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Summary.

In Integrated Circuit design. a number of stages can be distinguished. After dividing the initial

description into several functional blocks. the layouts for these blocks are generated using cell generators

or cell libraries. In a floorplanning stage, the blocks are positioned within the entire layout area.

In the floorplanning programs developed so far. optimal floorplans are found by grouping heavily

interconnecLed modules close together. Others are positioned at greater distance. An even more optimal

floorplan can be found if these modules are mirrored in one or two directions. This way. wiring space

required to connect all modules, can be minimized. A way to find optimal module orientations has been

developed for slicing type floorplans. However. the method used is floorplan type independent.

After optimizing the module orientations. still more size improvement can be established if channel

widths are known approximately. During floorplan adjustment stages. this information can be used to

recalculate optimal module sizes. If piece-wise linear shape constraints are available. more optimal module

dimensions can often be found without changing the module positions. A program to find these

approximate channel widths has been written and tested.

A final point of interest is the pin position calculation. If module descriptions allow variable pin

positions, optimal positions must be found to minimize the overall wire length. This minimization can lead

to overall area improvement. Programs to find these optimal pin positions have been written.

Tests of the programs developed. showed area improvements up to 30 per cent. The average

improvement of the best method was about 10 Lo 12 per cent.
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Introduction.

When an Integrated Circuit is being developed, a number of steps are perfonned. First of all, a
behaviour description of the circuit must be drawn up, using one of several possible description languages.
This description, or algorithm, is translated into network and controller descriptions using Peui-nets and
Data-Flow-Graphs. The latter descriptions are optimized by means of state encoding, logic simplification,
decomposition and technology mapping.

The overall circuit will now be divided into several separate functional blocks. The next step will be
the generation of cells performing the functions represented by these blocks. The cells produced can either

be fixed cells available in a library or custom made cells generated in cell generators. These latter cells can

have fixed dimensions, but a number of cell generators allows several different aspect ratios. They produce
piece-wise linear shape constraints as described in [1]. A possible cell generator, able to produce piece­
wise linear shape constraints is described in [2]. Several cell generators produce cells having fixed pin

positions, others allow the user to specify the pin positions. Sometimes a certain interval is given along the
cells edge within which the pin position must be specified. A possible cell description from a cell generator
having both piece-wise linear shape constraints and variable pin positions is given in appendix A. In the

rest of this report, these cells will be refered to as modules.
After producing the modules, they must be placed in a floorplan. To perfonn this floorplanning step,

several algorithms have been developed. A number of them are described in [1], [3] and [4]. At the

Eindhoven University of Technology ( TUE ), a slicing algorithm is used to perfonn the floorplanning

stage. The method used is described in [5].
The ftoorplan obtained after the slicing, is calculated with a number of uncertainties in mind. No

infonnation on channel widths was available at the beginning of the floorplanning stage. The floorplan
found, is therefore calculated assuming zero-width channels. According to these channel widths, the

optimal module dimensions have been derived from the shape constraints.

A number of optimizations can be canied out starting from this type of floorplan. First of all, changing

the modules orientation might lead to more optimal floorplans. Each module may be mirrored in one or two
directions without conflicting with it's reserved area. Beside mirroring the modules, optimal pin position

calculation may lead to improvements of the floorplan. A final improvement can be made by making an
estimation of the channel widths. A module resizing step can be perfonned to alter the module sizes

according to the new channel widths.
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1. Some initial considerations.

Before any steps can be taken, some initial problems must be looked at. One has to know what an

optimal floorplan is. Also, how can the problem of optimizing the floorplan be divided into separate blocks.

In this chapter some considerations regarding these problems are elaborated more deeply.

1.1 What is an optimal floorplan ?

Before being able to develop algorithms to orient modules optimally, one has to consider what optimal
floorplanning really means. In the initial floorplanning stages, the modules are positioned in places in the

floorplan according to their mutual interconnection. "Long-wire-penalties" or net-weights may have been

taken into consideration. This type of floorplanning normally results in short interconnections and probably

small layouts. It is most likely, that even more optimal floorplans can be found. Module mirroring and pin

position calculation can lead to this. The question that remains is: " What is an optimal floorplan ? ". Three

objectives are possible:

1) An optimal floorplan is one in which the overall speed of the circuit is the highest.

2) A minimal overall layout size implies an optimal floorplan.

3) Minimization of the overall wire length leads to finding an optimal floorplan.

It must be stated here that the objectives mentioned above do not imply or exclude each other. To

obtain a maximum circuit speed, the nets associated with the critical path must be the shortest. Other less

critical connections may be longer at cost of the critical one. On the other hand, minimal overall wire

length does not imply minimal overall layout size. An example of this is given in figure 1.

a) b)

Figure 1. a) Module orientation with minimal overall wire length. b) module orientation with minimal

overall layout size.

It will be clear that one of the objectives above must be chosen to serve as an objective function. The

first objective will be very difficult to achieve. In the initial information, extra data must be stored to

indicate nets belonging to the critical path. At this moment such data is not available. The second and third
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objective on the other hand will not conflict with each other most of the time. Although examples can be

given where they do conflict ( figure I ), often this will not be the case. The main goal of optimization is to

achieve fast and small floorplans. Checking the overall layout size will involve a great amount of

computation time. II will be almost impossible to achieve this goal for extensive floorplans in a reasonable

time. Small floorplans can often be found by finding minimal overall wire length.

For the reasons mentioned above, it seams reasonable to try to achieve the third objective.

Minimizing the overall wire length is thus a derived objective resulting from the second objective. The

algorithms described in the following chapters will therefore be based on this objective.

1.2 Problem decomposition.

It will be clear thal the entire problem is to big to solve at once. II must be divided into several

separate blocks. These blocks can then be solved one by one. Although the possible optimizations like
module orientation and pin position calculation have mutual influences, it must be possible to find a

sequence of handling them.

First, we must find the separate subproblems. They have been mentioned in the Introduction: channel

width estimation, module orientation and pin position calculation. A final block representing the module

resizing must be added at the end.

When the subproblems are found they must be placed in a certain order. It will be clear that the

channel width estimation step must be done before the resizing step. At this stage, all module orientations

and pin positions must be known. Looking at the two subproblems left, it appears logical to solve the

module orientation problem first. Optimal pin positions can only be found after finding the module

orientations. Module orientation algorithms may assume optimal pin positions, along the pin position

interval, for each orientation.

Based on the sequence described above, the subproblem solving sequence is given in figure 2.

FLOORPLANNING

MODULE ORIENTATION

PIN POSITION

CHANNEL WIDTHS

RESIZING

LAYOUT GENERATION

Figure 2. Subproblem solving sequence.

