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Abstract 

In this report the de-convolution of a probability distribution is described. Such a 
distribution is composed of several underlying probability distributions. In this con­
text, de-convolution implies that the underlying distributions are determined when the 
convoluted distribution is assumed to be known. 

First of all, an application for the de-convolution of a probability distribution is given, 
namely the de-convolution of an EPT data set. Effective process time, EPT, can be 
seen as a probability distribution that is composed of several underlying distributions. 
In this case, the underlying distributions are the sourees of variability of a workstation 
in a manufacturing system. Those sourees are for example the processing, setup and 
breakdown times. 

To come to the de-convolution of a probability distribution, first the relationship be­
tween a number of distributions and their convoluted distribution is determined. The 
moment generating function of a probability distribution is used to find those relation­
ships. With help of the equations from these relationships, it is possible to identify the 
forms of the underlying distributions that can or cannot be de-convoluted. 
From the distributions for which de-convolution can be applied to, only the equations 
from the moment generating function have to be solved to find the parameters of the 
underlying distributions. 
From the distributions for which de-convolution cannot be applied to, observations are 
necessary from the underlying distributions. Those observations are processed in a das­
sical and a Bayesian statistkal way, to estimate the parameters of the corresponding 
underlying distributions. 

Hereafter, the described method for the de-convolution of a probability distribution is 
illustrated on an EPT data set. The de-convolution results in the estimation of the 
mean and varianee of the sourees of variability. 

Finally, conclusions are drawn with respect to the findings for the de-convolution of 
probability distributions. 



Samenvatting 

In het verslag wordt een methode beschreven voor het uiteenrafelen ( deconvolutie) van 
een kansdichtheidsfunctie. Zo een kansdichtheidsfunctie, ofwel distributie, is opgebouwd 
(convolutie) uit verscheidene andere kansdichtheidsfuncties. Deconvolutie betekent in 
deze context, dat de onderliggende distributies worden bepaald wanneer de gecon­
volueerde distributie bekend is. 

In het eerste hoofdstuk wordt er een toepassingsgebied beschreven waarin de decon­
volutie van een kansdichtheidsfunctie van belang kan zijn, namelijk het deconvolueren 
van een EPT data set. Effective process time, EPT, kan worden gezien als een kans­
dichtheidsverdeling die is opgebouwd door middel van een optelling van een aantal 
onderliggende kansdichtheidsverdelingen. De onderliggende verdelingen zijn dan de de 
bronnen van variabiliteit in een werkstation van een productie proces. Zulke bronnen 
zijn bijvoorbeeld processing tijden, set-ups en breakdowns. 

Om tot een deconvolutie van een kansdichtheid te komen, wordt eerst het verband tussen 
de onderliggende kansdichtheden en de geconvolueerde kansdichtheid beschreven. Met 
behulp van de moment genererende functie van een kansdichtheidsfunctie is het mogelijk 
om deze verbanden te vinden. De vergelijkingen uit de verbanden maken duidelijk welke 
families van distributies wel en welke niet bruikbaar zijn voor deconvolutie van een kans­
dichtheid. 
Voor de bruikbare distributies hoeven slechts de verbanden tussen de vorm van de gecon­
volueerde kansdichtheid en de parameters van de onderliggende distributies opgelost te 
worden. 
Voor de niet bruikbare distributies, zullen er observaties nodig zijn uit de onderliggende 
distributies. Deze observaties worden verwerkt, met een klassieke en Bayesiaanse sta­
tische methode, voor een schatting van de parameters van de geobserveerde distributie. 

Vervolgens zal de gevonden methode, voor het deconvolueren van een kansdichtheid, 
gei1lustreerd worden op een EPT data set, zodat de distributies van de bronnen van 
variabiliteit benaderd worden. Uit deze benadering valt vervolgens af te leiden, wat het 
gemiddelde en de variantie van elke bron is. 

Tenslotte zullen er conclusies worden getrokken met betrekking tot de aangedragen 
methoden voor de deconvolutie van kansdichtheden. 

lll 
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Introduetion 

This paper is concerned with the de-convolution of probability distributions. De­
convolution is the reverse of the convolution of probability distributions. Convolution is 
the sum of, for example, two independent random variables that results in a probability 
distribution which is the convolution of each of the distributions of the two variables. 
Then, the de-convolution of that probability distribution will result in the distributions 
of the two independent random variables. (Notice that the two independent events 
occur sequentially in time. When they occur simultaneously, we speak of a mixture of 
probability distributions, which is not to be discussed in this paper.) 

This paper is also concerned with the effective process times, EPT. This is an applica­
tion into which the de-convolution of probability distributions can be used. EPT is a 
powerful tool to do a performance analysis in a production system. At a workstation, 
multiple sourees of variability can be identified that can influence the throughput time 
of a part, such as the natural processing time, setup time, operator availability and 
machine failure. These sourees are hard to measure and therefor it is hard to do a 
performance analysis. By the introduetion of EPT, that treats the underlying sourees 
of variability at a workstation as a black box, it is more easy to do such a performance 
analysis as is described in [Jac03]. Even for modelling, validation and control of manu­
facturing systems, the EPT approach is a valuable tool as described in [Lef04]. By the 
introduetion of EPT, the computional complexity for the evaluation of large models, as 
can be found in the semiconductor manufacturing industry, is reduced considerably. 

In earlier studies for the performance analysis of manufacturing systems with the EPT 
approach, we are able to identify the workstation that is the bottleneck in the system. 
Which underlying souree is responsible for the workstation to be the bottleneck, cannot 
be retrieved directly from the measured EPT data. In this paper a method is proposed 
to determine the parameters of the probability distributions of each souree of variability 
at the workstation, just by looking at the EPT data set. With help of the de-convolution 
of the EPT data, it is possible to compute, for example, the mean and varianee of each 
souree of variability at a workstation. Then, it is possible to identify the souree that 
causes the workstation to be the bottleneck. 
Another advantage of the de-convolution of the EPT data, is to better approximate 
the probability distribution of the EPT. In the studies of simulating manufacturing 
systems with EPTs, the distribution of the EPT data set is used for the simulation of 
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2 Contents 

that system. Such an EPT data set has aften no closed form probability distribution. 
In that case, a closed form probability distribution, like the gamma distribution, is 
fitted on the EPT data set, which can be a poor approximation of the actual EPT 
distribution. With the convolution of determined the probability distributions of the 
sourees of variability, it is possible to generate a better approximation of that EPT 
distribution. 

The structure of this paper is as follows. In the first chapter, an introduetion to EPT 
is given. Also the use of the de-convolution of the EPT data sets is illustrated. 
In the second chapter, algorithms are proposed from which it is possible to define a set 
of equations to (de-) convolute probability distributions in generaL These algorithms 
are based on a kind of Fourier transformation of the probability distributions that are 
convoluted. In that same chapter, it will become clear which underlying distributions 
are suitable (for example, the exponential distribution) and which are not suitable (for 
example, the normal distribution) for the de-convolution of a probability distribution. 
In the third chapter three methods are proposed, to solve the set of equations from 
the algorithms to the de-convolute the probability distributions. First, two methods 
are proposed for a distribution that is not suitable (there are more unknowns than 
equations) to solve those equations. These two methods are based on classica! statistics 
and on Bayesian statistics for the estimations of the unknown parameters. Hereafter, a 
methad is proposed for a distribution that is suitable to de-convolute with the equations 
from the second chapter. This method is based on an optimization problem, which 
makes it possible to solve the non linear equations from the algorithms for the de­
convolution of the probability distribution. 
In the fourth chapter, the proposed methad to solve the non linear equations for the 
de-convolution of a probability distribution, is demonstrated on EPT data sets. 
Inthelast chapter, conclusions are drawn with respect to the findings in this paper. 



Chapter 1 

Effective Process Time (EPT) 

Effective process time, EPT, is an application into which the de-convolution of prob­
ability distributions can be used. In this chapter, the line of thought of that EPT is 
explained. 
Hopp and Spearman have introduced the term EPT for the first time, and is defined 
as [Hopül]: 

The effective process time of a job at a workstation is a random variable. 
The label effective is used as a reference to the tot al time "seen" by a 
job at a station. This is done from a logistical point of view. If machine 
B is idle because it is waiting for a job to finish on machine A, it does 
not matter whether the job is actually being processed or is being held up 
because machine A, for example, is being repaired or undergoing a setup. 
To machine B, the effects are the same. For this reason, we will combine 
these and other effects into one aggregate measure of variability, namely the 
effective process time. 

