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Summary

Currently diagnosing of ADHD in children can only be done by means of a qualita-
tive research on the psychological, psychiatric and social aspects using the criteria
of the DSM-IV. The problem with this qualitative way of diagnosing is that, be-
cause of the sensitivity of the DSM-IV criteria to subjective influence introduced
by for instance the parents or the psychiatrist, there is a considerable concern
of miss diagnosis of ADHD which results in incorrect treatment and medication.
Besides, the diagnosis time is long caused by the large amount of tests that have
to be done.

During the past decades, numerous studies have been carried out in the area
of event related synchronization (ERS)/event related desynchronization (ERD) in
EEG signals. These phenomena can be described as an event-induced shift from
a predominantly stochastic (desynchronous) EEG activity towards more regular,
patterns or vice-versa. A relation with ERD/ERS and attention processes and
the fact that ADHD is a neurological disorder might make it possible that EEG
research can be used to diagnose or support the qualitative diagnosis of ADHD.

For the quantification of the ERD/ERS several methods are developed with
each his own dis- and advantages. After investigating the different methods the
Classical, Intertrial Variance and the Hilbert methods were implemented in a soft-
ware application in MatLab. The ERD/ERS is highly frequency specific therefore,
the EEG data was bandpass filtered using a FFT filter. The reactive frequency
bands were determined individually on the basis of the Individual Alpha Fre-
quency (IAF).

For the available data of ADHD and control children significant differences
between the two groups were found within the IAF of both groups using 3 differ-
ent ways of determining the JAF. The IAF of the ADHD and the control group
showed that it was lower for the ADHD group than for the control group. More-
over the IAF determined from the frontal lobe were significant lower in the ADHD
group than in the control group.

For lower frequency bands (up to the upper-alpha band) it is recommend to use
the Intertrial Variance method because it eliminates the interference of evoked ac-
tivity. For ERD/ERS computations of higher frequency bands the Hilbert method
is recommend because of its ability to automatically adapt the time resolution to
any frequency under investigation.
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Chapter 1

Introduction

It is estimated that about 2% of the children in the Netherlands, between the
age of five and fourteen show severe symptoms of Attention-Deficit/Hyperactivity
Disorder (ADHD). This corresponds with about forty thousand children of which
boys outnumber giris by four to one. An additional 3% to 6% of thie children of
this age exhibit less serious or fewer symptoms of ADHD [Health Council of the
Netherlands, 2000|. This means that statistically with a class size of 25 children,
in half of the classrooms in the Netherlands at leased one child is suffering from
the effects of ADHD and in almost every classroom there is one child who shows
less severe symptoms of ADHD!

At this time there is no quantitative way of diagnosing if a child has ADHD.
Although the exact cause of ADHD is unknown, nowadays it is clear that it is a
neurological related disorder. This suggests that electroencephalography (EEG),
which provides a direct mcasure of the brain’s functioning, could be an important
tool for assisting the current way of diagnosing ADHD or even become a reliable
quantitative method. Furthermore the EEG procedure is a non-invasive and rel-
atively inexpensive medical examination. In practice the EEG technology is not
(yet?!) suitable for diagnosing ADHD. The diagnosis of ADHD nowadays requires
both medical (e.g. general practitioner, child neurclogist) and psychosocial (e.g.
child psychiatrist, developmental psychologist) expertise.

1.1 Problem definition

The current approach in diagnosing ADHD is almost exclusively based on ob-
servation and perception of the child’s parents and in some cases the teachers.
The medical and psychosocial specialist in diagnosing ADHD in children, com-
pares the symptoms described by the child’s parents to the criteria laid out by
the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) [American
Psychiatric Association, 1994].

There are a number of problems/difficulties regarding this present-day diag-
nosis of ADHD.

e The criteria given in the DSM-IV are qualitative (see section 2.2}, which
implies that specialists have to have a lot of experience and knowledge to
come with a correct diagnosis;

e Specialists almost exclusively rely on the observations of the parents, which
assumes that the parents have an accurate knowledge of the normal behavior
of age related children, however this is not always the case;
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e Because there is no quantitative way to diagnose ADHD, it takes a lot of
examinations and time to come with a diagnosis from a psychosocial point
of view. During this diagnostic process the child and the parents suffer from
all the consequences of the disorder, e.g. social problems, repeating a year
at school and losing friends;

e There is a considerable concern that with the current diagnostic approach
there is an over-diagnosis in ADHD, which results in incorrect treatment
and medication [Barry et al., 2003a);

¢ The long diagnosing time and wrong treatment will cost the government
and the medical insurance companies a large amount of money each year.

These problems can be reduced or even solved by improving the diagnosis of
ADHD. One way to accomplish this is to find a quantitative method to support
the qualitative diagnosing of ADHD.

A relatively new method within EEG analysis, which in the last two decades is
gaining popularity, is event-related desynchronization (ERD)/event-related syn-
chronization (ERS) [Pfurtscheller and Aranibar, 1977]. A common hypothesis is
that EEG desynchronization can be associated with an activation of the underly-
ing cortical areas and synchronization is a sign of inactive nearby cortical areas.
Also a relation with attention processes has been suggested. This last suggestion
is the basis of the hypothesis that ERD/ERS may deviate or even be absent in
children with attention deficits, such as ADHD. However, in literature no refer-
ences were found by the author, that indicate that ERD/ERS has ever been used
in any EEG research regarding ADHD.

1.2 Research objective

The objectives of this project are as follows:

e Comparing and analyzing the different algorithms/methods for the quan-
tification of ERD/ERS, and determining which one(s) are suitable to use in
this project;

o Implementing the algorithm in a software application, written in MatLab®
(version 7.0.4) developed by “The MathWorks, Inc.”;

e Determining which values should be chosen for the variable settings (e.g.
frequency bands, reference time, etc.);

o Evaluating EEG data collected during diagnostic research of ADHD and
control subjects, with the implemented algorithin. The goal is to see if
differences can be found between the two groups.

1.3 Report outline

This report is structured as follows:

e Chapter 2: Defines the ADHD-syndrome and the current way of diagnosing
ADHD;

o Chapter 3: Describes the basics of EEG, the different frequency band and
the meaning of Event-Related Potentials (ERP) and Event-Related Syn-
chronization /Desynchronization (ERD/ERS);
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o Chapter 4: Presents the basics of changes in the alpha and theta band, after
which two methods of determining the different individual frequency bands
needed for ERD/ERS quantification are explained;

e Chapter 5: Discusses the, most used, different methods to quantify ERD/ERS,
together with their advantages and disadvantages;

o Chapter 6: Describes the implementation of the ERD/ERS algorithms in
MatLab and the implementation of the FFT bandpass filter used in the
ERD/ERS algorithms;

e Chapter 7: Presents the specifications of the used EEG data, Recording
conditions of the subjects and the pre-processing of the data;

e Chapter 8: Presents the Results from the project;

o Chapter 9. Presents the conclusion and the recommendations for future
work.



Chapter 2

ADHD-syndrome

2.1 Understanding ADHD

Attention-Deficit/Hyperactivity Disorder (ADHD) is a disorder related, in part, to
the brain’s chemistry and anatomy. Although the exact cause ot ADHD remains
unknown, it js believed to be genetic because a twins-research has shown that
the heredity of ADHD has to be estimated on 70% to 80% [Health Council of the
Netherlands, 2000]. Exposure to nicotine (smoking) and alcohol during pregnancy
increases the chance of ADHD, probably in combination with hereditarily factors.

ADHD in general is a limitation of behavioral inhibition. Behavioral-inhibition
is the power to suppress, delay or stop stimuli of internal or external nature.
Children with ADHD develop the weakness around their first year and is based
on the functioning of the frontal cerebral cortex and the basal cerebral kernels.

The symptoms of ADHD are usually recognized in the earliest childhood.
The three key symptoms of the ADHD-syndrome are hyperactivity, impulsiveness
and attention weakness. Other symptoms are education-disorders, behavioral
problems and some children do not learn of their experiences. [Health Council of
the Netherlands, 2000}

In most cases ADHD is accompanied by other psychopathological conditions
like depression, conduct disorder and anxiety disorder. In roughly one third of
the cases, the symptoms persist into adulthood.

2.2 Classification

According to The Diagnostic and Statistical Manual of Mental Disorders (DSM-
IV) [American Psychiatric Association, 1994], the symptoms of ADHD fall into
three categories [Temmink and Merkelbach, 2000}:

e Inattention
Children of this type mainly show disorders in the selective functions of the
brain. This expresses itsclf in sustained attention and selective attention
disorders.
Some symptoms of inattention a child may be exhibit are:
— Problems with sustaining attention in work or play;
— Ignoring details; Making careless mistakes;
— He/she does not seem to listen when directly addressed;
~ He/she does not follow through on instructions;

— Difficulty organizing tasks and activities;



Chapter 2. ADHD-syndrome

— He/she gets distracted by extraneous noise and activities;

— Is forgetful in daily activities;

This type occurs in about 20% of the ADHD-cases and of which boys out-
number girls with 2:1 [Temmink and Merkelbach, 2000].

¢ Hyperactivity /Impulsivity
In this type symptoms can be related to a poor control function of the
brain. The symptoms are related to movement, observance, impulses and
emotions.
Some symptoms of hyperactivity a child may exhibit are:

— Often fiddle with hands or feet;

— Runs or climbs when he or she shouldn’t;
— Has difficulty with quiet leisure activities;
— Talks excessively;

— Has to get up if sitting on a chair;
Some symptoms of impulsivity a child may be exhibit are:

— Blurs out answers before questions have been complemented;
— Has difficulty waiting his or her turn;

— Interrupts or intrudes on others;

This type occurs in about 25% of children with ADHD and of which boys
outnumber girls with 5:1 [Temmink and Merkelbach, 2000].

¢ A combination of the two
These children show phenomena of equal proportions of both hyperactiv-
ity /impulsivity and inattention. With these children we often see a lack of
visually and auditory storage in their memory. With this, the storage of
information coming from the ears or eyes in the brain, is meant. This type
of ADHD is the most common one, it occurs in 55% of the ADHD-cases and
of which boys outnumber girls with 3:1 {Temmink and Merkelbach, 2000].

2.3 Diagnosis

Parents and/or teachers of a child are the first to notice that a child is showing
strange behaviors compared to the other children of his/her age. For example the
child has trouble sustaining attention in work or play, has difficulty with quiet
leisure activities and has difficulty waiting his/her turn. These symptoms mostly
results in, for instance education-disorders and behavioral problems, which forces
the parents to find help. In most cases the general practitioner is the first special-
ist the family turns to for help and advise. Knowledge about the child’s family

sidering the diagnosis of ADHD; use of information from more than one source is
crucial. In addition, the presence of comorbidity’ should be carefully investigated.
Because the diagnosis of the condition requires both medical and psychosocial ex-
pertise, it is of great interest that there is a good cooperation between different
disciplines. The core-professionals involved should also be experienced in diag-
nosing ADHD.

lhaving two or more diagnosable conditions at the same time



2.3. Diagnosis

Extensive research is necessary to diagnose ADHD. This research is mostly
done in the following order:

1. An interview focusing on patient history, including illness and development,
his or her behavior, contact with contemporaries and adults, school devel-
opment and motoric development. (anamnesis)

2. A general physical examination, e.g. blood pressure, posture, sense func-
tions.

3. A psychological examination, e.g. attention- and memory investigation.

4. An EEG and imaging examination (CT-scan, MRI-scan, PET-scan) to prove
or exclude neurological disorders that are coupled with ADHD.

