 1920×1080 pixels. To address each
pixel in a single line, 12 bits are required. To specify sub-pixel positions,
4 bits are used. This is also denoted as 12.4 notation, indicating how
many bits before and after decimal sign are used. Consequently, to
position a pixel at a sub-pixel position, 16 bits are required. Hence, two
positions can be stored in a 32-bit word. Several macros are defined to
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convert values to and from this 12.4 fixed-point notation. These macros
are implemented as shift operations.

Midpoint Calculation

The area of the reconstruction filter intersected with area of the pre-filter
determines the contribution of input pixels to output pixels (see Fig. 3.11

on page 32). To define the area of the reconstruction filter, midpoints
are calculated. In turn, these midpoints depend on the warped pixels,
which are defined as sum of input pixel position and its disparity value.
Pseudo code is given in Listing 4.1.

//store previous warped position

prv_WarpedPos = nxt_WarpedPos;

//calculate new warped position

nxt_WarpedPos = (cur_PixelPos << 4) - DepthValue[cur_PixelPos]; �
Listing 4.1: Calculating new warped pixel position

Midpoints are calculated as sum of current warped position and pre-
viously warped position and divided by two, see pseudo code in List-
ing 4.2.

//store previous midpoint

prv_MidPoint = nxt_MidPoint;

//calculate new midpoint

nxt_MidPoint = prv_WarpedPos + nxt_WarpedPos) >> 1; �
Listing 4.2: Calculating new midpoint

Re-sampling

Re-sampling is performed by splatting input pixels to the output pixel
grid at warped positions. Since magnifications may occur and midpoints
determine the reconstruction filter area, more than one output pixels
may be affected. Therefore, these pixels are identified first.

The area of the warped pixel surrounded by two midpoints (recon-
struction filter area), can be divided over a maximum of three output
pixels. The area that intersects with pre-filter area of each output pixel,
can vary between 0 (no intersection) to 16 (intersected area equals
pre-filter area). Remember that 4 bits are used to determine sub-pixel
positions. For each affected output pixel, corresponding intersections
are calculated.

The contribution to each output pixel is calculated by the product
of input sample and each corresponding area. Pseudo code is given in
Listing 4.3.

//calculate contributions to output pixels

output[pos1] = output[pos1] + ((cur_Y * area1) >> 4);

output[pos2] = (cur_Y * area2) >> 4;

output[pos3] = (cur_Y * area3) >> 4; �
Listing 4.3: Calculating new midpoint

Corresponding chrominance sample is not re-sampled. This sample
is directly stored at position closest to the warped position of luminance
sample. (i.e. nearest neighborhood).
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Occlusion Handling

Consider producing an image in the left-view position, each line is
produced from left to right. Foreground objects will be shifted more
towards the right than background objects. Occlusion areas occur on
the right side of foreground objects. For each warped pixel, its position
is checked against the previously warped pixel position. If the new
warped pixel does not go beyond the previous position, occlusion
occurs. Therefore, this warped pixel should not contribute to the output
image. The new midpoint should be set equal to the previous warped
pixel position.

Since the current pixel is warped and previous warped pixel will be
re-sampled, the new midpoint is adjusted to the maximum of the two.
Pseudo code is given in Listing 4.4.

//keep extent

nxt_MidPoint = MAX(nxt_MidPoint, prv_WarpedPos); �
Listing 4.4: Calculating new midpoint

This assures that the previous pixel is correctly re-sampled up to its
warped position. If subsequent warped pixels are also occluded, the
MAX-operator keeps the midpoint on the exact same position. Con-
sequently, the area between current and previous midpoints is zero.
Hence, no contribution is made to the output image. Warping and
re-sampling continues without actually detecting occlusions.

Dis-occlusion Handling

Dis-occlusion is detected when the distance between two adjacent
midpoints is larger than a threshold (see Fig. 3.12 on page 33). This
threshold is set to 1.5 pixel. Whenever a dis-occlusion is detected, the
new calculated midpoint is adjusted according to Listing 4.5.

//adjust midpoint

nxt_MidPoint = prv_MidPoint + 16; �
Listing 4.5: Calculating new midpoint

This value added is equal to exactly one output pixel width (in fixed-
point notation).

After input sample is re-sampled to the output image, midpoint is
adjusted again according to Listing 4.6.

//adjust midpoint

nxt_MidPoint = nxt_WarpedPos - 8; �
Listing 4.6: Calculating new midpoint

The area that is skipped by the splatting procedure is dis-occlusion area.
Starting and ending positions of the dis-occlusion areas are stored in a
separate list. Furthermore, the corresponding input location is stored
to determine the value for dis-occlusion handling. This list is used after
mapping and re-sampling, to fill dis-occlusion areas using background
extrapolation.
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4.2.2 Data-cache Behavior

The data cache provides a smal region of fast memory between the
processor and the external memory. It retains data that has been ac-
cessed recently, so it can be accessed faster the next time it is needed.
The TM3282 media-processor contains a data cache of 64kb with 4-way
set associative architecture and cache lines of 128 bytes. This means
that a single cache line can be placed at one of 4 positions within the
cache-set. Each way has 16kb (64kb/4way) of cache, each cache line is
128 bytes. Hence, there are 128 cache-sets.

