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Chapter 1

Introduction

In this thesis we describe the design and implementation of a VLIW vector processor with a
custom chosen instruction set targeted towards DSP applications on an FPGA. Its name will
be the VPF, Vector Processor for an FPGA. We will implement a range of DSP algorithms,
with FIR and FF'T, and also a graphical “Ripple” demo, to explore scalability and performance
issues.

1.1 FPGAs

FPGAs are programmable logic devices, containing a two-dimensional grid of logic blocks
(lookup tables, multiplexers) and routing channels to connect these in arbitrary fashion. The
location of the logic (lookup tables, multiplexers etc.) and the channels is fixed. Logic is
grouped into blocks, which have a number of input and output pins, which can be connected
to the lanes through the use of “switchboxes” that can connect multiple lanes, and lanes
to pins on the logic block. The Xilinx Virtex-4 [7] adds fast arithmetic blocks to the FPGA
concept, specifically, allowing fast multiplication, addition, accumulation, counting, and more;
up to 500MHz in the fastest speed grade, when fully pipelined.

The main challenge in programming fast FPGAs is to tune the design for routing correctly.
All the wires and connections are already in the fabric, so there is only a limited number of
combinations possible, so designs with high fanouts have to be avoided. Unfortunately, in
naive designs, fanout of some components tends to depend linearly on the vector width of our
processor, in particular between the decoding and execution stages.

1.2 Xilinx Virtex-4 architecture

We will now give an overview of the architecture of Virtex-4 FPGAs as an aid in understanding
optimization issues.
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Figure 1.1: Virtex-4 LX-series layout overview

From a global point of view, an FPGA (see figure 1.1) is built from CLBs (see page 163 of [8]),
which are “Configurable Logic Blocks”, and DSPs, that can, in essence, do fast multiplication
and addition. A CLB contains four so called “slices”, each having two flip-flops, two 4-input
LUTSs, two MUXes to build multiplex trees, and two MUXes to build addition chains. A
LUT, illustrated in figure 1.2, is the basic building blocks of functionality on an FPGA. It
has, in this case, four inputs that via a lookup table determines the output. The lookup table
is programmed, or preset, while initializing the FPGA. Two of the four slices in a CLB can
only contain logic (called SLICEL), but the other two can also be configured to contain RAM,
which can be configured to also function as a FIFO or Shift Register. For more details see
the User Guide [8].

— LUT

Figure 1.2: LUT, with four inputs

To build large multiplexers, the lookup tables (LUTSs) are combined with MUX components
of which the inputs are directly connected to the output of the LUTs. The first stage of
multiplexing will be a 3-input LUT; after this stage MUXes are connected in a special prede-
termined pattern to build up to a 32:1 multiplexer using 4 slices with practically zero routing



delay. In the first stage the selector signal can be a bitwise combination of two signals, by
using the full 4 inputs of a LUT, since all LUTSs are in fact 4-input LUTs.
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Figure 1.3: Switch matrices connect the blocks to lanes to other blocks

Each CLB or DSP is accompanied by a “switch matrix”, see figure 1.3, where signals to and
from the logic blocks can be connected to interslice connections. They are layed out in rows
and columns. Some interslice connections run in between two adjacent switchboxes, some
connect more distant switchboxes. For more information on FPGAs, see [4].

1.3 FPGA design flow

This section describes the work flow of machine design on an FPGA. The previous section
explained the architecture of FPGAs, this section will explain concisely, how the tools work.

A typical iteration in the (Xilinx) design flow (also see figure 1.5) uses these tools in order:

1. An editor, to write a VHDL or Verilog file, in which one describes the behaviour of the
machine to be implemented

2. A synthesis tool, that produces from the VHDL file an EDIF file, which is a netlist of
the individual components that exist on the target FPGA, like LUTs and DSPs; and
their connections

3. Ngdbuild, that translates the EDIF format into NGD format, which is the input format
for the subsequent Xilinx tools
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Figure 1.4: Design flow, VHDL to netlist
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Figure 1.5: Xilinx Design Flow; taken from [11], sheet 3



4. Map, maps the components in the netlist into slices; can optionally suggest a placement
5. Place, places the slices on the FPGA in a certain row and column

6. Route, routes the connections mentioned between components, through switchboxes
and interslice connections

Note that the last two items are combined in one tool but listed separately for clarity. The
last two items are also the hardest part of the flow (for the tools), because the placement of
components affects the density of the needed interslice connections, but also vice versa: the
available routing opportunities should suggest best placement locations.

1.4 Vector, parallel processing

Vector processing ([1], appendix G) is a form of SIMD[5], where processors have multiple
processing elements (PEs), working on vectors of data, instead of on scalars. This introduces
parallelism by doing calculations like adding, multiplying, etc. on P elements per time unit,
instead of on one. It turns out that DSP algorithms are particularly well “vectorisable”,
or can be rewritten in a form where they operate on vectors instead of on scalars, because
usually the operations on a stream of data have intrinsic parallelism in one way or the other.

Another dimension of parallelism we will look at are VLIW[3] architectures, where we can
feed the separate existing units in a processor an instruction each, also called issue slots. More
information about DSP VLIW design can be found in [2].

Our goal will be to have initiation interval 1, meaning that every clock cycle a new operation
can be started. On the other hand, we have some freedom with regard to pipeline depth and
latency of instructions. The pipeline depth affects the cost of wrongly predicted branches,
higher depth increases branch cost, because the calculation pipeline stages will be empty for
more time slots. We do not expect many branches in the algorithms we are going to implement,
or they will be assisted in assembly. The cost of higher latency is that the compiler and/or
programmer will have to interleave instructions with other non-dependent useful instructions,
i.e. it will be harder for them to write optimal assembly code. The processor will never stall,
so instructions started before the specified latency for a particular instruction will not read
the value produced by that particular instruction, but the value produced before.

1.5 Global names and constants

In this document we will use the variable P for the width of the vector processor, that is, the
number of elements in a vector processed per clock cycle. The term “broadcast” means that
we have a scalar value that is broadcasted vector wide, usually within a unit.



1.6 System overview

Our system, shown in figure 1.6 will consist of algorithms that are implemented in our chosen
ISA, running on our vector processor, which in turn is implemented in VHDL, a hardware
description language.

Algorithm
ISA

Vector Processor
VHDL

FPGA

Figure 1.6: System overview

1.7 Assignment

Context: recently FPGAs have increased in clock frequency a lot relative to processors, by
adding hardware multipliers and adders, such that even calculation intensive applications
are implementable at acceptable speed. A vector processor, adding an abstraction layer, has
become a feasible challenge. Furthermore, the EVP, a vector processor, has been developed
within Philips for various DSP applications.

Assignment: to design, implement, test, and describe a scalable vector (SIMD) machine.
This machine will be inspired by the EVP, and if possible, research in the area of gather
load will be conducted. We want to know at what clock frequency this machine can run, and
how this scales with increase of P, and why. Functioning of the processor will be proven by
implementing a couple of non-trivial algorithms including the FFT.

1.8 Report structure

We can outline the structure of the rest of this report as follows. In the next chapter we
will continue with key differences between implementing a vector processor versus a scalar
processor on an FPGA. These issues and their results will give rise to design choices for
the ISA in the third chapter. In the fourth chapter we will describe the implementation of
this ISA. Optimization of the implementation is discussed in chapter five. In chapter six,
we discuss implementation of two DSP algorithms, thereby proving the functioning of the
processor. A third, complex algorithm requiring extensions to the processor will be discussed
in chapter seven. Finally, in chapter eight we draw general, main conclusions.
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Chapter 2

Key issues regarding vector
processing on an FPGA

In this chapter we will explore and explain the key issues involved when implementing a vector
processor, as opposed to a scalar processor. A key difference is the shuffle unit, to shuffle data
within a vector, so that unit will be looked at. We will also look at the register file, since it is
a large part of the design, and as such, we will do some research into this area to get a feeling
for FPGA possibilities.

2.1 Shuffle

The shuffle operation creates dependencies across the whole vector because from every target
position, one can index into an arbitrary source position via the pattern. In contrast, every
target position in an addition only has a dependency on that same position in the source
vector. As P increases, the shuffle gets wider, requiring more space, increases routing delay,
and thus limiting the clock speed. For this reason, the shuffle operation is an area of research.

Now we will describe the operation of the shuffle instruction, we look at implementing it as
a separate unit, and any optimizations for (clock) speed.

2.1.1 Specification

The shuffle is an intravector operation, and defined by:
(Vi:0<i<P:t[i]:= s[p[i]]) (2.1)

where ¢ is the target vector, s the source vector, and p the pattern vector. The shuffle copies

11



or moves data within a vector. It can do all permutations on a vector, but also copy data
from one element throughout the whole vector for example, and any combination of these two
types of operations.

2.1.2 TImplementation

In essence, the shuffle consists of 16 P multiplexer trees, each having %P LUTs and P — 1
MUX components. To analyse the growth of the shuffle unit in relation to P, these are the
number of LUTs used for 1 bit wide registers, so that each vector is P bits wide (see figure
2.1 for graph):

P | #LUTs
4 |12
8 | 24
16 | 144
32 | 544
64 | 2112
10000

1000 /

100 -

Number of LUTs

10

Figure 2.1: Shuffle 1 bit wide

2.1.3 Optimization

To speed up the shuffle, we can chop the multiplexing stage in pieces. An N : 1 multiplexer
has § = log N stages, so when we chop the shuffle in M and § — M layers, the first stage
will have 25~M outputs. For instance when M is half of S (assume S multiple of two) then
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there will be v/N outputs. This results in 2°~™ X : 1 multiplexers and one Y : 1 multiplexer,
with X = 25%, and Y = 25-M_ This will increase the number of flip-flops used, by 25—M
multiplied by register width but can result in a fewer number of layers in a cycle and thus
decrease the path delay.

In figure 2.2 the scaling of P in relation to number of MHz with various number of stages can
be seen.

400

350 -

300
250
T 200
=
150 1

100 ~

50 -

0

4 8 16 32 64
P

‘+1 Stage —4- 2 Stages —%-3 Stages‘

Figure 2.2: Shuffle scaling of P in relation to MHz

After P = 16, the speed for one stage decreases significantly. This corresponds with our
architecture overview notes in section 1.2, as P = 16 means that we need to build 33:1
multiplexers for the “1 stage” case, as 1 4+ 2-16 = 33. The source of the extra “plus one” is
the broadcast input.

Adding a stage causes speed to remain at the same level as one stage less when doubling P
once. This pattern is broken by 3 stages at P = 32 and beyond, due to sheer size of needed
logic blocks. Routing delay becomes the dominant factor in speed.

2.2 Register file

Now we will look at the register file for a processor. As our goal is a load/store architecture,
the register file is of great importance. We want to have 32 registers, each 16 P bits wide, so
it will be complex and large compared to a scalar register file.

The Xilinx Virtex-4 FPGA provides several types of components that might be used to
implement a register file. Regular flip-flops is one option, but since some of the LUTs can

13



also be used as distributed RAM, see [8] page 164, we first tried implementing it using that
technology. The advantage is that it stores 16 bits in the space normally occupied by one
LUT, and provides multiplexing to access one of these bits. Additionally a dual-port version
is available, that allows two read ports and one write port. The 32 registers are then mapped
to 2P of these distributed RAM components.

jéead port 1
Register 1

j&ad port 2
Register 2
jgad port 3
Register 32 jgad port 4

Figure 2.3: Register file with multiple read and write ports

write port

write port

ecee
ecee

write port

7 7Y

However, as we want to work towards a VLIW design, the register file will need to have
multiple read and write ports, which is illustrated in figure 2.3. Multiple read ports can be
achieved by copying, but supporting multiple write ports is difficult, as these components
have only one write port. Possible solutions are to use double clock rate for these components
compared to the rest of the design; however this is hard to implement, and does not scale
any further. Another solution might be restrictions of certain units to write to one or the
other set of 16 registers, but this is very much contrary to the idea of a register file, and also
complicates ISA design: it will be irregular.

Keeping these drawbacks in mind, we choose to implement the register file using flip-flops,
where we can arbitrate the write access manually giving rise to multiple write ports. Multiple
read ports will result in a greater fanout of each flip-flop.

2.3 Clock frequency goal: 200 MHz

We want to be achieve a high clock frequency for the processor, therefore we try to set a
reasonable goal. The intrinsic, highest clock frequency of a Xilinx Virtex-4 FPGA is 500 MHz.
However, we can note that this is for the highest speed grade, the lowest speed grade reaches
400 MHz. Furthermore we can note from our shuffle experiment that even a P = 4 shuffle,
which is smallest tested shuffle, only reaches 300 MHz. We must conclude that although the
DSP blocks can run at a high frequency, the regular LUT logic is not capable of performing
useful functionality at such a high frequency. Therefore we halve the clock frequency, add
some margin, and as such reach our goal frequency of 200 MHz.

14



2.4 Conclusion

In this chapter we looked at implementation of the shuffle instruction as a separate unit. We
do this because the shuffle instruction implementation size depends on P. The amount of
needed logic is O(P?). Speed can be improved by pipelining the instruction, but this requires
more flip-flops. From P = 32 onward, using 2 stages is to be advised, 3 stages is noise: it
yields no gain, for at least upto P = 64.

We also looked at the register file implementation where we would prefer to use distributed
RAM to keep the number of used slices low, but due to wanting a VLIW ISA architecture,
we choose to use flip-flops for the register file implementation.

Using the information we learned during these experiments, we choose to use VLIW in our ISA
design, a load/store architecture where the memory to register file path is completely separate
from the bypasses of the register files between the other two units. The DSP components
allow us to implement a fast MAC unit. Most processor designs have an ALU unit, but we do
not expect to need it for the algorithms we want to run, so we do not look into implementing
such a unit. The other main vector unit will be the shuffle unit, of which implementation
issues have been discussed in this chapter. The next chapter will describe the ISA.

15



Chapter 3

Instruction Set Architecture

In this chapter we describe the instruction set architecture for the processor. We will describe
the choices regarding which instructions were implemented and which ones were not, and
why. We describe which data types are supported by the set of instructions, the state of the
processor, and the instructions as operations on the state. The vector width is represented
using parameter P.

3.1 Introduction

We choose not to implement an existing ISA, but instead to design a new one. The reason
for this choice is due to our processor being implemented on an FPGA, so we are limited
in the type and number of instructions we can map efficiently onto an FPGA design. Some
operations are supported by the components present in the FPGA, like hardware multipliers
and adders, that we want to use to achieve a high clock frequency, but these do not support
saturation and scaling for instance, while some instruction sets may allow saturation or scaling
after adding or multiplying. Implementing support for these variants would take down the
clock speed. Another reason is our focus on scalability, instead of on particular instruction
details.

The processor has a load/store architecture so all arithmetic instructions are on registers, and
never on memory directly. There will also not be any memory-to-memory instructions for this
reason. The load/store instructions are aligned to simplify implementation. The instruction
set is constructed from the point of view of the algorithms we want to implement, and is not
intended to be complete. Do not expect support for conditional branches, interrupts, and
exceptions.

To access memory the address calculation unit (ACU) is to be used, which has 16 pointers,
to calculate pointers that are used to index into memory. Modulo addressing of loading and
storing is supported by loading the pointer window size and end. Pointer addresses are vector
pointers, in other words, addresses point to P words of data. The processor contains 32

16



(vector) registers in its register file.

The multiplier broadcast register is used to multiply a vector with a constant. The shuffle
register to shuffle a constant into a vector. These broadcast registers are vectors because
loading/storing is vector-based.

3.2 Data types

In this section we describe the types the processor uses that are exposed through the ISA.

fixed-point signed 1.15 number: range —1 to 1 — 215

e byte, 8 bits wide

e code address: integer, range 0 to 511

e data address: integer, range 0 to 8191

e external address: integer, range 0 to 22 — 1

e shuffle pattern: integer with two extra bits at most significant end, for details see 3.11.1.
e hardware loop: a record:

— count: integer, range 0 to 2047
— start: code address

— end: code address

3.3 State

The state of the processor will be used to describe the instructions as operations on the state.
We will give a name to each part of the state, so that we can refer to it in the instruction
specification.

The processor state consists of:

e the program counter, pc of type code address

e 32 vector registers, R[0]..R[31] of type P size vector of type fixed-point

16 pointer registers, P[0]..P[15] of type data address

16 pointer window size registers, B[0]..B[15] of type data address

16 pointer end registers, F[0]..E[15] of type data address

17



e 16 internal pointer registers, I[0]..I[15] of type data address

e 16 internal pointer window size registers, C[0]..C[15] of type data address

e 16 internal pointer end registers, F[0]..F[15] of type data address

e 16 external pointer registers, X[0]..X[15] of type external address

e 16 pattern registers, T'[0]..T'[15] of type P size vector of type shuffle pattern

e a vector accumulator register, a[0]..a[P — 1] of type fixed-point

e a vector multiplier broadcast register, vmbc[0]..vmbc[P — 1] of type fixed-point
e a vector shuffle broadcast register, vsbc[0]..vsbc[P — 1] of type fixed-point

e a color buffer, ¢[0]..c[3P] of type byte

e a scalar/vector conversion multiplexer control variable, s with range 0..%P -1
e current hardware loop registers, hwloop of type hardware loop

e hardware loop stack of size 4, loopst|0]..loopst[3] of type hardware loop

3.4 Memory

Furthermore we define 8192P words of data memory, mem|0..8191P] of type fixed-point. We
do not consider this to be part of the processor state, but we will refer to it in the description
of some instructions.

