EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

A software testing approach supported by a tool environment for the development of
component tests

Hermans, John

Award date:
2006

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3aa78f2b-5852-46ae-9eb6-3c7bcdc9ab40

TECHNISCHE UNIVERSITEIT EINDHOVEN

Department of Mathematics and Computing Science

MASTER'’S THESIS

A Software Testing Approach Supported by a
Tool Environment for the Development
of Component Tests

John Hermans
j-g.f.hermans@student.tue.nl

Supervisor: Dr. J. M. T. Romijn
jromijn@win.tue.nl

Technische Universiteit Eindhoven, Eindhoven, The Nédmels.

Tutor: Ir. G. Zwartjes
gzwartjes@research.intersoft.nl

Intersoft Software Reseach, Eindhoven, The Netherlands.

Eindhoven, March 2006

A Software Testing Approach
Supported by a
Tool Environment for the Development
of Component Tests

John Hermans
April 26, 2006

Abstract

A major discipline in software development these days idityuassurance. Quality assurance is
a vast discipline, existing of many different areas of etiper Software testing is a very impor-
tant part of it. A variety of testing approaches and methogiels have been presented over the
years, every one of them with proponents and critics. Thasithis about the selection and imple-
mentation of a suitable testing approach for the developmiesoftware components at Intersoft
Software Research. Several existing testing methodaayie approaches are examined. These
methodologies are compared to the development processatbgdrsoft Software Research, and
the most suitable testing approach is selected. The teafipgpach is adapted for the use at In-
tersoft Software Research and a tool environment is craatsdpport the testing approach. The
testing approach and tools have been used in the develomhseteral components at Intersoft
Software Research and the results of their use are analyzbis ithesis.

Table of Contents

Abstract
Table of Contents
List of Figures

1 Introduction
1.1 OVEIVIEW . . . ot o o e e e e e e e e e

2 AnIntroduction to Software Testing Methodologies

2.1 Introduction

2.2 V-Model e
2.21 SpiralModel

2.3 Capability Maturity Model Integration

2.4 Test-Driven Development e e

25 Context-DrivenTesting e

2.6 Conclusion

3 Tools in the Test Development Process
3.1 Introduction
3.2 Categories of Software TestingTools
3.3 Commercial TOOIS
3.4 0Open-SourceTOOIS e e
3.5 Survey on the Use of Tools in Commercial Environments
3.6 Conclusion

4 Technical Aspects of Testing
4.1 Introduction
4.2 TestingTYPES o v i e e
4.2.1 Taxonomy e e e e e e e e

Vii

Vii

Xi

TABLE OF CONTENTS

4.3

4.4

4.2.2

Important Testing TypesatISR

TestCase Selection 0 e e e

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

Equivalence Partitioning L oo
Boundary Value Testing
Multiple Input Parameters
ErrorGuessing e e
Test Case SelectionatISR

Code Coverage Analysis i .

44.1
4.4.2
4.4.3

Difficulties in Code Coverage Analysis
TestQuality e
CodeCoverageatISR

45 Conclusion

5 The Selected Testing Approach

Introduction L
The Current Software DevelopmentProcess
Available Tools e

5.1
5.2
5.3

5.4

5.5

53.1
5.3.2

Commercial Tools

Open-Source Tools

Introducing Testing in the Existing Development Presces.

541
54.2
5.4.3

Context of the Existing Development Process
Finding a Suitable Testing Methodology . e e
Tools Needed to Support the Introduced Testlng Amb‘roa

Conclusion e e e e e e

6 Practical Work

Introduction
6.2 Project Autotest e
6.3 docAutotest e

6.1

6.4

6.3.1 Requirements and Design Development
6.3.2 SubcomponentTests
6.3.3 Subcomponent Support Library oL
6.3.4 Subcomponent Runner and the Listener Interface
appPAULtOteSt . . . L L e
6.4.1 Requirements and Design Development
6.4.2 eXtensible Markup Language (XML) Test Listener
6.4.3 Console TestRunner
6.4.4 Graphical User Interface (GUIl) TestRunner

viii

.21

iX TABLE OF CONTENTS

6.5 Automatedtest e e 43
6.5.1 Autobuild e 43
6.5.2 Automated RunningoftheTests 44
6.6 Use Case: Developing a Component Using the New Approach 44
6.7 Conclusion e e 7 4
7 Conclusion 49
7.1 Future Work e 05
7.1.1 Automated Testing System 50
7.1.2 TestSupportLibraries 50
7.1.3 CodeGenerator i e e e 51
List of Abbreviations 53

Bibliography 55

List of Figures

2.1
2.2

5.1

6.1
6.2
6.3
6.4

The traditional V-model, sequentially performing alétstages. 4
The steps taken in Test-Driven Development. 7

The model of the development process that is currendyl as Intersoft Software

Research e 26
Overview of the custom-made unit testing frameworkjqmtoAutotest. 34
Overview of component docAutotest. 35
The hierarchy of testsinatestproject. 36
The model of the proposed development process inclutlatesting approach. . 45

Xi

Chapter 1

Introduction

In 2002 Intersoft Software Research (ISR) was establiskeal division of Intersoft to improve
and support the software development of the business-algdgcations developed by Intersoft.
Intersoft, located in Amsterdam, was set up in 1991 andestdtie production of an enterprise
administration system, targeted at small to medium sizedpemies. The system evolved over
time in response to client and market requirements and betamer and harder to manage due
to unstructured growth of the system. In 2002, the develoyprteam realized that something
needed to be done and they established a new division in &wedh Intersoft Software Research.

Intersoft Software Research has strong links with the Eomdh University of Technology.
The development team at Intersoft Software Research madnigists of graduates and students
from the TU/e, the division was actually started by two getds. The division’s main goal is to
improve the development of the business-class appliGtlonproviding a component and library
backbone for Intersoft’s development teams in Amsterdard, gy assisting in the improvement
of the development process in Amsterdam.

To support the development process of its components,sbfteBoftware Research applies
software engineering methodology and software developmoets. This methodology is exten-
sively described in a standards document and applied ¢endis However, the methodology
lacked a detailed testing approach which was recognizedpasidem. Besides document and
occasionally code reviews, there were no uniform validatiod verification activities. Testing
the code was only done at the developers own initiative, andimformly for all projects.

This thesis describes the introduction of a testing metloggyosupported by a tool environ-
ment. Specifically, the existing software development methogy used at Intersoft Software
Research is extended with a testing approach, which is tbiedfiea of research. This testing
approach should be focused on the development of comporsinte this is Intersoft Software
Research’s main area of development. The selected tegiprgach will be supported by a tool
environment, which makes testing tools the second areaeéreh. It is important that the testing
approach and supportive tools strengthen each other tbgbest results. A testing approach can
be good in theory, but if there are no tools to support it, igimiremain unused. Therefore, the
selection and development of the testing tools is the mgsbitant part of the practical work.

CHAPTER 1. INTRODUCTION 2

1.1 Overview

Chapter 2 introduces some well known software testing nuetlogies and approaches. Four
approaches are discussed that differ in intensity andrstgs, some are more heavyweight and
traditional, others are lightweight and more agile. Chaptdiscusses the role of tools in the test
development process. First, the tool categories that gperiant in testing are enumerated, then
the advantages of both commercial and open source toolstfrese categories are discussed. The
chapter is concluded with the results of a survey on the usesting tools in business environ-
ments. Chapter 4 introduces some basic aspects of softesthegt that are important, regardless
of the exact testing methodology that is chosen. The coaakptussed in this chapter are relevant
for all software engineers that are involved in softwardings

In the subsequent two chapters specific implementatioessand results are presented. Chap-
ter 5 explains the software development methodology thatriently used and which testing ap-
proach is the most suitable for this development methogolbhe tool categories that are needed
to support the chosen testing approach are also discusdeabte® 6 gives an overview of the
specific tools that are selected and developed. Furtheraaetailed explanation of the proposed
development and testing process in practice is given. lyitla¢ conclusions of the graduation
research are presented in Chapter 7.

Chapter 2

An Introduction to Software Testing
Methodologies

In this chapter, general aspects of software testing aited, emphasizing the role of testing in
different types of software engineering methodologies pnadesses. The role of testing in both
heavyweight (or traditional) software engineering andtiigeight (or agile) software engineering
is discussed in more detail. The important properties diitgsn the methodologies, their history
and development over time are highlighted. More generéihgeserminology and properties are
discussed in Chapter 4. In Chapter 5, a software testingepsowill be derived based on the
methodologies described in this chapter.

2.1 Introduction

Starting around 1990, a new style of writing about testingdmeto challenge what had come be-
fore. Traditionally, either heavyweight test methods wesed, or no testing at all. The seminal
work in this regard is widely considered to be Testing Comap@oftware [Cem Kaner, 1993].
Instead of assuming that testers have full access to soadeeand complete specifications, these
writers, who included James Bach and Cem Kaner, arguedestars must learn to work under
more agile conditions of uncertainty and constant changeariwhile, an opposing trend toward
process ‘maturity’ also gained ground, in the form of the &ality Maturity Model. The agile
testing movement (which includes but is not limited to forofigesting practiced on agile devel-
opment projects) has popularity mainly in commercial eis¢lwhereas the Capability Maturity
Model Integration (CMMI) was embraced by government andtam} software providers. The
next sections examine these traditional and ‘new’ mettagiet in more detail.

2.2 V-Model

The V-model (see Figure 2.1) is the traditional softwareimegying methodology and was origi-

nally developed from the waterfall software process moitlké four development process phases
— requirements, specification, architectural design andildd design — have a corresponding
verification and validation phase. The detailed design antk phase are tested by unit testing,

3

CHAPTER 2. AN INTRODUCTION TO SOFTWARE TESTING METHODOLOGIES 4

Requirements
Acceptance Test Design

K Specification

System Test Design

K Architectural Design

Integration Test Design

K Detailed Design

Unit Test Design

Acceptance testing

System testing

Integration testing

Unit testing

Figure 2.1: The traditional V-model, sequentially perfang all test stages.

architectural design is tested by integration testingtesyspecifications are tested by system test-
ing and finally acceptance testing verifies the requiremertie V-model gets its name from the
timing of the phases. Starting from the requirements, tiséesgy is developed one phase at a time
until the lowest phase, the actual code implementationgyhisginished. At this stage testing be-
gins, starting from unit testing and moving up one test late time until the acceptance testing
phase is completed. Moreover, the tests are not designéeé wetification and validation phases
but in the corresponding development phases. So a systémlaesand system test design is
already made in the specification phase.

Although the traditional V-model is easy to understand heeaof its sequential nature, this
sequential nature also introduces some problems. How dé&yow how much effort to schedule
for the integration, system and acceptance test phase?tesphases are reached, how do you
know how much longer they will take? How do you know that youentound all the defects that
you can find? When is integration and testing really done?

Also because of this sequential timing of phases, wherentesiccurs after all design and
implementation is done, it is not an adequate approach ®it#native software processes that
are often used in today’s rapidly changing environmentse Vhmodel can be adapted to the
iterative nature of some software development procesdashws also proposed in different ways
in both [Marick, 2000] and [Jakobsson, 2003]. Both adaptepr@aches suggest to apply the
validation and verifications phases from the V-model in jpalravith the development phases and
to perform the different test phases simultaneously in iplaliterations. This way the V-model
testing method can still be useful in an iterative environtne

2.2.1 Spiral Model

Another iterative methodology that has evolved from thearfatl model and V-model is the spiral
model which was first defined in detail by [Boehm, 1986]. Agjiordlly envisioned, the iterations
are six months to two years long. Each cycle of the spiratsstaith identifying the objectives and

5 CHAPTER 2. AN INTRODUCTION TOSOFTWARE TESTING METHODOLOGIES

risks of the portion of the product to be elaborated in thateeyEach cycle includes the following
steps:

e Determine objectives, alternatives, constraints.
e Evaluate alternatives, identify, resolve risks.

e Develop, verify next-level product.

e Plan next phases.

Many people consider the spiral model for big projects todmparable to agile approaches
for smaller projects. Most agile approaches tend to be mxirerae than the spiral model. The
most important advantage compared to the V-model is thagtdpes in the process are smaller and
there is more space to adapt the development process aiteatrng the feedback of earlier steps.

2.3 Capability Maturity Model Integration

CMMI [Software Engineering Institute, 2006], which is déeyeed by the Carnegie Mellon Soft-
ware Engineering Institute, is not really a software testimethodology but it is more a process
improvement approach. It focuses on the standardizatigraafesses and emphasizes the need
to evaluate and develop these processes. Improvement détiedopment process will evidently
lead to higher quality software. Version 1.1 of the CMMI forsgems Engineering and Software
Engineering (CMMI-SE/SW 1.1) was released in December 200k CMMI replaced both the
CMM version 1.1 of 1993 (SW-CMM) and the systems engineestagdard EIA 731.

The model distinguishes approximately 25 specific procesasadivided in 4 major areas:
Process Management, Project Management, Engineering apddst The CMMI provides two
ways of measuring process improvement, namely the conisyaod the staged approach. The
staged representation uses maturity levels, which appp targanization’s overall maturity. Each
maturity level focuses on a pre-defined set of process afdwesfirst level focuses on basic man-
agement practices and the improvement path for the orgéomza defined by the pre-defined sets
of process areas for each successive maturity level. Thiincons representation is one of the
major improvements of the CMMI compared to the CMM. It usegsatality levels, which define
the quality of each specific process area. The improvemerdagability levels are thus charac-
terized relative to an individual process area. Targetmly those process areas that make sense
in the individual context of an organization enables morelfiity and allows an organization to
focus on risks specific to each process area.

Both maturity and capability levels are divided in five lessahd are specified as follows:

Level 1 — Initial — Process unpredictable, poorly contriéand reactive.

