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I. Abstract 

Within this Master Thesis a validation approach is developed for logistic simulation models of 

Vanderlande Industries, based on comparison of a simulation model to the corresponding real system. 

The approach is designed based on an extensive literature study and experiences acquired by performing 

a case study. It will be shown that real system output is required for comparison with simulation output, 

in order to be able to obtain a high degree of confidence in the validity of a model. As it turned out, 

differences should be evaluated under similar stochastic circumstances in order to isolate them from a 

simulation model’s own randomness. Furthermore, statistical techniques often prove not to be adequate 

for deciding whether the model is valid or not. 

This research has resulted in a schematic approach that presents the subsequent actions to be 

performed for operational validation, in a stepwise manner. On a high level, an assumptions document 

should be created, followed by validation of simulation input, validation of simulation output that is 

driven by real system input, and a sensitivity analysis. The case study results will be presented as a 

comprehensive illustration of the developed approach. 
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II. Management Summary 

This report is the result of a Master Thesis project at Vanderlande Industries. Vanderlande is dedicated 

to improving customers’ business processes by providing automated material handling systems. Due to 

increasing complexity and scale of systems, Vanderlande Industries uses simulation to reduce the risk of 

nonperformance of their systems. Also, simulation may be requested by customers of Vanderlande 

Industries in order to confirm that the functionality and performance of the proposed system will meet 

their requirements. However, this requires a high degree of confidence in a simulation model and its 

results. A high level of confidence can be obtained by comparing a model’s and system’s behavior for 

several different sets of experimental conditions, which is called operational validation. Correspondingly, 

the purpose of this research has been to develop an operational validation approach for the logistic 

simulation models of Vanderlande Industries. 

In order to develop this operational validation approach, the most appropriate methods have been 

selected by combining findings of an extensive literature study with experiences acquired by performing 

a case study. At a high level, the approach consists of maintaining an assumptions document, input 

validation, trace-driven output validation, and conducting a sensitivity analysis. Evaluation criteria have 

been used to develop a conceptual approach based on current literature. For input validation and trace-

driven output validation, these criteria are: generality, power, objectivity, data, and effort. Additionally, 

for trace-driven output validation the subject of comparison is taken into account. Different criteria have 

been used in order to evaluate methods for conducting a sensitivity analysis, namely efficiency, 

effectiveness, robustness and ease of use. 

From the literature study and the case study the following findings can be derived: 

General 

- The logistic systems simulated at Vanderlande Industries are inherently stochastic. Because 

random inputs will produce random outputs it is difficult to relate observed differences to 

specific model characteristics. To isolate the differences in simulation models from a model’s 

own randomness, the system and simulation model, or various model variants, should be 

evaluated under similar stochastic circumstances. 

- As a result of dynamic, nonstationary input and correlated, nonstationary output, formal 

statistical techniques have turned out to be difficult to apply, because of violations of their 

assumptions. 

- Since a simulation model is a simplification, and consequently merely an approximation of the 

real system, some differences between the real system and the model are to be expected. As a 

result, tests that evaluate whether system and model input or output are similar are expected to 

be false. Therefore, it is more useful to ask whether or not the differences between the model 

and system are significant enough to affect any conclusions derived from the model. 

- Because validity relates to a sufficient level of accuracy for the intended purpose of a model, no 

definite criteria can be used in general to determine whether a model is valid or not; the effect 

of observed differences should be assessed in relation to the objective of the model. 
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Assumptions Document 

- Making the model’s assumptions explicit in an assumptions document is important because the 

model’s assumptions and input values determine whether the model is valid, and will remain 

valid when the real system and its environment will change.  

- The assumptions document should be used to make the level of detail contained in the 

simulation model explicit, as well as its intended purpose. 

- For Vanderlande Industries this document can have additional value; if the assumptions are 

conform customer specifications for instance, differences between the real system and the 

simulation model that can be attributed to these assumptions can be acceptable. 

Input Validation 

- Statistical techniques that evaluate whether system data can be considered a random sample of 

a predefined distribution generally tend to be too sensitive for simulation purposes.  However, 

the statistics can be used to compare used distributions to best fitting distributions. 

- For the graphical techniques proposed experience is required to conclude whether the input is 

valid or not. 

- In absence of the required level of experience the effect can be further evaluated within the 

sensitivity analysis. 

Trace-Driven Output Validation 

- In order to isolate the differences between a model and the real system from a model’s own 

randomness, output validation should be trace-driven; i.e. model output should be based on real 

system input. 

- An increase in utilization generally leads to an increase in the difference between simulation 

output and system output. As such, a difficulty with output validation remains that differences 

are preferably evaluated per range of utilization. However, for this purpose a high amount of 

data is required of a relatively stable period per range of utilization, which is difficult to acquire 

for baggage handling systems. 

- In order to acquire detailed insights in the behavior of differences between a real system and a 

simulation model, a high utilization range is required. Typically airports experience the most 

extreme capacity requirements only a few days per year, of which the dates are generally known 

beforehand. Data of these days would be especially appropriate for operational validation. 

Sensitivity Analysis 

- A sensitivity analysis can generate insights into what causes the differences observed at the 

output validation.  

- Furthermore, it can result in an upper boundary in what output may be reached with a 

simulation model when all the parameters are configured optimally, based on the level of detail 

it contains.  

- Alternative levels of factors indicated as important by the sensitivity analysis can be used to 

generate new simulation results for output validation, if a more detailed evaluation of their 

effects is preferred. 
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- Differences between model variants can be isolated from a model’s own randomness by using a 

variance reduction technique called common random numbers.  

In addition to this research, some recommendations can be made related to future research: 

- The research within this Master Thesis has been bounded to validation methods that could 

increase the degree of confidence in the simulation models. This in absence of a feedback loop 

from implemented systems to simulation models. Additional to this research it can be 

recommended to evaluate possibilities to facilitate the feedback loop itself. A large reduction of 

time and effort can be gained by simplifying data acquisition and processing. It would be 

beneficial if system responses and parameter values could be observed more directly, for 

instance by using BPI.  

- For the different types of simulation models, with respect to their objectives, different tolerance 

limits can be identified that determine whether or not a model is valid. 

- The operational validation approach can be used to determine which level of detail is sufficient 

for different types of simulation models. Dependent of the simulation requirements, a tradeoff 

can be made between the level of detail used in a model and the cost of performing a 

simulation, i.e. the complexity of the coding and the additional value of it for the simulation have 

to be balanced against each other.  
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1. Introduction 

In this Master Thesis a validation approach for logistic simulation models is developed, fit to meet 

Vanderlande Industries’ specific requirements. For this purpose findings of an extensive literature study 

will be combined with experiences acquired by performing a case study. The simulation department is in 

search of methods to increase the degree of confidence in their models. Currently at Vanderlande 

Industries no feedback loop exists from implemented systems to simulation models to facilitate 

obtaining this high level of confidence. 

In this chapter the problem context and the research outline will be addressed. In section 1.1 

Vanderlande will be discussed as a general company, followed by the background of the project in 

section 1.2. The latter will be described by addressing the role of simulation models within Vanderlande 

Industries. Subsequently, in section 1.3, validation of simulation models will be formulated as the 

research area, as well as the corresponding problem definition. The resulting objective of this Master 

Thesis will be underlined within section 1.4. These two sections emphasize the relevance and the 

necessity of this research. The methodology (section 1.5) describes the related steps to perform in order 

to develop a solution for the defined problem. Finally, research limitations and boundaries of this 

research are introduced in section 1.6, as well as the structure of the report in section 1.7. 

1.1 Description of the Company 

Vanderlande is dedicated to improving customers’ business processes by providing automated material 

handling systems. The company has sixty years of experience in the design and implementation of 

integrated logistics solutions of all sizes, and in providing all the required operational support, gained 

with customers in a broad spectrum of industries. It was founded in 1949 as Machinefabriek E. van der 

Lande, a general machinery and construction company manufacturing hoists, cranes and conveyor 

equipment for bulk materials and oil drums. A joint venture was established with Rapistan Inc and 

Fenner Limited in 1963. Consequently the name changed to Rapistan Lande. In 1988 the company parted 

from Rapistan and the name was altered to Vanderlande Industries. With the acquisition of Gambit 

GMBH in 1997, the company acquired knowledge of Warehouse Management Systems. Their current 

solutions include warehouse automation systems, baggage handling systems and end-to-end sortation 

systems for the parcels and postal market (Vanderlande Industries, 2009h). 

Concerning integrated logistics solutions for distribution purposes, such as warehouse control systems, 

automated storage, order selection, sortation and consolidation, Vanderlande Industries is a leading 

supplier. Over 1000 distribution projects have been covered in the recent years, in segments as diverse 

as care, food, fashion, automotive, parts & components, retail and business-to-consumer (Vanderlande 

Industries, 2009a). 

The company designs, builds and services leading baggage handling systems for airports of all sizes. The 

systems range from raw baggage to high speed tub and track systems and robotics, and provide fast, 

safe and robust sortation, transportation, and security screening of departure baggage, as well as 
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transfer and arrival baggage. More than 600 systems of all sizes have been implemented worldwide, 

resulting in more than 50 years of experience (Vanderlande Industries, 2009c). 

For parcel handling and documents a wide range of technologies is being offered. The parcel automation 

systems provide end-to-end logistics solutions in depots of all sizes: from the world’s largest automated 

sorting hub handling well over 200.000 parcels per hour to small local depots with throughputs of some 

thousands of parcels per day. The company is a top 3 supplier in its market, with a history of more than 

250 automated sorting centers and over 30 years experience (Vanderlande Industries, 2009f).  

During recent developments more and more emphasis is placed on service. Vanderlande’s services cover 

all system- and process-related issues throughout the life cycle of material handling systems. Different 

service packages are being offered: from call-out response and preventive maintenance, up to a 

permanent, on-site maintenance presence based on a comprehensive Service Level Agreement 

(Vanderlande Industries, 2009g). 

Vanderlande’s headquarters is located in Veghel. Local Customer Centers, from which day-to-day 

support is provided, are based all around the world. The company slogan ‘In a world of technology a 

belief in people’ is seen as a reflection of the core values of Vanderlande Industries. These are 

considered to be a strong emphasis on team play, and dedication to further improving performance 

everyday, which led to an excellent reputation with their customers and partners (Vanderlande 

Industries, 2009h).  

1.2 Simulation at Vanderlande Industries 

Due to increasing complexity and scale of systems, Vanderlande Industries uses simulation to reduce the 

risk of nonperformance of their systems. Customers of Vanderlande Industries may request confirmation 

that the functionality and performance of the proposed systems will meet their requirements as well. 

Prior design testing and validation are essential in order to gain confidence in future system’s 

performance. Without it, the performance and possible shortcomings will only become apparent once 

the system is built and operating. Serious faults could even emerge during commissioning, requiring 

design changes which can mean delay and extra costs. The high investment and mission-critical role of 

material handling systems, and specifically baggage handling systems, mean that in most cases these 

risks cannot be accepted (Schipper, n.d.). For design validation queuing models are of limited value, due 

to the large numbers of factors which can be encountered under both normal and exceptional operating 

conditions (Schipper, n.d.). Therefore simulation models are being used.  

Simulation is a widespread technique for the exploration, design and optimization of complex systems. 

Simulation is the “replication of a dynamic process in a model, in order to arrive at conclusions that can 

be transferred to reality” (Nyhuis et al., 2005, p. 2). It offers facilities to model real systems by means of 

computer programs and to analyze and describe their behavior by changing the simulation parameters. 

By using simulations it is possible to evaluate the effects of system load variants, interferences, changes 

of routing rules, structure variants or resource alternatives sufficiently accurately (Nyhuis et al., 2005).  
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In terms of Vanderlande Industries this implies that customers can be confident that their future systems 

will meet their expectations in terms of productivity and trouble-free performance over a wide range of 

loads and other operational conditions. In line with the findings, the system design, configuration and 

dimensioning can be adjusted as necessary to ensure that the required capacity levels will be met in 

practice. Also the design robustness can be matched to the expected operating and emergency 

conditions to whatever extent is desired (Schipper, n.d.). 

As well as for the purpose of design validation, simulation is also used to evaluate existing systems; for 

example in case of proposed design and configuration changes, capacity extensions or changed 

operational demands such as security requirements. In these situations, simulation can allow 

alternatives to be evaluated accurately, acting as a decision support tool to allow the right choices to be 

made to achieve the specified performance levels. A further benefit is that simulation can allow testing 

of possible future operational scenarios and their impact on logistics systems (Schipper, n.d.).  

1.3 Validation of Simulation Models 

In the previous section the benefits of applying simulation models have been discussed. However, in 

order to benefit from the opportunities discussed, a sufficient level of accuracy of the simulation models 

is required. Assessing the accuracy of simulation models is part of the validation of simulation models, 

which is defined as “the determination whether an executable simulation model is an accurate 

representation of the real system” (Goossenaerts & Pels, 2006, p. 87). Its aim is to assess whether the 

model can be substituted for the real system for the particular objectives of the study (Goossenaerts & 

Pels, 2006).  

Validation can be used to increase the degree of confidence that the events inferred from the model will 

occur under the conditions assumed. Currently, at Vanderlande Industries validity is addressed by 

comparing a simulation model to similar models that have turned out to be valid, as well as by applying 

logistic formulas based on queuing theory for instance. These validation methods are performed before 

drawing conclusions of the model’s results. Even though models have been validated, in practice, after 

implementation of the real system, significant dissimilarities have been found in certain cases. Though 

research indicates that the mismatch between simulated performance and actual performance is rarely 

caused by the simulation engineer, the simulation department is, in concordance with the company 

slogan “improve every day”, in search of methods to increase the degree of confidence in their models.  

“To obtain a high degree of confidence in a simulation model and its results, comparisons of the model’s 

and system’s output behaviors for several different sets of experimental conditions are usually required” 

(Sargent, 2008, p. 163). Currently at Vanderlande Industries no feedback loop exists from implemented 

systems to simulation models to obtain this high level of confidence.  

In line with the finding of Sargent (2008) and the absence of a feedback loop, the purpose of this Master 

Thesis project is the development of an ex post validation approach for logistic simulation models of 

Vanderlande Industries, based on comparison of the simulation model to the real system. Ex post refers 

to the fact that both model data and system data are required for the comparison, but systems are 

generally not built before simulation results have been finalized. This implies that the approach cannot 
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be seen as a substitute of the validation methods currently applied. However, it does provide the 

opportunity to assess whether current validation methods are sufficiently capable of evaluating the 

extent to which simulation models are an accurate representation of the corresponding real system. 

Moreover, when a high degree of confidence in a simulation model is acquired, the model could be used 

to aid the system optimization process, which is especially relevant within the distribution market. In 

case of proposed design and configuration changes, capacity extensions or changed operational 

demands this information is also of importance. An additional possible benefit of having more exact 

information of the accuracy of simulation models is that it can generate insights in what causes the 

found differences; certain assumptions may appear to be problematic or specific parts of code could turn 

out to be generally inaccurate. This knowledge is valuable for (similar) future simulation projects.  

1.4 Research Objective 

From the problem definition it can be derived that the objective of this Master Thesis is to develop an ex 

post validation approach for logistic simulation models of Vanderlande Industries, based on comparison 

of the simulation model to the real system. This approach should be capable of giving detailed 

information about the accuracy of a simulation model. In case a mismatch exists, the approach should 

provide insights in what causes the observed differences. Furthermore, the approach should be able to 

handle models of various levels of detail. 

Related to this objective a main research question can be identified, which can be divided into two sub 

questions: 

- How to validate the logistic simulation models of Vanderlande Industries such that a high degree 

of confidence can be obtained in the model and its results? 

1. Which methods can be selected based on literature, to compare logistic simulation 

models to corresponding real systems?  

1.1 Which type of methods can be found in literature to compare logistic simulation 

models to corresponding real systems? 

1.2 Which evaluation criteria can be identified for the different types? 

1.3 Which techniques can be found in literature per type? 

1.4 Which techniques should be selected for the validation approach, based on the 

evaluation criteria? 

2. Which methods should be selected for comparing logistic simulation models of 

Vanderlande Industries to corresponding real systems, based on findings of the case 

study?  
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1.5 Methodology 

The type of methodology that should be used depends on the research objective. Verschuren & 

Doorewaard (1995) differentiate between two main types of research: theoretical research and practical 

research.  

Theoretical research, also called fundamental research, aims to solve problems in the formulation of 

theories. It can be divided into theory development and theory testing. Motives for conducting theory 

development are hiatuses/blind spots/gaps in current theory, or that current theory cannot be 

generalized. The purpose of theory testing is to test existing theories and if necessary adapt or optimize 

them (Verschuren & Doorewaard, 1995). 

Practical research, on the other hand, contributes to an intervention to solve a practical situation or 

problem. In order to perform practical research efficiently, an intervention cycle should be carried out 

(Table 1). The first step of the intervention cycle proposed by Verschuren & Doorewaard (1995) is 

problem recognition; the problem should be clearly defined. The second step involves a diagnosis; the 

main causes and effects of the problem should be clearly defined. Subsequently a realistic solution 

should be developed that will solve the problem as defined in the previous steps. The fourth step is to 

implement the proposed solution. Finally, the proposed intervention should be evaluated. The lasts 

steps may involve an iterative process; evaluation of the implemented intervention may result in 

alterations, which on turn may result in changes in implantation and its evaluation. 

Step Description 

1 Problem Recognition 

2 Diagnosis 

3 Development 

4 Implementation 

5 Evaluation 

Table 1: The various steps of the intervention cycle (Verschuren & Doorewaard, 1995) 

The research type applied in this Master Thesis is practical research. Hence the intervention cycle should 

be performed. The first two steps have already been handled in section 1.3. The recognized problem is 

that the simulation department is in search of methods to assess the accuracy of their simulation models 

more exactly than is currently the case. It is diagnosed that a comparison between a simulation model’s 

output and the corresponding system’s output is required to solve this problem. At Vanderlande 

Industries no feedback loop currently exists from implemented systems to simulation models, in order to 

give a reliable indication of the validity of the model. The initial development of a solution to overcome 

this problem will be based on an extensive literature study. Subsequently, this solution will be 

implemented for a single case. The evaluation of the implementation may lead to changes in the 

designed solution. Thus, some iteration may take place. Consequently, the following steps may be 

identified in relation to Table 1: 
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 3.1 Identify relevant criteria for comparing validation techniques 

3.2 Perform a literature review in order to create an overview of available methods 

3.3 Develop a conceptual approach based on an evaluation of the various discussed 

methods grounded on the identified criteria 

 4 Perform a case study 

5 Update the conceptual approach based on findings of the case study 

Using a case study to test theories developed in advance is called a confirmatory case study. An 

explanatory case study, on the other hand, uses a case to deduce a theory (Johnston et al., 1999). “The 

case study is a research strategy which focuses on understanding the dynamics presented within a single 

setting” (Eisenhardt, 1989, p. 534). This setting can involve either single or multiple cases, and numerous 

levels of analysis. Cooper & Schindler (2003, p. 150) state that, compared to other studies, “case studies 

place more emphasis on a full contextual analysis of fewer events or conditions and their interrelations.” 

It is harder to generalize findings because case studies generally rely on data of a single case. 

Nevertheless, an emphasis on detail can provide valuable insight for problem solving, evaluation, and 

strategy (Cooper & Schindler, 2003). This detailed information may be essential for a successful solution. 

Therefore the case study is applied within this research to develop a practical ex post operational 

validation approach. Besides ensuring that practicalities are taken into account, the case study serves as 

an illustration of the ex post operational validation approach.  

1.6 Research Scope 

Analogous to the research objective the focus of this Master Thesis lies on validation methods that 

compare system and simulation data. Facilitating the development of the feedback loop itself is out of 

the scope of this research. 

Due to time constraints the research is limited to a single case. Furthermore, the boundaries of the 

validation methods that will be considered should be addressed. Validation of simulation models is a 

very broad subject. In literature different validation frameworks can be distinguished (Gass, 1983; Balci, 

1998; Sargent, 2008). In this report the framework of Sargent (2008) is adopted, because it is most 

widely adopted in literature. The framework can be observed in Figure 1. 

 
Figure 1: The modeling process (Sargent, 2008) 
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The framework proposed by Sargent (2008) involves various entities and validation types. A conceptual 

model is the “mathematical/logical/verbal representation (mimic) of the system developed for the 

objectives of a particular study” (Sargent, 2008, p. 159). It is developed by modeling the system, which 

involves making assumptions. The simulation model is an implementation of the conceptual model at a 

computer system, such that experiments can be conducted (Sargent, 2008).  

Conceptual model validation is defined as “determining that the theories and assumptions underlying 

the conceptual model are correct and that the model representation of the problem entity is 

“reasonable” for the intended purpose of the model” (Sargent, 2008, p. 159). Data validity is defined as 

“ensuring that the data necessary for model building, model evaluation and testing, and conducting the 

model experiments to solve the problem are adequate and correct” (Sargent, 2008, p. 159). Verification 

is defined as “insuring that the computer program of the computerized model and its implementation 

are correct” (Slesinger et al., in Sargent, 2008, p. 157). Operational validation is defined as “determining 

that the model’s output behavior has sufficient accuracy for the model’s intended purpose over the 

domain of the model’s intended applicability” (Sargent, 2008, p. 159).  

As indicated by the research objective, the validation approach proposed in this report will focus upon 

comparison of the simulation model to the real system, which is related to operational validity. Although 

the focus is on a specific type of validity, any deficiencies found may be caused by what was developed in 

any of the steps that are involved in developing the simulation model including developing the system’s 

theories or having invalid data, since the simulation model is used in operational validation (Sargent, 

2008, p. 159).  

1.7 Report Structure 

This chapter has provided insight into the problem background, the research area, the problem and the 

research objective. Furthermore, the methodology has been addressed that will be used to solve the 

problem. The report structure is based on this methodology. 

The remainder of this report has been structured as follows. In chapter 2 relevant literature is evaluated 

and a first selection of appropriate methods for the validation approach is made (research sub question 

1). The chapter starts with identifying various high level steps that can be applied to compare the 

simulation model to the real system. Within the following subsections evaluation criteria and available 

methods will be presented per high level step. The list of methods will be narrowed down by rating the 

various methods based on the evaluation criteria. In chapter 3 the initial design of chapter 2 will be 

applied within the case study and the resulting practical findings will be presented (research sub 

question 2). This evaluation leads to the schematic design presented in chapter 4, which addresses the 

main research question. The design is illustrated in chapter 5 by the case study. Finally, chapter 6 

contains conclusions and recommendations for the application of the designed approach and further 

research.  
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2. Approach Development 

As discussed in section 1.6, in this research the framework of Sargent (2008) is adopted, in which various 

types of validation are indentified. In order to be able to acquire a high degree of confidence in a 

simulation model and its results, the validation approach will be based upon comparison of a simulation 

model to the corresponding real system. As such, the approach designed in this report will be related to 

operational validation. Within this chapter the most suitable operational validation methods found in 

literature will be selected based on evaluation criteria.  

The chapter is structured as follows. Within section 2.1 several high level steps will be identified that are 

relevant for comparing simulation models to real systems. In section 2.2, 2.3, 2.4 and 2.5 these high level 

steps will be discussed one by one in more detail. An overview will be given of available methods. With 

exception of the first step, the list of options will be narrowed down by comparison based on predefined 

evaluation criteria. Finally, in section 2.6, a discussion of the findings will be presented. 

2.1 Defining High Level Steps 

Many validation methods for simulation models have been proposed in literature (overviews can be 

found in: Balci, 1998; Law & Kelton, 2000; Kleijnen, 1995, 2005; Sargent, 2008; Trocine & Malone, 2001). 

Within this section the many operational validation methods for simulation models will be structured by 

identifying several high level steps. In Table 2 the classification of operational validity developed by 

Sargent (2008) is presented, which is based on the decision approach (subjective or objective) and 

whether or not the system is observable. Within Table 2 comparison means comparing the simulation 

model output behavior to either the system output behavior or another model output behavior using 

graphical displays or statistical tests and procedures. Explore model behavior implies to examine the 

output behavior of the simulation model using appropriate validation techniques, including a parameter 

sensitivity analysis. As stated before, this research is based upon an observable system, resulting in a 

higher degree of confidence in the validation results. 

 Observable System Non-observable System 

Subjective 

Approach 

� Comparison Using 

Graphical Displays 

� Explore Model 

Behavior 

� Explore Model 

Behavior 

� Comparison to Other 

Models 

Objective 

Approach 

� Comparison Using 

Statistical Tests and 

Procedures 

� Comparison to Other 

Models Using 

Statistical Tests 

Table 2: Operational Validity Classification (Sargent, 2008) 

Comparison by using graphical displays and comparison by using statistical tests and procedures is 

performed by black-box testing (also called functional testing) (Balci, 1998). Black-box testing only 

assesses the input-output transformation. White-box testing, used for exploring model behavior, uses 

the internal structure of the model to validate the output (Balci, 1998). 
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Although tests based upon an observable system are preferred, it should be taken into account that 

comparing real world observations and corresponding statistics from the model output data is very 

vulnerable to the inherent randomness of the observations from both the real system and the simulation 

model (Law & Kelton, 2000). Instead, if it is possible to collect data on both system input and output, it is 

recommended to compare model and system output by ‘driving’ the model with historical system input 

data, called trace-driven simulation, rather than samples from the input probability distributions. Since 

the system and the model experience exactly the same observations from the input random variables, it 

should result in a statistically more precise comparison (Balci, 1998; Law & Kelton, 2000). As a result of 

this method, assumptions about input probability functions should be validated separately. The 

requirement to validate both the output of the model and the input is also called the double validation 

problem (Balci, 1998).  

Related to the operational validity classification and the double validation problem, several high level 

steps can be identified in literature; i.e., maintaining an assumptions document, validating input 

distributions, validating the output from the overall simulation model, and conducting a sensitivity 

analysis (Balci, 1998; Gass, 1983; Kleijnen, 1995; Law & Kelton, 2000) (Table 3). These steps together 

form the high level steps within the ex post trace-driven validation approach. 

Step Description 

1. Maintaining an Assumptions Document. 

2. Input Validation 

3. Trace-Driven Output Validation 

4. Conducting a Sensitivity Analysis 

  Table 3: Relevant validation steps for simulation models in case real-world observations exist 

An assumptions document is used to make the theories and assumptions underlying the conceptual 

model explicit. A sensitivity analysis consists of changing the values of input and internal parameters of a 

model to determine the effect upon the model’s behavior or output (Sargent, 2008). The sequence is 

determined based on both the literature as the case study. The assumption document should result from 

the modeling decisions made in earlier phases (see the modeling framework (Figure 1)). It is beneficial to 

perform input validation before trace-driven output validation because a notion of the real system input 

is required to determine which methods may be applied for output validation. This notion naturally 

results from conducting the input validation. Contrary to literature, conducting a sensitivity analysis is 

decided to be the last step. In contrast to black-box testing it can generate insights into what causes the 

differences observed at the output validation (if there are any). The adaption from black-box testing to 

white-box testing and the related increase in level of detail is the reason to perform this step lastly. 

When possible causes are not of interest this step may be omitted. Note that the absence of differences 

in an output analysis does not necessarily imply that no differences will be found in the more detailed 

sensitivity analysis. It merely indicates that the combination of these possible differences does not have 

a significant impact on the assessed output.  

Schematically step 2, 3 and 4 can be drawn as in Figure 2. 
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Figure 2: Measurement of differences between a simulation model and the corresponding real system 

It should be noted that the situation of Vanderlande Industries is not exactly identical to the one 

described in literature. Contrary to the situation described in literature, the real system is typically built 

after the simulation model has been finalized. Consequently, (small) lay-out changes may occur. It is 

debatable whether this should be included in model inaccuracy. From the viewpoint of simulation 

engineers the answer is probably no; the omission of last minute lay-out changes cannot be seen as a 

deficiency of the model because, in terms of the discussed modeling framework (Figure 1), they were not 

part of the problem entity at the time. On the other hand, from the viewpoint of a customer, the answer 

is probably yes; the performance indicators presented based on the simulation are expected to be 

observed, but may not be achieved in practice. Within this research lay-out changes are included in 

model inaccuracy. If this is undesirable identified modifications to the problem entity should be similarly 

applied to the simulation model before performing the operational validation approach.  

2.2 Maintaining an Assumptions Document 

It is well-advised to maintain an assumptions document to provide information on the input values and 

the assumptions made in the simulation model, since “the model’s assumptions and input values 

determine whether the model is valid, and will remain valid when the real system and its environment 

will change” (Kleijnen, 1995, p. 158). The document will give an indication where differences with reality 

can be expected. Furthermore, it can be used to evaluate the degree of similarity between simulation 

models; a pattern may be observed between certain assumptions and their impact on model accuracy. 

According to Law & Kelton (2000) relevant information can be: an overview section that discusses overall 

project goals, detailed descriptions of each subsystem and how the subsystems interact, what simplifying 

assumptions were made and why, as well as summaries of data such as the sample mean, and sources of 

important or controversial information. 

2.3 Input Validation 

Random input variables of the simulation model must be examined to evaluate how well they represent 

the true underlying distribution of the real system input data. Random input distributions will be 

substituted by real system input data in the output validation step. Nevertheless, these may be an 

important cause of perceived invalidity; for instance, observing different performance indicators in 

practice may be due to differences in input variables. No input variable will be exactly correct; the aim is 
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to validate that an applied distribution is accurate enough for the intended purpose of the model (Law & 

Kelton, 2000).  

The first subsection identifies evaluation criteria that serve as a basis for the comparison of related 

techniques, as well as practical requirements to consider. Section 2.3.2 describes how to assess the 

general assumptions of the statistical tests that will be discussed. Section 2.3.3 depicts techniques to test 

whether various system samples may be combined or not, in order to make implications of the 

comparison as general as possible. Section 2.3.4 and section 2.3.5 specify two different required options 

for comparing system and simulation input (see the practical requirements for more information). In 

section 2.3.6 graphical techniques are presented that are applicable in both situations. The last section, 

section 2.3.7, presents an overview and evaluates the large amount of possible methods.  

2.3.1 Evaluation Criteria & Practical Requirements 

In order to be able to determine which input validation methods should be applied evaluation criteria 

are required. The criteria identified for input validation methods are: generality, objectivity, the amount 

of data required to obtain meaningful results, and ease of use. Furthermore, in case of hypothesis tests, 

statistical power should be addressed (the probability that the test will reject the null hypothesis when 

the alternative hypothesis is true (Montgomery & Runger, 2002)). Generality is related to the number of 

assumptions made and its implications. Objectivity concerns whether formal methods or subjective 

interpretation is being used to draw conclusions. These criteria are based upon observed differences 

between methods, as well as characteristics that were marked in literature as important. An overview of 

the criteria can be observed in Table 4. 

 Criteria 

1. Generality 
2. Power 

3. Objectivity 

4. Data 

5. Effort 

  Table 4: An overview of the evaluation criteria for input validation techniques 

In addition to the evaluation criteria there are some practical requirements to consider. The most trivial 

requirement is that data should be available to some extent; without it the methods discussed in this 

chapter are not applicable. This requirement holds for every input validation attempt. Note that data 

validation is not considered in this approach. Within this setting it is assumed that data is correctly 

measured and validated prior to this approach. In practice some data evaluation may be required, such 

as the assessment of outliers. 

Furthermore, some practical requirements specific to Vanderlande should be considered. As described in 

the chapter introduction, probability distributions are generally being used to generate the random input 

variables of a simulation. For relatively small projects this is also true for Vanderlande Industries. 

However, for large projects the arrival process is often developed by a client itself, using his expertise to 

generate an input file containing exact customer arrival times, called a load file. Therefore, in order to 
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validate the random input variables, comparisons of a probability distribution and a system sample, as 

well as comparison of the samples of a load file and of the system should be taken into account. 

Lastly, it should be taken into consideration that a model is generally developed for simulating some 

predefined behavior. For instance, for baggage handling systems this behavior can deviate significantly 

from the average state of the real system; simulation studies are typically performed for evaluating 

design performance with the highest amount of arrivals, i.e. peak loads. Therefore only system data 

should be used for comparison that reflects the intended purpose of the simulation model.  

2.3.2 Data Evaluation: Data Stationarity & Sample Independence 

A common assumption in many time series techniques is that sample data is stationary. A stationary 

process has the property that the mean, variance and autocorrelation structure do not change over time 

(NIST/SEMATECH, 2010). Said otherwise, the techniques assume that the observations are random 

drawings, from a fixed distribution with a common location and a common scale. A location parameter 

shifts a probability density function left or right on the horizontal axis (change in mean). An increase in 

scale parameter stretches a probability density function on the horizontal axis (change in variance). As a 

reference, the standard normal distribution has a location parameter equal to zero and a scale 

parameter equal to one (NIST/SEMATECH, 2010).  It should be noted that this definition of stationarity is 

not sufficient for the statistical techniques that will be discussed in this chapter; not only should the 

autocorrelation structure not change over time, it should also be insignificant (observations are 

independent). The techniques may not be valid if these assumptions are not satisfied. Consequently only 

the graphical techniques of section 2.3.6 would be applicable (Law & Kelton, 2000). 

Various techniques based on linear regression have been proposed in literature for assessing stationarity 

(appendix A.1.1). Most of these methods require the observations (or residuals) to be normally 

distributed. This is typically not to be expected for an arrival process. The non-parametric alternatives 

based on linear regression are difficult to apply, because they are not commonly supported by statistical 

software packages. Alternatively, stationarity of mean and variance can be evaluated with a run 

sequence plot. 

Additional techniques should be used to assess data independence. Due to the presence of many ties in 

the data, the Von Neumann’s ratio test and run tests cannot be applied. Instead the Box-Ljung test or the 

Pankrantz criterion may be performed. Related to graphical techniques for the evaluation of 

autocorrelation, the autocorrelation plot is preferred over the lag plot because it is able to assess various 

lags in a single graph. The Pankrantz criterion is based on the autocorrelation plot. A more in-depth 

discussion of relevant techniques can be found in appendix A.1.1. 

2.3.3 Sample Selection 

In many cases data will be available of more than one period. Comparison of simulation data with system 

data of as many periods as possible is preferred, because this will increase the generality of the findings. 

Two options exist for incorporating multiple samples in the comparison: simulation input can be 

compared with each system sample separately, or simulation input can be compared to a group of 
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similar system samples. In principle this last option is preferred. A larger sample size will decrease both 

the probability of a type I error (risk of rejecting a true hypothesis) and the probability of a type II error 

(risk of accepting a false null hypothesis) (Montgomery & Runger, 2002). Therefore, methods are 

required in order to be able to determine whether or not different samples may be combined. 