The goal is that EEG analysis in the future becomes a reliable method to assist
in diagnosing ADHD. A great amount of research has already been performed
on the effects of ADHD on the EEG signal compared to healthy subjects. For
instance researchers looked at the difference of absolute and relative band power
and event-related potentials (ERP) (Section 3.3) between ADHD and normally
developed children. For a review of research on ADHD see Barry et al. [2003a]
and Barry et al. [2003b)].
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Rhythmic EEG activity

3.1 A look in history

EEG stands for electroencephalogram, the electrical activity of the human brain.
The first description of the electroencephalogram was reported by the English
physiologist Richard Caton in February 1875 in a brief abstract of about 10 sen-
tences.

Several years later Adolf Beck, who was not aware of Caton’s work, explored
the electrical brain activity in greater detail than Caton did. He provided im-
portant contributions to the nature of electrical brain activity. He discovered the
spontaneous oscillations of the brain potentials and showed that these fluctua-
tions were not related to heart and breathing rhythms. Moreover, he observed
a discontinuation in the fluctuations of the electrical waves as a consequence of
afferent stimulation. Thus he was the first to describe the desynchronization in
the EEG.

On 14 October 1927 a new breakthrough was made by Hans Berger who was
the first to record the electrical brain activity from an intact skull of a human (of
his son Klaus). He also described changes in the EEG during sleep and narcosis,
and recorded deviant patterns during epileptic attacks in humans. This is the
moment that the EEG became not only important in basic neuroscience, but also
became important for clinical practice.

For further details of the history of desynchronization of the EEG the article
of Coenen et al. [1998] can be consulted.

3.2 EEG recording

The brain continuously processes information. The EEG measured during no
controlled conditions is called spontaneous EEG activity. This spontaneous EEG
may be recorded at all times even when the person is at sleep.

To record spontaneous EEG signals, electrodes are placed on the scull. The
most widely used method of electrode placements is the international 10-20 sys-
tem, Fig. 3.1(b). With this method the electrodes are placed at specific distance
across the scalp. Each position has prefix letter(s) to identify the lobe (Fig.
3.1(a)): Fp for FrontoPolar (or prefrontal}, F for Frontal, C for Central, T for
Temporal, P for Parietal, O for Occipital. The letters are followed by an even
number to refer to the right hemisphere, odd numbers to refer to the left hemi-
sphere or 2" (zero) to refer to the midline. The numbers increase if the distance
between the midline increases.
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Figure 3.1: (o) International (left side) 10-20 system with underlying lobes. (b) Electrode
positions according to the international 10-20 system. Electrode position are named according
to Qostenveld and Praamstra [2001].

The amplitude of the measured EEG activity lies between 10 and 1004V in
children and 10 to 501V in adults [Niedermeyer, 1999]. If the amplitude is lower
than 10uV during a prolonged period it must be considered as abnormal. The
frequencies of the EEG activity, range from 0.5 up to about 70Hz. In electroen-
cephalography this frequency range is divided into the following bands [Cluitmans,
2003]:

Delta (6) 0.5-4 Hz Normally this activity is only recorded during sleep.

Theta (6) 4-8 Hz In normal conditions the recording of an awake adult a small
amount of theta frequencies can be detected. However, it plays an impor-
tant role in the recordings of children in drowsiness, sleep and wakefulness.
[Niedermeyer, 1999]

Alpha (o) 8-13 Hz The alpha rhythm has a maximum amplitude at the occip-
ital and parietal areas, see Fig. 3.1(a) for the location of the areas. The
mean frequency of the alpha rhythm increases with age.

The amplitude of the alpha rhythm can be up to 504V and occurs during
sleep and wakefulness. One important property of the alpha rhythm is that
it is blocked or attenuated by attention, especially by visual and mental
effort. [Niedermeyer, 1999]

In the case of desynchronization the high theta and alpha bands are mostly
divided in three smaller bands, namely the lowerl-alpha (6-8Hz), lower2-
alpha (8-10Hz) and the upper-alpha (10-13Hz) band. More information
about the alpha and the theta band can be found in Section 4.1.

Beta () 13-30 Hz The rhythmic beta activity is usually of low amplitude (£35uV)
and is distributed maximal over frontal and central regions of the scull {Nie-
dermeyer, 1999]. These beta rhythms can be blocked by movement or in-
tention to move and tactile stimulation. A widespread beta activity (i.e.
occurs over all electrode positions) are not blocked by any stimulus. The

10
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beta rhythm occurs in all individuals and mainly over the frontal and central
regions [Niedermeyer, 1999].

Gamma (y) >30 Hz The gamma rhythm has about the same properties as the
beta rhythm. The reason that the high frequency band is divided into a
beta and a gamma band is because the range is too large for research on
induced activity. See the following Sections for a detailed review about
induced activity.

Another rhythm that can be distinguished is the Rolandic! (Central) Mu
Rhythm. The frequency and amplitude are similar to the alpha rhythm, but its
topography and physiological significance is different. The mu rhythm is blocked
by movement that is either active (voluntary), passive or reflexive?. The rhythm
is present at the electrode positions C3 and C4 (Fig. 3.1(b)) and can be detected
by the use of frequency analysis like event-related desynchronization (Section 3.4).
[Niedermeyer, 1999]

3.3 Event-Related Potentials

In the previous section the spontaneous EEG was described in terms of different
rhythms. However, not only spontaneous EEG signals can be measured from the
scalp. Under certain circumstances it is possible to extract potential fluctuations
that are related to sensory processing, thought processes and motor behavior.
These potential fluctuations can be elicited by means of an external stimulus or
an event, for instance by moving a finger in response to a certain type of stimulus.

The problem of this potential fluctuation is that it is difficult to detect it
within the EEG because the electrical activity of the spontaneous EEG is usually
much higher. The spontaneous activity in this case can be seen as "noise”, and
thus that the signal-to-noise ratio is extremely poor. It is possible to improve
the signal-to-noise ratio (SRN) by using an averaging technique. In order to do
this, a number of distinct periods of the EEG signal are required. These periods
are event-related EEG periods which means that they are triggered by a certain
event (e.g. stimulus or movement). In EEG research these periods are denoted
as event-related EEG trials. These trials are averaged over each other, this way
the noise is averaged out. [Cluitmans, 2003]

This technique is called Event-Related Potential (ERP) and relies on two as-
sumptions:

1. The background (spontaneous) EEG is a stochastic, zero-mean and station-
ary signal.

2. The ERP signal (response) remains constant in each trial. This implies that
the signal is stationary as to phase, morphology, latency and amplitude.

However there is more and more evidence that the ERP response may vary
in each trial. This means that the second assumption is incorrect. This way,
if the averaging technique is used to process the ERP, there is a considerable
loss of information. This has lead to the development of (near) single-trial ERP
processing methods [Britton et al., 2000]. In these methods just a single trial or
a small ensemnble of trials (<10) are needed. Because ERP is not a main subject
for this thesis these methods are not discussed further.

An important characteristic of ERPs is that they are time-locked and phase-
locked (evoked) to an event. See Section 3.5 for further explanation of evoked
signals.

1 Rolandic refers to a part of the brain under the "central-temporal” electrodes C3 and C4
2Involuntary response to a stimulus
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Chapter 3. Rhythmic EEG activity

3.4 Event-Related (De-)Synchronization

Event-related Potentials are not the only phenomena that occur during an internal
or external event®. Another phenomenon that occurs is known as Event-Related
Desynchronization (ERD) and Event-Related Synchronization (ERS) [Pfurtscheller
and Aranibar, 1977]. The ERD/ERS are, in contrast to the ERP, also time-locked
but NON-phase-locked (induced) to an event. These activities represent highly
frequency-specific changes of the ongoing EEG activity, and results in a decrease
(ERD) or increase (ERS) of power in given frequency bands. A classical example
of this is the decrease of alpha band (8-12Hz) activity when opening the eyes as
first described by Berger [1929].

An event-related desynchronization (ERD) represents an amplitude decrease
of rhythmic activity. This means that in the underlying neural network or neu-
ronal circuitry, small patches of neurons or neuronal assemblies work in a relative
independent or desynchronized manner. An event-related synchronization (ERS)
however, is the opposite and represents an amplitude increase of rhythmic activ-
ity.

The functional meaning of ERD is that the underlying cortical area is activated
("working”), for instance processing information or preparing a movement. In
the case of ERS the functional meaning is that the underling cortical area is in a
resting or idling? state in which, at a specific moment of time, no information is
processed.

The size and magnitude of ERD reflect the mass of neural networks involved in
the performance of a specific task at a specific moment in time [Pfurtscheller et al.,
1996]. In ERS the size and magnitude represent the state of relaxation and idling.

-

hand area (C3) 8-10 Mz foot erea (Cz)

P

NN

oy 7

L moeram

10-12 Hz foot area (C2)

N=10

Figure 3.2: Average ERD/ERS curves recorded at electrode location C3 and Cz during voluntary
hand (full line) and foot (stippled line) movement. (From Pfurtscheller et al. [2000])

An example of ERD/ERS is given in Fig. 3.2. The horizontal line in each
group marks the level of reference band power and the vertical line the onset of
movement. A downward deflection indicates a band power decrease or ERD, an
upward deflection indicates a band power increase or ERS.

3Internal event is an event generated by the subject itself, e.g. if an subject is memorizing
words. An external event is generated by a stimulus presented to a subject, e.g. pressing a
response button at a specific trigger.

4'an area that has nothing to do’ [Adrian and Matthews, 1934)

12



3.5. Evoked and induced rhythms

The ERD/ERS are both short lasting (several seconds), localized and can be
characterized by the following parameters [Pfurtscheller and Lopes da Silva, 1999):

o Spatial localization
e Magnitude
e Latency

¢ Reactive frequency band

3.5 Evoked and induced rhythms

Because the ERD/ERS is non-phase-locked (induced) to an event, the averaging
technique applied on the ERP which is phase-locked (evoked), can not be used.

To explain this, a schematic representation of an evoked and an induced ac-
tivity is given in Fig. 3.3. Here we can sce that if evoked signals are averaged
over the total number of signals, the remaining signal will be enhanced because
thev are in phase to each other. However, if we apply this technique to induced
signals, which are not in phase, the signal will deteriorate or can even be almost
averaged out.

Stunulus ; Stimulus :
' A l'l‘ '
o o,
) '
Fvoked Synchronimtion Induce d Synchronization
(Phase-Locked) (Non-Phase-Locked)

Figure 3.3: Schematic description of evoked and induced activity in EEG.

An event-related EEG signal consists of both evoked and induced activity,
which means that by the averaging technique only the evoked activity (ERP)
will remain. Consequently, this technique can not be applied to compute the
ERD/ERS. In Chapter 5 several methods to compute the induced activity (ERD /ERS)

will be discussed.
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Chapter 4

Determination of reactive
frequency band

The first step in quantifying the ERD/ERS ic bandpass filtering the EEG data
The choice for the lower and upper limit of the bandpass filter is one of the dif-
ficulties in ERD/ERS analysis. One way is to use the predefined theta, lower
alpha, higher alpha and beta bands, as referred to in Section 3.2. The problem
with these predefined bands is that the frequency bands of interest are not always

the same but can vary from every individual.

In this chapter two methods are described to individually determine the re-
active frequency band(s) [Pfurtscheller, 1999b]. To explain these methods first
some basic aspects of theta and alpha activity are described {Klimesch, 1999].

4.1 Changes in Alpha and Theta frequency range:
basic aspects

Changes in alpha and theta frequency bands can be divided in Phasic and Tonic
changes. Tonic changes occur over a life cycle and in response to for instance
circandian rhythms!, growing age, neurological disorders, etc. Phasic (or event-
related) changes are under volitional contro! and occur in a rapid rate (e.g. ERP

and ERD).

4.1.1 Tonic changes in EEG

The brain develops itself until a person reaches the age of about 16 (e.g. brain
volume and learning). This development can he seen in the EEG signal by looking
at the peak frequency in the power spectra of the alpha band. At the age of 1
year the peak alpha frequency is around 5.5 Hz, 8 Hz at the age of 3 years and 9
Hz at the age of 9. When the age of 15 years is reached the mean alpha frequency
raised to about 10 Hz [Hughes, 1987; Klimesch, 1999]. There is no linear relation
in this increase of alpha peak frequency because they occur in several grow spurts.