Level 2 —Managed — Process characterizecpfojects and is often reactive.
Level 3 — Defined — Process characterized fordiganization and is proactive.
Level 4 — Quantitatively managed — Process measured ancbttedt

Level 5 — Optimizing — Focus on continuous process improvéme

CHAPTER 2. AN INTRODUCTION TO SOFTWARE TESTING METHODOLOGIES 6

The process areas that are most important and closelydetatke traditional testing method-
ologies areVerification, Validation, Process and Product Quality Assice, Measurement and
Analysis The best approach to focus on the improvement of an orgemzatest methodology
using the CMMI model is to use the continuous representadioth focus on the process areas
mentioned above.

The CMMI is a heavyweight model, it requires a lot of investrinfer an organization to follow
the CMMI standard. Before such an investment can be doneist be guaranteed that the rewards
are worth the investment. This is where the critics havertieubts. Gerold Keefer [Keefer,
2006] acknowledges that the CMMI standard is an improveroemipared to its predecessors, but
mentions a number of weaknesses of the standard. A very fermgatisadvantage of the CMMlI is
that it is weak with regard to customer focus. For examplplieik customer feedback evaluation
that plays a crucial role in other standards is hardly maetioin the CMMI. Another deficiency
of the CMMI is that due to its architecture it contains too imwwverlap between process areas.
Redundancy makes standards difficult to understand, ingsieand maintain. Furthermore, there
are simply too many process areas. A more hierarchicaltateiavith process areas and sub-
process areas could lead to a less fragmented situationferkaso states that one of the most
important success factors of process improvement proigésgnior management commitment’,
senior management must support the process improvemeriediege that it is necessary. It is
therefore a remarkable surprise that the stated resptitisthof senior management in the CMMI
standard are extremely shallow. Christopher Koch’s maicem, described in his article [Koch,
2004], is the integrity of companies that claim to have aaief€CMMI level. Especially American
and Eastern-European companies who want to outsource sbtheirodevelopment work, use
CMMI levels to choose between companies. For these compamiestakes for a good CMMI
assessment become higher all the time. It can be the differbatween getting a contract or
not. The danger is that companies use the CMMI for marketingpgses and not for process
improvement. There are many stories of companies that exatgy or simply lie about, their
assessment results. For example, claiming to have an @sgempide CMMI level, when only one
project or department is assessed.

It is clear that the CMMI standard contains many good thingd & able to improve the
process of developing quality software, but there are alsoynarawbacks. Koch summarizes this
as follows:

“The depth and wisdom of the CMM itself is unquestioned byesigpon software

development. If companies truly adopt it and move up thedadtd levels, they

will get better at serving their customers over time, accydo anecdotal evidence.
But a high CMM level is not a guarantee of quality or performedonly process. It
means that the company has created processes for monidmrihgnanaging software
development that companies lower on the CMM scale do not.hBwé it does not

necessarily mean those companies are using the procedsé$oeh, 2004]

2.4 Test-Driven Development

Test-Driven Development (TDD) [Beck, 2002] and [AstelsQ23Dis an agile development method
which encourages developers to develop code in small dgah step should add a small amount

7 CHAPTER 2. AN INTRODUCTION TOSOFTWARE TESTING METHODOLOGIES

Create test list

TestList

Choose and implement one test
Red

One or more tests fail

Implement functionality to pass the test

Add new tests to the list

Green
All tests pas

Empty list and all tests pass w
/ Refactor the code

Figure 2.2: The steps taken in Test-Driven Development.

of new functionality. This is a well-known and accepted agjliideline [Ambpler, 2002]. Specific

for TDD is the cycle in which this functionality is added, degure 2.2. First a test is constructed,
which should fail because the functionality is not added $etcond, the simplest thing that could
possibly make the test pass is implemented. Finally, the éodefactored to remove duplication
or other code smells.

Refactoring is an integral part of several agile methodekgRefactoring is a technique for
improving the design of existing code, by applying a seriesneall transformations that change
the structure and design of the code. Important to note tsréfiactoring should not change the
external behavior of a program, nor fix any bugs or add newtiomality. Refactoring should only
be applied to improve the design and understandability e@fctide to make it easier to maintain
and extend. A ‘Code smell’ is a hint that something might bengrwith the code. ‘Bad Smells
in Code’ was an essay by Beck and Fowler, published as Chamttheir book [Fowleret al,
1999]. Many examples of code smell are discussed in this,bHib@kduplication in code, methods
or classes that are too big and long or vague method namesnténesting taxonomy for code
smells was created by Mantyla [Mika Mantyla, 2005].

TDD is primarily a development method that has as a side teffiat your source code is thor-
oughly unit tested. This is the same technique as that ofHiestt Design. When a programmer
has to write a test before the actual code, he needs to thithle afiterface that the code is going to
use. So the actual design is specified by the tests that dterwrAn advantage of writing unit tests
in general and especially writing unit tests using TDD, &ttiine tests extend the documentation.
This is also indicated by Scott W. Ambler:

“Like it or not, most programmers do not read the written doeatation for a system,
instead they prefer to work with the code. And there is nathimong with this. When

CHAPTER 2. AN INTRODUCTION TO SOFTWARE TESTING METHODOLOGIES 8

trying to understand a class or operation most programmiirirat look for sample
code that already invokes it. Well-written unit tests doatyathis — they provide a
working specification of your functional code — and as a regnit tests effectively
become a significant portion of your technical documentatithe implication is that
the expectations of the pro-documentation crowd need teatdfiis reality.” [Ambler,
2003]

An interesting side effect of TDD is that, theoretically,uyachieve 100% statement coverage
— every single line of code is tested — something that trad#l testing does not guarantee
(although it does recommend it). Of course, this only hofdkhe TDD technique is used very
consistently. See Section 4.4 for more information on canleiage analysis.

2.5 Context-Driven Testing

The Context-Driven School (CDS) uses certain principlespproach software development. Ba-
sically, it states that it is not correct to assume that tieoee single software development process
that always works best. The best way to do things is depermtethie context of the project, which
is not always the same.

The CDS applies the same principles on software testingdze# on software development.
This is known as Context-Driven Testing (CDT), which wastfifroduced by Kaner, Bach and
Pettichord [Cem Kaner, 2001]. The CDS summarizes CDT by i lpamciples [School, 2001]:

The value of any practice depends on its context.

There are good practices in context, but there are no badiges.

People, working together, are the most important parhgfoject’'s context.
Projects unfold over time in ways that are often not predie.

The product is a solution. If the problem isn’t solved, pineduct doesn’t work.
Good software testing is a challenging intellectual psac

N o gk owdPRE

Only through judgment and skill, exercised cooperafithfoughout the entire project, are
we able to do the right things at the right times to effectivelst our products.

CDT is a software testing interpretation of the Silver Bullefprinciple, which was introduced
in [Brooks Jr., 1987]. They both state that there are no hastipges that can be applied in all cases.

Thompson discusses an interesting nuance to CDT that tiesetliate between CDT and
methodologies that propose ‘best practices’. He explamgdint of view as follows:

“Several years ago, before Context-Driven became promjiméred to define ‘Best
Practice’ for myself ... My answer turned out like a basierfeavork of things which |
believe always apply to some degree, in some way. It coulsigta few basic princi-
ples, and elements within each principle. Some people sdysttantamount to ‘Best
Practice’, but it doesn’t quite resemble the traditionavwi Then | read more about
Context-Driven, and it occurred to me that my principlesenawch about context in
them, yet claim to be absolutes. The word ‘appropriate’uest frequently. Perhaps

9 CHAPTER 2. AN INTRODUCTION TOSOFTWARE TESTING METHODOLOGIES

if I were to call them ‘always-good’ practices, they mightltdua bridge between
Context-Driven principle number two and the traditionalsBeractice viewpoint.”
[Thompson, 2003]

Thompson discusses a number of principles that he congioldrs ‘always-good’, these are
principles that must be considered in every project althahgy might not lead to exactly the same
results in each case. Two examples of principles he regar@dveays-good’ are ‘measuring test
progress, possibly by coverage analysis’ and ‘use of apjatteptechniques and tools to improve
efficiency’. Thompson supports the CDT idea that some préigman applying the ‘always-
good’ practices is necessary, which may lead to differemqiementations of these practices in
different contexts.

2.6 Conclusion

All the software development and software testing methmgiek that are discussed in this chapter,
have proponents as well as critics. All have been used irtipeaand seem to work out well in
some cases. Each methodology contains some useful psabtiteas stated by the context driven
school, the best approach depends on the context. It is silpeso choose a methodology before
knowing what software is developed, for whom it is develgpet who forms the project team.
The CMMI and V-model, if used in the traditional way, are bb#gavyweight and imply much
overhead in documentation for small project teams and camapaOn the other hand, if the agile
methods (CDT or TDD) are used, it is important to achieve #aaerdegree of formalism. In
Chapter 5 the development process that is currently use®Ryid explained and the context is
analyzed. A testing approach is proposed that is most $eifabthe specific context.

Chapter 3

Tools in the Test Development Process

The previous chapter introduced a number of software tgstiethodologies and standards. Tools
can be very helpful in applying such methodologies effi¢yenthis chapter discusses what dif-
ferent categories of tools are used in software testinged&ally the relation between the testing
process and the tools is important in this regard. The diffee between open-source and com-
mercial testing tools is explained and a research study ®mslk of testing tools in commercial
environments is elaborated. The selection of a satisfasttrof tools is described in Chapter 5 in
parallel with the choice of the testing process or methagioto be used.

3.1 Introduction

Tools have been applied to support the process of docungamtijuirements, designing and writ-
ing code in Software Engineering for many years. The useasi&lools has dramatically increased
the productivity of the programmers. This has increasegbthssure on testers, who are often the
last ones to work on a product before the release and arechspmrceived as the bottlenecks to
the delivery of the product. As time to market has become raackmore important in today’s
competitive environment, software testers are asked tanese and more in less time. Using
tools is one way to improve the productivity and efficiencyesters.

3.2 Categories of Software Testing Tools

A tester does not use a single tool, but usually a complete ®etre are various categories of
tools that are useful in testing. Ideally each tester widl aee tool out of every category, possibly
ignoring the existence of some tool categories. Listedval® the most important tool categories.
Note that not all tools are applicable to all fields of testing

e Functional / Correctness Testing Tools- Often the most important tool in testing, because
this provides the framework to implement and run test cdsebkecks whether a component
or method does what it is supposed to do and is often supploytadibrary of common test
functions.

11

CHAPTER 3. TOOLS IN THE TEST DEVELOPMENT PROCESS 12

e GUI Testing Tools — Provides the possibility to playback specified user eventa GUI,
using scripts or by recording them in advance.

e Performance Testing Tools— Measures, under controlled circumstances, the perfarenan
of a system at various loads. Generates input data, and resgserformance in cpu-time,
memory usage, etc. Very commonly used for testing web agijdics, database systems or
other systems with multiple users or much input data. Alsowkmas stress testing or load
testing.

¢ Test Management Tools- Open frameworks providing features to allow collaboeatist-
ing like resource management, test planning, administradf test cases, logging results,
etc.

e Bug Tracking System— Provides an interface for users and developers to repgd éod
issues and for testers to give feedback. Supports multgsesy projects and components
and often different versions and email notification. Adte lan electronic whiteboard.

e Security Test Tools— Provides often loosely coupled tools to find security weskes in
networks, do password attacks, check for temporary fileseargnize code samples that
are well-known potential security flaws.

e Automated Testing Tools— Automatically runs existing tests on a periodic basis to en
sure that existing code is not broken by changes or newlyloleed code. Very useful in
regression testing. Note that the tests are run automgtinat created automatically.

Of course, the list of testing tool categories is not comglebr are all categories independent.
There are many tools that cover more than one of the categdtis obvious, for example, that a
tool that tests for correctness also measures some baficrpance statistics about the test run.

3.3 Commercial Tools

There are many commercial tool vendors that are complettijcdted to software testing and
quality improvement. The big players in the software tegtiools market develop complete
software suites that cover the functionality of (nearlyl)the testing tool categories described
in Section 3.2. Some of the biggest players in softwarengdwols, or what they call ‘Qual-
ity Optimization Solutions’ and ‘Business Technology O@mitiation’, are, in random order, Segue
Software, Mercury, IBM Rational Software, Compuware, andomnatedQA. All of these vendors
provide tools in most of the described categories.

Most of these complete packages are very extensive and @xpemany different testing and
guality assurance activities are supported. The cost afidng the software itself is not the only
thing that is expensive. There are also investments needeams of education and training of
employees. Considering the complexity of these packagesay be worthwhile to assign staff
dedicated to testing only, instead of educating all softwargineers in software testing. Besides
training of employees, the development process has to hestadjto work with the new tool,
which requires investment of resources. After these ctgrigeight take some time before the
development methodology can be applied efficiently again.

In general, acquiring a complete test package requires atigl investment as well as an
increase in resources needed to apply the developmentgstdgach an investment may be worth-

13 CHAPTER 3. TOOLS IN THE TEST DEVELOPMENT PROCESS

while for big companies with big budgets, separate testegadments and the need for a broad
collection of testing features. For smaller companies, al®searching for a software testing

solution in a narrow context, commercial packages mighbbekpensive. Only a small subset of
the features of such a package might be needed while the etaygackage is paid for. Often there
are no resources to assign employees dedicated to sofegirggtonly. For smaller companies it

is often more rewarding to search for dedicated testingsttiat support a small subset of testing
features.

3.4 Open-Source Tools

Section 3.3 concluded that commercial tools are often tdensive and expensive for medium
or small-size companies. There is a need for dedicated toalsupport a specific testing effort
instead of a complete package. This is exactly the area inhnthie open-source community is
active. Most open-source tools do not provide a completatesuite but are specialized on a few
tasks. Jim Rapoza gives a striking example of the problertis twe cost of commercial testing

tools in the field of web application development. Of coutbe, problem is not limited to web

development only, but also occurs in other areas of softdavelopment.