Which set is chosen depends on the load address. Since input data is
sequentially stored in memory, data will also be stored sequentially in
cache, i.e. running cyclicly through the cache.

Cache requirement

Data is mapped into the cache. Table 4.2 shows the data cache require-
ment for this algorithm. This table shows that the total data cache

description current future cache set

Reference Image (Y) 1×960 1×960 0

Reference Image (UV) 1×960 1×960 0

Depth (Y) 1×960 1×960 32

Output Image R (Y) 1×960 1×960 96

Output Image R (UV) 1×960 1×960 96

Output Image L (Y) 1×960 1×960 64

Output Image L (UV) 1×960 1×960 64

Hole 2×960 0 0

Total 9×960 7×960

Table 4.2: Cache requirement of Integral Weights algorithm.

requires almost 9kb for the current line. Another 7kb cache is required
for the upcoming line.

With proper aligning of data into the cache, a reduction of data cache
stall cycles can be achieved. This means, data is read only once into
cache and output is written only once into main memory. The last
column shows the alignment of data in the cache (i.e. data of depth
image should start at address ending on 0x1000).

Pre-fetching

Typically, when retrieving data in video processing algorithms, nearby
data will be needed soon. Hence, when data is retrieved, retrieve also
data nearby. This is known as pre-fetching. Each time a load occurs and
the load address falls within a pre-defined region, the processor checks
whether nearby data is already in the cache. Whenever that is not the
case, a pre-fetch request is issued. Nearby data is located at the current
load address plus stride. The stride is a fixed value.
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This algorithm produces output images line by line. Except for dis-
occlusion handling, input data is read sequentially and output data is
written sequentially. This depends upon discontinuities in the depth
image.

By default pre-fetching is enabled for one region. This region covers
the entire memory space. Therefore, input data is in cache by the time
it is needed. Due to proper cache alignment, data remains in cache
uninterrupted until the line is processed.

Pre-allocation

Writing data to memory cannot be done without first allocating a cache
line. For example, if one wants to update bytes in memory, the entire
cache line needs to be copied to the cache. After updating the cache, this
line is ready to be written back to memory. This is known as allocate-
on-write-miss policy. As pre-fetching helps loading nearby data that
will be needed soon, pre-allocation helps in allocating nearby data that
will be (over)written soon.

By default, pre-allocation is also enabled for the entire memory space.
Therefore, data is pre-allocated sequentially for the output images.
However, producing the right-view image occurs from right to left. The
addresses are sequentially decreasing within each line. Consequently,
pre-allocation has no advantage and write-misses occur on the first
access of every cache line. With a region-based cache architecture,
pre-allocation can still be used. To assure proper pre-allocation, an
extra pre-allocating region is defined with a negative stride. Hence, the
processor pre-allocates cache lines with decreasing memory addresses,
which reduces write misses significantly.

4.2.3 Complexity Analysis

To know whether this algorithm will execute properly on a TriMedia
processor, the analysis of complexity is necessary. The two most im-
portant aspects are: instruction cycle count and bandwidth usage. The
following assumptions are made:

• Resolution of reference image, depth image and output images
are all 960x540.

• The color space of reference image is YUV422
1, and depth image

is only Y component.

• The color space of the output images is also in YUV422.

• Frame-rate is 60 frames per second.

• Memory accesses have delays of 100 cycles.

• Cache size of TM3282 processor is set to 64kb.

The analysis of complexity of this algorithm is performed using the
TriMedia Compilation and Simulation System (TCS). This system en-
ables the developer to create highly optimized multimedia applications
in C (and C++) programming language. It provides a suite of system
software tools to compile and debug media applications, analyze and
optimize performance, and simulate execution on a TriMedia processor.

1 For each two horizontal luminance (Y) samples, there is only one chrominance (U and V)
sample.
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Expected Bandwidth Usage

A lower bound can be calculated for the bandwidth usage, see Table 4.3
(denoted in MBytes per second). As depicted in Fig. 4.1 on page 37,
memory is an external part which can be accessed by multiple parties.
In the ideal case, one wants to read the input data (reference and depth
image) exactly only once to memory. Furthermore, the output data (left
and right frame) should be written once to memory.

description 1 fps 60 fps

Reference image 2× 960×540 0.99

Depth image 1× 960×540 0.49

subtotal 1.48 89.0

Left view 2× 960×540 0.99

Right view 2× 960×540 0.99

subtotal 1.98 118.7

Total 3.46 207.6

Table 4.3: Lower bound on bandwidth usage.

Analysis

The complexity numbers are extracted using the cycle-accurate machine-
level simulator and a trace analysis tool.

