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Abstract

Biochemical processes are usually nonlinear and modeled using nonlinear
differential equations. In classic modeling, the usual approach is to linearize
these nonlinear differential equations in some work point. For biochemical
processes, this approach is not feasible, not only due to the nature of the
system’s working range, but also due to the fact that these nonlinearities are
often essential to the actual functioning of the system. Parameter identifi-
cation on nonlinear systems is not an easy task. The most striking problems
are the high sensitivity to measurement noise and the necessity to have good
a-priori estimates of the parameters.

A way to get round the problem of having a nonlinear system is to take
many linearizations to capture the nonlinear behavior. When applying this
idea to a system of nonlinear differential equations with a piecewise affine
(PWA) system. This allows the system to be identified using linear opti-
mization techniques and due to the simpler model structure, some general
approaches can be developed. The major drawbacks of taking this approach
are an increase in number of parameters and the problem of clustering mea-
sured data into the modes of the PWA system. In this paper, an approach to
piecewise linearization is presented as well as methods for parameter iden-
tification on these systems.

Often a lot of information is available on biochemical systems, which,
other than a-posteriori verification, is unusable in identification. In bio-
chemistry, identification is usually hampered due to small amounts of data
and high noise levels. Therefore, a lot could be gained if this a-priori in-
formation would be used during identification. A method is presented by
which this a-priori information is converted to information which can be used
in identification. This method is based on a qualitative abstraction of the
PWA systems, which can be found from nonlinear systems using piecewise
linearization. This qualitative abstraction method is presented along with a
method to put this abstraction to use on incorporating a-priori information
into the identification process.
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Chapter 1

Introduction

Biological systems are generally very complex. Research in biology focuses
primarily on understanding the individual components of systems, neglect-
ing the interaction between different parts which generate the system’s be-
havior. To understand the full functioning of a biological system, knowledge
about each individual element of the system is insufficient. Interaction be-
tween subsystems is at least as important. The complexity of both the
subsystems and the interaction between subsystems hampers the analysis of
the system as a whole. Mathematical modeling of these systems as a tool
to aid analysis has increasingly gained attention from biologists during the
last few years. This resulted in a novel field of research, which is known as
systems biology.

In the field of systems biology the white-box modeling approach is com-
monly used. White-box modeling can lead to very accurate models, but
only if the subsystems are known and modeled accurately. The parameters
of these models often have a physiological meaning. In systems biology often
nonlinear continuous time differential equations are used to model the be-
havior of subsystems, which leads to a complex nonlinear description of the
whole system. These nonlinearities complicate analysis due to the properties
of nonlinear parameter identification.

Nonlinear parameter identification is accompanied by a number of prob-
lems. First, good initial guesses for all parameters are necessary to come to a
good identification result. Biological measurement data is often heavily con-
taminated with noise, which contributes to the formation of local or global
minima. This could lead to identification results describing the realization
of the measurement noise more than the behavior of the actual system.

As a good alternative to the white-box approach, a grey-box approach
can be used. This method still allows for the use of much of the available
information on the system, while a simpler model is sought which describes
the system only sufficiently accurate for the model’s purpose. In this simpler
model, the physiological meaning of the parameters is lost, as well as the
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distinguishable parts.

One implementation of grey-box modeling is linearization of the nonlin-
ear parts of the differential equations in some working point. This reduces
the model to a set of linear differential equations. For biological systems
this approach is usually not feasible due to the fact that the differential
equations are usually too strongly nonlinear over a certain working range to
be linearized.

By using a hybrid systems approach the problem of nonlinearity in the
working area can be overcome. This approach has recently been introduced
in [6]. By dividing the working area into smaller pieces and linearizing the
nonlinearities in each of these pieces, a good description of the nonlinear
behavior can be found while yielding simple linear differential equations.
The resultant system is now divided into several subsystems whereby each
subsystem has a set of linear differential equations. A system like this can
be described by a hybrid systems model.

In biological systems, there usually is an abundance of qualitative infor-
mation about the behavior of the system. This information is usually not
usable for identification purposes other than a-posteriori validation. Recent
research on qualitative simulation [1, 2, 3] has shown that qualitative infor-
mation can be used to derive a system’s behavior. This simulation algorithm
is based on a small class of hybrid systems, which can be used to describe
certain biological systems which exhibit clear switch-like behavior. In this
paper, the simulation algorithm is changed to allow for a much broader class
of hybrid systems. Also, the use of the algorithm is inverted so that a-priori
information on the behavior of the system is used to validate restrictions on
parameter values.

This paper discusses a general method to use a hybrid systems model to
describe complex and nonlinear biological systems. In chapter 2 the use of
hybrid systems to describe nonlinear equations is introduced. A method to
use as much a-priori information as possible is introduced in chapter 4 as
well as a method to perform the final parameter estimation.

4 A Hybrid Systems Approach to Identification of Nonlinear Biochemical Processes



Chapter 2

Hybrid Systems
Approximation of
Nonlinearities

In biology, the use of hybrid systems is an emerging field. Typical applica-
tions are limited to systems in which clear switching behavior is observed,
such as genetic regulatory networks [2, 3], signal transduction pathways [7]
and opening and closing of membrane channels [9]. Another use of hybrid
systems will be presented here.

In classic modeling and control, nonlinearities are linearized in a certain
working point using a first order Taylor approximation. Most nonlinearities
in biological systems are essential to the dynamical behavior of the system.
Usually these nonlinearities are too strongly nonlinear in the working range
to be linearized without large deviations from the original function. There-
fore linearization in a single working point is not an option. A solution to
this problem is to use a piecewise linearization.

When doing piecewise linearization, the working range is divided into
multiple intervals and the nomnlinear function is linearized separately for
each of these intervals. As the union of these intervals equals the origi-
nal working range, aggregating the linearizations results into a piecewise
affine (PWA) function, which will describe a piecewise linearization of the
nonlinear function. When using this method on a system of nonlinear differ-
ential equations, the resulting piecewise linearized system becomes a PWA
system, which is a class of hybrid systems.

CHAPTER 2. HYBRID SYSTEMS APPROXIMATION OF
NONLINEARITIES
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2.1 Problems Introduced by Nonlinear Parts of
Differential Equations

Identification of nonlinear systems poses a set of problems. Nonlinear least
squares optimization is known to be sensitive to noise introduced in measure-
ment. The noise will cause local minima in the cost function, which makes
accurate parameter estimation difficult. Also in nonlinear least squares op-
timization, local minima are likely to exist even without any measurement
noise. In traditional nonlinear methods, the only way to guarantee conver-
gence to the global minimum is to have a very good initial estimate. This
initial estimate is often not available, because this is the goal of the whole
identification procedure.

Another downside to traditional nonlinear optimization is that, due to
the fact that convergence cannot be guaranteed, finding the global minimum
is either uncertain or requires massive computational power to achieve.

2.2 A Subclass of Piecewise Affine Systems

To enable further analysis of the results of piecewise linearization of a set of

nonlinear differential equations, a suitable class of piecewise affine functions

and resulting piecewise affine systems will be introduced. Also, this class is

chosen such that qualitative analysis is possible, as presented in chapter 3.
First some definitions:

Definition 1 An affine function is defined as:
f(@)=kot+ki-z (2.1)

Definition 2 A piecewise affine function can be defined as:

ko,o + kl,O - T forz € [min(:c), 01)
koi+kiy-z for z € (61,62)
f(z) = : : . (2.2)
kom +kim-x for z € (Op, max(z)]

Where k., are parameters, 0, are thresholds i.e. values at which the range
for z is divided, and M the number of thresholds leading to M + 1 intervals.

Note that f(z) is left undefined on = € {61,0;,--- ,0x}. This is not de-
sirable when using this system in simulation or other analysis, however, it
is a necessary condition to allow for the qualitative simulation of the final
system, as described in chapter 3. If a choice must be made, due to problems
introduced by the undefined area, it should be made dependent on the spe-
cific system under scrutiny, keeping the changes introduced by this choice
in mind. This paper will not go into the details of this procedure.