“A big problem with web application testing is that those wheed the tools the
most, such as independent site developers and departmartiadite managers, can
not afford the five-figure price for most of these testing $odi’'s hard to tell the boss
you need $20,000 to test an application you said you could jourself.” [Rapoza,
2003]

Several years ago, open-source testing software was yismailed to command-line tools
that performed basic tests written in some scripting lagguaSince then, there has been vast
improvement, to the point where many specific testing areaswpported by one or more open-
source tools having a simple-to-use, capable GUI and nge8@rpercent or more of the needs of
the testers. Obviously it can be very rewarding to have a &iadpen-source tools in the search
for testing tools.

3.5 Survey on the Use of Tools in Commercial Environments

The selection of a proper set of testing tools is not easy.réfhee many alternatives and the
selection is based on a number of criteria. To get an indinadf the tools that are used in similar

environments, a survey was conducted. This survey wasghddlion the internet and posted on
software testing forums and newsgroups, it was also semt smademic mailing list. The survey

contained a number of multiple choice and some open qusstion

1. Which of the following development processes describestaccurately the process used
by your company?

e Waterfall approach
e lterative approach

CHAPTER 3. TOOLS IN THE TEST DEVELOPMENT PROCESS 14

e Extreme programming
e Formal methods
e Other

2. Does your company use tools to support functional or umaih (GUI) testing?

¢ No testing

e Manual testing

e Custom made tool
e Existing tool

3. Does your company use tools to support GUI testing? (Sestign 2 for multiple choice
answers)

4. Does your company use tools to support memory (leakhtEat{See question 2 for multiple
choice answers)

5. Does your company use tools to support regression t@st{Sge question 2 for multiple
choice answers)

6. If your company uses existing tools, which are these?

7. Could you explain the choice to use existing tools or austwade tools? (What are the
advantages and disadvantages of the tools that were chod&tarded)

8. During a software project, how much of the total developntene would be spent on
testing (Don’t consider debugging as testing)?

e 0-10%
10-20%
20-30%
30-40%
40-50%
> 50%

9. Some optional questions about the company and the funaiibin the company.

A total of 60 completed forms were received. Most of the pgréints of the survey were vis-
itors of one of the software testing forums [BetaSoft, 20864 [Software Quality Engineering,
2006]. Because of this, the survey is not completely unbiasesitors of these sites are involved
in software testing, or have a more than average interesigiistibject. Therefore, these partici-
pants may not be representative for the average busineissrenent. However, these participants
probably know more about the subject of software testing tihe average software engineer,
which makes the results all the more interesting.

The intention of the survey was to assist in the choice ofctielg a suitable tool set for the
software testing process. In this regard, the partitionififpe development approaches of the first
guestion on itself is not really interesting. The relatiatvieen the development approach and
the answers on the other questions is more interesting.ets,tfor example, a relation between
the development approach and the way that testing is don@e\o, it is interesting to see that
the iterative approach is the most used approach, see Tdbl&lds could make the survey more
valuable, since this is also the approach used at ISR, s¢i@i$62.

15 CHAPTER 3. TOOLS IN THE TEST DEVELOPMENT PROCESS

Waterfall approach 23%

Iterative approach 41%

Extreme programming 13%

Formal methods 9%

Other 14%

Table 3.1: Answers to question 1.

No testing| Manual testing| Existing tool | Custom made too
Unit testing (non-GUI)| 5% 43% 42% 10%
GUI testing 3% 44% 53% 0%
Memory leak 29% 39% 30% 2%
Regression 2% 38% 55% 5

Table 3.2: Answers to question 2, 3, 4 and 5.

Notable is that there is a relation between the answers tstignel and the answers to ques-
tions 2 up to and including 5. This can be seen in Table 3.3pledbat use an iterative or extreme
programming approach claim to use more tools and also spenel ime on testing. This can be
explained by the repetitive nature of these approachesingjgzeeds to be done repeatedly which
asks for a tool supported environment. However, the diffeecbetween the iterative approach and
the other approaches is small. The tool support for regredsssting in the iterative approach is
surprisingly small. Regression testing is very importaspecially in an iterative approach and
is more than other types of testing suitable for automatioth i@ol support. Some remarkable
statistics:

e About 40% of the participants say they do regression testiagually. (Table 3.2)

¢ Unittesting is the only category worth mentioning wheretaosmade tools are used. (Table
3.2)

e Memory leak testing is often not done at all, an explanatmudbe the use of programming
languages with garbage collection. (Table 3.2)

e Most participants seem to do some kind of testing, but ovét 40ll does manual testing.
(Table 3.2)

e An average of 35% of the total development time is spent dintegTable 3.4)

The use of existing tools was very diverse, the answers tetique6 did not show any sur-
prising results. Most commercial products were mentioneduple of times, but no tool stood
out, nor was there a relation between the development agipeeaand the used tools. However,

CHAPTER 3. TOOLS IN THE TEST DEVELOPMENT PROCESS 16

No or manual testing Testing with tools
Waterfall approach 54% 46%
Iterative approach 39% 61%
Extreme programming 25% 75%
Formal methods 60% 40%
Other 50% 50%

Table 3.3: Relation between answers to question 1 and 2till 5

% of time on testing| 0-10% | 10-20% | 20-30% | 30-40% | 40-50% | > 50%
4% 28% 17% 19% 22% 11%

Table 3.4: Answers to question 8.

the comments on why a certain tool was used (question 7) wéeesting although not really
surprising. Globally, there were two opinions.

1. Custom tools are very costly to develop and maintain,ithly advisable if the require-
ments are specific and you don’t need a complete package \aitly different features.

2. Commercial tools are very expensive and it is hard to fimdroercial tools that satisfy all
requirements. If there is money available, it is best toarfirid (a combination of) tool(s)
to satisfy all requirements. Furthermore, open-sourcks tae often available for specific
tasks.

3.6 Conclusion

A number of tool categories that are useful in the testing@se have been elaborated in this
chapter. These are used in Chapter 5 to select tools fromreliff categories that are needed to
support the new testing approach. Furthermore, Secti@arigl 3.4 emphasize that commercial
testing tools are very expensive. Open-source testing tzol be a good alternative, especially if
there is no need for a broad package.

The survey presented in this chapter was conducted to gedtea biew of the use of testing
tools in comparable environments and to assist in the chafiselecting appropriate tools. Al-
though the survey might not be decisive in the selection ofstat definitely resulted in some
interesting statistics. It was surprising to see that, evidm the participants coming mostly from
software testing forums, there were still so many compaitfias spent little time on testing, or
tested only in a primitive (manual) way.

Chapter 4

Technical Aspects of Testing

In this chapter some general aspects of testing are dedci@iwapter 2 already described testing
methodologies and some properties of testing that are i@gpioin the methodologies. This chap-
ter explains some terminology and technical aspects oftgtiat are important regardless of the
testing methodology that is used.

4.1 Introduction

Software testing is an extensive field of quality assurai&e. contexts in which software can be
tested are various and within each context a possibly iefmitmber of test cases can be defined.
To be able to narrow software testing to a more specific dothainis manageable and useful to
ISR it is important to explain some basic aspects of testimfjthe way they are perceived in this
document. First the ambiguous terminology of testing typ&xplained and the testing types are
classified using three scopes. Then the matter of test césgice, namely how to narrow the
infinite number of possible test cases to a manageable aral 8s¢ is discussed. Finally, the
value and limitations of code coverage analysis are desatrib

4.2 Testing Types

When reading on software testing in general, a great nunfhaethods and techniques are often
mentioned. In many cases there is a slight overlap or oligaumithe terminology that is used.
4.2.1 Taxonomy

In this document the following taxonomy is used to identifydadistinguish different types of
testing. This taxonomy of testing types is not complete rawsdit cover the full vocabulary of
testing terminology, but most testing types that are noh@list below can be placed in one or
more of the described categories. The testing techniq@esadegorized using different contexts.

e Classified by purpose:

17

CHAPTER4. TECHNICAL ASPECTS OFTESTING 18

— Correctness or functional testing
— Performance testing

— Reliability testing

— Security testing

e Classified by life-cycle phase:

Requirements phase testing
Design phase testing
Program phase testing
Evaluating test results
Installation phase testing
Acceptance testing

— Maintenance testing

e Classified by scope:

— Unit or component testing
— Integration testing

— System testing

— Acceptance testing

4.2.2 Important Testing Types at ISR

It is impossible to introduce all types of testing at once, isdt necessary. This section explains
which testing types are most important for ISR based on treettifferent classification contexts
used in the taxonomy.

The most important testing type regarding the purpose tifigess correctnesr functional
testing, to test the correctness of the implementation.s khid of testing verifies whether the
functional requirements are met. For some componentpipeaince might also be important. In
these cases it is important that the performance of the coemt@an also be measured. Of course,
the component must behave correctly if unusual inputs aed,ushich is a form of reliability
testing.

Since ISR’s main goal is the development of a component dmdri-backbone, the classifi-
cation by scope can be narrowed to unit or component tesiMagst components are developed
fairly independent. If there are dependencies betweendh®gonents, then these dependencies
must be integration tested too. The integration of the carapbin the business application is not
ISR’s responsibility.

The testing types classified by life-cycle that are mostresieng are program phase testing
and evaluating test results. The requirements and desigsepdre already tested by reviewing
the documents. The creation of the tests during the prograasepand the evaluation of test
results during and after this phase are very important. rAftat the life-cycle phases are less
important, since the scope of testing is harrowed to unibonmonent testing. The last phase, the
maintenance phase, is important again. In this phase begeported and feature requests can
be made. It is very important that bug fixes are tested andttieateature implementations are

19 CHAPTER 4. TECHNICAL ASPECTS OFTESTING

tested in the same way as in the regular implementation phabeg fixes are implemented, it
is also important to test that a bug fix does not introduce hugsher parts of the component or
application. Therefore, the tests developed in the reguiplementation phase must be repeatable
and usable as regression tests. Brooks describes thida@asdol

“Also as a consequence of the introduction of new bugs, aragmaintenance re-
quires far more system testing per statement written thgnottrer programming.

Theoretically, after each fix one must run the entire batdestfcases previously run
against the system, to ensure that it has not been damage@bseure way. In prac-
tice, such regression testing must indeed approximatetibmetical idea, and it is
very costly.” [Brooks Jr., 1995]

Currently most components developed at ISR are alreadydtéstthe developer. These tests
are in most cases limited to functional testing in the prograng phase at component level. In
some cases performance tests are also developed, but pipsrizaonly occasionally and mostly
for low level components. There are no guidelines to do sothisds completely dependent on
the initiative of the developer. If the developer feels tiheg software is uncommonly slow, Au-
tomatedQA's AQTime [AutomatedQA, 2004] is used to analyre ¢component for performance
bottlenecks.

4.3 Test Case Selection

Section 4.2 describes different testing types and dissusbech of the testing types will be most
valuable for ISR. One of the most difficult aspects of sofenasting in general and in functional
or correctness testing in particular, is to test the righigh. There are many possible tests. In
general a test has certain input values, performs somenagiiith these values and checks whether
the output is as expected. In most cases the number of posstlt values is very large, possibly
infinite, and definitely too large to include a test methoddfach input. The choice of which inputs
to use in a test method can make the difference between fiading or not. The next subsections
contain techniques to select which input values to use imtethods.

4.3.1 Equivalence Partitioning

A test case selection technique that involves the identificaof a small set of representative
input values to invoke as many different input conditionpassible isEquivalence Partitioning
Combined with boundary value testing, see Section 4.3i2,téthnique can be used to search
for a limited set of input values which covers as many poétpiioblem areas in functionality as
possible. These techniques are black box testing techsigirece no detailed knowledge of the
code is necessary to use this method of testing. Importpat walues to include in the test can be
determined by examining the requirements.

All possible input values of a program are partitioned imaiealence classes. The partition-
ing is done such that a program behaves in similar ways ty éweut value belonging to the same
equivalence class. To determine the equivalence clasees)ut data and its requirements must
be examined. Some examples of partitioning input valueseaquivalence classes:

CHAPTER4. TECHNICAL ASPECTS OFTESTING 20

¢ If the input data to the program is specified by a range of wlaa. numbers between 1 to
5000, one valid (K x < 5000) and two invalid equivalence classes<(® and x> 5000)
are defined.

e If input is an enumerated set of values, e{@,b,g one equivalence class for valid input
values (a, b and ¢) and another equivalence class for invgligt values (all other values)
should be defined.

e Partitioning of any input domain according to an If-Thersé&br Case Selection condition
in the requirements (or in the code) results in an equivalehass for each part of the input
domain, which are defined by the selection conditions.

4.3.2 Boundary Value Testing

After the partitioning in equivalence classes, a test shdsg made for one representative input
value of each equivalence class. This value can be chosdormdy from each class. But just
testing one random value is not enough, since typical eiropogram functionality occur at
boundary values which are not covered by a random value. mk&ns that special testing is
required at the boundaries of equivalence classes. Boynddues in general include values
one before, one directly at and one after the boundaries efjaivalence class. This includes the
minimum and maximum values of the input domain, since (kand x> 5000) can be represented
by (Mininteger< x < 1 and 5000< x < MaxInteger). In the example above, this would imply
testing with input valuegMininteger, 0, 1, 2, 4999, 5000, 5001, MaxInteger

4.3.3 Multiple Input Parameters

Equivalence partitioning combined with boundary valudingsas described in the sections 4.3.1
and 4.3.2 is a very straightforward and clear way to find usefst cases. But how does this
technique apply to more complex situations? Consider aifumthat takes more than one input
parameter. Each separate input parameter has its own sessibfe inputs which can be parti-
tioned into equivalence classes. After the partitioningdumivalence classes, the boundary values
can be selected for each input parameter. As stated in thimpsesections, a test case should be
added for each input value.