Table 4.4 below shows the processor load requirement. The cycle

description cycles instr. stalls i$ d$ ilp

Integral Weights
algorithm

671.0 578.2 92.8 0.9 91.8 6.20

• Mapping and Re-
sampling

628.2 539.4 88.9 0.6 88.2 6.49

• Dis-occlusion
handling

33.1 32.4 0.7 0.2 0.5 2.60

Table 4.4: Instruction cycles of Integral Weights algorithm.

count is composed of instruction cycles and stall cycles. The latter part
is again divided into instruction cache stall cycles and data cache stall
cycles. All numbers in this table are expressed in MHz, which are
obtained by the product of cycle count per frame and the frame rate.
The last column shows the Instruction Level Parallelism (ILP), which
is an average of executed instructions per cycle. As the TM3282 media
processor has 8 issue slots, the maximum ILP achievable is 8.

Next to the processing requirements, bandwidth usage is also im-
portant. Bandwidth usage is detailed in Table 4.5. The total bandwidth
usage is composed of read and write bandwidth usage. Read band-
width can be divided into instruction read and data read bandwidth.
All numbers in this table are expressed in MBytes/second, which are
obtained by the product of bandwidth count per frame and the frame
rate.
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description bandw. writes reads instr . data

Integral Weights
algorithm

212.0 117.9 49.1 4.9 89.2

Table 4.5: Bandwidth usage of Integral Weights algorithm.

4.2.4 Discussion

Assuming a TriMedia TM3282 media processor has 500 MHz of pro-
cessing capacity, the complexity analysis shows that this algorithm will
not run real-time.

By evaluating the possibilities of the co-processor and the required
computations, the co-processor cannot be used efficiently to enhance
the execution of this algorithm. The instruction set is fixed and the
only possible advantage could be loading and storing of, respectively,
input and output images. Therefore, it is not used and left out in this
solution.

In order to run this algorithm real-time on this platform, complex-
ity needs to be reduced. There are several ways to accomplish this.
The remainder of this chapter will elaborate on techniques to reduce
complexity of the view synthesis algorithm.

4.3 complexity reductions

There are several techniques to reduce complexity. The first technique
is to generate views on a block basis. This means that each block will
have one single depth value. The second technique is to come up with
a different algorithm, which has comparable picture quality. A third
technique is to integrate the co-processor and extend its instruction set.

Reducing computational complexity by changing algorithmic aspects
also affects picture quality. Therefore, evaluating the picture quality is
another important aspect of reducing complexity. This leads to tradeoffs
between (reduced) computational complexity and picture quality.

4.3.1 Block-based Algorithm

Approach

In a block-based algorithm, each block of pixel data is taken as unity
data. Each pixel within a block is processed equally. In the view syn-
thesis algorithm, this means that each pixel within a block has the
same depth value. The use of this assumption can greatly reduce the
complexity.

The instruction set of the TM3282 processor has custom operations,
which support subword parallelism. These are quad and dual opera-
tions and operate on four 8-bit values and two 16-bit values respectively.
Therefore, processing with a block-based approach on 4×4 blocks and
2×2 blocks are proposed.

In order to quickly evaluate the performance of this block-based
algorithm, prototyping is used. This view synthesis algorithm generates
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a new left-side view and a new right-side view based on the reference
image. Prototyping functionality reflects the largest part of an algorithm,
from which performance numbers can be extracted with a certain
accuracy.

Benefits

The benefits of generating views using a block-based approach are
summarized below:

• Fewer warped positions to calculate. New warped position needs to
be calculated once per block. If the new position is known for one
pixel within a block, then the position of every other pixel is also
determined.

• Depth image is smaller. Only one depth value per block saves a
factor 4 (2×2 blocks) and a factor 16 (4×4 blocks) in bandwidth
for the depth image.

• Equal depth value within a block. In contrary to the pixel-based ap-
proach, each pixel within a block has the same depth value. Each
pixel within a block is also equidistant located, which simplifies
the re-sampling procedure. Except for contributions of the outer
pixels, pixels contribute only to two output pixels. Each block
consists of multiple lines, and the weights calculated for one line
also applies to all other lines within the block.

Picture Quality Impact

Without having the actual block-based view synthesis algorithm, the
pixel-based (existing algorithm) is used to simulate and evaluate block-
based processing and its picture quality. Each pixel within a block of
pixels, i.e. 4×4 pixels, is assigned a same depth value.

To identify the picture quality impacts of block-based processing, a
dilation filter like Eq. (3.12) and a blur filter like Eq. (3.13) are not used.
The artifacts are expected to be similar with the pixel-based algorithm.

Two major artifacts that degrade picture quality significantly. These
artifacts are staircasing and streaks in occlusion and dis-occlusion areas,
respectively. These artifacts are shown in Fig. 4.2 and are explained
thereafter.

Edges in a depth image divides objects into foreground and back-
ground objects. In block-based view synthesis, one depth value warps
a block of 4×4 pixels (or 2×2). The edges in a depth image should
correspond to edges in the reference image. Due to the granularity of
blocks, edges of an object in the reference image are also divided into
foreground and background parts. See Fig. 4.3.