3.5 I/0

The processor can perform I/O on an external memory unit using the following signals:

e a read/write data bus, data[0..7] of type byte
e an address line, addr of type external address, to which the processor writes

e 3 write enable line, also written to by the processor

3.6 Instruction encoding

Due to the processor having a VLIW architecture, instructions have separate, independent
parts; furthermore, we have chosen to have one issue slot per unit. In other words, there is

18



LD/ST

EXT

JMP MAC SHF RT S RT M
Ptr Immediate
Opcode Reg Ptr Increment
Src Reg Dest Reg
Figure 3.1: Instruction encoding load/store unit
Ext ;r;t Buffer Incr Int Ptr
X T .
opcode Pt Immediate
Opcode Ptr Reg P ' rmed
Reg
EXT: Ext Ptr Immediate
Figure 3.2: Instruction encoding external communication
Relative Jump Address
Opcode
P Loop Loop end
start Loop count
offset offset
JMP:
Figure 3.3: Instruction encoding flow control unit
Dest Src 1 Src 2
MAC: Opcode Reg Reg Reg
Figure 3.4: Instruction encoding MAC unit
Dest Source Pattern
Opcode Re Re Re
SHF: & & &

Figure 3.5: Instruction encoding shuffle unit
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RT S:
RT M:

Rotate Multiplier Rotate Shuffle

Broadcast Vector Broadcast Vector
(1bit enable) (1bit enable)

Figure 3.6: Instruction encoding rotate broadcast units

a one-to-one mapping from issue slots to VLIW functional units. Figures 3.1 to 3.6 give a
graphical representation of the instruction encoding.

We use a virtual register m[0]..m[P] for specification purposes, used as means of communica-
tion by the load/store and mac units.

3.7 Load/store unit

The load/store unit has the following instructions:

Description

LDV
STV
LDP
LDT
LDM
LDS
LDB
LDE
LDVM
STVM
LDTM
LDMM
LDSM
MOV

LDV

Format:

Load register

Store register

Load pointer (with immediate)

Load pattern

Load multiplier broadcast vector

Load shuffle broadcast vector

Load pointer window size

Load pointer window end

Load register (modulo pointer operation)

Store register (modulo pointer operation)

Load pattern (modulo pointer operation)

Load multiplier broadcast vector (modulo pointer operation)
Load shuffle broadcast vector (modulo pointer operation)
Move (copy) register

LDV Rz, Py, 2

Formally: (Vi:0 <4 < P : R[z][i] + mem|[P[y]- P +1)); Ply] < Ply]+ =

Load a vector from memory at an aligned address contained in pointer register y to vector
register z. Afterwards update the pointer to increase its address by z (5 bits signed). This is
a latency 1 instruction, and exists only for specification purposes.
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STV

Format: STV Rx, Py, 2
Formally: (Vi:0 <47 < P:mem[P[y]- P + ] < R[z][¢]); Ply] < Ply] + =
Store the vector in register  to memory at an aligned address pointed to by pointer register

y. Afterwards update the pointer to increase its address by z (5 bits signed). This is a latency
1 instruction, and exists only for specification purposes.

LDP

Format: LDP Pz, y
Formally: P[z] <y

Load pointer register £ with value y.

LDT

Format: LDT Tz, Py, 2
Formally: (Vi :0 <i < P :T[z][i] + mem[P[y]- P+ i]); Ply] + Ply] + =

Load shuffle pattern from memory at address contained in pointer register y to pattern register
x. Afterwards update the pointer to increase its address by z (5 bits signed). For shuffle
pattern specification see 3.11.1. Thisis a latency 1 instruction, and exists only for specification
purposes.

LDM
Format: LDM Pz, y
Formally: (Vi:0 <14 < P :vmbc[i] < mem[P[z]- P +1)); P[z] + Plz] +y

Load multiplier broadcast vector register from memory at address contained in pointer register
z. Afterwards update the pointer to increase its address by y (5 bits signed). This is a latency
1 instruction, and exists only for specification purposes.

LDS

Format: LDS Pz, y
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Formally: (Vi:0 <4 < P :vsbc[i] < mem[P[z]- P +1)); Plz] + Plz] +y
Load shuflle broadcast vector register from memory at address contained in pointer register

z. Afterwards update the pointer to increase its address by y (5 bits signed). This is a latency
1 instruction, and exists only for specification purposes.

LDB

Format: LDB Bz, y
Formally: Bz] <y

Load pointer window size register  with the value y.

LDE

Format: LDE Ez, y
Formally: E[z] <y

Load pointer window ending address register z with the value y.

LDVM

Format: LDVM Rz, Py, z

Formally: (Vi :0 < i < P : R[z][i] < mem[P[y] - P +1]); Ply| < Ply] + z;ifP[y] > E[y] =
Ply] « Ply] - BlyJfi

Load a vector from memory at an aligned address contained in pointer register 4 to vector
register z. Afterwards update the pointer to increase its address by z (5 bits signed).

STVM

Format: STVM Rz, Py, z

Formally: (Vi:0 <1i < P :mem[P[y]- P+ i] < R[z][i]); Ply] < Ply] + z;ifP[y] > E[y] =
Ply] + Ply] - Bly]fi

Store the vector in register « to memory at an aligned address pointed to by pointer register
y. Afterwards update the pointer to increase its address by z (5 bits signed).
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LDTM

Format: LDTM Tz, Py, z

Formally: (Vi :0 < i < P :T[z][i] + mem|[P[y]- P +1]); Ply] + Ply] + z;ifP[y] > E[y] =
Ply] < Ply] — B[y]fi

Load shuffle pattern from memory at address contained in pointer register y to pattern register

x. Afterwards update the pointer to increase its address by z (5 bits signed). For shuffle
pattern specification see 3.11.1.

LDMM

Format: LDMM Pz, y

Formally: (Vi:0 <4 < P :vmbc[i] + mem|[P[z]- P+ i]); P[z] + P[z] + y;ifPlz] > E[z] =
Plz] < P[z] — B[z]fi

Load multiplier broadcast vector register from memory at address contained in pointer register
z. Afterwards update the pointer to increase its address by y (5 bits signed).

LDSM

Format: LDSM Pz, y

Formally: (Vi:0 <i < P :wvsbc[i] + mem[P[z]- P +1i)); Pz] < Plz] + y;ifP[z] > E[z] =
Plz] < P[z] — B[z]fi

Load shuffle broadcast vector register from memory at address contained in pointer register
z. Afterwards update the pointer to increase its address by y (5 bits signed).

MOV

Format: MOV Rz, Ry
Formally: (Vi:0 <14 < P : R[z][i] < R[y][7])

Copy contents of register y into register x.
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3.8 External I/O unit

The external communication unit supports the following instructions:

Description

ELI | Load internal pointer immediate

EIB | Load internal pointer window size immediate
EIE | Load internal pointer window end immediate
ELX | Load external pointer immediate

ELD | Load external data into the processor

ELB | Load external data into color buffer

ELC | Load color buffer into data memory

EST | Store data

ESB | Store the color buffer to external memory
ESC | Store data memory into the color buffer

ELI

Format: ELT Ix, y
Formally: I[z] <y

Load internal pointer register = with the value y.

EIB

Format: EIB Cz, y
Formally: C[z] -y

Load internal pointer window size register z with the value y.

EIE

Format: EIE Fzx, y
Formally: F[z] <y

Load internal pointer window ending address register  with the value y.
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ELX

Format: ELX Xz, ¢
Formally: X[z] <y

Load external pointer register x with the value y.

ELD

Format: ELD Iz, Xy

Formally: addr < X[y]; (Vi : 0 < i < 4: mem[I[z] - P + 4s + 1] < (data[2i], data[2i + 1]));
5 <= s+ 1 mod iP

Load data from external source at address X[y| into internal vector memory at address I[z],
at part s of the vector.

ELB

Format: ELB Xz

Formally: addr < X[z]; (Vi:0 <7< 8:¢c[3P —8+1] + datali]); (Vi: 0<i <3P —8:cli] +
c[i + 8])

Load data from external source into the color buffer, and shifts the old data.

ELC

Format: ELC Iz

Formally: (Vi:0 <7 < P:mem[I[z]-P+1] < c[37]); (Vi:0 <% < P:c[3i] ¢ ¢[3i+1];¢[3i +
1] + ¢[37 + 2])

Load one color component from the color buffer into data memory, widening the data from
byte to fixed-point width (using zero-padding). Each triplet of bytes is shifted anti-clockwise.

EST

Format: EST Xz, Iy
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Formally: addr < X|[z]; (Vi : 0 < i < 4: (data[2i],data[2i + 1]) < mem[I[y] - P + 4s + i]);
s < s+ 1 mod iP

Store data to external memory at address X [y]| from internal vector memory at address I[z],
from part s of the vector.

ESB

Format: ESB Xz
Formally: addr < X[z]; (Vi:0 <14 < 8:datali] < c[i]); (Vi: 0 <1 <3P —8:[i] + c[i +8)])

Store data to external memory from the color buffer, and shifts the old data.

ESC

Format: ESC Iz

Formally: (Vi:0<1i < P:¢[3i] + mem[I[z]- P+1i]); (Vi: 0<% < P:¢[3i] < c[3i+1];¢[3i +
1] «+ ¢[37 + 2])

Store one color component to the color buffer from data memory, saturating the data fixed-
point width to a byte using three bits. Each triplet of bytes is shifted anti-clockwise.

3.9 Flow control unit

The flow control unit supports the following instructions:

‘ Description
JR | Jumps to a specified label
DOI | Specify a hardware loop

JR

Format: JR label
Formally: pc < pc + 2+offset(label)
Continue execution at instruction specified by label. The actual opcode contains a relative

7-bits offset. There are two branch delay slots after the jump instruction, which is implemen-
tation dependent.
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DOI

Format: DOI z, label_start, label_end
Formally: push(loopst, hwloop); hwloop < (x — 1,pc + label_start, pc + label _end)

Schedule a hardware loop to be started at instruction specified by label 1abel_start, ending
at and including instruction specified by label 1abel _end. The loop will execute z times,
0 < z, so z — 1 “repeats” are to be counted. The instruction cannot operate as a jump
beyond the end label. The loop start and end addresses cannot be the same instruction, i.e.
the loop needs to consist of at least two instructions. The loop start and end addresses must
be at least 3 instructions later than the DOI instruction.

3.10 MAC unit

The MAC unit supports the following instructions:

There are only two instruction formats: one for the version of each instruction taking a
constant and one for the version taking vectors only. The first we call the “broadcast”
version, and are prefixed with a B, the other is prefixed with a V. The accelerator register
of the MAC unit operates with higher precision hence rounding is useful. Rounding means
that 1 is added to the result in case the most significant bit to the least significant side of the
result is 1.

VADD

Format: VADD Rx, Ry, Rz
Formally: (Vi:0 <14 < P :ali] < Rly|[i] + R[2][i]; R[z][i] < a[i])

Add the registers y and z and store the result in register x.

BADD

Format: BADD Rx, Ry
Formally: (Vi:0 <34 < P :ali] < Ry|[i] + vmbc|0]; R[z][i] + ali])

Add the register y and element zero of the multiplier broadcast vector register, and store the
result in register z.
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Table 3.1: Instruction for MAC unit
Description

VADD
BADD
VSUB
BSUB
VMUL
BMUL
VMAD
BMAD
VMSB
BMSB
VMAC
BMAC
VMDC
BMDC

VMULR
BMULR
VMADR
BMADR
VMSBR
BMSBR

VMACR
BMACR

VMDCR

BMDCR

Adds two vectors

Adds a constant to a vector

Subtracts a vector from another

Subtracts a constant from a vector

Multiplies two vectors

Multiplies a vector with a constant

Multiplies two vectors and adds another

Multiplies a vector with a constant and adds another vector
Subtracts two multiplied vectors from a vector

Subtracts a vector that is multiplied by a constant from a vector
Multiplies two vectors and adds to accumulator

Multiplies a vector with a constant and adds to accumulator
Subtracts two multiplied vectors from the accumulator

Subtracts a vector that is multiplied by a constant from the accu-
mulator

Multiplies two vectors and rounds the result

Multiplies a vector with a constant and rounds the result
Multiplies two vectors, adds another, and rounds the result
Multiplies a vector with a constant, adds another vector, and
rounds the result

Subtracts two multiplied vectors from a vector, and rounds the
result

Subtracts a vector that is multiplied by a constant from a vector,
and rounds the result

Multiplies two vectors, adds to accumulator, and rounds the result
Multiplies a vector with a constant, adds to accumulator, and
rounds the result

Subtracts two multiplied vectors from the accumulator, and
rounds the result

Subtracts a vector that is multiplied by a constant from the accu-
mulator, and rounds the result
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VSUB

Format: VSUB Rx, Ry, Rz
Formally: (Vi:0 <1 < P :a[i] + Rly|][t] — R[z][¢]; R[z][{] + a[i])

Substract register z from register y and store the result in register z.

BSUB

Format: BSUB Rz, Ry
Formally: (Vi:0 <i < P :a[i] « R|y][¢] — vmbc|0]; R[z][z] < a[i])

Subtract element zero of the multiplier broadcast vector register from register y, and store
the result in register z.

VMUL

Format: VMUL Rz, Ry, Rz
Formally: (Vi:0 <14 < P :ali] < Rly|[i] * R[z][i]; R[z][i] < a[i])

Multiply the registers y and z, and store the result in register z.

BMUL

Format: BMUL Rz, Ry
Formally: (Vi:0 <i < P :afi] + Rly|[t] x vmbc[0]; R[z][i] < a[i])
Multiply the register 4y and element zero of the multiplier broadcast vector register, and store

the result in register x.

VMAD

Format: VMAD Rx, Ry, Rz, Rm
Formally: (Vi:0 <14 < P :ali] < R[m]|[i] + (R[y][7] * R[#][i]); R[z][i] < a[i])

Multiply the registers y and z, add register m to it, store the final result in the accumulator,
and copy that to register z.
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BMAD

Format: BMAD Rx, Ry, Rm
Formally: (Vi:0 <14 < P :ali] < R[m]|[{] + (R[y][¢] * vmbc|0]); R[z][i] < a[i])
Multiply the register y and element zero of the multiplier broadcast vector register, add

register m to it, store the final result in the accumulator, and copy that to register .

VMSB

Format: VMSB Rz, Ry, Rz, Rm
Formally: (Vi:0 <i < P :afi] < R[m|[i] — (R[y][?] * R[z][?]); R[z][¢] < ali])

Multiply the registers y and z, and substract it from register m. Store the final result in the
accumulator and copy it to register z.

BMSB

Format: BMSB Rx, Ry
Formally: (Vi:0 <14 < P :ali] < R[m]|[i] — (R[y][¢] * vmbc|0]); R[z][i] + ali])
Multiply the register y and element zero of the multiplier broadcast vector register, and

substract it from register m. Store the final result in the accumulator, and copy it to register
z.

VMAC

Format: VMAC Rz, Ry, Rz
Formally: (Vi:0 < i < P :ali] < a[i] + (R[y][7] * R[2][7]); R[x][7] < ali])

Multiply the registers y and z, and add it to the accumulator. Store the final result in register
z.

BMAC

Format: BMAC Rx, Ry

Formally: (Vi:0 <i < P :ali] < a[i] + (R[y][¢] * vmbc[0]); R[z][¢] < a[i])
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Multiply the register y and element zero of the multiplier broadcast vector register, and add
it to the accumulator. Store the final result in register x.

VMDC
Format: VMDC Rx, Ry, Rz
Formally: (Vi:0 <i < P :ali] + a[i] — (R[y][¢] * R[z][i]); R[z][z] < a[i])

Multiply the registers y and z, and substracts it from the accumulator. Store the final result
in register z.

BMDC

Format: BMDC Rx, Ry
Formally: (Vi:0 <14 < P :ali] < a[i] — (R[y][i] * vmbc[0]); R[z][i] < a[i])

Multiply the register y and element zero of the multiplier broadcast vector register, and
substracts it from the accumulator. Store the final result in register x.

VMULR

Format: VMULR Rz, Ry, Rz
Formally: (Vi:0 < i < P : a[i] +round(R]y|[7] * R[Z][7])); R[z][7] + a[i])

Multiply the registers y and z, and rounds the result. Store the result in register x.