Thus, EPT can be seen as the total amount of time a part could have been, or actually 
was, processed in a workstation. Hopp and Spearman derived the mean and varianee of 
the EPT straightforwardly. First they distinguish the underlying sourees of variability 
at a workstation, such as: 

• N atural process time 

• Random outages (eg. machine breakdown or repair) 

• Setups 

• Operator availability 

• Recycle or rework 

3 
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The queueing time of a part in front of a workstation is not and should not be incor­
porated in the computation of the EPT. 
The mentioned sourees of variability do all contribute to the mean and varianee of the 
EPT, through the relations that are mentioned in [Hopül]. The mean and varianee of 
every souree should be known to determine the EPT of a job at a workstation. This is 
because [Hop01] convolutes the underlying sourees of variability to determine the EPTs. 

1.1 Probability distributions of the sourees of variability 

The probability distributions of the underlying sourees of the EPT are right skewed. 
This means that the tail of the density function, PDF or f, is on the right side. Because 
of the right skewness, negative times do not show up. Right skewed distributions are, 
for example, the exponential, gamma or Weibull distribution. The gamma distribution 
is a useful distribution to approximate each of the underlying sourees of variability at 
the workstation [LawOO]. 
In this paper we are especially concerned with a workstation that have the following 
underlying sourees of variability: 

Operator availability 

An operator that operates the workstation is a souree of variability. In an optimal 
process, the operator is always immediately available to serve the machine. In practice, 
however, that operator can be gone for a break or is busy doing sarnething else. The 
time it takes befare the operator is ready to serve the workstation, is aften assumed to be 
exponentially distributed. The exponential distribution is a special case of the gamma 
distribution, namely Exp(e) = Gam(1, e). In figure 1.1, a conesponding probability 
density function, PDF, is presented. 

time 

Figure 1.1: Operator availability 
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Setup time 

When a part arrives at a workstation, a setup may be necessary befare the part can 
be processed. That setup time is aften assumed to have a gamma distribution. In 
figure 1.2, a corresponding density function is presented. 

u. 
~ 0.025 

0.02 

0.015 

O.D1 

50 100 150 200 250 300 350 
time 

Figure 1.2: Setup 

Processing time 

The processing time is derived from two possible events that can occur at a workstation. 
When the machine does not fail , the processing time will equal the natural processing 
time, which is aften assumed to be gamma distributed. However, when the machine 
breaks down the processing time equals the natural processing time plus the repair 
time. The sum of the natural processing time and the repair time is also assumed to 
be gamma distributed. With a certain probability, (1-p), that a machine breaks down 
we can create a mixed distribution, namely p · Gam(a1, {31) + (1 - p) · Gam(a2, {32). 
That distribution contains bath possible events, namely without breakdown and with 
breakdown, respectively. In figure 1.3, a corresponding density function is presented for 
a 20 % probability of breakdown. 
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0.35 
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0.05 

0 
5 10 

time 

Figure 1.3: Processing time 

EPT 

The convolution of all the sourees of variability that are mentioned, results in the EPT. 
The convolution of the density functions of figure 1.1 and 1.2 and 1.3, is presented in 
figure 1.4. 

0.02 . 

O.Q1 

OL-~--~--~--~--~--~--~~ 

0 50 100 150 200 250 300 350 400 
time 

Figure 1.4: EPT and gamma fit on that EPT 

In that same figure a gamma fit is plotted, that approximates the EPT density function. 
This is a usual methad to find a distribution that corresponds with the EPT and from 
which samples can be taken when evaluating manufacturing models, as is described 
by the two-moments distribution fitting methad in [Koc05]. With slightly different 
parameters for the distributions of the sources, the EPT density function cannot be 
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fitted with a closed form distribution. Such an EPT density function is presented in 
tigure 1.5. 

0.04 . 

0.035 . 

0.03 . 

u.. 
~ 0.025 . 

M ~ W W 100 lM - lW lW 
time 

Figure 1.5: EPT and gamma fit on that EPT 

The EPT distribution, that corresponds to the density function as in tigure 1.5, is not 
suitable to fit a gamma distributions onto. That fit is a poor approximation of the 
density function corresponding to the EPTs. Samples that can be taken from the fitted 
distribution for manufacturing system models, as explained in the next section, are not 
optimal at all. 

1.2 Applications of EPT 

The two main performance criteria of a supply chain or manufacturing system, are the 
throughput and cycle time of the processed parts or lots. To improve the performance 
of such a system, the capacity losses in that system should be determined. The mean 
EPT and the corresponding varianee are two fundamental parameters with respect to 
the throughput and cycle time performance. In [Jac03], a method to compute EPTs 
from realtime fab data is proposed for single and multiple machines with FIFO and 
general dispatching. Those EPT algorithms correctly compute the mean and varianee 
of the EPT, when only track-in and track-out data is available from each workstation in 
the system. A casestudy in [Jac03] shows that the main causes of large cycle timescan 
be identified with respect to the workstations that are present in the stuclied system. 

In [Lef04], the EPT is used to model, validate and control manufacturing systems in the 
semiconductor industry. Although, the flow time of a wafer fab is in the order of two 
months, the natural processing time of a wafer is less than two weeks. The commonly 
used discrete-event and fl.uid models, that are used to analyze the performance of the 
wafer fab , can become very computionally complex when taking all the underlying 
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sourees of variability into account. By consictering the EPTs as a conceptual way to 
cover all the variability at a workstation, the complexity of the model is considerably 
reduced. 



Chapter 2 

(De-)Convolution of Probability 
Distributions 

In this chapter, a general method to de-convolute a probability distribution, denoted 
as F, is explained. An important aspect in that method is the moment generating 
function, which can be seen as a kind of Fourier transformation of the corresponding 
probability density function, PDF or f, of the distribution F. In case of convoluting and 
de-convoluting probability distributions, the moment generating function lends itself 
well to calculate with. In this chapter two distributions are examined, namely one 
which is not suitable to de-convolute and one that is suitable to de-convolute. These 
are the normal and exponential distribution, respectively. 

First the de-convolution of the EPT data set, mentioned in chapter 1, is transformed 
into a more generalized problem: 

Problem: 
A data set of process Y is subject to a certain probability distribution, say Fy. That 
process consists of a certain number, say n, of sequentia! sub-processes Xi, 0 <i :Sn, 
which are independent from each other. These sub-processes are also distributed with 
a certain probability distribution, say Fx;. 
Assume that we know the data set of process Y and its distribution, Fy. Furthermore, 
assume that we knowhow the sub-processes Xi are distributed. Is it, then, possible to 
determine the parameters of the Fx; 's? 
An illustration of this problem is in figure 2.1. 

9 
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y 

c 
~ 
:I 
15 
> c 
0 

Figure 2.1: Y and the underlying processes, Xi 

To come to a solution of this problem, fi.rst is investigated, how the distributions, Fxi, 
of the sequentia! sub-processes contribute to the shape of the distribution, Fy. Hereto, 
the concept of moment generating functions is introduced from which the moments of 
a probability distributions are determined. From these moments, the shape parameters 
of the distribution are derived. Common shape parameters are the mean, variance, 
skewness and kurtosis. The mean represents the value around which central clustering 
occurs. The varianee gives an indication of the function "width" or "variability" around 
that value. The skewness characterizes the degree of asymmetry of the probability 
density function with respect to its mean. The kurtosis gives an indication of how 
peaked that density function is with respect to the normal distribution. 

2.1 Moment generating functions 

Todetermine the momentsof a continuous probability distribution F with probability 
density function f, the moment generating function is defined by [Mon99]: 

M(t) =i: etx f(x)dx , (2.1) 

The moment generating function M ( t) will only exist if the integral from ( 2.1) converges. 
Then it is possible to determine the moments of F from this generating function. 