Say there are N parameters with for each parameter M inpuesathen there are N to the
power M possible combinations of input values in total. Hoanwy tests are necessary to test
such a method adequately? The minimum number of tests irhwiriccan use all test values is
equal to M. Note that this concerns testing each value of pacdimeter once, and not testing all
combinations of values of the different parameters. Thélpro with this approach is that it is
impossible to say which parameter causes the failure itde#s Itis better to keep all parameters
constant and vary only the test value of one parameter atea fillnis results in approximatel
M test cases. This reasoning only applies if 8iegle Fault Assumptioholds, which says: ‘It is
assumed that a fault, if it exists, will be exposed when saldei has a specific value, regardless of
the value of the other variables.” This means that the paemmeust be completely independent.

If the parameters are not independent, Siegle Fault Assumptiodoes not hold. The way
that a function handles the value of one parameter is notyalivee same, depending on the other
parameters. In this case it is not enough to use each inpug gadingle time, but it is necessary to

21 CHAPTER 4. TECHNICAL ASPECTS OFTESTING

test all combinations of input values for each parametee flilmber of test cases needed to test
such a function completely is M to the power N. Obviously, tiuenber of test cases can be very
large.

Applying equivalence partitioning and other test casectiele techniques is even more im-
portant when the method to be tested has multiple input petens) because the total number of
possible tests is that large. It is up to the tester to andlyeespecific case and decide which
test cases to use. However, it is very important that thertéstaware of the fact that dependent
parameters require more combinations of input values thdepiendent parameters.

4.3.4 Error Guessing

In addition to the test cases and input values that are foutidtle black box testing techniques
equivalence partitioning and boundary value methodsgethes some other cases that should be
tested. It takes some experience to define valuable testg lHgior Guessing This is a test case
selection technique that can be considered as black bangdstt is even more useful if the code
can be inspected too (white box testingyror Guessingneans searching for input values that are
likely to result in errors if the code does not handle theneftdly, some examples are:

Null values

Extremely long values

Almost correct values like, spaces in strings, quoted gsrior all CAPS.

Negative values
Minimum and Maximum values.

Values that should cause an exception (according to theresmgents)

4.3.5 Test Case Selection at ISR

Currently there are no standards for test case selectidBRat Developers who write their own
tests do this on intuition and experience. In most casesthisns that some of the techniques
described above are used. Typically a developer testgaliffenput values that, according to the
requirements, should have different results, which is ofse equivalence partitioning. And from
experience a developer might test some uncommon valuearhéikely to result in unexpected
behavior, which is Error Guessing. In the end, the test caleetson is a result of the developers
intuition and experience, and the willingness to critigalhd extensively test his / her own code.

4.4 Code Coverage Analysis
Part of the testing routine is the analysis of the degree tolwé given test collection exercises a
component’s code, also known as code coverage analysise atedifferent levels at which code

coverage can be measured, the main ones being:

e Statement Coverage— Measures coverage of the lines of source code.

CHAPTER4. TECHNICAL ASPECTS OFTESTING 22

e Condition or Branch Coverage — Measures coverage of each condition or evaluation
point.

e Path Coverage— Measures coverage of each execution path in a given pareafdde.

All coverage measures have their strengths and weaknegsies, are extensively discussed
in [Steve Cornett, 2005]. For general information on cogeranalysis, see Patton’s book on
Software Testing [Patton, 2005]. Code coverage analysisngething you cannot do by hand. A
tool is needed to do coverage analysis, especially if onbefriore complex levels of coverage
like branch coverage is measured.

4.4.1 Difficulties in Code Coverage Analysis

Measuring the coverage of tests can be very useful to showhwtarts of the code need more
testing and to show possible vulnerabilities of the compbrieat is tested. But there are some
problems and weaknesses related to coverage analysis.

Black-Box Testing and Coverage

To test the full functionality of a component, it is importahat the tests cover 100% of the
component. But reaching 100% of coverage may be a probledaékibox testing techniques
are used. Black-box testing means that the tests are credtieout a detailed knowledge of
the component that is tested and tests are derived from tjuereenents and documentation. By
testing the general functionality, derived from the docatation, a coverage of 80-90% may
typically be reached. To complete the final 10-20% of coveraguires advanced knowledge
of the components inner working. A 100% coverage goal is detaly unrealistic if black-box
testing techniques are used. Even with white-box testingnigues, reaching this goal may be
very time consuming and might hardly result in finding any enoristakes in the code. It may
be more worthwhile to perform a critical inspection on themaéing 10 or 20% of the code and
to start error guessing, which may take a fraction of thereffofind the same amount of bugs.
Furthermore, for non-critical code it may be more rewardmgpend the resources for different
purposes and to risk leaving bugs in parts of the code thabaneto reach. After all, if a bug
surfaces in the uncovered code after deployment of a conmpotien a regression test can be
added while fixing the bug, which will cover parts of the codehl® component that was not
covered before.

Dead Code

Another thing that can prevent a test from reaching 100%istant coverage for any project is that
a part of the code of a component may be unreachable, whialoisrkas 'dead code’. This can
be old code, that has become unreachable due to refact&spgcially in TDD where refactoring
is an explicit part of the development process, see Sectibnit?occurs often that ‘old code’
becomes unreachable and it is forgotten to delete this *demk. Code can also be unreachable
because of dependencies between conditions in selectitamsgnts, or if a certain condition in an
if-then-else statement always evaluates to the same valubther reason.

23 CHAPTER 4. TECHNICAL ASPECTS OFTESTING

Proving whether code is unreachable is undecidable. In saviad cases it is possible to prove
that code is unreachable. For example, a method or procéuiatrés not called anywhere in the
code is unreachable, many compilers even give a warningcim cases. It may also be possible to
prove that a certain condition in a selection statementaysdvevaluates to the same boolean value,
resulting in unreachable code. But there is no algorithrhdaia prove, for any random program or
random input, whether or not certain code is reachable. @hdts of statement coverage analysis
may show that certain parts of the code are not reached,dnatthis it cannot be concluded that
those parts are indeed unreachable. It is therefore a ridklege code that seems to be ‘dead'.
On the other hand it is impossible to reach 100% if there i®achable code. Keeping this in
mind it is a good practice to write tests for all ‘normal’ furmmality, which should cover a large
percentage of the project’s code and to critically inspleetremaining parts and examine whether
they are reachable and whether extra tests are needed taltene

4.4.2 Test Quality

It is important to note that the coverage percentage of gtegtct is no measure for the quality
of the test project or the component to be tested. A decemrage is needed to test a component
adequately, but it is no assurance that the component hastbsted adequately. A test project
can cover all the code of a component, but if only input valkvék a trivial outcome are used
or if the results of the tests are not checked correctly tihentésts are worthless and running
them won't tell anything about the quality of the componédrdttis tested. Therefore test cases
should be constructed very carefully. It is not only the dirgiof tests, but the quality of tests that
matters. To create quality tests, it is very important towéth the right attitude. Especially when
a developer tests his own code, it is tempting to test wittaadsrd input to validate the correct
working of the code. This is known as ‘Test-to-pass’. Evem dfeveloper tests his own code, it is
important to stay critical and to test with input values tha more challenging for the program,
see Section 4.3 on how to select these input values. Thisisrkas ‘Test-to-fail’.

Even if the quality of the tests is high, it is still not podeilbo conclude the absence of bugs.
There is no point in time where you can say that there are ne imays and the testing can stop. An
interesting statement about testing and finding bugs atrtti@tthe testing process was made by
Beizer in his book Software Testing Techniques [Beizer,0198Ble introduced the terresticide
Paradoxto describe the phenomenon that software becomes immuestiit it is tested a lot.
The term is used because of the similarity with insects thét lup resistance against pesticide.
Especially in iterative development models like the spmaldel described in Section 2.2.1, this
problem is likely to occur. The test process is repeated gacdtion of the model. Each iteration,
code is developed and the test are run. After a couple oftibasamost bugs are revealed and
continuing to run the same tests, or tests of the same kinghlilely to expose any new bugs. To
find (some of) the remaining bugs, it is necessary to exer@geparts of the code and to test in
different ways. This requires new, different, and possihlyre complex tests.

4.4.3 Code Coverage at ISR

Currently code coverage analysis is not used in any way iteftang activities of ISR. This makes
it very hard to evaluate the testing efforts of the develsp&utomatedQA's AQTime, which is
one of the tools that is available at ISR already, does stmoole coverage analysis for Delphi.

CHAPTER4. TECHNICAL ASPECTS OFTESTING 24

So it is possible to introduce some form of code coverageyaisalvithout much extra costs.

4.5 Conclusion

A number of general aspects of testing are discussed intihjster. It is very useful for a software
developer to be familiar with these aspects when he / shensite tests of any kind. At ISR there
were no standards on how to apply these principles in thiageattivities at this time, although
there were tools available to apply them. The quality of #std that were developed completely
depended on the personal skills of the software engineehiaricher experience with testing.

Writing high quality tests is not easy. There are many factbat determine the quality of the
tests. To assist software engineers in their testing sffont to give pointers on where to look for
bugs, a Testing Standards Document (TSD) [Hermans, 20085 is written, which amongst
others defines and explains the aspects of testing desdrilibds chapter. The most important
recommendations in the TSD are:

e Testto fail. Especially when a software engineer is tedtisg her own code, it is important
to have the right test attitude.

e Use code coverage analysis to analyze whether the quahtisgts is accurate. However, a
good coverage does not imply good quality of tests.

e Use test case selection techniques to find a good set of impugs; including less obvious
ones that might result in unpredictable behavior of the g

e Beware of the pesticide paradox. Try to test in different svayd use different paths through
the code if possible.

Besides these aspects of testing, the TSD also describesnmgete testing process that is
proposed. In general all software engineers of ISR showdd the TSD as well as the other
standards documents, the Process Standards Document éa8Q)oding Standards Document
(CSD). Together they define the complete development psocesuding the testing approach
used at ISR.

Chapter 5

The Selected Testing Approach

This chapter describes the testing approach that is sdléctextend the development process.
First, the development process that is currently used isritbesl in Section 5.2. The testing

methodologies from Chapter 2 are compared to this developprecess to find the most suitable
methodology. Section 5.4 describes the testing approathlintroduced and the kind of tools

that are needed to support the testing. Chapter 6 explawsthm proposed development and
testing process is to be used in practice.

5.1 Introduction

Chapter 2 described some well known testing methodologiée. choice to adopt a certain test
methodology depends on many things. The type of softwardustdhat is developed — are there
lifes at risk if the software does not work correctly, or ikets critical? — and the size of the project
and company are important properties. Also, the persomdiémnce, affinity and experience of
the employees with certain methodologies may influence ltbee.

Regardless of which testing methodology is consideredadt to fit into the development
process that is currently used at ISR. Of course this demsop process is not untouchable, it
is constantly under review and evolves when better, or moitatde, practices are found. But
the current development process is used for a reason aneévetoders will more easily adapt to
a testing methodology that fits in the current practices asémbles the process that is already
used.

5.2 The Current Software Development Process

ISR basically develops a component- and library backbosapport the development of business-
class applications. The development of these componestsgp@orted by applying software en-
gineering methodology and software development tools. sbifiesvare engineering methodology
that is used is described in a process standards documgatef.1 shows the development model
as it is depicted in the PSD [Zwartjes and van Geffen, 2004].

This development model is based on the European Space A¢ES®) lite standard [Eu-

25

CHAPTERS5. THE SELECTED TESTING APPROACH 26

Exploration Phase
Gather user requirements

Deliver URD or requirements part of RDD
Change user requirements

Design Phase
Construct design

Deliver SSD, SDD or design part of RDD

\

Construction Phase
Construct and test code

Change design

Public product release
Implement major code changes \v

Maintenance Phase
Fix bugs and implement mi-
nor code changes

Figure 5.1: The model of the development process that iseotlyr used at Intersoft Software
Research, the relation between the phases in the procesharicnsitions between them.

ropean Space Agency, 1996]. Adaptability was the most itapbaspect that was incorporated
into the standard. The following list from the PSD summarittee key changes to the ESA lite
process, to add adaptability [Zwartjes and van Geffen, R004

e Management activities are essentially the same for eaghgtyean be incorporated in the
process, are minimized, and are documented in the procastast.

¢ No detailed upfront plan is made, the customer’s wisheghitbe the schedule and can be
adapted at any given moment.

e Adoption of an iterative approach and shortened releadesy€he possibility to fall back
to a previous phase — without unnecessary restrictions eedhead — is added.

¢ Closer interaction with customer(s) and end-users; in paelse, customer(s) and end-users
are highly involved.

e Less extensive product documentation, process focusestoal @roduct, not documenta-
tion.

e Single project team is responsible for the entire projeat] all tasks are fulfilled by that
single team.

The ESA lite methodology, in combination with these propbskanges, describes an agile
development process. Preferably, the testing methodabguld be agile too, or at least not im-
pose more restrictions and overhead than the developmerags itself. Important features of the
applied development process that influence the choice dégtimg methodology are the iterative
approach and shortened release cycles and the fact thafi@ gioject team is responsible for the
entire project. The iterative development process impliemneed for an iterative testing process.

27 CHAPTERS5. THE SELECTED TESTING APPROACH

A single project team being responsible for the entire mitaj@eans that testing is preferably done
by someone in the project team. Since the project teams @gneonsist of only one or two
developers, it is obvious that each developer of a project dévelops the tests for that project.
There are no resources to add extra staff to each projecpgsowchanging the development pro-
cess is not an option in this case. The fact that the projactiseare small already imposes that a
testing methodology which is too rigorous and heavyweitjoud not be used.