The opposite applies to a person of 20 years old growing older, here the alpha
peak frequency decreases from about 11 Hz for a young adult of the age of 20 to 8
Hz of 70 year old person, following a linear relation between age and alpha peak
frequency, alpha_peak_frequency = 11.95 — 0.053 x age, as found by Kopruner
et al. [1984]. The cause of the increase and decrease of alpha peak frequency is

1A daily rhythmic activity cycle, based on 24-hour intervals.
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Chapter 4. Determination of reactive frequency band

not always age related but can also be related to neurological disease or lack of
education. o

Not only the alpha peak frequency changes during a lifespan but also the total
power of the delta, theta and alpha band varies. There is a strong increase in
alpha power (especially in the upper alpha band) and a decrease in delta and theta
power from early childhood until adulthood. Also in children with poor education,
reading/writing/spelling disabilities or with other types of neurological disorders
the delta and theta power are significantly higher than power in the alpha band
(Klimesch, 1999]. Because ADHD is a neurological disorder and is almost always
detectible in early childhood, these facts are an important factor in EEG frequency
analysis on the study of ADHD children.

4.1.2 Phasic changes in EEG

A typical phasic (event-related) change in EEG is the desynchronization (ERD)
of the alpha band during the presentation of a warning signal before a task has
to be performed. An example of such a task related experiment is that a subject
has to respond with ’yes’ if a word of a living object appears on a screen and 'no’
if the word is a non-living object, but before the word appears the subject gets
a warning signal [Klimesch, 1999]. This cycle will repeatedly be presented to a
subject. After each response on the task the subject becomes in a relaxed but
alert state which results in a pronounced alpha activity (synchronization), which
is mostly taken as reference period. However, just before the warning signal
appears the alpha activity becomes suppressed (desynchronization) because the
subject anticipates the appearance of the warning signal.

There are also differences in the phasic reaction of the alpha power compared
to the theta power. If the EEG power during resting period is compared to one
during an active period where a subject has to perform some kind of task, alpha
power decreases (desynchronizes) but theta power increases (synchronizes). The
transition between alpha desynchronization and theta synchronization (Fig. 4.1)
is marked by TF (Transition Frequency), of which the value lies in the range of
4 to 7 Hz depending the individual. This means that alpha and theta responses
tent to oppose each other and that if the TF point lies within a chosen frequency
band, the theta and alpha reaction can partly or completely mask each other.
The key problem here, is that the alpha frequency varies to a large extent as a
function of age, neurological diseases, memory performance, brain volume and
task demands. This is why the use of fixed predefined frequencies in ERD/ERS
research is not advisable.

Klimesch and coworkers found that the changes in alpha activity can be di-
vided in 3 separate frequency bands that each react on different states of mind
(Klimesch et al., 1992, 1998a]:

o Lowerl-Alpha: reflects alertness;
o Lower2-Alpha: reflects expectation;

o Upper-Alpha: reflects on sensory-sematic processing or task specific effects;

4.2 Peak frequency

One way of determining individual frequency bands was suggested by Klimesch
et al. [1998b]. Klimesch found that the theta frequency varies as a function of
alpha frequency and suggested that the alpha frequency is taken as a common
reference point for determining the individual alpha and theta bands.
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4.2. Peak frequency

L

POWER

o Viuill'i'r,

UPPER ALPHA

Figure 4.1: Individual Alpha Frequency (IAF) and Transition Frequency (TF). The dotted line
represents a reference period in which a subject is in a state of alert wakefulness and the bold
line is an active period in which the subject performs an specific task (e.g. memorizing visual
presented words). During the active period the alpha power becomes suppressed (decreases)
while theta power increases in comparison to the reference period. From Klimesch [1999]

Apart from the delta frequencies the human scalp EEG contains predomi-
nantly alpha activity. When a spectral analysis is made of an EEG signal taken
from a healthy, wakefulness and alert subject, one can find a peak frequency (the
spectral component with shows the largest power) in the alpha range (8-13Hz)
that for an young adult lies around 10 Hz (see Chapter 3.2). In the literature
the term Individual Alpha Frequency (IAF) is used by Klimesch and coworkers to
indicate that this is the peak frequency of only the alpha rhythm and not of the
whole signal, see Fig. 4.1. It is possible, due to for instance neurological disor-
ders, that there is no adequate peak frequency detectable in the power spectrum.
The spectrum could be virtually peak-less or contain multiple peaks with almost
the same power. In that case one can chose to calculate the gravity (or mean)
frequency within the alpha band. The gravity frequency is the weighted sum of
the spectral power, divided by the total alpha power

2Py x f) il
Py (1)

where Py is the power of frequency f and f contains the frequencies within the
alpha range.

Gravity TAF =

In Fig. 4.2 two examples of two different subjects are given of a power spectrum
computed from 1 second EEG resting period during which the subjects are in a
state of alert wakefulness (dotted line) and a 1 second active period in with the
subjects had to perform some kind of task. In Fig. 4.2(a) it is clear that there is a
peak frequency at 9.8 Hz so there is no necessity to use the gravity frequency. But
in Fig. 4.2(b) no distinguished peak frequency is detectable in the alpha range, so
the use of the gravity frequency in this casc is a very useful method to determine
the IAF.

Klimesch and coworkers (see Klimesch [1999] for a review) suggested the use
of the IAF as an anchorpoint to individually adjust the alpha and theta band.
They defined 4 frequency bands with a width of 2Hz as follows:

e Theta = (IAF - 6Hz) to (IAF - 4Hz);
o Lowerl-Alpha = (IAF - 4Hz) to (IAF - 2Hz);
e Lower2-Alpha = = (IAF - 2Hz) to (IAF);

17



Chapter 4. Determination of reactive frequency band

o Upper-Alpha = (IAF) to (IAF + 2Hz).

There is no clear definition of the beta/gamma band based on individual spectral
peaks.

Channel Channel
Pz Pz
400 : v 250 v ——
- ::::mu . | = - Reterance
e Active

350

A0 % aEEsH : % Gravity IAF (87 Hz)

4 | s GroviylAF (9.4 Hz) 200 E

|

2 « ] s 10 12 ” 18 2 4 ) [) 10 12 14
trequency (Hz) frequency [H2)
(a) Peak frequency (b) Gravity frequency

Figure 4.2: Ezample of determining the individual alpha frequency (IAF) between the alpha
range 6-18 Hz. The two graphs are taken from 2 different subjects. The dotted lines are
the power spectrum of a subject in a state of alert wakefulness and the bold lines are the power
spectrum of the same subject performing some kind of task. In (a) the IAF is easy to determine
because there is a clear peak at 9.8 Hz. But in (b) there is no clear peak in the range of 6-13
Hz, here the use of computing the gravity frequency is necessary for determining the IAF.

4.3 Power spectra comparison

A different approach of defining EEG frequency bands is to compare the power
spectra of two 1 second EEG periods over the available trials from a specific
electrode position and finding statistically significant differences between the two.
One period (R) is taken some seconds before an event occurs and is defined as
the reference period that is used in the ERD computation (Section 3.4). The
other period (A) lies in the active period. This active period can be before an
event (planning phase), on an event (during execution) or after an event occurred
(recovery phase). From these two periods the power spectra P are computed. The
power spectra are then converted to a logarithmic scale because it makes it easier
to observe large and small amplitude signals at the same time. The difference
between the two logarithmic power spectra is computed together with the 95%
confidence interval.

This 95% confidence interval contains the upper and lower limits of which
it is for 95% sure that the estimate mean of the samples (1) lies between these
boundaries. The formula for the 100(1-a)% Confidence Interval (CI) of a normal
mean and an unknown variance is as follows

s _ s
Cl=(Z-ty2n-1- A I+ta/2n-1" 75') ) (4.2)
with s the standard deviation
1 o N
s = n_lfl,»___l(:ri—:zc)’j , (4.3)

where Z is the mean of all samples, n the number of samples, and ¢, /2 n—1 is the t-
distribution or Student’s distribution, a variable defined by the t-density function
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4.4. Conclusion

and of which the value can be found in tables, e.g. Table 4.1 for tg.025,n—1 [RoOsS,
2000].

Table 4.1: t-distribution table for 95% CI.

n-1 | to.p2s5,n-1
4.303
4 2.776
8 2.306
10 2.228
20 2.086
50 2.009
100 1.984
500 1.965
oc 1.960

The difference between the reference and active power spectra either displays
a power increase which indicates an ERS or a power decrease which indicates an
ERD. The 95% CI can be used to determine the corresponding frequency band.

An example of optimizing individual frequency bands using power spectra
comparison is given in Fig. 4.3. In this case an ERS is detectable within the
frequency band 1-THz and an ERD within 9-13Hz.

4.4 Conclusion

Klimesch and coworkers divided the alpha band in tree separate bands that reflects
alertness, expectation and task specific aspects effects. They also found a way to
define these bands individually with the use of the Individual Alpha Frequency.

With the power spectrum comparison method one is able to find the frequency
bands in which an event-related Desynchronization or Synchronization occurs.
However, this method gives no background information of what caused this ERD
or ERS to evolve.

Most of the symptoms of ADHD are directly or indirectly involved with alert-
ness (see Chapter 2) with are reflected by the lowerl-alpha band using the method
of Klimisch and coworkers. Furthermore, this method is well investigated and used
in several other projects regarding alertness. Therefore the use of the Individual
Alpha Frequency method for determining the reactive frequency bands is used for
this project.
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Figure 4.3: Principle for optimizing frequency bands using power spectra comparison. The data
is taken form electrode position C8 (10-20 system). The bold line represents the power spectrum
of the reference period (R) and the thin line represents the power spectrum of the active period
(A; movement of a right hand finger at the trigger). Above the difference between both spectra
with 95% confidence limits are given.
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Chapter 5

Quantification methods

For a reliable quantification of ERD! the number of event-related EEG trials
should at least be 30 trials that are synchronously triggered to an event [Pfurtscheller,
1999bi. The time between two consecutive trials must be severai seconds to have
no interference between the different trials. Because event-related changes in the
EEG need time to develop and recover, these trials must have a length of at least
some seconds before and after the trigger. In the case of voluntary movement for
instance, the used trials could be at least 10 seconds long.

Over the years a number of different methods have been developed for the
quantification of ERD as a function of time. In this chapter an overview is given
of the most used methods and their properties.

5.1 Classical ERD

In section 3.5 it became clear that when averaging an EEG signal the induced
(non-phase locked; ERD) activity deteriorated. However the averaging technique,
used for ERP, is a good technique to improve the poor SNR, as explained in section
3.3. One way to solve the problem of deterioration of the non-phase-locked signal
and still use the averaging technique is to first square the signal. This way the
negative component is set positive and the signal is enhanced when averaged over
trials.

The common method to compute the ERD from event-related EEG trials
in literature is referred to as the “Classical” method and was first described by
Pfurtscheller and Aranibar [1977] and involves the following steps [Pfurtscheller,
1999a]:

1. The trials are bandpass filtered by a selected frequency band of interest.
(e.g. lower alpha (8-10Hz))

2. Each sample, from the bandpass filtered trials, is squared to obtain power
samples.

3. The power samples are averaged over the total number of trials to improve
the SNR.

4. The mean power samples are averaged over a number of samples (interval)
to smooth the data and reduce the variability.

n this chapter ERD/ERS is referred to as ERD
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Chapter 5. Quantification methods

5. The power samples of each interval will be expressed as a percentage and a
reference interval chosen a few seconds before the trigger will be set to zero

A~ R
ERD(;) = =8 x 100% , (5.1)
with
1 no+k
R=13 Ay (5.2)
j=no

where A(;) is the power at the j-th sample and R is the average power in
the reference interval (ng, ng + k), averaged over k samples.