6 A Hybrid Systems Approach to Identification of Nonlinear Biochemical Processes
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Most models of biochemical processes deal with more than one state
variable. With the introduction of multiple state variables, the number of
modes increases exponentially. For example, a system of three state variables
and a single threshold for each state variable already results in eight modes
and therefore eight different sets of three differential equations.

The class of hybrid systems will be restricted to a special subclass of the
PWA class. This subclass is characterized by a subdivision of the state space
by planes. These planes can be described by z, = 65,. Such subdivision
leads to rectangular or (hyper)cubic areas in the state space for each mode
of the system. The choice of this class leads to a much simpler qualitative
analysis as presented in chapter 3. Also each state variable’s differential
equation can be written down separately and there is a simplified notation
scheme for this.

The restrictions imposed by this class are acceptable. In practice this
class of systems would be found for some nonlinear systems, because nonlin-
earities frequently depend on just a single state variable. In case more than
a single state variable is involved, a reasonable approximation can often still
be found, as will be shown in an example later.

This subclass of PWA systems can be written in a compact way by using
step functions.

Deflnition 3 The step function is defined as:

0 ifr<@
+ __
S(Lw_{1 if x>0 (2:3)

Again, the value of this step function is left undefined on = 6. If a
definition is necessary, it could be done like:

Definition 4 The step function with a value at x = 8 is defined as:

0 ifz<é
s7(z,0) =< a ifrx=0,a€]0,1] (2.4)
1 ifz>0

By choosing an a to be either zero or one, the point = 8 can be added to
the left or right side of the threshold. Also, an « other than zero or one can
be chosen, to allow for certain behavior at the threshold, depending on the
system under scrutiny.

With this step function the PWA function of equation 2.2 can be rewrit-
ten as:

f(:l,‘) = lo,o + ll,O - T+ S+(:1,‘, 01) . (lo,l + 11,1 . I) +... (2.5)
+S+(I,0M) . (lo,M + ll,M :1:)

The parameters [, ,, relate to the parameters in equation 2.2 as

_ kn,m - ln,m_l fn>0
“”‘{mm if m=0 (2.6)
CHAPTER 2. HYBRID SYSTEMS APPROXIMATION OF 7
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Expanding this notation to vectors of state variables, vectors 7' and l_;';1 are

introduced.
1
- Iy -
T = . and I =(8, Fm -~ Bm) (2.7)
N

In these vectors, IV is the number of state variables and 1 < n < N the index

of a state variable and n = 0 refers to the offset part of the affine functions.
m is the index of an interval of the PWA function with 0 < m < M,, and
M,, the number of intervals of z,,. A set of binary functions s?, needs to be
introduced which describe whether a certain parameter vector [7}, is active:

Definition 5 The set of functions s™(£) : RN — {0,1} are logical com-
binations of step functions as in definition 3. Any logical operator may be
used, e.g. negation, OR’ing, AND’ing etc.

If the step functions are used as defined in definition 4, the definition of s7'
transforms into:

Definition 6 The set of functions s7*(Z) : RY — [0,1] are combinations of
step functions as in definition 4. Multiplication and averaging can be used
to combine the step functions, but it should be observed that 0 < s7* < 1.
The multiplication takes the place of AND and the averaging the place of
OR from the previous definition.

With these definitions, the whole class of PWA functions used in this paper
can be described by

& = B0 + si@-0-2 + ... + sih@. ..o
Iy = l%-:z:’ + s%(j;‘)[%zl + ..+ 3342(5),[342,2:/

. ) (2.8)
iy = -2 + SN@ -2 + ... + sNv@) DIV

2.3 PWA Approximation for Known Nonlinear Func-
tions

In table 2.1 a number of PWA approximations for nonlinearities commonly
found in differential equations of biological systems are shown. The equa-
tion 2.10 in known as the Michaelis-Menten equation and equation 2.11
as the Hill curve. A better approximation can be achieved by using more
than one or two pieces. In identification, however, this would lead to fewer
and fewer data points per interval and an increasing number of parameters
leading to worse identification results. Therefore the choice of numbers of

8 A Hybrid Systems Approach to Identification of Nonlinear Biochemical Processes
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|4

kn + 1
V.’Bl
kpn,+1
Valt
kn + o7

riry =

= oo’ + sT(xy,0)(l1)
= o + st(z1,0)([17')
= o + st(z1,0,)((12) + s* (21, 62)(laT")

o + st(z1,0) (1) + st (x2, 0) (la')

(2.9)
(2.10)

(2.11)

(2.12)

Table 2.1: Some approximations of nonlinear functions with PWA functions
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Figure 2.1: Conversions from nonlinear to PWA
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(a) Nonlinear (b) PWA approximation

Figure 2.2: Example conversion for equation 2.12

intervals is a tradeoff between the accuracy of linearization and the number
of data points per interval.

In figure 2.1, some examples of the nonlinear curves with the respective
PWA approximations are shown. From figure 2.1(a) and figure 2.1(b), it
can be seen that the total range over which approximation is made, is of
importance to the final optimal fit of PWA function.

In figure 2.2 the approximation of equation 2.12 is shown. This shows
the ability to describe functions of two variables with the presented class
of PWA approximations. It can be observed that the approximation is
not very accurate close to the thresholds, especially at the intersection of
both thresholds. More accuracy is, however, not always necessary. If the
uncertainty of the parameters in the nonlinear function is high, as is usually
the case in biological systems, any extra accuracy is lost in deviations caused
by these uncertainties. Also, in identification, putting a lower weight on data
points near the thresholds can diminish the influence of these deviations on
estimation results.

To find the parameter values of the PWA approximations shown in fig-
ure 2.1, a least squares optimization is carried out, minimizing a cost func-
tion J(O_‘,l_ﬁ = Hf(a':’, g, f) - g(.i:’)”2 where f(Z, g,f) is the PWA approximation
and g(Z) is the original nonlinear function. If carried out on a computer, this
optimization is difficult, because the cost function becomes a piecewise con-
stant function due to the sampling of £. Therefore a specialized algorithm
for finding optimal thresholds is needed. To achieve certainty on whether
the global minimum is found when minimizing the cost function with respect
to 5, an exhaustive search of the state space must be carried out.

For a given 8, J (z, 6, f) can be minimized using linear least squares op-
timization. Therefore this is a very fast process and an exhaustive search is
feasible for fairly large amounts of data and thresholds. More information
on this exhaustive search method is presented in section 4.1.

The class of PWA models is also known under the term threshold autore-

10 A Hybrid Systems Approach to Identification of Nonlinear Biochemical Processes
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gressive (TAR) models. There are some algorithms designed for this class
of systems, but these are all targeted on different areas of research and have
not been considered here.

An alternative algorithm for finding threshold positions has been devised.
However, this algorithm is only able to find the global minimum if the steps
between adjacent constant pieces of the cost function with changes in 6
are sufficiently small. As this can only be achieved by dense sampling and
practical absence of noise, this algorithm can probably only be used to find
threshold positions for transforming a known nonlinear function into its
PWA equivalent.

As an example, this algorithm for fitting a two-piece PWA function onto
a nonlinear function f(z) for a range X = [Tmin, Tmaz) is shown. This is
the algorithm used to find the approximations shown in figure 2.1(a-c). For
the approximation of equation 2.11 and figure 2.2, an exhaustive search
algorithm was used.

First a cost function J is defined:

J(8,18,11) = /

TrEX

(B4 s*(z,0)- 1T 7 - f(z))2dz (2.13)

This cost function is then minimized to obtain values for 8, 19 and {T simul-
taneously:

{6.8,1} = arg min J(6,03, ) (2.14)
6,0 11

To implement this algorithm on a computer, the integrals in equation 2.13
must be replaced by sums over a set of sample points in x. Now the cost
function becomes a piecewise constant function. To find the minimum for
this piecewise constant function an algorithm was devised based on the idea
of binary search resulting in a bisection-like algorithm.