There are various ways todetermine the shape parameters from (2.1). These parameters 
are derived from the centered and uncentered moments of the probability distribution. 
The definitions of the uncentered moments (with respect to the origin of the density 
function), is given by [Mon99]: 

Ur = ( dT ~r(t)) (0) (2.2) 



2.1. Moment generating functions 

From (2.2), the mean and varianee of distribution F, are determined by: 

mean(F) 

variance(F) 

11 

Consiclering the property of moment generating functions [Mon99]: M F +a ( t) = eat M ( t), 
the centered moments ( with respect to the mean of F), are given by: 

- ( -Ult á" M(t)) (0) 
UCr- e · d tr 

From (2.3), the shape parameters are determined by: 

variance(F) 

skewness(F) 

2 u2- u1 = uc2 
UC3 

UC23/2 

(normal) kurtosis(F) 

kurtosis excess ( F) 

(2.3) 

In this paper the normal kurtosis is used as the shape parameter for the kurtosis. 
Because this kurtosis equals three for a normally distributed density function, in some 
literature it is scaled to zero for the normal distribution and is called the kurtosis excess. 

Convolution 

When convoluting multiple independent random varia bles, X i, the moment generating 
function of the total probability distribution, Fy, is determined [Mon99] by: 

IJ X1, X2, ... , Xn are independent random variables with moment generating functions 
Mx1 (t), Mx2 (t), ... , Mxn (t), respectively, and if Y = X1 + X2 + · · · + Xn, then the 
moment generating function of Y is given by (2.4) : 

n 

My(t) = I1 Mx;(t) (2.4) 
i=l 

This is, in this paper, the most important property of the moment generating func­
tions. It is used to derive equations, that depends on the parameters of the underlying 
distributions, Fx; and the moments of the convoluted distri bution Fy. 

In the next section, the shape parameters of several distributions are determined. 
Conclusions are drawn with respect to the use of the moment generating function to 
(de-) convolute probability distributions. 
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2.2 Normal distributions 

The moment generating function of a normal distribution with density function, 
-(X-!')2 

f = v' 1 2e~, is [Joh94]: 
27ro-

(2.5) 

The shape parameters of the corresponding distributions F, are determined by (2.2) 
and (2.3): 

mean(F) J-l 
variance(F) (}'2 

skewness(F) 0 

kurtosis(F) 3 

2.2.1 Convolution 

Using equation (2.4), the moment generating function of a sequence of normal distrib­
utions, is determined by: 

II
n t+~ (~n ·)t+ CL:f-1 af)t2 

My(t) = el1-i 2 = e L..•=l 11-• 2 (2.6) 
i=l 

The corresponding probability distribution, Fy, is again normally distributed with den­
sity function: 

(2.7) 

The shape parameters of Fy are: 

n 

mean(Fy) LJ-li 
i=l 

n 

variance(Fy) L:uf 
i=l 

skewness(Fy) 0 

kurtosis(Fy) 3 



2.3. Exponential distributions 

A small example to illustrate the above: 

My(t) 

My(t) 

My(t) 
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The convoluted probability distribution, Fy, is normally distributed. The mean of Fy 
equals /-ll + /-l2 and the varianee equals ai + a~. 

2.2.2 De-convolution 

In this paper, we are also concerned with the de-convolution of the probability distri­
bution, Fy. One can conclude that it is not possible to determine the distributions, 
Fx; if only Fy is known. This is, because, if there are n processes ( n > 1) there are 
2n unknowns (I-ti and al) and only two equations ( one for the mean and one for the 
varianee of Fy, see section 2.2.1) from the moment generating function to solve this 
de-convolution problem. 

Equation (2.6) states that the convolution of normal distributions yields again a nor­
mal distribution. With respect to de-convolution, one can say that a normal distribu­
tion, Fy, can be subdivided into arbitrarily many, say n, processes that are normally 
distributed, Fx;, as long as /-lY = I:r=l 1-li and a~ = 2::~ 1 af holds. 

We can conclude that for the de-convolution of a normal probability distribution, Fy, 
more information is necessary than only Fy and the number of underlying processes n. 
Observations should be taken from those underlying processes, Xi, to determine the 
parameters, /-li and af, of the corresponding distributions. Insection 3.1, two methods 
are proposed for the processing of the observations that are are taken from a process 
X i, that results in an estimation for the corresponding 1-li and af. The first methad is 
based on classica! statistics and the second is based on Bayesian statistics. 

2.3 Exponential distributions 

The next distribution we examine is the exponential distribution. The moment genera­
ting function of an exponential distribution with density function, f = ~e 7, is [Joh94]: 

M(t) = 1 ~ ()t (2.8) 
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The shape parameters of the corresponding distributions F, are determined by (2.2) 
and (2.3): 

mean(F) () 

variance(F) ()2 

skewness(F) 2 

kurtosis(F) 9 

2.3.1 Convolution 

Using equation (2.4), the moment generating function of a sequence of exponential 
distributions, is determined by: 

n 1 
My(t) = rr 1 - ()-t 

i=l ~ 

(2.9) 

The corresponding probability distribution, Fy, is not exponentially distributed. The 
shape parameters of Fy are: 

i=l 
n 

variance(Fy) 

For the skewness and kurtosis of the distribution Fy, it is hard to find simple closed 
forms. If n = 2, the skewness and kurtosis are: 

skewness(Fy) 

kurtosis(Fy) 

2 
(er+ e~)2 
(er + e§)3 

9()f + 6()r()~ + 9()~ 
(er + ()~)2 

In case of the convolution of exponential distributions, the skewness and kurtosis of 
the distribution Fy, are dep en ding on the ()i's. This property is helpful for the de­
convolution of Fy. 
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2.3.2 De-convolution 

An example illustrates the use of the moment generating function to de-convolute the 
distribution Fy and todetermine the input parameters, fh, of the underlying distribu­
tions, Fx;· 
Consider the distribution Fy, that is composed of two exponential distributions, Fx1 2 • 

When it is possible ( there is enough data) to find the mean and varianee of Fy, then it 
is possible to find fh and fh, because: 

mean(Fy) 

variance(Fy) 

in which there are two equations containing two unknown variables. For the de­
convolution of Fy, the two equations need to be solved. The presents of Fy guarantees 
the existence of a salution for the fh's. With respect to the uniqueness of this solution, 
a non linear equation, in general, may have more than one solution. 
With the information of the natural bounds on the ()i's ( for example, 0 < ()i < mean( Fy)), 
the equations are solved. The output, say {]r and {h, does not necessarily correspond 
to (h and B2, respectively. It is possible that the output ê1 corresponds to ()2 and the 
output ê1 corresponds to ()2 . The methad of de-convolution results in a salution that 
indicates which exponential distributions are in Fy. The exact sequence cannot be 
determined. 

If Fy is built u pon three exponential distributions ( with three unknowns), the skewness 
will provide us with the third equation. Up to four exponential distributions, it is 
possible to determine the Bi's with help of the four common shape parameters. If 
Fy is built upon more than four exponential distributions, it will be necessary to use 
more moments from the moment generating function. Then, the equations become too 
complex to solvethem analytically. Insection 3.4, a methad is proposed to solvethese 
complex problems as an optimization problem. 

2.4 (De-)Convolution of a normal and exponential distri­
butions 

The normal distribution is not suitable to de-convolute into a set of unique distribu­
tions. In contrast, the convolution of a set of exponential distribution is suitable for 
de-convolution. In this section, we examine a convoluted probability distribution, Fy, 
containing one distribution from the normal and n distributions from the exponential 
family. 
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Combining (2.5) and (2.8) with (2.4), the moment generating function, corresponding 
to the Fy, is: 

o-2t2 n 1 
My(t) = eJ-Lt+-2- · I1 --

1 - B·t 
i=l t 

(2.10) 

From (2.10), it is possible to generate the centered and uncentered moments using (2.2) 
and( 2.3), respectively, which is used todetermine the shape parameters of Fy: 

n 

mean(Fy) 
i=l 

variance(Fy) 

For the skewness and kurtosis of Fy, again, it is hard to find simple closed forms. For 
n = 2, that is one normal and two exponential distributions, the skewness and kurtosis 
are: 

skewness(Fy) 

kurtosis(Fy) 

2 
( a-2 + Bi + B~)3 

3(o-4 + 2(Bi + B~)o-2 + 3B{ + 3Bi + 2BiB~) 
( a-2 + Bi + B~)2 

In this case, there are four equations and four unknown parameters: p, a-, B1, B2. 
For the de-convolution of Fy, the four equations need to be solved. The presents of 
Fy guarantees the existence of a solution for those parameters. With respect to the 
uniqueness of this solution, those non linear equations may have more than one solution. 
With the information of the natural bounds (for example, 0 < p, B1,2 < mean(Fy) ), the 
equations are solved. The output for p, say P,, as well as the output for a-, say &, 
corresponds to each other. The output of the Bi's, say ê1, iJ2 and ê3, again, do not 
necessarily correspond to B1, B2 and B3 , respectively. The method of de-convolution 
results in a solution that indicates which exponential distributions are in Fy. The 
exact sequence cannot be determined. 