The steps 2 and 3 of the classical method can be summarized with the following
formula

N
1 2
Py =7 2_Ti6a) » (5.3)
i=1

where N is the total number of trials and z(; ;) is the j-th sample of the i-th
trial of the bandpass filtered EEG data.

In Fig. 5.1 the steps of the above mentioned procedure are visualized with real
EEG data.

Raw EEG signal (3N}
T T

N

50 4V, ' .
) ' ' '
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Siop 1: Bardpass-titering [10-12 H2) {1 N)
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Step 2 Squarng (1.N)
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Figure 5.1: Principle of ERD/ERS quantification. The used date is from position C4, of the
10-20 system, and the trigger (t= Os) is a movement of a right hand finger. In step 1 through
J only two of the totai number of irials (N) taken from one recording scssion and one electrode
position are visualized underneath each other. The signal between the bold-faced line in step 5
is the data with which the reference interval is defined. As can be seen in the last step, there is
an increase of bandpower with indicates an event-related synchronization (ERS).

A disadvantage of this ERD technique is the poor temporal resolution of the
ERD because the signal has to be averaged over predefined time intervals (step
4) to get statistically reliable responses. Besides, if these intervals are chosen
too brief (Fig. 5.2(a)) this results in an oscillating and unstable ERD, if chosen
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5.1. Classical ERD
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Figure 5.2: Eramples of different interval length using ’classic’ ERD. The ERD is computed
from electrode Pz with an interval length of 0.25 (a) 0.5 (b) and I (c) times the period of 8 Hz.
The sample frequency equals 512 samples/sec., so the interval length are respective 16, 32 and

64 samples long.

too long (Fig. 5.2(c)) it results in unnecessary reduction of temporal resolution.
Kndeche and Rastiaansen {900")} have fannd that the ideal time interval should
be half the period of the slowest frequency under study (Fig. 5.2(b)). See Section
5.2 for more information.

Sterman et al. [1996] and Klimesch et al. [1998b] also use the classical method
only they use z-transformed power values to quantify the ERD instead of per-
centage as in the classical method. Klimesch et al. [1998b] termed this method
Event-Related band power (ERBP).

There are two variations on the above mentioned ERD computation, namely
the Intertrial Variance (IV) and the Temporal-Spectral Evolution (TSE) methods.
The difference between these methods can be found in step 2 of the computation.
In the block scheme of Fig. 5.3 the difference between the three methods of quan-
tifying ERD are visualized together with the process of ERP.

x@.h

Bandpass filter
X(d)

Squaring Squanng Absolute value )
Xij) (X:(i. ,) X 1X(i.i)]
] .

Averaging over ( Averaging over Avevaqmg over Averaging over
trials triais mals tnats
i ]
i Averaging over Avelagmg over \ Averaglno over
i tima mlerval tme intarval time mlerval

|
eno ERD ERD
[ ERP ) {Classic) j ( ) ) (TSE) J

[ Event-Related EEG Trials 1

Figure 5.3: Methods for event-related EEG trial processing. The block scheme shows the steps
of the classical | intertrial variance (IV) and the temporal-spectral evolution (TSE) methods

compared to the event-related potential (ERP).
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Chapter 5. Quantification methods

5.1.1 Intertrial Variance (IV)

With the classical method botli pliase-locked (evoked, ERP) and non-phase-locked
(induced, ERD) activities contribute to the bandpower changes. So it is possible,
especially in the lower alpha and/or theta band, where the majority of the ERP
power occurs, that an ERP masks an ERD.

The Intertrial Variance method, developed by Kalcher and Pfurtscheller [1995],
also uses squaring but with subtraction of the average across trails. The formula
of this method is as follows:

N
1 3
Vi = w— Y A= — 1)} (5.4)
N -1 =
with
] 1 &
I =N PRETE (5.5)

where N is the total number of trials, z(; ;) is the j-th sample of the i-th trial of
the bandpass filtered EEG data and Z;(; is the mean of the j-th sample average
over all bandpass filtered trials.

If we go back to Section 3.3 we can see that Z;(;) is equal to the calculation
of the ERP.

Thus the IV method (Eq. 5.4) is equal to the classical method (Eq. 5.3)
expect for the fact that in the IV method the ERP component is subtracted from
the ERD component.

The advantage of this method compared to the classical method is that only
the non-phase-locked activities contribute to the bandpower changes and therefore
is more accurate, specially in the lower alpha and /or theta band, than the classical
method.

This method is also termed induced band power (IBP; Klimesch et al. [1998b])
method. The difference is that the IBP (like the ERPB, Section 5.1) uses z-
transformation of the power values in stead of percentage to quantify the ERD/ERS.

5.1.2 Temporal-Spectral Evolution (TSE)

An other variation on the computation of the ERD as described in step 2 of the
procedure in Section 5.1 is the Temporal-Spectral Evolution (TSE) method as
proposed by Salmelin and Hari {1994].

Instead of squaring (bandpower) this method uses absolute values of the band-
pass filtered EEG data,

N
1
TSEG) =5 D lzpnl (5.6)
=1

where N is the total number of trials and zy(; ;) is the j-th sample of the i-th
trial of the bandpass filtered EEG data.

The advantage of this method is that the amplitude of the ERD samples
are expressed in the same units as the original response so they are directly
comparable to, for instance an ERP.

5.2 Hilbert transformation
In an article of Clochon et al. [1996] the use of amplitude modulation (AM) was

proposed to quantify the ERD. In this method the envelope of the bandpass fil-
tered event-related EEG signal is estimated based on the Hilbert Transformation.
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5.2. Hilbert transformation

The Hilbert transform of a given signal s(t) is defined as

1 /% s{71) o0 1
h{t) = = dr = 7T)——drT. 5.7
() 71'./—‘oot_‘r ’ /—008( )ﬂ(t—T)dT ( )
If Equation 5.7 is compared to the convolution integral
s(t) = f(t) = / s(myfit=7) , (5.8)

the following comparison between the Hilbert transform (Eq. 5.7) and the convo-
lution integral (Eq. 5.8) can be found

fie—7)= b= = (5.9)

n(t—17)

This way the Hilbert transform can be written as the convolution

h(t) = f(t) * s(t) = * s(t). (5.10)

=0
The Fourier Transform (frequency domain) of this equation is defined as

—jS(f) for f>0
{ 0  for f=0 (5.11)

J5(f)  for f<O

This means that the Hilbert transform can be considered as a filter which simply
shifts phases of negative frequencies components by +90° and positive frequencies
by —90°. The reason for this conversion is that this way the Hilbert transform is
much ecasier to compute in a software environment.

Now an analytic signal can be constructed from the original signal s(t) and
the Hilbert signal h(t)

H(f) =—3-sgn(f) S(f) =

s+ (t) = s(t) + jh(t) = m(t)e?°t | (5.12)

where m(t) is the complex envelope of the absolute value of signal s4(¢)

m(t) = [s4 (1)) = /s3(t) + A3 (t). (5.13)

In Fig. 5.4 the steps of the method based on the Hilbert Transform applied
on event-related EEG signals is visualized in a block scheme.

Finally, the ERD referred to as AM-ERD (Amplitude Modulation ERD), is
obtained by averaging the amplitude envelope synchronized by repetitive stim-
ulations (trials) and normalized the same way as in the classical method (Eq.
5.1)

AM — ERD = ™) =Mres 1009 | (5.14)
Mref
where m,.; is the average amplitude in a reference interval. In Fig. 5.5, an ex-
ample of ERD quantification with the use of the Hilbert method is given.

According to Clochon et al. [1996] the Hilbert transform compared to the
classical method produces statistically significant results, but the Hilbert method
has a much better time resolution. This was contradicted by Knosche and Basti-
aansen [2002], who compared the classical ERD with ERD based on the Hilbert
transform. In order to compare the time resolution of the different methods they

25



Chapter 5. Quantification methods
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Figure 5.4: Computation of amplitude modulation using the Hilbert Transform. The event-
related EEG signal is bandpass filtered and the Fast Fourier Transform is computed, then the
real and imaginary parts are inverted and the inverse FFT is computed to obtain the analytic
signal hy(t). Finally, the envelope m(t) is calculated by computing the absolute value of the
complex signal (sf(t), hs(t)).

Bandpass Fitered (10-12 Hz) and enveiope

Figure 5.5: Ezample of Hilbert Transform applied on event-related EEG data (same data as
used in Fig. 5.1). In the upper plot bandpass filtered signals with their envelope (cornputed
with the Hilbert Transform) are given. In the lower plot the ERD is computed by averaging
the envelope over N trails and epplying Eq. 5.14. The signal between the bold-faced line is the

reference interval for mp.;.

investigated 3 basic dimensions of the methods (accuracy, step response and sen-
sitivity) using simulated data. They concluded that if the time interval (step 4
in Section 5.1) is set to half a period of the slowest frequency component under
study, the classical ERD results are in the same range as those of the Hilbert ERD
with almost the same time resolution (Fig. 5.6). Only if high sampling frequencies
(>10kHz) are used the Hilbert method has a better time resolution.

In spite of this the advantages of this method in comparison with the above
described classical, IV and TSE methods is the fact that the Hilbert method
automatically adapts the time resolution to any frequency under investigation,
and is therefore easier to use.
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5.3. Autoregressive model
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Figure 5.6: (a) Hilbert ERD and (b) classical ERD of position Pz uith a bandwidth of 8-10Hz
and a sampling frequency of 512 samples/sec.. The classical ERD has an interval length of
0.5 times the period of 8Hz. The amplitude difference between the two is due to the squaring

technique applied in the classical method.

5.3 Autoregressive model

To use an autoregressive (AR) model, the event-related EEG trials (which are non-
stationary stochastic signals) have to be stationary. To overcome this problem
the concept of local stationarity can be used. This concept says that:

" A stochastic process is defined as locally stationary if, within short
intervals of time, it behaves very much like a stationary process, al-
though its global characteristics may vary over time” [Pfurtscheller,
1999b).

Therefore the EEG trials have to be divided into segments of the same length, so
that within each segment the data is stationary.
If x(n) is the n-th sample of a segment, the AR-model of order p is given by

z(n) = Z a; -x(n — 1) +e(n) , (5.15)

i=1

where a; are the AR parameters and e(n) is a white noise process with variance
o?. The AR parameters can be estimated from the autocovariance function by
solving the Yule- Walker equations. [Florian and Pfurtscheller, 1995)

Once the AR model is estimated, the power spectrum within a segment of the
event-related EEG signal can be computed as:

o? 1

E““ale_Jw—,...,—ape—prP —TSWwST, (5.16)

S(w) =

1

where ¢ is the variance of the white noise e(n).
To analyze event-related EEG data trails with an AR-model, the steps are as
follows [Florian et al., 1998;:

1. Trials are divided into segments;
2. For a given segment the autocovariance function is estimated for all trials;

3. These estimates are averaged across trials, giving an average covariance
matrix function;
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4. Solving the Yule-Walker equations based on the average covariance matrix
function..

5. The spectral matrix function is estimated using the autoregressive model.
(Eq. 5.15)

6. By repeating steps 1-4 for the sequence of segments chosen in step 1, time
courses of power spectra are obtained. (Eq. 5.16)

An example of the time course of a power spectrum of event-related EEG signals
computed with the use of an AR-method is given in Fig. 5.7.

w [HZ)

Figure 5.7: Erample of power spectra of event(movement)-related EEG data. The signal is
taken from position C8 (10-20 system) where at time t=5 a movement of the right finger was
performed. In the frequency band from 5-15Hz o decrease of power starts at about 2 seconds
prior to movement, indicating an ERD (From Florian and Pfurtscheller [1995]).