5.3 Available Tools

Chapter 3 describes a list of tool categories that are ugefille software testing process. This
section discusses the tools in these categories that dteld@adivided in commercial and open-
source tools.

5.3.1 Commercial Tools

Two commercial tools have been purchased by ISR in the paging into account the price of
commercial tools and the limited resources to acquire nelg tdt is very important to examine
how the available tools can be of any use in the testing psocd$e two available tools are
AutomatedQA's TestComplete and AQTime [AutomatedQA, 3004

AQTime is a performance testing tool that has several prefile do coverage, hitcount and
timing analyzes and class profiling to find memory leaks. éntty the developers mainly use
this tool to do memory leak testing and occasionally to firel libttleneck in components where
performance is important.

TestComplete covers more software testing tool categoriess a functional testing, GUI
testing, automated testing and test management tool. lispugoose is to build and automatically
run test scripts for both GUI application and non-GUI comgrus. This tool has not been used in
practice yet. Besides some experimenting to explore itsifes, this tool can be considered to be
‘shelf-ware’.

5.3.2 Open-Source Tools

Besides the commercial tools, there are open-source twati€éan be used for free. An important
advantage of open-source tools over commercial tools tdlleg can more easily be adapted or
extended. This way a customized tool can be made that meetsdbirements more accurately.

Currently, one open-source tool that matches one of thigegiol categories described in
Chapter 3 is used at ISR. Namely phpBugTracker [SourceF@@f8], which is an open-source
web-based bug tracking system. This system is used frdguemt seems to work properly. After
deployment of a component the users, which are softwareneagi in most cases, are actively
reporting feature requests, bugs and annoyances in theabkgt and the developers responsible
for the component usually respond in short terms to suchrtgepo

Another interesting open-source tool in the functional amrectness testing category is JUnit
[Erich gamma and Kent Beck, 2002] which is a unit testing feamrk. JUnit is developed by
one of the pioneers of eXtreme programming and TDD, Kent Bdtks a tool that supports

CHAPTERS5. THE SELECTED TESTING APPROACH 28

the creation and automated running of unit tests, whichdgpensable when practicing TDD.
JUnit is translated into and implemented in most populagmming languages nowadays, there
are for example PHPUnit, CPPUnit, SUnit, and VbUnit for Pi@R+, Smalltalk, and Visual
Basic respectively. There is also an implementation forgl@gramming environment used at
ISR, which is Delphi. Delphi’'s implementation of JUnit is DWW [SourceForge, 2001]. DUnit
is inspired on JUnit and was a rather straightforward pofirst Through the years DUnit has
evolved and is improved to make better use of Delphi’s speotfnstructs. Its further development
was and is done by the SourceForge community [OSDN, 200418.Bbrland Developer Network
obviously appreciated the effort, because a version of DWas integrated in Delphi's Integrated
Development Environment (IDE) starting from Delphi 2005.

When searching the internet for open-source tools, it iSausvthat Borland Delphi is not
widely used and supported by the open-source communitylal@whtive development environ-
ments and online open-source software databases like &tmge [OSDN, 2004b], Tigris [Col-
labnet, Inc., 2004] and Freshmeat [OSDN, 2004a] provideesbeiphi tools and applications, but
these are not as numerous as the tools for other platformfartunately this makes it harder to
find open-source tools that are useful, or that can be cusemhid be useful, in ISR’s develop-
ment and testing process. The only open-source commurdigated to development in Delphi
that is still active today seems to be the Jedi project [Jedn@unity, 2004]. Actually, the JEDI
Code Library (JCL) is used in the implementation of the pcattwork, see Section 6.3 for more
information.

5.4 Introducing Testing in the Existing Development Proces

This section describes how the existing development psoisesxtended to include testing. First
the important features of the current development progessuanmarized, then the testing method-
ology that fits best in this context is outlined. The specigtinhg activities that are used to extend
the development process are derived from this testing rdetbgy. Finally, the tools needed to
support the testing activities are described.

5.4.1 Context of the Existing Development Process

The development process that is currently used is desciib8ection 5.2. The most important
features of the process that influence the choice for thg¢eapproach are the iterative approach
with short release cycles, small project teams, relatisadgll projects and the fact that the process
focuses on the product and not on the documentation. Ind@esi? various types of testing were
discussed. Section 4.2.2 concluded that the most impastatihg type for ISR is functional or
correctness testing at unit or component level during tbgnam phase.

5.4.2 Finding a Suitable Testing Methodology

From the methodologies described in Chapter 2, the CMMI anabdel approach are too heavy-
weight. Using these methodologies would require more ptajganagement and documentation
than necessary for the relatively small projects at ISR. Sfhal model described in Section 2.2.1

29 CHAPTERS5. THE SELECTED TESTING APPROACH

proposes an iterative approach, which is an advantage bgev-model, but the model is opti-
mized for iterations from six months to two years and thusersuitable for the development of
larger projects. The context driven approach states tlatdntext of the projects must be ana-
lyzed to determine which test activities must be appliedh&ory this approach makes sense, but
it does not propose any testing process or testing actvitipractice.

TDD is a development approach in which unit tests are deeelapthe programming / imple-
mentation phase, which is currently the testing type thatlaghe most attention at ISR. Further-
more, it proposes a process in which the software engineetajss the code and the tests for the
code in an iterative approach. This means that the smakgrtgams can develop their own tests
without extra staff. Another advantage is that testing WitlD does not entail any additional doc-
umentation. The requirements and design of a componentdetethe tests to be implemented.
No extensive test plan is needed because the next test thbewadded is the test for the code that
is going to be implemented in the current iteration.

One important property of TDD is that in each iteration thetdeare written before the code.
Some developers may like this technique, others may nota¢tual order of coding and testing is
not the most important thing. It is more important that tleedtions are small. A developer should
tackle only one problem in each iteration and should notgedauntil a test is written to assure
that the problem is solved by the implementation. This whyha code that is implemented at a
given point in time is always completely tested. The devetaman proceed with confidence, and
will be able to refactor the code and design without worryittether the functionality is affected.

5.4.3 Tools Needed to Support the Introduced Testing Apprazh

It is very important to create a working environment thatpsrnts the TDD approach. The most
important tool categories that are needed to create suchvewoement are a functional or cor-
rectness testing tool, to create tests, and an automatiugtésol, to run the tests. Since TDD
uses short iterations to write code and tests, it would bedamardage if the tests can be written
in the same environment and programming language as the Ded@ Astels formulates this as
follows:

“There are a variety of frameworks available for writing tymiogrammer tests in a
variety of languages. The most effective are those thaivallou to develop tests in
the same language and same environment as the code beaw)'tgsstels, 2003]

Furthermore, it is important that the complete set of tesexiecuted repeatedly. It must be
easy to run all tests of a component and see the test resultedrately. Therefore, a tool that is
integrated in, or at least compatible with, Delphi’'s IDE wibbe preferred. In his book, Astels
suggests using the xUnit family of test frameworks. The Biglriant of xUnit is DUnit, which
is already discussed in Section 5.3.2. There were no res®tocacquire a commercial testing
framework, so the choice was restricted to: (1) adoptingofien-source unit testing framework
DUnit, or (2) develop a new customized testing frameworkthBaave their advantages and dis-
advantages.

1. DUnit

+ No development time needed.

CHAPTERS5. THE SELECTED TESTING APPROACH 30

+ The xUnit family is well known and has proved its value.

- Very extensive and undocumented code, so it is hard to adpgsimaintain the tool for
company specific needs.

- No manuals or help function available, so extra resourcesi@eded to investigate how
the tool works and to train the developers to use the tool.

2. Develop a customized testing framework

+ A well developed custom made tool can be easier to maintain.

+ A custom made tool can match the companies requirements.bett
+ A manual can be made in parallel with developing the fram&wor
+ A customized framework may be profitable in the future, isisold.
- Requires a great deal of resources to develop a tool.

Eventually, the decision was made to develop a customizstth¢eframework. The most
important reason for this is the preference for a maintdéabd adjustable tool, that matches the
requirements better. This framework is called ‘Projectddest’, and its development is discussed
in detail in the next Chapter.

The tools that are currently used, AQTime and phpBugTrackeralso useful in the proposed
testing approach. There will still be bugs, hopefully fevlean before, and they will need to be
reported. The use of the performance profiler, AQTime, showalt be limited to memory leak
testing. It should also be used to measure code coverag8gstien 4.4 for more information on
code coverage analysis. The profiler can measure code gavatrfunction, statement and condi-
tion level. In theory, if the TDD approach is used carefudlgonstant condition coverage of 100%
is maintained. In practice this may be difficult to reach,duese AQTime measures condition cov-
erage at assembly level of the code. Therefore, detailedlkdge of the programming language
and compiler would be needed to achieve 100% condition egesbut 100% statement coverage
is realistic if the TDD approach is used. Not all componehts tire developed and deployed by
ISR in the past are fully tested yet. The coverage profileaitiqularly useful when a test is cre-
ated for these existing components. The test progress careasured by determining the degree
in which a test project covers the associated componentatedted parts of the components can
easily be found. Of course AQTime will still be used for mesntak and performance testing.
Note that a high coverage percentage is also useful when prtgsct is used for memory leak
testing.

5.5 Conclusion

The choice has been made to extend the agile developmemrissratith an agile testing approach.
There are a number of things that must be done to introdudestiag approach successfully. The
approach must be explained to the developers, and the gevsimust be encouraged to actually
apply it. To achieve this, the testing approach that is psedds described in the TSD [Hermans,
2006], which is published at ISR and will be obligatory reedimatter for all developers, next
to the CSD [Zwartjes, 2002] and PSD [Zwartjes and van Ge@&34]. Furthermore, the actual
implementation of the testing approach must be elaboratedore detail. A detailed description

31 CHAPTERS5. THE SELECTED TESTING APPROACH

of all practical work is discussed in Chapter 6, which alsdudes a scenario that describes the
complete development and testing process in practice.

Chapter 6

Practical Work

This chapter discusses the details of the practical workerAdxplaining some testing method-

ologies, emphasizing important tool categories of teséing discussing general test principles, a
testing approach has been proposed in Chapter 5. It alsosdisd the tools that are needed to
support this testing approach and concludes with the aecisi develop a custom made testing
framework. This chapter will describe in detail the toolatthave been developed.

6.1 Introduction

The testing approach that is proposed in Chapter 5 is an agjieoach. It is based on TDD and
uses an iterative approach to develop tests and write cosimatl steps. The tool that is needed
to support this approach must allow creating and runningdbts in the same environment as the
code. The next section gives a detailed overview of thertgdbol, which is called project Au-
totest and consists of several subcomponents. Section8.8.8nd 6.5 elaborate the development
process and implementation details of the various parteefutotest project. Finally, Section
6.6 describes a use case to show the proposed testing alpmédthe use of the tools in practice.

6.2 Project Autotest

Section 5.4.3 discussed the need for a framework to devekip in the same language and envi-
ronment as the code being tested. The type of tests that mngtgpdoe created with this framework
are functional or correctness tests at component or uret thwring the programming phase, see
Section 4.2.2 for more information on testing types. Furtiae, it is important that the tests can
be created easily, preferably using Delphi’'s IDE, and thet @asy to run tests quickly and often.
A third requirement is that some of the tests must also fandis regression tests. So it must be
possible to store and re-run collections of tests, possibtpmated. To achieve all this, project
Autotest has been developed. Project Autotest has beetogedefrom scratch but it is inspired
on the xUnit family.

Project Autotest, see Figure 6.1, can be split into thretssp@omponent docAutotest, which
is elaborated in Section 6.3, contains the actual framewmkmakes it possible to create tests in
Delphi in a specific format and implements the basic fundiiby to run these tests. Application

33

CHAPTER6. PRACTICAL WORK 34

Project Autotest

docAutotest \

Test Project Project Under Test

appAutotest j - - > Test Results

uses: - »
Automatedtest

generates: --------- »

Figure 6.1: Overview of the custom-made unit testing fraoreywproject Autotest.

appAutotest, which is discussed in more detail in Sectidni6.the application that provides the

interface to docAutotest to select and run tests and toatdhe results of the tests. Automatedtest
is the last part of project Autotest. Its main task is to eadbé automated running of all regression
tests made with project Autotest. Each part of project Aedbis elaborated in detail in the next

sections.

6.3 docAutotest

Component docAutotest supports the development of teRsscdmponent does this by providing

a framework in which the test cases and test collections eamplemented and structured in a
hierarchical way. This allows the developer to concentoatereating the actual tests instead of
the code that is needed to execute the tests. Furthermar&utidest has a library that contains a
number of the most common and recurring functions that agd ts create test cases. A manual
for docAutotest is presented online on ISR’s Wiki page, Whgconly accessible for employees of
ISR. This manual explains several implementation detais are important when creating tests.

Figure 6.2 gives a logical overview of component docAutiot€le arrows indicate dependen-
cies between subcomponents, dashed arrows indicate dapes with external subcomponents.
Subcomponentest s contains the classes from which all test cases and testtiolie must be
derived. This way all test cases and test collections comtorthe same interface. Subcompo-
nentRunner can execute all tests that comply to this interface. Teste®maated as .bpl (Borland
Package Library) files. These packages can be loaded dyalymaregister all tests that are con-

35 CHAPTER 6. PRACTICAL WORK

Support Library . Project Under Test
\
\
\\
Tests DRI Test Project
T
|
|
e 1
I
docAutotest !
\ 4
Listener Interface Runner > Test Registry

Figure 6.2: Overview of component docAutotest.

tained in a package with subcomponé&ast Regi stry. This subcomponent is a global registry
that is used by subcompondrinner to find all the tests that are loaded. Subcompomanher
iterates through all tests that are registered and creatssages for all different actions it per-
forms. Examples of these messages are the start and endsbicage and the results of each test
method. If a test method fails, it returns detailed inforiorabf the failure, see Section 6.3.4 for
more information about test result messages. Subcompdanengner | nterface provides an
interface that can be implemented to receive these testgs®@nd result messages. Listeners that
implement this interface can present themselves to subaoempRunner to receive the messages.
Component appAutotest, see Section 6.4, implements sef¢hese Listeners. The last subcom-
ponent isSupport Li brary, this subcomponent contains common and recurring furetidrich
can be used as building blocks to create test methods. Thestdns are compiled in a separate
Delphi package, a .bpl file, to be able to reuse them in diffietest projects. The exact working of
this subcomponent is explained in Section 6.3.3. The dpwedmt process that is used to develop
docAutotest is described in Section 6.3.1, the followinctisas contain a detailed explanation of
each subcomponent of docAutotest.