The following observations are made:

• Small parts of the background become part of the foreground
object.

• Small parts of the foreground object become part of the back-
ground.

The artifacts visible in Fig. 4.2 occur, since the depth image divides
foreground from background in an incorrect way.

Consider producing a left-view image based on the content depicted
in Fig. 4.3. Foreground objects move more towards right than back-
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(a) Reference image (b) Depth image

(c) Left view image (d) Right view image

Figure 4.2: Artifacts in block-based view synthesis, blocks of 4×4 pixels.

Background

Foreground

(a) Reference image

Background

Foreground

(b) Depth image

Background

Foreground

(c) Overlay image

Figure 4.3: High-resolution image is divided into foreground and background
parts.

ground objects. Therefore, dis-occlusion occurs on the left side of fore-
ground objects. The parts that are regarded by the depth image as
background, but belong to the foreground object are warped accord-
ing to background depth value. Since dis-occlusion handling involves
background extrapolation, certain dis-occlusion areas are filled with
foreground-regarded-as-background parts. This produces streaks.

Consider producing a right-view image based on content depicted in
Fig. 4.3. Foreground objects move more towards left than background
objects. Therefore, occlusion occurs on the left side of foreground objects.
The parts that are regarded by depth image as background, but belong
to foreground object are not visible anymore after warping. These
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parts are occluded and produces staircasing. A solution to reduce these
artifacts is proposed below.

These artifacts are removed by applying a dilation filter with 3×3

kernel on the depth image. Dilation causes foreground objects to extend
in area, therefore fully covering the object in the reference image. The
dilation filter is defined as:

D
′
p,q =

1
max

i,j=−1

[
Dp+i,q+j

]
, (4.1)

where D is the depth image and p,q determines the position within
the image. It should be noted that this filter is applied on a 4×4 (or
2×2) lower-resolution depth image. This filter is similar to a dilation
filter with a 4×4 (or 2×2) kernel on full-resolution depth image.

The streaks and staircases are removed, but a new artifact is in-
troduced: a halo-artifact. Because the depth image is "grown", more
background is regarded as foreground object. Therefore, more back-
ground is warped along with foreground objects. This artifact is much
less visible than streaks and staircases.

Re-sampling of 2×2 Blocks

Each time a warped position is calculated for a block of 2×2 pixels, this
group will be splatted. Consider Fig. 4.4, where the distance between
midpoints is maximal. In other words, this is the maximum affected
area, without dis-occlusion being detected.
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Figure 4.4: Mapping and re-sampling of next two pixels.

The dis-occlusion threshold is equal to 1.5 pixel. Since two adjacent
pixels are warped together, the midpoint between these pixels is 0.5
pixel. This leaves a maximum of 1.0 pixel on each side of both pixels,
without detection of dis-occlusion.

In Fig. 4.4 two situations can occur. Situation in Fig. 4.4(a) occurs, if
the first luminance pixel is mapped on the right-hand-side of the cor-
responding output pixel. Otherwise, the situation in Fig. 4.4(b) occurs.
To generalize the re-sampling procedure for both situations, areas are
assigned, which will contribute to the output pixel. The pseudo code in
Listing 4.7, is used to determine the contributions to each output pixel.
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In each of the situations, either area1b or area2a (see Fig. 4.4) will be
equal to zero. Therefore, no contribution will be made.

//splat two adjacent luminance pixels

og0 = og0 + ((area0 * y0) ) >> 4;

og1 = og1 + ((area1a * y0) + (area1b * y1)) >> 4;

og2 = ((area2a * y0) + (area2b * y1)) >> 4;

og3 = ( (area3 * y1)) >> 4; �
Listing 4.7: Re-sample two adjacent pixels

This is repeated for each line within a block. The coefficients remain
equal, only the luminance samples vary per line.

Re-sampling of 4×4 Blocks

Each time a warped position is calculated for a block of 4×4 pixels,
this group will be splatted also. Consider Fig. 4.5, where the distance
between the first and second midpoint and fourth and last midpoint is
maximal. In other words, this is the maximum affected area, without
dis-occlusion being detected.
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Figure 4.5: Mapping and re-sampling of next four pixels.

The dis-occlusion threshold is equal to 1.5 pixel. Since four adjacent
pixels are warped together, all midpoints between all four pixels are on
0.5 pixel distance. This leaves a maximum of 1.0 pixel on each side of
group of pixels, without detection of dis-occlusion.

Furthermore, here two situations can occur, see Fig. 4.5. Situation in
Fig. 4.5(a) occurs, if the first luminance pixel is mapped on the right-
hand-side of the corresponding output pixel. Otherwise, the situation
in Fig. 4.5(b) occurs. The re-sampling procedure cannot be generalized
and a distinction between both situations is made. The pseudo code in
Listing 4.8, is used to determine the contributions to each output pixel.
Each four warped pixels are equidistant located. Therefore, midpoints
of these pixels are also equidistant. Consequently, areas defined by
inner two input pixels, have equal sized areas. These areas are denoted
by areaA and areaB.