The advantage of the AR method is that is has a better spectral resolution
than the above described methods. The disadvantages of this method, beside
the fact that the AR method is computationally very expensive, are that two
parameters have to be chosen to get a reliable and correct computation of the
ERD. These parameters are:

e The length of the data segments.
If long segments are chosen the time resolution is low but the reliability is
poor (poor biased) because of the locally stationary criteria. If the segments
are short the reliability is good (unbiased) but the time resolution is high.
This means a balance must be found between time resolution and reliability.

e The order of the AR-model.
In general, if the order for the AR-model is chosen to low the spectral
components that are to close to each other are smeared together, while to
high will cause fake peaks in the spectrum.

5.4 Conclusion

With the classical method the time resolution of the ERD depends on the length
of the time interval. The advantage of the Hilbert method is that it automatically
adapts the time resolution to any frequency under investigation. So this way there
is no need for manually adjustment of settings, which is a time consuming activity.
Still the classical method has the advantage that it is very easy to compute and

28



5.4. Conclusion

in literature this method is a common used technique, so the results could be
compared with earlier findings.

As mentioned in the introduction, attention process is an important aspect
within ERD research of ADHD. The fact that attention processes are reflected by
the ERD computed within the lower alpha frequency range, in which it is likely
to get interference of ERP’s, the use of the intertrial variance method is advisable.

As can be seen all these three methods have there own advantage that could
make it useful within the ERD study of ADHD. Therefore the quantification
methods classical, intertrial variance and Hilbert are used for the implementation
of the ERD software in MatLab. Another reason for using more than one method
is that this way the results form the different methods can be compared to each
other. The Temporal-Spectral Evolution (rarely used so not comparable) and the
Autoregressive method (intensive computation and 2 settings) are not used in the
implementation.

The choices for the used methods are made after discussions with my super-
visor dr. ir. P. Cluitmans.
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Chapter 6

Implementation ERD/ERS
Algorithm (MatLab)

For the computation of an ERD/ERS a software application (ERDtool) has been
designed in MatLab that uses the Classical, Intertrial Variance and Hilbert meth-
ods. This tool is based on the data that is available for this project and is used for
the ADHD research described in Chapter 7 and 8. In Appendix A the different
options and panels of this tool are described.

The first section of this chapter focuses on bandpass filtering of EEG data in
a MatLab environment used in the computation of the ERD/ERS. In the second
section the steps of the implemented algorithms are described.

6.1 Bandpass filtering

One important feature of ERD/ERS is that it is highly frequency specific. There-
fore the event-related EEG signals have to be bandpass filtered in different fre-
quency bands. This is done by using a Fast Fourier Transform (FFT) filter instead
of a more common used and faster, Finite Impulse Response (FIR) filter. The
reason for this is that a FIR filter changes the phase of the signal, whereas a FFT
filter leaves the phase information unchanged. This means that if a FIR filter is
used on an event-related EEG signal, which is non-phase-locked to the event, it
would change the phase information of the signal and make the signal unusable.
Besides, the FFT is also used to compute the envelop using the Hilbert method
thus it is logical to filter the EEG signal and compute the envelop both in the
frequency domain.

6.1.1 Fast Fourier Transform

By using the Fourier Transformation, a time continuous signal in time domain can
be transformed to the frequency domain. This is accomplished by decomposing
the original time-based signal into a series of sinusoidal terms, each with a unique
magnitude, frequency and phase. Since, the event-related EEG data used in this
project is a time-discrete (sampled) signal, the Discrete-time Fourier Transform
(DFT) is used.

If the signal has a segment duration of Ty and is sampled at a frequency f,,
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Chapter 6. Implementation ERD/ERS Algorithm (MatLab)

the number of samples within the signal is equal to N:
N=Ty-fs. (6.1)

Given a sequence of N samples z[n] (0 < n < N —1), the DFT is defined as X [k|:
N-1 -
X[k} =Y alne™F) | 0<k<N-L (6:2)
n=0

The index k defines the different frequencies (fx) associated with the spectral
component X [k]:

ﬂ:%, 0<k<N-1. (6.3)

To reconstruct the original signal the inverse DFT or IDFT is used:
1 N-1 (— 2~rrku)
z[n] = N ,Z“_O X[nje! =7 . (6.4)

The lowest frequency defined by the length of the data set, sample length N, is
called the fundamental frequency. It has exactly one cycle per total number of
samples (N).

The disadvantage of the DFT transform given by Equation 6.2, is that in
practice for large signals it can take considerable time to compute the resuit. A
much faster algorithm is the Fast Fourier Transform (FFT). This FFT algorithm
reduces the number of calculations of a n-point fourier transform. For instance, it
reduces the number of multiplications to about (n/2)log,(n). In comparison, if a
DFT is computed on a signal of 1024 samples it needs 1,048,576 multiplications.
If the same signal is computed with a FFT the number of multiplications will
be reduced to 5,120. This is a factor 200 improvement. The only difference
between FFT and DFT is that FFT decomposes the N-point DFT computation
into computations of smaller-size DFTs and takes advantage of the periodicity
and symmetry of the complex number e(=F**). One of the requirements to use
the FFT is that it requires a total number of data points (samples) that is equal
to 2" (eg. 512, 1024, 2048, etc.). If the signal contains less samples than required
by the FFT, samples of the value zero will be added, to the signal until it has the
desired length. This is called zero padding and is also used by the fft.m function
in MatLab.

6.1.2 The FFT filter

Filtering of data using an FFT fiter is accomplished as follows: first the FF'T of
a signal is computed and, within the frequency domain, all spectral coefficients
outside the desired frequency band are set to zero. The filtered data is then trans-
formed back to the time domain with the Inverse FFT or IFFT. What remains
is a bandpass filtered signal of the original data.

However, a disadvantage of FFT (and the DFT) is, that if the FFT is ap-
plied to a data set that contains non-harmonic components an error known as
spectral leakage occurs. An example of this phenomenon is shown in Fig. 6.1(b),
where the top graph shows a section (between 2 and 5 sec.) of the signal s[n] =
sin(%52-3.7) + sin(%52 - 5.5) + sin(453 - 7.1). The signal is sampled at 512 Hz and
visualized in Fig. 6.1(a). If a FFT of this section of the signal is computed a peak
at 3.7, 5.5 and 7.1 Hz is expected in the spectrum. However because the signal
contains non-harmonics there is a wide area of peaks around the 3.7, 5.5 and 7.1
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6.1. Bandpass filtering

Hz as can be seen in the FFT graph of Fig. 6.1(b). If this signal is bandpass
filtered between 5 and 6 Hz and transferred back to the time domain one would
expect to retrieve a 5.5 Hz sine wave. However, because of the leakage there is
a disturbance in the 5.5 Hz retrieved signal. This is shown in the two bottom
graphs of Fig. 6.1(b).

Spectral leakage occurs because the DFT actually finds the frequency compo-
nents of a signal which consists of endlessly repeated copies of the sampled signal
with infinite width. For frequency components of the signal for which there is a
"pattern match” at the two ends (i.e. harmonics of the fundamental frequency
with complete periods), there is no problem and the spectrum will show a nice
peak. However, for the non-harmonic components there is a mismatch where
adjacent sections join. The sudden jump or discontinuity created by the pattern
mismatch gives rise to spurious components in the spectrum of the signal, causing
a particular frequency component of the signal to appear not as a single sharp line
but as a spread of frequencies, roughly centered around where the frequency com-
ponent should be located, somewhere between the two nearest frequency channels
on either side.
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Figure 6.1: Ezample of different windows. The original signal (o) is s[n] = sin( 25’{'2‘ 3.7) +
s'm(";"T; -5.5) + stn(%’;; 7.1) aend sampled at a frequency of 512 Hz. The bandpass filter was
set to filter between 5 and 6 Hz. (b) The original signal between 2 and 5 sec. and (c) the same
signal multiplied with a Hanning window with their FFT, filtered FFT and IFFT of the filtered
FFT. (d) The original signal between 1 and 6 sec. multiplied with the dedicated window with

its FFT, filtered FFT and the IFFT of the filtered FFT between 2 and 5 sec.
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The event-related EEG data is stochastic, which means that it always contains
. frequencies that are not exact harmonics of the fundamental frequency. This
introduces spectral leakage which has to be reduced. This is done by using a
window technique. These windows are data blocks that are shaped in a way to
be exactly or approximately zero at the beginning and end of the data block and
have special designed shapes in between. Such a window is multiplied with the
original signal so that the sampled signal, "fades” in and out rather than starting
and stopping abruptly. This reduces the effect of the discontinuities where the
mismatched sections of the signal join up, and hence also the amount of leakage.
An example of such a window, called the Hanning window, is given in Fig. 6.2(a).
In Fig. 6.1(c) the top graph is the result of a multiplication of the original (non-
harmonic) signal between 2 to 5 sec of the signal given in Fig. 6.1(a)) with a
Hanning window. This way the spectral leakage of the FFT of this signal (second
graph of Fig. 6.1(c)) has been reduced.

% Hanning % Hamning
¥ 4
o o }
L[LLI,/]IIIT—l IRSEREEREEN lj/‘L[llT [TT1]
dua ot e ores cas ot ot terest exrs cae
(a) Hanning window (b) Dedicated window

Figure 6.2: Hanning and dedicated window

The only problem of the use of windows is that when the signal is filtered
and transformed back into the time domain using an IFFT, the information of
‘the signal is changed by the multiplication with the window. For instance, in
Fig. 6.1(c) the last graph is the IFFT of the Hanning windowed signal bandpass
filtered between 5 and 6 Hz. The problem is that it is not possible to reconstruct
the original signal before it was windowed. In case of filtering the data, the signal
has to be reconstructed without the loss of data at the beginning and ending of
the signal.

To accomplish this, a different window was designed for the current project.
It consists of a 2 second Hanning window that is cut in half. In between the
parts, an array of ones is added with a length equal to the data of interest, Fig.
6.2(b). The data of interest has to be expanded by one second of data previous to
the data of interest and one second after. In Fig. 6.1(d) the signal of Fig. 6.1(a)
between 1 and 6 sec. is used. Thus the signal used in Fig. 6.1(c) is expanded by
1 sec. of data at both ends, compared to Fig. 6.1(b) and 6.1(c). In the top graph
of Fig. 6.1(d) the signal is multiplied with the dedicated window, and the FFT
of the signal is taken and filtered between 5 to 6 Hz. If the filtered spectrum is
transferred back to the time domain and we leave out one second at the begin-
ning and at the end, the 5.5 Hz sine wave is retrieved (bottom graph). The slight
interference of the filtered signal is due to the spectral leakage that, despite the
use of the window, never can be remove completely.
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6.2 ERD/ERS algorithms

In the next sections the implemented ERD/ERS algorithms using the Classical,
Intertrial Variance and Hilbert methods are described for a set of trials containing
raw EEG data that is time-locked to an internal or external event, taken from
one electrode position (e.g. Pz).