6.3.1 Requirements and Design Development

Component docAutotest is developed according to the stdrilivelopment process used at ISR.
This process is described in the PSD [Zwartjes and van GeXadv] of ISR and summarized in
Section 5.2 of this document. The process is started witlusiee requirements phase followed
by the design phase. In both phases a document is writterchvelte the User Requirements
Document (URD) [Hermans, 2005c] and Software Design Docur(feDD) [Hermans, 2005b]
of docAutotest. During the implementation of componentAlgiotest, new requirements where
recognized occasionally and eventually several iteratiohadjusting the URD and SDD and
changing or extending the implementation led to the finasieer of component docAutotest.

CHAPTER6. PRACTICAL WORK 36

Test Project

Test Collection 1

Test Case 1 TestCase2 | ceeeee Test Case n

Test Collection 2 Separate Test Case 1

Test Collection n Separate Test Case n

Figure 6.3: The hierarchy of tests in a test project.

6.3.2 Subcomponent Tests

Most approaches of testing impose a certain hierarchy @s, t@sfining suites, collections, cases
etc. The test hierarchies that are used vary widely, alsausecthe terminology of what a test case
or test suite is, is not uniformly defined@lest s is the subcomponent of docAutotest that enforces
a test project to have a certain structure, by implementivg liase classes from which all test
collections and test cases must be derived. The followingitelogy and hierarchy for the test
projects at ISR is defined, see figure 6.3 for an overview o$tptmject.

e Test Project— In general the total set of tests to test a single projedboarly. As already
stated, a test project is compiled as a Delphi package. Tdtukgge consists of a set of
one or more test collections and possibly some separatedsss. In Delphi, each unit
or file has an initialization and finalization section thaekecuted if a package is loaded
or unloaded. These sections are used to register the tdsttmis and test cases with
subcomponentest Regi stry, so all tests are known to docAutotest by just loading the
package that contains the tests.

e Test Collection — A test collection basically is a set structure which camdaiest case
objects. This adds another level of structuring to the testly related test cases should be
grouped in a test collection. Note that all test collectiomsst inherit from the base class
that is implemented ifiest s.

e Test Case— A test case contains a number of related test methods thatpethe actual
tests. A test case class haSeaup andTear down method, which are the initialization and
finalization sections of the test case. All preparationstiier actual tests are made in the
Set up, test objects are created and initializ&dar down does exactly the opposite, it cleans
up after the tests and frees test objects. Note that all ésgtscmust inherit from the base
class that is implemented ifest s.

e Test Method— The elementary or atomic unit of testing. Each method perfoa number

37 CHAPTER 6. PRACTICAL WORK

of actions and checks whether the required conditions Htddthese actions. In most cases,
this is done by comparing actual values of some variabledbjacts with expected values.

The functions that are used to compare these values and tthdoahecks are defined in

subcomponent Support Library, see Section 6.3.3.

Besides the hierarchy defined above, there is another wagtingliish tests. A test case can
be used to do different kind of tests, therefore a type iggassl to each test case. There are four
types, which are introduced for obvious reasons:

e Development test— Functional test written and executed while developingusth be used
for test cases that are not yet ready to be included in an @iézhor regression test.

¢ Regression test— To test that changes in a project or one of its dependencie®itbreak
the tested project. These tests are executed repeatedlinended in automated tests.
Preferably, when a project is deployed, all test cases dhimitegression tests.

e Performance test— To test for speed or efficiency.

e Experimental test — To experiment and investigate while developing; typicalted to
try and experiment with different implementation optioifshese are temporary test cases
which are not included in a release version of the project.

It is important that a test method is not too large and thah ¢est method is independent.
Test methods that are too big are dangerous because onlyshehieck that fails is noticed and
reported in test execution. After the failure of a check, rtiethod is stopped and the program
continues with the next test method. If there are ten chetksést method and the first one fails,
the last nine checks are not performed and the informatiahcbuld be provided by these checks
is lost.

Of course it is also important to keep the test methods inulg&. The actions of one test
method should not change the variables that are checkedihexrrone. Even sequentially chang-
ing a variable, performing some checks and restoring thiallar afterward to its original value
can influence other methods. When a variable is changed amafaie following checks fail
the remaining part of the test method is not executed, sodtiable is not restored to its original
value. This can cause failure of other test methods if theyrag that the variable has its original
value. Dependent tests have to be performed in separateatest, such that the tests always use
the variables with their original values which are inizald in theSet up.

6.3.3 Subcomponent Support Library

The test methods that are discussed in the previous sectdoudt from a sequence of actions
and check methods. These check methods are defined in sutweeniupport Library. All
check methods are defined in a similar way. There is one bhasitkanethod that is defined in the
docAutotest package:

\ Check(Condi tion: Boolean; Msg: String);

This method evaluates the condition and raises an excepttbrihe specified string message
if the condition evaluates to False. Component docAutadésttnguishes between exceptions

CHAPTER6. PRACTICAL WORK 38

raised by a check method and exceptions of any other types drables docAutotest to treat
failures and errors differently. A failure occurs when adition that is checked is different than

expected, whereas an error occurs if a test, or the prograinsttested, does not execute properly
and raises any other type of exception. Both failures andremre caught by subcomponent
Runner which processes the results, see Section 6.3.4 for monenatmn about this.

It is possible to define new check methods if they are conweride new test projects. These
new check methods must be implemented using the lthsick method defined above. To give
an example, here is a method that checks whether an integ@bleshas the expected value:

cl ass procedure TdocDefaul t CL. CheckEqual s(Expected, Actual: Integer;
Msg: String);

begi n
Check(Expected = Actual,
Format (' Exp: %l, Act: %l. ' + Msg, [Expected, Actual]));
end,

This method is implemented by calling the baGieck method with the Condition parameter
‘Actual = Expected’. Furthermore, the Msg parameter is etecated with the formatted values
of the actual and expected integer variables, to give arbigitiication of why the test failed.
It is important to implement all variants of check methodsdajling the basic Check method,
this assures that each check method gives the same typeeagftexcand enables subcomponent
Runner to handle the failures and errors correctly.

Only the basicheck method is implemented in docAutotest. All other checks ribesmple-
mented in a separate package. These packages can contdimudtbods, but also other methods
that are convenient to reuse. Such a convenience or utibityhod can be, for example, a method
that initializes a large data structure, or a method thas @okne count on text files. Both might
be useful in different test projects. Each test project afind its own support library, but support
libraries that are defined for other test projects can alsosked. An extensive support library is
implemented for docAutotest. This library will typicallyelused by all test projects. An overview
of the check methods that are provided by this support §lzan be found below.

CheckTrue(Condition: Bool ean; Msg: String);

CheckFal se(Condition: Bool ean; Mg: String);

CheckEqual s(Actual, Expected: NativeType; Msg: String);

CheckNot Equal s(Actual , Expected: NativeType; Mg: String);
Checklnherits(Child, Parent: Td ass; Mg: String);

Checkl s(Test Chject: TChject; TestCass: Cass; Mg: String);
CheckAssi gned(Test Chj ect: Thject; Msg: String);
CheckUnassi gned(Test Qbj ect: TChject; Mg: String);
CheckException(Method: Procedure; Exception: Exceptdass; Msg: String);
CheckExcepti onMsg(Met hod: Procedure; ExceptMsg: String; Msg: String);

The name and signature of these check methods implicitiagxprhat the checks do, which
is one of the most important reasons to introduce them. Theofishe correct check method

39 CHAPTER 6. PRACTICAL WORK

implicitly clarifies the intention of the test, which makegasier to understand. It is also possible
to make the failure messages more specific. GeekEqual s method, for example, formats the
actual value and the expected value and automaticallydeslthem in the exception message that
is used if the check fails. ThéheckEqual s andCheckNot Equal s methods are implemented for
a number of native Delphi types, suchBa®| ean, | nt eger, Ext ended, Stri ng andTd ass.

The CheckExcepti on and CheckExcepti onMsg methods are somewhat different from the
other check methods. These checks are defined to see whethaoject that is tested raises the
correct exception type or exception message in exceptimnahexpected situations. This can
be done by implementing a procedure that gets the projearuedt in this exceptional situation
and passing the procedure as a parameter to the CheckExctepCheckExceptionMsg methods.
These check methods execute the procedure and catch thpierdhat is raised by that procedure
(if any), to compare it with the expected exception type ossage. The following example shows
the working of CheckException:

procedure Rai seDi vi deByZer oExcepti on;
begi n

X:=y /[l 0
end;

procedure TestDivi deByZer oExcepti on;
begi n
CheckExcept i on(Rai seDi vi deByZer oException, ED vByZero, ' Assigning
y/0 to x should raise an exception of the type EDi vByZero');
end;

In the first procedure the exceptional situation is createdivision by zero. Actually, this
piece of code won't even compile because the compiler afreacbgnizes the division by zero.
But it clarifies the example. The second procedure is theahtest, which checks whether the first
procedure raises an exception of the correct type and oidereports a failure with the specified
message.

Next to these check methods, the support library of docA&stohlso contains some utility
functions. At ISR, all workstations have Cygwin installedhich is a Unix-like environment for
Windows. Cygwin contains a number of powerful commands ditities. The support library of
docAutotest provides a number of methods to enable exgcagigwin commands and processing
their results. With this Cygwin support, a number of utifityctions are implemented, such as:

function GetLineCount(Filename: String): I|nteger;
function MatchesRegExp(s, RegExp: String): Bool ean;
function Diff(Filenanel, Filename2: String): TStringList;

These utility functions provide the opportunity to implemienore complex check functions
to check, for example, whether the number of lines in a filesigxpected, and whether a string
matches a regular expression:

CheckLi neCount (Fi l ename: String; Count: Integer; Msg: String);
CheckRegExpMat ch(s, RegExp: String; Msg: String);

CHAPTER6. PRACTICAL WORK 40

6.3.4 Subcomponent Runner and the Listener Interface

Part of docAutotest is also tiinner subcomponent that actually executes the tddtsner re-
trieves all tests from the global registry and iteratesugtothe test collections and test cases. For
each test case sequentiaigt up, all its test methods antkar down are executed. Subcomponent
Runner, nor any other part of docAutotest, displays any resultsheftests. Runner creates a
information message for every event that is of interest @mdis it to all test listeners that have
registered itself with the runner. These test listenerg bavmplement the interface that is defined
in subcomponeriti st ener | nterface. The events that are reported to the listeners are:

The StartandEnd of a complete test-run.
The StartandEnd of a test collection.
The StartandEnd of a test case.

A successfuexecution of a test method.
A failure of a test method.

A error, if one occurred in a test method.

Generalog-messagethat are specified in a test.

The messages that are sent to the listeners are straigattbtext messages, except for the
results of the test methods. The start and end messagessbtaltection or test case only contain
their class-name to identify the separate test collectans test cases, but the result messages
contain more information. They include the filename of the tfilat contains the test method, the
name of the test method, and the line number that indicagesdfinning of the test method. This
way each test method can easily be traced. Of course, in €astaiture or error, the exception
message is also included in the message that is sent to theelis. Delphi does not provide
standard ways for tracing methods. Therefore, the JCL (setidB 5.3.2) is used to find the
filename, procedure name and line number of the test methogéementations of thei st ener
I nt erface can be found in appAutotest, Section 6.4.

6.4 appAutotest

As described in section 6.2, appAutotest is the applicatia provides an interface to docAu-
totest to select which tests to run and to collect the regiilthe tests. Test progress and result
information is gathered by test listeners, that are implaetk conform the interface specified by
subcomponenti st ener | nterface of docAutotest. The application provides three test listen
ers. There is &J , aConsol e and anXM test listener. Th&M. test listener is passive and only
processes the information that is received from docAutst@snner. TheGU andConsol e lis-
teners are interactive components, they are also testmsiand provide an interface to customize
a test run. Section 6.4.1 describes the development préeass used to develop appAutotest,
which is slightly different from the one used for docAutdteescribed in Section 6.3.1. The
subsequent sections describe the three implementatidhs st listeners.

41 CHAPTER 6. PRACTICAL WORK

6.4.1 Requirements and Design Development

Application appAutotest is developed according to theddiath development process of ISR, just
like component docAutotest. Again, the process is startigldl tive user requirements phase fol-
lowed by the design phase. In the requirements phase ncepnshere encountered, and a URD
was written. But in the design phase it became clear that ¢éisegd was quite straightforward.
The main reason for this is that the SDD’s written by ISR dogwitain the graphical design of
the user interface. Only the architecture of the functidagér below is described. Often this is
limited to describing a well-known design pattern and désing the variations that are applied
on the pattern for the specific case. This results in a SDDdbatains a general introduction
to the application, which is almost the same as the intradiicgection of the URD, and only a
small section containing design specific information. Ntbtg more extensive design documenta-
tion is generated with appDelphidoc, see [Zwartjes, 2008] [@wartjes, 2004], which generates
Application Programming Interface (API) documentatioonfrthe code of a component. This
documentation is available for users but not included inSbB®.