The first and the last block in figure 2 are added to indicate steps performed before and after floorplan

optimization. These steps will not be described in this report. The steps in between, will be described in the

same order.
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2. Module orientation.

As shown in the previous chapter, the first problem to cope with is the module orientation. In this

chapter, a method to find suboptimal orientations is described. First, a description of the problem is given.

Then a data structure is described in detail, to store the information necessary for a ( sub) optimal solution.

Some calculation and possible solution methods are given next. A description of the program

implementation will be given at the end of the chapter.

2.1 The module orientation problem.

The module orientation problem can be described as a translation from one state-space to another. The

first state-space contains all possible orientation combinations. The second is determined by the goal we try

to achieve. In chapter 1, a number of possible goals have been discussed. Minimal ftoorplan dimensions

was a possibility. Minimal overall wire length could be another. It was shown, that the objective function to

be satisfied is minimal overall wire length. The objective function is therefore the translation which is

graphically represented in figure 3.

orientations. overall
wire length.

Figure 3. Graphic representation of the module orientation problem.

For every possible module orientation combination, an overall wire length can be found. The

destination state-space contains all positive numbers. The numbers reached by the transformation are a

subset of the destination state-space. Every subset of the destination state-space contains at least one

optimal state. Since the goal we try to achieve is to minimize the overall wire length, the optimal state is

the one with the smallest number. At least one orientation combination is translated to this smallest

number. Although, in the destination space it has been represented by a circle, the optimal destination set

will only contain one state.
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From figure 3 we can see that the back-transformation is non-unique. Two different orientation
combinations may both have the same optimal destination state. Although this looks problematic, finding

one of the original orientation combinations is sufficient All orientation combinations resulting in the

optimal destination state will satisfy the criterion set minimal overall wire length.

The total number of orientation combinations depends on the number of orientations allowed for each

module. In the ftoorplan to be optimized, a certain space is reserved for each module. A limited length and
width is available. Mirroring the module in x- or y-direction will never violate this length or width.
Rotating a module over 90 or 270 degrees however, may violate them. A low, wide module being rotated

over 90 degrees will result in a high, narrow module. Rotation over 180 degrees is allowed since it is equal
to mirroring in two directions. This knowledge shows that each module can take four different orientations.

The number of states is therefore 4N , where N is the number of modules in the ftoorplan.
Instead of handling both mirroring directions at the same time, one might decide to handle both

separately. This way the number of states is reduced to 2N while the final solution is still near optimal.

Handling the mirroring directions separately will reduce the computing time with a factor
(4N / ( 2 * 2N

) ) = 2N - 1.

From the problem description given above, it will be clear that the entire problem is NP-complete.

2.2 The connection matrix.

As described, the first operation to be carried out, is the transformation from the module orientation­

space to the wire length-space. To store the wire lengths belonging to each connection in each orientation

combination, a matrix can be constructed. Both rows and columns represent modules and the matrix will
look like:

Lao. Lab Lac Lad LQ£

Lba Lbb Lbe Lbd Lin

L = Lea Leb Lee Led Lee

Lda Ldb Ldc Ldd Lde

L.,. Leb Lee Led Lee

(1)

Every element from this matrix must contain information on the connections between the two

corresponding modules. Therefore, the elements Lbe and Leb contain information on all connections
between module B and module C. The elements must also contain information showing the influence of
turning either module B or module C or both. It may be clear that this information can't be put in only two

elements ( Lbc and Lcb ) and therefore the elements from the matrix shown in equation (1) are really
submatrices containing several separate elements themselves.

The size of the submatrices is determined by the number of possible orientations of each module. In

the final implementation, both mirroring directions are handled separately. Therefore the number of
possible orientations is limited to two. The number of elements in each submatrix is equal to four. The

elements of the submatrix L", will be:

(2)
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All elements of the submatrix must contain infonnation on the connections from module X to module

Y in the orientation given. So, iij contains infonnation on the connections between module X in its original

orientation and the turned module Y. Further details on these submatrix elements will be discussed in

paragraph 2.3..

Looking at the matrix two things attract attention. First, the nondiagonal elements in equation (1) are

connected in pairs. It will be clear that elements of the submatrix Lab are equal to elements of the submatrix

L ba . These elements will not be in the same position in both submatrices because of the exchange of row

and column numbers. Or mathematically: Lab=(Lbal. However, almost half of the matrix does not have to

be allocated in program implementation. This results in considerable memory savings when optimizing

large floorplans.

A second thing that attracts attention is the diagonal elements of the matrix in equation (1). The

submatrices belonging to these diagonal elements are given in equation (3). From this configuration two

things can be said. First, the nondiagonal elements of this submatrix ii>: and in; these elements should

describe connections from module X in the original orientation to the same module in mirrored orientation

(or the other way around). Since a module can never be in two different orientations at the same time, these

elements will be equal to zero. Secondly, the diagonal submatrix elements i:o: and in; these elements

describe connections from the current module to itself in respectively the original or the mirrored

orientation. It will be clear that such connections will always have the same length irrespective of the

orientation. Therefore, these elements can be made zero also or given their initial value. The elements can

not be left out however since they may be of some use later on ( see paragraph 2.4.1 ).

(3)

Our objective was to find a minimal overall wire length. From the matrix L in equation (1) we are able

to derive the infonnation needed. The objective function; is the addition of all matrix elements belonging

to the orientation combination examined. Mathematically this will look like:

; = 1:1: iO(i~(j)
i j

(4)

where 0 (i) resp. 0 U) represent the orientation of module i resp. j in the orientation combination
- -

examined. So, 0 (i) is either i or i and 0 U) either j or j.

2.3 Several element calculation methods.

After describing the connection matrix, let us take a closer look at the exact calculation of the

submatrix elements. These elements must contain information on the wire length of all connections

between the corresponding modules. This can be described as:

iij =1: Cij(c.x,Y) • F(c.X.Y)
c

(5)

in which Cij(c,X,Y) is the connection length of the connection C running from module X to module Y. This

connection length depends on the orientation of the modules X resp. Y. Index i must therefore be x or xand

index j must be either y or y. F (c,X,Y) is a scaling factor used to give each connection an equal influence
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in the total wire length. It may be used when a connection connects three or more modules. If it is nol used,
its value must be a non-zero constant.

Both multiplication terms can depend on several faclDrs. A number of these factors will be discussed
below.

2.3.1 Length.

Most important of all factors will be the connection length. It is more or less represented by the first
multiplication term. It will be clear that this connection length must be the shortest connection possible
between begin- and end-point of the connection. An optimal situation can only be reached if the true wire
length, found after using a global router, would be used. This however will mostly be impossible, so other
values must be found to approximate this true wire length. Before discussing these approximations, a
description must be given of the pins connected by them. In the Introduction, a cell generator was
mentioned being able to produce variable pin positions. A module description of a variable pin position cell
is given in Appendix A.