6.2.1 Classical method

For the computation of the ERD/ERS using the Classical method, the following
steps are performed:

1. Bandpass filtering:

(a) Transforming the raw data to the frequency domain using the FFT
and the dedicated window;

(b) Setting the spectral coefficients outside the predefined frequency band
TO Zero;

{c) Transforming the bandpass filtered data back to the time domain using
the IFFT;

2. Squaring the samples to obtain power samples;
3. Averaging the power samples over the total number of trials;

4. Dividing the average trial into short time intervals and return the mean of
the power samples within these intervals;

5. Expressing the averaged samples of each time interval as a percentage rela-
tive to a chosen reference period.

6.2.2 Intertrial Variance method

The Intertrial Variance and Classical method are almost the same, the only differ-
ence lies in step 2 and 3 of the below mentioned performed steps. The IV method
can than be summarized as follows:

1. Bandpass filtering (same as in the Classical Method):

2. Computing the mean of all the bandpass filtered trials within the EEG data
of the electrode position which vields to a bandpass filtered ERP;

3. Subtracting the bandpass filtered ERP from each single trial;
4. Squaring the samples of the subtracted trials to obtain power samples;
5. Averaging the power samples over the total number of trials;

6. Dividing the average trial into short time intervals and return the mean of
the power samples within these intervals;

7. Expressing the averaged samples of each time interval as a percentage rela-
tive to a chosen reference period.
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6.2.3 Hilbert method

The algorithrir using the Hilbert transform uses the following steps for the com-
putation of the ERD/ERS:

1. Estimating the envelope of the bandpass filtered data:
(a) Transforming the raw data to the frequency domain using the FFT

and the dedicated window;

(b) Setting the spectral coefficients outside the predefined frequency band
to zero;

(c) Performing the Hilbert transform (= —j - sign(z)) on the bandpass
filtered samples

(d) Transforming the Hilbert transformed data back to the time domain
using the IFFT, and thus obtaining the envelopes of the bandpass
filtered trials;

2. Averaging each sample of the envelope in each trial over the total number
of trials;

3. Expressing the averaged samples as a percentage relative to a chosen refer-
ence period.
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Chapter 7

EEG Data

7.1 Subjects

The subjects in this project consisted of 3 children with a diagnosis of ADHD
and 3 control subjects (all boys). All children were right handed. The mean
{M) age and standard deviation (S.D.) of the ADHD and Control group together
were M = 12.33 and S.D. = 1.63, respectively. The children of the ADHD group
had the age of 10.5, 12.08 and 14.25 years, were the main age and standard
deviation were M = 12.28 and S.D. = 1.88, respectively. The ADHD children
were clinically diagnosed according to the DSM-IV criteria [American Psychiatric
Association, 1994]. Within the ADHD group no distinction was made between
the three classifications inattention, hyperactivity/impulsivity and the combined
ADHD. In the control group the age of the children was 10.5, 12.67 and 14 years,
where the main age and standard deviation were M = 12.39 and S.D. = 1.77,
respectively. All ADHD subjects did not use medication for 1 or 2 days prior to
the experimentation day.

7.2 Electrophysiological recordings

The EEG activity was recorded using easy cap sintered Ag-AgCl ring electrodes
from 21 scalp locations: Fpl, Fpz, Fp2, F7, F3, FZ, F4, F8, T7, C3, Cz, C4, T8,
P7, P3, Pz, P4, P8, O1, Oz and O2, according the international 10-20 system by
means of an electrocap. The electrode impedance was kept below 10 k2. The
EEG data was continuously recorded using a CogniTrace EEG-ERP acquisition
system interfaced with the eeMagine/ANT-software.

EEG signals were referenced to the right mastoid electrode and an average ref-
erence was used. EEG signals were amplified, low-pass filtered at 256 Hz and the
DC offset was remnoved. The EEG data was then digitized on-line at a sampling
rate of 512 Hz and stored for off-line processing and analysis.

7.3 Procedure and task

Both the data of ADHD and control subjects were recorded in a single session
lasting approximately 1.5 hours. The task they had to perform was the AX
continuous performance task (CPT-AX) [Bekker et al., 2004], which has been
widely applied both inside and outside the context of behavioral disturbances. The
uppercase letters A, B, C, D, E, F, G, H, J, L and X were presented on a screen.
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The letters appeared for 200 ms and the inter-stimulus interval is approximately
2200 ms. Subjects were instructed to press a button with their righthand (because
all subjects were right handed) when the letter X followed the letter A. The letters
H, X and A appeared with a frequency of 20%. The remaining letters B, C, D,
E, F, G, J and L appeared with a frequency of 10%. 75% of the times an A
appeared, it was followed by an X. The stimuli can be categorized as follows:
'Cue’ (A), 'NoCue’ (B, C, D, E, F, G, H, J and L not preceded by an A),’Go-
stimulus’ (X preceded by an A), 'NoGo-stimulus’ (B, C, D, E, F, G,H, J and L
preceded by an A) and 'X-only’ (X not preceded by an A). First, the subjects
received a practice block lasting about 1.5 minutes, depending on the subject it
could also be shorter.

During the recording and procedure, the child was sitting in a comfortable
chair in front of a computer screen at a distance of 50 cm.

7.4 Data pre-processing

Trial

The recorded EEG data was first bandpass filtered from 0.3 to 30 Hz using the
eeMagine/ANT-software. From this bandpass filtered EEG data trials (data-
blocks) that consists of samples taken within a time span of 4 seconds before and
2 seconds after the stimulus X appearing after an A (’Go-stimulus’). This means
that the data within the trials contain the moments between the appearance of a
'NoCue’ followed by a 'Go-stimulus’.

Artefact detection

During an EEG recording session it is most likely that the electrical activity con-
tains components that do not originate from the brain. These disturbances are
called artefacts. There are three types of artefacts that frequently occur during
EEG recording, namely muscle movement, electrode movement and eye movement
and/or blink activity (ocular artefacts). The muscle and electrode movement can
be reduced by placing the subject in a comfortable chair in a resting position.
However, for most subjects it is very hard to control blinks and eye movement
adequately for long recording sessions. It is known that ocular artefacts are much
more frequent in children than in adults. Above all, half of the children included
in the current study have a hyperactive disorder which means for them it is even
harder to concentrate on not moving or blinking their eyes. Because these arte-
facts are mostly larger (order 100—2001:V) than the EEG signal (order 10—-60uV),
they can mask the desired EEG signal. Therefore EEG data containing an artefact
has become useless for further analysis and has to be removed from the data-set.

One problem with eye movement or blinking is that these artefact signals
decrease rapidly over the scull with increasing distance from thc eyes. Besides,
when a subject receives a visual trigger during event-related research, a reaction
to the trigger is often a blink with the eyes which results in an artefact. The
problem here is that the artefact occurs at a moment within the EEG data set
(shortly after the trigger/event) that is of great interest for event-related analysis.
Therefore, the artefact detection of the EEG data is divided into two sets of
electrode positions. The first set consists of the electrode positions Fpl, Fpz and
Fp2 (FrontoPolar), the second set include the other electrode positions within the
international 10-20 system. This way the eye movement,/blink can be detected by
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the FrontoPolar electrodes which are positioned close to the eyes and where the
artefact signal is still strong enough to be measured and can be distinguish from
the EEG signal. Moreover, the artefact detection at the FrontoPolar electrodes
can be set more sensitive than for the other electrodes. Using this approach we
make sure that also small eye movements/blinks which interfere with the actual
EEG signal are detected and no trials are unnecessary excluded because of a too
sensitive detection of artefacts over the whole scull.

The trials where the peak-peak value exceeds 140uV for the FrontoPolar and
300uV for the other electrode positions were considered to be not artefact-free
and under those conditions the entire trial of all electrode positions were excluded
for further analysis. This ensures that the total number of available trials for all
electrode positions remain equal. The total number of artefact free trials that are
used for the quantification of the ERD/ERS varies from 30 to 56.

7.5 Data analysis

7.5.1 Determination of the reactive frequency bands

For the determination of the reactive frequency bands the method of Klimesch
et al. [1998b] was used. This method is described in Section 4.2. It uses the Indi-
vidual Alpha Frequency as a reference point for adjusting the different frequency
bands. The way to determine the IAF can be done using different procedures,
each of which will be given here.

Eyes closed procedure

In this procedure the approach outlined by Posthuma et al. [2001] was followed.
They used the EEG recording of an eyes-closed (EC) condition to determine
the maximum power within the frequency of 7 to 14 Hz (alpha band). In this
project, for each subject the power density spectrum was computed using a Fast
Fourier Transform applied on 2 minute eyes-closed EEG recording of the electrode
positions O1, Oz and O2. An artefact detection was performed on the 2 minutes
of eyes-closed EEG recording, in which the peak-peak value of the eyes-closed
EEG had to be below 300uV. The 1AF of the power spectra was determined as
the highest peak within the frequency range of 7 to 14 Hz.

Single trial procedure

In the article of Klimesch et al. [1998a], Klimesch and co-workers used a method to
determine the mean JAF to find the reactive frequency band. They first computed
the power spectrum over an entire trial and determined the IAF for that trial.
This was done for all the trials of each electrode position, in this case F3, F4, Cz,
Pz, O1, and O2. The mean JIAF was then computed by averaging the IAF over
all trials and electrode positions. The mean IAF was the anchor point for the
frequency bands of all the subjects.

Reference period procedure

The IAF is determined by comparing the power spectrum of a reference period
to that of an active period, as explained in Section 4.2. In this case the reference
period (R) was chosen from 0.5 s to 1.5 s of the artefact free trials determined in
Section 7.4. For the active period two periods were chosen, period Al was chosen
right before an X appeared on the screen (3 to 4 s) and period A2 represents the
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period right after an X appeared (4 to 5 s) of the same trials as the reference
period. In Fig. 7.1 the periods are visualized.

| R | A1l A2

5 6 sec.

> —pp-
X =t

Figure 7.1: Visual representation of the periods R, Al and A2 within a trial.

The power spectra of the 3 periods within the trials of the electrode positions
F3, F4, Cz, Pz, O1 and O2 are computed. The spectra of the different trials of
each electrode position were averaged and visualized. The highest peak within
the frequency band 6-13 Hz of the reference period was determined as the IAF.

7.5.2 ERD quantification

For the computation of the ERD/ERS the Classical, Intertrial Variance and
Hilbert method were used, as discussed in Chapter 5.

In the first steps of all three methods the artefact free trials were filtered with
a fast Fourier transform (FFT) filter in the four different frequency bands: theta
(IAF-6 Hz to IAF-4 Hz), lowerl-alpha (IAF-4 Hz to IAF-2 Hz), lower2-alpha
(IAF-2 Hz to IAF) and upper alpha (IAF to IAF+2 Hz). The FFT filter used
is described in Section 6.1. The other steps of the ERD computations Classical,
Intertrial Variance and Hilbert method are described in Sections 6.2.1, 6.2.2 and
6.2.3, respectively.

One step of the Classical and Intertrial Variance method requires dividing a
trial into intervals and averaging the samples over time within these intervals, in
order smooth the data and reduce the variability, see Section 5.1. The optimal
length of these intervals is half a period of the slowest frequency component under
study [Knosche and Bastiaansen, 2002]. In this project the interval length is cho-
sen equal for each frequency band (e.g. theta band), see Table 7.1. The length of
the intervals are chosen at the lowest frequency of that specific band determined
by the IAF. Because the sample rate lies at 512 Hz and the data length is in the
order of seconds the choice was made to only use interval length of 2™ samples,
where n are real numbers, so the complete data can be averaged over the same
interval length.

Table 7.1: Intervul length for each frequency bend.

Frequency Band Interval Length
Theta 128 samples
Lowerl-Alpha 64 samples
Lower2-Alpha 64 samples
Upper-Alpha 32 samples
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The reference period needed to express the ERD/ERS as a percentage taken
from 500 ms tot 1500 ms from the beginning of the trials, and lies between a
'NoCue’ letter and the 'Cue’ letter A. Because the time between the appearance
of the letters is the same, the subject can estimate the appearance of a new letter.
Therefore during this reference period the subject is in a state of resting readiness
and makes it a good reference for the active period between the 'Cue’ A and the

X.
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Chapter 8

Results

8.1 Eyes closed procedure

In Table 8.1 the IAF found within the 2 min eyes closed data for each subject
is given for the electrode positions O1, Oz and O2. After visually comparing
the power spectra of these three positions, it was concluded that in most cases
the electrode position Oz showed the clearest peak, therefore the ERD/ERS was
computed using the frequency bands determined by Klimesch and co-workers with
the IAF of electrode position Oz.