BMULR

Format: BMULR Rz, Ry
Formally: (Vi:0 < i < P : a[i] +round(R]y][i] * vmbc[0]); R[z][i] + ai])

Multiply the register y and element zero of the multiplier broadcast vector register, and rounds
the result. Store the result in register z.

VMSBR

Format: VMSBR Rz, Ry, Rz, Rm
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Formally: (Vi:0 <1 < P : a[i] +round(R[m]|[i] — (R[y][i] * R[z][i])); R[z][:] + a[i])

Multiply the registers y and z, and substract it from register m. Round and store the final
result in the accumulator and copy it to register x.

BMSBR

Format: BMSBR Rz, Ry
Formally: (Vi:0 <14 < P :ali] <—round(R[m][i] — (R[y][¢] * vmbc[0])); R[z][i] < a[i])
Multiply the register y and element zero of the multiplier broadcast vector register, and

substract it from register m. Round and store the final result in the accumulator, and copy
it to register .

VMACR

Format: VMACR Rz, Ry, Rz
Formally: (Vi:0 <4 < P :ali] <—round(a[i] + (R[y][7] * R[2][i])); R[z][7] + ali])

Multiply the registers y and z, add it to the accumulator, and round the accumulator. Store
the final result in register z.

BMACR

Format: BMACR Rz, Ry
Formally: (Vi:0 <14 < P :ali] «round(a[i] + (R[y][{] *x vmbc|0])); R[z][z] + ali])

Multiply the register y and element zero of the multiplier broadcast vector register, add it to
the accumulator, and round the accumulator. Store the final result in register z.

VMDCR

Format: VMDCR Rz, Ry, Rz
Formally: (Vi:0 <4 < P :ali] +round(a[i] — (R[y][7] * R[2][7])); R[z][{] + ali])

Multiply the registers y and z, substract it from the accumulator, and round the accumulator.
Store the final result in register z.
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BMDCR

Format: BMDCR Rz, Ry
Formally: (Vi:0 < < P : a[i] <—round(a[i] — (R[y][¢] * vmbc|0])); R[z][¢] < ali])

Multiply the register y and element zero of the multiplier broadcast vector register, substract
it from the accumulator, and round the accumulator. Store the final result in register z.

3.11 Shuffle unit

There is only one kind of instruction for the shuffle unit, the shuffle instruction:
SHF Rx, Ry, Tz

It will shuffle the vector contained in register y according to shuffle pattern in pattern register
z, and store the result in register x.

3.11.1 Pattern specification

The shuffle pattern is layed out in a vector. (For an explanation of the shuffle operation see
2.1. In each element in this vector, the least significant 2 + log, P bits are used, say p1, ..., pm
where p; is the most significant bit. The least significant bits, ps, ..., pm specify the source
position. p, specifies whether to copy from element 0 of the shuffle broadcast register, if so,
then ps, ..., pp, ought to be zero, otherwise the result is undefined. p; is a mask bit, if enabled,
then the value in this position in the target vector is retained, otherwise the corresponding
value from the source register is copied.

3.12 Rotate multiplier broadcast unit
Formally: (Vi:0 <i < P : vmbc[i] < vmbc[i + 1 mod P])

This unit rotates the multiplier broadcast vector register one position backward, and has only
one instruction taking no parameters: RMB.

3.13 Rotate shuffle broadcast unit

Formally: (Vi:0 <i < P :vsbc[i] < vsbc[i + 1 mod P])
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This unit rotates the shuffle broadcast vector register one position backward, and has only
one instruction taking no parameters: RSB.

3.14 Assembler

To facilitate writing algorithms for our vector processor, we implement an assembler that
translates instructions in written form to the equivalent opcodes.

Now we will describe the syntax used. Lines that are empty, and the part of a line after a hash
(#) sign or double slash (//) token is ignored, and can be used for comments. Instructions
for the individual units forming one complete VLIW instruction have to be on one line, and
are seperated by a semicolon (;). Lines that end with a colon indicate a label name, that
can be used in jump instructions. Note that the assembler does not check for duplicate label
names.

Output of the assembler will be one instruction per line, encoded in hexadecimal format,
16 characters. Using the command line option “-r”, the output will be formatted in the
initialization format for block RAM in VHDL.

3.15 Allowed Parallellism

All combinations of above instructions are allowed except the ones listed below:

e the VMAD, VMADR, VMSB, VMSBR, BMAD, BMADR, BMSB, and BMSBR instruc-
tions cannot be used together with any of the load/store instructions. When encoding
the instructions, the m register is loaded by means of the register file read port of the
load/store unit by use of the LDA instruction whose only parameter is Rm;

e issuing a rotate shuffle broadcast instruction three cycles after a load shuffle broadcast
instruction is forbidden;

e issuing a rotate multiplier broadcast instruction three cycles after a load multiplier
broadcast instruction is forbidden;

e issuing an external load one cycle after an external store is forbidden.

3.16 Instruction latency

We will now list the latencies of instructions that are sharing data (the number of cycles such
that the modification of the source instruction is just observed by the destination instruction):
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Resource

Source

Destination

Latency

Pointer regs

Ptr range regs
Pointer regs

Ptr range regs
Pointer regs
Data memory
Data memory
Mult bdcst reg
Mult bdcst reg
Mult bdcst reg
Shuffle bdcst reg
Shuffle bdcst reg
Shuffle bdcst reg
Pattern regs
Register file
Register file
Register file
Register file
Register file
Register file
Register file
Register file
Register file
Register file
Register file
Register file
Register file
Register file

LDP
LDB,LDE
ELI
EIB,EIE
ELX
ELD,ELC
STV

LDM
LDM
RMB

LDS

LDS

RSB

LDT

LDV, MOV
SHF

SHF

all MAC
all MAC
all MAC
all MAC
all MAC
all MAC
all MAC
all MAC
all MAC,SHF
all MAC
SHF

LDM,LDS,LDV,STV
LDM,LDS,LDV,STV
ELD,EST,ELC,ESC
ELD,EST,ELC,ESC
ELD,EST,ELB,ESB
LDM,LDS,LDV

EST,ESC

MAC

RMB

MAC

RSB

SHF

SHF

SHF

all MAC,SHF

SHF

all MAC
VMAC,BMAC,VMDC,BMDC
VMACR,BMACR,VMDCR,BMDCR
VADD,BADD,VSUB,BSUB
VMUL,BMUL
VMULR,BMULR
VMAD,BMAD,VMSB,BMSB
VMADR,BMADR,VMSBR,BMSBR
STV

MOV

STV

STV

3.17 Common concepts left out

There is a set of common concepts that almost all ISAs implement or provide. Our ISA
includes key elements from vector processing, in particular related to DSP applications. How-
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ever, we do not provide facilities for interrupts, exceptions, and conditional branches.

3.18 Conclusion

In this chapter we described the chosen ISA for our processor. We chose to design our own
ISA, so we can focus on the instructions we need for implementation of algorithms, so one
should not expect a full generic processor; and due to the nature of FPGAs, we cannot map
all instructions as easily as in regular chip design. In the next chapter we will discuss the

implementation of this ISA.
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Chapter 4

Implementation

In this chapter we discuss the implementation details of the instruction set architecture on
the vector processor. We will look at pipelining, instruction decoding, and bypasses. An
overview of the processor architecture can be seen in figure 4.1.

4.1 General implementation approach

To increase clock speed in general, advantage is taken of the fact that instructions contain
smaller “pieces of work” that can be done in parallel; this is done by using pipelining. It is
used to introduce parallelism in instruction processing, and is explained well in [1], appendix
A, with a good overview in figure A.18.

Implementation choices include no stalling, and related, issuing one instruction per clock cycle.
When a processor stalls, it does not do any useful work, not stalling means the programmer
can choose to perform other calculations. Issuing one instruction per clock cycle means we
will not have paths covering more than one cycle; they will need to be pipelined.

Our processor has 7 stages, see figure 4.2; 1 instruction fetch stage, 3 instruction decoding
stages, 2 execute stages, and a writeback stage. Loading and storing is completely separate
from the other execution paths and units in the processor, so there is no “mem” stage in our
processor.

Shared resources:

register file, has 4 read ports and 3 write ports

multiplier broadcast register, has 1 read and 1 write port

shuffle broadcast register, has 1 read and 1 write port

data (vector) memory, has 2 read/write ports
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Figure 4.1: Vector processor architecture
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Figure 4.2: Pipeline overview
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e external I/O data bus

Resource usage by functional units:

Functional unit | Resource

1D 1 read port on pointer registers

RF (LD/ST) 1 read port on the register file

RF (MAC) 2 read ports on the register file

RF (SHF) 1 read port on the register file

WB (LD/ST) 1 write port on the register file

WB (MAC) 1 write port on the register file

WB (SHF) 1 write port on the register file

LD/ST 1 read/write port on data memory

BDC (LD/ST) | 1 write port on broadcast registers

RT M 1 read and 1 write port on multiplier broadcast register
RT S 1 read and 1 write port on shuffle broadcast register
Ext LD 1 read/write port on data memory

Ext LD external I/O data bus

Ext ST external I/O data bus

Using the diagram we can explain parallelism exceptions: issuing an external load instruction
directly after an external store instruction is forbidden due to conflict on the shared data bus.
Also, one cannot rotate a broadcast register 3 cycles after issuing a load broadcast register
instruction, due to sharing one write port on a broadcast register.

The next sections will each discuss one part of the pipeline.

4.2 Fetching

The first pipeline stage fetches one instruction per clock cycle from code memory at the
address pointed to by pc, into an instruction buffer.

4.3 Instruction decoding

Instruction decoding consists of three stages. The following paragraphs will each discuss one
of them.

The first stage controls the pc, which contains the address of the next instruction to be fetched.
In case of a jump, the pc is updated with the relative address provided, otherwise the current
hardware loop is checked, if any, or else the pc is incremented by one. Due to the pc being
written this cycle, and the code memory being a pipelined synchronized read memory block,
there are two unconditional branch delay slots. This stage also detects low latency usage of
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registers: registers used shortly after they are written to, where bypassing the register file
will be needed.

The second stage calculates pointer updates; see next subsection. This stage also determines
for each unit whether it will be writing its output to the register file. This information will
be used in the next stage to determine from what source unit the register file will be written.
Furthermore, this stage fetches for each unit the requested registers from the register file, see
also section 5.1.2. It also copies various values vector wide: the operational mode of the MAC
unit, and the input multiplexers of the MAC and shuffle units, see also section 5.5.

The register file is implemented in flip-flops due to the requirement of having multiple read
and write ports. On the other hand, the pointer registers are implemented in a series of
distributed RAM, which each can contain 16 addressable bits. Only one read and write port
were required for the pointer registers, so distributed RAM is a good choice for them.

The third stage determines for each register file location what the source unit will be, if it
is written to at all. It does this by using the information from the second stage that states
for each register whether a particular unit will be writing to it. Also in this the stage the
inputs of the executional units are filled, depending on what bypasses are enabled; which is
calculated in the first stage and distributed in the second stage.

4.4 Pointer updates

The ACU, address calculation unit, contains a set of pointer registers, that will be used to load
data from the memory banks into the register file. Now we will explain the issues encountered
when implementing it.

We want to be able to manipulate the pointer registers. We have chosen to only allow them
to be loaded with an immediate value, or updated, after loading, with an increment value.
We have also introduced the capability for them to be “modulo” pointers, as the EVP[6] has.
We define a “window” to be a range of addresses that bound the value of a pointer. So, after
incrementing a pointer outside a “window”, the window size will be subtracted from it. While
implementing this feature we notice that doing an addition, a comparison, and a substract in
one clock cycle results in a long logic path, and it being the critical path. As we want to focus
on vector issues, we choose to allow a higher latency such that the incremented pointer value
is available in the next cycle, but the modulo “corrected” value, takes two cycles to become
available.

Modulo pointers we use in our FIR filter implementation, and we can remark that we only
need it every loop of N, depth of filter, cycles. A similar things holds for the usage on the
ripple demo. One clock cycle higher latency for the modulo operation on the pointer is thus
not a problem in this scenario.
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4.5 Execution

In this section we describe execution details of the various units with respect to pipelining.
Execution consists of two pipeline stages.

The load/store unit gets fed the address to read in the third instruction decode stage, the data
will be available in the second execution stage due to using pipeline buffers in the memory
component.

The flow control unit operates entirely in the instruction decoding stages, and is described in
the instruction decoding section; see above.

The MAC unit executes the requested operation in the first execution stage. In the second
execution stage it copies the output value into another set of flip-flops that serve as the input
to the register file to decrease spatial dependency between the MAC unit and the register file.

The shuffle unit has a predefined variable number of execution stages: one, two, or three.
This means that the writeback stage is shifted backwards, neutral, or forward one stage
respectively. Instruction decoding will take into account what number of stages are used, to
fit the writeback stage after the variable number of execution stages. As a result, the latency
of the shuffle is also variable; it is exactly one more than the number of execution stages
chosen.

The rotate units, for the shuffle broadcast and the multiplier broadcast vectors, are rotated
in the third instruction decoding stage. Note however that they are loaded in the writeback
stage like the register file is, so issuing a load broadcast instruction three instructions before
a rotate broadcast instruction for the same unit is forbidden.

4.5.1 Bypasses

Pipelining increases clock speed, because it decreases the amount of sequential work to be
done each clock cycle, thus decreasing the critical path delay. However, it introduces latency
for instructions operating on the register file, because execution units read from, and write to
the register file with several clock cycles in between. Bypasses are used to solve this problem;
see also [1] figure A.23. This section will explain the details for our processor.

In general, one bypasses the register file by reading from the appropriate unit at the input
location of a unit, instead of using the pipeline buffer for this unit as source, which has
the register file as its source usually. However, since routing delay is critical on an FPGA,
and bypassing has large routing delay (2 nanoseconds is not unusual), we choose to do the
multiplexing in a separate, prior stage.

We choose not the implement bypasses for the load/store unit. Also the rotate broadcast vec-
tor units do not need bypasses because they only serve as input to the MAC and shuffle units,
and we do not support writing their value into the register file. That leaves bypasses between
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the shuffle and MAC unit, which are implemented. However, due to further optimizing to
reduce spatial constraints, more bypasses are introduced, see section 5.2.

4.5.2 Masked bypass

Due to the shuffle unit being able to do a partial write to the register file, thus the result
register being “masked”, a problem occurs when implementing the bypass straightforwardly.
Since only part of the target register is updated, we only have partial data in the bypass too,
we do not have the complete result vector.

We make the observation that the unit wanting to read from the bypass will have to do a
register file read anyway in case the bypass is not active. Combining this with the fact that
the register file or a later bypass will still contain the previous value of the target register for
the shuffle operation, making the choice to read from the shuffle bypass conditional by using
its output mask will be a correct one.

4.6 Write back

In the write back pipeline stage, the output of the various units is written into the register
file. In the instruction decoding stages we determine for each register what the unit will be
to be read from, if any. This means that for each register we can have a multiplexer tree
instead of linear cascade, which decreases the path delay, because LUTs and MUXes can
be tied together efficiently, without any routing delay; a cascade ties LUTs to other LUTSs
sequentially, requiring interslice connections.

4.7 Fixed point format

Adding two fixed point numbers is the same operation as adding two integers, on bit level.
Multiplying two fixed point numbers is different, however, it needs a shift to correct its output.
This happens because multiplying two 1.15 fixed point numbers leads to a 2.30 fixed point
number, not a 1.31; supposing we are using 32 bit integer arithmetic. Therefore the results
needs to be shifted one to the left to get a 1.31 fixed point number, and then we do rounding,
saturation, truncation as we wish on the most significant 16 bits.

Note that multiplying the most negative number with itself produces the value 1, which is
out of range. Instead the result is again the most negative number. One normally expects
saturation to occur, since the result of multiplying two most negative numbers is a number
that cannot be represented in this format, and thus the result to be saturated to the nearest
value. However, for speed and simplicity we have chosen not to correct for this. We also
remark that in most cases, for example when multiplying with a constant, we know this
situation cannot occur.
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The DSP48 block in the Virtex-4 is an integer unit. For fixed point calculation, we need to
connect it in such a way to be able to do both additions and multiplications. However, the
DSP48 block does not support shifting the multiplier output one to the left, so we choose
to provide operands for the addition operation shifted one bit to the right, and define the
accumulator (the “P” register) to be shifted one bit to the right, and connect the signals
appropriately. This has no consequences for arithmetic precision, since we only handle this
fixed point format in operands.
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Chapter 5
Optimization

In this chapter we describe the actions taken to optimize our implementation for clock speed.
When implementing the ISA in VHDL, we take care to design our processor such that it
is able to achieve possible clock frequency, given prior experience and common knowledge.
However, when we go about synthesizing our design, translating it to FPGA technology, we
look at the results and see room for improvement. This is what we will call optimization
and describe in this chapter: an iterative process, in which we tweak the implementation,
synthesize, analyze the results, and start over again.