Pins described by an interval may be located at any position on the interval. The interval can be seen
as a piece-wise linear description. The description is determined by the modules comers within the interval
and the begin- resp. end-point of the interval. To determine the minimal distance possible between two
piece-wise linear descriptions, it is sufficient to determine the minimal distance between all combinations
of point-pairs. The point-pairs consist of an interval-point of each pin. Interval-points are either comers or
begin- or end-points. A calculation error can be made using this method if part of the intervals run parallel
to each other.

A few approximations of the true wire length are shown in figure 4. In this figure it is assumed that all
connections interconnect two pins. Three or more pin interconnections can be dealt with by handling each
pin-pair separately. Adjustments to be made when using this method are discussed in section 2.3.2.

Described in words these approximations are:

1) X-distance ( Dx ) or V-distance ( Dy ): A minimal distance in x- resp. y-direction is used to be a
measure of the minimal true wire length. Mathematically:

(6)

where Xd.l: stands for the x-eoordinate of the interval-point k belonging to pin a. #(J resp. #b indicate the
number of interval-points on the interval describing the pins a resp. b. A similar description stands for
Dy{c,X,Y):

Dy(c,X,Y) =~~ (I Yd.l: - Ybll ) (7)

2) Euclidian distance ( D, ): The minimal eulidian distance between the piece-wise linear intervals. A
mathematical description is:

(8)

The euclidian distance is not necessarily the square root of (D; +D; ), as is shown in figure 4.
3) Manhattan distance (D", ): The minimal Manhattan distance between two piece-wise linear intervals.
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Dm(c,X,Y) = ~~ (I Xak - Xbl I + I Yak - Ybll ) (9)

The Manhattan distance is not necessarily equal to (D% +Dy )' This is illustrated in the example in
figure 4.

Euclidian

y

)
,­

,­
,-

distance (2) ./ ,- ,-
,­

,-

/' ~
~,-

rr=====~----,-------_J
Manhattan

distance (3)

<- - - - - - - - -> x
X-distance (la)

t Y -distance (lb)

Figure 4. Distances. The calculated minimal values are: la) 4 units; 1b) 1 unit; 2) 5 units; 3) 6 units.

In equation (5), the first multiplication tenn, Cjj(c,X,Y), can be replaced by one of the distances
described above. From figure 4, it can be seen that this tenn depends on the orientation of the two modules
involved indicated by the subscripts i and j. So:

Cjj(C,X,Y) = D%(c,X,Y)

CjAe,x,Y) = Die,X,Y)

Cj/c,X,Y) =D«(e,X,Y)

Cjj(e,x,Y) = Dm(e,X,Y)

or
or

or

(10)

(11)

(12)

(13)

2.3.2 Number of modules per connection.

A second factor being important in the calculation of the matrix elements, is the number of elements
being interconnected by each connection. In many cases three or more modules are linked together by one
connection, e.g. system clocks and power- and ground nets.

When all elements in the matrix are calculated one by one, dividing these nets up into pin-pairs, they

are likely to have a disproportionate influence on the final result. If for instance all modules to be
interconnected with a particular module, are on the left side of it, the connection is most likely to be

established by only one wire running from the source on the current module to the left. To balance the
influence of all connections, their contribution to the matrix elements is divided by (N-l), where N is the

total number of modules being interconnected by the current connection ( including the current module ).
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If all modules are on the same side, relative to the current one, their total contribution to the matrix

elements will be about the same size in compared to the case where there is only one module ( on the same

side) being interconnected to the current module. If the "destination-modules" are spread out over the

entire floorplan, their contributions to both possible orientations will be almost equal, thus having only linIe
influence on the final result. Therefore:

1
F (c,X,Y) = (#e _ 1 ) (14)

A second reason to involve the number of modules per connection into the calculation, is found in the

fact that if a connection is connected to a big number of modules, it will be widely spread over the

floorplan ( ego power nets ). Therefore, allowing the module to be easily connected to any part of the

connection, independent to the module orientation. Mathematically, this influence can be written as:

F(c,X,Y) = (#e < (#fIoor In» (15)

where F (c,X,Y) is equal to 1 if #e is smaller than #fIoor1n or 0 if not.
In both equation (14) and (15), #e stands for the number of pins being interconnected by connection c.

#fIoor is the number of modules in the floorplan. The constant n determines the maximum number of

interconnected modules, still to have any influence on the result. In the final implementation, n was taken to

be equal to 2.

A combination of equations (14) and (15) can also be used.

2.3.3 Module distance.

Since module orientation can only influence certain parts of the total wire length, a third point of

interest is the distance between modules. If for instance the x-distance between two connected modules is

very low, this doesn't mean these modules are close together. Several slices or modules can be placed
between them.

In mO,st floorplanners, modules are placed next to each other for several reasons. Quite often it will

not be very important to minimize long connections at the cost of more important, shon connections. The

reason for this is that the modules positioned near each other are situated there because of the connections

between them. In floorplanning stages, the longer connections are considered less important. The influence

of each connection could therefore be divided by the distance between the modules concerned or a factor

derived from this distance, to favor shon connections. Or:

(16)1
F (c,X,Y) = l1(X,Y)

where l1(X,Y) represents the distance between the modules X and Y.

2.3.4 Other influences.

Other factors of influence can be thought of, but only a few will be mentioned here:

- A way to remove the influence of long connections could be the removal of the non-influential part of a

connection; only count the connection length up to one of the modules comers. The pan running from

comer ( of the current module) to corner ( of the destination module) will most likely not be changed
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by turning either module.

(17)

where ~%(X,Y) represents the x-distance between the two nearest sides of the modules X and Y. Similar

equations can be found using Dy , D~ and D",. Although this method has no influence if we just try to
minimize this new value, it does show ·it's influence if it is used in combination with the factor

F(c,X,Y) discussed in the previous section.

- Modules that are placed within the same slice, are likely to be stronger tied together than modules not
in the same slice.

F (c,x,Y) = S (X,Y)

{
A if X and Y are in the same slice.

S (X, Y) = B if X and Y are not in the same slice.

(18)

where A and B are constants indicating the influence of in-slice and out-slice connections. Normally,

A >B.

- Finally, in a number of floorplanners it is possible to attach weights to a connection. These weight can

also be used in this orientation optimization part.