The duplication of general information in the URD and SDD wasognized as a problem
by ISR earlier. Creating an SDD often started with just cppgting the introduction chapter of
the URD. Updating one of the documents in the following itierss of the process, often led
to inconsistencies in the introduction and definitionspagms or abbreviations. The need for a
separate design document became more questionable wiilttied design documentation being
very little. As a result of this, a new document structure ywaposed in the PSD that combined
the requirements and the design into one document. This pewuntent, the Requirements and
Design Document (RDD), merges the introduction sectiomeflRD and SDD and contains two
separate sections for the requirements specific and dgségifis information. These changes in
the process were applied during the development of appésttoihich resulted in a RDD instead
of two separate documents.

6.4.2 XML Test Listener

TheXM. test listener is a passive component. When the test listenagistered with docAutotest’s
runner, it receives notifications of all test progress astresult events. Thé\WL test listener just
processes all information and creates an XML document ftorhie XM test listener is especially
useful if tests are run automatically. XML can be used to ghbihe test results in a web-based
system. The other two test listenddsnsol e andGUl store the results only temporarily. When
the application is closed, the results are lost. XMetest listener is the only listener that provides
permanent storage of the results. The exact applicatiohesfet XML test output documents is
discussed in the following sections.

6.4.3 Console Test Runner

Running tests in the command line is a requirement for exgguests in an automated envi-
ronment. Therefore, th€onsol e subcomponent of appAutotest is very important. The most
important responsibility of th€onsol e version of appAutotest is not displaying the test results,
but selecting and specifying which tests to run, and to $peai alternative way to process the
test results. Here is an overview of the options that can bd ta theConsol e test runner:

CHAPTER6. PRACTICAL WORK 42

Usage: appAutotest.exe [option] ... [file] ...
Options: --execute, -e Execute consol e version (do not |oad GU)
--verbose Show verbose output (including |og messages)

--xm, -x [file] Report the test results in XM, optionally
specifying a path to the output file

--help, -h Print this help and exit successfully

--version, -[vV] Print version information

--test-cases, -t Only execute test cases of special type,
list of test case types: DEV, EXP, PER REG

--force-run, -F Also run disabled test cases

The most important options are for distinguishing between th@nsol e andGUJ test runner
and- x to register theXM. test listener and specify the filename of the XML output doentn If
this command is used, the results are summarized in the cothfitee and stored in detail in
an XML document. Furthermore, there is an option to execntg st cases of a special type.
This is useful, for example, if only regression tests neeldet@xecuted, which is the case in an
automated environment. Tl@ensol e test runner is used in Automatedtest, which is discussed in
Section 6.5.

6.4.4 GUI Test Runner

The GUI part of appAutotest is the view that will be used thestwehile developing a component
and the tests. Logically, the GUI version of the applicatiwavides more features and options to
configure a test run than the console version. The GUI cantainumber of panels with infor-
mation about the tests. One panel displays which test paskag currently loaded, a treeview
containing the structure of the loaded test collectiorst, cases and test methods, is shown in an-
other panel. This treeview is also used to configure the.t@st®st collection or test case can be
enabled or disabled by checking or unchecking it in the teseviFurthermore, there is a panel that
shows a log with the test progress and test result messagfearéreceived from subcomponent
Runner of docAutotest.

Of course, when tests are run, the most important thing wlalisare test results. But the list
of progress and result messages can be very large and iakélldgome time to scroll through all
results and see whether all tests succeeded. To make trad ggshlt of a test run instantly visible,
a result bar is added to the application that is red or gretm aftest run. Of course, the bar is
green if the test is successful. The application also pes/gbme options to load and save test
configurations, to edit the treeview and to enable XML outfiie result bar is a key principle of
TDD. Kent Beck refers to this as the TDD mantra:

1. Red—Write a little test that doesn’t work, and perhaps doesvetnecompile at
first.

2. Green—Make the test work quickly, committing whatever sins nsegg in the
process.

3. Refactor—Eliminate all of the duplication created in merely gettitige test
work.

Red/green/refactor—the TDD mantra [Beck, 2002].

43 CHAPTER 6. PRACTICAL WORK

To integrate the testing into the development processAth@pplication can easily be started
from Delphi’'s IDE. It is possible to assign appAutotest asoattapplication for a package that
contains tests. When the host application and its paramaterconfigured correctly, it is possible
to start appAutotest and run all tests with only one key-gres

Another helpful tool in the development of a component is AQd, see Section 5.3.1. It
is possible to use appAutotest as a host application in A@Timthe same way as in Delphi's
IDE. When appAutotest is used as a host application in AQTitnzan be used to do memory
leak, code coverage, or performance analysis. ApplicajgmAutotest runs tests on the project
under test, while AQTime is profiling the test run. If tBd test runner is used, it is possible to
configure the test runs in detail which makes it possible toa@rage profiling on different levels.
The coverage of a complete component can be measured usiciipfy statement, or condition
coverage. But it is also possible to see which part of a commis covered by a single test case.
AQTime can be added to the ‘tools’ menu in Delphi’'s IDE whichkas it more easy to access.

6.5 Automatedtest

Since docAutotest supports creating regression testsjntportant that these can be re-executed
periodically. The regression tests created with docAstod® not require any user input which
makes them very suitable for automated running. For thipgaeg Automatedtest is introduced.

Ideally, Automatedtest should run all test projects dgvetbat ISR daily. For this purpose,
preferably a separate and clean computer system shouldeble &unning all test projects on
a daily basis ensures that developers get feedback on thectwss of all components. This
is important because there are dependencies between centpoand it is important to detect
defects that were introduced by changes in other componmentsTesting with a clean system
ensures that the latest versions of all components are Asgoimatedtest can also be used by the
developers, to test the locally installed components artdgbunfinished code that has not been
committed yet.

Running Automatedtest on a clean system can be dividedwudgarts. (1) A clean copy of
the project tree containing all the components developetSBymust be checked out from the
Concurrent Versions System (CVS). All components must Imepiled before the actual testing
can start. (2) The actual testing consists of running theessjpn tests of each component and
collecting the results. The test results must be reportead dlear way, summarizing the results
and only emphasizing unsuccessful tests. Step (1) is disduis Section 6.5.1 and step (2) is
discussed in Section 6.5.2.

6.5.1 Autobuild

An autobuild system is used at ISR to automatically configure build components. This auto-
build system consists of two scripts and a number of modalegritten in Perl:

e Configure — A script that reads a set of project configuration files arehters a set of
Makefiles to build the project.

e Release- A script that reads the project configuration files and deplbe files that are
constructed by building the project.

CHAPTER6. PRACTICAL WORK 44

The configure script is locally used by all developers todhidth documents and source code.
The variables that are unique for a project are stored intbieqt's configuration files. A project
has a top level configuration file identifying and describthg project, a configuration file for
each document, and a configuration file for the source codghEaelease of projects, a separate
computer is installed. This computer is a clean system wikiobt used for development, but only
for releasing projects.

The autobuild system is perfectly suitable to function assiffor the Automatedtest sys-
tem. It already provides functionality to configure and @wll components from a clean CVS
project tree. Each component consists of a top level codaripwith optionally a number of
sub-libraries. It was possible to retain the existing Auittbstructure, because the test projects
are compiled as Delphi packages, see Section 6.3. Eachrégstids added as a sub-library of the
component it tests. Functionality was added to Autobuildistinguish between a test sub-library
and other sub-libraries, which was necessary because ehdepcies between test libraries and
their components, and the order in which they were built. ohutld now builds all components
with their general sub-libraries first, after which the tiéstaries are built.

6.5.2 Automated Running of the Tests

After successfully executing the Autobuild script, all gpoments including their tests sub-libraries
are correctly configured and built. Now, the actual testiag start. For this purpose another Perl
script, named Autotest, has been written. This script uppsatotest to execute the tests sub-
library of a project, if it has one. Optionally, an XML docuntawith the test results is generated
and moved to a special results subdirectory of appAutstesstallation directory. When this
script is executed in the top level of the project tree, tiséstef all components are executed.

In general this Autotest script can be used by every developist the components that are
stored locally, but it can also be used to run all test preject a separate system. As already
stated, all tests should ideally be run every day. For thipgee, the Autotest script can be used
on the complete project tree to generate XML documents \uightést results of all components.
These results can easily be published online and an ovenfi@ results can be presented on a
so called ‘test-dashboard’, using eXtensible Styleshaaglage (XSL). This gives all developers
a clear overview of the status of all components. Preferdidysystem should also send an email
warning to the responsible developer if there are tests ohgponent that do not pass.

6.6 Use Case: Developing a Component Using the New Approach

In this chapter, so far, the practical work that has been dasebeen presented and the develop-
ment of the tools to support the testing approach has beenssied. But from this information,

it is not directly clear how the testing approach and thestadluence the development of a com-
ponent in practice. Therefore, a use case of the developofientomponent is presented, which
describes the process step by step. A model of the develdprmess is depicted in Figure 6.4.

1. Exploration phase: gather requirements and create a URD.

2. Design phase: make a basic design and create a SDD, the tRECED may be combined
ina RDD.

45 CHAPTER 6. PRACTICAL WORK

Exploration Phase
Gather user requirements

Deliver URD or requirements part of RDD
Change user requirements l

Design Phase
Construct design

Change design

Deliver SSD, SDD or design part of RDD
|

i Construction Phase

Write a Test
Choose the most suitable
test from the to-do list

Red bar
Green bar

Red bar
Y
Implement Code
Make the test pass
Green bar
Green bar
Y
Refactor
Remove ‘code smells’ [N\
Public product release
Bug found or feature request l

\ Maintenance Phase
Fix bugs and implement mi-

nor code changes

Figure 6.4: The model of the proposed development proceggling the testing approach, which
is also described in the use case.

CHAPTER6. PRACTICAL WORK 46

3. Construction phase:

3.1 Create the directory structure for the new componeritarptoject tree.

3.2 Create the configuration files for the component and stsstgb-library.

3.3 Implement the basis of the design. Itis difficult to staet TDD iterations with no code
base at all. Therefore, it might be desirable to implemeatdixclaration or interface
of the basic classes of the design.

3.4 Write tests for the current implementation, using ddofast. Create a separate test
support library for this component if necessary, contgrspecific check methods or
other utility methods.

3.5 Configure Delphi and AQTime.

e Set appAutotest as the host application to run the testdilsaiy.
e Add AQTime to Delphi’s tools and configure the parameteraichsa way that it
automatically runs the coverage analysis using appAdtotes

3.6 Run AQTime to assure that the current implementatioomspietely covered, before
continuing with the TDD phase.

3.7 Create a to-do list with implementation tasks. Try topkéee tasks small. This list
is initially derived from the user requirements and updatdubnever a new task is
thought of.

3.8 Start of the TDD iteration:

e Pick one task from the to-do list and write a test for it, usitogAutotest. These
tests are typed as development tests. Run the tests, thg meplemented test
should fail: Red bar.

e Implement the code to make the new test pass: Green bar.

¢ \erify that the code is clean. If there are code smells, orgr@unot satisfied with
the code as it is now: Refactor (run the tests again to maletherrefactoring

did not break anything).
e Occasionally re-run AQTime to make sure that the comporsetdiinpletely cov-

ered and nothing remains untested.

3.9 When all requirements are implemented and the compaséinished, run AQTime
to check whether there are memory leaks and whether therpefce is accurate.
Refactor or improve the performance if necessary.

3.10 If the component is deployed, all tests must be typecdg®ssion tests, since only
regression tests are run by Automatedtest.

4. Maintenance phase: re-run all tests regularly, prefei@ba daily basis. Make sure that all
regression tests pass if something is changed in the compon& any component that is
related to it. When Automatedtest is used, the tests areratically run each day.

e When a bug is reported, write a test to reproduce the bug.
e Write the code to make the test pass, which fixes the bug
e Refactor again, if necessary.

The same iteration can be applied when a feature requeshés do

47 CHAPTER 6. PRACTICAL WORK

Of course, the development process is not completely séigueRigure 6.4 also shows that
it is possible to fall back to previous phases, so the remérds or design may be extended if
necessary. This is especially important when a lot of refawng is done, which may adjust the
design. Note that the outgoing arrows from the construgtioaise only leave states with a green
bar, so all tests should pass before changing phases.

This use case is based on the development of a new comporentesting framework is also
used to develop tests for all existing components of ISRh#t tase, the process changes a little.
The first few steps can be omitted and the process basicaitg stith creating a to-do list, not with
implementation tasks, but with test tasks. In each TDD iienaa small test is written which, if
the current implementation is correct, should pass. Whareetest fails, the implementation must
be reviewed and corrected. Since not all code is testedtygtard to tell whether changes in the
code break anything. Therefore, refactoring should be dengcarefully and not too rigorously.
After each iteration, AQTime can be used to check whethenrtaiogpart of the code is covered
accurately or whether more tests are needed. Eventuallyesiagge percentage of 80 or 90 % may
be reached depending on the criticality of the componeptSsetion 4.4 for more information on
coverage measures.

6.7 Conclusion

This chapter analyzes the practical work that was undemtédelevelop the testing framework,
project Autotest. In addition, the role of the testing framek and other tools in the development
process in practice was presented in a use case.

In this documents a number of documents and tools are megtioh complete overview of
all the tools and documents that are written and developetSi in this project are presented
below:

e TSD [Hermans, 2006] — A document describing the selecteathtgeapproach and technical
aspects of testing, see Section 4.5.

e docAutotest — The framework that enables writing tests Sesion 6.3.

— URD of docAutotest [Hermans, 2005c]

— SDD of docAutotest [Hermans, 2005b]

— Component docAutotest, the code.

— Test project docAutotestTests — The test project that testgponent docAutotest.

— User manual of docAutotest — A wiki system is used at ISR, Whigplains all the
tools that are used in the development process. A page was daa explains the use
docAutotest for the development of tests.

e appAutotest — the application that runs the tests and pre#es results, see Section 6.4.