Techniques based on ANOVA (analysis of variance) are only limited applicable due to normality 

assumptions. Of the nonparametric test, the Friedman test is preferred if data samples represent blocks, 

such as a day of the week.  A disadvantage of the Friedman test is that the method requires different 

samples to be of exactly the same size (Statpoint Technologies, 2009). When this is not the case the 

Kruskal-Wallis test is the most appropriate. Mood’s median test lacks power in comparison to the other 

two tests, but it is more general. Related to comparing variances of samples, Bartlett’s test should be 

applied if observations are normally distributed. Levene’s test based on the median is recommended as 

the choice that provides good robustness against many types of non-normal data while retaining good 

power. The variant based on the trimmed mean performs best when the underlying data follows a 

heavy-tailed distribution. Using the mean provided the best power for symmetric, moderate-tailed, 

distributions. For a profound assessment of these methods one is referred to appendix A.1.2. 

2.3.4 Goodness-of-Fit Tests 

“A goodness-of-fit test is a statistical hypothesis test that is used to assess formally whether the 

observations X1, X2, …, Xn are an independent sample from a particular distribution with distribution 

function F�” (Law & Kelton, 2000, p. 356). Analogous, the null-hypothesis can be stated as: H0: The Xi’s are 

independent and identically distributed random variables with distribution function F�. It should be noted 

that a failure to reject H0 does not necessarily imply that H0 should be accepted (Law & Kelton, 2000). 

Furthermore, for small to moderate sample sizes, these tests are not very sensitive to subtle 

disagreements between the data and the fitted distribution. However, if the sample size is very large, 

these methods will almost always reject the hypothesis that the data fits the defined distribution since 

this is virtually never exactly true (Law & Kelton, 2000). This effect is not desired since it is usually 

sufficient to have a distribution that is nearly correct (Law & Kelton, 2000). 

The chi-square test, Kolmogorov-Smirnov test, and the Anderson-Darling test are goodness-of-fit tests 

that can be used to assess whether a system sample stems from the proposed distribution. The chi-

square test is the most general test. It also has the least power. This is something that can be observed in 

general; tests making less assumptions, e.g. nonparametric tests, can be more widely applied, but relate 

to less statistical power. The Anderson-Darling test is applicable similar to the Kolmogorov-Smirnov test, 

though it has slightly more power. Furthermore, the Anderson-Darling test focuses mainly on differences 

in distribution tails, while the Kolmogorov-Smirnov test is more sensitive to differences near the center 

of the distribution (NIST/SEMATECH, 2010). The chi-square test requires the most effort; a suitable 

interval width has to be determined. Since this is generally a subjective step, the test is also less 

objective. Additional information about this topic can be observed in appendix A.1.3. 
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2.3.5 Comparing Two Samples 

When a load file (an estimated sample defined by the client) is used in a simulation model instead of an 

input distribution, input validation will be based on comparing two samples.  

Several two independent samples tests, e.g. Student’s t-test, F-test, Wald-Wolfowitz runs test, two-

sample Kolmogorov-Smirnov test, and Mann-Whitney U test, can be used to evaluate the degree of 

similarity between two samples. Both the t-test and the F-test assume normality of samples. This 

assumption may not hold; arrival rates and service times are typically characterized as an exponential 

process. The t-test turned out to be very robust against this assumption, while the F-test is not. The 

Wald-Wolfowitz test and the two-sample chi square test are the most general statistics, though at the 

cost of statistical power. Therefore the two-sample Kolmogorov-Smirnov and Mann-Whitney U test may 

be preferred alternatives. The difference between these tests lies in their focus. While the two-sample 

Kolmogorov-Smirnov test focuses on the largest difference, the Mann-Whitney U test focuses on 

differences in median.  

The F-test distinguishes itself from the other tests by focusing on equality of variances instead of on the 

mean/median. Alternatives to the F-test that do not rely on the normality assumption have already been 

discussed in section 2.3.3. These tests are suitable for two or more samples and therefore are also 

applicable in this situation. A more elaborate debate is presented in appendix A.1.4. 

2.3.6 Graphical Techniques 

Several graphical procedures can be used for comparing fitted distributions with the true underlying 

distributions, as well as for the comparison of two data samples. Graphical displays of sample data are 

very powerful and useful ways to visually examine the data and search for existing differences 

(Montgomery & Runger, 2002; Balci, 1998).  

For continuous data, a density/histogram overplot can be made by plotting the probability density 

function of the applied distribution over the histogram of the data. Alternatively, a frequency 

comparison can be used, which compares the intervals of two histograms. These can be based on one 

data sample and a distribution, as well as on two data samples. A frequency comparison can also be used 

in case of a discrete distribution (Law & Kelton, 2000). A disadvantage is that histograms are generally 

not really reliable indicators of the distribution form, unless the sample size is sufficiently large 

(Montgomery & Runger, 2002). 

Instead of basing the graphical comparison on probability density functions, it is also possible to use the 

cumulative distribution functions. Such a technique is the distribution function difference plot (Law & 

Kelton, 2000).  

Another graphical technique based on the cumulative distribution function is the probability plot. 

Probability plotting is more reliable than the histogram for small to moderate sample sizes (Montgomery 

& Runger, 2002). Several kinds of probability plots exist. The Q-Q plot (where Q stands for quantile) 

compares the probability distribution by plotting their quantiles against each other (Gibbons & 
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Chakraborti, 2003). Q-Q plots amplify differences that exist between the tails of the compared 

distribution functions (Law & Kelton, 2000). A different probability plot, the P-P plot (where P stands for 

probability or percent), on the other hand, amplifies the differences between the middle parts of the 

distribution functions (Law & Kelton, 2000).  

2.3.7 Overview 

In section 2.3 it has been shown that validation of random input variables should be possible by 

comparison of two samples as well as by comparing a sample to a distribution. For both comparisons 

graphical techniques and hypothesis tests can be performed. Graphical techniques can be used to 

indicate differences without making assumptions. Hypothesis tests are more formal methods for 

addressing whether random input variables are consistent with system input data. However, these 

require observations to be stationary and independent of each other.  Several techniques have been 

proposed in order to assess these requirements.  

The results are summarized in Table 5. Responses are rated according to a five-level Likert scale, such 

that a high rating is always associated with a positive result. Note that ratings should be interpreted as 

an ordinal scale; numbers indicate the relative position of items, but not the magnitude of difference 

(Cooper & Schindler, 2003). Furthermore, power is difficult to interpret in this setting: a test with less 

power might be preferred because some inaccuracy is acceptable (a difference always exists). The 

techniques that appeared to be most appropriate, based on the discussions in section 2.3, are 

underlined. 

Generality:   1  = The technique is very limited applicable 

   2 = Very strong assumptions are made 

   3 = Considerable assumptions, though robust 

   4 = Minor assumptions, e.g. only data independence required 

   5 = Virtually no limiting assumptions used 

Power:   1 to 5  with 1 very limited statistical power and 5 very high statistical power 

Objectivity   1  = Completely subjective, no guidelines included 

   2 = Subjective, guidelines included 

   3 = Formal test, though involves subjective steps 

   4 = Objective, only sampling bias 

   5 = Completely objective 

Data:   1 to 5  with 1 very large data set required and 5 very limited data required 

Effort:  1 to 5  with 1 very high amount of effort required and 5 very little effort 

required 
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Category Method Focus Generality Power Objectivity Data Effort 

Stationarity and 

data independence 

� Linear regression based 

methods 
Residuals 2 5 4 2 4 

� Non-parametric regression 

based methods 
Residuals 4 4 4 3 2 

� Von Neumann’s ratio test Ranks 3 4 4 3 4 

� Run test Runs 3 2 4 3 4 

� Pankrantz criterion Lags 4 4 3 3 4 

� Box-Ljung test Lags 4 4 4 3 4 

Comparison of  � ANOVA Mean 2 5 4 2 4 

simulation samples � Friedman Test Median 3 4 4 3 4 

 � Kruskal-Wallis Test Median 4 3 4 3 4 

 � Mood’s median Test Median 5 2 4 3 4 

 � Bartlett’s test Variance 2 5 4 2 4 

 � Levene’s test Variance 4 4 4 3 4 

Comparison of 

samples to 

distributions 

� Chi-square Test Intervals 5 3 3 3 3 

� Kolmogorov-Smirnov Test Largest Distance 4 4 4 3 4 

� Anderson-Darling Test Distribution Tails 4 5 4 3 4 

Comparison of a 

simulation input 

sample to a system 

input sample  

� T-Test 
Mean 

Differences 
3 5 4 2 4 

� F-Test 
Variance 

Differences 
2 5 4 2 4 

� Wald-Wolfowitz runs test Runs 5 2 4 3 4 

� Two-Sample Chi-square test Intervals 5 3 3 3 3 

� Two-Sample Kolmogorov-

Smirnov Test 
Largest Distance 4 4 4 3 4 

� Mann-Whitney U test Medians 4 4 4 3 4 

General 

Comparisons 
� Graphical Techniques -  5 - 2 4 4 

Table 5: Comparison of input validation techniques 

It can be concluded that for both the comparison of two samples and comparing a sample to a 

distribution, several alternatives can be used. Alternative methods typically focus on other differences 

(e.g. medians, tails, and largest differences). The application of several methods can be complementary 

and additional insights may be reached with relatively little extra effort.  

 2.4 Trace-Driven Output Validation 

Statistical procedures can be used to compare system output data to simulation output data, which is 

generated based on historical system input data (e.g. actual observed interarrival times and service 

times). Balci (1998) discusses many statistical techniques for comparing real system output with 

simulation output based on the same input, such as t-test, Mann-Whitney-Wilcoxon test, two-sample 

chi-square test, two-sample Kolmogorov-Smirnov test, and Hotelling’s T
2
 test (the multivariate 

counterpart of the t-test (NIST/SEMATECH, 2010)). Though with respect to these methods the “same” 

implies that the model input data are coming independently from the same populations or stochastic 

process of the system input data, in which case the model and system output data can be expected to be 

independent and identically distributed, which is required for the various tests. However, since the 

comparison intended in this research is trace-driven, the “same” indicates that the model input data are 

exactly the same as the system input data (Balci, 1998). Hence the model and system output data are 

expected to be dependent and identical, and thus the assumptions of the tests cannot be satisfied (or 

only with great difficulty) (Sargent, 1996). Secondly, many statistical tests require the data to have a 
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normal distribution, which is usually not the case for data collected from a system or simulation model 

(Sargent, 1996). In addition, almost all real-world systems and simulations are nonstationary (the 

distributions of the successive observations change over time) and autocorrelated (the observations in 

the process are correlated with each other) (Law & Kelton, 2000; Sargent, 1996). Furthermore, even 

when all assumptions do apply, in many instances the tests cannot be used because there is not enough 

data available from the system in order to obtain meaningful results from the statistical tests (Sargent, 

1996). 

Law & Kelton (2000), Kleijnen (1995) and Sargent (2008) give overviews of applicable methods, which 

will be discussed in section 2.4.2, section 2.4.3, section 2.4.4 and section 2.4.5. First evaluation criteria 

are determined that serve as a basis for the comparison of related techniques, as well as practical 

requirements to consider. The last section, section 2.4.6, summarizes and compares the various possible 

methods. 

2.4.1 Evaluation Criteria & Practical Requirements 

For the evaluation of trace-driven output validation techniques similar criteria can be identified as for 

input validation, namely generality, objectivity, the amount of data required to obtain meaningful 

results, ease of use, and, in case of hypothesis tests, statistical power. In addition, the subject of 

comparison can be taken into account. Besides the usual mean and variance, correlation of output is 

interesting because identical input is being used. An overview of the criteria can be observed in Table 6. 

 Criteria 

1. Subject of Comparison 

  1.1      Mean 

  1.2      Variance 

  1.3      Correlation 

2. Generality 
3. Power 

4. Objectivity 

5. Data 

6. Effort 

  Table 6: An overview of the evaluation criteria for trace-driven output validation techniques 

The same trivial practical requirement is relevant in this setting as for input validation; system output 

data should be available to some extent. Again it is assumed that data is correctly measured and 

validated prior to the conceptual validation. Nevertheless, some data evaluation is required, specifically 

related to outliers that may be caused by downtime for instance.   

2.4.2 The Correlated Inspection Approach 

The first method, called the correlated inspection approach, prescribes to “compute one or more 

statistics from the real-world observations and corresponding statistics from the model output data, and 

then to compare the two sets of statistics without the use of a formal statistical procedure” (Law & 

Kelton, 2000, p. 283). Examples are the sample mean, the sample variance, the sample correlation 

function and graphical plots (Law & Kelton, 2000). Sargent (1996) and Kleijnen (1995) discuss several 
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graphical methods, namely histograms, box plots and behavior graphs, which can be used for operational 

validity. These do not require the data to be independent, have no distributional requirements on the 

data, and can be used with a limited number of observations (Sargent, 1996). 

Though the correlated inspection approach does not use a formal statistical procedure to compare real-

world and simulation statistics, it may provide valuable insights into the adequacy of a simulation model 

and it will often be the only feasible statistical approach due to limitations on available data (Law & 

Kelton, 2000). Due to the lack of a formal, objective procedure to compare the two sets of data, 

determining whether the model has sufficient accuracy for its intended purpose should be done 

subjectively. This comparison can be made by the model development team and/or by experts using face 

validity or Turing tests (Kleijnen, 1995; Sargent, 1996). A Turing test is performed by asking people 

knowledgeable about the system to examine and identify one or more sets of system data as well as one 

or more sets of model data without knowing which sets are which (Law & Kelton, 2000). Related to this, 

a model is said to have face validity when simulation results are consistent with perceived system 

behavior (Law & Kelton, 2000). Additional insights about this method can be obtained in appendix A.2.1. 

2.4.3 Confidence-Interval Approach 

When it is possible to collect a potentially large amount of data from both the model and the system it is 

possible to create confidence-intervals based on output differences. This is a more reliable approach for 

comparing a model with the corresponding real system (Balci, 1998; Law & Kelton, 2000). The 

combination of confidence intervals of various output differences is also called the model’s range of 

accuracy (Balci, 1998). 

Because the model and system output are dependent (the same input values have been used), the 

paired-t approach should be used for creating confidence intervals for the differences in responses. This 

method pairs dependent observations, and therefore requires the amount of observations of system 

output and model output to be equal. Furthermore, the paired-t method assumes the response 

differences to be independent and identical (IID) random variables, and normally distributed (Law & 

Kelton, 2000). It is important to note that the responses should be random variables over entire 

independent replications (e.g. a single day in a terminating system). As a result the data is IID as required 

(Law, 2007; Kleijnen, 1995). The method is quite robust for deviations of the normality assumption; the 

central limit theorem applies (also when autocorrelation exists) (Kleijnen, 1995; Law & Kelton, 2000), 

which means that the coverage probability will be near 1 – α for a large number of observations (with α 

being the probability of a type I error). Therefore the test may still be applied in case of non-normality 

(Kleijnen, 1995). In contrast to the classical two-sample-t approach, Var(model) = Var(system) is no 

prerequisite (Law & Kelton, 2000). For more details about this approach one is referred to appendix 

A.2.2. 

2.4.4 Regression Based Approach 

In Kleijnen (1999) and Kleijnen et al. (1998) two validation approaches for trace-driven simulations are 

discussed, which are based on a standard regression analysis. As for the confidence interval approach, 
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both methods assume the outputs of the real system and the simulated systems to be identically and 

independently, as well as normally distributed.  

It is important to note that these regression based methods are hypothesis tests. In Law (2008) it is 

questioned whether hypothesis tests, concerning possible differences between real system output and 

simulation output, are the appropriate statistical approach, since a simulation model is a simplification, 

and consequently merely an approximation, of the real system. Therefore a null hypothesis that the 

system and model output stem from the same distribution, is expected to be false. As a consequence it is 

more useful to ask whether or not the difference between the model and system output are significant 

enough to affect any conclusions derived from the model (Kleijnen, 2005; Law, 2008). A hypothesis test 

does not give additional insights into the magnitude of an observed difference. The various regression 

based methods are presented in more detail in appendix A.2.3. 

2.4.5 Time-Series Approaches 

A downside of the three methods described so far is that they provide little information about the 

autocorrelation structures of the two output processes (Law & Kelton, 2000). When there is a strong 

suspicion that autocorrelation is of major importance, time series might be more useful. “A time series is 

a finite realization of a stochastic process” (Law & Kelton, 2000, p. 289). Time-series approaches only 

require one set of each type of output and can be used to formally compare the autocorrelation 

functions of two samples (Kleijnen, 1995; Law & Kelton, 2000). 

Difficulties with time series approaches are that they require the output processes to be covariance-

stationary (generally not true in practice), a high level of mathematical sophistication, and long time 

series (Kleijnen, 1995; Law & Kelton, 2000; Van Horn, 1971). Furthermore, it may be difficult to relate the 

generated confidence interval to the validity of the simulation model (Law & Kelton, 2000; Van Horn, 

1971).  Lastly, some time series approaches are formulated as hypothesis tests, of which the usability has 

been criticized in the previous section. Additional information about time-series approach can be 

acquired in appendix A.2.4. 

2.4.6 Overview 

When comparing trace-driven simulation output with system output, there are three important 

parameters to consider, i.e., sample mean, variability, and correlation (Kleijnen et al., 1998). These issues 

can be addressed with the correlated inspection approach, the confidence-interval approach (only for 

differences in mean), regression based approach or time-series approach. 

The results are summarized in Table 7. Responses are rated according to a five-level Likert scale, of which 

the ratings are similar to the ratings in section 2.3.7. A high rating is always associated with a positive 

result and ratings should be interpreted as an ordinal scale; numbers indicate the relative position of 

items, but not the magnitude of difference (Cooper & Schindler, 2003). As in the previous overview 

section, the technique that appeared to be the most suitable, based on the previous discussions, are 

underlined. 
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Method Mean Variance Correlation Generality Power Objectivity Data Effort 

Correlated Inspection Approach v v v 5 - 2 4 5 

Confidence Interval Approach v v -  3 4 4 2 4 

Regression Based Approach v v Between Var. 3 3 4 2 3 

Regression Based on Bootstrapping v v Between Var. 4 3 4 3 2 

Time-Series Approach v v v 3 3 2 1 1 

Table 7: Comparison of trace-driven output validation techniques 

In conclusion, the correlated inspection approach is practically always applicable, from which important 

insights can be gained, while requiring relatively little effort. In case sufficient data is available the 

approach can be extended with confidence intervals. Regression based methods only provide limited 

information in case a difference is found. The application of time series is only recommended when 

comparison of autocorrelation is of specific interest. 

2.5 Conducting a Sensitivity Analysis 

A sensitivity analysis is a technique for determining which model input parameters have a significant 

impact on the desired measures of performance, and consequently need to be modeled carefully (Law & 

Kelton, 2000). It can enhance model validity by assuring that those values are specified with sufficient 

accuracy (Balci, 1998). Even when there is abundant data on the input and output of the simulated 

system, this information is very useful (Kleijnen, 1995). In contrast to trace-driven output validation, 

which only assesses the input-output transformation, a sensitivity analysis can reveal important 

information about possible causes of differences. A sensitivity analysis is performed by systematically 

changing the values of model input variables and parameters over some range of interest and observing 

the effect upon model behavior (Balci, 1998). Unexpected effects may reveal invalidity. Examples of 

model input variables that could be investigated are: the value of a parameter, the choice of a 

distribution, the entity moving through the simulation system (e.g. a single item or a batch), and the 

level of detail for a subsystem (Law & Kelton, 2000; Law, 2008).  

This section is structured as follows. The first subsection identifies evaluation criteria that serve as a 

basis for the comparison of related techniques, as well as practical requirements to consider. In section 

2.5.2 the main method will be discussed. Available techniques related to the proposed main method will 

be presented in section 2.5.3, 2.5.4 and 2.5.5. Validation of these techniques will be addressed 

thereafter. In section 2.5.7 methods will be introduced that can reduce the variance experienced during 

a sensitivity analysis. The last section, section 2.5.8, presents an overview and comparison of the 

methods discussed in this section. 

2.5.1 Evaluation Criteria & Practical Requirements 

When selecting a procedure for conducting a sensitivity analysis there are four main criteria to consider, 

namely efficiency, effectiveness, robustness, and ease of use (Trocine & Malone, 2001). Efficiency relates 

to the amount of runs required for screening the factors. Effectiveness is whether the metric yields 

accurate underlying coefficients of the effects. Note that this is only measurable in simulated cases with 

known coefficients (i.e. the true factor effect values are known). The degree of confounding is taken into 

account as part of effectiveness; the confounded effects cannot be estimated accurately. Robustness 
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involves the conditions which may be required for a method to be applicable (Trocine & Malone, 2001). 

The last criterion, ease of use, is related to the time and effort required for performing an experimental 

design. An overview of the criteria can be observed in Table 8. 

 Criteria 

1. Efficiency 
2. Effectiveness 

3. Robustness 

4. Ease of use 

  Table 8: An overview of the evaluation criteria for sensitivity analysis techniques 

In theory ease of use is not a necessity, but rather a positive incidental circumstance (Trocine & Malone, 

2001). For practical considerations, however, it is of high importance in order to insure a proper 

adoption of the proposed approach. In principle every design strategy can be performed by manually 

conducting all runs. Though this requires a very high amount of effort and therefore is not 

recommended. Thus, options for conducting simulation runs are limited to the capabilities of the 

simulation package used; in case of Vanderlande Industries AutoMod. 

2.5.2 Design of Experiments 

The classical approach is to check for output changes when one factor is varied at the time, while others 

are set to some arbitrary value. This approach is called the one-factor-at-a-time approach (Law, 2008). 

However, in case two or more factors exist, applying this method may not be correct because it neglects 

interactions among factors (Law & Kelton, 2000; Law, 2008). Furthermore, other methods are more 

efficient and accurate (lower variance) than the one-factor-at-a-time approach (Kleijnen, 1992). These 

methods vary multiple factors at a time, and involve making simulation runs based on particular 

configurations, so that the factor effects can be estimated with the least amount of simulation. Designing 

such a configuration is called Design Of Experiments (DOE) (Kleijnen et al., 2004a). In DOE terminology, 

model input parameters are called factors, and output measures are called responses (Law & Kelton, 

1991). The simulation model is run for the set of factor combinations and the resulting input-output data 

are analyzed to estimate factor effects (Kleijnen, 1997). Appendix A.3.1 addresses type of models that 

can be used for this estimation. It is shown that a linear model can be used to estimate the factor effects 

within a sensitivity analysis. Consequently, methods can be may be applied that are based upon linear 

regression models. In the subsequent sections these techniques will be discussed. 

2.5.3 A Full Factorial Design 

For experiments involving the study of the effects of two or more factors, factorial designs are most 

efficient (Montgomery, 1991). A factorial design is the investigation of all possible combinations of the 

levels of the factors in each complete trial or replication of the experiment (Box et al., 2005; 

Montgomery, 1991). The factorial design associated with a first-order polynomial is an experiment with 

two levels for all k factors. It is possible to evaluate the effect on several responses in one experimental 

run. In contrast to the one-factor-at-a-time approach, the factorial design is capable of taking 

interactions among factors into account (Law & Kelton, 2000). 
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A downside of the full factorial design is that the amount of runs required tends to become large, when 

testing an increasing amount of factors. A relatively large part of these runs is required for determining 

the many degrees of freedom that are associated with higher interactions, which are often negligible 

(Montgomery, 1991). For example a complete 2
6
 design requires 64 runs, of which 6 of the 63 degrees of 

freedom are related to main effects, 15 degrees of freedom correspond to two-factor interactions, and 

the remaining 42 degrees of freedom are associated with three-factor and higher interactions 

(Montgomery, 1991).  For a more in-depth discussion of the full factorial design one is referred to 

appendix A.3.2. 

2.5.4 Fractional Factorial Design 

In most experimental designs the sparsity of effects principle applies; the system is dominated by the 

main effects and low-order interactions. The three-factor and higher order interactions are usually 

negligible (Montgomery & Runger, 2002). In this case information about the main effects and low-order 

interactions may be obtained by running only a fraction of the complete factorial experiment, which is 

called a fractional factorial design (Montgomery, 1991). This is realized by using the same levels (both 

low/high at the same time) for certain factors (preferably higher interactions). As a result one cannot 

differentiate between these effects. This property is called aliasing (Montgomery, 1991), or confounding 

(Law & Kelton, 2000). 

Several important fractional factorial designs have been classified (Box et al., 2005; Law & Kelton, 2000; 

Montgomery, 1991). Resolution III designs (denoted as 2������
), which are defined as “designs in which no 

main effects are aliased with any other main effect, but main effects are aliased with two-factor 

interactions and two-factor interactions may be aliased with each other” (Montgomery, 1991, p. 339). 

Resolution IV designs (denoted as2�����
) are “designs in which no main effect is aliased with any other 

main effect or with any two-factor interaction, but two-factor interactions are aliased with other” 

(Montgomery, 1991, p. 339). Resolution V designs (denoted as 2����
) can be defined as “designs in which 

no main effect or two-factor interaction is aliased with any other main effect or two-factor interaction, 

but two-factor interactions are aliased with three-factor interactions” (Montgomery, 1991, p. 339). “In 

simulation there will often be at least two-way interactions of interest“ (Law & Kelton, 2000, p. 639). 

Therefore, resolution IV designs may be inadequate and it is strongly recommended to use resolution V 

designs in simulation (Law & Kelton, 2000). Additional insights about fractional factorial designs can be 

acquired in appendix A.3.3. 

2.5.5 Factor-Screening Strategies 

Screening is defined as “the search for the most important factors among a large set of factors in an 

experiment” (Kleijnen et al., 2006, p. 287). “The purpose of factor screening is to eliminate negligible 

factors in favor of concentrating experimental efforts on those factors that are important” (Trocine & 

Malone, 2001, p. 169). This is possible because, equivalent to the Pareto rule, only a few factors are 

responsible for most of the effect in a response (Kleijnen et al., 2006; Box et al., 2005; Trocine & Malone, 

2001). Many different screening strategies can be identified. Examples are Plackett-Burman Designs, 
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supersaturated designs, and group screening designs. These are discussed in detail in appendix A.3.4, 

A.3.5 and A.3.6. 

2.5.6 Validation of the Sensitivity Analysis 

Determining the validity of the sensitivity analysis can be done by running new scenarios and comparing 

simulation output with sensitivity analysis prediction by calculating the correlation (Vonk Noordegraaf, 

2002). An alternative procedure, which requires no new simulation runs, is cross-validation (Kleijnen, 

1995). Cross-validation eliminates scenarios one by one and re-estimates the regression model. 

Subsequently, the resulting factor effects are used to predict the simulation realization of the deleted 

scenario. These predictions can be compared with the corresponding simulation responses using the 

Pearson linear correlation coefficient or comparing the responses through a scatter plot (Van 

Groenendaal & Kleijnen, 1997). For the last option it can be decided whether the factor estimates are 

acceptable by eyeballing the plot (the points will lie upon an approximately linear line with an intercept 

of 0 and a slope of 1) (Kleijnen, 2005). 

2.5.7 Variance Reduction Techniques  

The logistic systems simulated by Vanderlande Industries are so-called Discrete-Event Dynamic Systems; 

i.e. the simulation is inherently stochastic (Kleijnen, 2008). Law & Kelton (2000), as well as Farrington & 

Swain (1993), state that random inputs will produce random outputs. As a result more replications of the 

experiment are required in order to acquire acceptable confidence interval widths. Consequently the 

amount of computer time needed for the experiment will increase drastically. Variance reduction 

techniques can be used to keep the number of replications required to a minimum, while preserving 

statistical adequacy (Kleijnen, 2008). Variance reduction techniques aim to reduce the variance of an 

output random variable without disturbing its expectation, and consequently obtain greater precision 

(e.g. smaller confidence intervals) (Law & Kelton, 2000). The most useful technique is common random 

numbers (Kleijnen, 2008; Law & Kelton, 2000). A more extensive discussion of common random numbers 

can be found in appendix A.3.7. 

2.5.8 Overview 

In section 2.5 various techniques for performing a sensitivity analysis based on a linear model have been 

identified. The results are summarized in Table 9. Responses are rated according to a five-level Likert 

scale, such that a high rating is always associated with a positive result. Effectiveness is rated by taking 

practical significance into account. Note that ratings should be interpreted as an ordinal scale; numbers 

indicate the relative position of items, but not the magnitude of difference (Cooper & Schindler, 2003). 

As for the other overview sections, the technique that appears to be most appropriate is underlined. 
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Method Efficiency Effectiveness Robustness Ease of Use 

Full Factorial Design 1 5 5 5 

Fractional Factorial Design 2 4 4 4 

Plackett-Burman Designs 3 3 2 1 

Supersaturated Designs 4 1 1 1 

Two-Stage Group Screening 4 3 3 3 

Sequential Bifurcation 5 2 3 2 

Iterated Fractional Factorial Design 2 2 3 1 

Controlled Screening 3 4 3 1 

Table 9: Comparison of sensitivity analysis techniques 

In conclusion, the appropriate approach depends on how the different criteria are weighted. In order to 

achieve practically meaningful results, without requiring too many runs, the two-stage group screening 

method is preferred. Possibly this technique may be extended with CRN, dependent of the additional 

efforts required. 

2.6 Discussion 

In this chapter operational validation methods found in literature have been evaluated based on 

predefined criteria. It has been shown that four high level steps are important for comparing a 

simulation model to the corresponding real system, namely maintaining an assumptions document, 

validating input distributions, validating trace-driven output, and conducting a sensitivity analysis. 

However, some considerations remain concerning the selection of specific methods related to the last 

three steps.  

Selections within this chapter are partly based on assumptions about simulation models, which literature 

claims to be generally true. For example, it is assumed that interarrival times are typically best 

characterized as an exponential process and that simulation output is nonstationary and autocorrelated. 

It should be verified that these assumptions hold for simulation models of Vanderlande Industries, 

before the selections in this chapter can be used within the operational validation approach. 

Evaluating which assumptions hold for system and simulation data is important because, in general, tests 

making less assumptions, e.g. nonparametric tests, can be more widely applied, but relate to less 

statistical power. However, although higher statistical power is normally to be preferred, within this 

setting it may not be; a test with less power might actually be favored because some inaccuracy between 

a simulation model and the real system is acceptable (a difference always exists). 

The applicability of the methods and the legitimacy of selections made will be evaluated within the 

subsequent chapter.  
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3. Practical Findings 

For the development of the operational validation approach for Vanderlande Industries, the methods 

which are best suited for application within the context of Vanderlande Industries should be selected to 

form a practical operational validation approach. In this chapter the design proposed in the previous 

chapter will be evaluated by means of the baggage handling system selected in the case study. 

Practicalities will be discussed that became apparent when performing the methods proposed in the 

previous chapter, as part of the case study. Practicalities can imply general positive or negative findings 

related to certain proposed methods and their assumptions, or additional minor steps that turned out to 

be required, but not yet have been discussed.  

No extraordinary findings have been observed while creating an assumptions document. Therefore, this 

step will not be incorporated in this chapter. Consequently, section 3.1 will address input validation. In 

section 3.2 trace-driven output validation will be evaluated and in section 3.3 practicalities related to the 

sensitivity analysis will be discussed. The general findings will be discussed in section 3.4. 

3.1 Input Validation 

In order to validate input distributions for the arrivals of baggage items, proper samples should be 

selected. Because simulation models are generally developed for evaluating system performance under 

peak loads, input distributions are defined accordingly. Consequently, for validating input distributions 

data should be used that represents peak loads. It should be noted that these peak loads are related to 

the total system arrival process. When evaluating peak loads per input line, a total system capacity may 

be required that greatly exceeds real total peak loads. Once the system peak loads have been 

determined, they should be separated into samples of individual input lane arrival processes.  

For the purpose of getting an idea of the arrival process, the total system arrivals should be visualized 

first. Once the total system peak loads are identified, the related input distribution samples can be 

acquired. In order to be able to evaluate the trend of the arrival process properly, a moving average will 

be used of the arrival rate. A moving average, also called a rolling average, rolling mean, or running 

average, is a technique to smooth out short-term fluctuations and highlight longer-term trends or cycles 

(NIST/SEMATECH, 2010). Although the variable evaluated is the interarrival time of baggage items, it is 

not used as the dependent variable in the moving average plot. Instead the variable is converted into the 

capacity level that it requires. This way the moving average plot can be easily related to system 

capacities, in order to assess whether the highest observed capacity requirements can be considered a 

“real” peak load. For similar reasons the x-axis indicates the time of the last arrival of the moving average 

subset. Timing is more meaningful than the number of the last arrival. Furthermore, this makes the 

moving average plots of different days directly comparable. As a downside, changing the x-axis results in 

the moving averages not being equally distributed over the axis. As it turned out, system capacity 

requirements were highly dynamic. Therefore, a relatively large moving average length was selected 

(100 bags). Also, various alternative moving average lengths have been evaluated in order to identify the 

relation of a sample size to a peak load (up to 2000). 
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Unlike the moving average technique described, simulation engineers at Vanderlande Industries often 

base capacity requirements on specific time intervals. The benefit of a constant time interval is that it 

makes a plot easy to interpret; an output can be directly related to the time it occurs. Furthermore, 

measuring points are distributed equally over the total amount of time. Though it should be noted that 

using a constant time interval may lower the peak results; it is unlikely that a peak load exactly matches a 

time interval. This downside can be partly overcome by creating a hybrid; a constant time interval can be 

used which is not shifted completely, but with very small steps (as with the moving average, where it is 

shifted by one bag at the time). This hybrid can be observed on the right hand side of Figure 3, where the 

time interval is 38 minutes (which is on average equal to 1250 bags at a peak load) and the interval is 

shifted per minute. However, it is more difficult to relate the peak load to a sample size, in order to 

evaluate whether it is sufficiently large.  

  
Figure 3: Comparison of case-based moving average to time-based moving averages (1250 cases ~ 38 minutes) 

Now that peak loads can be identified, the next issue is which bags to include into a sample and which 

not. In order to increase statistical power the sample size should be as large as possible. On the other 

hand, from Figure 3 it can be observed that the arrival process is nonstationary. Therefore, a too large 

sample will result in non-identical and dependent observations, which violates statistical tests’ 

assumptions. Another disadvantage of an increasing sample size in combination with a nonstationary 

process is that it will decrease the average capacity requirements of the sample, while a high system 

capacity is pursued. This is because data with a higher average interarrival time is added to the sample. 

Plotting the highest observed systems capacity against the used sample size can give insights into this 

effect. Such a graph is called a sample response plot in this report.  

Within the case study it turned out that the interarrival times of bags did not form a random sample of a 

normal distribution. The process is better described by an exponential or a lognormal distribution. This 

implies that various tests relying on the normality assumption are not applicable, such as the standard 

linear regression based methods for stationarity and independence, ANOVA, Bartlett’s test, and the F-

test. Furthermore, the non-parametric Von Neumann’s ratio test and run tests were not applicable due 

to the high amount of ties in the data. Arrival times were measured per second. With over 60 000 

arrivals of bags and an interarrival time mainly ranging from 2 to 15 seconds it can be imagined that 

many interarrival times had the same value. Consequently the assumption is violated. 