These calculations are repeated for each line within a block. The
coefficients remain equal, only the luminance samples vary per line.

[Confidential report]



4.3 complexity reductions 49

//splat four adjacent luminance pixels

if(situation a) {

og0 = og0 + ((area0 * y0) )>>4;

og1 = og1 + ((area1 * y0) )>>4;

og2 = ((areaB * y0) + (areaA * y1))>>4;

og3 = ((areaB * y1) + (areaA * y2))>>4;

og4 = ((areaB * y2) + (area4 * y3))>>4;

og5 = ((area5 * y3) )>>4;

} else { //situation b

og0 = og0 + ((area0 * y0) )>>4;

og1 = og1 + ((area1 * y0) + (areaA * y1))>>4;

og2 = ((areaB * y1) + (areaA * y2))>>4;

og3 = ((areaB * y2) + (areaA * y3))>>4;

og4 = ((area4 * y3) )>>4;

og5 = ((area5 * y3) )>>4;

} �
Listing 4.8: Re-sample two adjacent pixels

4.3.2 Processor Optimizations

Re-sampling of 2×2 Blocks

Consider re-sampling of a single block of 2x2 pixels, and the pseudo
code in Listing 4.7. Calculating these four output pixels for one line is
mainly in the form of

((a ∗ b) + (c ∗ d)) >> 4

One specific custom operation, SUPER_USCALEMIXUI_QUAD8, is ca-
pable of performing four of these sum-of-products at once (with shifting
and clipping), namely ((a ∗ b) + (c ∗ d)) >> 6. To rectify the shifting
operator, each coefficient is multiplied by factor 4. Since coefficient
values are between 0 and 16, coefficients will never overflow.

The coefficients (or areas) are first calculated, followed by packing
into two 32-bit words.

Both input samples are extrapolated to serve as input for all four
calculations. This is implemented using SUPER_MERGEL_QUAD8
operation.

Because the first two output samples need to be accumulated to
possibly previously calculated output pixels, an add-operation is added:
DSPUADD_QUAD8. This operation computes four separate sums of
four 8-bit pairs. The results are also clipped.

All these steps are depicted in Fig. 4.6.

These three operations are also executed for the second line of 2

pixels in the block. The coefficients remain unchanged. Operation
DSPUADD_QUAD8 leaves room for two more add-operations. How-
ever, to incorporate this, several more instructions are needed to select,
pack and store affected values.
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Figure 4.6: Optimized re-sampling procedure for 2×2 blocks.

Re-sampling of 4×4 Blocks

Now consider re-sampling of a single block of 4×4 pixels, and see
pseudo code in Listing 4.8). Two situations can occur, in both cases six
output pixels are calculated per line, and are mainly in the form of

((a ∗ b) + (c ∗ d)) >> 4

As before, custom operation SUPER_USCALEMIXUI_QUAD8 is used.
This operation is capable of performing four of these sum-of-products
at once (with shifting and clipping), namely ((a ∗ b) + (c ∗ d)) >> 6. To
rectify the shifting operator, each coefficient is multiplied by factor 4.
Since coefficient values are between 0 and 16, coefficients will never
overflow.

To warp four adjacent pixels at a time, six sum-of-products need to be
calculated. Over two lines of a block, there are twelve sums to calculate.
This will fit into three of these custom operations. The remaining two
sum-of-products are accumulated with output pixels. Hence, combining
these two from two lines is an obvious choice. In fact, it will save two
DSPUADD_QUAD8 operations.

Depending on the position of the warped pixels (situation A or
B, coefficients are packed, as well as luminance pixels. Followed by
a SUPER_USCALEMIXUI_QUAD8 operation and a 32-bit store. The
optimization of calculating og2 through og5 is straightforward and is
executed for each line within the block. See Fig. 4.7.
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Figure 4.7: First part of optimized re-sampling procedure.

The optimization of remaining two accumulated sum-of-products per
line is more complicated. Consider Fig. 4.8, two luminance samples of
two lines are merged into two 32-bit words using SUPER_MERGEL_QUAD8
operation. The coefficients of y0 are equal in both situations, unlike
the coefficients of y1. Only in situation B, contribution of y1 is taken
into account. Hence, the integration of coefficient areaA. In all other
cases the coefficients are set to zero. Subsequently, these results are
accumulated with output samples of the corresponding two lines. The
operation DSPUADD_QUAD8 is executed after the output samples are
loaded and packed. Finally, the result is stored back into memory. This
part is also executed for each first two pixels of line three and four
within each block.

Data-cache Behavior

The requirements for data cache increases with the size of the blocks.
More input data needs to be present, more output data is produced
simultaneously. The requirement is shown in Table 4.6.