The algorithm starts by setting the range of possibly optimal threshold
positions to the range of the state variable:

Omar = max(z)

Omin = mln(z) (215)

The optimal solution # is then known to be conform to 0, < 8 < 010z
To find 6, the range [@min, Omaz] is recursively reduced, until no data points
lie in that range. To achieve this, the following algorithm is used:

1. Select two trial thresholds 6#; and @3 so that both thresholds are re-
spectively at % and % into the test range:

01 = 0min + i (0ma:: - emin)
02 - Bmin + i (0ma:|: - 0min) (216)
CHAPTER 2. HYBRID SYSTEMS APPROXIMATION OF 11
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2. Calculate the minimal cost function J; and J; when using these two
fixed thresholds:

Ji = minJ(8y,0, 1)

o

, o 2.17
J2 = minJ(6s,10,11) (2.17)

[6’[1’

3. If J; > Jo, the optimal threshold is closer to #5 than to 6,, so the range
[@min, 01] is discarded by setting Opin = 6;. If J; < Ja, the optimal
threshold is probably closer to #; than to 62, so the range [62,0maz]
is discarded by setting 0,4, = 6. If the cost-function is sufficiently
smooth, the invariant 8,,4; < 6 < 6,,;, will still hold.

4. If 6,05 —Opmin > 6, with & the smallest interval between two consecutive
samples in z, continue at item 1.

5. If there is no data point in [@min, Omaz|, 6 can be chosen arbitrarily in
that range and the algorithm finishes.

6. A data point z(k) lies in [@min,Omaez]). Now choose a ;1,602 such that
Omin < 01 < z(k) < 02 < Opyqr. Now calculate

Ji = minJ(6;,0,7)

o
' . o 2.18
Jp = minJ(6,1°,1) (2.18)

0,1
If J1 < Ja, 8 = 6,, otherwise § = 5. The algorithm finishes.

Note that if the precondition of sufficiently small steps in the cost func-
tion with respect to # is not met, there’s no guarantee of convergence to a
global minimum.

12 A Hybrid Systems Approach to Identification of Nonlinear Biochemical Processes
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Figure 2.3: Conversion of nonlinear function

2.4 Example: Identification Procedure for SERCA
Pump

Calcium plays an important role in muscle contractions. One of the mecha-
nisms at play is the sarcoplasmatic reticulum into which calcium is pumped
and periodically released. This pump is called the SERCA pump.

The kinetics of the SERCA pump are modeled as presented in [8]:

Vmaz,SERCA : 012 (2_19)

Vserca(ci) = C2+K—r2nssacA
1 ,

and the system with no release active:

. Vleak + VSERCA(ZU)
= Blo) (2.20)

The goal of parameter identification is to find values for Vi4z serca and
K serca- Due to the term B(z) in the differential equation, which is a
nonlinear approximation of influences of buffering of calcium, no direct con-
version to a PWA system as proposed in section 2.3 is possible. A visual
inspection using parameter values with the right order of magnitude shows
that Vieax is small enough to be neglected and that Vserca(Z) oap be ap-
proximated with a PWA function with one threshold, see tigure 2.3. The
differential equation in equation 2.20 transforms into

=+ -:E+S+(:L‘,91)(l2 +13 -:L‘) (2.21)

From inspection of figure 2.3(b) some information can directly be de-
rived: lp > 0, ls > 0, 1; <0, I3 < 0. Further a-priori information is not
available and, due to the simplicity of the PWA function, not required in this
case. Qualitative simulation does not reveal anything new either, because
the system is one-dimensional with only two regular domains.

CHAPTER 2. HYBRID SYSTEMS APPROXIMATION OF 13
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(a) Measurement data, usable data is en- (b) Approximate derivative of measure-
circled ment data

Figure 2.4: Measurement data

The measurement data is only partially usable due to the fact that dur-
ing calcium release, the influence of the SERCA pump on the concentrations
is too insignificant to be measured accurately. Therefore only data is used
at times when no release is active and the only influence in calcium con-
centration is the SERCA pump. In figure 2.4(a) the encircled data points
are used for identification. In figure 2.4(b), the approximate derivative is
shown. It can be seen that apart from being noisy, there is some offset in
the data, not accounted for in the kinetics of the SERCA pump. Therefore,
the constraints are relaxed during this identification to allow for this offset.
Identification results in a threshold at & = 0.46 and a parameter vector of:

[={-37 -34 108 -214} (2.22)

This resultant threshold location is not at the global minimum for .J (4, [).
This minimum lies at 8 = 0.53, but as can be seen from figure 2.4(b), there
is a lot of noise in this region and the identification result just describes that
noise. Therefore that threshold was discarded and the next minimum used.
This flaw could be counteracted by either demanding a minimal number of
data points per mode, or by adding a weighting to the data points, empha-
sizing precision in the middle of each interval and decreasing influence of
offset near thresholds.

In figure 2.5(a), the resulting fit is shown.

Finding the original parameters Viaz serca and Kp, sgrca from the pa-
rameters of the PWA system is not trivial. Due to the strong interde-
pendence of these two parameters, a nonlinear least squares optimization
generally does not yield a plausible result. For this identification, the result
is Vinaz,serca = 2931 and Ky, sgrca = 1.1, while known values are in range
[100, 800] for Viaz,serca and around 0.2 for K, serca. By fixing Ko sgrea
to 0.2, a plausible value of V42 serca = 676 is found.

These results are not very consistent, yet this could be attributed to a
set of problems with the original nonlinear model. First of all, Vigrca never

14 A Hybrid Systems Approach to Identification of Nonlinear Biochemical Processes
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(a) Results of identification (b) Fit of nonlinear SERCA kinetics.
Km,SERCA = 0-2y Vma::,sr.-mCA = 676

Figure 2.5: Identification results

approaches Viaz serca With K serca = 0.2 within the sampled range. Also,
when estimating the nonlinear parameters based on the PWA approxima-
tion, the correctness of the assumed B(z) has a large influence. This cor-
rectness is not guaranteed and several other approaches to this nonlinear
system are being researched.

CHAPTER 2. HYBRID SYSTEMS APPROXIMATION OF 15
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Chapter 3

Qualitative Simulation of
PWA Systems

The qualitative abstraction method presented here is based on work by de
Jong et.al. ([1, 2, 3]), but extends this research to allow for a larger class of
hybrid models. The class of models used in their previous work is a subclass
of the models used here (equation 2.8).

The model class chosen by de Jong allows for a vast number of sim-
plifications in the algorithm. One of the major differences is the fact that
a differential equation in their class can be equal to zero, only depend-
ing on the state variable corresponding to that differential equations. So
Zn = 0 — z, = a. This results in simple planes representing the solutions
to nullcline equalities. Whereas the work presented here has to consider
slanted planes and multiple possible configurations with respect to intersec-
tion with the threshold planes. This also results in non-(hyper)rectangular
flow domains, which complicates derivation of transition rules.

The goal of this qualitative simulation is to find a directed graph repre-
senting all possible trajectories through the state space of the model. The
nodes of the graph will represent subspaces of the state space where identical
behavior is observed at any point in that subspace. Each edge represents
a trajectory crossing the boundary between two adjacent subspaces, repre-
sented by the connected nodes. The direction of the edge is dictated by the
order in time at which the trajectory passes through each subspace.

Note that the graph will represent every possible trajectory. If a choice
between multiple possible trajectories has to be made, all resulting edges
will appear in the resulting graph.

3.1 Division of the State Space

The first step in the simulation algorithm is the dividing the state space into
areas where the signs of the derivative of each state variable is constant. In
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this context the sign of a function is defined as:

Definition 7

-1 ifr<0
sign(z) = 0 ifzr=0 (3.1)
1 ifz>0

The state space of a PWA system can be seen as a multidimensional
space, with the number of dimensions equal to the number of state variables
in the system. This space will be limited in each dimension by a minimum
and maximum possible value for the state variable corresponding to that di-
mension. If Q, is the range of state variable z,, so ,, = [min(z,), max(z,)},
then the state space of the complete system is 2 = Qp X 5 X ... X Qp.