Determining which system samples were sufficiently similar in order to assume that they originated from 

the same distribution was very well possible with the proposed techniques. The techniques described to 

assess goodness-of-fit on the other hand, appeared to be too sensitive for modeling purposes. 
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Differences were found between the data and distributions, even for the best fitted distributions. 

However, it is possible to apply goodness-of-fit tests in order to make an objective comparison between 

alternative distributions possible. For instance the best fitting distribution will result in an upper limit of 

the accuracy of an input distribution. 

Several statistical packages have been evaluated for applying the various tests, namely Statgraphics, 

PASW SPSS, Palisade @Risk/Stattools, and Expertfit. As it turned out, graphical techniques were most 

easily applied within Palisade @Risk/Stattools and Expertfit. Palisade @Risk/Stattools was also very 

suitable for performing the proposed tests related to comparison of simulation and system input. 

Furthermore, data independence could be investigated with aid of the correlation plot and Pankrantz 

criterion. The alternative, the Box-Ljung test, is only applicable within PASW SPSS. For conducting 

statistical tests for the comparison of two or more simulation samples Statgraphics or PASW SPSS is 

required. 

3.2 Trace-Driven Output Validation 

In order to perform trace-driven output validation the simulation model should be adapted to acquire 

interarrival times from an external data source. This data source can be a text or an Excel file, derived 

from the real system’s logging.   

The sample mean, variance and sample correlation, as well as Box plots and frequency 

diagrams/histograms have been proposed for comparing the output of the simulation model and the 

real system. However, some statistics may be added. In real system data very high cycle times can be 

observed, for instance due to errors when registering that a bag leaves the system. These values highly 

influence the sample mean. As identified earlier, if it is suspected that outliers are present or the data is 

skewed, samples are more appropriately compared by their median (Green & Salkind, 2004). 

Additionally, the trimmed mean can be used, which only takes into account the trimmed probability 

density function. As an example, the 5% trimmed mean is the average value of the middle 95% of the 

probability density function.  

As it turned out, the sample correlation function is not directly applicable. Individual observations cannot 

be related to each other for both samples because of a significant number of bags no cycle times are 

available in the real system (bags go out of tracking). Furthermore, due to stochastic behavior, bags 

might belong to different classes in the simulation model (normal baggage, early baggage, unsafe 

baggage). In order to overcome this problem, the correlation can be based upon an average output per 

period. For assessing the correlation Pearson’s coefficient is generally preferred. However, when outliers 

are present or the data is skewed the alternative, Spearman’s coefficient, should be used. It computes 

coefficients based on the ranks of the data rather than on the data values themselves (Statpoint 

Technologies, 2009). 

A difficulty with histograms is that no definite technique exists for determining interval widths. However, 

some guidelines can be given. It is generally recommended to choose the smallest interval width that 

results in a “smooth” diagram. Too small intervals will lead to a “ragged” shape because the variances 

will be large. Too large intervals, on the other hand, will result in a “block-like” shape since the data has 
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been overaggregated (Law & Kelton, 2000). Some additional rules of thumb have been suggested, but it 

should be noted that they will not result in an optimal outcome for every situation. The best known rule 

is probably Sturges’s rule, which says that the amount of intervals should be equal to 1 + log2 n, with n 

equal to the amount of observations (Engel, 1997). A different rule states that the interval width should 

be equal to 0,3 times the standard deviation of the data (NIST/SEMATECH, 2010). However, when 

performing the case study these rules appeared to result in too large interval widths. Therefore, the 

general guidelines are preferred. Furthermore, it should be noted that relative frequency diagrams are 

preferred over regular variants. This is due to the differences between the numbers of cycle times that 

will possibly be obtained. Differences are caused not only by disparities in parameter values, but also by 

bags going out of tracking. These bags cannot be traced, and consequently no cycle times can be 

obtained from this subgroup. 

Behavior graphs are also very valuable. In section 3.1 it has been shown that the arrival times of bags are 

not stationary; the average arrival rate changes over time. Changes in the arrival rate relate to 

alterations in the utilization of the system. Certain assumptions, for instance about merging behavior, 

are affected by the utilization of the system. They may suffice when the utilization is low, but become 

more and more problematic when the utilization increases. For the example of merging behavior: a 

possible assumption is that merging two flows does not lead to any interruption. With a low utilization 

the probability of being blocked at a merge is little and the assumption suffices. However, in case of a 

high utilization blocking becomes more likely, causing a significant interruption. Generally, an increase in 

utilization is expected to increase the difference between simulation and the real system output. As a 

result it is not the overall average difference that is of main interest, but the average difference per 

range of utilization. The relatively high arrival rates occur only on a very limited basis. Consequently, the 

techniques for output validation that require a high amount of data may be problematic. Specifically the 

regression based methods are vulnerable for nonstationary differences.  

The optimal outcome would be an indication of a causal relation between utilization and the average 

difference between simulation and a real system, such that the relation can be used to estimate the 

difference for utilization rates not observed. Behavior graphs can be used to gain insights into this 

relation. When applying behavior graphs it becomes apparent that the results are too variable to see a 

general trend. Therefore, the output should be smoothened out, as was the case for the arrival process. 

An additional issue is that system and simulation output require an identical independent variable in 

order to make an accurate comparison possible. The most evident independent variable is the time of 

occurrence. However, the aim is to investigate whether a causal relation can be found between 

utilization and the average difference. Because the utilization of the system is not directly known, and is 

not necessarily identical to the utilization of the simulation model, the arrival rate can be used as an 

alternative. A difficulty with this independent variable is, however, that the expected effect on the 

output difference is delayed (bags will not affect cycle times until they are being processed). Combining 

the knowledge that results should be smoothened and that possible effects are delayed leads to usage of 

the average result per period. Furthermore, high order polynomial regression lines can be added to 

these behavior graphs to underline the trends. 

The methods recommended within this section are available in all regular statistical packages. 
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3.3 Conducting a Sensitivity Analysis 

In order to be able to conduct a sensitivity analysis the simulation model should be adapted such that 

AutoStat is able to alternate factor values. This implies that all factors should be modeled as variables 

within AutoMod. Hereby it should be noted that, though AutoStat adapts decimal placeholders to 

regional settings, AutoMod does not. Thus whenever regional settings are set on Dutch, AutoStat sends 

messages to AutoMod possibly containing values based on a comma, while AutoMod expects decimal 

values based on a dot. Consequently, the analysis will not run and an error is returned. 

The amount of replications required for a sensitivity analysis can be greatly reduced by applying CRN 

(section 2.5.7). Although this method can generally be applied within AutoStat, it is not available for DOE 

(after consulting AutoMod developers it was assured it will be available within the upcoming version of 

AutoStat). However, it can be applied manually. In an effort to force AutoStat to perform CRN, 

distribution samples have been created within Excel. This has been done by using the built in random 

number generator (resulting in a random number between 0 and 1), and converting it to a distribution 

seed by applying the cumulative distribution function (appendix B.5.1). Identical random numbers have 

been used for the alternative distributions. The simulation model should be adapted to use the 

generated data as input. Since the model is already configured to acquire interarrival times from an 

external source for trace-driven output validation, CRN can be forced with relatively little effort. 

Therefore this procedure is recommended. 

No additional software package is required for performing a sensitivity analysis; all recommended 

actions can be performed with AutoStat. However, AutoStat is only capable of handling up to 11 factors 

in a design of experiments. It is possible to create combinational factors. Consequently, screening 

methods have to be applied. Probably the most self-evident factors to combine are the velocities and 

window lengths of the various section types. It reduces the amount of factors greatly, while the direction 

of the effects is expected to be identical for all parameters within the groups. 

The design of experiments requires two levels per factor. One level, the base level, has already been 

specified while the simulation model was configured (appendix B.1.1). Concerning the alternative level, 

two options are available: values can be used based on system logging, in which parameter values can be 

identified, or somewhat more extreme values may be used based on expert opinions for example. In the 

case study the first option is chosen. The sensitivity analysis is performed in order to give more insight in 

the effects of observed differences between the simulation model and the real system. However, even 

when basing alternative values on data exact values are not straightforward. A balance should be sought 

between the difference between the factor levels (larger differences are expected to result in more 

significant effects) and the likelihood that the values are plausible within the real system. Therefore, the 

system data has been evaluated per day when possible; the most deviating value has been selected. It 

should be noted that not all factors could be identified in the system logging, e.g. conveyor velocities. For 

these exceptions the alternative value has been determined by evaluating expert opinions. 

Note that setting the base level to values in the simulation model and the alternative level to values 

mainly based upon data can imply that some values are descending from the low to the high level, while 
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others are ascending. Normally factor values are put in an ascending order, in order to facilitate 

interpretation. Though, this is less practical in this situation. The experiment results in estimated factor 

effects for changing the factors from the base level to the alternative level. Thus, effects can now be 

interpreted directly as the result of a modification to the standard simulation model. 

However, this method has consequences for applying the group screening method. The method 

prescribes to put factors in a group such that effect directions are aligned. As it will turn out, though the 

combined velocities as well as the combined window lengths are likely to fulfill this requirement, EBS 

control is not. Therefore cancellation of effects is possible or even probable. However, it can be justified 

that this is not a real threat. The various factors concerning EBS control are linked to each other in 

practice. In fact some cannot be changed separately; the time a bag is delayed by the EBS is virtually only 

dependent of the amount of time the bag arrived too early. Consequently, reducing the time to flush by 

50 % implies that the amount of flush-backs should approximately double. The effect of changing EBS 

control to a more real life example is of main interest. Therefore possible cancellation of effects is 

accepted. 

Evaluation of factor significance can be done by creating confidence intervals of factor effects. A 95 % 

confidence interval is equivalent to a hypothesis test with a type I error of 5 %. Applying confidence 

intervals is an option within AutoStat. 

With respect to validation of the sensitivity analysis, in AutoStat it is not possible to eliminate individual 

scenarios and recalculate the factor effects. Therefore, cross-validation cannot be performed. Instead 

new scenarios should be run and simulation output should be compared to metamodel prediction by 

calculating the correlation, or eyeballing a scatter plot (Kleijnen, 2005). 

3.4 Discussion 

Within this chapter the applicability of the methods and the legitimacy of selections made in the 

previous chapter have been evaluated. Also, additional actions and practicalities have been addressed. 

As it turned out, the assumptions related to real system and simulation model data that were used in 

literature for evaluating suggested methods, do hold for BHS models of Vanderlande Industries. 

Although this implied that less powerful nonparametric tests should be used, statistical methods for 

comparing system and simulation input still appeared to be too sensitive. However, the statistics did 

appear valuable for making an objective comparison between the fit of alternative distributions possible. 

With respect to output validation, confidence intervals are preferred, but do result in additional 

requirements related to data characteristics. Although the requirement of a high amount of data per 

input range was not met within the case study, it might be available in other future projects. 

Consequently, it can still be noted as an option within the operational validation approach. 

The possibilities related to the sensitivity analysis depended heavily of the available functions within 

AutoStat. However, although somewhat affecting the selection of methods, it did not change the 

recommendations based on literature greatly. 
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4. The Operational Validation Approach 

In this chapter the operational validation approach that has been designed based on theoretical and 

practical findings will be presented. The various steps that should, or may, be performed will be 

explained and the accompanying selected techniques will be addressed. Hence, this chapter addresses 

the main research question. For more in depth knowledge about a specific selection the reader will be 

redirected to the appropriate approach development section. Illustrations of the recommended 

techniques can be observed in the case study (Chapter 5).  

This chapter is structured as follows. In section 4.1 a schematic overview of the approach is presented. 

From this overview it can be derived that the operational validation approach has been divided into 

several high level steps, each related to a different aspect of the validation problem. The first step, 

maintaining an assumptions document, is addressed in section 4.2. Section 4.3 discusses the second 

step, called input validation. Trace-driven output validation, the third step, is handled in section 4.4. 

Finally, the last step, conducting a sensitivity analysis, is discussed in section 4.5.  

4.1 Approach Overview 

A schematic overview of the approach can be observed in Figure 4. Attached to the various steps are the 

different techniques that could be applied. The reader is being referred to specific sections for more in 

depth discussions about specific methods. 
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Figure 4: A schematic overview of the operational validation approach 
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4.2 Maintaining an Assumptions Document 

The first step to perform is to maintain an assumptions document. The document should provide 

information about the input values, the assumptions made and the level of detail contained in the 

simulation model. This will give an indication where differences with reality can be expected. 

Furthermore, it can be used to evaluate the degree of similarity between simulation models; a pattern 

may be observed between certain assumptions and their impact on model accuracy. The types of 

assumptions identified are: “mathematical assumptions including the model form and continuity of the 

relationships, content assumptions dealing with the scope and definition of model terms and variables, 

and causal assumptions concerning assumed or hypothesized relationships between terms and 

variables” (Gass, 1983, p. 612). Examples of assumptions used in the case study can be used to illustrate 

the different types. A used mathematical assumption is that the underlying model used to estimate 

factor effects in the sensitivity analysis is linear. A content assumption is that the velocity of a standard 

belt floorveyor is 1 m/s. An example of a causal assumption is that an increase in utilization generally 

leads to an increase in the difference between simulation output and system output. 

4.3 Input Validation 

The second step is input validation. Validating the input used in the simulation model separately is 

required because it will be substituted by real system input data in the output validation step. 

Furthermore, it is also valuable for the trace-driven output validation; an idea is developed about the 

behavior of the real system input. This is required in order to be able to evaluate the options available 

for output validation.  

Visualization 

Related to this, the first action to perform is to visualize the arrival process. This is especially relevant for 

baggage handling systems, because its arrival process is typically highly nonstationary (the mean, 

variance and autocorrelation function of the interarrival times shifts over time). Because individual 

observations are also highly dynamic a moving average should be used. A moving average is a technique 

to smooth out short-term fluctuations and highlight longer-term trends or cycles. Given a series of 

numbers and a fixed subset size, the average of the first subset is calculated. The fixed subset is moved 

forward one number and the new average is calculated. This process is repeated over the entire data 

series. The line connecting all the acquired averages is the moving average (NIST/SEMATECH, 2010). 

Although the variable evaluated is the interarrival time of baggage items, it is not recommended as the 

dependent variable in the moving average plot. Instead the variable should be converted into the 

capacity level that it requires. This way the moving average plot can be easily related to system 

capacities, in order to assess whether the highest observed capacity requirements can be considered a 

“real” peak load. In order to make the arrival process of different days more comparable, the x-axis may 

be converted to a time based scale. A disadvantage is that it results in the moving averages not being 

equally distributed over the axis. An alternative moving average based on time intervals is discussed in 

section 2.6.1. 
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Data Selection and Evaluation 

In case a peak load should be identified, a sample response plot is proposed in order to observe output 

changes over a range of samples sizes. For baggage handling systems it is useful to plot the highest 

observed system capacity against the used sample size. When increasing the sample size, a high negative 

slope indicates that the added data differs considerably from the current sample. Contrarily, a gradual 

decline implies that the added data differs little from the current sample. In this manner it is possible to 

assess quickly which sample sizes may be viable options for representing the peak load. 

Viable data sets should be investigated for stationarity. Nonstationary data cannot be represented by a 

single distribution in the simulation model. Furthermore, no statistical tests can be applied. Stationarity 

can be determined with a run sequence plot (NIST/SEMATECH, 2010). Run sequence plots are an easy 

way to summarize a data set. The graph is formed by plotting the response variable on the vertical axis, 

and the observation index to the horizontal axis. Shifts in location and scale are typically quite evident. 

Furthermore, outliers can easily be detected using a run sequence plot. For a constant location and scale 

the response should appear constant +/- a random error (NIST/SEMATECH, 2010). Although being very 

useful for changes in mean and variance, the run sequence plot is not suitable for addressing 

autocorrelation. 

Instead the autocorrelation plot is recommended. The autocorrelation plot is a graph of the sample 

autocorrelations for data values at varying time lags. A lag is a fixed time displacement: a plot of lag 1 is a 

plot of the values Yi versus Yi-1 (IST/SEMATECH, 2010). It is important to note, that the indicated sample 

correlation will not be 0 even when the data is independent. Only if the data differs significantly from 0, 

strong evidence of correlation exists. Another indication is a specific pattern in the correlation plot, such 

as a linear trend (Law & Kelton, 2000). In order to assess more formally whether the autocorrelation is 

too high, the graph can be extended with the Pankrantz criterion. It states that the autocorrelation 

divided by its standard error must be less than 1,25 for the first three lags and less than 1,60 for 

subsequent lags, in order to conclude that the series is not significantly autocorrelated. 

Input Sample Selection 

Now that various suitable data sets have been acquired, it should be decided how to compare the 

samples to the simulation input. Comparison of simulation data with system data of as many periods as 

possible is preferred, because this will increase the generality of the findings. Two options exist for 

incorporating multiple samples in the comparison: simulation input can be compared with each system 

sample separately, or simulation input can be compared to a group of similar system samples. In 

principle this last option is preferred. A larger sample size will decrease both the probability of a type I 

error (risk of rejecting a true hypothesis) and the probability of a type II error (risk of accepting a false 

null hypothesis) (Montgomery & Runger, 2002). When, during data selection and evaluation, it became 

apparent that data is significantly autocorrelated, simulation input should be compared graphically only, 

with each system sample separately. 

In order to test whether various samples originate from the same distribution based on their median the 

Kruskal-Wallis test should be applied. The median is used instead of the mean to be able to cope with 

non-normality. This is especially appropriate if it is suspected that outliers may be present or the data is 
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skewed. In order to test whether various samples originate from the same distribution based on their 

standard deviations Levene’s test is recommended. The test can be based on various metrics. Using the 

trimmed mean performs best when the underlying data follows a heavy-tailed distribution and the 

median performs best when the underlying data follows a skewed distribution. Using the mean provided 

the best power for symmetric, moderate-tailed, distributions (NIST/SEMATECH, 2010). 

Comparison of System Input and Simulation Input 

The next action is to actually perform the comparison of system input data and simulation input. The 

techniques to apply depend on whether a distribution or a load file is used as simulation input. Two 

types of techniques can be used: statistical tests and graphical methods. While the statistical technique 

to apply depends on the type of simulation input, similar graphical techniques can be applied for both 

input options. Furthermore, graphical methods make no assumptions about data independence and 

therefore can always be applied. 

A goodness-of-fit test is a statistical hypothesis test that is used to assess formally whether observations 

are an independent sample from a particular distribution (Law & Kelton, 2000). Several goodness-of-fit 

tests are recommended. The Kolmogorov-Smirnov test and Anderson-Darling test provide good 

statistical power. They compare the empirical distribution function of the sample with the cumulative 

distribution function of the hypothesized reference distribution. Both are suggested because they focus 

upon a different area; the Anderson-Darling test is designed to specifically detect discrepancies in the 

tails, while the Kolmogorov-Smirnov is more sensitive to differences near the center of the distribution. 

Applying both methods will require virtually no additional effort. The chi-square test is less appropriate, 

but, contrary to the other methods, it is not limited to specific distributions (i.e. normal, exponential, 

weibull, lognormal, and log-logistic distributions). Although the statistical techniques presented are 

inclined to be too sensitive for modeling purposes, they can facilitate an objective comparison between 

alternative distributions. This is useful because the best fitting distribution will for instance result in an 

upper limit of the accuracy of an input distribution.  

Related to comparing a load file to a system sample, the most powerful test is the Student’s t-test for 

equality of means. Although assuming that samples are normally distributed, Rasch et al. (2007) state 

that the t-test is robust against this assumption to such an extent that it can be recommended in nearly 

all applications. However, again more tests can be recommended due to a difference in focus, while 

requiring little effort. The two-sample Kolmogorov-Smirnov test is an adaption from the one-sample test 

discussed earlier. The Mann-Whitney U test is an alternative to the t-test without its limiting assumption 

of normality (Cooper & Schindler, 2003). It is a rank test that evaluates whether the medians on a test 

variable differ significantly between two samples (Green & Salkind, 2004). Related to equality of 

variances, Levene’s test is once more recommended. 

Several graphical procedures can be used for comparing fitted distributions with the true underlying 

distributions, as well as for the comparison of two data samples. In general a close match of the data and 

the distribution, or both data samples, implies a better fit. For continuous data, a density/histogram 

overplot can be made by plotting the probability density function of the applied distribution over the 

histogram of the data. Alternatively, a frequency comparison can be used, which compares the intervals 
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of two histograms. These can be based on one data sample and a distribution, as well as on two data 

samples. Furthermore, graphical comparisons can be applied that are based upon the cumulative 

distribution functions. Such a technique is the distribution function difference plot (Law & Kelton, 2000). 

A perfect fit will result in a horizontal line at height 0; the greater the vertical deviation, the worse the fit 

(Law & Kelton, 2000). However, most statistical packages simply plot both cumulative density functions 

in one graph, from which the difference can be derived by eyeing the plot. Another graphical technique 

based on the cumulative distribution function is the probability plot. Several kinds of probability plots 

exist. The Q-Q plot (where Q stands for quantile) compares the probability distribution by plotting their 

quantiles against each other (Gibbons & Chakraborti, 2003). The distributions being compared are similar 

if the point in the Q-Q plot will approximately linear with an intercept of 0 and a slope of 1 (Gibbons & 

Chakraborti, 2003). Q-Q plots amplify differences that exist between the tails of the compared 

distribution functions (Law & Kelton, 2000). A different probability plot, the P-P plot (where P stands for 

probability or percent), on the other hand, amplifies the differences between the middle parts of the 

distribution functions (Law & Kelton, 2000). This difference can be observed in Figure 5. The Q-Q plot 

graphs the different values x
S

q and X
M

q for different quantiles q. The P-P plot graphs the model 

probability 	�
�� versus the sample probability	����
�� for different values of pi with i = 1, 2, .., n. Note 

that even if the correct distribution has been used, or both input samples are identical, there will be 

departures from linearity for small to moderate sample sizes (Law & Kelton, 2000). 

       
Figure 5: Definitions of Q-Q and P-P plots (Law & Kelton, 2000) 

4.4 Trace-Driven Output Validation 

The third high level step is to validate trace-driven simulation output. This can be considered the main 

step of the validation approach; based on these results it is concluded whether the main model is valid 

or not. This is done by assessing the input-output transformation. 

Model Adjustment 

In order to perform the validation methods that will be described, the model should be adjusted such 

that it can use system input data as input for the simulation. Furthermore, an input file should be 

created based on exact arrival times of bags or products. With these adaptations trace-driven output can 

be generated.  
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Output Comparison 

For comparing trace-driven simulation output with system output the correlated inspection approach 

should be used. The correlated inspection approach does not require the data to be independent, has no 

distributional requirements on the data, and can be used with a limited number of observations 

(Sargent, 1996). It prescribes to compare the sample mean, the sample variance or standard deviation, 

the sample correlation function and to apply several graphical plots, namely histograms, box plots and 

behavior graphs (Sargent, 1996; Kleijnen, 1995). Additionally, the median and the trimmed mean are 

recommended, which are especially relevant in case outliers are present.  

For the construction of histograms it is generally recommended to choose the smallest interval width 

that results in a “smooth” diagram. Too small intervals will lead to a “ragged” shape because the 

variances will be large. Too large intervals, on the other hand, will result in a “block-like” shape since the 

data has been overaggregated (Law & Kelton, 2000).  

A detailed explanation of Box-Whisker plots can be found in Figure 6. It can be added to this information 

that quartiles are the points from the cumulative distribution function that divide it in four regular 

intervals (Montgomery & Runger, 2002). Note that the second quartile is equal to the median. 

 
Figure 6: An explanation of a Box-Whisker plot (Statpoint Technologies, 2009) 

For assessing the correlation Pearson’s coefficient is generally preferred. However, when outliers are 

present or the data is skewed the alternative, Spearman’s coefficient, should be used. It computes 

coefficients based on the ranks of the data rather than on the data values themselves (Statpoint 

Technologies, 2009). Correlation coefficients range between -1 and +1 and measure the strength of the 

association between the variables. When individual observations of both samples cannot be directly 

related to each other, for example due to bags going out of tracking, average output per period should 

be used. 

In section 2.6.2 it has been shown that this also holds for behavior graphs. With behavior graphs one 

attempts to clarify how the system and simulation output behave in time and with respect to changes in 

input. Responses per period should be used because the effect that the arrival rate has on cycle time is 

delayed in time. Furthermore, the interval smoothens out the high frequency oscillations so that trends 
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can be observed. When trends are still difficult to identify, high order polynomial regression lines can be 

added. 

For these methods, determining whether the model has sufficient accuracy for its intended purpose 

should be done subjectively. This comparison can be made by the model development team and/or by 

experts using face validity or Turing tests (Kleijnen, 1995; Sargent, 1996). A Turing test is performed by 

asking people knowledgeable about the system to examine and identify one or more sets of system data 

as well as one or more sets of model data without knowing which sets are which (Law & Kelton, 2000). 

Related to this, a model is said to have face validity when simulation results are consistent with 

perceived system behavior (Law & Kelton, 2000). 

When input data is stationary over a relatively long period, confidence interval can be constructed per 

range of input. The paired-t method should be used due to the dependence between simulation and 

system output. Although the method relies on the normality assumption, it is quite robust for deviations 

(Kleijnen, 1995). However, it does require observations to be independent and identically distributed. 

Because this is not the case for individual observations, average output per period should be used for 

this method as well. Additionally, this is required because the paired-t method can only be applied to 

equal numbers of observations. 

A 100(1 – α) percent confidence interval is statistically significant at level α in case the interval does not 

contain 0. When it does contain 0 any observed difference may be explained by sampling fluctuation 

(Law & Kelton, 2000). However, differences are to be expected and do not necessarily imply that the 

model is invalid. Therefore practical significance is defined as the magnitude of the difference being large 

enough to invalidate any inferences about the system that would be derived from the model (Law & 

Kelton, 2000). As for the inspection approach, the decision whether the difference between the model 

and the system is practically significant, is a subjective one, and should be decided on by the model 

development team or expert.  

4.5 Sensitivity Analysis 

A more detailed comparison can be made by conducting a sensitivity analysis. It can generate insights 

into what causes differences that may be observed when evaluating simulation and system output. 

However, it may also be of interest when no practical significant differences are found; the absence of 

differences in an output analysis does not necessarily imply that no differences will be found in the more 

detailed sensitivity analysis. It merely indicates that the combination of these possible differences does 

not have a significant impact on the assessed output. Furthermore, a sensitivity analysis indicates the 

system’s robustness to changes in variables. 

Define Factors 

When performing a sensitivity analysis the first step is to define the factors to evaluate. Important 

factors to consider are factors for which differences are expected or observed in the system’s logging. 

Correspondingly, factors related to assumptions made in the simulation model are likely candidates. 

Examples of factors that could be investigated are: the value of a parameter, the choice of a distribution, 
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the entity moving through a system (e.g. a single item or a batch), and the level of detail for a subsystem 

(Law, 2008). 

Define Factor Groups 

In order to be able to evaluate factors relatively efficiently, and because AutoMod is only capable of 

taking up to 11 factors into account in one experiment, two-stage group screening should be applied. For 

two-stage group screening the experimenter uses experience and knowledge of the problem and the 

factors to arrange the factors into logical groups (Trocine & Malone, 2001). A fractional factorial design is 

run on the groups in order to indentify the important ones. Subsequently, a new fractional design may 

be run on the factors or subgroups within an important group until the important factors are identified. 

The method is iterative since the results of the first stage are used in the second stage. Note that 

interactions between factors in different groups are not measured and if they exist may confound the 

results of the groups (Trocine & Malone, 2001). 

In order to avoid cancellation of factors and to detect as many of the effective factors as possible Ivanova 

et al. (1999) identified several guidelines. 

- A factor with an unknown direction of effect should be placed alone in a group. 

- Factors with assumed important positive effects should be placed in one group. 

- Factors with assumed small effects and the same direction should be placed in a group. 

- Factors with possible effects and the same direction should be placed in a group. 

- Resolution V designs should be used to calculate main effects and two-factor interactions 

unbiased by any other main effect or two-factor interaction (section 2.5.4) 

Contrary to these suggestions, in some situations cancellation of effects can be acceptable, because 

factors are linked in practice for instance. When such groups are selected it should be kept in mind 

though that, based on perceived group effects, no conclusions can be drawn for the corresponding 

individual factors. A more detailed discussion about this subject can be found in section 2.6.3.  

Determine Factor Levels 

The design of experiments requires two levels per factor. The standard levels should be set equal to the 

parameter values of the simulation model. The alternative levels should be identified in the real system’s 

logging. In case no equivalents of parameters can be identified in the logging, the alternative levels 

should be based upon simulation engineer’s experience.  

Model Adjustment 

In order to be able to conduct a sensitivity analysis the simulation model should be adapted such that 

AutoStat is able to alternate factor values. This implies that all factors should be modeled as variables 

within AutoMod. Furthermore, additional actions may be required, dependent on the version of 

AutoStat, when deciding to apply common random numbers (see the subsequent action). More details 

concerning these adjustments can be found in section 2.6.3  

Perform the Sensitivity Analysis 

A resolution V fractional factorial design should be run on the factors and factor groups in order to 

indentify the important ones. Subsequently, a new fractional design can be run on the factors or 



 

 

subgroups within an important group until the important factors are identified.

common random numbers is recommended.

Common random numbers (CRN)

experimental conditions, so that any observed difference in performance is due to differences in the 

system configurations rather than to fluctuations of the experimental conditions (Law & Kelton, 2000; 

Farrington & Swain; 1993). CRN tries to induce a positive 

random variables across simulations from the same random numbers (Glasserman & Yao, 1992). This 

effect is illustrated by an example in 

corresponding system under the same statistical conditions is similar to the use of identical input in 

trace-driven output validation (Law & Kelton, 2000).

Figure 7: An example of the effect of CRN, based on an M/M/1 and M/M/2 queue (Law & Kelton, 2000)

In order to determine whether the observed factor effects are significant, confidence intervals should be 

constructed. A 95 % confidence int

Applying confidence intervals is an option within AutoStat.

Validate the Sensitivity Analysis

In order to increase the confidence in the outcome of the sensitivity analysis, the results s

validated. Determining the validity of the 

comparing simulation output with prediction

compared with the corresponding simulation responses using the Pearson linear correlation coefficient 

or comparing the responses through a scatter plot (Van Groenendaal & Kleijnen, 1997). For the last 

option it can be decided whether the 

will lie upon an approximately linear line with an intercept of 0 and a slope of 1) (Kleijnen, 2005).
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subgroups within an important group until the important factors are identified.

common random numbers is recommended. 

Common random numbers (CRN) strives to compare alternative configurations under similar 

imental conditions, so that any observed difference in performance is due to differences in the 

system configurations rather than to fluctuations of the experimental conditions (Law & Kelton, 2000; 

Farrington & Swain; 1993). CRN tries to induce a positive correlation by generating corresponding 

random variables across simulations from the same random numbers (Glasserman & Yao, 1992). This 

effect is illustrated by an example in Figure 7. Note that the idea of comparing a model and the 

corresponding system under the same statistical conditions is similar to the use of identical input in 

driven output validation (Law & Kelton, 2000). 

: An example of the effect of CRN, based on an M/M/1 and M/M/2 queue (Law & Kelton, 2000)

In order to determine whether the observed factor effects are significant, confidence intervals should be 

constructed. A 95 % confidence interval is equivalent to a hypothesis test with a type I error of 5 %. 

Applying confidence intervals is an option within AutoStat. 

Sensitivity Analysis 

In order to increase the confidence in the outcome of the sensitivity analysis, the results s

Determining the validity of the estimated effects can be done by running new scenarios and 

utput with predictions based on the sensitivity analysis. These predictions can be 

compared with the corresponding simulation responses using the Pearson linear correlation coefficient 

or comparing the responses through a scatter plot (Van Groenendaal & Kleijnen, 1997). For the last 

er the estimated effects are acceptable by eyeballing the plot (the points 

will lie upon an approximately linear line with an intercept of 0 and a slope of 1) (Kleijnen, 2005).
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5. Case Study 

For illustration as well as evaluation of practicalities of the designed operational validation approach, a 

case study is performed. Practical findings that are based on this case study, which are related to the 

evaluation of the conceptual approach based on literature, have been discussed in chapter 3. The 

purpose of this chapter is to indicate what kind of results can be expected from applying the approach 

and to provide a reference for subjective actions and interpretations. 

For performing a case study a baggage handling system was preferred. Parcel and postal solutions can 

generally be described as relatively simple processes. As such, a simulation study is normally not applied 

within these projects. For distribution simulations are becoming increasingly common. However, the 

main application area of simulation is still baggage handling. Other arguments for not selecting a 

distribution project are the enhanced complexity and wide variety of the models. Distribution solutions 

are very client specific; customer demands vary greatly, as well as the products to be handled by the 

system. Baggage handling systems, on the other hand, are far more standard; the input is similar 

(suitcases) with standardized dimension and weight requirements, the configurations are typical, and the 

design variation is constrained by international norms and regulations (Vanderlande Industries, 2009d). 

The combination of most simulations being performed for baggage handling systems and these systems 

being the most comparable, leads to insights based on the case study being relevant for the largest 

project base.  

As baggage handling project Cairo International Airport Terminal 3 has been selected. This selection was 

based upon data availability, the presence of a simulation model, and the model not being too complex 

(as opposed to major projects such as Heathrow T5 and Schiphol Airport for instance). Due to 

international regulations, not all data may be shared, for instance relating to privacy issues. 

Furthermore, enhanced software needs to be installed at an airport, which allows for retrieving system 

data from location outside the airport. 

This chapter is structured as follows. Within the first section a description of the baggage handling 

system will be given. The first high level step, maintaining an assumptions document, can be found in 

appendix B.2, because creating such a document is a relatively straightforward matter. The other 

validation steps will be addressed in section 5.2, section 5.3 and section 5.4. Lastly, a discussion of the 

case study results will be presented in section 5.5. The general configuration of the simulation model and 

standard simulation results can be found in appendix B.1. 

5.1 Case Description 

In April 2009, Terminal 3 of Cairo International Airport went “live” (Vanderlande Industries, 2009e). The 

departure system in Cairo consists of 10 check-in islands (110 check-in counters in total) and two transfer 

infeed lines. The check-in counters can handle a total of 4800 bags per hour. The baggage is identified at 

various locations by Automated Code Reader Stations (ACRS) that read the bag’s License Plate Code 

(LPC). When those stations fail to identify a bag, it is sent to a Manual Encoding Station (MES). All 

baggage is security checked by means of a 5-level security concept (Figure 8). In general, the 5-level 
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screening concept is a mixture of inspection by automatic screening devices (EDS) (level 1), common X-

ray machines (level 3), manual judgment of the images by screening operators (level 2 and 4), and 

manual inspection of rejected bags (level 5) (Vanderlande Industries, 2009b). The time that operators 

have to make a decision about the security of an item coincides with the arrival of the bag at a 

Vertisorter. A Vertisorter redirects a bag in case it does not pass a security level; it is a sorting unit that 

sorts individual baggage items, arriving from one feeding conveyor, to two above each other installed 

take away conveyors (Vanderlande Industries, 2010) (Figure 9).  