Table 8.1: IAF deterrnuned by finding the peak frequency within the power spectrum of 2 min
eyes closed data.

Individual Alpha Frequency (IAF)

Subject 01 Oz 02 Mean of Oz (8.D.)
ADHD 1 8 8.4 7.9
ADHD2 | 95 | 96 | 97 9.47 (1.01)
ADHD 3 104 | 10.4 | 10.3
Control 1 9.9 9.9 10
Control 2 || 10.2 | 10.2 9.9 9.8 (0.46)
Control 3 93 9.3 9.3

After computation of the theta, lowerl-alpha, lower2-alpha and upper-alpha
ERD/ERS the results of the ADHD subjects was compared to those of the control
subjects. Especially in the lowerl-alpha band, which represents visual attention,
differences between the ADHD and the Control subjects were expected. However,
no distinctive differences between the ADHD and the control subject were found.
Moreover no similarities were found between the 3 control subjects.

Comparison between the mean of the IAF of the ADHD and the control groups
of electrode position Oz reviews, that the mean IAF of the control group is slightly
higher than that of the ADHD group. Besides, the IAF of O1, O2 and Oz between
ADHD group lie further apart then in the control group, as can be seen in the
standard deviation of Oz in Table 8.1.
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Chapter 8. Results

8.2 Single trial procedure

Table 8.2 displays the results of the IAF found within the 6 s trials of each of the
three ADHD and contro!l children. The mean IAF of the ADHD group is lower
than of the control group, Moreover, the difference between the two is even higher
than the difference between the two groups of the previous procedure, of which
the results are shown in Table 8.1. The standard deviation however, is almost
equal in both groups.

Table 8.2: JAF determined by finding the peak frequency within the power spectrum of a single
trial and averaged over the total number of trials.

Individual Alpha Frequency (IAF)
Mean (S.D.)

Subject F3| F4 | Cz| Pz | O1 | O2 | electrode positionﬂ] subjects
ADHD1 [[72]74]69] 69 | 81 ] 81 7.43 (0.55)
ADHD2 || 72 (78| 71| 86 9.3 94 8.23 (1.02) 7.91 (0.88)
ADHD3 | 71|71 |75]| 87 | 91 | 89 8.07 (0.61)
Control 1 || 8.2 [ 8.2 | 81| 9.2 9 9.5 8.7 (0.61)
Control 2 || 9.4 | 9.7 | 9.7 | 10.1 | 10.3 | 10.2 9.9 (0.35) 9.01 (0.85)
Control 3 || 8.1 81| 96| 7.6 8.4 78.8 8.43 (0.69) ‘J

The frequency bands for computing the ERD/ERS were determined individ-
ually by averaging the IAF over the electrode positions (Table 8.2) for each sub-
ject using the method of Klimesch. However, no distinctive differences in the
ERD/ERS could be found to distinguish ADHD subject from control subjects
with these individual frequency bands.

From the article of Klimesch et al. [1998a], from which this procedure origi-
nates, it is not clear if the ERD/ERS was computed with individual determined
frequency bands or that one averaged frequency band was used for all subjects.
Therefore, the ERD/ERS was also computed with a fixed frequency band for all
subjects as follows. The mean IAF over all subjects (= 8.5 Hz) was taken as a
reference to determine the following frequency bands: theta 2.5 - 4.5 Hz, lowerl-
alpha 4.5 - 6.5 Hz, lower2-alpha 6.5 - 8.5 Hz and upper-alpha 8.5 - 10.5 Hz. The
ERD/ERS of all subjects was computed for those frequency bands. Within the
theta, lower2-alpha and upper-alpha no distinctive differences between the ADHD
and the control subject were found. However, within the lowerl-alpha there was
a significant higher synchronization (ERS) for the ADHD group at electrode po-
sition F'z at the appearance of an A and at the appearance of an X on the screen,
as shown in Fig. 8.1. To explain this higher ERS more research is required on
more subjects.
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Figure 8.1: Results of the ERD/ERS computed at Fz with the lowerl-alpha (4.5 - 6.5 Hz)
frequency band. (a) ERD/ERS of the 3 subjects of the ADHD group showing a high synchro-
nization at trigger A and X. (b) ERD/ERS of the 3 subjects of the control group showing a

smaller synchronization at trigger A and X.
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8.3 Reference period procedure

In Table 8.3 the results are shown of the IAF determined from the power spectrum
of the 1 s reference periods for each subject.

Table 8.3: IAF determined from the power spectra of the 1 s reference period and compared to
the peak of the two active periods for 6 electrode positions and all subjects.

Individual Alpha Frequency (IAF)
] Mean (S.D.)

Subject F3 F4 Cz Pz 01 02 electrode positionsj} subjem
ADHD1 | 63 [ 64* | 64 | 6.1 | 7.0%] 8* 6.85 (0.86)

ADHD2 || 65 | 6 [91*| 91 [ 93| 9.2 8.2 (1.52) 7.89 (1.68)
ADHD 3 5.1 | 6.9 1) 102 { 10.1 | 9.7 | 9.8* 8.63 (2.13)

Control 1 || 9.2% | 9.6* | 9.1* | 9.6 | 9.5*% | 9.2* 9.32 (0.22)

Control 2 || 10* 10* | 10.2 | 10.1 | 104 | 10.1* 10.13 (0.15) 9.76 (0.37)
Control 3 |[ 9.7* | 9.8* 9.9 9.9 [ 9.6*%| 9.6* 9.75 (0.14)

!, more than 1 peak was found, highest is taken

*, no equal peak in Active period 2

Just as the other procedures the mean of IAF of the ADHD group is again
lower and the standard deviation is higher than of the control group. Moreover,
this procedure shows that especially in the frontal region (F3 and F4) the IAF
of the ADHD group is significantly lower than that of the control group. This is
illustrated in the bar graph given in Fig. 8.2.
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Figure 8.2: Bar graph of the Individual Alpha Frequency (IAF) found with the reference period
procedure.

The ERD/ERS in this procedure was computed using the frequency bands
determined by the mean IAF of the electrode positions for each subject. Similar
to the results described in Section 8.2 no significant differences were found between
the ADHD and the control subjects.

The power spectrum of a reference period was visually compared with that of
2 active periods with a length of 1 second, in which one active period is taken
preceding the target X and the second following this target. The results were that
the active period 1 showed nearly the same peak as the reference period in every
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8.3. Reference period procedure

investigated electrode position and subject. However, the power spectrum of the
active period 2 did not always follow the power spectrum of the reference period,
as Fig. 8.3(a) illustrates for electrode position F4 from control subject 3.

In Table 8.3 the IAFs of the reference periods that were not followed by the
active period 2 are indicated by (*). One can see that within the ADHD group
this is found less often than in the control group, especially in the frontal region.

It is also possible that more than one peak is found in the reference period
as illustrated for electrode position F4 from ADHD subject 2 Fig. 8.3(b), in this
case the highest and clearest peak is given as the IAF together with the symbol
(1). This was only seen in ADHD subjects 1 and 2. Further research in comparing

the reference period with the 2 active periods is necessary to explain the results
of this comparison.
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Figure 8.3: Ezamples of the comparison of a reference period with 2 active periods. (b) Ezample
from subject control 3 with a clear peak at 9.8 HZ but no reaction of active period 2; (c) Example
of the occurrence of 2 peaks from subject ADHD 2.
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Chapter 8. Results

8.4 Intertrial Variance compared to Classical method

To compare the results of computing ERD/ERS using the Intertrial Variance
method rather than the Classical method for lower frequency bands, both methods
are used to compute the ERD/ERS for a low and a high frequency band. This
should illustrate the interference of an evoked-activity (ERP). The results are
displayed in Fig. 8.4. The interference is clearly visible in low frequency ERD/ERS
of Fig. 8.4(a) and Fig. 8.4(b). However, for higher frequency bands the Intertrial
Variance and the Classical method Fig. 8.4(c) and Fig. 8.4(d) show almost the
same reaction.

For the Hilbert method the same reaction is expected as for the Classical
method because like the Classical method the Hilbert method does not take into
account the evoked activity. But because the values of the ERD/ERS of a Hilbert
method differ from those of the Intertrial Variance and Classical method no com-
parison can be made.
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Figure 8.4: Difference between Intertrial variance and Classical Method.
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8.5. High frequency dependency

8.5 High frequency dependency

To investigate the sensitivity of the reactive frequency bands, the ERD/ERS is
computed from 2 different frequency bands with the same length only slightly
shifted from each other.

In Fig. 8.5 the ERD/ERS of C4 is computed from the control subject 2 using
the Hilbert method. First the upper-alpha frequency band using the IAF from
the single trial procedure (IAF = 9.9 Hz from Table 8.2) is used to compute the
ERD/ERS. Secondly, the frequency band using the IAF of the reference period
procedure (IAF = 10.1 Hz from Table 8.3) is used. The result of both computa-
tions are displayed in Fig. 8.5(a) and Fig. 8.5(b), respectively. Despite the fact
that the frequency bands are shifted for only 0.2 Hz of each other, Fig. 8.5(b)
shows a much larger and longer synchronization (ERS) than Fig. 8.5(a).
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Figure 8.5: Difference between small frequency variations.
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Chapter 9

Conclusions and

Recommendations

9.1 Conclusions

If the Mean IAFs, found using the 3 different procedures, of the ADHD group
are compared to those of the control group, we can conclude that the IAF of
the ADHD group is significant (on average about 1 Hz) lower than that of the
control group. Especially in the frontal region where the difference is very clear.
This corresponds to Biederman’s statement: “...studies of ADHD across the life
cycle support the hypothesis that deficits in frontal lobe functions and the connec-
tions between the frontal lobe and key subcortical regions underlie this disorder”
[Biederman, 2005]. Because the mean age and the standard deviation of both
groups are almost the same, little age related differences in the IAF are present.
Therefore, this is an important finding and should be taken into account in future
research of ADHD.

The most important part of ERD/ERS analysis is the choice of the frequency
band. As shown in Fig. 8.5 small variations within a frequency band can cause
significant different ERD/ERS results. This means the frequency bands have to
be chosen very accurate before computing an ERD/ERS.

As far as the ERD/ERS quantification method is concerned the Intertrial
Variance method and the Classical method show clear differences in the lower-
alpha bands, because of the interference of evoked activity. Within the higher
frequency bands they show the same results due to the fact that in this region
there is no or little interference of evoked activity (ERP). Therefore, the Intertrial
Variance method is recommend for use in the lower frequency bands, below the
upper-alpha.

The evoked activity also interferes with the ERD/ERS computed with the
Hilbert method however, if ERD/ERS of upper-alpha frequency bands and above
are investigated, the Hilbert method is recommend because of its ability of au-
tomatically adapting the time resolution to any frequency under investigation.
Therefore, it is easier to use than the IV method.

The use of the Classical method is not recommended, after all if there is in-
terference of evoked activity then the IV method is used and if no evoked activity
is present the IV method shows the same results as the Classical method.
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Chapter 9. Conclusions and Recommendations

orders investigated during this study no significant differences were found. Only
using a fixed frequency band for the lower1-alpha band determined using the mean
Individual Alpha Frequency (IAF) of all subjects, a higher synchronization in the
electrode position Fz was found for the ADHD group.

The method of Klimesch and co-workers used to determine the reactive fre-
quency bands is always applied on adults and not on children. It is plausible that
there are differences between the determination of the frequency bands because
the peak alpha frequency in children is much lower than in adults. 1t is very
likely that this is one of the reasons why recognizing children with ADHD from
the ERD/ERS failed in this study.