Chapter 3 

Methods for the De-convolution 
of Probability Distributions 

In this chapter, the theory of chapter 2 is used to propose methods for the de-convolution 
of a probability distribution, Fy, into the sub-probability distributions, Fx;. We assume 
the data set corresponding to the distribution Fy, is known. 
First the convoluted normal distribution is examined. Because this distribution is not 
suitable to apply the equations from the moment generating function, two methods are 
proposed for the estimation of the mean and varianee of the distribution Fx;. Those 
methods are based on classica! statistics and on Bayesian statistics. Hereafter, a methad 
is proposed to solve the equations from chapter 2 for the de-convolution of exponential 
distributions. 

3.1 Normal distributions 

In this section, the convoluted normal distribution, Fy, is examined. Again, assume 
that the distribution is composed of the underlying normal distributions Xi, 0 <i :'Sn. 
The algorithm from section 2.2.2, providesus with two equations, one for the mean and 
one for the varianee of Fy. To determine all the distributions Fx;, the parameters, /ti 

and O"F have to be derived. If we know (n- 1) of the /ti's and (n- 1) of the O"f's, it is 
possible to solve the mentioned equations. In practice, however, we do not always know 
these parameters. In that case, experiments or observations from the processes Xi are 
necessary, to estimate the parameters /ti and O"F. 
This section proposes two methods to process these observations and todetermine the 
distributions Fx;. The first methad is based on the classica! statistica! philosophy and 
the second methad is based on the Bayesian statistica! philosophy. 
The philosophy of classica! mathematics, or the frequentists (notice the word frequent!), 
say that every proposition is held to be derived from observations or experiments. In 
contrast, the philosophy of Bayesian rnathematics says that the mathematica! theory 

17 
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of probability is applicable to the degree to which a person believes a proposition. The 
Baysian rnathematics also adapt Bayes' theorem that can be used as the basis for a 
rule for updating beliefs when new information is available (Bayesian inference). Those 
Bayesian beliefs are extensively described in [Lee97] and [Gel04]. 

With a small example, the difference between those philosophies, is illustrated: 
Suppose, we want to know if a one euro coin is fair to toss. To find out, we do an 
experiment with, for example, one thousand throws. After this experiment, we count 
how many times heads and how many times tails has been thrown. lf the outcomes are 
about equal, the coin is supposed to be fair. But what if we take another euro coin, 
and we want to find out if this coin is also fair? To find out, the frequentists say that 
for this new proposition, a whole new experiment is needed. The experiences from the 
farmer experiment do nat apply to the new coin. 
The Bayesian mathematics, however, do take the knowledge of the first experiment into 
account. If the first coin is expected to be fair, the new euro coin is also expected to be 
fair befare the new experiment has started. This knowledge is then considered as the 
prior beliefs of the new experiment. lf a multiset of observations of a new experiment 
is available, the information of that new experiment is modified according to the prior 
beliefs. This inference between the observations and prior beliefs, results in aprediction 
with respect to the fairness of the coin. 
In this paper an application where those Bayesian beliefs can be useful, is for example, 
the determination of the natural processing time of, say, machine A. Suppose, we have 
knowledge about the natural processing time of a comparable machine, say machine B, 
then these prior beliefs can be used to determine the natural processing time of ma­
chine A. If the prior beliefs are accurate, then fewer observations, compared to a classica! 
experiment, are needed to find the actual natural processing time of machine A. 

In this section, we first consider one normally distributed proces, say X 1 , and estimates 
are provided for the parameters, /Ll and ui, based on a set of observations. Then, 
more underlying normally distributed processes, Xi, are examined to estimate all the 
parameters, /Li and u[. If we assume that the convoluted normal distribution, Fy, is 
known, experiments are done with respect to the processes, Xi. Hereto, insection 3.2, a 
theorem is derived to update the mean and varianee of all the probability distribution, 
Fx;, when observations from a new experiment are available. This methad of updating is 
finally demonstrated for a probability distribution, Fy, that is composed of two normal 
distributions. 

3.1.1 Classical statistics 

The classica! approach to find the parameters, p, and u2 , of a normal probability distri­
bution, F, is to determine the mean and varianee from an experiment that contains k 
observations ( {j : 0 < j :S k: Yj} ). 
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The mean is determined by [Mon99]: 

1 k 

f} = k LYj' 
j=l 

and the varianee is determined by [Mon99]: 

k 
2 1 "" -2 s = k- 1 L..)Yj- y) . 

j=l 

19 

(3.1) 

(3.2) 

The mean, fj, is an estimate for J1, and the variance, s2 , is an estimate for 0"
2 . The more 

observations are taken (increasing k), the better the estimations are. 

3.1.2 Bayesian statistics 

In this section, the parameters, J1, and 0"
2 , of a normal distri bution are estimated with 

a Bayesian approach. This approach is based on updating beliefs when new observa­
tions are available, which is called: Bayesian inference. We assume that we have prior 
information about the normal probability distribution, F, before new observations are 
available. These priors are stochastic variables. With the Bayesian inference it is pos­
sibie to create a loop for the prediction of J1, and 0"

2 . First we define the prior beliefs 
on the mean and varianee of a normal distribution. Then, we collect a new multiset of 
observations and we update those observation with the prior beliefs. The updated mul­
tiset of observations, results in the posterior predictive density for the normal density 
function that is examined. From this posterior predictive density, the prior beliefs are 
adjusted. When a new multiset of observations is available, that multiset of observa­
tions is again updated with the adjusted prior beliefs. An illustration of the Bayesian 
inference is in figure 3.1. 

Prior beliefs 

New 
observations 

Posterior 
predictivism 

Figure 3.1: Bayesian inference 
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Suppose we do not know the parameters, !-" and a 2 , exactly. But there is information 
available with respect to the mean of the normal distributions. In that case we are 
allowed to define a conjugate prior on the mean distribution. Conjugate implies that 
the prior distribution has the same form as the distribution from which the observations 
are taken, namely from the normal distribution. Then the posterior density is also of 
the normal form, which, again, results in a normally distributed prior when new obser­
vations are available. 
In this section, only the necessary background is provided to understand how to es­
timate the mean and varianee of the normal distribution with a simulation based on 
the Bayesian inference. A complete overview of this Bayesian approach can be found 
in [Lee97] and [Gel04]. 

The posterior predictive distribution, p(Yiy), of a future observation, i), given the sarn­
pled data, y, is given by [Gel04]: 

Where: 

i) 
y 
e 
p(Yiy) 

p(Yiy) = 1 p(iJIB)p(Biy)dB 
all () 

The prediction of a future observation. 
The new observations. 
Prior beliefs, in this case B = [f..L]. 
The distribution of i), given new observations, y. 

(3.3) 

For the understanding of equation 3.3, suppose, observations of the normal distribution 
are available (there are data points from this distribution). Then, the prior beliefs 
( the knowledge a bout that distribution before the data points were available) and the 
information of the observations (the data points) together, will result in aprediction 
of a future observation (an update of the former knowledge about the distribution), 
namely the posterior predictive distribution. 

An important topic in the Bayesian beliefs is how to define proper prior distributions. 
In this paper, the assumption that there is knowledge about the mean of the normal 
distributions, means that we use a conjugate prior distribution for the mean [Lee97]. 

V arianee (a) 

We have assumed, there is only prior information of the mean available for the esti­
mation of the parameters of the normal distribution. Thus, all the information of the 
varianee is only available through the new observations and from these observations 
the marginal posterior distribution, ak, is determined. The adjective marginal implies 
that the posterior on the estimation of the varianee of the observations is determined 
by ignoring the prior knowledge. The marginal posterior varianee does not necessarily 
coincides with the variance, a 2 , of the posterior predictive distribution. Because the 
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estimation of the mean does also include variability. To eome to a proper marginal 
posterior distribution of the varianee, p(O"~Iy), is estimated by [Gel04]: 

(3.4) 

Where k is again the number of observations and the quantity 82 is the varianee of the 
eolleeted data, as in equation (3.2). The sealed inv-x2(k- 1, 82) equals the distribution 

of (k21
)·s

2
, i.e., it is the inverse of the more usual x2 distribution with k- 1 degrees of 

Xck-ll 

freedom that is sealed by the quantity ( k - 1) · 82 . 