 
Figure 8: A security screening machine 

(Vanderlande Industries, 2009d) 

 
Figure 9: A Vertisorter (Vanderlande Industries, 2010) 

When baggage has passed the screening process is sent to two sorters. There the bags are automatically 

sorted to 33 laterals through both spiral and straight chutes. Laterals are accumulating conveyors, of 

which baggage is loaded onto transporting units. Chutes are slides that depend on gravity for the 

movement of items. The two sorters consist of Flat Triplanar Carousels with pushers. A Flat Triplanar 

Carousal is made of flame-retardant black slates that are mounted on aluminum carriers. The Divert 

Parallel Pushers are motor driven pushers installed aside of the carousal. They are started when a 

baggage item is aside of the pusher plate (Figure 11). 

 
Figure 10: A lane storage system 

(Vanderlande Industries, 2009d) 

 
Figure 11: A flat Triplanar carousal with Divert Parallel Pushers 

and chutes (Vanderlande Industries, 2010) 

Early baggage is temporary stored in the Early Bag Stores (EBS). Main parameters are capacity and 

storage/retrieval throughput. In Cairo Terminal 3 a lane storage system (Figure 10) is applied, consisting 

of accumulating belt conveyors. Bags can be categorized per flight, class or time-slot (Vanderlande 

Industries, 2009d). 

Furthermore, the arrival system consists of 7 cresplanar carousels with corresponding feed lines and two 

out of gauge lines. The total system contains over 2,5 km of conveyors. Various back-up lines are 

incorporated to make all components redundant. 
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A complete schematic overview of the system can be observed in (Figure 12). 

 
Figure 12: An abstract drawing of the baggage handling system of Cairo International Airport Terminal 3 (Vanderlande 

Industries, 2009b) 

Data availability 

The BHS project is characterized by high tech features, for instance for system control. It was developed 

based on the London T5 software standards that were available at that time (Vanderlande Industries, 

2009e). These enhanced software components made it possible to obtain the data required to apply the 

trace-driven validation approach. Due to airport regulations there is no data available from the check-in 

counters. As a consequence, the first time registrations are performed when a bag passes the first ACRS. 

Therefore the check-in desks and subsequent collector belts are considered out of scope of the system. 

Similarly, at the backend of the system, the last registration time is when a bag leaves the sorter onto a 

chute. As a result, also the laterals of the system are considered out of scope. 

5.2 Validating Input Distributions 

The purpose of input validation is to evaluate how well probability distributions, which serve as random 

input variables, represent the true underlying distributions of the real system input data. Input 

distributions have to be validated separately because they have been substituted by real system data 

within trace-driven output validation. 

5.2.1 Data Visualization 

For this case study system data has been made available of six successive days (20th - 25th day of the 

month). Graphs with a moving average of 100 bags can be observed of the 20th and the 21st in Figure 

13. The x-axis denotes the point in time the last of 100 bags arrives, while the y-axis denotes the arrival 



 

44 

 

rate per hour. The figure contains the average and the standard deviation of the daily required capacity 

as well. The graphs of the other days are very similar and can be seen in appendix B.3.1. From the plots it 

can be concluded that a clear peak load can be identified every day.  

Figure 13: System input capacity requirements, based on a moving average of 100 bags 

5.2.2 Data Selection & Evaluation 

Now that peak loads have been identified, the next issue is which bags to include into a sample and 

which not. In order to increase statistical power the sample size should be as large as possible. On the 

other hand, from Figure 13 it is known that the arrival process is nonstationary. Therefore, a too large 

sample will result in non-identical and dependent observations, which violates statistical tests’ 

assumptions.  

Another disadvantage of an increasing sample size in combination with a nonstationary process is that it 

will decrease the average capacity requirements of the sample, while a high system capacity is pursued. 

This is because data with a higher average interarrival time is added to the sample. This effect can be 

observed in Figure 14, where the highest observed system capacity is plotted against the used sample 

size. Furthermore, an indication is shown of the average time interval the sample relates to. A high 

negative slope indicates that the added data differs considerably from the current sample. An increase in 

sample size from 100 to 250 relates to a relatively large change in maximum capacity observed. Though, 

note that an overall sample size of 100 relates to an average ACRS sample size of 16,6 (the system 

contains 6 scanner stations at the starting section). Furthermore, a sample of 100 relates to 

approximately 2,1 minutes of input. It is assumed that the system is capable of handling input variation 

within such period. 
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Figure 14: A sample response plot; maximum system capacity requirements based on different sample sizes

Based on Figure 14 and run sequence plots of various sample sizes

of 1250. In order to evaluate whether the sample is stationary the time series of interarrival times 

been plotted. These run sequence plots can be found in 

interval is reasonably stable for the various days

Figure 15. In the figure the effect of a larger sample size is once more addressed. The left time series 

contains a sample size of 2250, while the right graph is based on a sample of 1

1250 bags is also indicated in the left plot, within the red lines. Clearly, in the left graph the average 

interarrival time tends to drift upwards for the last section, simultaneously raising the standard 

deviation. More, related examples can be 

Figure 15: Time series comparison based on a sample size of 2250 and 1250

The peak load to select with a sample size of 1250 can be made more apparent by setting the moving 

average length to 1250. The resu

side. The average capacity required remains null until the first 1250 bags have arrived. Note that the 

peak load matches the peak load in 

Autocorrelation 

The autocorrelation of a time series can be evaluated with an autocorrelation plot (NIST/SEMATECH, 

2010). The autocorrelation plot of the various days of ACRS 171 can be found in 

relatively low, and appear to be having a more or less random pattern per sample, both indicating that 
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aximum system capacity requirements based on different sample sizes

and run sequence plots of various sample sizes, it was decided to select a sample siz

In order to evaluate whether the sample is stationary the time series of interarrival times 

These run sequence plots can be found in appendix B.3.3. The arrival 

for the various days. An example of a run sequence plot can be found in

the effect of a larger sample size is once more addressed. The left time series 

contains a sample size of 2250, while the right graph is based on a sample of 1

bags is also indicated in the left plot, within the red lines. Clearly, in the left graph the average 

interarrival time tends to drift upwards for the last section, simultaneously raising the standard 

deviation. More, related examples can be found in appendix B.3.2. 

 
: Time series comparison based on a sample size of 2250 and 1250 

The peak load to select with a sample size of 1250 can be made more apparent by setting the moving 
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The average capacity required remains null until the first 1250 bags have arrived. Note that the 
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no significant autocorrelation is present. This is confirmed by the autocorrelation tables (appendix B.3.4, 

Table 22 and Table 23), which contain the exact values and indicate which measurements are significant 

based on the Pankrantz criterion. Autocorrelation plots and tables of the other automated code reader 

stations can be observed in Figure 37, Table 22 and Table 23.  

 
Figure 16: Autocorrelations of ACRS 171 

5.2.3 Input Sample Selection 

Now that peak loads have been identified for the total system, the samples can be split up into samples 

per input distribution / ACRS. The remainder of this chapter will focus upon evaluating the input 

distribution of ACRS 171. Evaluation of the five other stations is performed in a similar manner, with 

comparable results. For these results one will be redirected per section to the corresponding appendix. 

For ACRS 171 summary statistics of interarrival times are presented in Table 10 (measured in seconds). 

The mean, variance, standard deviation, median (separating the higher from the lower half of the 

values), mode (the value that occurs most frequently), minimum, maximum, and amount of observations 

can be found per day. The median is lower than the mean, indicating that the underlying distribution is 

not symmetrical. Although the mode is similar for all samples, the mean values show more 

discrepancies. It becomes apparent that three of the samples are more closely related than the others; 

the means of day 21, 22 and 25 are more similar and the medians are equal. Summary statistics of the 

other scanning stations can be found in appendix B.3.5.  

One Variable Day 20 Day 21 Day 22 Day 23 Day 24 Day 25 

Summary 171 171 171 171 171 171 

Mean 15,90 10,51 9,21 12,20 13,45 9,52 

Variance 362,29 340,97 250,77 338,53 238,51 219,91 

Std. Dev. 19,03 18,47 15,84 18,40 15,44 14,83 

Median 10,00 4,00 4,00 6,00 7,00 4,00 

Mode 3,00 3,00 3,00 3,00 3,00 3,00 

Minimum 2,00 2,00 1,00 2,00 2,00 1,00 

Maximum 127,00 136,00 150,00 171,00 125,00 121,00 

Count 173 215 223 195 160 240 

Table 10: Summary statistics of ACRS 171 interarrival times (sec), within the selected system peak of 1250 bags 

More insights in the differences between populations can be acquired by using Box-Whisker plots. The 

Box-Whisker plot comparison of ACRS 171 is presented in Figure 17. From the Box-Whisker plots it can 



 

47 

 

be observed that the input data is right-skewed, meaning that the right tail is longer and the mass of the 

distribution is concentrated on the left (mean and median are placed far left). Furthermore, some 

differences between samples can be observed; day 20 and 24 contain on average higher interarrival 

times, and are more widely distributed (larger interquartile ranges). Similar Box-Whisker plots can be 

found in appendix B.3.5 for the others scanning stations. 

 
Figure 17: Box-Whisker plot comparison of ACRS 171 

Although differences and similarities between samples of the various days have become clearer, this 

information is not sufficient to conclude that certain samples stem from the same distribution. In order 

to make such conclusion possible some statistical tests should be applied. As from the Box-Whisker plots 

it can be observed that the data is not normally distributed, nonparametric tests will be used.   

Comparing Medians 

For comparing data samples that are not normally distributed the medians should be used rather than 

the means. Related to this the Kruskal Wallis test is the appropriate statistical technique. Its tests the null 

hypothesis that the medians within the samples are the same. 

A downside is that when the hypothesis turns out to be insignificant, no information is obtained about 

which specific sample is particularly different. Consequently, the selection of multiple identical samples 

is an iterative process. If the test is not significant the most offset sample should be removed and the 

process should be repeated. Determining which sample is the most offset can be based upon the Box-

Whisker plots. When more options are available, a combination of samples with the lowest mean and 

median is preferred, since high peak loads are pursued.   

Test results of ACRS 171 can be observed in Table 12. Day 20, 24, and 23 have been successively 

removed of the total sample. A type I error of 5 % has been used, and consequently the null hypothesis 

will be accepted when the P-Value is larger than 0,05. The test appeared to be significant for the 

remaining combination of samples. 

Included Samples 

Kruskal Wallis test 

Comments Test Statistic P-Value 

Day 20 / 21 / 22 / 23 / 24 / 25 63,4451 2,354E-12 Day 20 has the most offset median and mean 

Day 21 / 22/ 23 / 24 / 25 36,0057 2,886E-7 Day 24 has the most offset median and mean 

Day 21 / 22 / 23 / 25 10,6715 0,0136 Day 23 has the most offset median and mean 

Day 21 / 22 / 25 1,4165 0,4925 Accept null hypothesis 

Table 11: Comparing sample medians of ACRS 171 

Day 20 / 171

Day 21 / 171

Day 22 / 171

Day 23 / 171

Day 24 / 171

Day 25 / 171

0 20 40 60 80 100 120 140 160 180
Interarrival Times (sec)

Box-Whisker Plot Comparison
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Comparing Standard Deviations 

Although various samples have been proven identical based on their median, this does not necessarily 

imply that they may be merged. Differences may exist based on their standard deviations. In order to 

verify this Levene’s test should be applied. For ACRS 171 the result can be found in Table 12. Again, a 

type I error of 5 % has been used, which implies that the null hypothesis will be accepted when the P-

Value is larger than 0,05. The hypothesis that samples of day 21, 22, and 25 are similar with respect to 

their standard deviation is accepted. 

Included Samples Test Statistic P-Value Comments 

Day 21 / 22 / 25 0,3077 0,7353 Accept null hypothesis 

Table 12: Comparing sample standard deviations of ACRS 171 

Assessing feasibility 

Previously it was discussed that, in case multiple combinations were possible, the one with the lowest 

mean and median was preferred. However, when most bags arrive for example the first day at ACRS 171, 

the second day at ACRS 172, and the third day at ACRS 173, retaining only the samples with the lowest 

interarrival times results in an overall system capacity requirement that in reality is never observed. 

Therefore, the feasibility of the combination of the selected samples per ACRS should be evaluated. The 

results can be observed in Table 13. The first column indicates the respective ACRS. In the second 

column usable sample combination are depicted, followed by the sample size and the average 

interarrival time. The most likely required capacity (ML) relates to the combination containing the most 

samples. The high capacity values are related to the combination of samples that result in the highest 

required capacity. When only one option is available the most likely capacity is equal to the high capacity 

combination. When comparing the total of the highest required capacities (2429 bags per hour) to the 

maximum observed system capacities in Figure 14, it can be concluded that it is still a feasible system 

capacity requirement.  

ACRS Sample Sample Size Average ML[Cap/h] High[Cap/h] 

171 21/22/25 678 9,73 369,91 369,91 

172 20/22/23/24/25 552 20,83 172,84 172,84 

173 20/21/22/24 1180 7,89 456,39 - 

173 23/25 717 6,40 - 562,26 

271 22/23/24/25 950 9,28 387,81 - 

271 21/22 536 8,18 - 440,04 

272 20/24/25 756 9,41 382,77 - 

272 21/23 580 7,41 - 485,54 

273 22 140 14,36 - - 

273 24 238 9,03 398,67 398,67 

   
Total 2168,40 2429,28 

Table 13: Determining overall system capacity requirements when combining different ACRS samples 

5.2.4 Comparison of System and Simulation Input 

Because the total of the high capacity combinations appeared to result in a feasible system capacity 

requirement, these sample combinations have been used for the comparison with simulation 

distributions. Note that, in order to gain more insights or confidence, the most likely combinations may 

be compared additionally. This has not been done in this case study.  
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In order to facilitate deriving conclusions about the used simulation distribution, the best fitting 

distribution has been added to the comparison. This provides an upper limit of how close a distribution 

can get to the observed input data and consequently can be used as a reference. Related to ACRS 171 a 

lognormal distribution appeared to result in the best fit. 

In the table in Figure 18 some summary statistics can be observed, as well as the results of the goodness-

of-fit tests. In the data column the critical values of the different tests are depicted for α is 5 %. The 

triangle distribution scores infinity at the Anderson-Darling test because the test focuses primarily on 

differences in tails, which the triangle distribution lacks. Note that the Kolmogorov-Smirnov test and the 

Anderson-Darling test indicate that relatively large differences exist between the used and the best fitted 

distribution. The less suitable chi-squared test, on the other hand, even indicates the triangle distribution 

results in a slightly better fit. 

The density/histogram overplot, frequency comparison and cumulative distribution function plot show a 

reasonable fit for the triangle distribution and a good fit for the lognormal distribution. The P-P plot 

amplifies differences between the middle parts of the distribution functions. Although the other 

graphical techniques showed a reasonable to good fit, this graph indicates somewhat more differences. 

When observing the Q-Q plot it becomes clearer why the goodness-of-fit tests’ results are insignificant; 

too many discrepancies can be found in the tails of the distributions. However, it is expected that 

differences related to low interarrival times have a more significant impact on the system behavior. As 

such the distributions may still be suitable. 

Without extensive experience with these graphs it remains difficult to conclude whether the observed 

differences are practically significant or not. Therefore, the effect of using the simulation input 

distribution or the best fitting distribution will be further evaluated within the sensitivity analysis. 

Comparisons related to the other scanners can be found in appendix B.3.6. 

 

ACRS 171 

Data 

*(Cr. Value 

@0,05) 

Triangle 

Distr. 

Lognormal 

Distr. 

Minimum 1 0 0,9227 

Maximum 150 27 +Infinity 

Mean 9,7415 10 8,4608 

Mode 2 3 2,7148 

Median 4 9 5,5924 

Std. Dev. 16,3791 6,0415 9,5522 

K-S  0,0519* 0,3599 0,2086 

A-D  2,4920* +Infinity 27,8989 

Chi-Sq  36,4150* 2182,6411 2190,6145 
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 Figure 18: Comparisons for ACRS 171 – Sample: Day 21 / 22 / 25 

5.3 Trace-Driven Output Validation 

This section aims to validate the trace-driven output of the simulation model. The output evaluated is 

the cycle time of baggage items. Due to large differences within this response it should be divided into 

subgroups. These subgroups are formed by cycle time of: standard bags, which follow the standard 

routing (containing level 1 and level 2/3 screening, as well as manual coding), early bags, which require 

use of the EBS, and baggage items that leave the systems at the inspection zone. Furthermore, it 

appeared that a group of bags traverses both the right and the left subsystem; the assumption that back-

up lines or not used is not valid. These cycle times also have been considered as a separate group, in 

order to keep the results of standard bags comparable. Within this section only the results of standard 

baggage items will be presented. Analyses of the other groups are depicted in appendix B.4. 

Summary statistics of standard baggage items can be observed in Table 14. The number of cycle times 

counted differs between the system and simulation runs due to bags going out of tracking within the real 

system and bags going to the EBS or inspection based on a probability within the simulation model. 

Considering the real system, a standard bag requires on average 23 seconds more time to travel to a 

chute than within the simulation model. Though, as indicated by the 5% trimmed mean, a large part of 
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this difference is due to outliers. This is even more emphasized by the median, which is on average 11 

seconds less for the real system than for the simulation model. These findings indicate that some 

differences exist for the lower half of observations and some differences exist for the higher half of 

observations. Finally, the standard deviation of the system cycle time is more than twice the size of the 

standard deviations of simulated cycle times. This is largely caused by the presence of outliers as well. 

Statistic System Run 1 Run 2 Run 3 

Count 44839 60769 60823 60771 

Mean 00:03:34 00:03:12 00:03:11 00:03:11 

5% Trimmed mean 00:03:21 00:03:10 00:03:10 00:03:10 

Median 00:03:00 00:03:11 00:03:11 00:03:10 

Standard deviation 00:02:14 00:01:03 00:01:02 00:01:03 

Table 14: Summary statistics of the standard cycle times 

The findings based on the summary statistics are supported by the Box-Whisker plots (Figure 19). A clear 

cause of differences related to the higher half of observations is the significant amount of high outliers 

found for the real system. As suspected these have also greatly influenced the standard deviation; no 

large deviations can be found between the quartiles and the spread of the whiskers. 

 
Figure 19: A box plot comparison of standard baggage cycle times 

A histogram comparison of system data and run 1, concerning the cycle times of standard bags, can be 

observed in Figure 20. No additional histogram comparisons have been made with respect to run 2 and 

run 3, because the different runs are virtually identical. The histogram ranges from 0 to 1000 seconds, 

and does not contain a part of the outliers of the standard cycle time of the system. 

Based on the figure it can be concluded that the probability density functions are reasonably similarly 

shaped. Within both histograms two peaks can be identified. However, concerning the real system data 

the first peak relates to a higher probability and a lower cycle time in comparison to the simulated data. 

Contrary, although again being higher, the second peak of the real system data relates to a higher cycle 

time. The dissimilarities of the first peak are expected to cause the differences in median. From the 

histogram comparison it can also be concluded that, although significantly affecting the mean, the 

outliers have no high impact on the general shape of probability density function; it concerns only a 

limited number of observations.  
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Figure 20: A histogram comparison of system data and run 1 for standard baggage cycle times (in seconds) 

Behavior graphs have been created for both subsystems (left and right side of the BHS) separately. This is 

because the cycle times of bags traveling through a subsystems will virtually not be affected by an 

increase in utilization of the other subsystem. The behavior graph of the left subsystem can be found in 

Figure 21.  The behavior graph of the right subsystem is presented in appendix B.4.4. In the figure high 

order polynomial regression lines are shown of average responses per half hour in order to present the 

general trend. These responses are the standard cycle times of the real system and the simulation 

model, as well as the mutual arrival rate (depicted per hour).  

Some indication is present that the differences increase when the average cycle times start rising as a 

result of an increased arrival rate. However, in order to support this finding, data of even higher arrival 

rates appears to be required. Furthermore, a large difference can be observed related to the interval in 

which no bags arrive. The high cycle times of the average simulation run were unanticipated. However, 

further investigation indicated these were mainly due to a single run. Also it should be taken into 

account that average cycle times at the left side of the graph are based on very little bags, since no new 

baggage items arrive in those intervals. 

 
Figure 21: A behavior graph; standard cycle times related to the arrival rate, based on the left subsystem 

Related to the behavior graph, in Table 15 the correlations of pairs of variables can be observed, based 

on average cycle times per half hour. Spearman’s rank correlation was used due to the outliers present 

in system data. The table shows that significant positive correlations have been found between the 

system data and the various runs. As a reference, the correlations between the different runs are for run 
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1 – run 2, run 1 – run 3, and run 2 – run 3 respectively 0,5009, 0,4963, and 0,3790. From this it can be 

derived that the average standard cycle times of the system and simulation behave reasonably similar. 

System Run 1 Run 2 Run 3 

Correlation 0,2607 0,2024 0,4197 

P-Value 0,0000 0,0006 0,0000 

Table 15: Spearman rank correlations between the system and various runs 

5.4 Conducting a Sensitivity Analysis 

Within this section a sensitivity analysis will be performed in order to gain more insights about main 

causes of differences between the simulation model and the real system. A resolution V design is used, 

such that second order interactions are taken into account. Furthermore, group screening as well as 

common random numbers has been applied. The warm-up period, run length, and replications as 

described in appendix B.1.2 have been used. This section will mainly focus upon the results of the 

sensitivity analysis. Detailed information about setting up the experiment can be obtained from 

appendix B.5.2. 

5.4.1 Sensitivity Analysis Results 

The selected 11 factors can be observed in Table 16, which contains the factor names as applied in 

AutoStat and a small description.  

Factor Nr. Factor Name Description 

1 Distribution The distribution to use as system input 

2 L1_fr The failure rate, or reject rate of cases at screening level 1 and 2 

3 L3_fr The failure rate, or reject rate of cases at screening level 3 and 4 

4 MC_r The rate of bags that requires manual coding 

5 EBS_r The rate of bags that requires the EBS 

6 EBS_Control A combination of factors that together determine how the EBS is controlled 

7 EBS_to_MC Recurrence to manual coding after usage of the EBS 

8 Lateral Assignment Assignment of the location where a bag leaves the system 

9 ST Service times for manual encoding and manual inspection 

10 Velocity The velocity of system components 

11 WindowLength The window length of system components 

Table 16: Factors used within the DOE 

The effects of varying the presented factors are investigated for various responses. Besides the cycle 

times of different groups of bags, as discussed in section 5.3, throughput rates, describing the behavior 

of the system, and the work in process have been taken into account (as discussed in appendix B.1.2). 

In Figure 22 the effects of factors on throughput can be observed, for the various measured locations. All 

main effects and the two most influential interaction effects are depicted separately. All other 

interaction effects are grouped together in the data series “others”. Effects are presented in terms of 

percentages, in order to make their impacts comparable.  

It appears that the selection of a distribution has a relatively high impact on throughput rates. Especially 

the main stream of baggage items (relating to Induct 1_1 / 1_2 / 1_3 / 2_1 / 2_2 / 2_3, and the sorters) is 

affected by a change. Sorter throughput is furthermore influenced by lateral assignment. The third sorter 



 

 

inducts are related to the flow being approved by the level 3 screeners. These are positively influenced 

by a higher reject rate of level 

screening machines. Consequently, a higher reject rate of level 3 screening machines has a positive 

impact on the throughput at inspection

outputs, are mainly effected by the EBS rate and the EBS control. 

solely affected by the manual coding rate. Surprisingly, 

used the EBS has virtually no impact. 

and service time have virtually no effect on any throughput rate.

Figure 22: Effects of factors on the throughput at different locations

In Figure 23 the factor effects on the cycle time of standard baggage can be seen

95 % confidence intervals. The figure contains

factor effect, while the right vertical axis presents the effects in terms of percentages.

contain the 15 most significant effects. In this setting, significant implies pr

the effects is taken into account

implies an effect is statistically significant, while light blue indicates a lack of statistical significance (the 

confidence interval contains the null value). 

From Figure 23 it can be concluded

baggage cycle times can be quite large. Other factors that should be taken into account are the input 

distribution and lateral assignment, and to a lesser extend window length and the EBS rate. Note that 

also the interactions between these factors have a considerable impact
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inducts are related to the flow being approved by the level 3 screeners. These are positively influenced 

by a higher reject rate of level 1 screening machines, and negatively by a higher reject rate of level 3 

Consequently, a higher reject rate of level 3 screening machines has a positive 

impact on the throughput at inspection stations. The fourth sorter inducts, 

y the EBS rate and the EBS control. Manual coding throughput is almost 

solely affected by the manual coding rate. Surprisingly, recurrence to manual coding of bags that have 

used the EBS has virtually no impact. Furthermore, it is interesting to see that velocity,

have virtually no effect on any throughput rate. 

: Effects of factors on the throughput at different locations 

the factor effects on the cycle time of standard baggage can be seen

The figure contains two vertical axes. The left axis 

factor effect, while the right vertical axis presents the effects in terms of percentages.

contain the 15 most significant effects. In this setting, significant implies practically sig

is taken into account. Statistical significance is indicated with the use of color. Dark blue 

implies an effect is statistically significant, while light blue indicates a lack of statistical significance (the 

terval contains the null value).  

it can be concluded that the impact of alternative conveyor velocities on standard 

s can be quite large. Other factors that should be taken into account are the input 

distribution and lateral assignment, and to a lesser extend window length and the EBS rate. Note that 

also the interactions between these factors have a considerable impact.  
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Figure 23: Factor effects on the cycle time of standard baggage 

Exact information about factor effects on different responses can be found in 

in concordance with the illustrative

more detail in subsequent stages of the group screening process. Such additional actions might

provided clarity related to the unanticipated effect of window length on cycle times.

One general remark should be made with respect to interpretation of the results. Distinction should be 

made between the factors of which the alternative levels are based on system data, and the factors of 

which the alternative levels are based on other sources, such as ex

group is actually present, while the second group of factors only may be present. Thus, the first group 

can be directly used to explain observed differences, while the second group merely presents clues of 

what may cause differences observed that cannot be explained otherwise. When this is the case, or 

these factors appear to be of very high influence on system performance, it may be advisable to pursue 

retrieval of the real system parameter values. Related to this 

service times, window lengths, and velocity were not based on real system data.

5.5 Discussion 

Generally, system output has shown to be

differences increase when utilization increases. Comparison of

bags related to peak loads (average of

peak loads (average of 0:03:42), an averag

appropriate distribution this difference could 

possible cause of this difference the relatively large number of high outliers contained i

can be designated. However, when removing extreme outliers from the system data a difference of 11 

seconds remains (5,4 %). Based on the sensitivity analysis it can be said that further investigation of 

lateral assignments is recommended,

this might reduce the unexplained dissimilarity even further, a portion cannot be explained by parameter 

differences, but is due to the level of detail contained in the model
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: Factor effects on the cycle time of standard baggage  

Exact information about factor effects on different responses can be found in appendix 

illustrative purpose of this case study, factor groups have not been evaluated in 

more detail in subsequent stages of the group screening process. Such additional actions might

clarity related to the unanticipated effect of window length on cycle times.

rk should be made with respect to interpretation of the results. Distinction should be 

made between the factors of which the alternative levels are based on system data, and the factors of 

which the alternative levels are based on other sources, such as expert opinions. It is known that the first 

group is actually present, while the second group of factors only may be present. Thus, the first group 

can be directly used to explain observed differences, while the second group merely presents clues of 

cause differences observed that cannot be explained otherwise. When this is the case, or 

these factors appear to be of very high influence on system performance, it may be advisable to pursue 

retrieval of the real system parameter values. Related to this sensitivity analysis lateral assignment, 

service times, window lengths, and velocity were not based on real system data. 

has shown to be quite close to simulation output. However, it appears 

differences increase when utilization increases. Comparison of the original simulation results of standard 

average of 0:03:15) to real system performance based on cycle times under 

), an average difference of 27 seconds can be observed (1

appropriate distribution this difference could be narrowed down to 14 seconds (

possible cause of this difference the relatively large number of high outliers contained i

However, when removing extreme outliers from the system data a difference of 11 

Based on the sensitivity analysis it can be said that further investigation of 

lateral assignments is recommended, in order to find a possible explanation for this difference. Although 

this might reduce the unexplained dissimilarity even further, a portion cannot be explained by parameter 

differences, but is due to the level of detail contained in the model and the assumptions made
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case study, factor groups have not been evaluated in 

more detail in subsequent stages of the group screening process. Such additional actions might have 

clarity related to the unanticipated effect of window length on cycle times. 
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can be directly used to explain observed differences, while the second group merely presents clues of 

cause differences observed that cannot be explained otherwise. When this is the case, or 

these factors appear to be of very high influence on system performance, it may be advisable to pursue 

sensitivity analysis lateral assignment, 
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original simulation results of standard 

0:03:15) to real system performance based on cycle times under 

seconds can be observed (13,8 %). Using the 

seconds (7,2 %). As an important 

possible cause of this difference the relatively large number of high outliers contained in the system data 
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As a result of the limited usability of the objective methods for input validation, conclusions should be 

mainly derived from subjective techniques. Consequently, a certain degree of experience is required in 

order to be able to conclude whether observed differences are practically significant or not. The 

sensitivity analysis may aid in deriving conclusions by using the best fitting distributions as an alternative 

factor level. 

Related to the trace-driven output validation, the cycle times of standard bags appeared to consist of 

two conjoint distributions with contrastive differences. Interpretation of these observed differences in 

the histogram comparison would be facilitated if it was known in what context the cycle times of both 

peak probabilities occur. Due to the limited effect of screening reject rates and manual encoding rates 

these can be excluded as possible causes. Another possibility might be that they are caused by 

differences in utilization.  

Although the general output of standard bags appeared to be reasonably similar, significant differences 

were found related to parameter settings. Though these differences only had an effect on throughput 

rates and did not significantly affect the cycle times within this setting, it is expected that they will affect 

model performance if it is subjected to even higher utilization rates. 

A downside of the sensitivity analysis is that it only gives insight in effects on average responses, while, 

as indicated for output validation, more detailed information may be preferred. In this case alternative 

levels of factors indicated as important by the sensitivity analysis can be used to generate new 

simulation results for output validation (with exception of the input distribution). 

As a more general finding, based on this case study, it may be said that a model containing relatively 

little detail may be a viable option for simulating a baggage handling system that is relatively simple and 

does not experience very high utilization rates. For this type of models selecting appropriate input 

distributions will likely remain a challenge, since they may be of prime essence in order to keep 

differences with the real system small. However, in order to increase generality of, and confidence in 

these findings, more research is required for confirmation. Furthermore, with additional research, it may 

be possible to relate certain findings to specific assumptions within the assumptions document.  

Though, note that this reasoning makes the assumption that the goal of simulation is to develop a model 

which’s performance is as close as possible to the real system, while this is not necessarily true. The main 

goal of simulation studies at Vanderlande Industries is the reduction of risks. For this purpose a very high 

accuracy might not always be required; validity relates to a sufficient level of accuracy for the intended 

purpose of the model and consequently the model may still be valid. Since no appropriate goal was 

specified for the model of Cairo Terminal 3 (it has been derived of an animation model), no final verdict 

can be given with respect to its validity. 
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6. Conclusions & Recommendations 

In this final chapter the conclusions and recommendations resulting from this Master Thesis are 

presented. Section 6.1 contains the conclusions, while the recommendations related to future research 

are discussed in section 6.2. 

6.1 Conclusions 

Within this Master Thesis the most appropriate methods for the logistic simulation models of 

Vanderlande Industries have been selected to form an operational validation approach. At a high level, 

this approach consists of maintaining an assumptions document, validating simulation input, validating 

trace-driven output, and conducting a sensitivity analysis.  

An initial selection of appropriate methods has been made by assessing current literature based on 

evaluation criteria. For input validation and trace-driven output validation, these criteria are: generality, 

power, objectivity, data, and effort. Additionally, for trace-driven output validation the subject of 

comparison is taken into account. Other criteria have been used for evaluating methods for conducting a 

sensitivity analysis, namely efficiency, effectiveness, robustness and ease of use. Furthermore, this 

selection has been partly based on assumptions about simulation models, which literature claims to be 

generally true. 

Within the case study the applicability and the legitimacy of the conceptual model have been assessed. 

Because a single case was used, for which a baggage handling system had been selected, the practical 

findings are limited to its related environment. 

The logistic systems simulated at Vanderlande Industries are inherently stochastic. Because random 

inputs will produce random outputs it is difficult to relate observed differences to specific model 

characteristics. To isolate the differences in simulation models from a model’s own randomness, the 

system and simulation model, or various model variants, should be evaluated under similar stochastic 

circumstances. Furthermore, as a result of dynamic, nonstationary input and correlated, nonstationary 

output, formal statistical techniques have turned out to be difficult to apply, because of violations of 

their assumptions. 

Since a simulation model is a simplification, and consequently merely an approximation of the real 

system, some differences between the real system and the model are to be expected. As a result, tests 

that evaluate whether system and model input or output are similar are expected to be false. Therefore, 

it is more useful to ask whether or not the differences between the model and system are significant 

enough to affect any conclusions derived from the model. Because validity relates to a sufficient level of 

accuracy for the intended purpose of a model, no definite criteria can be used in general to determine 

whether a model is valid or not; the effect of observed differences should be assessed in relation to the 

objective of the model. 
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Making the model’s assumptions explicit in an assumptions document is important because the model’s 

assumptions and input values determine whether the model is valid, and will remain valid when the real 

system and its environment will change. The document should be used to make the level of detail 

contained in the simulation model explicit, as well as its intended purpose. For Vanderlande Industries 

this assumptions document can have additional value; if the assumptions are conform customer 

specifications for instance, differences between the real system and the simulation model that can be 

attributed to these assumptions can be acceptable. 

Statistical techniques that evaluate whether system data can be considered a random sample of a 

predefined distribution generally tend to be too sensitive for simulation purposes. However, the 

statistics can be used to compare applied distributions to best fitting distributions. For the graphical 

techniques proposed for input validation experience is required to conclude whether the input is valid or 

not. In absence of the required level of experience the effect can be further evaluated within the 

sensitivity analysis. 