9.2 Recommendations

Some suggestions for future work within the ADHD project are:

e More research has to be done on finding the correct frequency bands for
children. For instance by:

- determining the difference of the TF and the IAF within healthy chil-
dren and children with an attention disorder;

— determining the IAF not only from the eyes-closed data but also vali-
dating at which frequency alpha power decreases the most when open-
ing the cyes [Posthuma et al., 2001]; :

— checking the article of Doppelmayr et al. [1998] who suggest to define
the width of the frequency bands by using the IAF multiplied with a
certain percentage;

e Investigating the ERD/ERS of the beta bands, which was beyond the scope
of the current project but should be investigated in future projects;

e Using more data from more ADHD and control children to allow a better
statistical comparison between the two;

e Determining beyond which frequency the Hilbert method can be used in-
stead of the IV method, in which there are no interferences of evoked activity
present anymore in the data;

¢ Discriminating between the 3 different categories within ADHD and the
presence of comorbidity.
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Appendix A

ERDTool Manual

The ERDtool is a signal prossing tool designed in MatLab (version 7.0.4). The
GUI (Graphic User Interface) is shown in Fig. A.1. The file formats supported

Ant and
cnt
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by the ENDtool are .cnt, .trg and the Matlab fle forimat .mat. The .
.trg files originate from the software package EEProbe for EEG data acquisition
and analysis. EEProbe was originally developed at the Max Planck Institute in
Leipzig, Germany (there known as EEP), and was further developed as a commer-
cial product by ANT Software in Enschede, in the Netherlands. The file format
.cnt contains the (compressed) digitized raw EEG data of all the recorded elec-
trode positions, including time points, sampling rate and labels of the channels
(electrode positions). The trigger file . trg contains the event information such as
triggers related to the EEG data in the .cnt file. In the ERDtool the .cnt and
.trg files should both have the same filename and can be opened with the menubar
function "GpenFile”. The .mat file is used to save the computed ERD/ERS data
and the settings of the computation. With the menubar "Save” and "Load” the
data and settings are loaded from or saved into the .mat file.
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Appendix A. ERDTool Manual

A.1 EEG data

The user first has to select a .cnt file using the menubar function ”OpenFile”.
To read the data information from the .cnt and the .trg file the MatLab func-
tions READ_EEP_CNT .m and READ_EEP_TRG.m are used. These functions returns the
structure .eeg and .trg as given in Appendix B with all the data and event
information. These functions will be executed by pressing the "Read EEG Data”
button.

A.2 Initialize

The next step is the initialization of the data. Here the EEG data is divided
into trials that are triggered to a certain event and moreover, these trials are
examined for the occurrence of artefacts and saved for further computation. After
initialization the user is able to see how many times the subject pushed the button
at the wrong trigger, displayed under Buttonpress errors. The user is also able
to see under Trials how many trials are found and the number of trials that
contain artefacts and are artefact free, in the case of the ERD/ERS this number
should at least be higher than 30 trials (Section 5}).

Trigger

The EEG data extracted from the .cnt file contains continuously raw EEG data
recorded during the whole session of which only the sections in which an event
occurs are relevant for the ERD/ERS computation. These events are triggered
by codes that are stored in the .trg file. By using these trigger codes and the
accompanying time of occurrence, it is easy to find the occurrence of events within
EEG data saved during the recording session. The user can select from three
different triggers, namely:

o On A-X with buttonpress, here the trigger is the moment that the letter X
appears on the screen about 2 seconds after an A appeared. The trigger is
only taken into account when the subject presses a button right after the X
appeared;

o On A-notX, the trigger is the moment that an other letter than X after an
A appears on the screen.

e On notA-notX, all the moments where the appearing letter on the screen
and the previous letter was not an X or an A.

e On buttonpress, here the trigger are the moments the subject pressed a
button.

For this project only the ”A-X trigger with buttonpress” is used. The others are
implemented for use in further research within the ADHD projects. The meaning
of the different triggers are further explained in Section 7.3 of the report.

Trial length

As said in Chapter 5 of the report, the ERD/ERS needs time to develop and a
reference period has to be chosen some seconds before and event occurs. For the
initialization the trial length can be selected by determining the time-span before
the trigger, which contains the reference period and the planning phase, and the
time-span after the trigger, which contains the recovery phase of the event. The
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default value of the time before the trigger is 4 seconds and after the trigger is 2
seconds, which means that the total trial time in this case is 6 seconds. The trial
length can only be chosen in the length of seconds and not smaller, the reason for
this is that this way it is numerical easier to compute.

Artefact detection

The purpose and method of artefact detection applied in the ERD tool is explained
in Section 7.4. To detect artefacts within the EEG data used in the ERDtool, the
peak-peak value of the data within a trial is compared to a predefined value that
can be changed by the user. If the peak-peak value of a trial is higher than the
predefined value this trial is marked as containing an artefact and the whole trial
is excluded for further analysis. Besides, if within a trial of one or more electrode
position an artefact is detected all the trials of the other electrode positions taken
in the same time span also are marked and excluded for further analysis.

The default values of the peak-peak artefact detection are 1404V for the Front-
Polar and 300uV for the rest of the electrode positions.

A.3 Reactive frequency bands

A.3.1 Power spectra comparison

In this panel the comparison of the power spectrum of a reference period and
an active period can be made by plotting the difference between the two spectra
together with the 95% confidence interval as explained in Section 4.3.

The user has to define a channel (electrode position) from which the data is
computed. The period length and the start time for the reference and active pe-
riods can be entered in ms and up to 5 different active periods can be computed
simultaneously. If the pushbutton "Compute Frequency Bands” is pressed the
computation will be performed using the technique explained in Section 4.3.

In Fig. A.2(a) an example of five different active periods is given of the plots
using the Reactive Frequency Bands function compared with the reference period.
If more than one active periods are computed the function automatically plots
the average over all different active periods. An example of this is given in Fig.

A.2(b).

A.3.2 TF and IAF graph

The panel TF and IAF graph computes the power spectrum of the reference pe-
riod and the chosen active periods {max 5) for the Trigger A-X, see Section 4.2.
The user has to select a channel (electrode position) from which the periods are
computed and the beginning and length of the reference period and the active
periods. The function returns the Individual Alpha Frequency (IAF), defined as
the frequency within the 6-13 Hz range that shows the largest power for the ref-
erence period. Also the gravity IAF is computed, defined as the frequency of the
weighted mean of the spectral power within the range of 6-13 Hz of the reference
period. Both IAF are displayed in the plot of the power spectra. An example of
a such a plot is shown in Fig. A.3.

The panel is only active if the user has chosen the Trigger A-X within the
initialize panel.
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Figure A.2: In fig. (a) the difference between the 1 s during reference period and 5 different 1
s during active periods are plotted. The reference period was taken from 0.5-1.5 s of the trials
of channel C3. fig. (b) shows the plot of the average of the 5 differences. In the 5 graphs of
(a) and the avemge of (b) there is a clear ERD within the frequency band 9-12Hz.

Figure A.3: Plot of the power of a reference and two active periods of electrode position Cz with
use of the ERDtool.

A.4 Quantification of ERD/ERS

The methods used for the quantification of the ERD/ERS that have been imple-
mented in the ERDtool are the Hilbert, Classical and Intertrial Variance methods.
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The choice for these methods is explained in Section 5.4. The quantification steps
of the methods are explained in Section 6.2.

For the Hilbert method the settings users have to enter are the beginning
and ending time of the reference period. However for the Classical and Intertrial
Variance methods the user also has to define the interval length on with the
ERD/ERS signal is averaged to smooth the data. Because of this averaging
over time intervals, the number of samples of the ERD/ERS signal are reduced.
Therefore, the beginning and ending of the reference period have to be entered
with the interval number. The user can manually enter the low and high frequency
of the by the user defined frequency band.

A.5 Plots

After the ERD/ERS are computed the results can be plotted via the panel Plots.
The user can choose which of the methods should be plotted. The results can
be plotted in 2 different setups namely a plot in with the ERD/ERS of all the
electrade positions are visualized according the international 10-20 system (Fig.
A.4) or a plot which contains only a selected electrode position (Fig. A.5).
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Figure A.4: Ezample of a plot of ERD/ERS for all electrode positions within the 10-20 system.

The settings that have been used in Figures A.4 and A.5 are the settings visible
in Fig. A.1, the chojce for the band of 9-12Hz is taken from Fig. A.2(a) where the
is a ERD is detected within the 9-12Hz band of 4 of the 5 active periods. The
computation of C3 of which the results are plotted in Fig. A.5 shows that this
detection was correct.

It is also possible with the menubar function "Load” to plot the results of
previous computed ERD/ERS signals that are saved with the menubar function
"Save”.
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Figure A.5: Ezample of a plot of ERD/ERS for a selected electrode positions within the 10-20

system.

A.6 AreaTool

With the menubar function AreaTool the user can start a tool, shown in Fig.
A.6 with computes the Area under an ERD and an ERS. The ERD/ERS has to
be computed and saved with the ERDtool and the user can than load the saved
data with the AreaTool and compute the areas of the different electrode positions
and for the different methods. It is also possible to compute the area of all the
electrode positions, these will be plot in a bar graph. an example of such a bar

graph is given in Fig. A.7.
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Figure A.6: GUI of the AreaTool.
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Figure A.7: Ezample of the bar graph plotted when the area of all electrode positions is computed.
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Handles

To store and share data or variables between the different functions within a
GUI, MatLab uses a mechanism called handles structure. In the ERDtool GUI

7 T o I P e L P S R ST L T8
VT IVIIUW LLIE, UGS DLl uliulc alt udtu LU davec uala aliud valiaulicod v vwvlllipuve
the ERD/ERS: eeg. trg, settings, trial and eegtrial. Below the contents of the
structures are described.

eeg
Jabel . labels of EEG channels
.rate . sampling rate
.npnt . number of samples in data
.nchan . number of channels
.nsample . total number of samples saved in .cnt file
.time . array {1 x npnt|
.data . [nchan x npnt|
trg
.time ... trigger latency in ms
.offset . byte offset
.code . trigger code (string)
.type . numeric value of trg.code
settings
filename ... 'filename’.cnt (string)
.ppart_fp .. peak-peak threshold artefact detection Fp [uV]
.ppart_other . peak-peak threshold artefact detection others [uV]
.pretime . time before trigger [sec.]
.posttime . time after trigger [sec.]
trigger . trigger code

.begin_timeref
.end_timeref

. begin (time) reference Hilbert [msec.]
. end (time) reference Hilbert [msec.]

.begin_intref . begin (interval) reference Classic and IV
.end_intref . end (interval) reference Classic and IV
.interval .. length of interval [msec.]

Jowfreq .. low frequency of bandpass filter [Hz]
.highfreq . high frequency of bandpass filter [Hz]
.window . '0’ don’t use window, '1’ use window
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trial
.handed
.nchan
.ntrial
.n
.qnpnt
.ipnt

.artefact
.begin
.end
.time_hb
.time_civ
.errortwo
.eITOrnapress
.errorl2
.errorl3
.errorls
Atime
.rate

eegtrial(nchan)
.rawdata

Afltered

.envelope

.. T’ subject is LEFT-handed, '8’ RIGHT-handed
. '21’ only positions of 10-20 system
. number of trials
. number of trials without artefacts
. number of samples in trial
. number of samples in trial after averaging

over interval (Classic and IV method)

. [1 x ntrial] ’0’ no artefact, '1’ artefact
. [1 x ntrial] begin sample of ntrial

.. [1 x ntrial] end sample of ntrial

.. [1 x npnt] Hilbert timescale
. {1 x ipnt] Classic and IV timescale
. number of two button presses after A-X
. number of no button pressed after A-X
. number of button pressed after notA-notX
. number of button pressed after notA-X
. number of button pressed after A-notX
. time of appearance of A on screen [sec.]
. sampling rate

... [ntrial x npnt] raw eeg data of all trials
. [ntrial x npnt] filtered eeg data of all trials
. [ntrial x npnt] envelope of filtered eeg data of all trials
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