Mean (p,) 

The eonjugate prior distribution on the mean parameter of the normal distribution, 
is [Gel04]: 

where the, so ealled, hyperparameters J.Lo and TJ are the initial guesses for the mean 
and the ( un-)eertainty of that guess of the mean, respeetively. For an informative prior 
distribution on the mean, the precision TJ ---t 0. For a non-informative prior on the 
mean, the precision TJ ---t oo. If a multiset of new observations, y, eontaining k data 
points, is available, the posterior mean is [Gel04]: 

in which, 

/-Lk = 

Where: 

1 + k­
~J.Lo ~Y 

0 k 

1 + k ;:g ~ 

, and the posterior preeision, 

J.Lk The posterior of the mean. 
J.Lo The prior on the mean. 

1 1 k 
---+-T2 - T.2 0"2 . 

k 0 k 

y The mean of the new observations, as in equation (3.1) . 

Tf The varianee of the posterior mean. 
TJ The varianee of the prior mean. 
O"~ The marginal posterior of the varianee of the new observations, 

as in equation (3.4). 

k The number of new observations. 

(3.5) 
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From equation (3.5), the relationship between J-lk and the number of observations is 
2 

visible. If k ----+ oo or as To ----+ oo, then J-lk ----+ y and Tf ----+ ~' the Bayesian approach 
coincides with the centrallimit theorem from the classica! statistics. 

This central limit theorem, from the classical statistics, basically states that as the 
sample size, k, becomes large, the following occur [Mon99]: 

1. The distribution of the mean of the observations becomes approximately normal 
in this case J-l ""' N(J-tk, Tk)· (In general, this is regardless of the form of the 
distribution from which the observations are collected.) 

2. The mean of the observations, J-lk, and the variance, Tf, of that mean approaches: 

Simulation 

(3.6) 

(3.7) 

Equations (3.4) and (3.5) lend themselves well to simulate. The posterior predictive 
distribution of a future observation, fj, p(yjy), can be approximated by simulation, with 
simulation steps: 

begin loop 
Draw (J-t, CT~) from p(J-t, CJ~jy, B) : 

1) draw CT~ from CJ~iY ""'inv-x2(k- 1, s2
) 

2) draw J-l from J-til-lkl Tf ""'N(J-tk, Tf) 
Draw fj from fj""' N(J-t, CT~) 

end loop 

The expectation is of the posterior predictive distribution, fj, is J-l = J-lk and the varianee 
is CJ2 = CT~ + Tf, 

Suppose there is prior information about the mean of a normal distribution, then the 
use of the Bayesian beliefs can be helpful to estimate the parameters, J-l and CJ2, of that 
distribution. Especially, when only a few observations are available. In case of the 
de-convolution of a known normal probability distribution, Fy, into underlying normal 
distributions, Fxi, the simulation based on this Bayesian method can also be of interest. 
In case of two underlying normal distributions, Fx1 and Fx2 , only the parameters of 
one of the two distributions should be known. Then it is possible to determine the 
parameters of the other distribution with the equations from section 2.2.1. In case of this 
two distributions, Fx1 and Fx2 , we can, also, take observations from both processes, X1 
and X2. When the first experiment is done at process X 1, Ji-l and CJf can be estimated 
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by the simulation steps of this section. With the equations from section 2.2.1, the 
corresponding estimates for J.l2 and ai are derived. If the next available observations 
are from the other proces, X2, new estimates are determined for /-l2 and ai. In order to 
take also the estimated J.L2 and ai of the first experiment into account, the estimated 
mean and varianee of the first experiment are updated with the estimated mean and 
varianee of the second experiment. Because, the corresponding observations are not 
taken from the same process, it is not possible to update them directly. In the next 
section, theorems are derived which makes it possible to update the mean and varianee 
of a process, when new observations are available. This updateneed not be expressed in 
terms of the values of the formerly collected observations. Only the mean, varianee and 
the number of the farmer observations are necessary to update the mean and varianee 
of the corresponding process. 

3.2 Updating the mean and varianee 

If new observations of a process are available, the estimates of the mean and varianee of 
the formerly collected observation are updated with the estimated mean and varianee 
of the new observations. In this section two theorems are derived. The first theorem 
updates the mean and the second theorem updates the varianee of the farmer observa­
tions when new observations are available. These updates are not expressed in terms of 
the individual values of the formerly collected observations. Only the mean, varianee 
and the number of the farmer observations are of interest. The interpretations of the 
collected observations, are: 

Yi The multiset of the formerly collected observations, Yi, 0 < j :::; l, 
containing IYi I = l observations. 

Yk The multiset of the newly available observations, Yj, l < j:::; l + k, 
containing IYk I = k observations. 

Ym The update of the multiset of all available observations, Yi, 0 < j :::; m, 
containing IYml = m observations, where m = l + k. 
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Theorems 

Theorem 1: Update the mean 

Where: 

_ k(fh- yz) 
Yl + l + k 

Yl The mean of the multiset of formerly eolleeted observations, Yi. 
Yk The mean of the multiset of the newly available observations, Yk. 
Ym The mean of the multiset of varianee of all available observations, Ym. 

The proof of Theorem 1 ean be found in Appendix A. 

Theorem 2: Update the varianee 

Wh ere: 

s[ The varianee of the multiset of the formerly eolleeted observations, Y[. 
Bk The varianee of the multiset of the newly available observations, Yk. 
s;. The update of the multiset of varianee of all available observations, Ym. 

The proof of Theorem 2 ean be found in Appendix A. 

Iteration steps to update the mean and varianee 

(3.8) 

With help of the iteration steps of Theorem 1 and Theorem 2, it is possible to eollect 
new observations (new data points) and update the mean and varianee of the formerly 
eolleeted data with that new data set. 

The iteration steps to update the mean and varianee, are: 

begin loop 
eollect new observations, Yk: 

determine Ym with the iteration step of Theorem 1 
determine s;. with the iteration step of Theorem 2 

update: Yi = Ym and l = m 
end loop 

The update from these iteration steps are exemplified in the next seetion. In that 
seetion, the means and varianees of two normally distributed proeesses are estimated. 
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3.3 Two normal distributions 

In this section, the means and variances of two processes, that have normally distributed 
throughput times, are estimated with the iteration steps of the previous section. The 
positioning of the processes are: 

Figure 3.2: Two normally distributed processes 

We consider that we have a large amount of data points of the total throughput times 
in that chain. Because it is not possible to retrieve the means and variances of the 
two processes from the equations of the moment generating function, we need to take 
observations from the processes. In this section, an illustration is presented, how to 
determine the means and· variances of both processes, with just a small amount of 
observations from the processes A and B. We assume that there is prior information 
available for the means of those processes. The mean and varianee are estimated with 
the Bayesian simulation, from section 3.1.2. To update the mean and variance, the 
iteration steps from section 3.2 are used. 

The steps to de-convolute the two normal distributions are given by: 

Step 1: 
Step 2: 

Step 3: 

Collect the prior beliefs with respect to the means of the processes. 
Collect an observation of one of the two processes. 
Estimate the mean and varianee in a Bayesian way. 
Determine the mean and varianee of the remaining process ( moments). 
Collect a new observation of one of the two processes. 
Update the observed mean and varianee with help of the Theorems. 
Estimate the mean and varianee in a Bayesian way. 
Determine the mean and varianee of the remaining process ( moments). 

Step 3 represents the finalloop , thus, whenever new observations are available, step 3 
should be carried out. 

In the next example, an mustration is given of how fast the shape parameters of both 
processes are determined with respect to the collected observations, if prior information 
of the mean is available. Suppose we have collected data of the total throughput times, 
which is normally distributed like data"' N(360, 410). The processes A and B are 
distributed like A "' N(160, 402 ) and B "' N(200, 502 ). If we have information of the 
means of two identical processes, say A' and B', we can use their means as an informative 
prior for the means of both processes. Every experiment contains 25 observations and 
these experiments are available for both processes. 