In order to isolate the differences between a model and the real system from a model’s own 

randomness, output validation should be trace-driven; i.e. model output should be based on real system 

input. An increase in utilization generally leads to an increase in the difference between simulation 

output and system output. As such, a difficulty with output validation remains that differences are 

preferably evaluated per range of utilization. However, for this purpose a high amount of data is 

required of a relatively stable period per range of utilization, which is difficult to acquire for baggage 

handling systems. In order to acquire detailed insights in the behavior of differences between a real 

system and a simulation model, a high utilization range is required. Typically airports experience the 

most extreme capacity requirements only a few days per year, of which the dates are generally known 

beforehand. Data of these days would be especially appropriate for operational validation. . Both turned 

out to be a difficult within the case study. Only a small amount of data was related to higher utilization 

rates, and in general no utilization rates above 60 % were observed.  

A sensitivity analysis can generate insights into what causes the differences observed at the output 

validation. Furthermore, it can result in an upper boundary in what output may be reached with a 

simulation model when all the parameters are configured optimally, based on the level of detail it 

contains. Alternative levels of factors indicated as important by the sensitivity analysis can be used to 

generate new simulation results for output validation, if a more detailed evaluation of their effects is 

preferred. Differences between model variants can be isolated from a model’s own randomness by using 

a variance reduction technique called common random numbers.  

5.2 Recommendations 

The research within this Master Thesis has been bounded to validation methods that could increase the 

degree of confidence in the simulation models. This in absence of a feedback loop from implemented 

systems to simulation models. Additional to this research it can be recommended to evaluate 

possibilities to facilitate the feedback loop itself. A large reduction of time and effort can be gained by 

simplifying data acquisition and processing. It would be beneficial if system responses and parameter 
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values could be observed more directly. An important option would be the use of BPI (Business Process 

Intelligence) to analyze data logging quickly. BPI is Vanderlande’s standard software solution for 

gathering, storing and analyzing data. 

The information obtained from the approach can be used to improve future system simulations in a 

general manner. It is possible to use operational validation to determine which level of detail should be 

used in simulation models. This can be made clear by discussing the role of accuracy within simulation in 

more detail. Balci (1998) argues that, within the domain of a model’s applicability, it should behave with 

satisfactory accuracy, consistent with the study objectives. Emphasis is placed upon satisfactory because 

an increase in accuracy generally relates to an increase in the amount of time and resources required for 

the simulation. Consequently, dependent of the simulation requirements, a tradeoff can be made 

between the level of detail used in a model and the cost of performing a simulation, i.e. the complexity 

of the coding and the additional value of it for the simulation have to be balanced against each other. 

This tradeoff is shown in Figure 24 as a function of model credibility, development cost and utility. Model 

credibility can be defined as “the level of confidence in a simulation’s results” (Fosset et al., 1991, p. 

712). Model accuracy is an important factor of model credibility (Fosset et al., 1991). The validation 

approach can be used to assess this dilemma; the accuracy of models containing different levels of detail 

can be determined by comparing the input and output of simulation models with the corresponding real 

system.  

 
Figure 24: Degree of model credibility (Balci, 1998) 

Distinguishing different types of simulation models with respect to their objectives, different tolerance 

limits can be identified that determine whether or not a model is valid. This will aid determining which 

level of detail results in a sufficient level of accuracy. Subsequently, it can be investigated whether it is 

possible to adapt statistical techniques that turned out to be too sensitive in this research, such that they 

allow for differences within the defined limits. 

Within this research the focus has been on validation of the total simulation model. However, it is also 

possible to focus more on the level of accuracy resulting from the level of detail contained in a specific 

model component, as opposed to the overall system. This would aid in selecting a specific component 

version when building a model, depending on the purpose of the model. 

Airports typically experience the most extreme capacity requirements only a few days per year, of which 

the dates are generally known beforehand. Because a high utilization range is preferred for output 
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validation, data of these days would be especially appropriate for operational validation. When planning 

to compare simulation and system output, these possibilities are recommended. 

Finally, within the sections related to practical findings, some indications have been given about suitable 

software tools that can be used to apply the various methods proposed in this research. Acquisition of an 

appropriate tool is recommended for conducting the methods discussed. However, it is also amongst the 

possibilities to program the various statistical methods, in Excel for instance.  
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Glossary of Terms 

BHS Baggage Handling System 

BPI Business Process Intelligence 

cdf  cumulative density function 

CRN Common Random Numbers 

DOE Design Of Experiments 

IID Independent and Identically Distributed 

pdf probability density function 

VI Vanderlande Industries  
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Appendix A. Additional Approach Development Information 

In this appendix methods presented within the approach development chapter will be discussed in more 

detail.  

A.1 Additional Information of Input Validation 

In this section more detailed information is presented about various methods for input validation. 

A.1.1 Data Evaluation: Data Stationarity & Sample Independence 

Linear regression is a statistical technique that tries to fit a linear model to the data, generally by 

minimizing the sum of squared residuals (Montgomery & Runger, 2002). Linear regression can be used to 

evaluate changes in mean; the hypothesis can be tested that a horizontal linear line fits the data. 

However, the method may not be appropriate, due to its limiting assumptions. The assumptions of data 

independence and homoscedasticity (the variance does not change over time) were already 

requirement, but in addition it is assumed that the data and residuals are normally distributed (Green & 

Salkind, 2004). This may be problematic, specifically because arrival processes are typically characterized 

as exponentially distributed. 

Based on linear regression models several tests are available for testing homoscedasticity (Breusch-

Pagan test (Greene, 1993) and the absence of autocorrelation (Durbin-Watson coefficient, Dickey-Fuller 

test, Augmented Dickey-Fuller test, Unit Root Test (Garson, 2010)). However, these tests also rely on the 

normality of the residuals of a fitted regression model. Related to homoscedasticity, White’s test (White, 

1980) and the modified Breusch-Pagan test are alternatives that are less sensitive to the assumption of 

normality (Greene, 1993). Concerning autocorrelation, the Philips-Perron test (Philips & Perron, 1988) is 

a non-parametric unit root test that may be used. 

For practical purposes stationarity can usually be determined from a run sequence plot 

(NIST/SEMATECH, 2010). Run sequence plots are an easy way to summarize a data set. Shifts in location 

and scale are typically quite evident. Furthermore, outliers can easily be detected using a run sequence 

plot (NIST/SEMATECH, 2010). The graph is formed by plotting the response variable on the vertical axis, 

and the observation index to the horizontal axis. For a constant location and scale the response should 

appear constant +/- a random error (NIST/SEMATECH, 2010). Although being very useful for changes in 

mean and variance, the run sequence plot is not suitable for addressing autocorrelation. 

Two graphical techniques for assessing sample independence are the autocorrelation plot and the lag 

plot (NIST/SEMATECH, 2010; Law & Kelton, 2000). The autocorrelation plot is a graph of the sample 

autocorrelations for data values at varying time lags. A lag is a fixed time displacement: a plot of lag 1 is a 

plot of the values Yi versus Yi-1 (IST/SEMATECH, 2010). It is important to note, that the indicated sample 

correlation will not be 0 even when the data is independent. Only if the data differs significantly from 0, 

strong evidence of correlation exists. Another indication is a specific pattern in the correlation plot, such 

as a linear trend (Law & Kelton, 2000). The lag plot of lag 1 of the observations X1, X2, …, Xn is a scatter 
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diagram of the pairs (Xi, Xi+1) for i = 1, 2, …, n – 1. The nature of the acquired scattering will depend on 

the underlying distributions of the Xi’s. A positive correlation generally leads to points lying along a line 

with positive slope in the first quadrant, whereas negative correlation generally leads to points lying 

along a line with negative correlation in the first quadrant (Law & Kelton, 2000). A disadvantage of the 

lag plot is that it only assesses one lag.  

Besides these graphical techniques and the methods based on linear regression, several nonparametric 

statistical tests exist that can be used to test whether the data is independent. One such test is the rank 

version of the Von Neumann’s ratio test (Bartels, 1982). The test assumes that there are no ties in the 

data; i.e., no observations have the same value. This assumption may not be satisfied if data are 

recorded with only few decimal places of accuracy. Nevertheless the critical values may still be 

reasonable accurate in case the number of ties is relatively small (Bartels, 1982). Alternatively run tests 

can be applied, which only require two subsequent observations not to be tied (Gibbons & Chakraborti, 

2003). However, if the assumption holds, the rank von Neumann test is shown to be more powerful than 

the run tests (Bartels, 1982). Furthermore, two tests are available based on the autocorrelation plot, 

namely the Box-Ljung test and the Pankrantz criterion (Garson, 2010). The Pankrantz criterion states that 

the autocorrelation divided by its standard error must be less than 1,25 for the first three lags and less 

than 1,60 for subsequent lags, in order to conclude the series has no significant autocorrelation. Instead 

of testing randomness at each distinct lag, the Box-Ljung test assesses the overall randomness based on 

a number of lags (Garson, 2010).  

A.1.2 Sample Selection 

The standard method to test the hypothesis that the means among two or more groups are equal is the 

one-way Analysis of Variance (ANOVA). The analysis of variance decomposes the variability of the 

observed data into two components: a between-group component and a within-group component. If the 

estimated variability between groups is significantly larger than the estimated variability within groups, it 

is evidence that the group means are not all the same (Green & Salkind, 2004). The limitation of this 

method is that normally distributed samples are assumed. Similarly, methods to derive confidence 

intervals of an ANOVA, such as Fisher’s LSD and Tukey’s HSD, are constraint to normally distributed data 

(Montgomery & Runger, 2002). 

Alternatively nonparametric procedures may be used, which compare the sample medians rather than 

the means. This is especially appropriate if it is suspected that outliers may be present or the data is 

skewed. These tests are the Kruskal-Wallis test, the Friedman test, and Mood’s median test. The Kruskal-

Wallis test is most appropriate when each set contains a random sample from its population (the sets 

have no intrinsic meaning). The Friedman test is more appropriate when each set represents a block, i.e. 

the level of some other variable, such as a day of the week. A disadvantage is that the method requires 

different samples to be of exactly the same size (Statpoint Technologies, 2009). Mood’s median test is 

more general than the other tests, but consequently has considerably less power (Green & Salkind, 

2004).  
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In order to test whether various samples originate from the same distribution based on their standard 

deviations, other tests can be applied. Bartlett's test is a commonly used test for equal variances. 

Equality of variances across samples is called homogeneity of variance. The test is not robust; it is very 

sensitive to departures from normality (NIST/SEMATECH, 2010). Levene's test offers a more robust 

alternative to Bartlett's procedure. This means it will be less likely to reject a true hypothesis of equality 

of variances just because the distributions of the sampled populations are not normal. If strong evidence 

exists that data does come from a normal or nearly normal distribution, then Bartlett's test has better 

performance (NIST/SEMATECH, 2010). 

Levene's original method only proposed using the mean. Brown and Forsythe extended Levene's test to 

use either the median or the trimmed mean in addition to the mean. Their research indicated that using 

the trimmed mean performed best when the underlying data followed a heavy-tailed distribution and 

the median performed best when the underlying data followed a skewed distribution. Using the mean 

provided the best power for symmetric, moderate-tailed, distributions (NIST/SEMATECH, 2010). 

Although the optimal choice depends on the underlying distribution, the method based on the median is 

recommended as the choice that provides good robustness against many types of non-normal data while 

retaining good power. If detailed knowledge of the underlying distribution of the data is obtained, this 

may indicate using one of the other choices (NIST/SEMATECH, 2010).  Alternatively nonparametric 

procedures may be used, which compare the sample medians rather than the means. 

A.1.3 Goodness-of-Fit Tests 

The classical goodness-of-fit hypothesis test is the chi-square test. It tests whether the frequency 

distribution of certain events observed in a sample is consistent with a particular theoretical distribution. 

Therefore the entire range of the fitted distribution is divided into intervals (Law & Kelton, 2000). A 

difficulty with this test is that no definitive prescription can be given about the number and size of the 

intervals that is guaranteed to produce good results in terms of validity. Depending on the interval 

setting different conclusions can be reached based on the same data set. A benefit of the chi-square test 

is that it can be applied to any hypothesized distribution for which you can calculate the cumulative 

distribution function (NIST/SEMATECH, 2010). 

A different goodness-of-fit test is the Kolmogorov-Smirnov test. It compares the empirical distribution 

function of the sample with the cumulative distribution function of the hypothesized reference 

distribution, by quantifying their maximum difference (Law & Kelton, 2000). As such, this test does not 

require the data to be grouped, and consequently no information is lost. An attractive feature of this test 

is that the distribution of the K-S test statistic itself does not depend on the underlying cumulative 

distribution function being tested (NIST/SEMATECH, 2010). Another advantage of Kolmogorov-Smirnov 

tests is that they tend to be more powerful than chi-square tests against many alternatives (Law & 

Kelton, 2000). A drawback is that their applicability is more limited than that of the chi-square tests. The 

original form of the Kolmogorov-Smirnov test is valid only “if all the parameters of the hypothesized 

distribution are known and the distribution is continuous; i.e., the parameters cannot have been 

estimated from the data” (Law & Kelton, 2000, p. 363). Though, the test has been extended to allow for 
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estimation of the parameters in the case of normal, exponential, Weibull, lognormal, or log-logistic 

distributions (Law & Kelton, 2000). Furthermore, the required critical values for discrete data can be 

calculated using advanced formulas. A possible drawback of the test is that it gives the same weight to 

any difference, whereas many often applied distributions differ primarily in their tails (Law & Kelton, 

2000). 

The third goodness-of-fit test, the Anderson-Darling test, also compares the empirical distribution 

function of the sample with the cumulative distribution function of the hypothesized reference 

distribution, by quantifying their difference. However, a difference is that it is designed to specifically 

detect discrepancies in the tails, while the Kolmogorov-Smirnov is more sensitive to differences near the 

center of the distribution (NIST/SEMATECH, 2010). Furthermore, the Anderson-Darling test makes use of 

the specific distribution in calculating critical values. This has the advantage of allowing a more sensitive 

test and the disadvantage that critical values must be calculated for each distribution (NIST/SEMATECH, 

2010). These critical values are available for the same distributions as for the Kolmogorov-Smirnov test 

(Law & Kelton, 2000).  

A.1.4 Comparing Two Samples 

When a load file (an estimated sample defined by the client) is used in a simulation model instead of an 

input distribution, input validation will be based on comparing two samples. The most powerful tests for 

comparing two independent samples are the Student’s t-test for equality of means and the F-test for 

equality of variances (Gibbons & Chakraborti, 2003). A downside is that both tests assume that the 

populations are normally distributed. This assumption may not hold; arrival rates and service times are 

typically characterized as an exponential process. However, in case the sample size is sufficiently large, 

the random variables might be approximately normally distributed due to the central limit theorem. 

Furthermore, Rasch et al. (2007) state that the t-test is robust against the normality assumption to such 

an extent that it can be recommended in nearly all applications. 

A different test which may be applied, the Wald-Wolfowitz runs test, is an extremely general rank test, 

consistent with all types of differences in populations, e.g. differences in means, variability, scale, or 

location (the model is shifted) (Gibbons & Chakraborti, 2003). Though, due to its generality, the test lacks 

power (Gibbons & Chakraborti, 2003). Similar reasoning is valid for the two-sample variant of the chi 

square test. Furthermore, as for the one-sample variant, no definitive prescription can be given about 

the number and size of the intervals. Therefore alternative nonparametric tests, e.g. the two-sample 

Kolmogorov-Smirnov test and the Mann-Whitney U test, are often applied (Cooper & Schindler, 2003). 

The two-sample Kolmogorov-Smirnov test is an adaption from the one-sample test discussed earlier. As 

for the one-sample version, the test is based on the maximum absolute difference between cumulative 

distribution functions. If the two samples have been drawn from the same population, the cumulative 

distributions of the samples should be fairly close to each other, showing only random deviations from 

the population distribution (Cooper & Schindler, 2003). Analogous to the Wald-Wolfowitz test, the test is 

nonparametric and sensitive to differences in both location and shape of the empirical cumulative 

distributions functions of the two samples (Gibbons & Chakraborti, 2003). 
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The Mann-Whitney U test is an alternative to the t-test without its limiting assumption of normality 

(Cooper & Schindler, 2003). It is a rank test that evaluates whether the medians on a test variable differ 

significantly between two samples (Green & Salkind, 2004). It is an extension of the Wilcoxon rank-sum 

test such that it does not require equal sample sizes (therefore it is also called the Mann-Whitney-

Wilcoxon test) (Cooper & Schindler, 2003). 

Alternatives to the F-test for equality of variances have already been discussed in appendix A.1.2. These 

tests are suitable for two or more samples and therefore are also applicable in this situation.  

A.2 Additional Information of Trace-Driven Output Validation 

In this section a more in-depth discussion can be found about various methods concerning trace-driven 

output validation. 

A.2.1 The Correlated Inspection Approach 

The first method, called the correlated inspection approach, prescribes to “compute one or more 

statistics from the real-world observations and corresponding statistics from the model output data, and 

then to compare the two sets of statistics without the use of a formal statistical procedure” (Law & 

Kelton, 2000, p. 283). Examples are the sample mean, the sample variance, the sample correlation 

function and graphical plots (Law & Kelton, 2000). Sargent (1996) and Kleijnen (1995) discuss several 

graphical methods, namely histograms, box plots and behavior graphs, which can be used for operational 

validity. These do not require the data to be independent, have no distributional requirements on the 

data, and can be used with a limited number of observations (Sargent, 1996). 

Though the correlated inspection approach does not use a formal statistical procedure to compare real-

world and simulation statistics, it may provide valuable insights into the adequacy of a simulation model 

and it will often be the only feasible statistical approach due to limitations on available data (Law & 

Kelton, 2000). Due to the lack of a formal, objective procedure to compare the two sets of data, 

determining whether the model has sufficient accuracy for its intended purpose should be done 

subjectively. This comparison can be made by the model development team and/or by experts using face 

validity or Turing tests (Kleijnen, 1995; Sargent, 1996). A Turing test is performed by asking people 

knowledgeable about the system to examine and identify one or more sets of system data as well as one 

or more sets of model data without knowing which sets are which (Law & Kelton, 2000). Related to this, 

a model is said to have face validity when simulation results are consistent with perceived system 

behavior (Law & Kelton, 2000). 

A.2.2 Confidence-Interval Approach 

When it is possible to collect a potentially large amount of data from both the model and the system it is 

possible to create confidence-intervals based on output differences. This is a more reliable approach for 

comparing a model with the corresponding real system (Balci, 1998; Law & Kelton, 2000). The 
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combination of confidence intervals of various output differences is also called the model’s range of 

accuracy (Balci, 1998). 

Because the model and system output are dependent (the same input values have been used), the 

paired-t approach should be used for creating confidence intervals for the differences in responses. This 

method pairs dependent observations, and therefore requires the amount of observations of system 

output and model output to be equal. Furthermore, the paired-t method assumes the response 

differences to be independent and identical (IID) random variables, and normally distributed (Law & 

Kelton, 2000). It is important to note that the responses should be random variables over entire 

independent replications (e.g. a single day in a terminating system). As a result the data is IID as required 

(Law, 2007; Kleijnen, 1995). The method is quite robust for deviations of the normality assumption; the 

central limit theorem applies (also when autocorrelation exists) (Kleijnen, 1995; Law & Kelton, 2000), 

which means that the coverage probability will be near 1 – α for a large number of observations (with α 

being the probability of a type I error). Therefore the test may still be applied in case of non-normality 

(Kleijnen, 1995). In contrast to the classical two-sample-t approach, Var(model) = Var(system) is no 

prerequisite (Law & Kelton, 2000). 

A 100(1 – α) percent confidence interval is statistical significant at level α in case the interval does not 

contain 0. When it does contain 0 any observed difference may be explained by sampling fluctuation 

(Law & Kelton, 2000). As discussed, differences are to be expected and do not necessarily imply that the 

model is invalid. Therefore practical significance is defined as the magnitude of the difference being large 

enough to invalidate any inferences about the system that would be derived from the model (Law & 

Kelton, 2000). As for the inspection approach, the decision whether the difference between the model 

and the system is practically significant, is a subjective one, and should be decided on by the model 

development team or expert. 

A.2.3 Regression Based Approach 

In Kleijnen (1999) and Kleijnen et al. (1998) two validation approaches for trace-driven simulations are 

discussed, which are based on a standard regression analysis. The classical approach is to make a scatter 

plot with x and y simulated and real outputs that use the same input, subsequently fit a line y = β0 + β1 x, 

and test whether β1 = 1 and β0 = 0 (Kleijnen, 1999). Concerning this approach two possible tests can be 

performed. The less stringent variant only requires a strong correlation between system and model 

output; H0: β1 ≤ 0. The null-hypothesis is rejected and the simulation model accepted if there is strong 

evidence that the simulated and real responses are positively correlated (Kleijnen, 1995). Alternatively, 

the more stringent method requires the means of the simulated and real response to be identical and 

the correlation to be 1; H0: β1 = 1 and β0 = 0. The simulation model is valid if the null-hypothesis is 

accepted (Kleijnen, 1995). 

The more stringent classical approach has been applied widely in practice (Kleijnen et al., 1998). 

Nonetheless it appears that it rejects a valid model too often (Kleijnen, 1999). Therefore a novel 

approach has been developed in Kleijnen et al. (1998). This approach computes the n differences (d), as 

well as the n sums (qi = xi + yi). Subsequently, a line d = γ0 + γ1q is fit to the n pairs (di, qi). The related 
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null-hypothesis is H0: γ0 = 0 and γ1 = 0. This hypothesis implies that µx = µy. Furthermore, γ1 = 0 implies 

equal variances (Kleijnen, 1999). Standard regression software can be used to test this hypothesis 

(Kleijnen, 1999). 

When serious non-normality exists (for instance in case of short runs), a regression analysis can be 

created based on bootstrapping (Kleijnen et al., 2001). Bootstrapping generates observations by random 

resampling with replacement from the original observations (Kleijnen, 2008). Because of the correlation 

between simulation and system output an observation in this context implies the correlated pair (xi, yi) 

(Kleijnen et al., 2000). By repeating the resampling many times (typically 100 or 1000 times) the sampling 

variation can be reduced. Note that, instead of generating responses through bootstrapping, more 

simulation responses may be generated (Kleijnen et al., 2000). However, this generally requires much 

more computer time than applying bootstrapping (Kleijnen et al., 2000). 

A.2.4 Time-Series Approaches 

The spectral-analysis approach is a sophisticated technique that “proceeds by computing the sample 

spectrum, i.e. the Fourier cosine transformation of the estimated autocovariance function, of each 

output process and then using existing theory to construct a confidence interval for the difference of the 

logarithms of the two spectra” (Law & Kelton, 2000, p. 289). It can be used to evaluate the degree of 

similarity of the two autocorrelation functions, without making assumptions about the distributions of 

the observations in the time series (Law & Kelton, 2000).  

Alternatively the time-series approach of Hsu &  Hunter (1977) can be used, which consists of “fitting a 

parametric time-series model to each set of output data and then applying a hypothesis test to see 

whether the two models appear to be the same” (Law & Kelton, 2000, p. 290). As discussed before, a 

downside is that it is a hypothesis-test, which gives no additional insights in case the data appears to be 

different. 

A.3 Additional Information of Conducting a Sensitivity Analysis 

In this section a more profound debate of various methods related to a sensitivity analysis can be found. 

A.3.1 Metamodels 

In a sensitivity analysis, the simulation model is run for the set of factor combinations and the resulting 

input-output data are analyzed to estimate a metamodel (Kleijnen, 1997). A metamodel is a model or 

approximation of the implicit input/output function (Kleijnen et al., 2004). If at least some of the input 

parameters are quantitative, and if a performance measure can be clearly stated, then it is possible to 

construct metamodels of the performance that describe the I/O relationships in terms of functions of 

various parameter values (Kleijnen et al., 2004). In a simulation study generally several outputs are 

distinguished, which correspond to multiple response variables. However, current practice uses 

metamodels with a single output; a separate metamodel is developed for each output (Kleijnen & 

Sargent, 2000). 
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Various different metamodels can be distinguished. Metamodels containing a relatively small amount of 

complexity, and are the most popular, are linear regression metamodels (or first-order polynomials) 

(Kleijnen, 2009). Examples of other types are: second-order polynomials, the more complex Kriging 

models (an interpolation method that predicts unknown values of a random process), neural nets (a type 

of nonlinear regression), radial basis functions, splines (which partition the domain of applicability into 

sub domains and fit simple regression models to each of the sub domains), support vector regression, 

and wavelets (Kleijnen & Sargent, 2000). The model required is dependent on the goal of the 

metamodel; e.g. understanding, prediction, or optimization. Corresponding to this goal the size of the 

experimental area or frame, for which the metamodel is valid, varies (e.g. locally or globally). Zeigler (in 

Kleijnen, 1995, p. 157) defines the experimental frame as “a limited set of circumstances under which 

the real system is to be observed or experimented with.” For instance in case of a nonlinear input/output 

function, a first-order polynomial metamodel can only be used for a local area. Montgomery (1991) 

states that the first-order polynomial will work quite well, even when the linearity assumption holds only 

very approximately. Though, when the area gets bigger, a second-order polynomial might be required, as 

illustrated in Figure 25. When the experimental area covers the whole area in which the simulation 

model is valid, global, more complex metamodels become relevant (Kleijnen, 2005).  

 
Figure 25: A first- and second-order polynomial metamodel example of an M/M/1 queue (Source: Kleijnen, 2005) 

For determining how sensitive the output is to changes in the input, a local experiment is sufficient; the 

aim is to evaluate the effects of relatively small deviations in input variables, due to inaccuracy of the 

simulation model. Furthermore, the exact value is of minor importance; the relative impact of a factor on 

the output with regard to other factors is what matters most. Consequently linear regression models 

may be used.  

A.3.2 A Full Factorial Design 

For experiments involving the study of the effects of two or more factors, factorial designs are most 

efficient (Montgomery, 1991). A factorial design is the investigation of all possible combinations of the 

levels of the factors in each complete trial or replication of the experiment (Box et al., 2005; 

Montgomery, 1991). It is possible to evaluate the effect on several responses in one experimental run. In 

contrast to the one-factor-at-a-time approach, the factorial design is capable of taking interactions 

among factors into account (Law & Kelton, 2000). 
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The effect of a factor is defined as “the change in response produced by a change in the level of the 

factor” (Montgomery, 1991, p. 197), and is often called the main effect since it refers to the primary 

factors of interest in the experiment (Montgomery, 1991). When the difference in response between the 

levels of one factor is not the same at all levels of the other factors, an interaction between the factors 

exists (though, small deviations may exist due to randomness in the simulation model). When an 

interaction is large, the corresponding main effects may have little practical meaning (Montgomery, 

1991). Magnitude and direction of the factor effects are examined in order to determine which variables 

are likely to be important (Box et al., 2005). 

The factorial design associated with a first-order polynomial is an experiment with two levels for all k 

factors. This is called a 2
k
 factorial design due to the 2

k
 possible factor-level combinations. A specific 

combination is also called a design point (Law & Kelton, 2000).  The statistical model would contain 2k – 1 

effects; k main effects, ���� two-factor interactions, ���� three-factor interactions, …, and one k-factor 

interaction (Montgomery, 1991). Factorial designs can also be used for second-order polynomials. This 

results in a 3
k
 design or a central composite design, which adds a central combination to the factorial 

design (Kleijnen, 1999).  

How the factors are varied over the different runs is specified in a design matrix. Generally a + and a – 

are used to denote the high and low level of a factor, respectively (Montgomery, 1991). For these 

matrices standard lay-outs exist which are called standard orders or Yates orders (Box et al., 2005). No 

specific prescription can be given how the levels should be specified. Generally, one should select 

reasonable levels for the objective of the study, which can be based upon expert opinions (Law & Kelton, 

2000).  

A downside of the full factorial design is that the amount of runs required tends to become large, when 

testing an increasing amount of factors. A relatively large part of these runs is required for determining 

the many degrees of freedom that are associated with higher interactions, which are often negligible 

(Montgomery, 1991). For example a complete 2
6
 design requires 64 runs, of which 6 of the 63 degrees of 

freedom are related to main effects, 15 degrees of freedom correspond to two-factor interactions, and 

the remaining 42 degrees of freedom are associated with three-factor and higher interactions 

(Montgomery, 1991).  

A.3.3 Fractional Factorial Design 

A 2
k-p

 fractional factorial design contains a ��
���

fraction of the 2
k
 design (Montgomery, 1991). Several 

important fractional factorial designs have been classified (Box et al., 2005; Law & Kelton, 2000; 

Montgomery, 1991). 

- Resolution III designs (denoted as 2������
), which are defined as “designs in which no main effects 

are aliased with any other main effect, but main effects are aliased with two-factor interactions 

and two-factor interactions may be aliased with each other” (Montgomery, 1991, p. 339). A 

resolution III design can be used to investigate up to k = N – 1 factors, in only N runs, where N is 

a multiple of 4 (Montgomery, 1991). 
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- Resolution IV designs (denoted as2�����
). These are “designs in which no main effect is aliased 

with any other main effect or with any two-factor interaction, but two-factor interactions are 

aliased with other” (Montgomery, 1991, p. 339). Any resolution IV design must contain at least 

2k runs (Montgomery, 1991). It can be obtained by adding the mirror image to a resolution III 

design; each run is an opposite of an earlier run (Kleijnen, 1997). 

- Resolution V designs (denoted as 2����
), which can be defined as “designs in which no main 

effect or two-factor interaction is aliased with any other main effect or two-factor interaction, 

but two-factor interactions are aliased with three-factor interactions” (Montgomery, 1991, p. 

339). 

It should be noted that not all resolution designs are possible for every k (Law & Kelton, 2000). 

A.3.4 Plackett-Burman Designs 

Plackett-Burman designs, experimental arrangements derived by Plackett and Burman, make it possible 

to investigate k factors in as few as N = k + 1 runs, provided that N is divisible by 4 (Box et al., 2005; Law 

& Kelton, 2000; Montgomery, 1991). Fractional factorials can be used when the number of runs are a 

power of 2 (4, 8, 16, 32, 64, etc.). Plackett-Burman designs can be used at intermediate values; as 

indicated they are available for any N that is a multiple of 4 (in particular for N = 12, 20, 24, 28, 26) (Box 

et al., 2005). An important downside of these designs is that they have very complicated alias structures 

(Box et al., 2005; Montgomery, 1991). As a result it is for instance not possible, in case a main effect 

appears to be important, to know which specific interaction terms it is aliased with (Montgomery, 1991; 

Steppan et al., 1998). Note that, when k + 1 is a power of 2, the Plackett-Burman design coincides with 

the 2������
 fractional factorial design (Kleijnen, 2005; Law & Kelton, 2000).  

In case a first order polynomial metamodels is used, these designs are called saturated designs. In a 

saturated design the number of factor combinations (n) equals the number of metamodel parameters. 

Thus for a first order polynomial metamodel a saturated design means n = k + 1 (Kleijnen et al, 2004a). 

A.3.5 Supersaturated Designs 

Designs are called supersaturated when they aim to estimate more effects than they have runs (Kleijnen, 

2005; Trocine & Malone, 2001). Examples are the random-balanced supersaturated design, and the 

systematic supersaturated design (Law & Kelton, 2000). Holcomb et al. (2003) conclude that 

supersaturated designs should be used with caution. Trocine & Malone (2001) add to this that you might 

get good results when you are lucky: i.e. the right design needs to be chosen, the factors and columns in 

the design need to match the factors, and the right analysis method should be chosen and used in the 

right way. This is due to the complexity of the confounding effects and the insufficient degrees of 

freedom to apply traditional analysis such as regression (Trocine & Malone, 2001). 
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A.3.6 Additional Group Screening Designs 

A.3.6.1 Two-Stage Group Screening 

For two-stage group screening the experimenter uses experience and knowledge of the problem and the 

factors to arrange the factors into logical groups (Trocine & Malone, 2001). A fractional factorial design is 

run on the groups in order to indentify the important ones. Subsequently, a new fractional design is run 

on the factors or subgroups within an important group until the important factors are identified. The 

method is iterative since the results of the first stage are used in the second stage. Note that interactions 

between factors in different groups are not measured and if they exist may confound the results of the 

groups (Trocine & Malone, 2001). 

In order to avoid cancellation of factors and to detect as many of the effective factors as possible Ivanova 

et al. (1999) identified several rules of thumb. 

- A factor with an unknown direction of effect should be placed alone in a group. 

- Factors with assumed important positive effects should be placed in one group. 

- Factors with assumed small effects and the same direction should be placed in a group. 

- Factors with possible effects and the same direction should be placed in a group. 

- Resolution IV designs should be used to calculate main effects unbiased by possible second-

order interactions. 

A.3.6.2 Sequential Bifurcation 

Sequential bifurcation (SB) is, as the name states, a sequential design; it is constructed one point at a 

time using feedback from all prior points to direct the search for important factors (Trocine & Malone, 

2001). It starts with only two scenarios, namely one with all individual factors at the level -1, and a 

scenario with all factors at +1. If the difference between the responses is considered to be significant, it 

means that some factors in the group are significant and the procedure continues (Trocine & Malone, 

2001). In the next step SB splits (bifurcates) a significant group halfway. Groups, and all its individual 

factors, are eliminated from further experimentation as soon as the group effect is statistically 

unimportant. As SB proceeds the groups get smaller and it stops when the first-order effects of all 

important individual factors are estimated (Kleijnen, 2005). Several heuristic rules exist to decide on how 

to assign factors to groups (Kleijnen et al., 2004b). 

Sequential bifurcation is a very efficient method for screening important factors (Kleijnen, 2005; Trocine 

& Malone, 2001). Though it is vulnerable to violations of the prerequisite that all the effects of the 

factors within a group should have the same direction (all effects are positive or all effects are negative) 

(Trocine & Malone, 2001). Though in principal this method is not capable of identifying interactions, an 

extension is available, called CSB-X, which takes second order effects into account as well (Wan & 

Ankenman, 2006). 
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A.3.6.3 Iterated Fractional Factorial Design 

The iterated fractional factorial design starts with the construction of a fractional factorial design and 

with factors randomly assigned to groups. The method introduces a third intermediate level on which 25 

% of the runs is put, while the other runs are equally split to the low and high level. Subsequently the 

process is repeated with factors assigned again randomly to the groups. After several iterations the data 

is analyzed using forward stepwise regression (Trocine & Malone, 2001). According to Andres and Hajas 

(1993) the method is designed for very large problems and works best when a very small number of 

factors dominate. Trocine & Malone (2001) confirm this and state that the method may not be efficient 

for as few as 100 factors. 

A.3.6.4 Controlled Screening Designs 

Controlled screening methods are not driven by a predetermined amount of runs to be performed but by 

the desired type I error (the probability of declaring a factor important when it is not) and power (the 

probability of correctly declaring a factor important). It is called controlled screening due to the 

statistical control imposed on the experiments (Wan & Ankenman, 2006). Given the amount of statistical 

control the number of replications is minimized.  