F(c,X,Y) = Wee) (19)

Combinations of several factors are possible. If the euclidian distance is chosen together with the

influence factors described in equations (14), (15) and (19), equation (5) can be written as:

(20)

2.4 Minimal wire length calculation.

After calculating the matrix elements, ways must be found to calculate the overall wire length. Since
the modules can take two different orientations each, this means calculating 2N possible configurations.

This number can get quite large if N increases. Therefore, to find the minimal overall wire length without

trying all configurations, several methods have been looked at. They are described below.

2.4.1 Trying all possibilities.

Despite what is said above, in some cases it could be useful to try all possible configurations. Since, in

the implementation used, both directions are handled separately, the total number of configurations is

limited to '2!'. Examples up to 10 or 12 modules (1000 - SOOO possibilities) can therefore be checked in a

reasonable amount of time.
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2.4.2 Matrix sweep method.

A second method to find the minimal overall wire length, is the matrix sweep method. In this method,

we remove the modules from the matrix one by one, by adding their contribution to the wire length to other
matrix elements.

To explain the way to do this, let us take a look at an example where one module in the floorplan is

connected to only one other module. In figure 5 this has been illustrated by drawing a part of the graph

giving the interconnections between the modules and a part of the corresponding matrix.

o

o

o

o

ltl(;o

lCfi

I'"~-- - -- - - - - -,

: lab~:
I I ~I
I I

r __ ~ ~~-1- _~~ l~ _

: lba lbii: lbb 0: 0 0
I I I
1 I I

1 1- l~,= I 0 lb-b I
1 ba "" I IL L ~ _

I I

I 0 0 I
I I
I I
I I

I 0 0 I
I I
I I

B

A

Figure 5. Removal of a I-tree node ( module B ).

If module B is only interconnected to module A, it is called a I-tree node. In this case, only four

situations can be thought of: leave both modules in their original orientation, tum either A or B and leave

the other, or turn both modules. However, for each orientation of module A ( a or li ), an optimal
orientation of module B can be found because of a shorter wire length. The total wire length belonging to

one of the four possible orientation combinations, can be found in the matrix and are given below:

orientation ab is determined by laJ2 + lab + hb (21)

orientation ab is determined by laJ2 + lab + lbb (22)

orientation lib is determined by l(iii + lQb + lbb (23)

orientation aJj is determined by liii + lab + lbb (24)

So, for orientation a we must find the minimal value of laJ2 + lab + lbb and laJ2 + lab + lbb' Of

course, a similar construction is available for orientation li. Adding the diagonal elements laa' l(iii, lbb and

lbb may seem strange, since these elements are initially zero, but since the wire length of connections

between A and B contribute to the overall wire length, they are added to the elements 1aJ2 and ltiCi
respectively. This introduces some kind of penalty for choosing a certain orientation of module A.

After perfonning this sweep step, the elements laa and liiii will be changed to:

laa
MW

= laJ2
0
ld + min ( (lab + lbb ),( lab + lbb»,

liiii
MW

=l(iiioid + min ( (IQb + lbb ),( lab + lbb»,

(25)

(26)
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Apart from this wire length addition, information on the orientation of module B must be saved also.
For each orientation of the remaining module, an optimal orientation can be found for the swept one. This
is done in separate data structures.

These structures contain an array representing all possible configurations of the modules being
interconnected with the current one. For each of these orientations, the most optimal orientation of the
current module is stored ( ego a implies b and aimplies b ). If the current module is interconnected with
more than one module, this can result in an array having ')!J elements, where N is the number of modules,
the current one is interconnected with.

This was sweeping a I-tree node; now lets take a look at a 2-tree example. In figure 6 this has been
illustrated. Analogous to the preceding description, an optimal orientation can be found, belonging to a
certain orientation combination of the two modules involved. Since the optimal orientation of the module
to be swept now depends on two other modules, the contribution belonging to this orientation must be
added to non-diagonal elements, as indicated in figure 6.

The new elements I"", Iii<:, laC and loc will now get the new values:

J",,_ = l""old + min ( (lab + lbe + lbb ),( lab + lbe + l'bb»,

lii<:_ = lii<:old + min ( (1Gb + lbe + lbb ),( liib + lbe + lbi»,

laC_ = laCold + min ( (lab + lbe + lbb ),( lab + l"be + l'bb»,

loc_ = l«old + min ( (1Gb + lbe + lbb ),( Jiib + l"be + lbi»,

The module orientation information added is similar to the I-tree node removal.

(27)

(28)

(29)

(30)

B

laa 0 iCf :v1i""
I I

o lQii: 1Gb lib:
I I

r------------~-----------~--

: ~ ~: ~ 0:
I I I

I I I

: ~ ~: 0 ~:L ~ J __

I I

~ ~: ~ ~: ~
I I
I I

~ ~ I ~ ~ I 0
I I
I I

Figure 6. Removal of a 2-tree node ( module B ).

------.
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For I-tree node and 2-tree node removal, this method works excellent Problems arise however when
three or more modules are interconnected to the one to be swept In these cases, the wire length
contribution should be added to elements containing information on a three or more module orientation
combination ( ego abc or bdj etc. ). This implies three or more dimensional matrices. Since these type of
matrices consume enormous amounts of memory space, the implementation used tries to solve the problem
by adding the wire length contribution divided by the number of modules to be connected to the current



- 13 -

one, to elements contributing to the configuration given. If the module orientation combination given is

abed, the contribution

(31)

is added to the elements lab, ltiE.lad.lbc.I'bd and lcd, where N is the number of modules to be interconnected

( here N = 5 ). The optimal orientation e or e is again stored in a temporary data suucture as described

earlier.

The selection criterion determining the module to be swept is obvious. The 1- and 2-tree node

removals introduce no error in the final result. Sweeping a 3- or higher-order node does. Modules being

interconnected to one or two others are therefore to be swept first Sweeping one of these latter modules

reduces the order of the module(s) it is interconnected with. In some cases. the entire matrix can be swept

with only 1- and 2-tree node removals. This strategy reduces the overall error introduced by higher order

node removal.

After sweeping all modules, except the last one, an optimal orientation can be found for this last

module. Having found this orientation, it is possible to determine the optimal orientation of the module

being swept last since it only depends on the last module. Continuing this "back substitution" optimal

orientations can be found for all modules.

2.4.3 Scan line method.

A third method which has only briefly been looked into, is the scan line method. Since no serious

research into this method has been done, it will only be discussed briefly here.

The main idea is to let an imaginary scan line divide the floorplan into two pieces. If this line is

positioned at the left ( or bottom) of the floorplan, it will not divide any connections in two. While it is

moved to the right ( or top ) of the floorplan. a number of connections and modules will be divided. For

each position of the line, the total wire length of connections starting on the left of ( or below ) the scan

line, from their starting point up to the line is calculated. When the line reaches the end of a module. an

optimal orientation can be found for this module calculating the minimal wire length as described above.