The estimation of the mean and varianee of process A, with help of the three steps, is 
presented in in figure 3.3. The black line represents outcome of the three steps with 
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the Bayesian estimates and the updates on the mean and variance. The red dots and 
lines represent the estimation in a classica! way and its 95% confidence interval of that 
estimation, respectively. 

200 400 600 800 1000 1200 1400 

.. ~ . . . . ~ . . . . . ~ . 
en 

-- 95%conf 

200 400 600 800 1000 1200 1400 
observations 

Figure 3.3: Process A: Estimates for the p, and CT 

The estimation of the mean and varianee of process B with help of the three steps, is 
presented in in figure 3.4. The black line represents outcome of the three steps with 
the Bayesian estimates and the updates on the mean and variance. The red dots and 
lines represent the estimation in a classica! way and its 95% confidence interval of that 
estimation, respectively. 
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Figure 3.4: Process B: Estimates for the p, and CT 
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The Bayesian estimates for the mean and varianee of the two processes are, especially 
for a small number of observation, more accurate. The more observations are available, 
the more the classica! and Bayesian estimates resembie each other, as described in 
section 3.1.2. 

The example is done for only two processes. If there are more processes, the approach for 
the de-convolution is slightly different. Suppose that there are N processes, obviously 
we need observations of N - 1 processes to estimate the means and variances of all the 
processes. Then, when new observations are available from a process, the mean and 
varianee of that process are updated. The mean and varianee of the process with the 
biggest ratio :

2
, are adjusted with the equation from section 2.2.1. The ratio ~ comes 

again from the centrallimit theorem, as in equation (3. 7), which implies the uncertainty 
of the sampled mean. 
Another approach is to wait until we have new observations of N - 1 processes. The 
means and variances of each processes are updated with the new observations. Hereafter, 
the mean and varianee of the resulting process are determined with the equations from 
section 2.2.1. A disadvantage is, however, that fora great amount of processes, we have 
to wait until we have the availability of the observations of those N - 1 processes. 
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3.4 Exponential distributions 

In this section the de-convolution of exponential distributions is examined. The involved 
()i's are determined by solving the equations from the moment generating function. For 
n processes, that poses the number n of unknown parameters, we should retrieve n equa­
tions from the moment generating functions. First two processes, that are exponentially 
distributed, are examined. 

3.4.1 Two processes 

Consider two processes, with exponentially distributed throughput times, such as pre­
sented in figure 3.5. 

Figure 3.5: Two exponentially distributed processes 

We consider that we have a great amount of data points of the total throughput times 
in that chain. From section 2.3.2, the equations todetermine the mean and varianee of 
process A and B, are: 

For two processes it is not difficult to determine both ()A and () B. For more processes, 
more equations from the moment generating function are needed to determine the ()i's. 

Because of the complexity of these equations and the inaccuracies of the estimation 
of the moments with respect to the data, it is not always possible to retrieve the ()i's 

analytically. The approach in this paper to cope with that problem is to optimize the 
so called error function. A method to define such an optimization problem, is proposed 
in the next section. 

3.4.2 Multiple processes 

For a probability distribution, Fy, that is composed of n sub-processes Xi, 0 < i :::; n, 
n equations, that are derived from the moment generating functions, have to be solved. 
Those equations, as derived insection 2.3.1, can become very complex as the number 
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of sub-processes increases. In that case, it is nat always possible to compute the corre­
sponding Oi 's analytically. This is because, the moments of the distri bution Fy, cannot 
be determined accurately enough (there are nat enough data points). In that case, an 
optimization problem is defined, that determines the best set oi 's. From the fust and 
second moment of Fy, we can determine the relationship of the means and variances 
with respect to the Oi 's. These two constraints are of great importance and should hold 
for all estimated Oi. The equations from the other, n- 2, moments are transcribed into 
an optimization objective to minimize the error when solving the equations. Whenever 
the error is zero, the estimated point is the same as the numerical outcome when solving 
those equations. When the error does nat equal zero, the outcome of the optimization 
is the best outcome for this problem. 

The optimization problem for the exponential de-convolution is: 

and 

Objective: 

subject to: 
n 

minET· E 
!I - -

mean(Fy) - L oi 0 
i=l 
n 

variance(Fy)- L o; 0 
i=l 

where mi stands for the ith moment of Fy and eqi stands for the corresponding equation 
from the moment generating function. The output of this optimization problem is an 
estimation for Oi, namely (t 

Example 

To illustrate this optimization problem, we look at a probability distributions, Fy, that 
is composed of five, n = 5, exponential distributions. 
Those five exponential distributions have input parameters: 

0 = [4 3 2 1 0.5] 
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To solve the optimization problem, the n moments, mi, are determined from equa­
tions (2.4), (2.3) and (2.2). To determine the n estimators, iii's, we use the corre­
sponding n equations, eqi, from the moment generating function of Fy to solve the 
optimization problem. 
The output of the optimization problem is: 

{J = [0.5000 1.0000 2.0000 3.0000 4.0000] 

The parameters of ê, correspond to parameters of the exponential distributions that 
are convoluted. As explained in section 2.3.2, only the parameters of those exponen­
tial distributions can be determined, not the sequence in which the distributions are 
convoluted. 

The optimization problem as described in this section holds also for the de-convolution 
of other probability distributions than the exponential. As long as there are enough 
equations from the moment generating function to solve the unknown parameters of 
the underlying sub-processes, that optimization problem will determine those unknown 
parameters. The computation of the unknown parameters of the distributions of the 
sub-processes, is exemplified in the next chapter. In that chapter, the convoluted dis­
tribution, Fy, is an EPT data set and the sub-processes are the sourees of variability 
of that EPT. 



Chapter 4 

De-convolution of EPT Data Sets 

In this chapter, the use of de-convoluting a probability distribution is demonstrated on 
EPT data sets. We consider the EPT data set to have a probability distribution FEPT 

and the n sourees of variability to have a distribution Fx;, 0 < i ::::; n. Then, it possible 
to de-convolute the EPT distribution and to estimate the mean and varianee of each of 
the sourees of variability. 
In the sections, EPT data sets with changing sourees of variability, are examined. In 
the end of this chapter, the de-convolution is illustrated on an EPT data set, that is 
composed of all the sourees of variability that are mentioned in chapter 1.1. 
The probability distributions of the sourees of variability, do all deseend from the gamma 
distribution, as explained in chapter 1.1. The moment generating function of the gamma 
distribution, Gam(a, /3), is [Joh94]: 

1 
M ( t) = ..,...( 1---/3.,....-,t ),-a (4.1) 

When convoluting the moment generating functions of the distributions conesponding 
to the sourees of variability, it is possible to determine dependencies of these sourees on 
the shape of the EPT distribution. 

In every section, the approach for the de-convolution of an EPT data set is structured 
the same. First , we define the underlying sourees of variability that are present in the 
workstation. Those sourees have a probability distribution as assumed in chapter 1.1. 
Hereafter, values are ascribed to the parameters of the distributions of the sourees of 
variability. With these parameters, we can determine the exact mean and varianee of 
each source. 
To create an EPT data set, the distributions of the sourees of variability are convoluted. 
Then, we will determine the dependencies of the parameters of the underlying distrib­
ution on the shape of the EPT distribution. From the moment generating function of 
FEPT , we are able to express those dependencies by means of a set of equations. If we 
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solve those equations as an optimization problem, like in section 3.4.2, we retrieve esti­
mators fortheinput parameters of the distributions from which the EPT is composed. 
Those estimators are used to determine the mean and varianee of every souree in the 
workstation. Finally, the estimated mean and varianee are compared with the mean 
and varianee that have been ascribed to the parameters of the distribution from which 
the EPT is convoluted. 

4.1 Operator availability and setup time 

In this section we consider an imaginary workstation that has two sourees of variability, 
namely the operator availability and the setup time (the natural processing time is 
zero and there is no breakdown). The convolution of those sourees results in the EPT 
data set with probability distribution FEPT · The operator availability is exponentially 
distributed with parameter e. The mean of that souree of variability is e and the 
corresponding varianee is 02 . The set up time has a gamma distri bution with parameters 
a and [3. The mean setup time is a· f3 and the corresponding varianee is a· [32 . 