Controlled screening methods are developed for fractional factorial designs and sequential bifurcation. 

For example concerning fractional factorial designs, the total number of runs can be decreased by only 

replicating certain rows  of the factorial design (additional to a small amount of base replications) for 

which the responses have high variance (Wan & Ankenman, 2006). The research of Wan & Ankenman 

(2006) indicated that the controlled screening method based on fractional factorial designs requires less 

prior knowledge of factor effects and is more efficient than the method based on sequential bifurcation 

when the percentage of important factors is 5% or higher. 

A.3.7 Variance Reduction Techniques  

Common random numbers (CRN) strives to compare alternative configurations under similar 

experimental conditions, so that any observed difference in performance is due to differences in the 

system configurations rather than to fluctuations of the experimental conditions (Law & Kelton, 2000; 

Farrington & Swain; 1993). CRN tries to induce a positive correlation by generating corresponding 

random variables across simulations from the same random numbers (Glasserman & Yao, 1992).  

In order to illustrate the effect, consider two systems consisting of random variables X and Y. The effort 

required to obtain a valid estimate of difference depends on the variance of f(X) – g(Y), where  

 Var [f(X) – g(Y)] = Var [f(X)] + Var[g(Y)] – 2 Cov[f(X), g(Y)] (Glasserman & Yao, 1992).  

Var [f(X)] and Var[g(Y)] are determined by the individual distribution of X and Y. When X and Y are 

simulated independently their covariance is zero. CRN attempts to reduce the variance by introducing a 

positive dependence between f(X) and g(Y) (Glasserman & Yao, 1992; Farrington & Swain; 1993).  
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From the above equation it can also be concluded that it is possible for CRN to backfire; i.e. when CRN 

induces a negative correlation it leads to an increase in the variance (Law & Kelton, 2000; Glasserman & 

Yao, 1992). According to Glasserman & Yao (1992, p. 904) “variance reduction is guaranteed (in 

comparing throughputs and in some cases sojourn times and queue lengths) whenever changing the 

order of some events does not radically change the evolution of the systems. This is the case for most 

standard queuing systems with a single class of jobs and a first-come-first-served discipline, but not for 

most multiclass networks or queues with, e.g., pre-emptive disciplines.” 

Another possible drawback to CRN is that formal statistical analysis can be complicated by the induced 

correlation (Law & Kelton, 2000). In Kleijnen (2008) several alternatives are evaluated. As is appropriate 

in case no CRN is used, one can calculate the ordinary least square (OLS) estimators. Alternatively, 

estimated generalized least squares (EGLS) can be applied, which may give better point estimates of the 

factor effects, but requires many replicates. 

Furthermore, for CRN to work, the random numbers across the different system configurations on a 

particular replication should be properly synchronized (Law & Kelton, 2000). “Ideally, a specific random 

number used for a specific purpose in one configuration is used for exactly the same purpose in all other 

configurations” (Law & Kelton, 2000, p. 586). It is generally not enough to start the simulations of all 

configurations with the same seed of random number stream; multiple streams should be used with 

specific streams dedicated to producing the random numbers for each particular type of input random 

variate (Law & Kelton, 2000). 
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Appendix B. Additional Case Study Information 

Within this appendix additional results will be presented related to the case study. 

B.1 Cairo Terminal 3 

In this section more details will be presented about the case study. The first part will focus upon the 

configuration of the model itself and the simulation. Subsequently, the standard simulation results of the 

case study will be discussed.  

B.1.1 Model Configuration 

The simulation model of the terminal was built for the purpose of animation; e.g. to illustrate the 

baggage handling of the designed system. Therefore the level of detail contained in the model is 

relatively low. It was particularly important that the model’s appearance met the client’s expectations. 

The model has been verified for animation purposes. This means that it handles bags correctly. Though, 

model parameter adequacy was of lesser importance. Therefore the model has to be verified again with 

respect to its parameters before validation methods can be applied, due to changes within the objective 

of the model. In order to evaluate whether parameters are specified properly, information will be 

combined of various sources; the Terminal 3 BHS design (Vanderlande Industries, 2009b), the product 

database (Vanderlande Industries, 2010) and opinions of simulation engineers at Vanderlande. 

System Components 

In general, not all parameters of system components can be acquired by evaluating design specifications. 

The missing parameters may be calculated by using a formula. 

The capacity of system components is determined by two main factors; the conveyor speed and the 

window length of a conveyor (the space reserved for a bag). This relation is defined in the following 

formula, where the velocity of the belt is multiplied by 3600 due to a difference in units of 

measurements (conversion from seconds to hours). 

�������� 
�/ℎ = �"## ∙ �%&'()*+,-./   (Vanderlande Industries, 2010) 

LWindow = LBag + LGap (m) 

VBelt = speed of the conveyor (m/s) 

LWindow = the window length of a conveyor (m) 

LBag = baggage length (m) 

LGap =minimum gap between baggage for sorting (m) 

Within the simulation model all components are set at a speed of 1 m/s, with a window of 2 m, relating 

to a capacity of 1800 bags per hour. This can be compared to the values of the design and the product 

database. In Table 17 the capacity, velocity, and window length can be observed per component as 

specified within the system design and product database. Note that window lengths are given in neither 

source. These have to be calculated by applying the formula described above. The product database 
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specifies ranges in some instances, relating to different application areas of the component and 

environmental conditions. 

Component 

Design Product Database 

Cap. (b/h) V (m/s) LWindow (m) Cap. (b/h) V (m/s) LWindow (m) 

Belt Floorveyor 1500 - - - 0,33 - 2 - 

Belt In Tracking 1200 - - - - - 

Stop-Start Conveyor - - - - 1 - 

Belt Curve - - - 1500 1  - 

90% Transfer with Straight            

Conveyors 

- - - 1200 – 1800 1 - 

L1 Screener 1200 - - - - - 

L3 Screener 300 - - - - - 

Vertisorter 1800 - - 1650 - 2100 1 - 

90% Induct - - - 1200 – 1800 1 - 

Flat Triplanar Sorter 1500 - - - 0,5 – 1,33 - 

Divert Parallel Pushers 2000 - - 1600-1800 - - 

EBS  >120 m. - - - - - 

Table 17: Relevant BHS component characteristics 

The standard conveyors (belt floorveyors) can be set to a velocity of 0,33 to 2 meters per second. 

Though, the maximum speed of a mainline at a merge for instance is 1,25 meter per second 

(Vanderlande Industries, 2010). As is the case for this model, it is common to use a speed of 1 meter per 

second within simulation. Applying this speed and a capacity of 1500 bags per hour to the formula 

discussed, results in a window length of 2,4 meters.   

A part of the belt Floorveyors is equipped with a system for tracking baggage items. Tracking generally 

requires larger gaps between bags, resulting in larger windows (Vanderlande Industries, 2010).  Though 

capacity levels up to 1800 bags per hour are still supported, the capacity levels of belts in tracking are set 

lower than the regular Floorveyors (Table 17). The lower capacity, in combination with a speed of 1 

meter per second, relates to a window length of 3 meters. Within the material flow diagram, Floorveyors 

in red or pink are kept in tracking. 

The above specified parameters are in line with stop-start conveyors (among others used for buffering) 

and curve, transfer, and induct restrictions (Table 17). 

The design states that level 1 and level 3 screeners have a capacity of respectively 1200 and 300 bags per 

hour.  For level 1 this means that the capacity is equal to the surrounding Floorveyors in tracking. 

Though, this capacity level relates to dissimilar speeds and window lengths. Screening machines 

generally use a low velocity to make accurate scans of baggage items. The speed is however constrained 

by the amount of stop-start conveyors directly in front of it; the maximum speed step between two 

conveyors is 0,25 meter per second (Vanderlande Industries, 2010). With two stop-start conveyors being 

placed in front of the screeners this means that the minimum speed is 0,25 meters per second. Reduced 

speed generally implies that windows lengths may be smaller (due to a reduced probability of sliding) 

(Vanderlande Industries, 2010). Though, window lengths are constrained by bag lengths (1 meter in this 

case). Combining this information leads a velocity of 0,33 meter per second and a window length of 1 

meter for level 1 screening, and a velocity of 0,25 and a window length of 3 meters for level 3 screening. 

Note that a window length of 3 meters is actually large following above reasoning. In practice it might be 



 

82 

 

that a bag is required to be put to a hold for some time, relating to a smaller window length while 

maintaining a capacity of 300 bags per hour. This option however will not be applied within the 

simulation, due to some added complexity that this implies, while yielding similar results. 

The Flat Triplanar Sorter is configured similar to the Belt Floorveyors without tracking. The Divert Parallel 

Pushers installed aside of it have a capacity of 1600 to 1800, or 2000 bags per hour, depending on the 

source of information. It is important to note that either way, the pushers have a higher capacity than 

the sorter. Consequently, every bag on the sorter could be diverted by the same pusher; no recirculation 

of bags is required within the simulation model. It is assumed that the capacity of container loading at a 

lateral is always sufficient. 

Concerning the EBS, the design specifies two Early Bag Stores (left and right), that both contain two 

storage lanes of minimal 60 meters (Vanderlande Industries, 2009b). “When baggage is received from 

the sorter it will be accumulated with small gaps to maximize storage capacity” (Vanderlande Industries, 

2009b, p. 48). The stopping space for baggage items in the EBS in the simulation model is 1,5 meters.  

Gaps of 0,5 meters are not considered very small. Therefore this size is decreased to 0,2 meter. The 

effect of such a reduction will be evaluated within the sensitivity analysis. 

Vertisorter capacity levels depend on the amount of position switches that are required (directing a bag 

up or down). In Figure 26 the capacity (bags per hour) of a Vertisorter can be observed, as a function of 

the amount of switches required and the average bag length. Additional switches and larger average bag 

lengths reduce the capacity of the sorter. Typically a capacity level of 1800 bags per hour is assumed. 

With a bag length of 1 meter and a redirected flow of 5 % (see subsequent section) this assumption 

seems justified. With a speed of 1 meter per second this implies a window length of 2 meters. 

 
Figure 26: Design capacity of a vertisorter / vertimerge (Vanderlande Industries, 2010) 

Above information is summarized in Table 18, which shows the capacity, velocity, and window length per 

component, as set within the updated simulation model. Curves, transfers and inducts are not shown. 

They are set identical to surrounding Floorveyor speeds. 
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Component 

Simulation Model 

Cap. (b/h) V (m/s) LWindow (m) 

Belt Floorveyor 1500 1 2,4 

Belt In Tracking 1200 1 3 

Speed Reduction 1 1200 0,75 2,25 

Speed Reduction 2 1200 0,5 1,5 

L1 Screener 1200 0,33 1 

L3 Screener 300 0,25 3 

Vertisorter 1800 1 2 

Flat Triplanar Sorter 1500 1 2,4 

Divert Parallel Pushers >1500 - - 

EBS Lane >100 bags 1 1,2 (V=0) 

Table 18: Parameter specifications of the simulation model 

Some remarks can be made. A component not yet assessed is the ACRS. No information was available of 

this component. It is assumed that its capacity is non-restricting. Furthermore, as discussed, the check-in 

desks and collector belts are out of scope. In order to give a complete overview of the system they are 

kept within the simulation model. However the capacity levels are set to match the base speeds of the 

subsequent belt conveyors, such that the possibility of interference is minimized. Finally, besides the 

parameters evaluated so far, also conveyor acceleration and deceleration are relevant, particularly for 

stop-start conveyors. These are kept constant at the standard 0,3 meter / second
2
 for all conveyors, as is 

common within simulation models. 

 

Bag Dimensions 

Standard baggage dimensions can be found in Table 19; maximum, average, and minimum bag length, 

width and height. Baggage that exceeds these dimensions is considered out of gauge; too large in 

comparison to airport specifications, but it can still be handled (Vanderlande Industries, 2009b). In the 

simulation model bag dimensions are held constant at length 1000 mm; width 700 mm; height 400 mm. 

It is common to use these dimensions in a simulation model; in baggage handling systems often fixed 

windows are used, in which case standard bag dimensions do not affect system performance.  This also 

holds for the Cairo Terminal 3. 

 
 Length (mm) Width (mm) Height (mm) 

Maximum 1000 750 650 

Average 700 500 400 

Minimum 300 300 50 

Table 19: Standard baggage dimensions (Vanderlande Industries, 2009e) 

Baggage Flows 

Baggage flow parameters determine how baggage items are directed through the system. These are 

expected to have a major impact on the system performance; a different route implies significant 

different cycle time. Original and adapted flow specifications of Cairo Terminal 3 can be observed in 

Table 20. Reject rates are set for combinations of two levels; baggage is redirected based on the decision 

of both a screening machine and an operator. The reject rates of level 1 / 2 and level 3 / 4, as well as the 

probability that manual encoding is required, have been reduced to standard levels. They were set 

higher than normal for animation purposes. 
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 Original model Updated model 

Flow Value Value 

L1/2 reject rate 10 % 5 % 

L3/4 reject rate 15 % 1 % 

Manual encoding required 5 % 1 % 

EBS required 5 % 5 % 

EBS lane assignment 1 :60 %, 2:40 % 1 :60 %, 2:40 % 

EBS time between flushes 15 minutes 15 minutes 

EBS flush-back rate (lane 1) 25 % 25 % 

EBS flush-back lane assignement (lane 1) 1 :100 %, 2:0 % 1 :100 %, 2:0 % 

EBS flush-back rate (lane 2) 100 % 100 % 

EBS flush-back lane assignement (lane 2) 1 :75%, 2:25 % 1 :75 %, 2:25 % 

Lateral assignment Random Random 

Table 20: Original and updated model flow specifications 

Interarrival times 

Because of the original purpose of the model no appropriate distribution is used to generate arrivals. 

Within regular simulation projects, an input distribution or a load file (a data set based upon expected 

check-in profiles and flight schedules) is specified by the customer. Because this information is not 

available for Terminal 3, a rough approximation based on system data will be used, as discussed in the 

assumptions document.  

 

Service Times 

Within baggage handling systems service times generally only play a minor role. Service times can be 

observed at check-in desks, manual encoding areas, and manual inspection. The service times at check-in 

desks are out of the scope of the system, while manual encoding and inspection only handle a minor 

flow (Table 20).  Consequently, the effect of an increase in the duration of a service time is expected to 

be marginal (baggage items are rarely waiting to be handled). As a result, no detailed information about 

service times is available. Within the model of Terminal 3, a constant service time of 20 seconds has 

been used for both manual encoding and inspection. Whether the assumption about the small effects of 

service times can be considered valid, will be examined within the sensitivity analysis. 

B.1.2 Simulation Configuration 

In this section it will be discussed how the various simulation parameters are configured. 

 

Responses and Measuring Locations 

Normally within a simulation model one, or typically more, output parameters (called responses) are 

built in to give insight in the model’s performance. The most important output parameters for a BHS are 

the amount of baggage items that arrives too late at a lateral (when it is already closed), the amount of 

bags that a sorted to a wrong destination and the cycle time of a bag through the system. Since no 

detailed flight information is available, the first two parameters cannot be taken into account. The cycle 

time (CT) of a bag will be selected as the main response. 

 

Other important output parameters of a logistic system are throughput (TH) and work in process (WIP) 

(Hopp & Spearman, 2008). Throughput rates will not only be given of the whole system, but also of 



 

 

various locations within the system. This enables us to compare the behavior of bags in the system 

within different settings. 

 

In order to measure these parameters specific registration locations need to be identified. Recall that the 

first system registration takes place at the first ACRS, while the last registrations take place when a bag 

enters a lateral. The system identifies a bag as being diverted to the lateral when the bag is not detected 

by the photo eye on the sorter just after a lateral. However, both the

and the photo eyes are not modeled within the simulation model. Based on the AutoCAD drawing, it can 

be said that an ACRS is placed two meters in front of a level 1 screening machine. Unfortunately, the 

photo eyes on the sorter cannot be found in the AutoCAD drawing either. It is assumed that they are 

placed half a meter behind a lateral.

 

The cycle time of a baggage item, as well as the work in process of the system, are based on the 

measuring locations of bags entering and leaving the system. 

 

Measuring locations of throughput rates are depicted such that information can be registered of 

behavior of every type of flow within the system (

 

 

Figure 27: Measuring locations of throughput rates

Warm-up Period, Run Length &

Before the simulation can be conducted, the warm

should be determined.  For this assessment characteristics of the sensitivity analysis will be taken into 

account, such that the values can also be used for the design of experiments.

 

A warm-up analysis is used to estimate how long it takes a system to reach a steady state. If statistics are 

gathered during the warm-up period, they might not reflect the steady state of

conditions of a model and a system, determine whether a model needs to warm up. If the model starts 

up empty and must reach a loaded state before representing the real system, then the model requires 

warm-up time (Applied Materials

starts empty while the real system (almost) never is.

 

The most general technique for determining the warm

Kelton, 2000). The technique is based on plotting a simulation response and eyeing when it reaches a 
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The cycle time of a baggage item, as well as the work in process of the system, are based on the 

measuring locations of bags entering and leaving the system.  

Measuring locations of throughput rates are depicted such that information can be registered of 

behavior of every type of flow within the system (Figure 27). 
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ter cannot be found in the AutoCAD drawing either. It is assumed that they are 

The cycle time of a baggage item, as well as the work in process of the system, are based on the 

Measuring locations of throughput rates are depicted such that information can be registered of the 

 

up period, run length and amount of replications 

should be determined.  For this assessment characteristics of the sensitivity analysis will be taken into 

up analysis is used to estimate how long it takes a system to reach a steady state. If statistics are 

up period, they might not reflect the steady state of the system. The initial 

conditions of a model and a system, determine whether a model needs to warm up. If the model starts 

up empty and must reach a loaded state before representing the real system, then the model requires 

, Inc., 2008). This holds for the model of Cairo Terminal 3; the model 

up period is Welch’s graphical procedure (Law & 

s based on plotting a simulation response and eyeing when it reaches a 
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steady state.  Due to the inherent variability of the process, it is difficult to determine the warm-up 

period on a single replication. As a result the Welch procedure uses the average over more replications. 

High-frequency oscillations can be smoothened by using a moving average (Law & Kelton, 2000).  

 

The Work In Process (WIP) of the system is recommended as a good response; for instance utilization 

and throughput almost always reach steady state and tend to reach it more quickly (Applied Materials, 

Inc., 2008). This behavior was also observed for Terminal 3 while experimenting with several responses. 

It takes significant additional time to fill all EBS lanes properly. This directly affects the WIP, whereas the 

effect on other responses is much less noticeable. It should be noted though, that in case a load file is 

used, a steady state will never be reached due to the nonstationary input process. 

 

In Figure 28 the WIP levels can be observed as a function of time. Three replications are used for both 

the standard and the alternative distributions, determined in section 5.2.4. This number of replications 

was thought to be sufficient because the variation among replications was relatively small. Furthermore, 

WIP levels are measured with an interval of 1 minute. Since oscillations are reasonable small, no moving 

average has been applied. Based on this figure the warm-up time has been set to 90 minutes; at this 

time the WIP level appears to have reached a reasonable steady state. 

 
Figure 28: Warm-up period determination based on simulation WIP levels 

Concerning the run length and replications, typically a total run time of 24 hours is used for BHS 

simulations. Due to the application of CRN not too many replications are required in order to get 

sufficiently small confidence intervals. Therefore the amount of replications has been set to 3. When 

combining this with a total time of 24 hours, this would imply a run length of 8 hours. However, this 

might be considered somewhat short, since in the alternative configuration the time-to-flush of an EBS 

lane is 30 minutes (determined in appendix B.5.2). Though, both lanes are desynchronized, implying that 

the effect of flushing a lane is experienced once every 15 minutes (per sorter). In order to insure that the 

effect of the EBS is sufficiently taken into account the run length is set to 12 hours, resulting in a total run 

time of 36 hours (exclusive warm-up period).  
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B.1.3 Simulation Model Results 

In Table 21 the output results of the standard simulation model can be observed. The responses 

correspond to the responses identified in the previous section. The cycle time of standard bags is 

somewhat more than 3 minutes.  As expected, the cycle time of bags using the EBS is much larger, while 

the cycle time of bags to inspection is smaller, since they are removed from the system more upstream. 

Taking these cycle times into account, the average cycle time of the total amount of bags appears 

relatively low. This is due to amount of bags requiring EBS is small (5 %). Approximately 168 bags are on 

average in the system at a given moment in time. The throughput rate of the complete system is 

approximately 2159 bags per hour. From the throughput rates at different sections within the system it 

can be observed that they symmetrical left and right side of the system behave very similarly. 

 

Standard deviations are typically very small compared to the average. This is due to the use of common 

random numbers. As a result of the small standard deviations the 95 % confidence intervals of the 

average values are relatively small, even though only three replications are used. 

 

  

CT_Standard 

(sec) 

CT_EBS  

(sec) 

CT_Inspection 

(sec) 

CT_Total 

(sec) 

WIP  

(# bags) 

TH_System 

(bags/h) 

TH_Inpection 

(bags/h)   

Average 195,2167 1749,90 163,663 274,007 165,007 2167,777 1,0823 

 Std. Dev. 0,7520 72,12 3,426 6,617 4,482 7,113 0,3643 

 CI Low 193,3487 1570,74 155,152 257,568 153,873 2150,107 0,1773 

 CI High 197,0846 1929,05 172,174 290,445 176,141 2185,447 1,9873   

  TH_Induct1_1 TH_Induct1_2 TH_Induct1_3 TH_Induct1_41 TH_Induct1_42 TH_Sorter1_1 TH_Sorter1_2 TH_MC1 

Average 341,083 340,8067 346,223 52,2233 104,667 220,167 361,427 11,877 

Std. Dev. 2,621 0,3443 4,516 0,7104 7,292 4,304 2,807 1,101 

CI Low 334,572 339,9514 335,005 50,4587 86,553 209,476 354,453 9,142 

CI High 347,594 341,6619 357,442 53,9880 122,781 230,857 368,400 14,611 

  

TH_Induct2_1 

(bags/h) 

TH_Induct2_2 

(bags/h) 

TH_Induct2_3 

(bags/h) 

TH_Induct2_41 

(bags/h) 

TH_Induct2_42 

(bags/h) 

TH_Sorter2_1 

(bags/h) 

TH_Sorter2_2 

(bags/h) 

TH_MC2 

(bags/h) 

Average 340,473 338,9433 341,250 52,803 103,817 217,443 364,850 9,8077 

Std. Dev. 5,475 0,7564 2,349 3,043 2,505 3,055 2,877 0,6254 

CI Low 326,872 337,0643 335,414 45,244 97,593 209,854 357,702 8,2541 

CI High 354,075 340,8223 347,086 60,362 110,041 225,033 371,998 11,3612 

Table 21: The average, standard deviation and 95 % confidence intervals of simulation responses 

The system bottleneck relates to the component(s) with the highest utilization. For this system 

configuration the bottlenecks appear to be the sorters. The capacity of the sorter itself is 1500 bags per 

hour. Though, due to the configuration of the system the sorters are able to handle additional bags. 

Inducts are placed at both ends of the sorter, while diverts are distributed evenly. This implies that a 

significant amount of bags inserted at the first two inducts will be diverted before reaching the next two 

inducts, making space available for additional bags. Combining this information with the setting that 

bags are directed to a random lateral, results in a theoretical maximum capacity of 1,33 times the basic 

capacity level (based upon interviews of simulation engineers), which equals a total sorter capacity of 

2000 bags per hour. Combining the throughput rates of all sorter inducts, results in a total infeed rate of 

1182,18 bag per hour for the left sorter, and 1173,7 bags per hour for the right sorter, which leads to 

utilization rates of respectively  59,1 % and 58,7 %. 
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The sorter utilization rates can be verified by calculating the utilization rates at specific locations on the 

sorters, namely just after two inducts (where the scanning stations are placed). Throughput rates at 

these points can be calculated by summing what is on the sorter just before the set of inducts and what 

is added to the sorter at the set of inducts. For the left sorter, the throughput rate at the left ACRS is 

338,12 + 341,56 + 218,68 = 898,35 bags per hour.  The throughput rate at the right ACRS is 343,14 + 

51,75 + 107,61 + 362,69 = 865,19 bags per hour. This results in utilization rates of respectively 59,9 % 

and 57,7 %. Similarly utilization rates can be calculated of the right sorter. Throughput rates of 892,47 

(right) and 859,17 bags per hour (left) relate to utilization rates of respectively 59,5 % and 57,3 %. As 

such the overall sorter utilization of approximately 59 % seems accurate. 

 

To which degree this simulated system performance matches real system performance is evaluated 

within the subsequent chapters. 

B.2 Maintaining an Assumptions Document 

In this section assumptions used while conducting the case study are listed as an example of an 

assumptions document. The assumptions are specified per section. The purpose of the assumptions 

document is to present an overview of the assumptions made. More information can be acquired in the 

respective section. 

 

Model Configuration 

- The level of detail contained in the simulation model is sufficiently accurate to make findings 

derived from its results valid for the real system 

- The parameter values accurately describe the real system as specified in appendix B.1.1 

- In the simulation model bag dimensions are assumed to be constant at length 1000 mm; width 

700 mm; height 400 mm 

- No capacity information was available of an ACRS; it is assumed that its capacity is non-

restricting 

- The stopping space in the EBS is equal to the bag size plus a small gap (200 mm) 

- The system is assumed to  have an availability of 100% 

- The system uses fixed window lengths 

- Service times only have a minor effect on the cycle time 

- The real system is implemented as drawn in the AutoCAD file 

- Back-up lines are not used; no cases traverse both the right and the left subsystem  

- The capacity at container loading areas is non-restricting and can be considered endless 

- Photo eyes placed on the sorter for registering that bags are diverted, are located half a meter 

behind a chute 

Input Validation 

- Interarrival times of cases can be considered continuously distributed, and characterized as a 

triangle distribution with a minimum of 0, a maximum of 27, and a most likely value of 3 

- The effect of input distribution tales is negligible  

- The system can handle variation of interarrival times within some minutes 

- All 6 scanners have an identical input distribution 
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- The selected system samples are stationary and IID 

Trace-Driven Output Validation 

- Nonstationary input data results in nonstationary output differences 

- Outliers are not inherent to the system but caused by anomalies such as unavailability 

- Bags that are not identified within the tracking system (no LPC), follow a similar pattern as the 

other baggage items  

- An increase in utilization generally leads to an increase in the difference between simulation 

output and system output 

Sensitivity Analysis 

- Bags that are not identified within the tracking system (no LPC), follow a similar pattern as the 

other baggage items  

- The left and right EBS are configured identically 

- The first EBS flush-backs are representative for the small amount of additional flush-backs 

- A linear underlying model can be used to assess factor effects 

Factor interactions of the third order, or higher, are negligible   
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B.3 Additional Input Validation Results 

 

B.3.1 System Input Capacity Requirements 

In this section graphs can be observed of the system input capacity requirements of day 22, 23, 24 and 

25, based on a moving average of 100 bags. The peak capacity requirements of the different days appear 

to be fairly similar. 

 

Figure 29: System input capacity requirements, based on a moving average of 100 bags 
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B.3.2 Examples of the effect of a reduced sample size 

In this section additional examples can be found that indicate the difference between the stationarity of 

samples based on 2250 or 1250 bags. 

 

  

  

  
Figure 30: Time series comparison based on a sample size of 2250 and 1250 
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B.3.3 Time Series for System Input Sample Selection 

Within this section run sequence plots can be observed of the input samples per ACRS per day. Note that 

not all samples appear to be sufficiently stationary. These samples will be excluded within the 

subsequent steps. 

 

Figure 31: Interarrival times of ACRS 171 
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Figure 32: Interarrival times of ACRS 172 
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Figure 33: Interarrival times of ACRS 173 
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Figure 34: Interarrival times of ACRS 271 
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Figure 35: Interarrival times of ACRS 272 
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Figure 36: Interarrival times of ACRS 273 

B.3.4 Data Autocorrelation 

Autocorrelation plots can be observed in Figure 37. Except for ACRS 273, observed values are generally 

not very high and appear follow no specific pattern. However, the autocorrelation tables indicate that 

also the autocorrelation of ACRS 273 is generally within the required limits. 
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Figure 37: Autocorrelation figures of ACRS 172 / 173 / 271 / 272 / 273 
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Day 20 Day 21 Day 22 Day 23 Day 24 Day 25 Day 20 Day 21 Day 22 Day 23 Day 24 Day 25 Day 20 Day 21 Day 22 Day 23 Day 24 Day 25 

Autocorrelation Table 171 171 171 171 171 171 172 172 172 172 172 172 173 173 173 173 173 173 

Number of Values 173 215 223 195 160 239 137 83 98 101 100 116 357 277 250 348 296 369 
Standard Error 0,0760 0,0682 0,0670 0,0716 0,0791 0,0647 0,0854 0,1098 0,1010 0,0995 0,1000 0,0928 0,0529 0,0601 0,0632 0,0536 0,0581 0,0521 

Lag #1 0,1118 0,2201 0,1032 0,1022 0,1867 0,3868 0,0610 -0,1467 0,1834 0,0377 -0,0257 -0,0706 0,0734 0,1105 0,1621 0,0241 0,0445 0,0687 

Lag #2 0,0990 0,1262 0,0001 0,1449 0,0057 0,1073 0,0644 -0,0989 0,0803 -0,1137 0,0602 0,0569 0,0179 0,0154 0,0969 0,2254 -0,0343 0,0611 

Lag #3 0,0430 0,2532 -0,0537 0,0126 -0,0238 0,1278 0,0193 -0,0704 -0,0182 -0,0472 -0,0563 -0,0233 -0,0004 0,0899 -0,0225 0,0146 0,0101 0,0356 

Lag #4 0,1435 0,0366 -0,0072 0,0659 0,0383 0,0886 0,0512 0,0653 -0,0105 0,0049 -0,1042 -0,1116 0,0254 0,1067 0,0336 0,0375 0,0262 0,0378 

Lag #5 -0,0226 0,0115 0,0008 0,0863 0,0133 0,0634 -0,0350 -0,0408 0,0984 -0,0237 -0,0755 0,3465 0,0023 -0,0367 -0,0172 -0,0171 -0,0145 0,0439 

Lag #6 0,1556 -0,0179 -0,0225 0,0160 0,0836 -0,0642 -0,0212 0,0009 0,0447 -0,0240 -0,0691 -0,0059 -0,0239 -0,0643 -0,0504 -0,0039 -0,0125 -0,0262 

Lag #7 0,0815 0,0252 0,0078 0,1027 0,0816 -0,0440 0,1230 0,1572 0,0875 -0,0752 -0,0660 0,0236 -0,0167 -0,0920 -0,0665 -0,0297 0,0512 0,1119 

Lag #8 0,0623 0,1263 0,1201 0,0873 0,0418 -0,0138 0,1409 -0,0687 -0,0647 -0,0560 -0,0135 0,0695 -0,0106 -0,0799 -0,0480 -0,0163 -0,0066 0,0936 

Lag #9 0,0426 0,0887 -0,0536 0,1842 0,0390 -0,0179 0,3390 0,0586 0,0111 -0,0408 -0,0328 -0,1127 0,0122 -0,0157 -0,0224 -0,0311 -0,0217 0,1154 

Lag #10 0,0938 0,1386 -0,0390 0,0416 0,0258 0,0106 0,0654 -0,0243 -0,0333 0,2284 0,0222 0,0750 -0,0303 -0,0671 0,0024 -0,0201 0,0502 -0,0260 

Lag #11 -0,0475 0,1580 0,0068 0,0052 0,0298 -0,0019 0,0560 0,1049 -0,0246 0,0104 -0,1762 -0,0760 -0,0144 -0,0655 -0,0295 -0,0214 -0,0213 0,0565 

Lag #12 0,0327 0,1100 0,0655 0,0176 0,0236 0,0908 -0,0160 -0,0975 -0,0875 0,0214 -0,1073 -0,0290 -0,0145 -0,0376 0,0110 -0,0411 -0,0819 -0,0350 

Lag #13 0,0414 0,0701 -0,0129 -0,0173 0,0245 0,0833 0,0467 0,0302 0,0108 0,1388 0,0689 -0,0314 -0,0035 0,0286 0,0280 -0,0594 0,0321 -0,0002 

Lag #14 0,0362 -0,0089 -0,0318 -0,0253 -0,0476 0,0484 -0,0003 -0,0623 -0,0936 -0,0545 -0,0800 -0,1274 -0,0179 -0,0358 0,1570 -0,0092 -0,0778 -0,0148 

Lag #15 0,0629 -0,0236 -0,0076 0,0391 0,0284 0,0185 -0,0669 0,1549 -0,1133 -0,1088 -0,0967 -0,0043 -0,0183 -0,0961 0,0642 0,0012 -0,0970 -0,0368 

Lag #16 0,1128 -0,0446 -0,0506 0,0736 0,0163 -0,0370 0,0466 0,0568 0,1713 -0,0766 0,0369 -0,1388 0,0072 -0,0440 -0,0052 0,0003 -0,0574 0,0103 

Lag #17 0,0899 -0,0447 0,0032 -0,0309 0,0261 -0,0235 0,1852 -0,1379 0,0258 0,0913 0,0487 0,0953 -0,0023 0,0585 -0,0363 -0,0226 -0,0433 0,0102 

Lag #18 -0,0237 -0,0580 -0,0679 0,0314 0,1055 -0,0315 -0,0010 -0,0253 0,0612 0,0940 -0,0082 -0,0144 -0,0134 -0,0055 -0,0298 -0,0307 0,0290 0,0716 

Lag #19 0,1247 -0,0237 -0,0122 0,0189 0,2128 -0,0522 0,2636 0,0135 -0,1203 0,0577 0,2573 -0,0194 0,0150 -0,0166 -0,0367 -0,0239 -0,0241 -0,0075 

Lag #20 0,1003 -0,0623 -0,0376 0,0255 -0,0507 -0,0179 0,0829 -0,0869 -0,0749 0,0878 0,0934 -0,0213 -0,0098 -0,0269 0,0572 -0,0061 -0,0424 0,0439 

Lag #21 0,0354 -0,0718 0,0127 0,0427 -0,0846 -0,0131 0,1046 -0,0862 0,0254 -0,1139 0,0426 -0,0072 0,0110 0,0140 -0,0537 0,0198 0,0598 0,0083 

Lag #22 -0,0411 -0,0162 -0,0109 -0,0237 0,0375 0,0236 -0,0264 0,1904 0,0590 0,1068 -0,0998 0,0374 0,0358 -0,0337 -0,0182 0,0202 0,0847 0,0285 

Lag #23 0,0312 -0,0746 0,0373 0,0508 0,0361 -0,0092 -0,0069 -0,0544 0,2344 0,2273 -0,0048 0,0015 -0,0134 -0,0698 -0,0856 0,0547 0,0079 0,0390 