Optimizing means we need to look at the critical path of the design, and try to make it
shorter by pipelining, reducing the load, or other methods depending on how a component
contributes to the critical path. We will look at the various functional units separately.

5.1 Instruction decoding

In instruction decoding we transform instructions into operations the functional units can
handle. The instruction set specifies operation types, but not necessarily in the format the
functional units accept them. Therefore we separate this translation, so that some of it is
done in an earlier stage. Particularly important is to minimize routing delay: the next section
will discuss practical FPGA spatial dependencies.

5.1.1 Lowering spatial dependencies

Another problem we run into is that the instruction decoding output is contained in a set of
flip flips located closely together. However the information in the flip-flops is needed vector-
wide, which is spread across the FPGA. As P increases, the load on these flip-flops will
increase, and routing will be increasingly difficult. A typical result is that in a post-routing
diagram all components have been mapped tightly together. P does not scale further than 4,
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otherwise clock speed decreases linearly with P.

We solve this problem by the introduction of an extra instruction decode stage in between
bypass calculation stage and the stage that performs the bypass. This extra stage multiplies
the instruction decode outputs vector-wide, so that those flip-flops can be mapped near to
the element in the vector unit where it is used as input. The result post-routing is more space
between the components, also when P scales up to 16.

5.1.2 Register fetching

In the last decoding stage, we retrieve values from bypasses or the register file for each unit’s
inputs. In this section we will discuss needed optimizations in this area.

Retrieving a value from the register file means a 32:1 MUX, since we have 32 registers. If
we then add to this the routing from bypasses, we introduce spatial dependencies between
the register file and the pipeline registers we want to bypass from resulting in a large routing
delay.

To reduce this routing delay and the spatial dependencies at the same time we need to break
up the register fetching and bypass multiplexing. This results in the register fetching being
done in the second decoding stage, and then using this value in the bypass multiplexing in
the third decoding stage.

Now we face a new problem, which is increased latency, by one, from all register storing to
all register fetching instructions. Essentially the problem is we do not have that particular
register (the one that has been written to) at that point in time: it is present in the register
file, but we will need to wait one cycle before we can read it. We can solve this by copying
all units’ outputs one cycle into a next stage, into an extra “writeback” pipeline register. In
the first instruction decode stage we add logic to detect usage of the register with exactly this
latency, and read from the extra writeback pipeline register if this is the case.

5.2 MAC unit

We will look at how to resolve critical paths related to the MAC unit in this section. The
MAC unit output buffer has a high output load (or “fanout”), which is caused by it writing
to the register file and via bypasses into the shuffle and MAC units’ input buffers.

As stated above, there is a high load, to be more precise it is the number of registers plus
the number of bypasses. The effect is that every vector element unit’s output is too tightly
connected with the register file creating routing problems. Observe that this is independent
of P, since the load is not dependent on P.

We solve this by introducing an extra stage in between the output of the MAC unit and the
writing to the register file. This causes the load of the output of each MAC unit to drop to
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the number of bypasses plus one, and the load caused by the register file is moved to a next
stage of flip-flops. This solves the problem well because it breaks the dependency of the MAC
units and the register file, the intermediatary stage can be placed near to the register file.

Hereby we introduce another problem: the latency of the MAC instruction increases by one.
We overcome this problem by adding a bypass from the MAC output to all units inputs; this
amounts to only the MAC and shuffle unit, however. As this reintroduces the dependency
problem, we use two sets of flip-flops in the intermediatary stage: one set that is connected
to the register file and another set that is connected to the various bypasses.

5.3 Shuffle

Now we will focus on optimizations applied to the shuffle unit. We started off by implementing
the shuffle unit separately; for the results of that work, see appendix 2.1. In this section we
will look at integration and optimization issues of the shuffle unit in our processor.

5.3.1 Multiplexed pipeline

Putting the shuffle unit into a vector processor context, we will introduce bypasses like with
the other units. For a latency one bypass, we need to implement this bypass within this
pipeline stage. We can make the observation that we can implement this as if the shuffle unit
were 2P wide instead of P: with one bit we choose between this pipeline’s stage input register
and the pipeline output register.

The advantage of the previous insight is that on FPGA level, we can make one large 2P : 1
multiplexer, instead of 2 P : 1 multiplexers that are later combined using extra LUTs. Routing
delay between LUTs and MUZXes is zero, up to 32:1 for Virtex-4 devices, so one big multiplexer
tree may result in higher clock frequency than two separate ones.

5.4 Location constraints

The placing of the components generated by the synthesis is normally done completely by
the place and route tools. It is sometimes beneficial to guide this process, and now we will
look at how we can use it to optimize our processor.

When placing components, we can see the placer uses guidelines and heuristics; the compo-
nents need to be close together for low routing delay, but if they are placed too close together,
the routing becomes more difficult instead, due to proximity to interslice lanes. Our shuffle
unit is different to the MAC unit, in that it depends on values vectorwide, while all vector
elements in the MAC unit are independent of each other. Looking at post place and routed
designs, we see that the shuffle is placed tightly around the MAC units. This “pushes away”
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the bypass multiplexer for the input of the MAC unit; to such a degree, that it becomes
troublesome, as that bypass multiplexer depends (indirectly, see 5.1.2), on the register file,
but also on MAC and shuffle units’ outputs. As the bypass multiplexer for the MAC input is
placed further away from the MAC unit, the critical path length increases at twice that rate.

Using location constraints[11], we can force the shuffle unit to be placed at some distance of
the MAC unit, allowing the input multiplexer to be placed near to the MAC unit. Location
constaints are specified in a file with a ucf extension, and one can specify using wildcards
what components must be limited to what region. Example location constraints:

INST "id1l_instr*" LOC=SLICE_X176Y0:SLICE_X231Y383;
INST "lreg_x*" LOC=SLICE_X170Y196:SLICE_X189Y228;
INST "pc_x*" LOC=SLICE_X170Y196:SLICE_X189Y228;
INST "id2_*" LOC=SLICE_X116Y0:SLICE_X231Y383;
INST "id3_ptrx*" LOC=SLICE_X116Y0:SLICE_X231Y383;
INST "mem_patdest*" LOC=SLICE_X186Y0:SLICE_X231Y383;
INST "mem_pat_x*" LOC=SLICE_X186Y0:SLICE_X231Y383;
INST "mem_out_x*" LOC=SLICE_X186Y0:SLICE_X231Y383;
INST "regfilex" LOC=SLICE_X28Y0:SLICE_X135Y383;
INST "shuffle_out_*" LOC=SLICE_X24Y0:SLICE_X27Y383;

INST "multbdc_O*" LOC=SLICE_X24Y0:SLICE_X29Y383;

INST "shf1l_x" LOC=SLICE_X24Y0:SLICE_X79Y383;

INST "*mem*RAMB16*" LOC=RAMB16_X3YO:RAMB16_X6Y47;

INST "mac.0.DSP48_inst" LOC=DSP48_X0Y1;

INST "mac.0.mult_*_result" LOC=SLICE_X14Y0:SLICE_X23Y23;
INST "mac_rpl_Ox*" LOC=SLICE_X28Y0:SLICE_X51Y23;
INST "mac_rp2_0*" LOC=SLICE_X28Y0:SLICE_X51Y23;

Here we separate instruction decoding (“idX_*”) and the register file from the MAC unit
bypass multiplexers (“mac_rpX_0*”"). The DSP48 blocks are located between SLICE X23*
and SLICE_X24*. By forcing these pieces of logic to be placed apart, the bypass multiplexers
can be placed close to the DSP blocks; which is needed as it is one of the critical paths as we
indicated above.

The layout of our processor for P = 8 without using location constraints is shown in figure
5.1. By contrast, using location constraints on the layout, results in a layout as can be seen
in figure 5.2. Additionally, in that figure, the location of some key units is highlighted.

Implementing this method, we confirm that the input multiplexer for the MAC unit is now
placed close enough to it, so that it is no longer the critical path. In the case of a particular
version of our processor, with P = 8, without location constraints the design runs at 67.8MHz;
using location constraints, it runs at 176MHz. Note that we used normal effort placing and
routing, although there are also high effort settings. The higher effort settings may decrease
the gap, but they take a lot longer to complete. A fast design iteration cycle is preferred, and
location constrains can effectively hint the placer to make significantly better choices.
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Figure 5.1: Unconstrained layout result on FPGA for P = 8
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Figure 5.2: Constrained layout result on FPGA for P = 8
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5.5 Bypass

The bypass can also be optimized. In the plain implementation, we have a list of flags
representing a set of locations we want to bypass from; when a flag is set, we must bypass
from that location. We also have a specific order in which we check these flags, as we must
bypass from the lowest stage, which is the latest point in time we have written to that register.

Synthesizing this design we get a linear array of multiplexers, usually LUTSs, in the reverse
order of our list above: last multiplexer checks first flag, if true then read from that bypass
location, otherwise read another multiplexer. This implementation is not ideal, the path
length is linear in the number of choices to make, while a multiplexer tree in general grows
logarithmatically to the number of choices. Added to that, as already said, LUTs plus MUXes
form an efficient multiplexer tree without intertree delay, upto 32:1 multiplexers.

Figure 5.3: Bypass optimization

To transform this linear if-else-if style into a tree (visualized in figure 5.3), we can draw a
tree with number of leaves equal to number of inputs, and place at each leaf an input, sorted
according to the list from left to right. The non-leaf nodes will contain a condition each,
whether to choose the left branch, which is the disjunction of the conditions for all leaves on
the left branch.

5.6 Conclusion

In this chapter we looked at optimizing the implementation outlined in the previous chapter for
speed. Most notably, we find that complex paths need to be broken down into simpler paths,
for example separating register fetching. Dependencies between units need to be minimized
as much as possible, otherwise we get into spatial mapping problems, for example when the
units grow bigger as P increases, we need to introduce extra flip-flops in front to spread the
load, and an extra stage behind to decrease register file dependencies.

In the next chapter we will look at implementation of some algorithms on our processor to
prove its capabilities.

50



Chapter 6

DSP Algorithms

Several algorithms were implemented to test and show the vector processor’s capabilities.

6.1 FIR filter

In this section we explain the implementation of a FIR filter on the vector processor. Xilinx
has examples in [9], chapter 3 to 6.

6.1.1 Specification

The FIR filter is defined by:

N-1
Yn = Z Ty —ih; (61)
1=0

where y,, are the output samples, z,, are the input samples, h; are the coefficients, and N is
the number of coefficients or number of taps.

6.1.2 Implementation

There are several possible implementations of this filter, but most desirable is one where
N and P are independent. We chose an approach where every N cycles, P outputs are
generated, also known as “outer-loop parallelism”. Every vector element contains the partial
output result for that position. As a consequence, in cycle i, 0 < i < N, coefficient 7 needs
to broadcasted to all vector element units. Also, the data being loaded into a vector register,
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needs to shifted by one position, and have one new data element inserted at the end. This
will be accomplished by the shuffle unit in combination with a shuffle broadcast register.

In every loop iteration, which will consist of N instructions, we need to do:

e [%] LDM and LDS instructions

e 1 STV instruction

This means that 2 [%-I 41 < N has to hold, for the algorithm to be schedulable; we keep the
multiplier occupied 100% of the time.

Regarding N and P, there are two cases: N is a multiple of P, or it is not. The first case is
the easiest one; then the loading of the shuffle and broadcast registers and the storing of the
result vector can be scheduled easily % times within the main loop. In the second case, when
N is not a multiple of P, we choose to make the number of instructions a multiple of P by
repeating the loop body ged(P, N) times so that we have lem(P, N) instructions.

See appendix A.1, page 70, for the assembly code of an example FIR implementation for
N =6, P = 4. Using our method, the loop body consists of lcm(6,4)=12 instructions.

6.1.3 Conclusion

The aim of this section was to implement a FIR filter on our vector processor. We described a
method to implement such a FIR filter with IV and P independent, using so called outer-loop
parallelism, meaning that every N cycles we compute P outputs. Furthermore, our processor
provides instructions in such a way that we can keep the multiplier occupied 100% of the
time in the main loop. We provided an example implementation for N = 6, P = 4 that has
12 instructions in its main loop and therefore provides 2P outputs every loop iteration.

6.2 FFT

Another algorithm our vector processor can run is an FFT. We base our implementation
largely on the results in [13]. In that application note, a self-sorting 64-point FFT is derived
and implemented on the EVP in approximately 50 cycles. In this section we will look at
adapting it to run on our processor. In particular, due to the EVP having more instructions
and features than our processor, we need to see what is used by the FFT implementation.

6.2.1 Implementation, P=8

Our processor does not handle complex numbers in its instruction set. Instructions on complex
numbers on the EVP treat the vector as having 8 16-bit complex numbers, with the real and
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imaginary parts alternating within the vector. We will implement complex multiplication
and addition “in software” using existing instructions, and will separate the real and complex
parts into separate vectors; a complex vector will be a pair of vectors, one containing the real
parts and the other containing the imaginary parts. The complex multiplication z < z - y,
where we map z to (a,b), y to (c,d), and z to (e, f) registers, translates into:

MUL Re, Ra, Rc
MDC Re, Rb, Rd
MUL Rf, Rb, Rc
MAC Rf, Ra, Rd

Furthermore, there is a special shuffle instruction in the EVP for butterfly shuffles with a
parameterized butterfly size, see page 352 of [6]. On the EVP the register mask and shuffle
pattern are separate, in our processor they are combined into the shuffle pattern. We will
load the needed butterfly patterns, with the needed masked variations, from data memory as
needed.

We start out with a P = 8 FFT implementation, and later create a P = 16 implementation.
This is due to the fact that on the EVP complex numbers’ real and imaginary parts are stored
side by side in one vector, so operations on complex numbers on the EVP, and therefore also
in the application note’s algorithm, work on 8 numbers at a time. The EVP algorithm uses
z_, w_, and v_ variables, which we map onto registers. In the resulting assembly code we
document what variable names are mapped onto what registers.

Another detail to implement is software pipelining. The algorithm basically is a loop, that
loads, processes, and stores one 64-length vector. The load instructions have some latency, and
processing also has some latency with respect to storing. Note though that as the algorithm
is loading the final bits of data we can start processing the first loaded ones; the same holds
for the last stage of the loop, where we can start to store in parallel to processing the final
bits.

We want to waste as few cycles as possible not processing, so we copy some of the first load
instructions that are not accompanied by a processing instruction to the end of the loop,
before we start storing data. However, we will overwrite some registers too soon, before they
have been processed and stored. We solve this by copying that many processing instructions

as well, which introduces gaps for the load/store unit, so that we can complete the cycle and
fill the unit with loading and storing instructions.

The resulting assembly code for the P = 8 variant is listed in appendix A.2.1.

6.2.2 Implementation, P=16

Now we will look at modifying the created P = 8 implementation into a P = 16 one.

As the application note at the end of section 2.1 in [13] says: “[...] a doubling of the vector size
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would mean that already in stage 3, intra-vector re-ordering (shuffling), is required”. Since
the butterfly pattern grain size is halved each stage, renaming of registers is not sufficient
anymore, we need to shuffle the contents. We add the two required extra shuffle patterns to
our collection of needed patterns, and start shuffling vectors in stage 3 instead of stage 4.

The resulting assembly code for the P = 16 implementation is listed in appendix A.2.2.

6.2.3 Results

Number of cycles in main loop:

Processor ‘ P ‘ Cycles

EVP 16 | 49
VPF 16 | 88
VPF 8 | 176

The reference EVP implementation has 51 cycles, 49 cycles with software pipelining, for the
variant without saturation and scaling; which most closely matches our implementation, since
our processor does not have saturation or scaling.

6.2.4 Conclusion

In this section we looked at implementing a 64-point self-sorting FFT, with help from an
application note [13]. We created a P = 8 and a P = 16 implementation, due to the EVP
implementation operating on 8 complex numbers each cycle.

From the results we can see that doubling the vector width, indeed halves the number of
cycles for the main loop.

Comparing our implementation to the EVP one, we can see that our implementation needs
39 cycles more, so it is approximately 44 percent slower. This is directly due to the fact
that the EVP has a VMAC unit and a VALU unit, while we only have a VMAC unit. As
the algorithm consists of mainly butterflies, see figure 9 on page 12 of [13], that have one
subtraction, one addition and one multiplication that takes two cycles, most of the additions
and subtractions for a vector can be scheduled in parallel with the multiplication of their
previous vector, almost halving the number of needed cycles.

6.3 Conclusion

In this chapter we looked at implementing two standard DSP algorithms on our processor, a
FIR filter and a 64-point self-sorting FF'T. We can conclude that both are implementable in
an efficient form, although the FFT could use an additional ALU unit like the EVP has, to
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parallelize most of the additions and subtractions with the multiply accumulate operations.
However, seen the Virtex-4 architecture, fast addition is possible using the DSP blocks, but
one will get a multiplication capability along with it, anyway; reducing multiplier efficiency
again.