From the convolution of the moment generating functions of the exponential and gamma 
distribution, wedetermine the dependendes of e, a and f3 on the shape of the convoluted 
EPT distribution, FEPT· Those dependendes are used to estimate the parameters of 
the sourees of variability, namely ê, & and /3. With those estimators, the mean and 
varianee of each souree can be determined. 

4.1.1 EPT 

Suppose, for example, that the parameters of the distributions of the sourees of variabil­
ity are e = 2, a = 5 and f3 = 0.2. The convolution of those distributions results in an 
EPT distribution. The corresponding probability density function, PDF, is presented 
in figure 4.1 (labeled as Exact). 

time 

Figure 4.1: EPT 
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From this probability density function, is is possible to determine the moments of the 
corresponding EPT distribution. 

4 .1.2 Moment generating function 

The moment generating function corresponding to the EPT distribution, FEPT , is: 

1 1 
MpEPT (t) = (1 - Ot) (1 - f3tY• (4.2) 

From this moment generating function, equations for the dependencies of () , a and /3 on 
the shape of FEPT , can be determined. 

4.1.3 Estimators for the mean and varianee of the sourees 

When we solve the equations from the moment generating function, estimators are 
derived for 0, a and /3 . From these estimators , ê, & and /3, the mean and varianee of 
every souree can be determined. 

For several number of data points, the estimated mean and varianee of the sourees of 
variability, are: 

Operator availability: 

Data points: I oo I 1oe6 I 10e5 I 1oe4 I 1oe3 I 1oe2 I 1oe1 
() 2 2 2 2 2 2 2 
ê 2.0000 1.9993 1.9932 2.0049 2.0163 1.9309 2.0505 
()'2 4 4 4 4 4 4 4 
{)2 4.0000 3.9974 3.9729 4.0197 4.0655 3.7283 4.2044 

Setup time: 

Data points: I oo I 1oe6 I 10e5 I 10e4 I 1oe3 I 1oe2 I 1oe1 

a·/3 1 1 1 1 1 1 1 

&·/3 1.0000 1.0004 1.0066 0.9944 0.9934 1.0269 0.9975 
a . /3"" 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

A /32 a· 0.2000 0.2014 0.2137 0.1958 0.2488 0.3525 0.6205 

Where, oo implies that the exact moments are used to solve the optimization problem. 
The estimators can be used to recreate the EPT density function . That EPT approxi­
mation is also presented in tigure 4.1 (labeled as De-convolution). 
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4.2 N atural processing time and machine breakdown 

In this section we consider a workstation that has two sourees of variability, namely the 
natural processing time and breakdown time. The convolution of those sourees results 
in the EPT data set with probability distribution FEPT· The natural processing time is 
gamma distributed with parameters a 1 and {31 . The mean of that souree of variability 
is a 1 · {31 and the corresponding varianee is a 1 · f3r. The breakdown time has also a 
gamma distribution with parameters a2 and /32. The mean breakdown time is a2 · /32 
and the corresponding varianee is a 2 · /3~. 
From the convolution of the moment generating functions of the two gamma distribu­
tions, wedetermine the dependencies of a1 , {31 , a2 and /32 on the shape of the convoluted 
EPT distribution, FEPT · Those dependencies are used to estimate the parameters of 
the sourees of variability, namely &1, Sl, &2 and s2· With those estimators, the mean 
and varianee of each souree can be determined. 

4.2.1 EPT 

If a breakdown does not occur, the processing time equals the natural processing time. 
If a breakdown does occur, the processing time equals the breakdown time. That 
breakdown time is the convolution of the repair time and natural processing time. 

With a probability of (1 - p) that a breakdown occurs, the mixed distribution corre­
sponding to the EPT data set is: 

To create an EPT data set, suppose, for example, that the parameters of the distribu­
tions of the sourees of variability are a 1 = 100, {31 = 0.05, a 2 = 100 and {32 = 0.2. The 
probability that a breakdown occurs is (1 - p) = 0.1 (10%). The convolution of those 
distributions results in an EPT distribution. The corresponding probability density 
function, PDF, is presented in figure 4.2 (labeled as Exact). 
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Figure 4.2: EPT 

35 

From this probability density funetion, is is possible to determine the moments of the 
eorresponding EPT distribution. 

4.2.2 Moment generating function 

The moment generating function eorresponding to the EPT distribution, FEPT, is: 

(4.3) 

From this moment generating funetion, equations for the dependencies of a 1, /31, a2, /32 
and pon the shape of FEPT , ean be determined. 

4.2.3 Estimators for the mean and varianee of the sourees 

When we solve the equations from the moment generat ing funetion, estimators are 
derived for a1, /31, a2, /32 and p. From these estimators, &1, fh , &2 , J2 and p, the mean 
and varianee of every souree ean be determined. 



36 Chapter 4. De-convolution of EPT Data Sets 

For several number of data points, the estimated mean and varianee of t he sourees of 
variability, are: 

N atur al pr ocessing t im e: 

Data points: I oo I 10e6 I 10e5 I 10e4 I 10e3 I 10e2 I 10e1 

a1 · /31 5 5 5 5 5 5 5 
&1 . /31 5.0000 4.9996 4.9999 4.9992 5.0033 5.0136 4.9454 
CY! . f3t 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

A2 
&1 . /31 0.2500 0.2499 0.2503 0.2512 0.2572 0.2572 0.1112 

Breakdown time : 

Data points: I oo I 10e6 I 10e5 I 10e4 I 10e3 I 10e2 I 10e1 

CY2 · /32 20 20 20 20 20 20 20 

&2. /32 20.000 19.998 19.990 19.984 20.021 20.067 20.628 
CY2 · {3~ 4 4 4 4 4 4 4 

A2 
&2. !32 4.0000 4.0047 4.0181 3.8932 3.5964 3.4085 2.9036 

The estimated probability of breakdown is: 

P robability of breakdown (1 - p ): 

The estimators ean be used to reereate the EPT density function. That EPT approxi­
mation is also presented in figure 4.2 (labeled as De-eonvolution). 
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4.3 Four sourees of variability 

In this section we look at the total number of sourees of variability, that were considered 
to be responsible for the EPT, as is assumed in chapter 1.1. These sourees are the 
operator availability, the setup time, the natural processing time and breakdown. The 
distributions of those sourees are the same as in the previous sections, namely: 

• Operator availability: Exponential distribution with parameter 8 

• Setup time: Gamma distribution with parameters a1 and !31 

• N atural processing time: Gamma distri bution with parameters a2 and {32 

• Breakdown time: Gamma distribution with parameters a3 and {33 

4.3.1 EPT 

To create an EPT data set, suppose, for example, that the parameters of the distribu­
tions of the sourees of variability are: 

• Operator availability: 8 = 2 

• Setup time: a1 = 5 and {31 = 0.2 

• Natural processing time: a2 = 100 and !32 = 0.05 

• Breakdown time: a3 = 100 and {33 = 0.2 

The probability that a breakdown occurs is (1 - p) = 0.1 (10%). The convolution 
of those distributions results in an EPT distribution. The corresponding probability 
density function, PDF, is presented in figure 4.3 (labeled as Exact). 

time 

Figure 4.3: EPT 
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From this probability density function, is is possible to determine the moments of the 
corresponding EPT distribution. 

4 .3 .2 Moment generating function 

The moment generating function corresponding to the EPT distribution, FEPT , is: 

(4.4) 

From this moment generating function, equations for the dependendes of(), a1, {31, az, 
f3z, a3, {33 and pon the shape of FEPT , can be determined. 

4.3.3 Estimators for the mean and varianee of the sourees 

When we solve the equations from the moment generating function, estimators are 
derived for () , a1, !31, az, f3z, a3, {33 and p. From these estimators, ê, éh, /J1, &2, /Jz, &3, 
/33 and p, the mean and varianee of every souree ean be determined . 