While the line moves further, the optimal orientation of the modules on the left of ( or below) the cut line

is maintained.

It can be shown that the wire length only depends on the modules currently being divided in two by

the cut line. After moving the line over the entire ftoorplan. all modules will be appointed their optimal

orientation.

This dynamic programming method will result in an exact solution. The time necessary to solve the

problem is exponential with the number of modules on the scan line. Although this method does not use the

earlier described connection matrix. it can be used to solve the optimal orientation problem.

2.4.4 Average values.

Another way to find optimal module orientations using the connection matrix, is to calculate average

values. While looking at a certain module, the wire lengths are calculated for both possible destination

orientations. For instance, while looking at module A ( having connections with module B ), the

contribution to the orientation a will be ( lab + lab ) / 2. On the other hand, the contribution to orientation a
will be ( IQb + liib ) / 2. To get the contribution of all connections, connecting module A to other modules, all

elements on the matrix rows a resp. amust be added to each other, or mathematically:
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(32)

(33)

where A%(X) and Az(X) represent the total wire length of the current module in orientation a and a
respectively. Index i represents all modules in the floorplan. The optimal orientation for the current module
is found by finding the minimal value of AiX) and Ai(X). This way, optimal orientations for all modules
can be found.

A safety-band can be used by allowing to link a certain orientation to a module only if one of the
values A%(X) or Az(X) is bigger than the other multipied by a constant bigger than 1. A problem which now
rises is the fact that after one run, not all modules get an optimal orientation appointed. For these modules,

new runs are performed until all modules have an optimal orientation. During these next runs, modules
already having been appointed an orientation, only contribute the wire length corresponding to this
orientation. Or in mathematical form:

A%(X) = L « l%i + I,;) / 2 ) +
j e umDd

Ai(X) = L « Iii + Iii) / 2 ) +
j e umDd

L I>.OU)
j e omod

L liOU )
j e omod

(34)

(35)

where umod represents the set of unoriented modules and omod the set of oriented modules. 0 U)
represents the orientation of module j E omod: either j or j.

It will be clear that this method tries to disconnect modules from each other by using average wire
lengths.

2.5 Methods used.

A number of element calculation methods and minimal wire length calculation methods have been
tested. The combinations tried out are given below. The results of a number of test runs using these
combinations are given in chapter 6. The names used in the mathematical descriptions are equal to those
described earlier in this chapter.

2.5.1 Method 1.

In the first method used, the matrix elements are calculated using the X- resp. Y-distance, the module
distance and the number of interconnected modules. The factors Cjj(c,x,f) and F (c ,X,f) used in equation
(5) can be written as:

Cjj(c,x,Y) =D%(c,X,y) or

Cjj(c,x,Y) =D,(c,X,Y)
(#e < (#JDOr /2»

F (c,X ,Y) = (#e _ 1 ) * a.(X,y)

(36)

(37)

To calculate the optimal orientation, the average value method is used. If the wire length belonging to

orientation i is bigger than ( 1.1 * Aj(l), orientation i is appointed. If (Aj(l) > ( 1.1 * Aj(l» ),orientation i

is appointed. For modules not having an orientation appointed after one run, new runs are done. If after a

while, no new orientations are found while there are still unoriented modules, the module having the best
(A;(I) / Aj(l) )- or (Aj(l) / Aj(I) )-ratio will be oriented.
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2.5.2 Method 2.

This method uses exactly the same matrix element calculation and optimal orientation method as used

in method 1. The difference however is found in the fact that each orientation run only appoints an
orientation to the module having the best (A;(I) / A j(/) )- or (Aj(l) / Ai{I) )-ratio. The number of runs is

therefore equal to the number of modules.

2.5.3 Method 3.

The matrix elements used in this method depend on two factors: the X- resp. V-distance and the
number of interconnected modules.

Cj/C.x,Y) = Dic,X,Y) or

Cjj{c.x,Y) = Dy{c,X,Y)

F (c,X,Y) = {#c < ( #j/lJor /2 ) )
(38)

(39)

To find the minimal overall wire length, the matrix sweep method described in paragraph 2.4.2. is
used.

2.5.4 Method 4.

Although this method also uses the matrix sweep method to find the minimal overall wire length, the

matrix elements in this case depend on the euclidian distance and the number of interconnected modules.

The number of interconnected modules has a larger influence on the final result than in the previous
method.

(40)

(41)

2.5.5 Method 5.

In method 5, the matrix element calculation method is equal to the one used in method 4, but the

orientation calculation method is different. If the number of modules in the floorplan is sufficiently small,

all possible configurations are checked on minimal wire length.

2.6 Program implementation.

To perform the module orientation step, two programs have been written. Using these programs, the

output files generated by the ftoorplanner programs are transformed to a suitable format to be used for

orientation calculation. Below, the separate programs are discussed briefly.

2.6.1 JOIN.

In the join-program, the f100rplanner output files are read and the information is stored, grouping all

module resp. pin information together. The files read are: iotfaces, geometry.mod, modules,

pinptrs.mod, plan.ldm and modtonet.pin. Module rotation information is updated and slice dimension

information is being calculated. Also, channels are added to the ftoorplan, having an initial width zero and

an initial height equal to the slice's height. Information on the modules ( sizes, orientation, slice

information and names ) are than stored in the file join.mod. Pin information is being written to the file
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join.pin.

2.6.2 ORIENT

The real orientation routine is embedded in the orient-program. First, the join.mod and join.pin files

are read. After some initial calculations and constructing a connection list, physical pin positions are
derived from the relative values. Using these physical positions, orientation calculation is done in two
steps, using the routine MIRRORO in which both matrix element calculation and module orientation is
done. After this, the new, relative positions are calculated and written to the orient.mod and orient.pin

files. These files use the same format as the join.mod and join.pin files.
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3. Pin position calculation.

Not only module orientation can influence wire lengths and floorplan dimensions. Pin positions can
also lead to more optimal situations. After finding a certain orientation, many module descriptions allow

multiple pin positions ( see Appendix A ). The next step to optimize floorplans must therefore be the

calculation of optimal pin positions. The calculated pin positions must be within the boundaries set in the
description. In this chapter, a method will be described, together with a short description of the program

implementation.

3.1 Optimal pin positions.

After calculating optimal module orientations, the physical pin positions are known. Sometimes, these
positions consist of one coordinate only, but it is also possible that the position is represented by an

interval, described by boundary positions along the modules edge. An example of this latter possibility is
shown in the figure below.

II II

2 3

3

2 1

-----,nl '-

b)

Figure 7. Optimal pin position appointment a) pin position interval. b) possible pin positions.