In the next chapter we will discuss another algorithm we looked at, but since that resulted in
adding instructions, it will be discussed in a separate chapter.
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Chapter 7
Ripple

In this chapter we explain the implementation of a “ripple” demo on the processor. The
ripple demo ignited additional research, in particular in the area of smart scatter/gather, and
memory collision avoidance.

7.1 Introduction

The ripple demo behaviour can be described as follows. One has a pool containing water,
where the floor consists of a picture. The demo then simulates what happens when pebbles
are thrown into the pool, with the viewer looking straight from above. The movement of the
water will cause the picture to be distorted, and the waves will be shaded so as to make them
more visible.

one pixel

e . . screen

waves

floor image

collision
Figure 7.1: Waves cause visual distortion of the image on the “floor”
Distortions are caused by the waves on the surface, see figure 7.1. We model the height, by

keeping two buffers of the height of the water for a pixel, one buffer containing the height
in the last frame, and one of the frame before [14]. We calculate the new height by using
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the second last value as a change velocity. Furthermore, for the distortion vector for a pixel
horizontally or vertically, we use the difference between the two neighbour pixels horizontally
or vertically, respectively. This results in having a maximum distortion distance, and a search
area for every pixel.

Details are listed in the pseudocode below. bufferl and buffer?2 are the height buffers; they
have a border of one pixel on all sides, which will contain nothing but zero.

for every position (x,y) in the image:
buffer2[x] [yl = ((bufferil[x-1] [y-1]
bufferi[x-1] [y]
bufferl[x-1] [y+1]
bufferi[x] [y-1]
- buffer2[x] [y];
buffer2[x] [y] = buffer2[x] [y] - (buffer2[x][y] div damping_factor);

bufferl[x+1] [y-1] +
bufferi[x+1][y] +
bufferl[x+1] [y+1] +
bufferl[x] [y+1]) div 4)

+ + + +

for every pixel (x,y) in the image:
offset_x = buffer2[x-1][y] - buffer2[x+1] [y];
offset_y = buffer2[x] [y-1] - buffer2[x] [y+1];
shading = (offset_x + offset_y) div scaling_factor;

src_x = x + offset_x;
src_y =y + offset_y;
check_bounds(src_x, src_y);

pix = texture[src_x, src_y]l;
pix = pix + shading;
plot pixel at (x,y) with color pix

swap bufferl and buffer2

When we vectorise this algorithm we notice that the distortion vectors for a vector of pixels
of which the background is to be fetched will collide when using the simple, straightforward
pixels-to-bank mapping. There are two more or less independent problems when the current
ISA is to be used (illustrated in figure 7.2):

1. we cannot guarantee that all banks will have to fetch data from the same address;

2. a collision means that some banks need to fetch multiple addresses, and other banks
none.

We discuss three approaches to solve this collision problem: the first is to make P copies,
another to implement a smarter load instruction, the third is avoiding collision using a different
vectorization approach. Each will be discussed in its section following.
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floor image pixels to be gathered (source)

bank n%mbefs two fetches from one bank

L2 3.0 1 2 03 0 1 2t

floor image rows screen pixels (result)

Figure 7.2: Gathering a vector (of width 4) of pixels

7.2 Approach 1: P copies

One way to solve the collisions generated by the distortion vectors is to make P copies into
memory, so that all banks have all of the pixels, and as such, can read any requested pixel.
This solves both identified subproblems in the previous section at once.

The number of cycles needed for the inner loop is . The copying of the
pixels vector-wide will already consume half of the cycles when P is 8, worsening as P gets

(8+3P+12)-fps-pixels
P

larger.

We can conclude using Amdahl’s law that this approach will not provide significant vector
speedup.

7.3 Approach 2: Smart gather instruction

Now we will describe an alternative to solve the collision problem outlined in the introduc-
tion. We add an instruction that can specify a different address per bank, commonly called
“gather”. This solves the first subproblem of the introduction section. To solve the second,
we smarten the instruction to iteratively fetch addresses that do not conflict. That means
it figures out every cycle what addresses can be fetched that have not been fetched yet, and
fetches those. Additionally it constructs a shuffle pattern to move the data from a bank to the
correct “lane”, the position in the vector that requested this data. Section 7.5 will describe
the added instructions in detail.
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7.4 Approach 3: Splitting the screen

A third approach that might be used is splitting the screen in P areas, and processing one
pixel per area per clock cycle. An advantage is that we no longer have collisions for competing
memory banks, since the distance between the pixels being processed in two areas are further
apart than the search areas for those pixels. Disadvantages are that we will need more memory
on the FPGA, as the search area for a pixel is not shared with adjacent pixels, and another
is that the memory layout is different from the usual cyclic mapping onto vectors: the first P
pixels of the image for instance are all needed in the first area, so need to be loaded into the
first bank, not distributed across the banks. This can be done by loading P lines, and then
using scatter/gather to move the pixels into the desired locations.

This approach is promising performance wise, but we did not look into actually implementing
it due to its memory requirements being unreasonably high for the Virtex-4 FPGA.

7.5 (Gather implementation

We want to implement approach 2, therefore we add the smart gather instructions and will
now specify the details of those. Besides the smart gather instruction, we add another one: a
wait instruction, that will stall the processor until the gathering has been completed. Since
the number of collisions is unknown in advance, we can wait for the completion this way, and
avoid needing to insert P NOP instructions to wait for the worst case, which is P accesses in
the same bank. Using both instructions will reduce the above stated 3P to 3x, where z is the
average number of needed fetches.

The next subsections will discuss the instructions in detail.

7.5.1 Gather state

We extend the state with a boolean smg todo, which is true if and only if there still are
addresses to be fetched for the SMG instruction.

SMG

Format: SMG Rd, Ra
Formally: smg_todo < true; (Vi: 0 < i < P : R[d][i] < mem|R[a][i]]); smg_todo < false
This instruction is part of the load/store unit. It will load a vector of data from memory

addressed by a vector of addresses contained in a vector register R[a]. Every R[a][i] is inter-
preted as a 16-bit memory address. When two addresses “collide”, due to being located on
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the same memory bank, the processor will iteratively load addresses until the full vector has
been loaded. The instruction generates shuffle patterns which it feeds to the shuffle unit.

SGW

Format: SGW
Formally: if smg_todo then pc < pcfi

This instruction is part of the flow control unit. We extend the flow control unit to be
able to stall, that means that the pc keeps its value while smg_todo is true, and we feed
NOPs into the processor for as long as the smart gather fetching has not completed yet. A
consequence is that instructions remaining in the pipeline are executed, i.e. this instruction
has an implementation determined latency before the processor will stall.

7.5.2 Gather related latency

Resource ‘ Source ‘ Destination ‘ Latency
Data memory | STV SMG 1
smg_todo SMG | SGW 3
Pipeline flush | SGW | stall 2

Register file SMG | all MAC,SHF,STV | 84load cycles

7.5.3 Allowed parallelism

We allow all combinations of instructions, except those already stated in the ISA chapter plus
the following (I designates the number of loads needed to fully load the requested vector of
addresses):

e no LDV or STV instructions allowed in the 2..2 4 [ instructions following the SMG
instruction;

e no SHF instructions allowed in the 6..6 4 [ instructions following the SMG instruction.

7.5.4 Pipeline with gather

A diagram is provided in figure 7.3 that gives an overview of the extension of the instruction
format timing with functional units for the gather instruction. Execution of the gather consists
of six stages, with the extension to the pipeline shown in figure 7.4:
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1. construction of P trees of booleans of height log P, with each node determining whether
for a bank, the left subtree contains the address to be fetched; also construct a shuffle
pattern that will shuffle the data vector loaded from the memory banks into the result
vector according to the requested addresses;

2. execution of P multiplexer trees of addresses, with height 1 + log P, each node having
input of the corresponding node in the tree of the previous stage, copying the address
to be fetched from a lane to a bank;

3. load the constructed vector of addresses;
4. propagation of data to shuffle unit (2 stages);

5. shuffle the loaded data into result vector.

Stage 4 | Stage 5 | Stage 6 | Stage 7 | Stage 8 | Stage 9 | Stage 10 | Stage 11 | Stage 12

Gather || Gather || Gather Shuffle Register
addr reg || src tree ||addr tree| Load | Loadreg reg Shuffle || 1iteback
Bypass
Shuffle || Pattern || Pattern || Pattern || Pattern
pattern reg 1 reg 2 reg 3 reg 4
Stall
control

Figure 7.3: Instruction format and timing gather extension

7.6 Gather collision measurements

To get a feeling for the performance, we want to know the number of fetches we need to do to
complete a gather. We simulate a run of our ripple demo in an application written in C, once
where the water surface is mostly flat, or “quiet” (see figure 7.9) and another where the water
surface has a lot of waves, being “stormy” water (see figure 7.5); as the collision pattern can
differ. We want to know the percentage of the total set of gathers that can be successfully
completed within n fetches, 1 < n < P. Also will we simulate gathering a random vector of
addresses (see figure 7.7), so we can compare our ripple gather behaviour to random gather
behaviour.

As we want to decrease the number of needed fetches, we add a variant that checks in case
of a collision, whether the addresses are the same: we can do one fetch and copy the data to
both locations, instead of needing two fetches. The results for this variant are incorporated
in the graphs as the “AC” variant, which is short for address check.
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CC 4 CC 5 CcC 6 cCc 7 CC 8 cCc9 |CC10 |CC11 |CC12 |[CC13 |CC14 |CC15 |CC 16 |CC 17 |[CC 18
Src
Tree Addr Load Shf
Addr Load SHF WB
Re Tree Re, Re,
& 1| snf & &
Patt Byp
Patt Patt Patt Patt
Stall
ctrl Reg 1 || Reg 2 || Reg 3 || Reg 4
Src
Addr Load Shf
T
Addr —ee Load SHF || WB
Reg Tree Reg Reg
Shf
Patt Byp
Patt Patt Patt Patt
Stall
ctrl Reg 1 || Reg 2 || Reg 3 || Reg 4
Src
Addr Load Shf
Tree
Addr Load SHF WB
Re, Tree Re, Re
& 1| shr 8 &
Patt Byp
Patt Patt Patt Patt
Stall
ctrl Reg 1 || Reg 2 || Reg 3 || Reg 4
Src
Addr Load Shf
Tree
Addr |—~ Load SHF || WB
Re Tree Reg Reg
& 1| snt
Patt Byp
Patt Patt Patt Patt
Stall
ctrl Reg 1 || Reg 2 || Reg 3 || Reg 4
Src
Tree Addr Load Shf
Addr Load SHF WB
Reg Tree Reg Reg
Shf
Patt Byp
Patt Patt Patt Patt
Stall
ctrl Reg 1 || Reg 2 || Reg 3 || Reg 4
Src
Addr Load Shf
Tree
Addr Load SHF WB
R Tree Re, Re
€ 1| ghf g &
Patt Byp
Patt Patt Patt Patt
Stall
ctrl Reg 1 || Reg 2 || Reg 3 || Reg 4
NOP
Src
Tree Addr Load Shf
Addr Load ecccce
IF1 IF2 1D RF Reg Tree Reg Reg
Shf
Patt Byp
Patt Patt Patt Patt
Stall ecccce
ctrl Reg 1 || Reg 2 || Reg 3 || Reg 4
stall

Figure 7.4: Pipeline gather extension
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Particularly figure 7.8 makes clear that gather behaviour in our ripple demo is better compared
to the random case: we need to wait at most 2 cycles. This is good enough, and so we will
not implement the address check variant.

7.7 Conclusion

In this chapter we looked at implementing a ripple demo. The demo is implementable in
several ways, of which we describe two, with adding a new instruction being the more efficient
one. Inherently the demo exhibits better collision patterns on the memory banks in the
addresses it wants to gather when compared to random access patterns. We use the upper
bound on the needed number of fetches found in experiments for the implementation of our
algorithm.
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Chapter 8

Conclusion and evaluation

Our aim was to explore scalability and performance issues when designing and implementing
a vector processor on an FPGA. We did this by designing a custom ISA, and implementing it
on the Xilinx Virtex-4 FPGA. A complete machine was not our goal: instead, we focused on
the vector aspects of a vector processor, and so there is little to no support for a scalar path
and unit, nor for a conditional branch. By taking a set of algorithms to test the processor
with, the ISA was designed to support these algorithms.

With regard to scalability we note that P = 8 was the variant we worked on day-to-day,
and therefore fairly well optimized; for greater P the tools have significantly longer run time.
The processor runs at 200 MHz for P = 4 and P = §8; at P = 16 we achieve 120 MHz, and
P = 32 will run at only 30 MHz (estimated) at this moment. For the P = 16 case we observe
a critical path in the shuffle to MAC bypass, and in smart gather stall control. We expect
that by modifying the ISA in the becoming available of the output value of the shuffle to the
MAC unit one cycle later, and similar for stall control, P = 16 can also run near to 200MHz.
In the P = 32 case the FPGA is too small for the same general layout to fit that was also
used for P = 16 and below.

We can conclude:

e it is feasable to implement a 200MHz vector processor on an FPGA, at least on the
Xilinx Virtex-4, when choosing the ISA carefully;

e one should expect higher latencies for instructions, due to physical routing limitations;
nevertheless, high throughput, meaning issuing at least one instruction per cycle, is
feasable;

e complex instructions need to be pipelined such that they use one DSP block, or have
at most two LUTSs in any short path, or one on long paths;

e implementing a general orthogonal instruction set is hard due to dependencies, special
cases (an ALU for instance consists of a lot of operations to be implemented), and
missing features of native blocks (for example saturation on DSP blocks);
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e location constraints can increase performance by a factor of 3, see section 5.4, as it can
help by forcing pipeline registers to be located closer together so that more LUT logic
can be placed in between; especially a vector processor implementation is a complex,
but more or less regular structure, where this regularity can be enforced using location
constraints.

When designing an ISA that is to be run on FPGAs, in comparison to silicon, the following
items will need attention:

e allowing higher latencies of functional unit output values which are to be used in other
functional units, i.e. the out value will only become available a couple of instructions
later;

e type and number of variants of instructions, saturating of MAC output for instance is
difficult;

e especially allow higher latencies for functional units of different operation with respect
to intervector versus intravector.

8.1 Evaluation

Looking back, we can identify some issues we might have solved or handled differently if this
project were repeated. In hindsight we can remark the following items:

e for the DOI instruction we require that the first instruction of the loop referred to
is at least three instructions later. This is due to the pipeline depth, and we could
have compensated for this fact by subtracting two from the loop start offset while
decoding the instruction. This does not hold for the loop end address though, since
the instructions have already been fetched at the time the loop end address is decoded,
while these might have been after the loop, and as such should not have been fetched;

e debugging the functionality, in particular the pipeline, timing, and interaction is chal-
lenging;

e debugging and optimizing simultaneously is even more challenging;

e the assembler needs to take care of mapping variables to address ranges, such that one
can work with variables instead of with the addresses themselves.
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Appendix A

Code

A.1 FIR filter code

# FIR filter for P=4, N=6

#RO -0

# R1 - sample vector

# R2 - result vector

# T1 - rotate backward broadcast
# Pl - sample pointer

# P2 - coeff pointer

# P3 - zero/pattern pointer

# P4 - dest pointer

# load pointer
LDP P3, O

LDB B3,
LDE E3,
LDP P1,
LDB B1,
LDE E1,
LDP P2,
LDB B2,
LDE E2,
LDV RO, P3, 1
LDT T1, P3, O
LDV R1, P1, 1

NOoO O UNNE O

R2,
R2,
R2,
R2,
R2,
R2,

R3,

R1;
R1;
R1;
R1;
R1;
R1;

R1;

LDP P4, 8

LDM P2, 1

LDS P1, 1

LDM P2, 1; NOP; DOI 4, loopstart, loopend
NOP ; NOP; NOP ; NOP
# first iteration, without save
NOP ; NOP; NOP ; BMUL
LDS P1, 1; NOP; NOP ; BMAC
LDM P2, 1; NOP; NOP ; BMAC
NOP ; NOP; NOP ; BMAC
LDM P2, 1; NOP; NOP ; BMAC
LDS P1, 1; NOP; NOP ; BMAC
# main loop

loopstart:

NOP ; NOP; NOP ; BMUL
NOP ; NOP; NOP ; BMAC

R3,

R1;

SHF

SHF
SHF
SHF
SHF
SHF
SHF

SHF
SHF

R1,

Ri,
RL,
RL,
Ri,
RL,
R1,

R1,
R1,

R1,

RL,
RL,
RL,
Ri,
RL,
RL,

R1,
R1,

70

T1;

T1;
T1;
T1;
T1;
T1;
T1;

T1;
T1;

RMB

NOP;
RMB;
RMB;
RMB;
NOP;
RMB;

NOP;
RMB;

RSB
RSB
RSB
NOP
RSB
RSB

RSB
NOP



LDM
LDS
LDM
STV
NOP
LDS
LDM
STV
LDM
loop
LDS
# do
NOP
NOP
NOP
STV

P2, 1 ;
P1, 1 ;
P2, 1 ;
R2, P1, 1;