Lag #24 0,0480 -0,0229 0,0198 0,0366 -0,1334 0,0636 -0,0242 -0,1282 -0,0303 -0,0511 -0,1023 0,0425 -0,0216 -0,0925 -0,0807 -0,0191 0,0012 -0,0089 

Lag #25 -0,0488 -0,0383 0,2193 0,0308 -0,0561 0,0783 -0,0059 -0,0517 0,0060 -0,0284 -0,0574 -0,0315 0,0057 -0,0623 0,0214 0,1726 -0,0426 -0,0524 

Lag #26 -0,0137 -0,0911 0,0320 0,0440 0,0549 0,0436 0,0109 0,2125 -0,0827 -0,1135 0,0733 0,0124 -0,0105 -0,0261 0,1236 0,0029 0,0518 0,0214 

Lag #27 -0,0095 -0,0735 0,1219 0,1292 0,0524 0,0387 0,0633 -0,0986 -0,0598 -0,0239 0,0278 -0,0150 -0,0287 -0,0518 0,1202 -0,0232 0,0249 0,0714 

Lag #28 0,1141 -0,0451 0,0280 0,0222 -0,0240 -0,0431 0,1890 0,0043 -0,0362 -0,0911 0,0369 0,1134 -0,0285 -0,0516 0,0729 -0,0101 0,1556 0,0310 

Lag #29 0,0071 -0,0629 0,0283 0,0767 -0,0651 -0,0403 0,0107 -0,1472 -0,0350 -0,0224 0,1579 0,0768 -0,0226 -0,0454 -0,0350 -0,0051 -0,0330 0,1257 

Lag #30 0,0396 -0,0567 -0,0254 -0,0164 -0,1341 -0,0197       0,0002 0,0858 0,0334 -0,0135 0,0426 0,0122 

Lag #31 -0,0281 -0,0515 -0,0118 0,0518 -0,1312 -0,0441       -0,0006 0,0189 -0,0452 -0,0492 -0,0046 0,0142 

Lag #32 0,0332 -0,0946 0,0185 -0,0083 -0,0187 -0,0541       0,0288 0,2626 -0,0447 -0,0081 0,0084 0,0829 

Table 22: Autocorrelation table of ACRS 171 / 172 / 173 (significant correlations are bold) 

 

 

 

 

 

 

 



 

100 

 

 

 

Day 20 Day 21 Day 22 Day 23 Day 24 Day 25 Day 20 Day 21 Day 22 Day 23 Day 24 Day 25 Day 20 Day 21 Day 22 Day 23 Day 24 Day 25 

Autocorrelation Table 271 271 271 271 271 271 272 272 272 272 272 272 273 273 273 273 273 273 

Number of Values 238 293 243 242 220 245 303 290 290 288 230 223 36 86 140 70 238 52 
Standard Error 0,0648 0,0584 0,0642 0,0643 0,0674 0,0639 0,0574 0,0587 0,0587 0,0589 0,0659 0,0670 0,1667 0,1078 0,0845 0,1195 0,0648 0,1387 

Lag #1 0,0525 0,0101 0,0833 0,0598 0,0762 0,1421 0,0319 0,1446 0,1180 0,0240 0,0720 -0,0271 0,0193 0,0626 0,1659 0,1301 0,0503 0,1275 

Lag #2 -0,0144 -0,0059 0,1149 0,1976 0,0337 0,0157 0,2681 0,1107 0,1321 -0,0181 0,0089 -0,0453 0,2205 0,0565 0,1696 -0,0495 0,0367 0,0933 

Lag #3 -0,0479 -0,0212 0,0627 0,0478 -0,0693 0,0697 0,0848 0,0283 -0,0022 -0,0288 -0,0077 0,1028 0,5072 0,2576 0,2576 0,0342 0,0361 0,3249 

Lag #4 0,0254 -0,0357 0,0684 0,0845 0,0149 -0,0454 -0,0513 0,0749 0,0461 -0,0380 -0,0558 0,0085 -0,0141 0,0376 0,1593 0,2784 0,2474 0,0933 

Lag #5 0,0033 -0,0301 -0,0239 0,0238 -0,0711 -0,0619 0,0155 0,1406 -0,0448 -0,0122 -0,0053 -0,0187 0,3058 0,0639 0,1476 0,2946 0,0255 0,2162 

Lag #6 0,0255 -0,0471 0,0903 0,0075 0,0186 -0,1237 0,0253 0,0290 -0,0232 -0,0315 0,0304 0,0262 0,0908 0,1538 0,1283 -0,0538 0,0525 -0,0369 

Lag #7 -0,0768 -0,0084 0,0300 0,0127 0,0120 -0,0733 0,0006 0,0563 0,0037 0,1513 0,0053 -0,0307 0,1682 0,0597 0,0456 0,0414 -0,0018 -0,0375 

Lag #8 -0,0261 0,0108 0,0240 -0,0179 0,1794 -0,0366 0,0573 0,0467 0,0009 -0,0582 0,0399 -0,0199 0,0166 -0,0613 0,1610 0,0274 0,0420 -0,0177 

Lag #9 -0,0968 -0,0159 0,0425 -0,0537 -0,0362 0,0026 0,1858 0,0507 0,0180 -0,0172 0,0174 -0,0269 -0,0977 -0,0523 0,0980 -0,0684 0,0428 -0,0409 

Lag #10 0,0063 -0,0272 -0,0501 -0,0420 -0,0171 -0,0298 0,0097 0,0619 -0,0115 -0,0622 0,0217 -0,0270 0,1821 -0,0605 0,0279 -0,0540 0,0319 0,0018 

Lag #11 -0,0012 -0,0102 -0,0427 -0,0554 -0,0513 -0,0692 0,1085 0,0906 0,0220 -0,0169 -0,0009 -0,0370 -0,2200 -0,0447 0,0039 -0,0596 0,0030 -0,0036 

Lag #12 0,0657 -0,0375 -0,1033 -0,0880 0,0209 0,0593 0,0499 0,0811 -0,0179 0,0577 -0,0412 -0,0416 -0,0442 -0,0835 -0,0084 -0,0301 0,0354 -0,0381 

Lag #13 0,0714 0,0098 -0,0585 0,0630 -0,0261 0,0210 -0,0982 0,0682 -0,0196 -0,0044 -0,0033 -0,0256 0,0754 -0,0610 0,0125 -0,0301 0,0253 -0,0639 

Lag #14 0,0355 -0,0327 -0,0731 -0,0152 0,0808 0,0901 0,0462 -0,0178 -0,0611 0,0019 -0,0135 -0,0109 

Lag #15 0,0725 -0,0458 -0,0357 0,0444 0,1942 0,0973 -0,0170 0,0069 -0,0152 -0,0063 0,1051 -0,0595 

Lag #16 -0,0054 -0,0098 -0,0260 0,0325 0,0495 -0,0416 -0,0494 -0,0571 -0,0074 -0,0175 0,0090 -0,0167 

Lag #17 -0,1249 -0,0001 0,0005 0,0840 -0,0262 0,1230 0,0535 -0,0566 -0,0002 -0,0666 -0,0323 -0,0468 

Lag #18 0,0484 -0,0342 -0,0352 0,0310 0,0400 0,0974 -0,0296 -0,0283 -0,0208 -0,0332 0,0046 0,0059 

Lag #19 -0,1064 0,0051 -0,0402 0,0875 -0,0177 -0,0356 0,0874 0,0462 -0,0391 0,0420 0,0562 0,1208 

Lag #20 -0,0055 -0,0146 -0,1079 0,0554 -0,0859 0,0900 0,0602 -0,0022 0,0209 -0,0041 0,0397 -0,0301 

Lag #21 -0,0624 -0,0181 -0,0281 0,0027 -0,0521 -0,0397 -0,0519 -0,0130 -0,0512 -0,0315 0,0213 -0,0622 

Lag #22 0,0640 -0,0366 -0,0455 -0,0354 -0,0733 0,0298 0,0349 -0,0039 -0,0446 -0,0370 -0,0056 -0,0469 

Lag #23 -0,0053 0,0338 -0,0376 0,0187 0,0880 0,0315 -0,0658 0,0114 -0,0003 0,0458 -0,0583 0,1637 

Lag #24 -0,0207 -0,0069 0,0691 -0,0390 -0,0179 -0,0535 -0,1016 -0,0719 -0,0626 0,2141 0,0848 0,0293 

Lag #25 0,0402 -0,0329 -0,0119 0,1237 0,0069 -0,0891 -0,0247 -0,0192 -0,0171 -0,0119 -0,0188 -0,0748 

Lag #26 0,1336 0,0069 0,0426 -0,0203 0,0012 -0,0417 -0,0401 -0,1249 -0,0103 0,0050 0,0584 0,0523 

Lag #27 -0,0747 0,0146 -0,0897 -0,0345 -0,0431 -0,0196 -0,0222 -0,0106 -0,0261 0,0349 0,0259 -0,0075 

Lag #28 0,0316 -0,0439 0,1380 -0,0244 -0,0222 0,0606 0,0213 -0,0484 -0,0818 -0,0096 -0,0156 0,0409 

Lag #29 0,0294 0,0351 0,0186 -0,0794 0,0466 0,0174 -0,0076 -0,0011 -0,0556 -0,0105 -0,0541 -0,0212 

Lag #30 -0,0547 0,0151 0,1467 -0,0352 -0,0460 -0,0235 0,0095 0,0348 -0,0469 -0,0038 -0,0016 0,1133 

Lag #31 0,0385 -0,0487 -0,0429 -0,0272 -0,0920 -0,0340 0,0233 -0,0380 -0,0367 0,0989 -0,1022 -0,0036 

Lag #32 -0,0251 -0,0451 0,0602 -0,0905 -0,0502 0,0761 0,0040 0,0241 0,0046 -0,0878 -0,0148 -0,0206 

Table 23: Autocorrelation table of ACRS 271 / 272 / 273 (significant correlations are bold)
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B.3.5 ACRS Sample Selection 

Within this section it will be evaluated which samples can be combined, of automated code scanners 

other than ACRS 171. For this purpose summary statistics and Box-Whisker plots can be observed, as 

well as the results of hypothesis tests based on the median and the standard deviation. 

 

Day 20 Day 21 Day 22 Day 23 Day 24 Day 25 

One Variable 

Summary 172 172 172 172 172 172 

Mean 19,64 27,71 21,02 23,50 21,05 19,56 

Variance 631,20 705,96 496,76 745,95 442,31 463,31 

Std. Dev. 25,12 26,57 22,29 27,31 21,03 21,52 

Median 10,00 20,00 11,00 13,00 13,00 11,00 

Mode 7,00 7,00 7,00 7,00 7,00 7,00 

Minimum 3,00 3,00 3,00 3,00 3,00 3,00 

Maximum 171,00 118,00 112,00 138,00 108,00 131,00 

Count 137 83 98 101 100 116 

 

173 173 173 173 173 173 

Mean 7,68 8,444 8,252 6,66 7,311 6,160 

Variance 241,98 96,741 89,362 112,47 34,967 34,569 

Std. Dev. 15,56 9,836 9,453 10,61 5,913 5,880 

Median 4,00 6,000 6,000 4,00 6,000 4,000 

Mode 3,00 3,000 3,000 3,00 3,000 3,000 

Minimum 1,00 1,000 2,000 2,00 2,000 2,000 

Maximum 275,00 99,000 89,000 139,00 38,000 61,000 

Count 357 277 250 348 296 369 

 

271 271 271 271 271 271 

Mean 11,50 7,973 8,432 9,69 9,79 9,269 

Variance 121,31 68,232 78,337 112,12 117,79 75,911 

Std. Dev. 11,01 8,260 8,851 10,59 10,85 8,713 

Median 7,00 6,000 6,000 7,00 7,00 7,000 

Mode 7,00 3,000 3,000 3,00 7,00 7,000 

Minimum 3,00 2,000 2,000 2,00 0,00 2,000 

Maximum 54,00 101,00

0 

81,000 68,00 91,00 64,000 

Count 238 293 243 242 220 245 

 

272 272 272 272 272 272 

Mean 9,08 7,714 7,117 8,23 9,409 9,843 

Variance 102,10 29,790 61,502 107,50 88,260 82,295 

Std. Dev. 10,10 5,458 7,842 10,37 9,395 9,072 

Median 6,00 6,000 4,000 6,00 7,000 7,000 

Mode 3,00 3,000 3,000 3,00 3,000 3,000 

Minimum 2,00 2,000 2,000 2,00 2,000 1,000 

Maximum 93,00 37,000 73,000 108,00 90,000 84,000 

Count 303 290 290 288 230 223 

 

273 273 273 273 273 273 

Mean 74,08 24,56 14,36 32,36 9,03 40,13 

Variance 11701,3

4 

2829,2

8 

934,33 4246,15 176,14 8697,4

9 Std. Dev. 108,17 53,19 30,57 65,16 13,27 93,26 

Median 20,00 7,00 6,00 13,00 7,00 11,00 

Mode 10,00 3,00 3,00 3,00 7,00 3,00 

Minimum 3,00 3,00 3,00 2,00 3,00 3,00 

Maximum 420,00 394,00 238,00 479,00 164,00 596,00 

Count 36 86 140 70 238 52 

Table 24: Summary statistics of ACRS 172 / 173 / 271 / 272 / 273 



 

 

Figure 38: Box-Whisker Plots of ACRS 172 / 173 / 271 / 272 / 273
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Whisker Plots of ACRS 172 / 173 / 271 / 272 / 273 
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Included Samples Kruskal Wallis test Mood’s Median test 

Comments ACRS 172 Test Statistic P-Value Test Statistic P-Value 

Day 20 / 21 / 22 / 23 / 24 / 25 12,6602 0,0268 17,2682 0,004 Day 21 has the most offset median and mean  

Day 20 / 22 / 23 / 24 / 25 0,8308 0,9343 0,6813 0,9536 Accept null hypothesis 

ACRS 173 Test Statistic P-Value Test Statistic P-Value Comments 

Day 20 / 21 / 22 / 23 / 24 / 25 32,5402 4,6434E-6 35,6387 1,1216E-6 Day 25 has the most offset median, mean 

and variance 

Day 20 / 21 / 22 / 23 / 24 21,225 2,857E-4 23,5718 9,731E-5 Day 23 has the most offset median and mean 

Day 20 / 21 / 22 / 24 3,1202 0,3735 1,9184 0,5895 Accept null hypothesis 

Day 23 / 25 0,0215 0,8833 0,0534 0,8172 Alternative combination - 

Accept null hypothesis 

ACRS 271 Test Statistic P-Value Test Statistic P-Value Comments 

Day 20 / 21 / 22 / 23 / 24 / 25 22,4118 4,371E-4 12,776 0,0255 Day 20 has the most offset median and mean 

Day 21 / 22 / 23 / 24 / 25 8,314 0,0807 4,1981 0,3798 Day 21 has the most offset median and mean 

Day 22 / 23 / 24 / 25 4,4813 0,21396 3,1627 0,3672 Accept null hypothesis 

Day 21 / 22 0,1088 0,7415 0,0608 0,8053 Alternative combination – 

Accept null hypothesis 

ACRS 272 Test Statistic P-Value Test Statistic P-Value Comments 

Day 20 / 21 / 22 / 23 / 24 / 25 38,6127 2,8416E-7 34,6403 1,7749E-6 Day 22 has the most offset median and mean 

Day 20 / 21 / 23 / 24 / 25 15,0214 0,0047 12,0266 0,0172 Day 21 has the most offset median and mean 

Day 20 / 23 / 24 / 25 14,0877 0,0027 11,7661 0,0082 Day 23 has the most offset median and mean 

Day 20 / 24 / 25 4,2071 0,1220 1,9738 0,3727 Accept null hypothesis 

Day 21 / 23 2,4222 0,1196 1,1801 0,2773 Alternative combination – 

Accept null hypothesis 

ACRS 273 Test Statistic P-Value Test Statistic P-Value Comments 

Day 20 / 21 / 22 / 23 / 24 / 25 67,5392 0,0 70,0045 0,0 Day 20 has the most offset median and mean 

Day 21 / 22 / 23 / 24 / 25 45,9822 2,4840E-9 55,9504 2,054E-11 Day 25 has the most offset mean 

Day 21 / 22 / 23 / 24 33,9985 1,9826E-7 38,6461 2,0627E-8 Day 23 has the most offset median and mean 

Day 21 / 22 / 24 5,9084 0,0521 7,4277 0,0244 Day 21 has the most offset median and mean 

Day 22 / 24 0,054 0,8162 0,3138 0,5753 Accept null hypothesis 

Table 25: Comparing sample medians of ACRS 172 / 173 / 271 / 272 / 273 

 Levene’s Test  

Included Samples Test Statistic P-Value Comments 

ACRS 172: Day 20 / 22 / 23 / 24 / 25 0,6371 0,6362 Accept null hypothesis 

ACRS 173: Day 20 / 21 / 22 / 24 0,5496 0,6485 Accept null hypothesis 

ACRS 173: Day 23 / 25 0,7061 0,4008 Accept null hypothesis 

ACRS 271: Day 22 / 23 / 24 / 25 0,9112 0,4349 Accept null hypothesis 

ACRS 271: Day 21 / 22 0,2733 0,6013 Accept null hypothesis 

ACRS 272: Day 20 / 24 / 25 0,0060 0,9941 Accept null hypothesis 

ACRS 272: Day 21 / 23 1,9349 0,1648 Accept null hypothesis 

ACRS 273: Day 22 / 24 5,8809 0,0158 Reject null hypothesis 

Table 26: Comparing sample standard deviations of ACRS 172 / 173 / 271 / 272 / 273 

From Table 25 and Table 26 it can be derived which samples may be combined. Only for ACRS 273 it is 

not possible to combine samples. Consequently, the comparison between the distribution and the real 

system sample will only be based on a very limited sample size. 

B.3.6 Comparing ACRS samples to input distributions 

In this section comparisons can be observed between real system samples and input distributions, as 

well as best fitting distributions. These comparisons consist of graphical techniques as well as goodness-

of-fit tests. 
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ACRS 172 

Data 

*(Cr. Value 

@0,05) 

Triangle 

Distr. 

Lognormal 

Distr. 

Minimum 3 0 2,3680 

Maximum 171 27 +Infinity 

Mean 20,8297 10 21,7050 

Mode 3 3 4,7376 

Median 11 9 11,9727 

Std. Dev. 23,5967 6,0415 33,7890 

K-S  0,0575* 0,2670 0,1207 

A-D  2,4920* +Infinity 5,5802 

Chi-Sq  33,9244* 602,0417 532,6667 

 

 
Table 27: Graphical comparisons for ACRS 172 – Sample: Day 20 / 22 / 23 / 24 / 25 
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ACRS 173 

Data 

*(Cr. Value 

@0,05) 

Triangle 

Distr. 

Exponential 

Distr. 

Minimum 1 0 0,9942 

Maximum 275 27 +Infinity 

Mean 7,8890 10 7,8832 

Mode 3 3 0,9942 

Median 6 9 5,7693 

Std. Dev. 11,1145 6,0415 6,8890 

K-S  0,0394* 0,3639 0,2433 

A-D  2,4920* +Infinity +Infinity 

Chi-Sq  43,7730* 4977,6610 4978,8593 

  

  
Table 28: Graphical comparisons for ACRS 173 – Sample: Day 20 / 21 / 22 / 24 
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ACRS 271 

Data 

*(Cr. Value 

@0,05) 

Triangle 

Distr. 

Lognormal 

Distr. 

Minimum 0 0 -0,1407 

Maximum 91 27 +Infinity 

Mean 9,2821 10 8,8773 

Mode 3 3 4,0270 

Median 7 9 6,8315 

Std. Dev. 9,7690 6,0415 7,3976 

K-S  0,0478* 0,2962 0,1657 

A-D  2,4920* +Infinity 22,2255 

Chi-Sq  41,3371* 2724,8105 2732,2063 

 

  

Table 29: Graphical comparisons for ACRS 271 – Sample: Day 22 / 23 / 24 / 25 
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ACRS 272 

Data 

*(Cr. Value 

@0,05) 

Triangle 

Distr. 

Lognormal 

Distr. 

Minimum 1 0 0,8843 

Maximum 93 27 +Infinity 

Mean 9,4061 10 9,1911 

Mode 3 3 3,7589 

Median 7 9 6,7162 

Std. Dev. 9,5867 6,0415 8,4255 

K-S  0,0492* 0,2363 0,1291 

A-D  2,4920* +Infinity 12,7089 

Chi-Sq  37,6525* 1550,1984 1560,4074 

 

 
Table 30: Graphical comparisons for ACRS 272 – Sample: Day 20 / 24 / 25 
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ACRS 273 

Data 

*(Cr. Value 

@0,05) 

Triangle 

Distr. 

Exopnential 

Distr. 

Minimum 3 0 2,9746 

Maximum 164 27 +Infinity 

Mean 9,0336 10 9,0082 

Mode 3 3 2,9746 

Median 7 9 7,1568 

Std. Dev. 13,2719 6,0415 6,0336 

K-S  0,0873* 0,3358 0,2316 

A-D  2,4920* +Infinity 36,4022 

Chi-Sq  24,9958* 344,2857 338,4034 

 

Table 31: Graphical comparisons for ACRS 273 – Sample: Day 24 
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B.4 Additional Trace-Driven Output Validation Results 

This section contains additional trace-driven output validation results. For bags requiring the EBS and 

bags going to inspection, summary statistics Box-Whisker plots and histogram comparisons can be 

observed. For the right subsystem a correlation table and a behavior graph are presented. 

B.4.1 Summary Statistics 

System Run 1 Run 2 Run 3 

Correlation -0,03 -0,0563 0,0469 

P-Value 0,6110 0,3401 0,4273 

Table 32: Spearman rank correlations between the system and various runs, based on the right subsystem 

Statistic System Run 1 Run 2 Run 3 

Count 1616 3198 3136 3198 

Mean 00:34:50 00:26:32 00:26:29 00:26:41 

5% Trimmed mean 00:32:36 00:25:06 00:25:01 00:25:14 

Median 00:30:38 00:22:07 00:22:09 00:22:17 

Standard deviation 00:21:33 00:15:31 00:15:44 00:15:33 

Table 33: Summary statistics of bags requiring the EBS 

 
Statistic System Run 1 Run 2 Run 3 

Count 106 29 37 27 

Mean 00:03:04 00:02:36 00:02:36 00:02:38 

5% Trimmed mean 00:02:58 00:02:35 00:02:35 00:02:37 

Median 00:02:57 00:02:34 00:02:34 00:02:34 

Standard deviation 00:00:52 00:00:13 00:00:16 00:00:15 

Table 34: Summary statistics of bags going to inspection 

Statistic System 

Count 5359 

Mean 00:05:59 

5% Trimmed mean 00:05:15 

Median 00:05:30 

Standard deviation 00:04:26 

Table 35: Summary statistics of bags switching subsystems 
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B.4.2 Box-Whisker Plots 

 
Figure 39: Box-Whisker plots of bags requiring the EBS 

 

 
Figure 40: Box-Whisker plots of bags going to inspection 

B.4.3 Histograms 

 
Figure 41: Histograms of bags requiring the EBS 
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Figure 42: Histograms of bags going to inspection 

B.4.4 Behavior Graphs 

 
Figure 43: Standard cycle times related to the arrival rate, based on the right subsystem 

Note that no behavior graphs have been constructed of the cycle times of bags requiring the EBS or 

going to inspection. The influence of an increased arrival rate is on bags requiring the EBS is relatively 

very small. Consequently, this effect is practically insignificant. Related to bags going to inspection, the 

number of bags traveling to the inspection zone is too small to observe a trend related to the arrival rate. 
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B.5 Sensitivity Analysis 

B.5.1 Cumulative Distribution Functions 

Triangular Distribution (Palisade Corporation, 2009): with minimum, most likely and maximum value. 

	
0 = 
1 − 3�4�

3. 6�786� − 3�4
max − 3�4       min ≤  1 ≤ 3. 6�786� 

	
0 = 1 − 
3�@ − 1�

3�@ − 3. 6�786�
3�@ − 3�4      m. likely ≤  1 ≤  3�@ 

 

Exponential Distribution (Palisade Corporation, 2009) 

	
0 = 1 − 8�0E 

 

Lognormal Distribution (Palisade Corporation, 2009) 

	
0 = Ф Gln @ −  H′
J′ K 

L��ℎ HM =  Ф N OP
QRPSOPT  �4U JM =  V64 N1 + �R

O��T  

Where Ф(z) is the cumulative distribution function of a Normal(0,1) distribution  

 

B.5.2 Determination of Factor Levels 

The factor “distribution” assesses the system’s sensitivity related to changes within input parameters. 

Two suitable distributions have been evaluated already in section 5.2.4; a standard triangular 

distribution for all input lanes, and lane specific best fitting distribution. These input distributions are 

stochastic and therefore will require many replications of the experiment, in order to acquire an 

accurate estimate of factor effects.  

 

The standard reject rates of level 1/2 and level 3/4 screening are respectively 5 % and 1 %. The reject 

rates as perceived in the real system can be observed in Table 36. It shows the amount of screened and 

rejected bags, as well as the resulting reject rate of the different days of the various screening levels. 

Alternative values of 7,7 % and 7,1 % will be used for level 1/2 and level 3/4, as those deviate the most 

from the standard values. 

 

 

L1/2 Screening L3/4 Screening 

  #Screened #Rejected Reject Rate #Screened #Rejected Reject Rate 

Day 20 8235 509 0,0618 350 8 0,0229 

Day 21 9085 560 0,0616 397 16 0,0403 

Day 22 10125 779 0,0769 560 20 0,0357 

Day 23 10996 704 0,0640 493 32 0,0649 

Day 24 9906 476 0,0481 297 9 0,0303 

Day 25 10153 452 0,0445 294 21 0,0714 

Total 58500 3480 0,0595 2391 106 0,0443 

Table 36: Real system screening reject rates 
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In Table 37 the amount of unique bags per day can be observed passing the MES or EBS (thus exclusive 

flush-backs). In order to convert these values to rates, they are being compared to the amount of bags 

leaving the system at the various laterals. Since the rates applied in the simulation model are 1 % for 

MES and 5 % for the EBS, the most deviating values are respectively 0,4 % and 2,6 % (rounded). 

 
  #MES #Lateral Rate #EBS #Lateral Rate 

Day 20 53 8305 0,0064 264 8305 0,0318 

Day 21 40 8745 0,0046 263 8745 0,0301 

Day 22 74 9690 0,0076 475 9690 0,0490 

Day 23 52 9816 0,0053 387 9816 0,0394 

Day 24 47 9655 0,0049 312 9655 0,0323 

Day 25 42 9719 0,0043 248 9719 0,0255 

Total 308 55930 0,0055 1949 55930 0,0348 

Table 37: Real system MES and EBS rates 

Recall that EBS control is constituted of the lane assignment when entering the EBS for the first time, the 

probability to return to the EBS after a flush (flush-back), the probability to change lane in case a bag 

flushes back, and the time between flushes. It should be noted that the assumption made within the 

simulation model that both Early Back Stores are configured identically, will be maintained. Therefore it 

is assumed that deviations between both stores are the result of real world circumstances that are not 

taken into account in the simulation model. 

 

In Table 38 the amount of unique bags can be found that require the usage of the EBS, for both the left 

and the right EBS. Furthermore, it can be observed how these bags are divided over the two available 

lanes per EBS. Comparing the percentages devoted to lane 1 to the 60 % used within the standard 

simulation model, an alternative level of 56% will be selected.  

 

 

EBS lane 1 EBS Lane 2 

  Amount Percentage Amount Percentage 

Left EBS 480 0,6275 285 0,3725 

Right EBS 668 0,5642 516 0,4358 

Total 1148 0,5890 801 0,4110 

Table 38: System based EBS lane assignment 

In Table 39 the flush-backs to the EBS are denoted. The first column describes the total amount of flush-

backs of a bag, while the second column indicates the amount of baggage items that returned this 

amount of times. In total 430 bags return 589 times, relating to an overall flush-back percentage of 

approximately 30%. 

 
Max. EBS Flush-Backs Frequency 

1 327 
2 58 
3 40 
4 3 
5 0 
6 0 
7 2 

Total Bags Flushed Back 430 

Total EBS Flush-Backs 589 
Overall % Flush-Backs 0,3022 

Table 39: System based EBS flush-back rates 
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Additional flush-back information is shown in Table 40, where the first flush-back of all returning bags is 

analyzed in more detail. The information is constrained to the first flush-back due to data complexity. It 

is assumed that the first flush-back is representative for the small amount of additional flush-backs. From 

the table it can be observed that a significant difference exists between the left and the right EBS. 

Because it appears that the left EBS has hardly been used, the alternative flush-back rates will be based 

upon the right EBS. The flush-back rate is calculated by combining the frequencies with the information 

of Table 38. Since both lanes of the right EBS have a flush-back rate of 30 %, this percentage will be used 

within the alternative simulation model configuration. 

 
  EBS Lane 1 EBS Lane 2 

Flush-Back: Amount Rate Amount Rate 

Left EBS 27 0,0563 42 0,1474 
Right EBS 205 0,3069 156 0,3023 

Total 232 0,2021 198 0,2472 

Table 40: Detailed lane flush-back, based upon a bag’s first return 

In Table 41 information can be observed about the percentage of bags changing EBS lane when 

recirculating. As for the EBS flush-back rate, this information is based upon partial data, the baggage 

items that return only once, due to data complexities. Furthermore, no distinction is made between the 

left and the right EBS. It is assumed that they both behave similarly. 

 

Within the standard simulation model, lane 1 was specified as a relatively short term storage unit (0 % 

switches to lane 2), while lane 2 was specified as a relatively long term storage unit (75 % switches to 

lane 1). Within the real system it appears that the lanes are configured somewhat differently; it seems 

that they both have a more similar application area. The percentages found within the data will be 

applied as such within the alternative simulation configuration. 

 
  EBS lane 1 to 2 EBS lane 2 to 1 Total 

Amount 201 125 326 

Percentage 0,3413 0,2122 0,5535 

Table 41: System based EBS lane switching 

Also the EBS time-to-flush is based upon the first flush-back of all recirculating bags (Figure 44) (note that 

the amounts of bags per lane resemble the amounts in Table 40). In the figure the time difference can be 

observed between the registration time of a bag entering an EBS lane, and the time that it is scanned 

again when entering the sorter (thus somewhat more than the time a bag stays in an EBS). This 

information is plotted for succeeding bags arriving at the EBS (per lane).  The time that a bag stays in the 

EBS declines until the lane is flushed. Therefore the time a bag stays in an EBS just after such minimum is 

an indication for the time-to-flush of an EBS lane.  

 

In the simulation model the time-to-flush is modeled as a constant time. Though, the small amount of 

high peaks in Figure 44 may indicate that this time is dependent on the circumstances. Because no exact 

information about the configuration of the EBS can be found in the functional specification (Vanderlande 

Industries, 2009b), the best approximation based on a constant time-to-flush will be used. Taking the 

figure into account, a time-to-flush of 30 minutes seems appropriate.  
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Figure 44: Time that bags are stored in an EBS, before getting flushed 

Another factor is related to recurrence to manual coding after usage of the EBS. More specifically, when 

a license plate code is unreadable a bag needs to travel to the manual encoding station. A bag in the EBS 

is out of tracking. Therefore it has to be identified again when leaving the EBS, which happens at the 

sorter. Combining this information leads to  the statement that a bag that requires to be stored in the 

EBS, with an LPC that has turned out to be unreadable, has a high probability of requiring manual 

encoding for identification again when leaving the EBS before returning its course. This logic has been 

depicted (based upon discussions with simulation engineers) as the reasoning behind Table 42, which 

indicates that recurrence to manual encoding takes place (in 10 % of the cases). Faulty manual encoding 

has been turned down as a possible cause. Recurrence to manual encoding is not taken into account in 

the standard simulation model. Within the alternative simulation model it is assumed that all bags going 

to the EBS and have been codec manually, require manual coding again when leaving the EBS. 

 
# MES Recurrence Frequency 

1 20 

2 4 
3 0 
4 1 

Total MES Recurrences 32 

Recurrence Rate 0,1039 

Table 42: System based MES recurrence rates 

In Table 43 the standard and the alternative configuration can be found of model components. More 

specifically, factor information is given about velocities and window lengths. In practice component 

velocities are typically set somewhat higher than pre-specified. Therefore alternative velocities are set 

0,1 m/s higher. In order to determine an alternative level for the window length, it was decided to apply 

the inverse effect of the velocity increment on capacity. Thus, using both alternative levels for velocity 

and window length, the capacity remains the same. This may be useful since capacity levels are specified 

very accurate, whereas exact velocity levels and window length are uncertain. 
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Component 

Standard Configuration Alternative Configuration 

Cap. (b/h) V (m/s) LWindow (m) Cap. (b/h) V (m/s) LWindow (m) 

Belt Floorveyor 1500 1 2,4 1500 1,1 2,64 

Belt In Tracking 1200 1 3 1200 1,1 3,3 

Speed Reduction 1 1200 0,75 2,25 1200 0,85 2,55 

Speed Reduction 2 1200 0,5 1,5 1200 0,6 1,8 

L1 Screener 1200 0,33 1 1200 0,43 1,29 

L3 Screener 300 0,25 3 300 0,35 4,2 

Vertisorter 1800 1 2 1800 1,1 2,2 

Flat Triplanar Sorter 1500 1 2,4 1500 1,1 2,64 

Divert Parallel Pushers >1500 - - >1500 - - 

EBS Lane >100 bags 1 1 ,2 (V=0) >60 bags 1,1 2 (V=0) 

Table 43: Standard and alternative component characteristics 

B.5.3 Defining factors and factor groups 

For performing a sensitivity analysis all parameters discussed for the configuration of the model may be 

considered (appendix B.1.1), as well as the input distributions evaluated earlier. However, this would 

result in a very large number of runs to be performed. Furthermore, AutoStat is only capable of handling 

up to 11 factors in a design of experiments. Consequently, factor grouping has to be applied. Probably 

the most self-evident factors to combine are the velocities and window lengths of the various section 

types. It reduces the amount of factors greatly, while the direction of the effects is expected to be 

identical for all parameters within the groups. 

Nonetheless, this reduction is not sufficient. Therefore, various parameters concerning EBS control have 

been evaluated as a single factor as well: lane assignment, time between flushes, probability to return to 

the EBS after a flush (flush-back), and the probability to change lane in case a bag flushes back. 

Combining these factors reduces the amount of parameters of appendix B.1.1 to 11. A resolution V 

design with 11 factors implies that 128 runs should be performed per replication.  

B.5.4 Additional Sensitivity Analysis Results 

The main factors affecting the cycle time of bags requiring EBS usage are the EBS rate, EBS control, the 

distribution and velocity (Figure 45). Also the interaction between distribution and the EBS rate, and the 

interaction between the EBS rate and velocity are of relatively high importance. Other effects appear to 

be practically insignificant, due to their size, and in many cases statistically insignificant. 