For several number of data points, the estimated mean and varianee of the sourees of 
variability, are: 

Operator availability: 

Data points: I oo I 10e6 I 10e5 I 10e4 I 10e3 I 10e2 I 10e1 
() 2 2 2 2 2 2 2 

ê 2.0000 2.0053 1.9694 2.0158 1.8973 2.0042 1.8456 
()'2 4 4 4 4 4 4 4 
ê2 4.0000 4.0213 3.8786 4.0634 3.5996 4.0166 3.4062 

Setup time: 

Data points: I oo I 10e6 I 10e5 I 10e4 I 10e3 I 10e2 I 10e1 

a1 · {31 1 1 1 1 1 1 1 

&1 . /31 1.0000 0.9746 1.1759 0.8960 1.5745 1.3424 2.2242 

a1 · f3i 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
'2 

&1 . {31 0.2000 0.1900 0.2765 0.1606 0.4954 0.3560 0.9725 
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Natural processing time: 

Data points: I oo I 1oe6 I 10e5 I 1oe4 1 1oe3 1 1oe2 1 1oe1 

a2 ·!h 5 5 5 5 5 5 5 
&2. /32 5.0000 5.0216 4.8514 5.0968 4.5263 4.6492 3.9836 
0!2. !3i 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

'2 
&2. !32 0.2500 0.2522 0.2354 0.2598 0.2049 0.2161 0.1580 

Breakdown time: 

Data points: I oo I 1oe6 I 1oe5 I 1oe4 I 10e3 I 1oe2 I 1oe1 

0!3. !33 20 20 20 20 20 
&3. /33 20.000 20.027 19.865 20.125 

a3 · /3~ 4 4 4 4 
'2 

&3. !33 4.0000 4.0109 3.9464 4.0503 

The estimated probability of breakdown is: 

Probability of breakdown (1- p): 

Data points: Joo J10e6 J10e5 J10e4 
(1- p) 0.1 0.1 0.1 0.1 
(1- p) 0.1000 0.0999 0.1002 0.0994 

20 20 
19.482 19.991 
4 4 
3.7960 3.9970 

20 
18.216 
4 
3.3370 

0.1 
0.0927 
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The estimators can be used to recreate the EPT density function. That EPT approxi­
mation is also presented in figure 4.3 (labeled as De-convolution). 

4.4 Conclusions 

With the de-convolution of the EPT data sets, we are able to estimate the mean and 
varianee of every souree of variability at a workstation. Especially, when there are just 
a few sourees of variability and we have the availability of a lot of data points, the 
estimates for the means and variances of those sourees are very accurate ( < 5%). 

For less data points or more complex equations, the estimation of the means and vari­
ances are less accurate. To improve the accuracy, research can be done to find out 
which equations from the moment generating function of the distribution FEPT, are 
less complex to solve. These equations can be used to solve the optimization problem. 
Also, research can be done to find out which shape parameters, or moments, of the 
EPT distribution are less sensitive to estimate, when a smaller amount of data points is 
available. The corresponding equations from the moment generating function can also 
be used to solve the optimization problem. 
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Chapter 5 

Conclusions and 
Recommendations 

In this report the de-convolution of a probability distribution is describedo Such a dis­
tribution is composed of several underlying probability distributionso In this context, 
de-convolution implies that the underlying distributions are determined when the con­
voluted distribution is assumed to be knowno Also the forms and the number of the 
underlying distributions are supposed to be knowno 

From the moment generating functions from chapter 2, we are able to derive equations to 
determine the dependendes of the parameters of the distributions of the sub-processes, 
Fx;, on the moments of the convoluted distribution, Fy 0 With these equations, we can 
identify the forms of distributions for Fx, that can be de-convoluted, like the exponen­
tial distribution, or that cannot be de-convoluted, like the normal distributiono 

If the sub-processes are exponentially distributed, the parameters of those distributions 
can be determined with an optimization problem as described in chapter 30 This opti­
mization problem determines estimators for the unknown parameters from the equations 
from the moment generating function, of Fy 0 

In that same chapter, two methods are proposed for the de-convolution with respect to 
normally distributed sub-processeso These methods, respectively, arebasedon classical 
statistica! beliefs and on Bayesian statistica! beliefs for an estimation of the unknown 
parameters of the normal distributionso The Bayesian methad is favorable when prior 
information is available of the distributions of the sub-processeso 
With the theorems for the update of the mean and variance, all observations from all 
the sub-processes can be taken into account, for an accurate estimate of the unknown 
parameters of the normal distributionso 

In the last chapter, the de-convolution of EPT data sets is demonstratedo Effective 
process time, EPT, is an aggregate measure into which all sourees of variability at a 
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workstation are combined. 
With the de-convolution of the EPT data set, estimators are determined for the para­
meters of the distributions of the sourees of variability. From these estimators, we are 
able to determine the mean and varianee of each souree of variability. 

If we have the availability of lot of data points (the momentsof the EPT distribution do 
correspond more to the theoretica! moments of that EPT distribution), the estimates 
for the mean and varianee of the sourees of variability are accurate ( < 5%). Also, for 
a small number of sourees of variability ( the equations from the moment generating 
function are less complex), the estimation of bath parameters is also accurate ( < 5%). 
For less data points or more complex equations, the estimation of the means and vari­
arrees are less accurate. To imprave the accuracy, research can be done to find out which 
equations from the moment generating function are less complex to solve. Also, research 
can be done to find out which shape parameters, or moments, of the EPT distribution 
are less sensitive to estimate, when a smaller amount of data points is available. 

Also, research into other applications for the de-convolution of a probability distribu­
tions can be done. One might think of, for example, destructive testing, which is aften 
necessary in the bulb or car industry totest the products. 
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Appendix A 

Theorems 

In this appendix, the theorems from sections 3.2 are derived. 

Theorem 1: Update the mean 

Proof: 
Consiclering equation (3.1), 

Ym 

_ k(f}k- yz) 
Yl + l + k 

l· yz + k · Yk 
l + k 

(l + k)yz- k(Yk- yz) 
(l + k) 

_ k(yk- yz) 
Yl + (l + k) 

45 

(A.l) 
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Theorem 2: Update the varianee 

1 { 2 2 ( lk ) 2} l + k _ 1 (Z- 1)sz + (k- 1)sk + l + k (f}k- yz) 

Pro of: 
Consiclering equation (3.2) ancl assume sî = 0, 

1 l+k 
l + k- 1 L[Yj- Ym]2 

j=l 

l+k 
(l + k- 1)s~ L[(Yi- fJz) + (Yz- Ym)] 2 

j=l 

l+k 
L(Yi- Yz)2 + 
j=l 

l+k 
2 L[(Yj- Yz)(Yz- Ym)] + 

j=l 

l+k 
L(Yz- Ym) 2 

j=l 

The three terms are clerivecl separately. Consiclering the first term, 

l+k 
L(Yi- f)z)2 
j=l 

l l+k 
L(Yi- Yz) 2 + L (Yi- fJz) 2 

j=l j=l+l 

l+k 
(Z- 1)sr + I: ((Yj- Yk) + (fJk- fJz)) 2 

j=l+l 
l+k 

(l- 1)s[ + L (Yj- Yk) 2 + 
j=l+l 

l+k l+k 
2(fJk - Yz) L (Yi - Yk) + L (Yk - Yz) 2 

j=l+l j=l+l 

(l- 1)sf + (k- 1)s~ + 0 + k(fJk- f)z) 2 



Consiclering the seconcl term, 

l+k l+k 
2 L[(yj- fh)(fh- Ym)] 2 · (Yl- Ym) L(Yj- Yl) 

j=l j=l 

= 2 · (Yl- Ym) (fYj- (l + k)Y1) 
J=l 

2 · (Yl- Ym)((l + k)Ym- (l + k)yl) 

-2 · (l + k)(Yl- Ym) 2 

k2 
-2 · -(Yk- Yl) 2 (with (A.1)) 

l + k 

Consiclering the thircl term, 

l+k 
L(Yl- Ym) 2 (l + k)(Yl- Ym) 2 

j=l 

(with (A.1)) 

(with (A.1)) Combining these three terms, 

(l + k- 1)s~ = [(l- 1)sf + (k- 1)s~ + k(yk- Yl) 2
] + 

Which yielcls, 

k2 k2 
[-2·l+k(Yk-Yl)

2
]+[l+k(Yk-Yl)

2
] 

(l- 1)sf + (k- 1)s~ + ( k- l :
2 

k) (Yk- Yl)
2 

= ( l - 1) s[ + ( k - 1) s~ + (z ~ k) (Yk - Yl) 2 

1 { 2 2 ( lk ) 2} l + k _ 1 (l- 1)sl + (k- 1)sk + l + k (Yk- Yl) 
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