P1, 1 H
P2, 1 ;
R3, P1, 1;
P2, 1 ;
end:

P1, 1 ;
ne, store

R2, P1, 1

NOP; NOP
NOP; NOP
NOP; NOP
NOP; NOP
NOP; NOP
NOP; NOP
NOP; NOP
NOP; NOP
NOP; NOP

NOP; NOP

A.2 FFT code

BMAC R3, R1; SHF R1, R1, T1; RMB; RSB
BMAC R3, R1; SHF R1, R1, T1; RMB; RSB
BMAC R3, R1; SHF R1, R1, T1; NOP; RSB
BMAC R3, R1; SHF R1, R1, T1; RMB; NOP
BMUL R2, R1; SHF R1, R1, T1; NOP; RSB
BMAC R2, R1; SHF Ri, R1, T1; RMB; RSB
BMAC R2, R1; SHF R1, R1, T1; RMB; RSB
BMAC R2, R1; SHF R1, R1, T1; RMB; NOP
BMAC R2, R1; SHF R1, R1, T1; NOP; RSB

BMAC R2, R1; SHF R1, R1, T1; RMB; RSB

A.2.1 Vector width 8

# FFT filter for P=8, N=64

HOoH H O H OH HHH R

R1
R2
R2
R2
R2

HOoH K H H H H O HH H oH K H H H

H H HH

### Load constants ###

LDP
LDB

PO:
P1:
P2:
TO:
T1:
T2:
T3:
T4:
T5:
T6:

complex multiply: e
NOP; NOP; NOP; VMUL
NOP; NOP; NOP; VMDC
NOP; NOP; NOP; VMUL
NOP; NOP; NOP; VMAC
complex addition: e
NOP; NOP; NOP; VADD
NOP; NOP; NOP; VADD
complex subtraction:
NOP; NOP; NOP; VSUB
NOP; NOP; NOP; VSUB

+ fxi

(a + b*i) * (c + d*i)

Re, Ra, Rc
Re, Rb, Rd
Rf, Rb, Rc
Rf, Ra, Rd

+ f*i

(a + bxi) + (c + dx*i)

Re, Ra, Rc
Rf, Rb, Rd

e + fxi

= (a + b*xi) - (c + dx*i)

Re, Ra, Rc
Rf, Rb, Rd

RO-R7: v0-v7, real part vector 0-7
R8-R15: v0-v7, imaginary part vector 0-7

6-R19: vt0-vt3, real part twiddle vector 0-3
0-R23: vt0-vt3, imaginary part twiddle vector 0-3
4: vM, real part vector M_T

5: vM, imaginary part vector M_T

6: vS, temporary shuffle vector S_T

shuffle
shuffle
shuffle
shuffle
shuffle
shuffle
shuffle

twiddle 1c,

PO, 0
BO, 9

pattern
pattern
pattern
pattern
pattern
pattern
pattern

memory layout
address PO: TO, Ti, T2, T3, T4, T5, T6
ib, 2a, 2b, 3, 4, 5

1d, 1a,

constant data pointer (shuffles + twiddles)
input sample pointer
output sample pointer

"plain copy"

stage 4, first half enabled, butterfly 64 bits
stage 4, second half enabled, butterfly 64 bits
stage 5, first half enabled, butterfly 32 bits
stage 5, second half enabled, butterfly 32 bits
stage 6, first half enabled, butterfly 16 bits
stage 6, second half enabled, butterfly 16 bits
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LDE
LDP
LDP
LDT
LDT
LDT
LDT
LDT
LDT
LDT
LDV
LDV
LDV
LDV
LDV
LDV
LDV
LDV

EO,
P1,
P2,
TO,
T1,
T2,
T3,
T4,
5,
T6, PO,
R18, PO,
R22,
R19,
R23,
R16,
R20,
R17,
R21,

e

i
LDV
LDV
LDV
LDV
LDV

Load input
RO, P1, 8
R4, P1, -7
R8, P1, 8

R12, P1, -7

### Stage 1 #i##
# vM = v0 - v4
NOP H
NOP H
# v0 := vO + v4
NOP H
LDV R5, P1, -7 ;
# v4 := vM * vt0
LDV R9, P1, 8 ;
LDV R13, P1, -7;
NOP H
loopbegin:

NOP H
# vM = vl - v5
NOP H
NOP H
# v0 := vl + vb
LDV R2, P1, 8 ;
LDV R6, P1, -7 ;
# vb = vM * vtl
LDV R10, P1, 8 ;
LDV R14, P1, -7;
NOP H
NOP H
# vM :
NOP ;
NOP H
# v0 :=
LDV R3,
LDV R7,
# v6 :=
LDV R11, P1, 8 ;
LDV R15, P1, 1 ;
NOP H
NOP ;
# vM :=
NOP H
NOP H
# v0 :=
NOP ;

1]
<
N

1
<
o

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;

NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

; NOP;
; NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;

data ###

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;

NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;

VSUB
VADD

VSUB
VADD

VMUL
VMDC
VMUL

VMAC

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

VSUB
VSUB

VADD

R1, P1, 8; NOP; DOI 32, loopbegin, loopend

R24, RO, R4
RO, RO, R4

R25, R8, R12
R8, R8, R12

R4, R24, R16
R4, R25, R20
R12, R25, R16
R12, R24, R20

R24,
R25,

R1, Rb
R9, R13

R1, R1, R6
R9, R9, R13

R5, R24, R17
R5, R25, R21
R13, R25, R17
R13, R24, R21

R24, R2, R6
R25, R10, R14

R2, R2, R6
R10, R10, R14

R6, R24, R18
R6, R25, R22
R14, R25, R18
R14, R24, R22

R24, R3, RT7
R25, R11, R15

R3, R3, R7
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NOP ;
# v7 = vM * vt3
LDV R16, PO, 1 ;
LDV R20, PO, 1 ;
LDV R17, PO, 1 ;
LDV R21, PO, 1 ;
### Stage 2 ###
# vM = w0 - wd
NOP H
NOP H
# w0 := w0 + wéd
NOP ;
NOP H
# w4 :=
NOP ;
NOP H
NOP H
NOP H
# vM = wl -
NOP H
NOP ;
# w0 = wl +
NOP H
NOP

# wh :=
NOP H
NOP H
NOP H
NOP H
# vM = w2 -
NOP H
NOP H
# w2 = w2 +
NOP H
NOP H
# w6 = vM *
NOP ;
NOP H
NOP H
NOP H
# vM = w3 -
NOP ;
NOP H
# w3 = w3 +
NOP H
NOP H
# w7 = vM *
NOP H
NOP H
LDV R16, PO, 1 ;
LDV R20, PO, 1 ;

### Stage 3 #i##
# vM = x0 - x4
NOP H
NOP ;
# x0 := x0 + x4
NOP H
NOP

# x4 :=
NOP ;
NOP H
NOP H
NOP H
# vM :

L[}
P4
=

|
¥
3]

NOP;

NOP;

; NOP;

NOP;

; NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;

; NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;

; NOP;

NOP;
NOP;
NOP;
NOP;

{

NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;
wl =
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;
w3 =
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

x0 =
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;
xl =

VADD

VMUL
VMDC
VMUL
VMAC

v0, wd =

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

vi, wb =

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

v4d, w6 =

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

vh, w7 =

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

w0 =
VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC
wd =

R11, R11, R15

R7, R24, R19
R7, R25, R23
R15, R25, R19
R15, R24, R23

v2 }
R24, RO, R2
R25, R8, R10

RO, RO, R2
R8, R8, R10

R2, R24, R16
R2, R25, R20
R10, R25, R16
R10, R24, R20
v3 }

R24, R1, R3
R25, R9, Ri11

R1, R1, R3
R9, R9, Ri11

R3, R24, R17
R3, R25, R21
R11, R25, R17
R11, R24, R21
v6 }

R24, R4, R6
R25, R12, R14

R4, R4, R6
R12, R12, R14

R6, R24, R16
R6, R25, R20
R14, R25, R16
R14, R24, R20
v7 }

R24, R5, R7
R25, R13, R15

R5, R5, R7
R13, R13, Ri15

R7, R24, R17
R7, R25, R21
R15, R25, R17
R15, R24, R21

v0, x4 = wl =
R24, RO, R1
R25, R8, R9

RO,
R8,

RO, R1
R8, RO

R1,
R1,
R9,
R9,
v2,

R24,
R25,
R25,
R24,
x5 =

R16
R20
R16
R20
wh =

vl }

v3 }
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NOP
NOP
# x1 :=
NOP
NOP
# xb :=
NOP
NOP
NOP
NOP
# vM :=
NOP
NOP
# x2 :=
NOP
NOP
# x6 :=
NOP
NOP
NOP
NOP
# vM :=
NOP
NOP
# x3 :=
NOP
NOP
# x7 :=
NOP
NOP
LDV R186, PO,
LDV R20, PO,

x1 +

vM *

x2 -

x2 +

vM *

x3 -

x3 +

vM *

1
1

### Stage 4 ###

# vM :=
NOP
NOP
# x0 :=
NOP
NOP
# x4 :=
NOP
NOP
NOP
NOP
# vM :=
NOP
NOP
# x1 :=
NOP
NOP
# xb :=
NOP
NOP
NOP
NOP
# vM :=
NOP
NOP
# x2 :=
NOP
NOP
# x6 :=
NOP
NOP
NOP

x0 +

vM *

x1 -

x1 +

vM *

X2 -

X2 +

vM *

x0 - x4

x4

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;

; NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;

; NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

x2 =

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

x3 =

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

x0 =

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

x1l =

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

X2 =

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC
w2 =
VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC
w6 =
VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

w0 =
VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC
wd =
VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC
w2 =
VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL

R24, R2, R3
R25, R10, R11

R2, R2, R3
R10, R10, R11

R3, R24, R16
R3, R25, R20
R11, R25, R16
R11, R24, R20
vd, x6 = w3 =
R24, R4, R5

R25, R12, R13

R4, R4, RS
R12, R12, R13

R5, R24, R16
R5, R25, R20
R13, R25, R16
R13, R24, R20
v6, X7 = w7 =
R24, R6, RT7

R25, R14, R15

R6, R6, R7
R14, R14, R15

R7, R24, R16
R7, R25, R20
R15, R25, R16
R15, R24, R20

v0, x4 = wl =
R24, RO, R1
R25, R8, R9

RO, RO, R1
R8, R8, R9

R1,
R1,
R9,

R24,
R25,
R25,
R9, R24,
v2, xb = wb =
R24, R2, R3

R25, R10, R11

R16
R20
R16
R20

R2, R2, R3
R10, R10, R11

R3, R24, R16
R3, R25, R20
R11, R25, R16

R11, R24, R20 ;

v4d, x6 = w3 =
R24, R4, R5
R25, R12, R13

R4, R4, R5
R12, R12, R13

R5, R24, R16
R5, R25, R20
R13, R25, R16

v6 }

v7 }

; SHF
; SHF

; SHF
; SHF
; SHF
; SHF

vi }
; SHF
; SHF

; SHF
; SHF

; SHF
; SHF
; SHF
; SHF
v3 }

; SHF
; SHF

; SHF
; SHF

; SHF
; SHF
; SHF
; SHF
v6 }
; SHF
; SHF

R26, R1, TO
R1, RO, T1

RO, R26, T2
R26, R9, TO
R9, R8, T1

R8, R26, T2

R26, R3, TO
R3, R2, T1

R2, R26, T2
R26, R11, TO

R11, R10, T1
R10, R26, T2
R26, R5, TO
R5, R4, T1

R4, R26, T2
R26, R13, TO

R13,
R12,

R12, T1
R26, T2

R26, R7, TO
R7, R6, T1

R6, R26, T2
R26, R15, TO

R15, R14, T1
R14, R26, T2
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NOP ; NOP; NOP; VMAC R13, R24, R20

# vM := x3 - x7 {x3 =w6 =v6, x7 = w7 =v7 }

NOP ; NOP; NOP; VSUB R24, R6, R7

NOP ; NOP; NOP; VSUB R25, R14, R15

# x3 := x3 + x7

NOP ; NOP; NOP; VADD R6, R6, R7 ; SHF R26, R2, TO
NOP ; NOP; NOP; VADD R14, R14, R15 ; SHF R2, RO, T3

# x7 := vM * vt0

NOP ; NOP; NOP; VMUL R7, R24, R16 ; SHF RO, R26, T4
NOP ; NOP; NOP; VMDC R7, R25, R20 ; SHF R26, R10, TO

# { use twiddle vector 2, so we can reload vector 1 for next cycle earlier }
LDV R17, PO, 1 ; NOP; NOP; VMUL R15, R25, R16 ; SHF R10, R8, T3
LDV R21, PO, 1 ; NOP; NOP; VMAC R15, R24, R20 ; SHF R8, R26, T4

### Stage 5 ###

# vM := w0 - wé { w0 =v0, wd =v2 }

NOP ; NOP; NOP; VSUB R24, RO, R2 ; SHF R26, R3, TO
NOP ; NOP; NOP; VSUB R25, R8, R10 ; SHF R3, R1, T3

# w0 := w0 + wéd

NOP ; NOP; NOP; VADD RO, RO, R2 ; SHF R1, R26, T4
NOP ; NOP; NOP; VADD R8, R8, R10 ; SHF R26, R11, TO
# wd := vM * vt0

NOP ; NOP; NOP; VMUL R2, R24, R17 ; SHF R11, R9, T3
NOP ; NOP; NOP; VMDC R2, R25, R21 ; SHF R9, R26, T4
NOP ; NOP; NOP; VMUL R10, R25, R17 ; SHF R26, R6, TO
NOP ; NOP; NOP; VMAC R10, R24, R21 ; SHF R6, R4, T3

# vM = wl - wb {wl=vl, wb=v31}

NOP ; NOP; NOP; VSUB R24, R1, R3 ; SHF R4, R26, T4
NOP ; NOP; NOP; VSUB R25, R9, Ri1 ; SHF R26, R14, TO
# w0 :=wl + wh

NOP ; NOP; NOP; VADD R1, R1, R3 ; SHF R14, R12, T3
NOP ; NOP; NOP; VADD R9, R9, R11 ; SHF R12, R26, T4
# wb = vM * vtl

NOP ; NOP; NOP; VMUL R3, R24, R17 ; SHF R26, R7, TO
NOP ; NOP; NOP; VMDC R3, R25, R21 ; SHF R7, R5, T3
NOP ; NOP; NOP; VMUL R11, R25, R17 ; SHF R5, R26, T4
NOP ; NOP; NOP; VMAC R11, R24, R21 ; SHF R26, R15, TO
# vM = w2 - wé { w2 =vd, wé =v6 }

NOP ; NOP; NOP; VSUB R24, R4, R6 ; SHF R15, R13, T3
NOP ; NOP; NOP; VSUB R25, R12, R14 ; SHF R13, R26, T4
# w2 := w2 + w6, shuffling for stage 6 starts

NOP ; NOP; NOP; VADD R4, R4, R6 ; SHF R26, R4, TO
NOP ; NOP; NOP; VADD R12, R12, R14 ; SHF R4, RO, T5

# w6 = vM * vtO

NOP ; NOP; NOP; VMUL R6, R24, R17 ; SHF RO, R26, T6
NOP ; NOP; NOP; VMDC R6, R25, R21 ; SHF R26, R12, TO
NOP ; NOP; NOP; VMUL R14, R25, R17 ; SHF R12, R8, T5
NOP ; NOP; NOP; VMAC R14, R24, R21 ; SHF R8, R26, T6
# vM = w3 - w7 { w3 =vb, w7 =v7 }

NOP ; NOP; NOP; VSUB R24, R5, R7 ; SHF R26, R5, TO
LDP PO, 20 ; NOP; NOP; VSUB R25, R13, R15 ; SHF R5, R1, T5

# w3 = w3 + w7

NOP ; NOP; NOP; VADD R5, R5, R7 ; SHF R1, R26, T6

# { refresh first two twiddle vectors }

LDV R16, PO, 1 ; NOP; NOP; VADD R13, R13, R15 ; SHF R26, R13, TO
# w7 = vM * vtl

LDV R20, PO, 1 ; NOP; NOP; VMUL R7, R24, R17 ; SHF R13, R9, T5
LDV R17, PO, 1 ; NOP; NOP; VMDC R7, R25, R21 ; SHF R9, R26, T6
LDV R21, PO, 1 ; NOP; NOP; VMUL R15, R25, R17 ; SHF R26, R6, TO
# { start loading input data for next cycle }

LDV RO, P1, 8 ; NOP; NOP; VMAC R15, R24, R21 ; SHF R6, R2, T5

### Stage 6 #i##
# vM = v0 - v4
LDV R4, P1, -7 ; NOP; NOP; VSUB R24, RO, R4 ; SHF R2, R26, T6
LDV R8, P1, 8 ; NOP; NOP; VSUB R24, R8, R12 ; SHF R26, R14, TO
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# v0 := vO + v4