 



 

 

Figure 45: Factor effects on the cycle time of bags that require EBS usage

From Figure 46 it can be observed that velocity, service time, EBS rate, and distribution have a relatively 

high effect on the cycle time of bags that leave the system at an inspection location. Though, t

of EBS rate and Distribution appear to be barely statistically significant. It is noticeably that only a small 

proportion of factor effects is statistically significant. 

 

Figure 46: Factor effects on the cycle time of

 

Figure 47 presents factor effects on the work in process of the baggage handling system.  The

the figure is identical to the layout of the previous figures addressing cycle times. The EBS rate, velocity, 

distribution, lateral assignment, EBS control, and some of their interactions mainly influence the work in 

process. 
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effects on the cycle time of bags that require EBS usage 

it can be observed that velocity, service time, EBS rate, and distribution have a relatively 

high effect on the cycle time of bags that leave the system at an inspection location. Though, t

of EBS rate and Distribution appear to be barely statistically significant. It is noticeably that only a small 

proportion of factor effects is statistically significant.  

: Factor effects on the cycle time of bags that leave the system at the inspection locations
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it can be observed that velocity, service time, EBS rate, and distribution have a relatively 

high effect on the cycle time of bags that leave the system at an inspection location. Though, the effects 
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Figure 47: Factor effects on the work in process of the baggage 

 

 

 

B.5.5 Detailed Results of the Sensitivity Analysis

In the tables that follow, the exact estimates of factor effects can be found, as well as their standard 
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: Factor effects on the work in process of the baggage handling system 

Detailed Results of the Sensitivity Analysis 

In the tables that follow, the exact estimates of factor effects can be found, as well as their standard 
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CT_EBS E[X] 200.2 -26.2 239.2 -467.5 21.1 -4.6 38.9 -8.2 -7.2 -162.0 13.8 -6.0 -8.3 -177.5 10.7 32.7 16.2 -7.4 -0.7 -18.5 1.9 13.5 

 
σ[X] 35.1 16.9 29.2 39.6 29.2 17.3 47.2 35.4 4.8 21.7 6.7 22.3 26.7 37.3 38.7 6.4 58.6 43.5 26.5 4.6 7.0 12.9 

CT_Inspection E[X] 7.1 -2.2 -3.9 -7.5 3.9 0.1 1.4 -1.2 20.8 -24.0 -1.5 -2.3 -3.9 -5.8 2.4 -1.8 1.2 -0.9 -0.3 -4.0 -2.4 2.1 

σ[X] 2.5 0.8 2.5 2.3 4.6 4.2 3.3 3.9 2.1 3.1 2.5 0.8 2.4 2.4 3.8 3.8 3.1 4.6 2.5 3.5 2.2 0.6 

CT_Standard E[X] 12.0 -4.4 -1.9 -4.2 1.2 -0.6 11.1 -1.4 -0.6 -27.5 -0.8 -3.1 -1.5 -3.0 -0.4 -0.2 2.9 -0.4 -0.6 -5.4 -0.8 0.8 

 
σ[X] 0.5 0.5 0.5 0.6 0.9 0.9 1.0 1.0 0.3 0.9 0.6 0.4 0.5 0.6 1.0 0.9 0.9 1.0 0.3 0.9 0.7 0.4 

CT_Total E[X] 32.0 -5.9 5.4 -75.4 4.7 -0.4 15.9 -1.2 -4.1 -35.6 0.0 -3.5 -5.6 -22.3 3.1 2.5 6.5 -0.6 -4.4 -6.9 -0.9 3.2 

 
σ[X] 3.3 4.5 3.7 1.7 9.2 3.9 7.5 4.9 0.6 5.4 5.7 5.5 2.7 3.3 9.8 3.5 7.5 5.4 0.9 4.2 5.4 5.7 

TH_Induct1_1 E[X] 53.9 0.0 0.2 -0.2 -10.2 0.0 0.1 -0.3 0.1 -0.2 0.1 -0.1 0.0 0.0 -0.7 0.1 0.0 0.1 -0.1 -0.2 0.2 0.2 

 
σ[X] 0.1 0.3 0.2 0.3 0.2 0.2 0.1 0.2 0.1 0.4 0.3 0.2 0.1 0.4 0.2 0.2 0.1 0.2 0.3 0.2 0.3 0.3 

TH_Induct1_2 E[X] -189.4 -0.1 0.1 0.0 -7.1 -0.1 0.2 0.0 0.0 0.0 0.1 0.1 -0.4 -0.1 2.9 0.1 -0.2 0.2 0.0 0.0 0.0 0.1 

σ[X] 0.1 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.0 0.1 0.3 0.1 0.2 0.0 0.1 0.1 0.1 0.3 0.1 0.4 0.1 0.3 

TH_Induct1_3 E[X] 90.5 0.0 0.1 0.1 -10.9 -0.2 0.2 -0.1 0.0 -0.2 -0.1 -0.1 0.1 0.0 -1.1 -0.1 0.1 -0.1 0.1 -0.2 -0.2 0.2 

σ[X] 0.3 0.2 0.2 0.2 0.3 0.2 0.4 0.2 0.1 0.1 0.2 0.6 0.4 0.2 0.2 0.4 0.2 0.2 0.1 0.0 0.2 0.3 

TH_Induct1_41 E[X] -2.7 0.0 -0.4 0.2 26.9 -4.0 -0.4 0.4 -0.2 0.2 -0.1 0.2 0.2 0.0 -0.8 0.1 0.1 0.0 -0.1 0.4 0.0 -0.4 

 
σ[X] 0.3 0.4 0.3 0.3 0.4 0.1 0.4 0.1 0.2 0.4 0.2 0.7 0.7 0.5 0.4 0.2 0.1 0.3 0.4 0.6 0.2 0.1 

TH_Induct1_42 E[X] -2.5 0.0 -27.4 -40.5 0.1 -0.2 -0.3 -0.2 0.2 0.5 -0.3 0.5 0.7 1.1 0.2 -0.6 -0.5 -0.2 -0.3 -0.2 -0.1 0.2 

 
σ[X] 0.3 0.2 0.3 0.3 0.6 0.9 0.4 0.2 0.1 0.5 0.3 0.8 0.0 0.1 0.5 0.3 0.7 0.3 0.8 0.4 1.1 0.3 

TH_Induct2_1 E[X] 29.8 0.8 3.0 6.2 -12.5 -0.6 -2.0 -0.6 2.0 0.6 0.5 0.7 2.9 6.2 -2.7 -0.7 -2.2 -0.5 1.8 0.5 0.5 -1.2 

 
σ[X] 4.1 4.3 2.4 4.0 5.3 2.5 2.8 4.5 0.5 3.0 3.1 4.1 2.2 4.1 5.3 2.3 2.6 4.3 0.2 2.8 3.0 5.1 

TH_Induct2_2 E[X] 21.8 1.3 4.6 9.0 -12.6 0.4 -3.2 -0.2 2.4 1.8 0.6 1.5 4.4 8.9 -2.5 0.4 -3.5 -0.3 2.5 2.1 0.7 -2.0 

σ[X] 3.0 3.2 3.9 3.0 6.5 2.7 4.6 3.9 0.0 2.7 2.7 3.6 4.1 2.9 6.3 2.4 4.5 3.9 0.5 2.4 3.0 3.6 

TH_Induct2_3 E[X] 37.5 0.0 2.3 5.9 -12.5 -0.7 -2.6 -0.6 2.0 0.3 -0.1 0.4 2.6 5.9 -2.7 -0.9 -2.0 -0.4 2.1 0.2 0.0 -0.9 

 
σ[X] 4.8 4.1 2.2 4.5 5.5 2.3 2.9 4.4 0.3 2.8 3.7 4.0 2.5 4.1 5.4 2.4 2.9 4.5 0.8 2.8 3.4 4.8 

TH_Induct2_41 E[X] 5.2 0.4 0.5 1.8 28.5 -4.2 -0.5 -0.5 0.4 -0.1 -0.2 0.2 0.6 2.0 0.1 0.2 -0.7 -0.4 0.4 0.0 -0.2 -0.2 

 
σ[X] 0.4 0.5 0.5 0.8 0.9 0.3 0.7 1.3 0.3 0.5 0.6 0.4 0.1 1.2 1.1 0.7 1.0 1.4 0.4 0.9 1.0 0.5 

TH_Induct2_42 E[X] 3.6 0.2 -27.9 -40.2 -0.7 0.1 -0.8 -0.3 0.5 1.7 0.5 0.8 -0.2 1.7 -1.0 0.4 -1.4 -0.3 0.8 0.7 0.6 -0.3 

 
σ[X] 0.6 0.9 1.3 1.0 1.7 1.5 1.5 1.3 1.0 0.4 0.2 0.7 1.4 0.8 2.2 0.5 1.1 2.3 0.3 0.5 1.0 1.2 

TH_Inpection E[X] 0.0 0.0 0.0 0.2 2.4 8.4 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.2 0.0 0.1 0.0 -0.1 0.1 0.0 0.0 -0.1 

σ[X] 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.1 0.1 0.1 

TH_MC1 E[X] -0.3 -0.1 -0.3 -0.1 0.0 0.1 0.1 -6.6 0.0 -0.1 0.5 -0.1 -0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.0 -0.1 

σ[X] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.2 0.0 0.2 0.1 0.0 0.2 

TH_MC2 E[X] 0.6 -0.2 0.0 -0.1 0.3 0.0 0.0 -6.9 0.1 0.0 0.4 -0.1 0.0 0.2 0.0 -0.2 -0.2 -0.3 0.1 0.0 0.2 0.0 

 
σ[X] 0.0 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.3 0.0 0.0 0.2 0.2 0.1 0.1 0.1 0.4 0.3 

TH_Sorter1_1 E[X] 47.0 -0.2 -0.5 -6.6 6.8 -2.2 34.4 -2.5 -0.5 -0.3 0.0 -0.1 -0.1 1.2 -1.3 -0.3 5.1 0.2 0.4 0.2 0.2 -0.3 

 
σ[X] 0.5 0.5 0.1 0.4 0.4 0.2 0.3 0.5 0.2 0.4 0.5 1.2 0.5 0.6 0.4 0.2 0.5 0.1 0.9 0.2 0.9 0.8 

TH_Sorter1_2 E[X] -77.0 -0.6 -0.1 -7.2 -9.1 -0.2 57.6 -2.8 0.0 -0.4 0.1 0.3 0.4 0.8 1.2 0.5 -7.2 0.7 0.1 0.1 -0.3 0.3 

 
σ[X] 0.7 0.2 0.2 0.6 0.2 1.0 0.5 0.5 0.4 0.2 0.3 0.3 0.5 0.8 0.5 0.2 0.7 0.2 0.4 0.6 0.5 0.3 

TH_Sorter2_1 E[X] 22.9 0.3 1.4 -3.1 7.6 -2.5 35.5 -3.5 1.4 1.0 0.5 0.7 2.5 5.3 -1.8 -0.1 0.3 -0.4 1.8 0.5 -0.4 -1.1 

σ[X] 3.3 2.8 2.5 3.4 4.7 1.3 2.1 3.2 0.7 2.6 2.5 2.7 1.5 2.7 3.5 2.0 3.3 3.0 0.4 2.5 2.6 4.1 

TH_Sorter2_2 E[X] 27.1 1.7 3.1 -0.1 -13.0 -0.4 -3.0 -3.6 2.3 0.6 0.5 0.9 3.6 7.8 -3.1 0.4 -2.5 -0.4 2.2 0.8 0.6 -1.2 

 
σ[X] 4.1 3.6 2.5 3.6 5.6 1.9 3.1 5.3 0.6 2.7 2.8 3.5 3.9 4.2 6.0 2.7 3.3 5.2 0.7 2.7 3.6 4.0 

TH_System E[X] 48.5 2.4 10.7 20.4 -7.8 -0.8 -7.7 -1.8 6.9 0.9 1.0 2.6 10.2 22.4 -7.8 -0.8 -8.2 -1.9 6.8 2.4 1.1 -4.1 

 
σ[X] 12.1 12.4 8.7 12.2 17.9 7.6 10.7 13.8 1.0 8.6 10.2 12.1 8.8 12.1 17.7 7.6 10.6 13.7 1.0 8.4 10.2 14.1 

WIP E[X] 21.6 -3.3 5.0 -43.1 2.0 -0.4 8.3 -1.0 -1.2 -21.6 0.2 -1.9 -1.7 -11.1 1.0 1.3 2.7 -0.6 -1.4 -4.3 -0.4 1.4 

σ[X] 1.0 0.7 1.5 0.8 2.9 1.1 3.3 1.3 0.2 1.8 1.7 1.4 0.6 1.2 3.3 0.9 3.2 1.9 0.9 1.0 1.5 1.0 

Table 44: The average and standard deviation of factor effects on different responses (part 1) 
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CT_EBS E[X] 16.4 5.1 14.8 3.9 -27.5 10.9 -30.5 0.3 -51.6 -10.2 3.8 -21.8 6.6 1.9 -25.1 12.0 -20.9 -5.5 -30.5 -8.2 1.6 101.7 

 
σ[X] 15.9 36.6 20.1 40.1 32.6 2.3 34.6 22.1 29.7 13.9 8.2 33.2 10.5 34.8 7.3 10.3 24.8 12.5 51.8 22.2 9.8 19.2 

CT_Inspection E[X] 2.0 0.6 1.1 0.3 -1.5 1.1 0.8 1.3 3.1 -1.5 3.4 -1.8 -0.5 0.1 2.0 2.9 -2.0 2.8 -0.1 1.7 0.0 4.0 

σ[X] 1.3 3.5 1.9 5.7 3.8 4.1 2.2 0.3 2.5 3.5 4.4 3.3 5.0 2.9 3.2 1.6 4.6 2.9 3.6 4.6 1.9 4.2 

CT_Standard E[X] 1.2 0.6 0.1 -1.6 -1.1 0.8 2.5 0.5 1.4 -0.5 1.3 -1.1 -1.4 0.1 0.3 0.8 -0.6 0.3 -1.0 0.4 0.5 1.8 

 
σ[X] 0.4 0.8 1.1 1.2 1.1 1.4 1.1 0.4 0.6 1.2 0.9 1.2 1.2 0.7 0.9 0.5 1.0 0.8 1.2 0.8 0.2 0.9 

CT_Total E[X] 2.5 -4.1 6.2 -3.2 -10.3 2.1 1.9 -4.4 -1.0 -1.7 2.6 -10.1 -2.7 4.7 -2.7 3.2 -4.4 -0.2 -5.9 -0.5 4.1 9.1 

 
σ[X] 4.1 6.3 3.3 8.6 8.0 6.9 6.6 1.1 3.9 7.0 4.0 8.7 7.7 6.0 3.8 4.1 9.3 4.0 8.2 4.3 1.5 5.4 

TH_Induct1_1 E[X] 0.0 0.2 -0.3 0.4 -0.1 -0.1 0.1 -0.1 -0.1 0.3 0.0 0.0 0.3 -0.1 0.0 0.2 -0.2 0.0 0.2 0.0 0.2 -0.1 

 
σ[X] 0.2 0.3 0.1 0.0 0.3 0.4 0.0 0.0 0.0 0.0 0.2 0.4 0.0 0.1 0.1 0.1 0.5 0.2 0.2 0.2 0.3 0.2 

TH_Induct1_2 E[X] -0.1 0.0 0.1 -0.2 0.0 0.2 0.0 -0.1 -0.1 0.1 0.0 0.1 0.2 -0.1 0.2 0.2 -0.2 -0.3 0.1 0.1 0.0 0.0 

σ[X] 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.4 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.3 0.2 0.1 0.1 0.1 

TH_Induct1_3 E[X] 0.1 -0.1 -0.1 0.0 0.1 0.2 0.1 0.0 0.3 0.0 -0.1 -0.1 0.1 0.1 0.0 0.2 0.3 0.0 0.2 -0.2 0.2 -0.1 

σ[X] 0.4 0.0 0.3 0.2 0.0 0.1 0.1 0.1 0.2 0.3 0.2 0.2 0.3 0.4 0.3 0.3 0.4 0.2 0.1 0.1 0.3 0.5 

TH_Induct1_41 E[X] 0.0 -0.1 0.2 -0.2 -0.1 -0.2 -0.2 0.2 0.0 -0.4 0.1 0.1 -0.5 0.0 -0.2 -0.5 0.2 0.2 -0.5 0.2 -0.3 0.1 

 
σ[X] 0.4 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.6 0.1 0.3 0.5 0.3 0.2 0.2 0.8 0.2 0.4 0.1 0.2 0.7 

TH_Induct1_42 E[X] 0.1 -0.1 0.0 0.2 0.2 -0.2 -0.4 0.0 8.6 -0.1 0.0 0.1 -0.5 -0.2 -0.4 -0.1 0.2 0.1 0.2 -0.4 -0.1 0.4 

 
σ[X] 0.4 0.3 0.5 0.4 0.2 1.1 0.0 0.3 0.2 0.7 1.1 0.2 0.2 0.2 0.4 0.1 1.0 0.2 0.5 0.2 0.8 1.0 

TH_Induct2_1 E[X] -0.8 3.8 -3.5 1.4 5.2 -1.0 -0.5 3.4 -2.8 1.0 -0.5 4.9 1.4 -4.0 0.6 -1.9 2.5 0.4 2.0 0.4 -2.1 -0.4 

 
σ[X] 4.2 2.4 2.4 5.5 4.2 3.3 3.4 1.9 2.2 3.5 2.7 4.7 5.4 2.5 2.6 1.9 5.3 2.6 2.7 4.2 0.4 2.9 

TH_Induct2_2 E[X] -1.4 3.3 -3.7 1.6 6.9 -1.0 -1.0 3.5 -4.1 1.1 -2.0 7.2 1.6 -3.3 -0.5 -2.1 2.5 -0.4 3.5 0.2 -2.7 -2.0 

σ[X] 3.0 3.1 2.6 4.5 5.0 5.6 4.1 1.3 3.8 5.4 2.6 4.8 4.4 3.2 2.4 2.0 6.3 2.6 4.5 3.6 0.4 2.5 

TH_Induct2_3 E[X] -0.3 3.6 -3.4 1.3 5.2 -0.8 -0.1 3.7 -2.6 0.6 0.0 5.5 1.7 -3.7 0.6 -1.4 1.7 0.7 2.2 0.4 -2.0 -0.1 

 
σ[X] 4.2 2.9 3.1 5.6 4.1 3.6 2.9 1.5 2.4 3.8 3.2 4.2 5.9 2.7 2.4 2.8 5.4 2.3 2.8 4.8 0.3 2.9 

TH_Induct2_41 E[X] -0.2 0.6 -0.5 1.0 1.2 -0.4 0.1 0.7 -0.8 0.5 -0.3 1.0 0.6 -0.4 -0.1 -0.3 1.2 -0.2 0.5 0.5 0.0 -0.3 

 
σ[X] 0.9 0.7 0.7 0.9 0.8 1.0 0.8 0.6 0.5 0.7 0.9 0.6 1.0 0.9 0.4 0.9 1.2 0.4 1.0 1.6 0.2 0.7 

TH_Induct2_42 E[X] -0.4 1.2 -0.6 0.2 1.3 0.1 -0.8 0.9 7.6 0.4 -0.8 1.6 1.1 -1.0 -0.8 -0.4 0.0 0.1 1.0 -0.4 -0.6 -1.5 

 
σ[X] 1.4 0.8 0.5 1.8 0.9 1.5 0.7 0.6 0.6 1.5 0.7 1.6 1.7 1.1 0.3 1.0 0.9 0.7 0.7 1.2 0.6 1.1 

TH_Inpection E[X] 0.1 0.0 0.0 0.0 0.1 -0.1 -0.1 0.1 -0.1 0.1 0.0 0.0 -0.1 0.1 0.1 -0.1 0.0 0.2 0.0 0.1 -0.1 0.1 

σ[X] 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.0 0.1 0.1 0.1 0.1 0.1 

TH_MC1 E[X] -0.2 0.1 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 -0.3 0.1 0.0 0.0 0.2 -0.1 -0.1 0.0 0.1 0.1 0.1 0.0 

σ[X] 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.0 0.1 0.1 0.2 0.0 0.2 0.0 0.0 0.3 0.1 0.1 0.1 

TH_MC2 E[X] 0.0 -0.1 -0.1 0.0 0.2 0.1 0.0 0.1 0.0 0.1 0.0 0.3 0.0 -0.1 0.0 -0.3 0.1 0.0 0.1 0.1 0.0 -0.2 

 
σ[X] 0.0 0.1 0.1 0.2 0.1 0.2 0.1 0.0 0.1 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.0 0.2 

TH_Sorter1_1 E[X] 0.0 -0.2 0.4 0.1 -0.6 -0.1 0.5 0.2 -0.4 -0.3 -0.4 0.0 -0.6 0.5 -0.8 0.0 0.1 -0.3 1.1 -0.2 -0.1 0.2 

 
σ[X] 0.9 0.5 0.2 0.1 0.4 0.3 1.3 0.8 0.2 0.3 0.3 0.4 0.5 0.6 0.5 0.6 0.9 0.7 0.7 0.2 0.1 0.6 

TH_Sorter1_2 E[X] 0.2 -0.1 0.0 0.7 0.6 0.8 0.4 -0.6 0.0 -0.2 -0.8 -0.2 0.2 0.1 -0.3 0.4 -0.2 -0.1 1.3 0.1 -0.1 -0.2 

 
σ[X] 0.8 0.4 0.6 0.2 0.7 0.7 1.0 0.9 0.5 0.4 0.8 0.6 0.2 1.3 0.6 0.5 1.0 0.7 0.5 0.2 0.1 1.0 

TH_Sorter2_1 E[X] -0.5 3.0 -2.1 1.7 3.8 -0.2 -0.4 2.3 -2.6 0.8 -1.0 4.0 1.2 -2.7 0.2 -1.5 1.8 0.7 2.7 0.8 -1.6 -0.9 

σ[X] 3.3 1.7 2.5 3.6 2.5 3.7 2.2 1.2 2.2 2.6 2.3 3.5 4.2 2.5 2.2 1.8 4.3 1.1 1.9 4.4 1.0 1.9 

TH_Sorter2_2 E[X] -0.7 3.8 -3.5 1.0 6.5 -0.8 -1.2 4.1 -3.6 0.8 -0.8 6.5 1.0 -3.9 0.1 -2.4 2.7 -0.9 2.5 0.5 -2.6 -0.8 

 
σ[X] 3.9 2.6 1.7 5.0 5.4 4.2 4.5 2.0 3.4 4.3 3.4 4.8 5.7 2.7 2.7 1.2 6.0 2.6 2.9 4.6 0.5 3.0 

TH_System E[X] -2.6 11.3 -11.0 5.0 18.3 -3.2 -1.6 11.0 -10.2 3.2 -2.8 18.3 5.1 -11.3 0.9 -5.5 7.8 0.7 8.2 1.6 -6.8 -2.5 

 
σ[X] 12.2 9.1 8.2 16.1 13.7 13.2 11.0 4.9 8.7 13.1 8.4 13.7 16.2 9.0 7.6 7.7 17.9 7.6 10.6 13.9 0.8 8.5 

WIP E[X] 1.2 -0.6 2.0 -1.4 -3.6 0.9 0.6 -1.0 -2.2 -0.7 1.4 -3.5 -1.0 1.0 -1.5 1.3 -1.8 0.0 -2.2 -0.1 1.2 5.3 

 
σ[X] 0.7 2.6 1.2 2.9 3.0 2.0 2.6 0.5 1.4 2.1 0.9 3.4 2.2 2.4 1.0 1.0 2.9 1.1 3.7 0.6 0.6 1.8 

Table 45: The average and standard deviation of factor effects on different responses (part 2) 
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CT_EBS E[X] -15.2 2.8 6.9 -0.8 -12.6 -3.5 -2.2 9.3 -9.3 2.5 9.2 9.2 -1.6 3.8 -25.6 -0.7 -13.7 -4.8 -3.6 1.5 10.6 -12.5 

 
σ[X] 5.1 35.7 10.1 46.5 7.2 15.8 12.2 20.4 12.3 8.4 27.0 57.1 45.1 28.8 35.4 14.4 34.0 8.5 33.0 27.4 10.9 29.2 

CT_Inspection E[X] 2.0 -1.6 -1.6 -2.4 -2.4 -1.8 -2.1 0.4 1.3 0.1 3.0 1.3 2.1 2.6 -0.1 -1.3 1.5 1.7 1.1 0.0 0.5 1.6 

σ[X] 3.0 4.7 2.3 4.0 0.8 3.8 4.8 2.8 4.4 1.5 1.7 3.2 1.6 3.4 1.2 3.3 2.5 3.5 4.8 2.0 2.0 2.1 

CT_Standard E[X] 0.5 -1.0 -0.7 -0.2 -0.6 0.3 1.1 -0.3 -0.2 -0.4 1.4 0.0 0.7 -0.1 -2.9 -0.5 0.1 0.8 0.7 0.5 -0.4 0.2 

 
σ[X] 0.6 1.6 1.2 1.2 0.5 1.5 0.9 0.7 1.0 1.0 0.7 1.3 0.4 1.2 0.4 1.0 1.4 0.8 1.6 0.6 0.6 0.5 

CT_Total E[X] -0.6 -5.0 -0.3 4.9 -2.8 -2.7 6.3 0.2 -5.4 -1.2 5.4 -4.8 1.7 -4.9 -4.7 -1.6 -0.9 0.6 4.8 1.4 -0.5 -4.2 

 
σ[X] 5.8 3.6 7.1 9.1 5.7 6.3 4.0 5.0 3.7 5.8 2.9 9.2 5.9 7.5 4.5 5.4 8.7 5.7 3.5 4.1 4.7 2.7 

TH_Induct1_1 E[X] 0.1 0.0 0.1 -0.1 0.0 -0.1 0.0 0.2 0.1 0.0 0.1 0.0 -0.1 0.1 -0.1 0.1 0.0 0.0 0.2 0.1 -0.1 -0.2 

 
σ[X] 0.1 0.3 0.1 0.3 0.1 0.1 0.3 0.6 0.1 0.2 0.3 0.2 0.3 0.3 0.0 0.4 0.1 0.2 0.1 0.4 0.5 0.3 

TH_Induct1_2 E[X] -0.1 0.1 0.2 0.1 0.0 -0.1 0.0 -0.1 -0.3 0.1 -0.1 -0.1 0.2 0.1 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.3 0.0 

σ[X] 0.1 0.1 0.3 0.3 0.3 0.2 0.1 0.2 0.1 0.4 0.0 0.3 0.1 0.3 0.1 0.1 0.1 0.1 0.3 0.1 0.3 0.1 

TH_Induct1_3 E[X] -0.1 0.0 0.1 0.0 0.2 0.3 0.2 0.0 0.0 0.2 0.0 -0.1 0.0 0.2 -0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 

σ[X] 0.2 0.1 0.4 0.4 0.1 0.2 0.3 0.3 0.3 0.1 0.0 0.3 0.3 0.4 0.0 0.1 0.2 0.1 0.1 0.3 0.2 0.1 

TH_Induct1_41 E[X] 0.0 -0.9 -0.2 -0.1 -0.2 -0.1 -0.1 0.0 0.1 -0.3 0.0 0.4 -0.1 -0.4 0.2 -0.2 -0.1 0.2 -0.2 -0.1 -0.2 0.1 

 
σ[X] 0.1 0.3 0.2 0.7 0.4 0.4 0.5 0.6 0.1 0.5 0.3 0.2 0.7 0.4 0.0 0.3 0.2 0.2 0.3 0.5 0.5 0.3 

TH_Induct1_42 E[X] -0.8 0.1 0.1 1.0 0.2 0.3 -0.1 0.4 0.0 -0.2 -0.2 -0.2 -1.0 -0.1 0.3 0.1 -0.1 -0.2 0.3 -0.1 0.1 -0.7 

 
σ[X] 0.7 0.4 0.6 0.3 0.4 0.7 0.4 0.4 0.4 0.4 0.1 0.3 0.5 0.3 0.5 0.2 0.4 1.0 0.5 0.3 1.1 0.2 

TH_Induct2_1 E[X] -0.4 3.0 -0.6 -3.5 1.0 2.0 -2.7 0.3 2.7 0.5 -2.9 3.4 -1.0 3.5 -0.4 0.5 0.6 -0.8 -3.1 -0.4 -0.2 2.5 

 
σ[X] 3.3 1.5 3.0 4.1 5.0 3.7 1.7 2.7 1.6 3.1 2.1 4.1 4.9 4.1 2.0 3.2 2.9 3.4 1.8 4.0 2.7 1.3 

TH_Induct2_2 E[X] -0.9 3.8 0.6 -2.6 1.7 2.0 -2.8 0.6 2.7 0.2 -4.5 2.9 -2.0 2.8 0.9 0.4 -0.5 -1.0 -3.7 -0.6 0.7 2.0 

σ[X] 2.7 1.7 4.7 5.1 3.6 4.1 2.2 2.0 2.3 3.3 3.9 5.1 3.3 5.3 2.0 3.9 4.8 4.1 1.5 3.7 1.8 1.8 

TH_Induct2_3 E[X] 0.0 3.3 -0.6 -3.9 0.8 1.9 -3.3 0.5 3.1 0.5 -2.8 3.7 -0.5 4.1 0.1 0.5 0.5 -0.3 -3.0 -0.2 0.1 2.4 

 
σ[X] 3.2 2.2 3.3 3.9 4.7 3.4 2.1 3.1 2.4 3.1 2.3 4.0 4.9 3.6 2.7 3.1 3.2 3.7 1.9 4.1 3.3 0.7 

TH_Induct2_41 E[X] 0.2 -0.2 -0.1 -0.6 0.6 0.6 -0.4 0.0 0.5 0.6 -0.1 0.6 -0.7 0.4 -0.2 0.4 0.0 -0.4 -1.1 -0.4 0.6 0.6 

 
σ[X] 0.9 0.3 0.7 0.9 0.9 1.0 1.1 0.3 0.7 1.2 0.8 0.8 1.0 0.8 0.6 0.8 0.5 0.6 0.7 0.7 0.5 0.6 

TH_Induct2_42 E[X] -0.1 1.1 -0.2 -1.3 0.0 1.1 -0.4 0.5 0.8 0.4 -1.2 1.0 -0.5 0.9 -0.1 -0.2 0.4 0.0 -0.8 0.0 -0.5 1.0 

 
σ[X] 1.2 0.4 1.6 1.4 1.2 1.5 0.3 0.8 0.4 1.0 0.9 1.0 0.9 1.4 1.3 1.2 1.5 1.1 0.7 0.9 1.3 1.3 

TH_Inpection E[X] -0.1 1.7 0.0 0.0 0.1 0.1 0.1 -0.1 0.0 0.1 0.0 0.1 0.0 0.0 -0.1 0.1 0.0 -0.2 0.0 0.0 0.1 0.1 

σ[X] 0.1 0.1 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.2 

TH_MC1 E[X] -0.1 0.1 -0.1 0.0 0.0 -0.1 -0.1 0.1 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 -0.1 -0.3 0.0 0.0 0.1 

σ[X] 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.0 0.1 0.1 0.2 0.2 0.1 0.2 0.1 

TH_MC2 E[X] -0.2 0.1 -0.1 -0.2 0.1 0.2 0.0 0.1 0.0 -0.2 0.0 0.0 -0.1 0.1 -0.2 0.0 0.0 -0.1 -0.2 0.0 0.0 0.0 

 
σ[X] 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.2 0.2 

TH_Sorter1_1 E[X] 0.1 -0.7 -1.0 0.3 -0.1 0.6 -0.3 -0.2 0.2 0.1 0.0 -0.1 -0.7 -0.3 -0.3 0.2 0.5 0.4 -0.4 -0.6 0.2 0.4 

 
σ[X] 0.6 0.0 0.6 0.4 1.4 0.4 0.5 1.0 0.5 0.2 0.1 0.6 0.6 0.9 0.8 0.4 0.6 0.3 0.7 0.2 0.5 0.5 

TH_Sorter1_2 E[X] -0.3 -0.3 -0.6 -0.1 0.4 -0.3 0.0 0.5 -0.1 -0.1 -0.7 -0.1 -0.4 -0.5 -0.6 0.2 0.4 0.0 -0.3 0.2 -0.2 -0.6 

 
σ[X] 0.5 0.6 1.2 1.0 0.3 0.9 0.3 0.9 0.3 0.8 0.9 0.4 0.2 0.5 1.0 0.5 0.6 0.8 0.7 0.6 0.8 0.1 

TH_Sorter2_1 E[X] -0.5 2.4 -0.7 -3.2 1.4 1.7 -1.9 0.1 1.7 0.9 -2.2 2.9 -0.8 2.7 0.0 0.1 0.3 -0.8 -3.3 -0.5 0.2 2.2 

σ[X] 2.8 1.4 2.9 1.8 3.9 2.8 2.4 2.3 1.6 2.3 2.2 2.8 4.1 2.4 2.1 2.5 2.0 2.5 1.4 2.5 1.7 0.8 

TH_Sorter2_2 E[X] -1.0 3.1 -0.1 -3.8 1.1 2.4 -2.6 1.2 2.5 0.5 -3.9 3.2 -1.4 3.3 0.1 0.6 -0.3 -0.7 -3.5 -1.1 0.0 2.9 

 
σ[X] 2.9 2.1 3.9 4.3 3.9 3.8 1.8 3.1 2.0 2.6 2.8 5.3 5.2 5.9 2.7 4.3 4.1 4.3 1.6 4.8 2.9 1.9 

TH_System E[X] -1.0 10.7 -0.7 -10.9 4.1 6.3 -9.1 1.4 9.0 1.9 -10.0 10.8 -4.1 10.8 0.2 2.0 0.5 -2.4 -10.7 -1.7 1.4 7.3 

 
σ[X] 10.3 4.5 11.2 13.7 14.1 11.9 6.3 7.6 6.3 10.6 8.9 13.5 13.8 13.7 7.3 10.7 11.3 11.6 4.6 12.2 7.7 4.3 

WIP E[X] -0.5 -1.4 -0.3 1.2 -1.2 -0.5 2.3 0.3 -1.7 -0.4 1.7 -1.1 0.5 -1.2 -3.0 -0.7 -0.4 0.5 1.2 0.8 -0.2 -1.2 

σ[X] 1.7 2.0 2.4 3.7 1.0 2.4 1.5 1.6 1.3 1.8 0.6 3.9 1.8 2.8 1.8 1.6 3.3 2.0 1.9 0.5 1.3 1.5 

Table 46: The average and standard deviation of factor effects on different responses (part 
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