Each state variable has a set of thresholds (6,) due to step functions
(definition 3) in the differential equations. The thresholds divide the state
space into several subspaces, which are hypercubes. These subspaces, en-
closed by, but not including the thresholds, are known as regular domains
and the set of all regular domains is denoted by D,

Definition 8 A regular domain is the largest contiguous subspace of Q1 in
which no state variable reaches a threshold.A regular domain has the same
dimension as ). The set of all reqgular domains is called D,. Regular do-
mains correspond to modes of the PWA system.

In regular domains, the differential equations of the system are reduced to
a system of linear differential equations.

Exactly on the thresholds, (hyper)planes divide the regular domains.
These (hyper)planes are delimited by the nearest thresholds for all state
variables which are not at a threshold. Each of these (hyper)planes is called
a switch domain and the set of all switch domains is denoted by D,.

Definition 9 A switch domain is the largest contiguous subspace of Q in
which at least one state variable is at a threshold and the others do not reach
a threshold. A switch domain is a subspace of a lower dimension than Q.
Specifically, if D denotes a switch domain, dim(D) = dim(Q?) — #s, where
#s is the number of state variables at a threshold. The set of switch domains
s called D,

In a switch domain, the differential equations of the PWA system are un-
defined due to the definition of the step-function (definition 3). This is a
necessity which is explained later.

Definition 10 A domain is a subspace of the state space Q of a PWA sys-
tem, which belongs either to the set of regular or switch domains. The set
of all domains is D = D, UD,. It also holds that U D=qQ.

DeD
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Now some practical relations between domains will be defined as presented
in (3].

Definition 11 let D be a domain of dimension n. Let C be a hyperplane
of dimension n containing D. The set B(D) of all points = € C, such that
each ball Bo(z,€) in C of center x and radius € > 0 intersects both D and
C\D

This is a fairly complex definition, but it boils down to B(D) containing any
points, which lie in an expansion of D, where the distance from this point to
the nearest point in D, 4, conforms to limjo 0 < 6 < €. With the expansion
of D, the subspace of the same dimension of D, expanded in the directions
where D is nonsingular, is meant.

Definition 12
A(D) = {D' e D|D' c B(D)}

A(D) is the set of domains which are of lower dimension than D and
which are on the boundary of D. For a regular domain, the set A(D) com-
prises all switch domains at the border of D and for a switch domain D, it
comprises only those switch domains which are adjacent to D and have one
more state variable at a threshold.

Definition 13
R(D) = {D’ €D, |D C B(D’)}

R(D) is the set of reqular domains D' for which it holds that D € A(D’).

The simulation algorithm is based on the idea that one can define sub-
spaces of the state space {0 in which the sign pattern of the differential
equations is the same at any point in that subspace. The sign pattern is
a representation which corresponds to the direction of a trajectory passing
through a single point. For regular domains, this sign pattern is a vector
of signs of the differential equations. In switch domains, however, the sign
pattern can be empty, corresponding to instantaneous crossing of the switch
domain, or be one or more vectors, representing possible sliding mode behav-
ior at that threshold. This representation is necessary due to the dependence
of sliding mode behavior at thresholds on the numeric values in the actual
parameter vector, which is not available during qualitative simulation.

Definition 14 A sign pattern for some point T in the phase space §1 is
S(@). §: 0 - 2{=1041Y " For the sign pattern it holds that S(¥) =
{Sl(f) X Sz(f) X ... X SN(.’E)}.

For z € U D, S,(Z) = sign(&,). Forz € U D, not dall z,, are

DeD- DeD,
defined. Therefore the sign pattern needs to be derived from sign patters of

surrounding regular domains.
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Definition 15 A flow domain is a subspace of a domain in which the sign
pattern is constant i.e. for any £ € F and any § € F it holds that S(£) =
S(¥). A flow domain is, like a domain, the largest subspace in which previous
propositions hold. The set of all flow domains will be F.

For further analysis the concept of the nullcline equation is needed. The
nullcline equation is defined as &, = 0. The points of Z which are a solution
to the nullcline equation form a (hyper)plane for the class of systems used.
These planes are known as nullcline planes.

For regular domains in which the differential equations do not change
sign, or in other words in which none of the nullcline equations have a
solution, the regular domain is also a flow domain which will be called a
regular flow domain.

In case one or more nullcline equations do have a solution, the regular
domain will be divided into subspaces in which no sign changes occur. This
subdivision can be achieved by dividing the domain at (hyper)planes, each
corresponding to the solution of one of the nullcline equalities as far as the
solution lies within that regular domain. Due to the linearity of the differ-
ential equations in regular domains, there will always be a unique solution
to the nullcline equality and that solution will form a (hyper)plane in the
regular domain.

The subspaces of the regular domain enclosed by nullcline equation so-
lutions and switch domains are regular flow domains. The (hyper)planes,
being solutions to one or more nullcline equality, form a set of flow domains.
Each flow domain will be a contiguous part of one of these (hyper)planes
in which the same nullcline equalities have a solution. Therefore, an inter-
section of two (hyper)planes will be a separate flow domain and the parts
of the hyperplanes on either side of the intersection will be different flow
domains. These flow domains are called nullcline flow domains.

Definition 16 A regular flow domain F is a flow domain and a subspace
of a reqular domain and for any ¥ € F it holds that S(Z) € {-1,+1}V.
Regular flow domains are N -dimensional.

Definition 17 A nullcline flow domain F is a flow domain and a subspace
of a reqular domain and for any T € F it holds that some S,(Z) = 0.
Nullcline flow domains are (N — k)-dimensional, where k is the number of
state variables for which S,(Z) =0

The switch domains will be switch flow domains if none of the regular
domains which have that switch domain at their border contain a solution
to their respective nullcline equalities. If one of these regular domains does
contain a solution to one of their nullcline equalities, the switch domain will
be divided at the intersections of the (hyper)planes of the solutions with the
domain. Due to this subdivision a number of flow domains are formed and
these will all be switch flow domains.
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Figure 3.1: Example system

Definition 18 A switch flow domain F is a flow domain and a subspace of
a switch domain D. Furthermore it holds that:

1. If for any ¥ € F, ¥ is a solution to one or more nullcline equalities
of all domains in R(D), then all § € F should also be a solutions to
those nullcline equalities.

2. If for any T € F, T is not a solution to any nullcline equality of all
domains in R(D), then no § € F should be a solution to any of the
nullcline equalities of all domains in R(D).

Switch flow domains are (N —k)-dimensional, where k is the number of state
variables which are either at a solution of their nullcline inequality in some
domain in R(D) or at a threshold.

To clarify the procedure of finding the flow domains, a simple example

will be shown.

1 = ho+hg-st(z1,61) z2 ho+h3-a=0
Ty = 12'0 + 12,2 st (:E], 01) 12'0 < —12,2 (3.2)
min(zz) < a < max(z3)

In figure 3.1(a) the division of the state space into domains can be seen. In
this example,

D, = {D*, D%}
and
Ds:{DO Dl D2 D3 D5 D6 D7 DB DQ Dll D12 D13 D14}

There are no solutions for the nullcline equalities in D4, as z; = lip and
z2 = lzo in that domain. Therefore F* = D*. Solutions for all nullcline
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equalities in D10 are zo = a, and therefore D0 will be subdivided, as well
as D7 and D'3, as is shown in figure 3.1(b).

Now the definitions for 4 and R will be extended for flow domains as
follows

Definition 19
A(F) = {F’ e FIF c B(F)}

A(F) is the set of flow domains which are of lower dimension than F
and which are on the boundary of F'. For a regular domain, the set A(F)
comprises all switch flow domains on the border of F' and for a switch do-
main F, it comprises only those switch domains which are adjacent to F
and have one additional state variable at a threshold or at a solution of its
nullcline equality.

Definition 20
R(F) = {F' € F|F c B(F')}

R(D) is the set of regular domains D' for which it holds that D € A(D').

Note that due to the definition of A(F') that with F' € F,, only the switch
flow domains in the same plane as F is contained in A(F'). This excludes
any other flow domains contained in the switch domain in which any flow
domain in A(F') is contained.