Except for the depth image, pre-fetching is set up differently than
before. Consider processing 2×2 blocks. Each line of blocks is processed
sequentially. Ideally, the next line of blocks should be pre-fetched. This
can be achieved by enabling a pre-fetch region for the reference image
(Y and UV) with a pre-fetch stride equal to 2×960 (2 lines). This approach
is similarly applied for the 4×4 block-based approach, but with a pre-
fetch stride of 4×960 (4 lines). The default pre-fetch region suffices for
pre-fetching depth image.

Pre-allocation is not changed. The right-view image is still produced
from right to left. Negative pre-allocate stride assures pre-allocation of
cache lines with decreasing addresses.
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Figure 4.8: Second part of optimized re-sampling procedure.

description current future current future

Ref. image (Y) 2×960 2×960 4×960 4×960

Ref. image (UV) 2×960 2×960 4×960 4×960

Depth (Y) 0.5×960 0.5×960 0.25×960 0.25×960

Outp. image R
(Y)

2×960 2×960 4×960 4×960

Outp. image R
(UV)

2×960 2×960 4×960 4×960

Outp. image L
(Y)

2×960 2×960 4×960 4×960

Outp. image L
(UV)

2×960 2×960 4×960 4×960

Hole 2×960 0 2×960 0

Total 14.5×960 12.5×960 26.25×960 24.25×960

Table 4.6: Cache requirement of Integral Weights algorithm for 2×2 and 4×4

blocks.

4.3.3 Complexity Analysis

These algorithms are also analyzed on the complexity. The assumptions
stated previously hold also for the block-based approach. There are
only two exceptions:
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• Resolution of depth image is 480×270 (for 2×2 block-based)

• Resolution of depth image is 240×135 (for 4×4 block-based)

Expected Bandwidth Usage

The depth images have a lower resolution. Therefore, the lower bound
for expected bandwidth usage is also lower, in comparison to the pixel-
based algorithm. See Table 4.7 for details. The differences depicted in

description 1 fps 60 fps

Reference image 2× 960×540 0.99

Depth image 1× 960×540 0.49

(pixel-based) subtotal 1.48 89.0

Reference image 2× 960×540 0.99

Depth image 1× 480×270 0.13

(2×2 block-based) subtotal 1.13 66.7

Reference image 2× 960×540 0.99

Depth image 1× 240×135 0.03

(4×4 block-based) subtotal 1.02 61.2

Table 4.7: Lower bound on bandwidth usage.

this table are only for input data. Bandwidth usage on output images
has not changed, as the sizes of the output images remain unchanged
(see Table 4.3 on page 43).

Analysis

The complexity numbers are extracted using the cycle-accurate simula-
tor and a trace analysis tool.

Table 4.8 shows the processor load requirement for both block-based
approaches. The cycle count is composed of instruction cycles and stall

description cycles instr. stalls i$ d$ ilp

Integral Weights
(2×2)

377.0 324.9 52.1 2.1 50.0 4.62

• Mapping and Re-
sampling

267.0 247.2 22.8 0.9 21.9 6.16

• Dis-occlusion
handling

68.8 67.5 1.2 1.2 0.03 1.40

Integral Weights
(4×4)

247.6 168.6 79.1 2.0 77.1 5.00

• Mapping and Re-
sampling

147.3 99.9 47.4 0.8 46.6 7.55

• Dis-occlusion
handling

61.2 59.0 2.2 1.1 1.1 1.95

Table 4.8: Instruction cycles of block-based Integral Weights algorithm.
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cycles. The latter part is again divided into instruction cache stall cycles
and data cache stall cycles. All numbers in this table are expressed in
MHz, which are obtained by the product of cycle count per frame and
the frame rate. The last column shows the Instruction Level Parallelism
(ILP), which is an average of executed instructions per cycle. As the
TM3282 media processor has 8 issue slots, the maximum ILP achievable
is 8.

Next to the processing requirements, bandwidth usage is also im-
portant. In Table 4.9 is bandwidth usage detailed for both approaches.

description bandw. writes reads instr . data

Integral Weights
(2×2)

187.7 118.5 69.3 2.2 67.0

Integral Weights
(4×4)

184.1 120.1 63.9 2.1 61.8

Table 4.9: Bandwidth usage of block-based Integral Weights algorithm.

4.3.4 Alternative Algorithm

This chapter described the implementation and optimization of the
existing view synthesis algorithm. Together with the complexity re-
ductions based on a block-based approach, the re-sampling procedure
takes a major part of all computations needed. Calculating midpoints,
coefficient (or areas) and sum-of-products contributes to a complex
algorithm. Each output pixel is an accumulation of multiple fractions
of input pixels.

A new algorithm is developed with reduced complexity, while main-
taining the picture quality level. This algorithm is detailed and also
analyzed on the complexity in Chapter 5.
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The contents of this chapter is restricted.
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6C O N C L U S I O N S A N D F U T U R E W O R K

This thesis has presented two signal conversion algorithms for three-
dimensional television (3D-TV) signals. 3D-TV is considered to

be the next logical step in the history of television. After transitions
from analog to digital and SD to HD television, the step from 2D to
3D signals adds a third dimension to the viewing experience. Methods
to produce 3D movies have become available in the film industry and
digital cinemas are already prepared to display 3D signals. In the
consumer market, display panels with 3D capabilities are increasingly
becoming available on the market, but the quantities are still small.