Before trying to find one optimal pin position, it is important to determine which positions along the

"pin-interval" can be considered for this optimal position. There are three kind of possible positions:

1) Module comers; At these places, channels to other parts of the floorplan "leave" the module, so it is

likely for the wires to be routed through these channels. This type of position is comparative with the

next one,
2) Channel intersections; Here channels intersect with module edges.

3) Area boundaries; These positions are useful if no channel intersection or module comer is within the

pin-interval, or if the pin-interval is opposite to the destination position. For example if the destination

is to the left of the current module while the pin-interval is on the right.
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In figure 7 b), these positions are given for the pin-interval and channel positions shown in figure 7 a).

In cases of adjacent modules this method is however less effective. If part of the corresponding pin­

intervals are opposite to each other, this method only finds possible opposite pin positions in a limited

number of cases. If interval boundaries of both pin-intervals are at the same physical position, or if one of

the module comers within the pin-interval is also contained by the opposite pin-interval, correct positions

are found. A module comer causes a channel intersection on a adjacent module.

In all other cases, the possible pin positions described before represent a collection of the best possible

positions.

3.2 Using a global router.

Finding the possible pin positions using the method described above, doesn't solve the problem, but it

simplifies the solution considerably. Now, it is possible to use a global router to route all connections as

optimal as possible.

The global router used [6] recognizes several pin types. They may be one of the following types:

- Internally interconnected pins: A number of pins on the module are grouped together. Normally these

pins carry the same name apart from a different appendix ( ego CLOCKa, CLOCKb and CLOCKc ).

Pins belonging to the same group are supposed to be interconnected inside the module. Nets containing

these pins ( ego CLOCK) may be connected to any of the pins within the group. In this case: CLOCKa,

CLOCKb or CLOCKc. Other nets connected to the same pin may be connected to the same or other

pins within the group.

- Individual pins; Pins not being internally interconnected with any of the other pins on the module.

If the first type of pins is used, pin-intervals can be described by a series of pin positions as described

in paragraph 3.1. Running the global router will reveal certain pin positions to be used to realize the

connections. So, after using the global router, it will be possible to determine which pin positions are used

most frequently. These pin positions are supposed to be the most optimal pin positions. The pin positions

that are not ( or less frequently) used by the global router, can now be removed and the optimal pin

positions remain.

3.3 Program implementation.

The process described above has been implemented. A number of programs have been developed to

perform the different steps. Also, some minor changes have been made to the global router to allow error­

free execution.

3.3.1 FILES.

In the files-program, the input files orient.mod and orient.pin are read, and possible pin positions are

calculated. The result is written to the files ftorplan. netlist and mod2net. containing information on the

ftoorplan, nets to be routed and pin descriptions respectively. These three latter files are formated in a way,

the global router is able to read.

3.3.2 REMOVE.

After running the global router, its output files mod2net.app and channels and the input file mod2net

are read by the remove-program, in order to remove the less frequently used pins. The output file

mod2net.tmp contains the optimal pin positions using the same format as used in the files mod2net and

mod2net.app.
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4. Channel width estimation.

A final problem to be solved before resizing is the channel width estimation. In this chapter a general

description will be given of the method developed. After this, some special properties of the estimation

method used will be described. At the end of the chapter an overview of the programs written to perform

the estimation will be given.

4.1 General description.

After finding exact pin positions, like described in chapter 3, the channel widths have to be found. To

gel accurate channel width estimation, one has to know how the router used in stages still to be performed,

will place the connections. At this stage, the floorplan layout will be slightly different from the one that will

be found after resizing. Since it is the only one available and since the final floorplan with channel space

will look something like a blown up version of the current one, it will do as an approximation of this final

floorplan. If we use the global router again to route all connections, we will get a fairly accurate estimation

on how the connections will be routed in the final floorplan.

From the output of the global router, information can be obtained on how the connections are routed.

The mod2net.app file contains exira produced pin positions located at channel intersections and used by

the global router. The file uses the same format as the input file mod2net. The channels file contains

information on which pin positions are interconnected. These pin positions are named in either mod2net or

mod2net.app. This information is ordered by channel. For every channel available, the interconnections

between pin positions are given. The pin positions are bounded by or are part of the current channel.

Having obtained this information, the next step must be to find the maximum amount of connections

crossing any section of the channel. Since the channels all have an initial width equal to zero, all pin

positions leaving or entering the current channel at a channel intersection will have the same physical

position. In figure 8 b. this means that pin positions Al to AS all have the same physical position.

To obtain the maximum width, an array is used, with each element representing a micrometer part of

the channel. For every connection running through the channel, a contribution is added to the array on the

interval it is occupying. The connection A3-E adds one unit to the array elements XA3 up to xE; where XA3

and XE are the x-coordinates of point A3 resp. E. For a vertical channel, y-coordinates must be used. The

unit added depends on the connection width given in the file channels and eventually altered using an

available program option.

A small problem rises since connections using channels C and D will have the same physical position.

For instance connections AS-C2 and CI-B2 can be routed in one track. To prevent the program from

adding two contributions to the coordinate XcI ( =Xc2 ), the contribution adding starts at the coordinate

next to the starting point and ends one coordinate before the end point. This way, the most probable

channel width is estimated.
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Figure 8. Channel routing example. A, B, C and D are channel intersections, E and F are pin positions on
modules. a) Schematic channel representation. b) Possible routing diagram

There is a cheaper and faster way to calculate the maximum channel widths. First all connection
points are sorted on increasing x-coordinate for horizontal channels. For vertical channels y-coordinates
must be used. Then the connection points are given a number according to this ordering. In the example in
figure 11 this means that pin Al gets number 1, A2 to A5 also get 1, E gets 2, CI and C2 get 3 etc. Now an
array is created in which the number of array elements is limited to the number of different coordinates
minus one. The contribution of a connection running from a pin with number x to a pin with number y will
be added to elements x to y-I, if x smaller then y. This calculation method in much cheaper then the one
mentioned earlier. In the program used for testing, the first method is used. The description given below
will therefore be based on this method. Alterations to allow the second method to be used are minimal.

4.2 Special features.

The description given above is a general one. The developed program has some special features.
Three of these features will be glanced at below.

4.2.1 Power and Ground connections.

Although the global router routes all connections, it treats the power and ground connections in a
different way. This quite often leads to strange connection patterns. To prevent faulty contributions to the
array mentioned in paragraph 4.1., power and ground connections do not contribute to the array elements.
In stead, every channel is widened with a default width which is partly controllable by the program option
mentioned earlier. Since the global router requires power and ground pins to be available on two opposite
sides of each module, it will be possible to route all power and ground connections using this default
connection space.