3.2 Finding All Flow Domains Using Qualitative
Information

To qualitatively determine all possible flow domains in the state space, a
set of rules is needed. The first step, the division into regular and switch
domains is easily done, by giving the number of thresholds for each state
variable and the ordering of those thresholds. In other words, defining 8,
for all n. The next step is to find out in which regular domains any nullcline
equations have a solution. And, if so, how these solutions are positioned
in that regular domain, determining the division of the regular domain into
several regular low domains and nullcline flow domains.

The differential equation for the PWA system reduces to a simple set of
ODE'’s in each regular domain.

Epn=kno+kn1 - T1+...+knn - Tn+...+ kN TN (3.3)

Now, let the set of thresholds defining the upper boundary for the regular
domain be ™% and the set of lower boundaries be ™" such that for each
state variable z,, of £ € D it holds that ©™" < z,, < ©7%,

To find whether a nullcline equation has a solution in a certain domain,
one has to determine whether that state variable changes sign, somewhere
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in that domain. To find this change in sign, two points " and § are chosen,
with

oOmin i kyp,>0
pm - { @mam lf kn,m S 0 (34)

omin if k., <0 (3.5)

{ o if kpm>0
dm =

If ,, changes sign in this domain, it must hold that z,,(p) < 0 and ,(¢) > 0
or T,(p) > 0 and £,(q) < 0.

Now the next piece of information needed is the layout of the nullcline
planes within the regular domain. Apart from the signs of the ky ,,,, which
determine the direction of the slope of the plane, knowledge is needed about
which switch domains are intersected by the plane and whether multiple null-
cline planes intersect within a single regular domain. To provide a general
approach to this problem, a recursive algorithm is needed. The algorithm is
based on the idea that if the signs of the differential equations on each cor-
ner are known, it can be easily derived whether the nullcline plane intersects
any of the 1-dimensional switch domains.

By definition, a switch domain D! with dim(D!) = 1 and D" € R(D'),
has an A(D!) with two elements. Take the sign of the differential equation
of a certain state variable as defined in D" at the two points corresponding
to each of the switch domains in A(D!). If these signs differ, the nullcline
plane of that state variable in D" intersects D!.

Now the question remains on how the intersections with D! are ordered.
An ordering needs to be defined to include each nullcline domain in all
domains in R(D!) which intersect D!. This might be provided as a-priori
information, however, this information is not always available. Therefore, all
possibilities not yet fixed due to a-priori information need to be investigated.

From the ordering information for all switch domains of dimension m — 1
in A(D™) for some domain D™, it can be derived if any of the nullcline
flow domains in that domain intersect with one another. By definition, a
switch domain D™ with dim(D™) = m has a set A(D™) of 2™ elements
of dimension m — 1. It is possible that more than two nullcline domains
intersect with each other. This introduces a complexity as the order in
which one of these nullcline domains is intersected by the others each lead
to a different subdivision of D™. Because, again, this ordering is usually not
available a-priori, the algorithm should iterate over all possible orderings to
obtain the full set of possible graphs.

By repeating the above iteration until dim(D™) = dim({2), a unique sub-
division is found. From this subdivision, the final graph can be calculated.
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Figure 3.2: Example of ambiguity of behavior in switch domains

3.3 Deriving Possible Trajectories

As stated before, the sign pattern of switch flow domains needs to be derived
from the surrounding regular flow domains. In quantitative simulation, this
could be achieved by taking any of the differential equations of the sur-
rounding regular mode domain. Another approach would be to take some
averaged value from all differential equations in the surrounding regular do-
mains. Nevertheless, due to the unavailability of quantitative information,

this will usually not yield a single solution. For example, switch flow domain
F70 has:

Se(F™) = {-1,0,1} (3.6)

In qualitative simulation another approach is necessary. As stated before,
the goal of this simulation is to derive a graph representing all possible
trajectories through the state space. Due to the fact that no quantitative
information is available, any choice made on the behavior on thresholds will
possibly exclude valid trajectories from the resulting graph.

An example of such a situation is shown in figure 3.2. Due to the signs
of differential equations in the top two regular domains, a sliding mode
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along the threshold between them is possible. As the threshold is reached
leading towards the bottom two regular domains, it is not clear whether the
trajectory will enter the left or the right domain. In the real system, one of
the two trajectories will be followed, which depends on the actual numeric
parameters. For qualitative simulation, however, both should be considered.

To come to a general rule to find the sign pattern for switch flow domains
a definition of relative position is needed:

Definition 21 The relative position from F® to F?, with either F* € A(F®)
or F* € A(F%), is W(F*, F®) = &, w, € {—1,0,+1}. If there is some
T € F* ye F* and x, = y, for n # m then wy, = sign(ym — Tm). if no
such ¢ and y can be found, w, =0. W(F® F%) = —-W(F*, F®)

Theorem 1 For some F € Fy:

min_ Sn(F) <r< max Sp.(F!) if zn,€6,

Sa(F) = {r € {=1,0,1} | F<HE) remn X
(F) re{-1,0,1} min_ Sp(F') <r < max S,(F") if z,¢6n
FYeR(F) FteR(F)

(3.7)
Proof 1 see [3]

The qualitative behavior of the hybrid system can be visualized as a
directed graph. In this graph, each node is a flow domain. If any trajectory
corresponding to a solution of the hybrid system exits a flow domain to enter
another, an edge runs from the node corresponding to that flow domain
towards the node corresponding to the target flow domain. Now conclusions
drawn from the properties of this graph can be reasoned back to possible
solution trajectories through the state space of the hybrid system.

To find the edges which connect the graph, one has to find out if a flow
domain can be reached from another.

Theorem 2 If for some solution £ to the PWA system, x(t) € F° for all
t € [r1,72) and z(72) € F®, the node corresponding to F® is connected to
node corresponding to F® with an edge directed from node F° to node F®,
F* is reachable from F® in one step in the graph.

Intermezzo 1 The qualitative abstraction is complete in the sense that a
path in the graph erists for every possible trajectory in the real system. The
converse is not true, however. Paths could exist in the graph which repre-
sent trajectories not feasible in the real system. As an example, consider a
domain in which the differential equations are reduced to the set shown in
equation 3.8. In figure 3.3 a quiver plot in this domain is shown. It can
be seen that from F0, F1 can be reached and from F1, F2 can be reached.
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Figure 3.3: example where the qualitative transition graph is over-complete

However, it is impossible for a trajectory to pass from F0 to F1 to F2 in
that order. All trajectories entering F1 from FO will go to F3.

£y, = —-2-1145

5 3 (3.8)

Finding all of the edges in the graph by trying all possible £ is impractical.
Therefore transition rules need to be devised which simplify this procedure to
checking if certain rules hold for adjacent flow domains and if so, a transition
is possible. These rules are a combination of the rules for transitions as

proposed in previous work by de Jong et.al. and rules from classical state
space analysis.

Definition 22 Transition rules:

Transition from F to F', where F' € A(F)

Transition to a lower dimensional flow domain. Z€ F, € F'.

1. S(F)#0,
2 IfFeF,, (Vn:S5(Z)=0:(Vm :m#nAm#0:kym=0))
3. (Yn: Wp(F,F') #0A Sp(§) #0: Sp(F) - Wo(F, F') =1)

4. If (Bn s Wo(F,F') # 0 A Su(§) #0), then
(Vi (Wa(F, F') = 0A Sp(§) = 0) V (Wi(F, F') - Su(Z) = 1))

The first rule says that a lower dimensional flow domain can only be entered
from an F € F, if there is a sliding mode in that flow domain. The second
rule says the same for an F € F,. The third rule says that to enter a
lower dimensional flow domain, the trajectories in F' should tend towards
F' for all state variables. Also, when F' € F,, the state variables which
have a solution to the nullcline equalities have no influence on whether the
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nullcline flow domain can be reached. The fourth rule says that a nullcline
flow domain can be entered too, if all state variables that are parallel to the
target domain do not change and all others tend toward that domain.

Transition from F to F', where F € A(F')

Transition to a higher dimensional flow domain. T € F, 7€ F’.