Problem description

3D-TV signals come in many flavors (i.e. anaglyphs, stereo signal, etc.).
A stereo signal (or two-view signal) is composed of two signals. These
two signals are in full color and are placed side-by-side. Each signal
is intended for one eye only. However, an anaglyph signal has two
views combined in a single signal. Each perceived view for one eye has
reduced color information, because each eye obtains only color-filtered
information. For our study, we have considered both types of input
signals: full-color stereo signal and an anaglyph signal. Both possible
input signals have been converted, such that they can be displayed on
full-color stereo display. The displayed signal is perceived by the user
employing polarized glasses. The problem statement is now detailed in
two ways. First, for anaglyph images, we have explored a conversion of
the color shifted information towards a disparity oriented shift suitable
for feeding the left and right stereo channel. Second, for stereo images,
we have studied a conversion into another stereo signal with which the
user can control the depth perception of the 3D signal.

With respect to anaglyph conversion, the objective is to determine
an algorithm, which restores the missing color components from using
colored representations to form full color stereo images. The color
components are separated first. Since the missing color components
can be taken from the available color information, the main problem
can be translated into the problem of finding the screen disparities.
If these disparities are determined, the missing color components are
interpolated and combined with the existing color components.

For an input stereo signal, the emphasis is on a solution providing
pleasant 3D viewing and perception by controlling the depth of the 3D
signal. The objective is to determine a stereo signal conversion, which
adjusts depth information contained in stereo signals. In order to adjust
depth information, three sub-problems need to be solved. First, the
screen disparities need to be determined. Second, the resulting dispari-
ties need to be aligned with the reference image. The last problem is
determining the view synthesis.

Display panels are driven by high-end dedicated video processing
platforms, employing advanced video processors, such as one or more
TriMedia TM3282 media-processors. To this end, the computational
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complexity of the view synthesis sub-algorithm is still unknown. The
final objective is to determine its implementation and investigate op-
tions to reduce computational complexity. This imposes two important
requirements:

• Intermediate format. A 3D-TV signal is converted to an interme-
diate format, to cope with different input and output signals.
The intermediate format is defined as a reference image with
corresponding depth image.

• Real-time processing. A frame rate of 60 frames per second achieves
real-time processing. The frame resolution of 960×540 pixels is
determined as the effective resolution of a 3D display panel.

Developed solutions

anaglyph signal conversion We developed an anaglyph con-
version algorithm, which involves three steps. Firstly, the color infor-
mation of both views contained in the anaglyph image are separated.
Secondly, the missing color information of both views are restored.
Finally, original and restored color information are combined for both
views to form a full color stereo image. The first and last steps are triv-
ial. However, we evaluated several methods to restore the missing color
information. The recording of an anaglyph image can be depicted as
sequential recording of the color components, with a camera movement
between specific components.

The first solution involves the estimation of a 6-parameter affine
motion model. Prior to estimation, the color components are equalized
by histogram specification. Secondly, the affine motion model is esti-
mated. Then, each color component is compensated for the motion,
and missing color components are interpolated. However, results show
that restored color components appear slanted. This is caused by the
content of the image and the global affine motion model.

The second solution is based on a block-based motion estimator.
3-D recursive search is used as a disparity estimator to determine the
apparent motion between the two views. This estimator assumes that
the brightness constancy assumption is satisfied. However, the pixel
intensities between color components are not similar. Consequently,
this assumption does not hold. To still use 3DRS, we have evaluated
two possible solutions. Either the color components are equalized, or a
different similarity measure in 3DRS is defined. We have equalized the
color components, either by histogram specification or filtering with
a high-pass filter. The first method does not always equalize the color
components sufficiently. Consequently, 3DRS finds incorrect disparity
vectors. Filtering the high frequencies of the color components is suscep-
tible to noise. However, 3DRS finds much better disparity vectors. We
have implemented Mutual Information as the similarity measure in the
3DRS algorithm. Calculating Mutual Information involves determining
the probability density function and the entropy of each pair of blocks.
This is significantly more computationally complex than calculating
SAD values of each pair of blocks. However, the disparity vector fields
are similar or better, in comparison to the result of high-pass filtering.

stereo signal conversion We have composed a stereo signal
conversion algorithm of existing sub-algorithms which involves three
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steps. Firstly, a disparity estimator determines the screen disparity of
the stereo input image. This results in a small set of disparity vectors.
Secondly, the disparity vectors are converted to disparity values. This
disparity image has a much lower resolution than the input image.
Therefore, the disparity image is filtered and up-sampled to frame
resolution using joint bilateral filtering techniques. However, the last
up-sampler is replaced by a median-based block erosion filter, which re-
duces the computational complexity significantly, with a minor quality
degradation. The resulting disparity image, together with one image
of the stereo input image, forms the intermediate format. The last step
synthesizes two new views to form a new stereo image. The view
synthesis is based on the intermediate format (texture plus depth) only.