— RDD of appAutotest [Hermans, 2005a]

— Application appAutotest, the code.

— User manual of appAutotest — A wiki page that explains the afsgppAutotest in
combination with AQTime.

CHAPTER6. PRACTICAL WORK 48

e Script Autotest — The script that enables automated runafrtgsts for multiple projects.
Introduced to automate regression testing.

e Test project docDateTimeTests — The test project that testgponent docDateTime, which
provides functionality to perform date and time calculasio

So far, docAutotest has been used to write tests for a nunfilsengponents. For most of these
components, this work has consisted of rewriting existesjs using docAutotest. Currently there
are two components that are completely tested, the tesés ativequirements of the components
which resulted in a code coverage of approximately 90 % résteng to note is that in both cases
the test packages are about half the size of the componesuneeiain lines of code. Some com-
ponents are partly tested, mostly because the developbrstanted using docAutotest halfway
the development of the component and have not finished thieingmtation of the tests yet. At
the very least, each component now has an empty test packhmpd, compiles and can be run by
appAutotest. This reduces the effort to start writing tefisexample if a bug needs to be fixed.
Unfortunately, no component has yet been developed coetypliedm scratch using the proposed
development and testing approach, mainly due to a lack @&.tim

Overall, many positive reactions have been received fromldpers. Positive aspects of the
new approach are reduced development times for tests,@umifay of testing and improvement
of general testing knowledge within ISR. Unfortunatelyerth were no resources available to
accommodate a separate computer system which executesétetitest, see Section 6.5, on a
daily basis. However, the script is ready to use and adds extiue to the complete testing
process.

Chapter 7

Conclusion

Various testing methodologies have been examined and cechpathe development methodol-
ogy that is used at ISR. An agile approach was preferred okeaayweight methodology, since
the development process used at ISR is also agile. Theré¢ferd DD approach was selected as
the basis of the testing approach. Another advantage of 0$dD in ISR’s development method-
ology is that it only affects the construction phase, wheesdther phases basically stay the same.
This makes it easier to adopt, since the developers do net ttaghange their whole develop-
ment process. The proposed testing methodology is elambmaia Testing Standards Document,
which together with the already existing Process Standaotsiment describes the full develop-
ment process. Besides the testing approach, the Testinge8tis Document contains a section on
technical aspects of testing, like test case selection ade coverage. Especially this last section
with technical aspects of testing was received positivglyhle developers.

Supporting the proposed development and testing approiclamaccurate tool-set was prob-
ably the most time-consuming and important part of the ptoj®laking a testing approach easy
to apply is absolutely necessary to make the approach sfatasd to get the developers to really
apply it. Therefore, a testing framework has been develtipgitenables developers to create tests
and code in the same development environment. The framewmsject Autotest, has been ap-
plied retrospectively on six projects. The tool has beesresively used in the construction phase,
which is the phase at which the proposed testing approadmésia Already, by simply translating
the existing tests to tests based on the framework provigeudject Autotest resulted in finding a
number of previously undiscovered bugs. The reason foiighisat it was easy to add some extra
checks that were not done previously, the translation ofdhts resulted in a more complete test
package. Furthermore, the combination of project Aut@edtAQtime, which enables developers
to analyse the coverage of their tests, increases the vathe tool. Overall, project Autotest is
considered as a very useful extension to the existing tdol Be integrate the new approach to
testing more tightly in the development process, a scriptie®n created to automatically execute
all regression tests that have been created for all projects

The main accomplishment of this project is that a gap in theaaly existing development
process has been filled. Many methods have been presenteshtmurm how good a development
process is. Aninformal method is presented by Spolsky [Bpelsky, 2000], which boils down to
evaluating whether a number of important aspects of soffwavelopment are treated accurately
at a company. Before the start of this project, the developrmeocess and tools used at ISR

49

CHAPTER 7. CONCLUSION 50

already attended a number of these aspects, for examplaireesoontrol system was used, an
autobuild system enabled building the complete comporemd- library backbone in one step,
requirements and design specification were written and aduiger was used. At the end of the
project, with the introduction of the testing approach, samportant aspects that were unattended
before can be added to this list:

e Functional tests are written in a structured and uniform.way
e No component will be deployed untested.

e An autotest system enables automated running of regretestm
e Bugs are fixed before new code is written.

7.1 Future Work

The future use of the testing framework and whether its dgweent will continue is somewhat
uncertain due to financial problems at ISR. The head-officetefsoft had to reorganize and
economize due to disappointing sales of the end-product #&sult, it is still uncertain in what
way the development of the component- and library backboitiebes continued. However, the
component- and library backbone is of significantly highealdy than the basis of the current
end-product, which is still rather unstructured and cltaoli might therefore be worthwhile to
consider developing the end-product freshly again, usiegcomponent- and library backbone as
a starting point. When this is done in a structured way, utiegdevelopment process and testing
approach used at ISR, this might result in a better produdheriong run, than extending and
debugging the current product. However, this might not begion from a financial and business
point of view.

Regarding the work on the selection of a testing methodokagy the implementation of
project Autotest, a few recommendations for future work yeded. A very brief overview
of some possibilities to improve and extend the testinggss@nd tools is discussed here.

7.1.1 Automated Testing System

Itis already possible to execute all tests, to export thaltes XML and to present these results on
a test dashboard online with XSL. So the tools and scriptessry to accommodate a separate
computer system that tests the complete component basdkobnis daily basis are available,
however such a system has not been composed yet. Having ssydiean would be a major
improvement. It is very suitable to monitor the status otfadl developed components and to give
an overview of the work that has been done with project Agtote

7.1.2 Test Support Libraries

Component docAutotest introduced test support librarieglvcontain check methods and other
utility functions that can be used in tests. The suppor@ahprthat is provided by docAutotest

mainly contains basic check methods. If more tests areentetite need might arise for other and
more complex check methods and utility functions. Of coucseating tests will become easier
when more and more comprehensive support libraries arkabigi

51 CHAPTER 7. CONCLUSION

7.1.3 Code Generator

To create a test collection or test case, it is necessaryetdena class with a number of standard
procedures. These classes are basically the same for eaaollection or test case except the
class name. Therefore, these classes can easily be crafiiealomde generator. Especially when
it is implemented as an add-in in the IDE, it would be a majopriavement in the usability of
docAutotest.

List of Abbreviations

APl Application Programming Interface
CMMI Capability Maturity Model Integration
CDS Context-Driven School

CDT Context-Driven Testing

CSD Coding Standards Document

CVS Concurrent Versions System

ESA European Space Agency

GUI Graphical User Interface

IDE Integrated Development Environment
ISR Intersoft Software Research

JCL JEDI Code Library

PSD Process Standards Document

PUT Project Under Test

RDD Requirements and Design Document
SDD Software Design Document

TDD Test-Driven Development

TSD Testing Standards Document

TU/e Technische Universiteit Eindhoven
URD User Requirements Document

XML eXtensible Markup Language

XSL eXtensible Stylesheet Language

53

Bibliography

[Ambler, 2003] Scott W. AmblerAgile Database Techniquedohn Wiley & Sons Inc, 2003.

[Ambpler, 2002] Scott W. AmbplerAgile Modelling, Effective Practices for EXtreme Program-
ming and the Unified Procesgohn Wiley & Sons Inc, 2002.

[Astels, 2003] David Astels.Test-Driven Development, a Practical GuidBrentice Hall PTR,
2003.

[AutomatedQA, 2004] AutomatedQA. Performance profilinglanemory debugging toolset.
[online]. Available:ht t p: / / www. aut omat edga. coml pr oduct s, 2004.

[Beck, 2002] Kent BeckTest-Driven Development, by Examphaddison Wesley, 2002.

[Beizer, 1990] Boris BeizeSoftware Testing Techniques, Second Editioternational Thomson
Computer Press, 1990.

[BetaSoft, 2006] BetaSoft. Software testing and qualigusagnce online forums. [online]. Avail-
able:http://ww. gaf or ums. com 20086.

[Boehm, 1986] Berry W. Boehm. A spiral model of software depenent and enhancement.
ACM SIGSOFT Software Engineering Notk$:14—-24, August 1986.

[Brooks Jr., 1987] Frederick P. Brooks Jr. No silver bulletssence and accidents of software
engineering.The Mythical Man-Month4:10-19, April 1987.

[Brooks Jr., 1995] Frederick P. Brooks Jrhe Mythical Man Month: Essays on Software Engi-
neering Addison-Wesley, 1995.

[Cem Kaner, 1993] Hung Quoc Nguyen Cem Kaner, Jack Fegkting Computer Software, Sec-
ond Edition International Thomson Computer Press, 1993.

[Cem Kaner, 2001] Bret Pettichord Cem Kaner, James Baelsons Learned in Software Test-
ing, A Context-Driven ApproachiViley, 2001.

[Collabnet, Inc., 2004] Collabnet, Inc. Tigris.org: Opeyusce software engineering. [Online].
Available: http://tigris.org/, 2004.

[Erich gamma and Kent Beck, 2002] Erich gamma and Kent Beckait.J [online]. Available:
http://wwm junit.org/, 2002.

55

BIBLIOGRAPHY 56

[European Space Agency, 1996] European Space AgeBESA BSSC(96)2 ISSUE 1: Guide to
Applying the ESA Software Engineering Standards to Sméiv&ee Projects European Space
Agency, 1996.

[Fowleret al, 1999] Martin Fowler, Kent Beck, John Brant, William Opdylead Don Roberts.
Refactoring: Improving the Design of Existing Codaldison-Wesley, 1999.

[Hermans, 2005a] John HermanRequirements and Design Document: appAutotéstersoft
Software Research, 2005.

[Hermans, 2005b] John HermanSoftware Desigh Document: docAutotehttersoft Software
Research, 2005.

[Hermans, 2005c] John Hermari$ser Requirements Document: docAutatéstersoft Software
Research, 2005.

[Hermans, 2006] John HermansTesting Standards Documentintersoft Software Research,
2006.

[Jakobsson, 2003] Jakobsson. V-model testing — procesglngodfiguration using svg. April
2003.

[Jedi Community, 2004] Jedi Community. Project jedi. [@eli. Available: http://ww.
del phi-jedi.org/, 2004.

[Joel Spolsky, 2000] Joel Spolsky. The joel test: 12 stepsetter code. [online]. Available:
http:// ww. j oel onsof t ware. conf arti cl es/ f 0g0000000043. ht m , 2000.

[Keefer, 2006] Gerold Keefer. The cmmi considered harmbulduality improvement and sup-
plier selection. AVOCA GmbHKJanuari 2006.

[Koch, 2004] Christopher Koch. Bursting the cmm hy@&0 Magazine March 2004.
[Marick, 2000] Brian Marick. New models for test developrheQuality Week '99March 2000.

[Mika Mantyla, 2005] Mika Mantyla. Bad code smells: A taxong [online]. Available:ht t p:
// ww. soberit. hut.fi/nmantyl a/ BadCodeSnel | sTaxonony. ht m 2005.

[OSDN, 2004a] OSDN. Freshmeat.net. [Online]. Availalble:p: / / waw. f r eshneat . net/, 2004.

[OSDN, 2004b] OSDN. Sourceforge.net. [Online]. Availabhet p: // wwv. sour cef or ge. net/,
2004.

[Patton, 2005] Ron Pattorsoftware Testing Second EditioBams publishing, 2005.

[Rapoza, 2003] Jim Rapoza. Open-source testers offer tmvadternatives. [Online]. Available:
http://opensourcetesting.org/articles/2003_Augll_Eweek. pdf , August 2003.

[School, 2001] Context Driven School. The seven basic fpias of the context-driven school.
[Online]. Available:http: //wwmv. cont ext - dri ven-t esting. com 2001.

57 BIBLIOGRAPHY

[Software Engineering Institute, 2006] Software EngimagrInstitute. Capability maturity
model integration. [online]. Availablent t p: / / www. sei . cnu. edu/ crmi , 20086.

[Software Quality Engineering, 2006] Software Quality Exegring. Interactive community ex-
clusively engaged in improving software quality throughihe software development lifecycle.
[online]. Available:ht t p: // ww. sti ckymi nds. com 2006.

[SourceForge, 2001] SourceForge. Dunit: an xtreme tedtargework for boland delphi pro-
grams. [online]. Availablehttp://dunit. sourceforge. net/, 2001.

[SourceForge, 2003] SourceForge. phpbugtracker: a webdbbug tracking system. [online].
Available: htt p: // phpbt . sour cef or ge. net/, 2003.

[Steve Cornett, 2005] Steve Cornett. Code coverage asalysnline]. Available:htt p: // ww.
bul | seye. conf coverage. ht i , 2005.

[Thompson, 2003] Neil Thompson. ‘best practices’ and ‘eattdriven’: Building a bridge.
STAREast papeMay 2003.

[Zwartjes and van Geffen, 2004] Gertjan Zwartjes and Joast&effen.Process Standards Doc-
ument Intersoft Software Research, 2004.

[Zwartjes, 2002] Gertjan ZwartjesCoding Standards Documentntersoft Software Research,
2002.

[Zwartjes, 2003] Gertjan Zwartjeglser Requirements Document: appDelphiDbttersoft Soft-
ware Research, 2003.

[Zwartjes, 2004] Gertjan ZwartjeSoftware Design Document: appDelpiDdotersoft Software
Research, 2004.

	Abstract
	Table of Contents
	List of Figures
	Chapter 1 Introduction
	Chapter 2 An Introduction to Software Testing Methodologies
	Chapter 3 Tools in the Test Development Process
	Chapter 4 Technical Aspects of Testing
	Chapter 5 The Selected Testing Approach
	Chapter 6 Practical Work
	Chapter 7 Conclusion
	List of Abbreviations
	Bibliography