1. S(F')#0
2. IfF € Fo, (Vn:Sp(@)=0: (Vm:m#nAm#0:ky,=0)),
3. (Vn: W (E F') #0: S,(9) - Wa(F, F') #1)
The first and second rule say that to enter a higher dimensional flow
domain, that flow domain must have a sliding (or regular) mode. The

third rule says that in order to exit domain F', there must be no tra-
jectories which tend towards F'.
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Chapter 4

Parameter Estimation for
PWA Approximation of
Nonlinear Systems

In this chapter, the procedure for parameter identification will be shown as
well as how to use the information from the qualitative simulation algorithm
described in chapter 3.

The first step to this identification procedure is to transform the nonlin-
ear system to a PWA system. This can be done by using a fitting procedure
to find a PWA approximation for a nonlinear part, or by visual inspection
of measurement data to identify (nearly)linear working areas. This results
in a description of the system as a PWA system as defined in equation 2.8.

Now the identification problem is transformed into identification of a
PWA system. This identification procedure consists of two parts. First,
each data point needs to be classified into a mode of the PWA system.
Then, for each mode, a linear identification needs to be carried out, which
results in an estimate for the parameters of the differential equations.

For identification a least squares optimization algorithm is used. The
cost function to be minimized is:

9—'—*) Z Z k+1) ()

DieD, Z(k)eDi

(4.1)

Where f(Z) is the PWA function found, like equation 2.8, and Z(k) are
measured values with a sample interval of 2. Now, the thresholds and the
parameters are found by respectively:

6 = arg min J(0.) (4.2)

m

I = arg min J(@,0 (4.3)
l
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In equation 4.3, the d found by minimizing equation 4.2 is used.

These two minimizations need to be separated because J (5, l_) is a piece-
wise constant function in 6. Because of the fact that this value of J only
changes if a data point switches domain due to a change in §. This also
means that the minimization with respect to 6 is not possible using stan-
dard least squares optimization techniques.

4.1 Clustering of Data points and Parameter Es-
timation

The first step in parameter estimation of a PWA system is the assignment
of data points to modes of the system. Due to the structure of the class of
PWA systems used, this clustering is relatively easy. As the mode of the
PWA system is determined by the relative position of each state variable’s
value with respect to the thresholds defined for that state variable, clustering
can be done by analyzing each state variable’s value individually. The cost
function equation 4.1 is nonlinear in § which causes equation 4.2 to be a
nonlinear optimization problem.

There is no guaranteed way to solve this problem due to the shape of the
cost function. Therefore an exhaustive search algorithm should be used to
ensure a global minimum is found. Exhaustive search tends not to scale very
well with the number of dimensions of the system and the number of modes
of the system. For the class of PWA systems used, however, the number of
possibilities can be reduced significantly.

Due to the fact that the mode is determined by the values of each state
variable independently, the number of possibilities to be checked during an
exhaustive search is limited. To calculate the number of threshold positions
to be tested, a derivation of all possibilities is given. Assume there are L
measurements of N variables and each state variable has M intervals, caused
by M — 1 thresholds. If a minimum of k£ data points between each two
thresholds is desired, the number of possibilities that need to be inspected
is:

N.(L—k~A]/{/[+M—1) (4.4)

This follows from the fact that both the data points and the thresholds
are already ordered. With this knowledge, finding a possible division of
a single state variable reduces to finding any possible multiset containing
L — k- M items, each is any of M possible symbols. A multiset is set-
like, but ordering is ignored and therefore only the number of occurences of
symbols is important. When the contents of the multiset is ordered, each
item corresponds to a data points and it’s symbol corresponds to which
threshold this data point belongs. This is a standard combinatorial counting
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problem which is solved by the multichoose operator. This operator takes
two arguments (k,n) and the result is the number of possible multisets of
length k on n symbols. By substituting k with L — k- M and n by M,
equation 4.4 is found.

For example, if there are 150 data points and 2 thresholds in each of 3
dimensions and at least 3 data points per interval, the number of possible
threshold positions is 1431573. This approach is feasible for a limited num-
ber of data points and thresholds, which is fairly common in biochemical
measurements. Different approaches are possible, such as e.g. a Bayesian
approach [5], but these are beyond the scope of this paper.

4.2 Identification of the Parameters

The second step of identification of the system consists in doing a parame-
ter identification on the ODE’s for each mode of the system. Usually many
modes share differential equations for some state variable, as not all differ-
ential equations change on each threshold crossing. Therefore, a simultane-
ous optimization is used to estimate all parameters in one go. When the
positions of all thresholds are given, equation 4.3 is a linear least squares
optimization problem.

In MATLAB! the lsqlin function is provided for linear least squares op-
timization. This function is able to use certain forms of a-priori information
to bound the search space for parameters.

1= 2
i |cF - d 5
II])%II 2 ” 2 (45)
such that: Ak<bd (4.6a)
Acqk = beg (4.6b)
b<k<ul (4.6¢)

The cost function which is minimized by lsqlin is shown in equation 4.5,
the equation which is solved by lsqlin. In equation 4.6a to equation 4.6c,
the available equations to limit the parameter search space are shown. As
these equations are the only way to introduce a-priori knowledge about the
system into the parameter estimation procedure, the goal is to convert as
much available a-priori information as possible into these (in)equalities. In
table 4.1 a number of possible restrictions which can be applied using the
constraint equations.

In biological systems, most a-priori information comes in the form of
some knowledge about the behavior of the system. As this information in

}©1984-2005 The MathWorks, Inc.
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equation 4.6a: k, < k,,
equation 4.6a: k, + k,, +... <k,

equation 4.6a: {C&L <a

m

equation 4.6b: k, =a -k,
equation 4.6b: k, = k,,

equation 4.6c: b, < k, < ub,

Table 4.1: Usable a-priori information for the Matlab! 1sqlin function

itself is not usable to constrain the parameter search space, the qualitative
simulation algorithm introduced in chapter 3 will be used to derive this
information. The simulation algorithm is able to derive a graph containing
all possible trajectories in the state space of a certain PWA system, based on
the structure of the PWA system and a set of restrictions on the parameters.

From the set of information on the behavior of the system, a set of
features of the graph can be derived. For example, it is known that some
oscillation occurs in which certain state variables take part and some other
state variables remain at a constant level. This implies that the graph
contains a cycle through a set of nodes in which the oscillating state variables
change and the non-oscillating state variables remain constant. As another
example, a system could have some unreachable subspaces when some initial
condition is satisfied, therefore, the graph should not contain a trajectory
starting from any node containing (part of) the initial condition towards
any node contained in the forbidden subspaces.

There might be many possible graphs which can be devised to conform
to the available set of a-priori information. As each of these graphs is de-
vised based on the a-priori information, each of the graphs conforms to this
information.

The qualitative simulation algorithm creates a graph based on both the
structure of the PWA system and a set of restrictions. These restrictions
define the signs of the differential equations at 0-dimensional switch do-
mains and the ordering of intersecting flow domains. The combination of
the PWA system description and the restrictions will generate an unique
graph. Unique in the sense that this graph is the single possible graph,
given the PWA system and restrictions. As this graph contains all possible
trajectories a solution of the PWA system can follow, the fact that a certain
path exists in the graph implies that, with the right parameters, a solution
to the PWA system follows a trajectory corresponding to the path in the

graph.
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Demands on the absence of a trajectory is more difficult, as due to inter-
mezzo 1, there might be paths in the graph which correspond to impossible
trajectories, depending on the actual value of the parameters. This is impos-
sible to check without knowing the parameters of the PWA system. There-
fore, it should be detected during qualitative simulation if certain paths
suffer from this condition.

If there are paths in the graph which should not be possible from a-priori
information, then if these paths are introduced due to the over-completeness
of the graph, the graph is still a good solution. This combination of PWA
system and restrictions should then be checked too.

The set of restrictions is usually very large. As not all of this information
might be available, the only way to allow the use of this simulation method
is to try any possible combination of restrictions for all unavailable infor-
mation. If the resultant graph is valid with respect to the known a-priori
information, the set of restrictions apply for the system to be identified. To
keep this process feasible, automation is necessary. By defining the a-priori
information as a set of propositions on either the set of information for defin-
ing the simulation or the properties of the resultant graph, the process can
be carried out by computer algorithms.