We have experimented with the 3DRS algorithm and modified its
parameters to estimate screen disparity of stereo-view signals. We have
extended the candidate set and update set, and removed the zero-vector
candidate. We consider the horizontal vector component produced by
3DRS as the screen disparity.

We have used an existing view synthesis sub-algorithm, based on a
texture plus depth representation. We have optimized the algorithm for
a fixed parameter setting. For stereo conversion, optimizing the depth
perception is performed by modifying the depth signal.

For implementation, we have mapped the view synthesis sub-algorithm
to the TM3282 media-processor, and analyzed its computational com-
plexity. Unfortunately, the real-time requirement of synthesizing 60

stereo images per second is not feasible (only 41 stereo images per
second are achieved). Therefore, we have investigated options to re-
duce its complexity. The first option we explored, involved block-based
processing. Each block of 2×2 or 4×4 pixels has only one disparity
value, giving a frame rate of 79 and 119 synthesized stereo images per
second, respectively. Next to the complexity reductions, we have also
optimized the picture quality (artifact reduction) by employing a 3×3

dilation filter. Another method to reduce complexity, is to develop a
new view synthesis algorithm. This new algorithm is proposed in an
invention disclosure by [12]. We have studied and implemented this
new proposal and achieved a frame rate of 96 stereo images per second,
due to a much simpler design for the re-sampling technique. We have
also evaluated a block-based approach as an alternative, resulting in
135 and 147 stereo images per second for 2×2 blocks and 4×4 blocks,
respectively.

Conclusions

anaglyph signal conversion We have found that stereo color
signals can be restored from anaglyph signals. The missing color com-
ponents can be extracted from each opposite view. A global affine
motion model is found insufficient for this conversion. Instead, 3DRS is
well suited to find screen disparities, after transforming the individual
color components with a high-pass filter. Unlike high-pass filtering,
histogram specification is insufficiently capable of removing the pos-
sibly large intensity differences. As such, high-pass filtering prior to
3DRS leads to significantly more accurate results. As a metric for vector
evaluation, Mutual Information gives somewhat better results than
SAD. However, evaluating the Mutual Information increases the com-
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putational complexity with a factor of five, even when using lookup
tables and storing data in intermediate caches.

stereo signal conversion We have found that the perceived
depth in stereo signals can be adjusted by manipulation of the depth
signal. However, it is a complex algorithm and consists of three sub-
algorithms. First, 3DRS is well suited for disparity estimation in stereo
signals. Experimental results show that stereo signals have different
characteristics in comparison to mono signals, in terms of differences
in vector accuracy, candidate set and update set as parameters of this
estimator. It produces robust and consistent disparity vectors. We have
found that without vertical components in the 3DRS-based disparity
estimator, this algorithm does not produce reliable and consistent dis-
parity vectors. Screen disparity is measured as a horizontal component
only. Second, the up-sampling procedure with cross-bilateral filters
produces very sharp edges, which are aligned with the edges in the
reference image. The edges in the low resolution depth image are prop-
agated through up-sampling process. Similarly, the quality of 3DRS
algorithm (vectors) has a direct influence on the quality of the depth
signal. Third, we have compared two view synthesis algorithms. The
basic algorithm shifts pixels to the desired position after which filtering
is applied. The second algorithm is new and uses efficient re-sampling
of data to interpolate the desired pixels. Experiments have shown that
the novel algorithm is much more efficient than the existing algorithm,
while producing a similar picture quality. We have implemented both
algorithms and compared them using a TriMedia TM3282 processor
to evaluate the computational complexity. These results are used to
extrapolate the complexity for achieving real-time processing. Com-
pared to the existing algorithm, the complexity of the new algorithm
is reduced with a factor of 2.3 (41 vs. 96 frames per second). This re-
duction is mainly due to the efficiency of the re-sampling. Since the
new algorithm appeared to be attractive, we have further experimented
with complexity reduction techniques for that algorithm specifically.
Instead of pixel-based processing, we have found that a block-based
processing leads to a significant complexity reduction with a factor of
1.4 and 1.5 for blocks of 2×2 and 4×4 pixels, respectively. However, the
subjective picture quality is affected by introducing a halo artifact due
to the block size. The idea of block-based processing was also tested
for the existing view synthesis algorithm and resulted in reductions of
1.9 and 2.9 for the above block sizes.

Future work

To obtain more reliable results for the near future, the 3DRS-based
disparity estimator should be made more robust, requiring the im-
plementation of a scene cut detection and occlusion detection and
correction. Besides this, the estimator can be optimized for the use
of Mutual Information as a similarity measure. With respect to the
new view synthesis algorithm, the implementation of the dis-occlusion
processing can be improved, as data can be partly overwritten in the
dis-occlusion area.
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