LDV R12, P1, -7; NOP; NOP; VADD R24, RO, R4 ; SHF Ri4, R10, T5
LDV R1, P1, 8 ; NOP; NOP; VADD R24, R8, R12 ; SHF R10, R26, T6
# vM := vl - vb

LDV R5, P1, -7 ; NOP; NOP; VSUB R24, R1, Rb5 ; SHF R26, R7, TO
STV R24, P2, 8 ; NOP; NOP; VSUB R24, R9, R13 ; SHF R7, R3, T5

# v0 := vl + v5

STV R24, P2, -7; NOP; NOP; VADD R24, R1, RS ; SHF R3, R26, T8
STV R24, P2, 8 ; NOP; NOP; VADD R24, R9, R13 ; SHF R26, Ri5, TO
# vM = v2 - v6

STV R24, P2, -7; NOP; NOP; VSUB R24, R2, R6 ; SHF R15, R11, T5
STV R24, P2, 8 ; NOP; NOP; VSUB R24, R10, R14 ; SHF R11, R26, T6
# v0 := v2 + v6

STV R24, P2, -7; NOP; NOP; VADD R24, R2, R6

STV R24, P2, 8 ; NOP; NOP; VADD R24, R10, R14

# vM = v3 - v7

STV R24, P2, -7; NOP; NOP; VSUB R24, R3, R7

STV R24, P2, 8 ; NOP; NOP; VSUB R24, R11, R15

# v0 = v3 + v7

STV R24, P2, -7; NOP; NOP; VADD R24, R3, R7

STV R24, P2, 8 ; NOP; NOP; VADD R26, R11, R15

# store vectors, start next cycle

STV R24, P2, -7; NOP; NOP; VSUB R24, RO, R4

STV R24, P2, 8 ; NOP; NOP; VADD RO, RO, R4

STV R24, P2, -7; NOP; NOP; VSUB R25, R8, R12

STV R24, P2, 8 ; NOP; NOP; VADD RS, RS, R12

# vd := vM * vt0

LDV R9, P1, 8 ; NOP; NOP; VMUL R4, R24, R16

LDV R13, P1, -7; NOP; NOP; VMDC R4, R25, R20

loopend:

STV R26, P2, 1 ; NOP; NOP; VMUL R12, R25, R16

A.2.2 Vector width 16

+

FFT for P=16, N=64

complex multiply: e + f*i (a + bxi) * (c + d*i)
NOP; VMUL Re, Ra, Rc

NOP; VMDC Re, Rb, Rd

NOP; VMUL Rf, Rb, Rc

NOP; VMAC Rf, Ra, Rd
complex addition: e + fx*i
NOP; VADD Re, Ra, Rc

NOP; VADD Rf, Rb, Rd
complex subtraction: e + f*i := (a + b*i) - (c + d*i)
NOP; VSUB Re, Ra, Rc

NOP; VSUB Rf, Rb, Rd

(a + bxi) + (c + dx*i)

HoH H H H H HHH R

RO-R3: v0-v3, real part vector 0-3

R4-R7: v0-v3, imaginary part vector 0-3
R8 : vt0, real part twiddle vector 0

R10: vt0, imaginary part twiddle vector 0
R12: vM, real part vector M_T

R13: vM, imaginary part vector M_T

R14: vS, temporary shuffle vector S_T

HOH H H H HH

PO: constant data pointer (shuffles + twiddles)

P1: input sample pointer

P2: output sample pointer

Ti: shuffle pattern 1, stage 3, first half enabled, butterfly 128 bits
T2: shuffle pattern 2, stage 3, second half enabled, butterfly 128 bits
T1: shuffle pattern 3, stage 4, first half enabled, butterfly 64 bits

T2: shuffle pattern 4, stage 4, second half enabled, butterfly 64 bits
T1: shuffle pattern 5, stage 5, first half enabled, butterfly 128+32 bits

HoH H H HOH HH
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T2: shuffle pattern 6, stage 5, second half enabled, butterfly 128+32 bits
T1: shuffle pattern 7, stage 6, first half enabled, butterfly 16 bits
T2: shuffle pattern 8, stage 6, second half enabled, butterfly 16 bits

H

memory layout
address P0O: twiddle vectors 1-5, shuffle patterns 1-8
twiddle 1a, 1b, 2, T1, T2, 3, T3, T4, 4, T5, T6, 5, T7, T8
| loop-—--—==-====-=-——-———o——-— |

### Load constants ###
LDP PO, O
LDB BO, 0
LDE EO, 14
LDP P1, 16
LDP P2, 58

### Load input data ###

LDV RO, P1, 4

LDV R2, P1, -3

LDV R4, P1, 4

LDV R6, P1, -3

LDV R1, P1, 4

LDV R3, P1, -3

LDV R5, P1, 4

LDV R8, PO, 1

# 32 is number of input vectors to process
LDV R10, PO, 1 ; NOP; DOI 32, loopbegin, loopend

### Stage 1 ###
# vM = v0 - v2

NOP ; NOP; NOP; VSUB R12, RO, R2
NOP ; NOP; NOP; VADD RO, RO, R2
# v0 := v0 + v2

NOP ; NOP; NOP; VSUB R13, R4, R6
NOP ; NOP; NOP; VADD R4, R4, R6

# v2 := vM * vt0
LDV R5, P1, 4 ; NOP; NOP; VMUL R2, R12, R8
LDV R7, P1, 1 ; NOP; NOP; VMDC R2, R13, R10

NOP ; NOP; NOP; VMUL R6, R13, R8
loopbegin:
NOP ; NOP; NOP; VMAC R6, R12, R10

# vM = v2 - v6
LDV R8, PO, 1 ; NOP; NOP; VSUB R12, R1, R3
LDV R10, PO, 1 ; NOP; NOP; VSUB R13, R5, R7
# v0 := v2 + v6

NOP ; NOP; NOP; VADD R1, Ri, R3
NOP ; NOP; NOP; VADD R5, R5, R7

# v6 := vM * vt2

NOP ; NOP; NOP; VMUL R3, R12, R8
NOP ; NOP; NOP; VMDC R3, R13, R10
NOP ; NOP; NOP; VMUL R7, R13, R8
NOP ; NOP; NOP; VMAC R7, R12, R10

### Stage 2 ###

# vM = w0 - w2 { w0 =v0, w2 =v1}

LDV R8, PO, 1 ; NOP; NOP; VSUB R12, RO, R1
LDV R10, PO, 1 ; NOP; NOP; VSUB R13, R4, Rb5
# w0 = w0 + w2

NOP ; NOP; NOP; VADD RO, RO, R1
NOP ; NOP; NOP; VADD R4, R4, R5

# w2 := vM * vt0

LDT Ti, PO, 1 ; NOP; NOP; VMUL Ri, R12, RS
LDT T2, PO, 1 ; NOP; NOP; VMDC Ri, R13, R10

NOP ; NOP; NOP; VMUL R5, R13, R8
NOP ; NOP; NOP; VMAC R5, R12, R10
# vM = w1l - w3 {wl=v2, w3 =v3 1}
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NOP ;
NOP H
# wl = wl + w3
MOV R14, R1 ;
NOP H
# w3 := vM * vt0
MOV R14, R5 ;
NOP H
MOV R14, R3 ;

LDV R8, PO, 1

### Stage 3 ###

# vM = w0 - w2
MOV R14, R7 ;
LDV R10, PO, 1 ;
# w0 := w0 + w2
NOP H
NOP

# w2 = vM * vt0
LDT T1, PO, 1 ;
LDT T2, PO, 1 ;
NOP ;
NOP H
# vM = wl - w3
NOP ;
NOP H
# wl = wl + w3
MOV R14, R1 ;
NOP H
# w3 := vM * vtO
MOV R14, R5 ;
NOP H
MOV R14, R3 ;

LDV R8, PO, 1

### Stage 4 #i##

# vM = w0 - w2
MOV R14, R7 ;
LDV R10, PO, 1 ;
# w0 = w0 + w2
NOP H
NOP H
# w2 := vM * vt0
LDT T1, PO, 1 ;
LDT T2, PO, 1 ;
NOP H
NOP H
# vM = wl - w3
NOP H
NOP H
# wl = wl + w3
MOV R14, R1 ;
NOP H
# w3 := vM * vt0
MOV R14, R5 ;
NOP H
MOV R14, R3 ;

LDV R8, PO, 1

### Stage 5 ###

NOP;
NOP;

; NOP;

NOP;

NOP;
NOP;
NOP;

; NOP;

NOP;
NOP;

NOP;

; NOP;

# vM = w0 - w2
MOV R14, R7

LDV R10, PO, 1 ;
# w0 := w0 + w2
NOP

NOP

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

; NOP;

NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;

; NOP;

NOP;
NOP;

NOP;
NOP;

; NOP;

NOP;

NOP;
NOP;
NOP;

; NOP;

NOP;
NOP;

NOP;

; NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;
wl =
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;
NOP;
NOP;

NOP;
NOP;

NOP;
NOP;

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

v0, w2 =

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

v2, w3 =

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

v0, w2 =

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

v2, w3 =

VSUB
VSUB

VADD
VADD

VMUL
VMDC
VMUL
VMAC

v0, w2 =

VSUB
VSUB

VADD
VADD

R12, R2, R3
R13, R6, R7

R2, R2, R3
R6, R6, R7

R3, R12, R8
R3, R13, R10
R7, R13, R8

R7, R12, R10 ;

vi }
R12, RO, R1
R13, R4, R5

RO, RO, R1
R4, R4, RS

R1, R12, R8
R1, R13, R10
R5, R13, R8
R5, R12, R10
v3 }

R12, R2, R3
R13, R6, R7

R2, R2, R3
R6, R6, R7

R3, R12, R8
R3, R13, R10
R7, R13, R8
R7, R12, R10

vi }
R12, RO, R1
R13, R4, R5

RO, RO, R1
R4, R4, Rb

R1, R12, R8
R1, R13, R10
R5, R13, R8
R5, R12, R10
v3 }

R12, R2, R3
R13, R6, R7

R2, R2, R3
R6, R6, R7

R3, R12, R8
R3, R13, R10
R7, R13, R8

R7, R12, R10 ;

vi }
R12, RO, R1
R13, R4, R5

RO, RO, R1
R4, R4, R5

SHF
SHF
SHF
SHF

SHF
SHF

SHF

; SHF

; SHF

SHF

; SHF

SHF

; SHF
; SHF

SHF
SHF

SHF
SHF
SHF
SHF

SHF
SHF

SHF

; SHF

RL,
RO,
RS,
R4,

R3,
R2,

R7,
R6,

R1,
RO,
R5,
R4,

R3,
R2,

R7,
R6,

R1,
RO,
R5,
R4,

R3,
R2,

R7,
R6,
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RO, Ti
R14, T2
R4, T1

R14, T2

R2, T1
R14, T2

R6, T1
R14, T2

RO, T1
R14, T2
R4, T1
R14, T2

R2, T1
R14, T2

R6, T1
R14, T2

RO, T1
R14, T2
R4, T1
R14, T2

R2, T1
R14, T2

R6, T1
R14, T2



# w2 := vM * vt0
LDT Ti, PO, 1 ; NOP; NOP; VMUL Ri1, R12, R8
LDT T2, PO, 1 ; NOP; NOP; VMDC R1, R13, R10

NOP ; NOP; NOP; VMUL R5, R13, R8
NOP ; NOP; NOP; VMAC R5, R12, R10
# vM = wl - w3 {wl=v2, w3 =v31}

NOP ; NOP; NOP; VSUB R12, R2, R3
MOV R14, R1 ; NOP; NOP; VSUB R13, R6, RT7
# wl = wl + w3

MOV R14, RS ; NOP; NOP; VADD R2, R2, R3

LDV R8, PO, 1 ; NOP; NOP; VADD R6, R6, R7

# w3 := vM * vt0

LDV R10, PO, 1 ; NOP; NOP; VMUL R3, R12, R8 ; SHF R1, RO, T1
MOV R14, R3 ; NOP; NOP; VMDC R3, R13, R10 ; SHF RO, R14, T2
MOV R14, R7 ; NOP; NOP; VMUL R7, R13, R8 ; SHF R5, R4, T1
# { start loading input data for next cycle }

LDV RO, P1, 4 ; NOP; NOP; VMAC R7, R12, R10 ; SHF R4, R14, T2

### Stage 6 ###

# vM = v0 - v4

LDV R2, P1, -3 ; NOP; NOP; VSUB R12, RO, R2 ; SHF R3, R2, T1
LDV R4, P1, 4 ; NOP; NOP; VSUB R12, R4, R6 ; SHF R2, R14, T2
# v0 :=v0 + vd

LDV R6, P1, -3 ; NOP; NOP; VADD R12, RO, R2 ; SHF R7, R6, T1
LDV R1, P1, 4 ; NOP; NOP; VADD R12, R4, R6 ; SHF R6, R14, T2
# vM = v2 - v6

LDV R3, P1, -3 ; NOP; NOP; VSUB R12, R1, R3

STV R12, P2, 4 ; NOP; NOP; VSUB R12, R5, R7

# v0 :=v2 + v6

STV R12, P2, -3; NOP; NOP; VADD R12, R1, R3

STV R12, P2, 4 ; NOP; NOP; VADD R14, R5, R7

# store vectors, start next cycle

STV R12, P2, -3; NOP; NOP; VSUB R12, RO, R2

STV R12, P2, 4 ; NOP; NOP; VADD RO, RO, R2

STV R12, P2, -3; NOP; NOP; VSUB R13, R4, R6

STV R12, P2, 4 ; NOP; NOP; VADD R4, R4, R6

LDV R5, P1, 4 ; NOP; NOP; VMUL R2, R12, R8

LDV R7, P1, 1 ; NOP; NOP; VMDC R2, R13, R10

loopend:

STV R14, P2, 1 ; NOP; NOP; VMUL R6, R13, R8

A.3 Ripple code

+*

Ripple demo for vector processor
note: registers and pointer names need to be translated
numbers before assembling using e.g. a sed script

H

Rplpp: prevlineprevpixel
Rplcp: prevlinecurrpixel
Rplnp: prevlinenextpixel
Rplnv: prevlinenextvector
Rpln2: prevlinenext2vector
Rclpp: currlineprevpixel
Rclcp: currlinecurrpixel
Rclnp: currlinenextpixel
Rclnv: currlinenextvector
Rcln2: currlinenext2vector
Rnlpp: nextlineprevpixel
Rnlcp: nextlinecurrpixel
Rnlnp: nextlinenextpixel
Rnlnv: nextlinenextvector
Rnln2: nextlinenext2vector

HoHHH H H HEHHHHEHHE R
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# Roldbuf2: old buf2

# Rnewbuf2: new buf2

# Pplbufl: prevline bufil

# Pclbufl: currline bufil

# Pnlbufl: nextline bufl

# Pclbuf2: currline buf2

# Pconst: constants

# Tlast_to_front: pattern last to front

# Tfirst_pl_to_back: pattern first p-1 to back

# Tlast_pl_to_front: pattern last p-1 to front

# Tfirst_to_back: pattern first to back

# Ibuflsrc: bufl source address

# Ibuf2src: buf2 source address

# Ibuf2out: buf2 output address

# Xbuflsrc: bufl source address

# Xbuf2src: buf2 source address

# Xbuf2out: buf2 output address

# internal memory:

# 0..519: bufl; (Ibufilsrc-Pplbufi,Pclbufi,Pnlbufl)
# 520..649: buf2; (Ibuf2src-Pclbuf2,Ibuf2out-Pclbuf2)
# 4088: zero

# 4093: broadcast multipliers height loop (1/4, 63/64)
# 4094: broadcast multipliers bitmap loop (1/8192, 1/8192%linewidth, P, 8*linewidth,
# MEM_GREEN, MEM_BLUE)
# 4095: broadcast multipliers bitmap loop (3/4, 16, 3/4, 16, 3/4, 18)
# external memory:

# 0.. 1: init pos

# 0,1, 2, 3, 4, 5, 6, 7 =1,131075,262149,393223

# 2.. 3: shuffle pattern Tlast_to_front

# 7,16,16,16,16,16,16,16 = 458768,1048592,1048592,1048592

# 4.. 5: shuffle pattern Tfirst_pl_to_back

# 16, 0, 1, 2, 3, 4, 5, 6 = 1048576,65538,196612,327686

# 6.. 7: shuffle pattern Tlast_pl_to_front

# 1, 2, 3, 4, 5, 6, 7,16 = 65538,196612,327686,458768

# 8.. 9: shuffle pattern Tfirst_to_back

# 16,16,16,16,16,16,16, 0 = 1048592,1048592,1048592,1048576
# 10.. 11: broadcast multipliers height loop

# 8192, 32256,8192,32256,8192,32256,8192,32256 =

# 536903168,536903168,536903168,536903168

# 12.. 13: broadcast multipliers 1 bitmap loop

# 4,4096,8,8192,8192,8192,0,0 = 266240,532480,536879104,0

# 14.. 15: broadcast multipliers 2 bitmap loop

# 24576,16,24576,16,24576,16,0,0,0 = 1610612752,1610612752,1610612752,0
# 16.. 200215: height buffer 1 ((1024+2*P)*(768+2)/4 = 200200)