After this procedure, the set of all graphs which can be generated from
the known a-priori information is available and for each graph the set of
information needed to generate this graph. As all of these graphs are valid
with respect to the available a-priori information, the set of parameters to
be found should conform to one or a union of some of the sets of information
used to generate the graphs and this information can be used to constrain
the parameters during identification.
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Figure 4.1: Nullcline planes for one and two thresholds

4.3 Example: Biochemical Oscillator

This second example is a more complex system, where qualitative sinulation
can be used to optimize identification. The system analyzed is a biochemical
oscillator which describes a genetically regulated enzymatic conversion of a
substrate into a product, which is also treated in [6]. The process can be
described by nonlinear differential equations:

) _ Vi
T = Eote ~ kao

9 = ko x1—kgo- 1o (4.7)
£y = k3 -z2- 757‘:2':-::3

Both nonlinear functions in these differential equations are converted to
PWA functions as proposed in table 2.1. This conversion to a hybrid system
introduces two steps with thresholds dependant on z3. The differential
equations of this hybrid system become:

1 = ho+l-z3+st(z3,01) (bho+hs- x3) — ks 21
i‘2 = k2 + I — kd2 «I9 (48)
&3 = ks-z2— (l3o+131-z3+sT(x3,02) (32 + l33 - x3))

As these two thresholds are on 3, it is possible that they might be joined
into a single threshold. To find out whether this is possible, a qualitative
simulation of the system with two thresholds and with a single threshold
must be carried out. Because of the very large amount of flow domains
involved in this simulation, only the results are presented.

By using available values for V1, k1, Vo and k2 found in literature a fit
can be made using the algorithm presented in section 2.3. From the results
of this fit the conclusion can be drawn that it always holds that 8; < 65. To
visualize the qualitative simulation, a part of the phase space of the hybrid
system is shown in figure 4.1. For the space shown it holds that §; < x3 < 85,
1 € Q1 and z9 € Q. The planes shown are the nullcline planes for each
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Table 4.2: Parameter identification
Parameter | o =10 c=1 |0o=25] o=5
0 12.37 12.12 12.51 14.34
) 55.08 55.24 55.94 52.04
lia -2.91 -2.92 -3.10 -2.37
L2 -47.58 | -47.63 | -48.30 | -44.30
liz 2.86 2.87 3.05 2.32
lap 5.57 5.57 5.61 6.24
l31 0.052 0.053 0.053 0.052
l32 3.71 3.74 3.67 3.00
I3 -0.047 | -0.048 | -0.048 | -0.048
ka1 0.11 0.11 0.11 0.11
ko 0.10 0.10 0.10 0.10
kao 0.10 0.10 0.10 0.10
ks 0.10 0.10 0.10 0.10
‘o 'i% ] }x3>s
- '\!‘é\;ﬁ\
KJ lew

Figure 4.2: One step ahead prediction

variable. It can be seen that the qualitative behavior in figure 4.1(a) will
be the same as in figure 4.1(b). Therefore the conclusion can be drawn that
in identification the thresholds can be joined together, without losing the
characteristic limit cycle.

To provide experimental data, the nonlinear system of equation 4.7 is
simulated using the ODE45 solver of MATLAB. Several levels of white noise
are added to simulate various amounts of measurement noise. Parameters of
the hybrid model were estimated using the two-step procedure as presented
in chapter 4. The results of parameter estimation are shown in table 4.2.
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Chapter 5

Discussion and Further
Research

This paper shows that it is feasible to use a piecewise linearization method
for identification of nonlinear biochemical systems. A useable class of PWA
systems is presented as well as a method to convert any known nonlinear
system into a PWA system. A method to integrate most a-priori information
into the identification procedure is provided using a qualitative simulation
system.

Using a PWA system to represent a nonlinear system for identification
has several advantages to direct identification of a nonlinear model on a
nonlinear system. First of all, as the actual identification uses a linear
least squares optimization, no initial estimate is necessary to find the global
minimum in optimization. This also leads to better identification results in
case little measurement data is available. On the other hand, the division
of the state space into modes diminishes this advantage, as the data needs
to be divided over all modes. With little data available, the PWA approach
should still perform better than direct nonlinear identification, as long as
the number of modes is reasonably small.

A major advantage of using a PWA systems approach comes from the
qualitative simulation algorithm presented in this paper. This algorithm al-
lows most a-priori available information to be used during the identification
process. This is especially useful when identifying biochemical systems as
extensive studies on behavior are usually available. In nonlinear identifica-
tion no method exists to use all of this a-priori information in identifica-
tion. The algorithm has been partially implemented in C and estimations of
completion times for simulation show that it is usable during identification
procedures.

There are also a few downsides to this approach. The parameters in non-
linear models for biochemical processes usually have a physiological meaning.
This meaning is lost in the conversion to a PWA system. Another problem
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may lie in the introduction of many new parameters, which could lead to
ambiguity as the system may be described using less parameters.

The qualitative simulation system can be useful in various different sit-
uations. A use of the system is to assess whether some thresholds might be
eliminated without changing the behavior of the system. If one finds that
the behavior of the system does not change when combining two adjacent
thresholds, these thresholds can be combined in the identification procedure.
By eliminating unnecessary regular domains, more data points will be avail-
able per domain, which results in a better chance of a good identification.

Further research should focus on several subjects related to the results
presented in this paper. The qualitative simulation algorithm can be imple-
mented in software, on which work has started already. When this imple-
mentation is finished, results will become available on the performance of
the algorithm. Then results on the usability in practical situations will be
found.

On the area of applicability of a piecewise approximation for nonlinear
systems and techniques to diminish the downsides of these approximations
more research is necessary. Most notably, the dependence of identification
on the choice of linearization intervals and the deviation between linearized
functions and the nonlinear functions near thresholds. The choice of lin-
earization intervals is especially interesting with respect to comparing results
of several identification rounds of the same (or slightly altered) systems.
Diminishing influence of deviation of linearized functions near thresholds
should improve identification results in general.
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Appendix A

Software Implementation for
Qualitative Simulation

The qualitative simulation algorithm as presented in chapter 3 can be im-
plemented in software. A start has been made on the implementation of
this algorithm in the C programming language. Uses some of the concepts
of the implementation presented in [4]. The choice of reimplementation in
C has been made primarily on the fact that C produces comparatively fast
software, which is required for this method to be of practical relevance for
system identification.

A.1 Data Types

To ease the implementation of data types containing all information needed
for simulation, as well as parsing of files, a library called GLib [10] is used.
GLib is an open-source library which was created as an utility library for
GTK+ and GNOME. It provides a large set of utility functions ranging
from memory allocation, string handling and some advanced type handling
for linked lists, trees and more. It also provides support for threaded appli-
cations, signals and file, socket and pipe IO. The library compiles and runs
on various operating systems including UNIX, Linux, Win32 and several
others. This is important, as it will allow the simulation system to run on
almost any operating system in use,

There are several types of information to be stored in memory. First of
all, the PWA model is stored. This model is read from a file containing all
a-priori information necessary. The syntax of this file is shown in table A.1.
In this syntax bold text is to be included literally, [...] means any of ..., a
+ after an item means it must occur at least once and a 7 means zero or one
occurrence. This format is read using the lexical scanner (GScanner) from
GLib, and stored in several structures in memory. The main model is stored
in a type BPWAAModel. BPWAA stands for Biological PWA Analyzer. In
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state_variables: (variable)+

(variable variable {

parameters: (parameter)+
thresholds: (threshold)+

equation: equation;

equilibrium {(equilibrium_inequality)+}

b+

variable:=token

parameter:=token

threshold.=token

token:=[a-zA-Z0-9_]+

equation:=equation_term ( + equation_term)+
equation_term:=[+-] parameter(* step_function)+ (* variable)?
step_fuction:=s[+-| (variable,threshold)
equilibrium_inequality:=equilibrium_term[<>] 0;
equilibrium_term:=[+-] parameter™® threshold

Table A.1: File syntax for qualitative simulation of a PWA model

struct StateVar {
BPWAAModel* model;
gchar * name;
GPtrArray *parameters;
GPtrArray *thresholds;
Equation *equation;
GPtrArray *equillneq;

Table A.2: Statevar

current implementation, this is an array of state variables, which are stored
in StateVar’s (table A.2).