4.2.2 Equal-connection contribution.

In some cases, the channels file contains rather remarkable connection combinations. If for instance
the connection AI-DI-Bl must be routed, this is sometimes done by routing connection AI-BI and
connection BI-Dl. This combination however, causes a double contribution for this connection on the
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interval D1-B1. The estimator locates all connections belonging together, finds the overall connection

interval and adds only one unit to the array elements intersecting with the interval.

Adding only one unit is most likely allowed since the final router will probably route one connection

from Al to B1 with a via near D1 to connect it with channel D.

4.2.3 Program options.

Beside a verbose option -v, also a default connection width alteration option is supported by the

program. Default width value for every connection is 15 micrometer. If the option -s is used, all minimal

connection widths are set to 5 micrometer, the -m option causes a minimal width of 10 micrometers.

Although only three values are possible now, this could easily be altered to allow the user to enter a

number to be used as width value.

The connection width set by the options -s or -m, or the default value, is a minimal value. If the

channels file indicates that is needs a wider width for a certain connection, this latter width is used.

4.3 Program implementation.

To perform the estimation, the estimate-program has been written. In this program, the files Oorplan,

mod2net, mod2net.app, channels and Breaks.mod are read. After this the minimal channel widths are

calculated using the method described in paragraph 4.1. The channel widths are than stored in the

breaks.mod output file. The channels in the breaks.mod output file have zero length but estimated width,

to allow the f100rplanner to make arbitrary long channels.

The input file read carries the name Breaks.mod, which is the original breaks.mod file generated by

the f1oorplanner. For reasons of testability, the name has been altered to Breaks.mod using the "mv

breaks.mod Breaks.mod"-command under UNIX. The name of the output file is breaks.mod since the

geometry program uses this name for the input file. The geometry-program will be used in chapter 5 for

resizing purposes.
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5. Resizing.

After finding optimal module orientations, calculation of the pin positions and estimation of the

channel widths, a number of floorplanning steps must be repeated to review the initial floorplan.

Initially, the channels in the floorplan are assumed to have zero-width. After performing the module

orientation step, the pin position calculation step and finally the channel width estimation step, the channel

widths are known approximately. When these channels are added to the floorplan, a new calculation step

can be performed to establish new module dimensions. Better fitting in the reviewed floorplan is only

possible if adjusted module dimensions are allowed in the module description.

This resizing step can be performed by using the geometry-program from the initial floorplanner [1]

with expanded input files. The expansion of the input files will be caused by adding the channels and their

dimension information. Adding this extra information to the input files is established by writing a

subroutine to the estimate-program, producing a new breaks.mod-file and a new tree.mod-file.

To the original geometry-program, some changes had to be made. Since the original floorplanner did

not calculate initial orientations, the program assumed all possible orientations to be allowed. To prevent

the program to change the orientation found in the module orientation step, extra code was added to several

floorplanner programs to allow them to find out if the modules may be rotated or not. This resulted in an

extra column in the breaks.mod-file and therefore the Breaks.mod-file, The added column indicates

weather the module being read may be rotated ( 1 ) or not ( 0 ).
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6. Results and conclusions.

Mter implementing all algorithms described before and adding a number of changes to the original
floorplanner programs. a number of test runs have been made using the orientation methods as described at

the end of chapter 2. In this chapter. a survey is given of the programs to be run to get more optimal
floorplans. together with the results of the test runs.

6.1 Program sequence.

In order to get more optimal floorplans. the programs developed together with those already available.

must be run in a fixed sequence. In the figure below. this sequence is shown together with a description of
their meaning in the total process.

PREPARE
RDNETLST
MKAREAS

POINTS
SLICING

GEOMETRY

JOIN
ORIENT

FILES
GLOBAL
REMOVE

GLOBAL

~ ESTIMATE -
GEOMETRY

MKINTFACES

FLOORPLANNING

MODULE
ORIENTATION

PIN POSITION
CALCULATION

CHANNEL WIDTH
ESTIMATION

RESIZING

Figure 9. Final program sequence.
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Since a number of files are produced by these programs, but also used and altered in other programs in
the sequence, a number of these files must be copied to temporary ones. The complete sequence of running
programs plus perfonning the copying can be executed using a command file.

If a visual representation of the geometry.mod-file is wanted, the sbow-program can be used. This
program uses the geometry.mod-file and the plan.ldm-file as input and produces a view.mod-file
containing PIC-information that can be printed using the command: esmmt 'p ·rN4 view.mod.

The file names mentioned are default names which can be altered using one of the program options.
All program options are given when executing the command: sbow ·b.

6.2 Test results.

In order to test the program sequence described above and to see its effect, a number of examples
have been developed. The seven examples contain both small (ex. 3 and 7) and big floorplans (ex. 5 and 6).
Some examples contain only a few modules (ex. 5 and 7), others like ex. 1 contain a considerably larger
number.

One example contains pin intervals rather than single coordinate pin positions (ex. 3) while two
examples uses module descriptions with piece-wise linear shape constraints (ex. 3 and 5).

The program sequence has been run for these examples using the module orientation methods as
described in chapter 2. The results of these test runs are given in the table below. The orientation methods
are numbered in the same way as has been done in chapter 2. Initial and final floorplans are given in
Appendix C.

original method

nr floorplan size - 1 2 3 4 5 #

1 593 * 552 100.0 89.5 91.7 93.2 91.3 64

2 261 * 159 100.0 92.4 87.7 102.5 105.2 94.5 12

3 183 * 147 100.0 89.3 91.1 106.9 108.7 112.1 12
4 224 * 244 100.0 86.0 86.0 79.5 93.4 17
5 2151 * 1400 100.0 86.9 87.7 84.3 84.3 93.9 10
6 8913 * 10734 100.0 89.5 89.5 100.3 101.2 16
7 80* 70 100.0 69.5 69.5 100.0 100.0 95.0 4

TABLE 1. Results from 7 test examples. The sizes in the second column are floorplan sizes before module
orientation, pin position calculation and channel width estimation. The numbers shown are
percentages relative to the ftoorplan size without module orientation indicated by -. The lasl
column contains the number of modules in each example.

Although the object function used in chapter 2 was the minimization of the overall wire length, our
main goal was to find minimal ftoorplan dimensions. Infonnation on the overall wire length is not
available, because of the fact that during the entire process, only little information is available on true wire
length. The differences in ftoorplan size among the methods used are quite big. A considerable difference
in overall wire length may therefore be expected.
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6.3 Conclusions.

From the results shown above, the following conclusions can be drawn:

- The number of elements per connection only plays a small role in the final result. The difference

between method 3 and method 4 is rather small.