# 200216.. 400415: height buffer 2

# 400416.. 695327: background bitmap (3%1024%768/8))

# 695328.. 990239: output bitmap

LDB Bplbufi, 520 ; ELI Iconst, 4088

LDB Bclbufl, 520 ; ELX Xconst, O

LDB Bnlbufl, 520 ; EIB Bbufisrc, 520

LDP Pconst, 4088 ; EIE Ebuflsrc, 519

LDE Eplbufi, 519 ; EIB Bbuf2src, 130

LDE Eclbufl, 519 ; EIE Ebuf2src, 649

LDE Enlbufl, 519 ; ELD Iconst, Xconst, 1
LDB Bclbuf2, 130 ; ELD Iconst, Xconst, 1
LDE Eclbuf2, 649 ; ELD Iconst, Xconst, 1
NOP ; ELD Iconst, Xconst, 1
NOP ; ELD Iconst, Xconst, 1
NOP ; ELD Iconst, Xconst, 1
NOP ; ELD Iconst, Xconst, 1
NOP ; ELD Iconst, Xcomst, 1
NOP ; ELD Iconst, Xconst, 1
NOP ; ELD Iconst, Xconst, 1
NOP ; ELD Iconst, Xconst, 1
NOP ; ELD Iconst, Xconst, 1
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NOP ; ELD Iconst, Xconst, 1
LDV Rinitpos, Pconst, 1 ; ELD Iconst, Xconst, 1
LDT Tlast_to_front, Pconst, 1 ; ELD Iconst, Xconst, 1
LDT Tfirst_pl_to_back, Pconst, 1; ELD Iconst, Xcomst, 1

LDT Tlast_pl_to_front, Pconst, 1; EIB Bbuf2out, 130
LDT Tfirst_to_back, Pconst, 1 ; EIE Ebuf2out, 649
LDB Bconst, 2

LDE Econst, 4095

# process height buffer

procevenframe:

NOP; ELX Xheight, 200216 ; DOI 2, procoddframe, procframeend

NOP; ELX Xbuf2src, 200216; JR procframe

NOP; ELX Xbuf2out, 200476

NOP; ELX Xbuflsrc, 16

procoddframe:

NOP; ELX Xbufilsrc, 200216

NOP; ELX Xbuf2src, 16

NOP; ELX Xbuf2out, 276

NOP; ELX Xheight, 16

procframe:

LDP Pconst, 4093; ELI Ibufisrc, 0; DOI 768, procheightbuffer, procheightbufferend
LDP Pplbufi, 0; ELI Ibuf2src, 520; DOI 134, procheight_firstbuf2, procheight_firstbuf2end
LDP Pclbufl, 130; ELI Ibuf2out, 520; DOI 393, procheight_firstbufl, procheight_firstbuflend
LDP Pnlbufil, 260

LDP Pclbuf2, 521

LDM Pconst, 1

procheight_firstbufl:

NOP; ELD Ibufisrc, Xbufisrc, 1

procheight_firstbuflend:

NOP; ELD Ibuflsrc, Xbuflsrc, 1

procheight_firstbuf2:

NOP; ELD Ibuf2src, Xbuf2src, 1

procheight_firstbuf2end:

NOP; ELD Ibuf2src, Xbuf2src, 1

# prepare processing a line of height buffer

LDV Rplcp, Pplbufl, 1; NOP; JR procheightlinefirst
LDV Rclcp, Pclbufil, 1

LDV Rnlcp, Pnlbufil, 1

procheightbuffer:

# copy next2vector to curr, fetched in previous line
MOV Rplcp, Rpln2

MOV Rclcp, Rcln2

MOV Rnlcp, Rnln2

procheightlinefirst:

# skip frame

LDV Rplnv, Pplbufl, 1; ELD Ibufilsrc, Xbufilsrc, 1; DOI 128, procheightlinestart, procheightlineend
LDV Rpln2, Pplbufil, 1; ELD Ibuflsrc, Xbuflsrc, 1

LDV Rclnv, Pclbufl, 1; ELD Ibuf2src, Xbuf2src, 1

LDV Rcln2, Pclbufi, 1; ELD Ibuf2src, Xbuf2src, 1

LDV Rnlnv, Pnlbufil, 1; ELD Ibuf2out, Xbuf2out, 1

LDV Rnln2, Pnlbufi, 1; ELD Ibuf2out, Xbuf2out, 1

# inner loop of processing height buffer

# previous line

procheightlinestart:

LDV Roldbuf2, Pclbuf2, 0; NOP; NOP; NOP; SHF Rplpp, Rplcp, Tlast_to_front

MOV Rplcp, Rplnv ; NOP; NOP; NOP; SHF Rplpp, Rplnv, Tfirst_pl_to_back

MOV Rplnv, Rpln2 ; NOP; NOP; NOP; SHF Rplnp, Rplnv, Tlast_pl_to_front

LDV Rpln2, Pplbufil, 1 ; NOP; NOP; NOP; SHF Rplnp, Rpln2, Tfirst_to_back

# current line

NOP ; ELD Ibuflsrc, Xbuflsrc, 1; NOP; NOP; SHF Rclpp, Rclcp, Tlast_to_front
MOV Rclcp, Rclnv ; ELD Ibuflsrc, Xbuflsrc, 1; NOP; NOP; SHF Rclpp, Rclnv, Tfirst_pl_to_back
MOV Rclnv, Rcln2 ; ELD Ibuf2src, Xbuf2src, 1; NOP; NOP; SHF Rclnp, Rclnv, Tlast_pl_to_front
LDV Rcln2, Pclbufil, 1; ELD Ibuf2src, Xbuf2src, 1; NOP; NOP; SHF Rclnp, Rcln2, Tfirst_to_back

# next line
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NOP ; NOP; NOP; NOP;
MOV Rnlcp, Rnlnv ; NOP; NOP; NOP;
MOV Rnlnv, Rnln2 ; NOP; NOP; NOP;
LDV Rnln2, Pnlbufil, 1; NOP; NOP; NOP;
# calculation

NOP; NOP; NOP; VADD Rnewbuf2, Rplpp,
NOP; NOP; NOP; VADD Rnewbuf2, Rnewbuf
NOP; NOP; NOP; VADD Rnewbuf2, Rnewbuf
NOP; NQOP; NOP; VADD Rnewbuf2, Rnewbuf
NOP; NOP; NOP; VADD Rnewbuf2, Rnewbuf
NOP; NOP; NOP; VADD Rnewbuf2, Rnewbuf
NOP; NOP; NOP; VADD Rnewbuf2, Rnewbuf
NOP

NOP; NOP; NOP; BMUL Rnewbuf2, Rnewbuf
NOP; NOP; NOP; VSUB Roldbuf2, Rnewbuf
NOP

NOP; NOP; NOP; BMUL Roldbuf2, Roldbuf
# store

NOP

NOP

NOP

NOP

STV Roldbuf2, Pclbuf2, 1

NOP

NOP; EST Xbuf2out, Ibuf2out, 1
procheightlineend:

NOP; EST Xbuf2out, Ibuf2out, 1

#
NOP
LDV Roldbuf2, Pclbuf2,

skip frame of zeroes

LDV Roldbuf2, Pclbuf2, 1; ELD Ibufilsr
NOP; ELD Ibuf2src, Xbuf2src, 1

NOP; ELD Ibuf2src, Xbuf2src, 1

NOP; ELD Ibuf2out, Xbuf2out, 1
procheightbufferend:

NOP; ELD Ibuf2out, Xbuf2out, 1

Rplcp: prevlinecurrpixel
Rclpp: currlineprevpixel
Rclcp: currlinecurrpixel
Rclnp: currlinenextpixel

Rclnv: currlinenextvector
Rcln2: currlinenext2vector
Rnlcp: nextlinecurrpixel
Rxoffset: XO0ffset
Ryoffset: YOffset

Rshade: shade

Rgather: srcGather

Rpos: pos in buffer

Roffset: 0,1,2,...,P-1

Rbackclr: backcolor

Pplheight: -> Rplcp-nlcp; prevline
Pclheight: -> Rplcp-nlcp; currline
Pnlheight: -> Rplcp-nlcp; nextline

Poutred: <- Rbackclr; result red
Poutgreen:<- Rbackclr; result gree
Poutblue: <- Rbackclr; result blue
Ibackred: =-> Rbackclr; back red:
Ibackgreen:-> Rbackclr; back green:
Ibackblue: -> Rbackclr; back blue:
Ioutred: <- Poutred; result red:

H OHE HHH H HHEHHHEHEHEHEHEHEHEHEHHEHEHEHE R

Ioutgreen:<- Poutgreen; result gre

1; ELD Ibufisrc, Xbufilsrc,

SHF Rnlpp, Rnlcp, Tlast_to_front
SHF Rnlpp, Rnlnv, Tfirst_pl_to_back
SHF Rnlnp, Rnlnv, Tlast_pl_to_front
SHF Rnlnp, Rnln2, Tfirst_to_back
Rplcp
2, Rplnp
2, Rclpp
2, Rclnp
2, Rnlpp
2, Rnlcp
2, Rnlnp
2 ; NOP; RMB
2, Roldbuf2
2 ; NOP; RMB
1
¢, Xbuflsrc, 1

height: 3072..3591 (4%(1024/P+2))
height
height

n

0..1023 (8%1024/P)
1024..2047
2048..3071
3592
en: 3593
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# Ioutblue: <- Poutblue; result blue: 3594

# Theight: -> Pplheight,Pclheight,Pnlheight; height buffer: 3072..3095
# Xback: => Ibackred,Ibackgreen,Ibackblue; background

# Xoutbitmap:<- Ioutred,Ioutgreen,Ioutblue; bitmap output

# Xheight: -> Theight; height buffer; 0

procbitmap:

LDP Pplheight, 3072; EIB Bheight, 520
LDP Pclheight, 3202; EIE Eheight, 3591
LDP Pnlheight, 3332; ELI Iheight, 3072
LDB Bplheight, 520; ELI Ibackred, O

LDE Eplheight, 3591; EIE Ebackred, 1023
LDB Bclheight, 520; EIB Bbackred, 1024
LDE Eclheight, 3591; ELI Ibackgreen, 1024
LDB Bnlheight, 520; EIB Bbackgreen, 1024
LDE Enlheight, 3591; EIE Ebackgreen, 2047
LDP Poutred, 3592; ELI Ibackblue, 2048
LDP Poutgreen, 3593; EIB Bbackblue, 1024
LDP Poutblue, 3594; EIE Ebackblue, 3071

LDM Pconst, 1 ; ELX Xback, 400416

MOV Rpos, Rinitpos ; ELX Xoutbitmap, 695328

NOP ; ELI Ioutred, 3592

NOP ; EIB Boutred, 1

NOP ; EIE Eoutred, 3592

NOP ; ELI Ioutgreen, 3593

NOP ; EIB Boutgreen, 1

NOP ; EIE Eoutgreen, 3593; DOI 96, procbitmapbuffer, procbitmapbufferend
NOP ; ELI Ioutblue, 3594 ; DOI 393, procbitmap_firstlines, procbitmap_firstlinesend
NOP ; EIB Boutblue, 1

NOP ; EIE Eoutblue, 3594

procbitmap_firstlines:

NOP; ELD Iheight, Xheight, 1
NOP; ELD Iheight, Xheight, 1
NOP; ELB Xback, 1

NOP; ELB Xback, 1

NOP; ELB Xback, 1

NOP; ELC Ibackred, 1

NOP; ELC Ibackgreen, 1
procbitmap_firstlinesend:
NOP; ELC Ibackblue, 1

# load first height vectors

LDV Rplcp, Pplheight, 1; NOP; JR procbitmaplinefirst

LDV Rclcp, Pclheight, 1; NOP; DOI 8, procbitmaplineblockstart, procbitmaplineblockend

LDV Rnlcp, Pnlheight, 1

# copy next2vector to curr, fetched in previous line

procbitmapbuffer:

MOV Rpos, Rinitpos; NOP; DOI 8, procbitmaplineblockstart, procbitmaplineblockend

NOP

NOP
procbitmaplineblockstart:
LDV Rplcp, Pplheight, 1
MOV Rclcp, Rcln2

LDV Rnlcp, Pnlheight, 1
procbitmaplinefirst:

LDV Rclnv, Pclheight, 1; ELD Iheight, Xheight, 1; DOI
LDV Rcln2, Pclheight, 1; ELD Iheight, Xheight, 1

NOP

# inner loop of processing height buffer

# load height vectors

procbitmaplinestart:

LDV Rplcp, Pplheight, 1; ELB Xback, 1 ;
MOV Rclcp, Rclnv ; ELB Xback, 1 ;
MOV Rclnv, Rcln2 ; ELB Xback, 1 ;
LDV Rcln2, Pclheight, 1; ELC Ibackred, 1 ;
LDV Rnlcp, Pnlheight, 1; ELC Ibackgreen, 1

128, procbitmaplinestart, procbitmaplineend

; SHF Rclpp, Rclcp, Tlast_to_front

SHF Rclpp, Rclnv, Tfirst_pl_to_back
SHF Rclnp, Rclnv, Tlast_pl_to_front

; SHF Rclnp, Rcln2, Tfirst_to_back



NOP ; ELC Ibackblue, 1

NOP

NOP

NOP

# XO0ffset=(Array[-1]-Array[1])

NOP ; ELD Theight, Xheight, 1; NOP; VSUB Rxoffset, Rclpp, Rclnp
# Y0Offset=(Array[-SCREEN_W]-Array[SCREEN_W])

NOP ; ELD Theight, Xheight, 1; NOP; VSUB Ryoffset, Rplcp, Rnlcp
# shade = (XOffset + YOffset) * 2

NOP ; NOP; NOP; VADD Rshade, Ryoffset, Rxoffset
NOP ; NOP; NOP; VADD Rshade, Rshade, Rshade

# gatherPos = pos + (XOffset >> 13)

LDA Rpos ; NOP; NOP; BMAC Rgather, Rxoffset; NOP; RMB
# gatherPos += (YOffset >> 13) * linewidth

NOP ; NOP; NOP; BMAC Rgather, Ryoffset; NOP; RMB
# pos +=P

NOP ; NOP; NOP; BADD Rpos, Rpos ; NOP; RMB
# bound checking

NOP ; NOP; NOP; VSBC Rnewbuf2, Rgather, Rgather
NOP ; NOP; NOP; VSUB Rgather, Rgather, Rnewbuf2
NOP ; NOP; NOP; BSUB Rnewbuf2, Rgather

NOP

NOP ; NOP; NOP; BSBC Rgather, Rgather ; NOP; RMB
NOP

NOP

NOP ; NOP; NOP; BADD Rgather, Rgather ; NOP; RMB

# offset to red to blue pixels

LDM Pconst, 1

SMG Rbackred, Rgather

NOP ; NOP; NOP; BADD Rgather, Rgather ; NOP

# offset to blue to green pixels

NOP

SMG Rbackgreen, Rgather

NOP

NOP

SMG Rbackblue, Rgather

NOP

NOP

NOP

# red = shade + red * 3/4

LDA Rshade; NOP; NOP; BMAC Rbackred, Rbackred ; NOP; RMB
NOP ; NOP; NOP; BADD Rbackred, Rbackred ; NOP; RMB
NOP

# green = shade + green * 3/4

LDA Rshade; NOP; NOP; BMAC Rbackgreen, Rbackgreen; NOP; RMB

NOP ; NOP; NOP; BADD Rbackgreen, Rbackgreen; NOP; RMB

NOP

# blue = shade + blue * 3/4

LDA Rshade; NOP; NOP ; BMAC Rbackblue, Rbackblue ; NOP; RMB

STV Rbackred, Poutred, 0; NOP; NOP; BADD Rbackblue, Rbackblue; NOP; RMB
LDM Pconst, 1

STV Rbackgreen, Poutgreen, 0

NOP

# store to buffer and external

NOP ; ESC Ioutred, 1
STV Rbackblue, Poutblue, 0; ESC Ioutgreen, 1
NOP ; ESC Ioutblue, 1

NOP; ESB Xoutbitmap, 1
NOP; ESB Xoutbitmap, 1
NOP; ESB Xoutbitmap, 1
procbitmaplineend:

NOP

LDV Rplcp, Pplheight, 1; ELD Iheight, Xheight, 1
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procbitmaplineblockend:

LDV Rnlcp, Pnlheight, 1; ELD Iheight, Xheight, 1
procbitmapbufferend:

NOP

procframeend:

NOP

NOP; NOP; JR procevenframe
NOP

NOP
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