The StateVar structure consists of a backpointer to the BPWAAModel,
the name of the state variable, the list of parameter names in the equation of
that state variable, a list of threshold names for that variable, the equation
and a list of equilibrium inequalities. The parameters and thresholds are
both arrays of gchar*, which store the names of respectively the parameters
and thresholds. Further reference to these parameters and thresholds are
done by indexing in these arrays.

The equation is a more complex structure. It is stored as an array of
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struct EquationTerm {
gint sign;

gint stateVar;
GSList * steps;
}

Table A.3: EquationTerm

struct EquationStep {
gint sign;

gint stateVar;

gint threshold;

};

Table A.4: EquationStep

struct _EquilibriumInequality {
gint8* parameterMask;
gint* thresholds;
gboolean lessThanZero;

}
Table A.5: Equillneq

terms, which correspond to the math accompanying each parameter in the
equation. From equation 2.8 it can be seen that each part consists of a sign,
a si, and an element of Z, i.e. a single state variable or a one. At this point,
only AND’ing of several step functions is supported, but support for more
complex combinations is easily implemented.

The second more complex part of the model description are the equi-
librium inequalities. These inequalities are used during derivation of sign
vectors in the regular domains and specifically, the locations of nullcline
flow domains. The inequalities are stored as follows. Each inequality has a
set of properties, namely, the direction of inequality (< or >), a subset of
the parameter set and the thresholds at which the inequality holds. This
information is stored in the Equillneq structure.

Now all structures needed to store the model are present, a few struc-
tures are needed to store the subdivision of the state space as required for
simulation. This division is done in two levels. First the state space is
divided into domains, which are then split into flow domains, as needed.
All of the information is kept together using the BPWA ASimulationResults
(table A.6) structure. This structure holds, in order, a backpointer to the
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struct BPWAASimulationResults {
BPWAAModel* model;
GMemChunk* vector_memory;
GMemChunk* domain_memory;
BPWAADomain** domains;
gint* dimensionSizes;
guint64 amount;

Table A.6: BPWA ASimulationResults

struct BPWAADomain {
gint* coordinates;
gint* direction;
gboolean direction_valid;
GList* flowdomains;

};

Table A.7: BPWAADomain

associated model, two memory allocators, used to efficiently store the large
amounts of equally sized blocks, an array containing all domains, a vector
used to convert the coordinates of a domain into an index in the array of
domains and finally the number of domains in the state space.

The domains are stored in a structure as shown in table A.7. Here, the
coordinates of the domain, the calculated sign vector, a boolean indicat-
ing validity of the sign vector and a list of flow domains included in the
domain, is stored. The state division of the state space can be seen as a
N-dimensional matrix, where each element of the matrix corresponds to a
domain. As it is very dificult and inefficient to directly store this matrix, a
mapping is made to convert the coordinates of each element of the matrix
into an index of the domain array.

The flow domains are a more difficult to store, as these do not have such
a strict ordering as the mode domains. These flow domains are stored in
the FlowDomain structure, This structure contains a backpointer to the
domain it is contained in, a vector containing the sign vector, a boolean
indicating the direction has been calculated, the A(F’) set, the R(F') set, a
list of successors and predecessors. These successors and predecessors are
other flow domains, indicating outgoing edges in the graph and incoming
edges in the graph.

The graph being sought is actually stored in the flow domain structure.
Each node of the graph corresponds to one of the FlowDomain structures
and the successors and predecessors list all edges connected to that node.
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struct FlowDomain {
BPWAADomain *container;
gint* direction;
gboolean direction_valid;
GList* adjacent;
GList* regulars;
GList* successors;
GList* predecessors;

Table A.8: FlowDomain

A.2 Algorithms

Currently, the implemented software is able to find which domains contain
nullcline flow domains and calculate directions within switch domains. The
final steps of the simulation, division of the domains containing nullcline flow
domains and finding the edges of the graph still needs to be implemented.
The complete path from a datafile to the final graph can be divided into a
number of steps. In the following list, each step is shown, along with it’s
status of implementation.

e Parsing of the datafile and storage of the model
Status: Finished
To do: More error checking

¢ Representation of the state space and flow domains
Status: Finished
To do: Nothing

e Calculation of signs in 0-dimensional switch domains
Status: Finished
To do: Possibly some optimization possible

o Inference of intersections of nullcline flow domains with switch domains
Status: Finished, but only for 1-dimensional switch domains
To do: Implementation for higher-dimensional switch domains

o Calculation of division of domains due to nullcline flow domains in all
possible orderings
Status: Not implemented
To do: Implement

e Calculation of sign vectors for flow domains which envelop a whole
domain
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Status: Finished
To do: Nothing

e Calculation of sign vectors for other flow domains
Status: Not implemented
To do: Implement

e Derivation of first successor for each flow domain
Status: Not implemented
To do: Implement

e Output of suitable data for graph analysis
Status: Not implemented
To do: Implement

A.2.1 Finding Regular Domains Containing Nullcline Flow
Domains

To find regular domains D containing nullcline flow domains, the sign of
each of the differential equations, which govern the system in that domain,
is needed at the extremities of that domain.

The first step is finding which of the parameters are active, i.e. sjy, =1,
in that domain. This produces a mask, such as the mask stored in each of
the equilibrium inequality structures. Then, at the coordinates of each of
the 0-dimensional switch domains in A(D), the corresponding equilibrium
inequalities are checked to find the sign of the differential equation at that
corner of the domain. If each corner has the same sign, there is no nullcline
domain inside that regular domain, otherwise, there is.

A.2.2 Inference of Intersections of Nullcline Flow Domains
with Switch Domains

This step uses the same ideas as the search for regular domains containing
nullcline flow domains. For all 1-dimensional switch domains D, which have
a regular domain D’ containing nullcline flow domains in their set R(D), we
check the sign of the differential equations of all possible D’ at the coordi-
nates of the two switch domains in A(D). If these differ, we know that the
corresponding nullcline domain in D’ intersects D. Repeating this procedure
for all D’ results in a list of intersections. Together with an ordering, all
flow domains contained in D can be formed, together with their respective
A and R sets.

A.2.3 Further Algorithms

The rest of the simulation algorithm either needs an actual implementation
or is not suitable for textual explanation. In chapter 3 the unimplemented
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algorithms are already described. For the rest of the algorithms used, please
see to the annotated source code.

A.3 Performance

As the qualitative simulation will usually be carried out on systems with
large numbers of flow domains, the performance of the algorithm is very
important. For example, the single threshold system used in section 4.3
already consist of more than 150 flow domains. The system used for testing
of the software implementation consists of more the 27000 mode domains,
and the number flow domains are a multitude of this number. Note that
this test-system is unusually large, due to the large amounts of thresholds.
Therefore, it is likely to be a good worst case candidate.

At this point, the whole algorithm cannot be tested for speed, but pre-
liminary results on the current implementation look promising. The finding
of domains containing nullcline flow domains runs at about 20000 domains
per second. The second step, finding the intersections of the flow domains,
can be carried out simultaneously without much additional calculations. It
is unclear how much calculations will be necessary for the final part of the
algorithm, but these will probably take an amount of calculations of the
same order as the first half of the algorithm. It is hard to estimate the total
rate of calculation, yet based on some reasonable estimations, a rate of more
than 5000 domains per second should be achievable.

The number of flow domains which will need to be analyzed depends
heavily on the structure of the PWA model. Yet the current implementa-
tion has already been shown to be much faster than the implementation
of the GNA algorithm as presented in [4]. To provide some perspective,
the currently implemented steps are carried out in just over a second for
the test-system, where the MATLAB! implementation would take several
hours to complete. Also the memory usage is less by an order of magnitude.
These properties give a good indication that the simulation algorithm will
complete within a reasonable amount of time, which is very important for
the practical use of the tool in identification.

1©1984-2005 The MathWorks, Inc.
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