- The distance between modules seems to have an important influence on the final result. In methods I

and 2 the module distance is used to affect the scaling factor used to reduce to wire length contribution;

while in methods 3, 4 and 5 this type of scaling is omitted.

- "Disconnecting" modules seems to have a positive influence on the result of the test runs. Again

methods 1 and 2 which try to disconnect modules give much better results than the methods 3, 4 and 5

which try to reduce wire lengths depending from all module orientations.

The results given in table 1. do not show enough. Looking at the layouts made using the SHOW

program reveal something else. Often an enormous improvement in ftoorplan size can be made if modules

are located on more optimal positions in the initial ftoorplan. An example can be seen in Example 5

(Appendix C) where block 10 was heavily interconnected with blocks I and 3. If, in the initial f1oorplan,

block 10 was located under either block I or 3, this would have lead to a much smaller ftoorplan.

The overall result of the research done during the research period is that a considerable size

improvement can be established using ftoorplan optimization. In the best case up to 30 per cent smaller

ftoorplans were found, while the average improvement was about 11 per cent.
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7. Recommendations for future work.

Since the time available to perfonn the work is limited. a number of options found during the research

could not be checked. In this chapter a few of these points are mentioned for future research.

While working on methods to solve the matrix problem it was found that solving this problem exactly

would consume a lot of time. The matrix sweep method greatly improves the computer time used. but the

solution found will may be suboptimal. The sub-optimal treatment of 3- or higher-order node removals

indicates this. The scan line method mentioned in paragraph 2.4.3. will lead to optimal results but it has not

yet been implemented. This method however will use an exponential amount of time.

A second point of interest is the number of possible combinations of both matrix element calculation

and matrix problem solving methods. Only five possible combinations have been tried. If a method has

been found to solve the matrix in a reasonable time. it might be possible to try out all possible matrix

element calculation methods one by one to find the best.
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AppendixA.

MODULE DESCRIPTION.

In the tloorplanner output files the modules are described in a way similar to the one given below.

After the keyword MODULE, the module's name is given. A keyword SHAPE is next, followed by a

sequence of number pairs. These numbers describe the piece-wise linear shape constraint. Now the pin

descriptions will follow.

Pin descriptions contain the pin's name, and a relative stan and end point. The lower left comer of the

module is position 0.00, lower right is 1.00, upper right comer is 2.00 and the upper left comer is indicated

by 3.00. If a pin description gives 3.35 to 3.75 as possible positions, this means that the corresponding pin

can be located at any position along the interval 3.35 to 3.75. The first number indicates the starting point,

the second the end-point. The interval is found in the counter clockwise direction starting at the starting

point. If a pin can be located at any position along the modules perimeter, this is given by the numbers 0.00

to 4.00. The numbers 0.00 to 0.00 describe a point at the lower left comer of the module.

The module description is closed by the keyword END.

Below, a module description is given together with a graphical representation of it. The first three pins

have been drawn. The POWER- and GND-pin have been omitted.

MODULE EXAMPLE

SHAPE 30 80 40 50 45 42

PIN INI 3.90 2.50

PIN IN2 3.353.75

PIN OUT 3.20 3.20

PIN POWER 0.00 4.00

PIN GND 0.00 4.00

END

OUT

IN2
IN!
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Appendix B.

COMPLE1E COMMAND SEQUENCE.

To perfonn the entire process of ftoorplanning, optimization and resizing, a number of programs have
to be run in a certain sequence. Below, an example of a command file is given, that can be used to run the
entire sequence.

prepare lib.ldm modules
rdnetlst modules tenninal
mkareas modules intfaces
points pinptrs.mod modtonetpin weights.mod
slicing breaks.mod coord.mod
geometry breaks.mod tree.mod
instance geometry.mod
show -a-m
cp breaks.mod Breaks.mod
cp tree.mod Tree.mod
cp geometry.mod Geometry.mod
cp plan.ldm PlanJdm
cp view.mod View.mod
cp intfaces Intfaces
join -v
orient -v
files -v
global-v
remove -v
mv m0d2net.unp mod2net
global-v
estimate -v
geometry breaks.mod tree.mod
mkintfaces -v
show -m -o-a

The copy and move commands ( cp and mv ) are used to save and rename a number of files for
comparison purposes. The show program has been used to output ftoorplan layouts.
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Appendix C.

FLOORPLAN LAYOUTS.

In this Appendix, the layouts are given of the examples mentioned in chapter 6, which were used to

perform the test runs. The numbers of the layout correspond with those given in Table I, chapter 6.

Example I

Example 2

Example 3

Example 4

Example 5

Example 6

Example 7

page 30

page 32

page 34

page 36

page 38

page 40

page 42

The first layout shown is the original, non-channel layout; the second layout is the layout found using

method 1. The ticks in one of the modules comers represent the original origin. The little line points along

the original base edge of the module ( interval 0.00 to 1.00, see Appendix A ).
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Example 1, no channels ( size 593 * 552 ).

No module orientation.

23 29 I

27 2 7
20 24

53 63
25 13

22 5
21 45

41 14

48 26
- 52

39 40 38 17 12
64 49

9
37 33

57 54 47 56 8
61

11
34

35
58

36 3 16

59 62 10 6 15

46 I 60
31 32

44 28 18
50 55 43 51

30 1
19 42 4
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Example 1, channels ( size 1499 * 1369 ).
Module orientation method 1.
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Example 2, no channels ( size 261 * 159 ).
No module orientation.

2

II

9
4 3

5 10

8 6 1

12

7
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Example 2, channels ( size 594 *530 ).
Module orientation method 1.

MF= 43

11 ~
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Example 3, no channels ( size 183 * 147 ).
No module orientation.
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3 10

8
5

6 1

12
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Example 3, channels ( size 484 * 413 ).
Module orientation method 1.

M== 43

II ~

0 8
3 10

5

~ 88

~12

L 7

0= 40
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Example 4, no channels ( size 224 * 244 ).
No module orientation.
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15 17
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Example 4, channels ( size 620 * 671 ).
Module orientation method 1.
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Example 5, no channels ( size 2151 * 1400 ).

No module orientation.
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4
-

3 1
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Example 5, channels ( size 2622 * 2328 ).

Module orientation method 1.
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Example 6, no channels ( size 8913 * 10734).

No module orientation.

2

7 1

8

5 6 16

15
12 13

4
14

9 10 11

3
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Example 6, channels ( size 12180 * 12564 ).
,

Module orientation method 1.

49
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Example 7, no channels ( size 80 * 70 ).
No module orientation.

4 3 2
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Example 7, channels ( size 257 * 133 ).
Module orientation method 1.

17

9
4 3

14

2
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