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Abstract 
 
The Internet is getting larger and larger. Every day more devices get connected to it. 
But the same goes for the local networks at people's home. There are however two 
major differences between the infrastructure of the Internet and of the home network. 
In a home network devices are added but not always replaced and it consists of 
mainly low-cost unmanaged devices. The result is a chaotic network with congestion 
problems.  
The devices in the home network have multiple interfaces and offer all kinds of 
services, so the number of connections and the number of paths between devices 
(peer-to-peer connections between the interfaces of devices) are increasing. Current 
devices choose a path at random when they want to communicate with another device. 
To avoid congestion we want to choose which path the device must use. But to make 
a good choice we need information about the current state of each of the paths to 
compare the paths. We present a solution to offer this path selection functionality to a 
device by collecting information about the different paths and using this information 
to choose the best path. 
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1 Introduction 

1.1 Objective 

This document presents the results of my master’s project “Interface Selection Layer” 
at Philips Research Laboratories together with interesting topics for future research. 

1.2 Problem description 
The Internet is getting larger and larger. Every day more devices get connected to it. 
But the same goes for the local networks at people’s home. There are however two 
major differences between the infrastructure of cooperate networks (including the 
network of ISP’s and universities) and of the home network. In a home network: 

• Devices are added but not always replaced (consumers connect new devices to 
the current infrastructure and not upgrade old devices with new devices). 
Devices are replaced when they are broken, but not to let them cooperate with 
a newly added device. 

• Mostly low-cost devices are added: most devices are unmanaged (consumers 
do not pay extra money for things they do not value, e.g. technical differences 
between an unmanaged switch and a managed switch). 

People just want to connect new devices without performing lots of configuration 
steps (Plug and play), which results into a chaotic network. If all the devices in the 
(chaotic) network want to transfer large amounts of information (e.g. video streams), 
then it is possible that a part of the infrastructure is used by many devices, which in 
turn can lead to congestion. When displaying video streams, the congestion causes the 
video to stutter and artefacts may appear. Audio streams are also disturbed and data 
streams can suffer from a major slow down. Congestion is not wanted, so how can we 
minimize the chances that congestion appears?  
The home network consists of a very diverse infrastructure, to which all kinds of 
unmanaged devices are connected. These devices have multiple interfaces and offer 
all kinds of services, so the number of connections and the number of paths between 
devices (peer-to-peer connections between the interfaces of devices) are increasing. 
Current devices choose a path (consisting of an interface pair: one interface at the 
sender and one at the receiver) at random (mostly the last known working path is 
chosen) when they want to communicate with another devices. To avoid congestion 
we want to choose which path the device must use. But to make a good choice we 
need information about the current state of each of the paths to compare the paths. In 
this document a solution is presented to try to minimize the problem of congestion in 
a home network by collecting information about the paths, using this information to 
compare the paths and choosing a path. 

1.3 Overview 

In chapter 2 the congestion problem will be discussed in more detail and a solution is 
presented to tackle the problem. In chapter 3 the models used to gain a better 
understanding of the home networking environment are given together with the 
algorithms that use these models and their validation. Chapter 4 presents the 
architecture of solution and chapter 5 gives some implementation details. In chapter 6 
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an evaluation is given. Further research topics and additions to the solution together 
with the conclusion of the project are given in the remaining chapters. 

1.4 Intended audience 
This document is meant for people that have reasonable background knowledge about 
computer networks and the terms used in this field. Two good books in this field are 
“Computer Networks” written by Andrew S. Tanenbaum [1] and the book 
“Interconnections” written by Radia Perlman [2]. 

1.5 List of definitions 

Below is a list of terms with their definitions that are used throughout this document. 
Term Definition 
Arrival time The time that a packet arrives at the sink 
Available Bandwidth Maximum number of bits per second that 

can still be transferred over a connection 
Bandwidth Number of bits per second 
Latency Time that elapses between start of 

transmission at source and start of receipt 
at sink 

Legacy device A device without the Interface Selection 
Layer 

Link Physical connection between two devices 
Loss The amount of packets that gets lost 

during a certain interval.  
Maximum Bandwidth Maximum number of bits per second that 

can be transferred over a connection 
Path One or more physical links that form a 

connection between two interfaces. There 
is only one path between two interfaces, 
but there can be multiple paths between 
devices. 

Serialisation delay Time needed for a packet to be converted 
to signals that can be transferred over a 
link 

Sink The device that receives data 
Source The device that sends data 
Transmission time Time that elapses between start of 

transmission at source and end of receipt 
at sink: 

bandwidth

size
latencyontimetransmissi +=  

Virtual address An IP address created and assigned to an 
existing interface by the Interface 
Selection Layer to make it possible to 
seamlessly handover streams. 
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2  Analysis 
In this chapter the congestion problem is analysed in further detail. First the home 
networking environment is discussed and on which problem this project is focussed. 
Other research that is done in this field is discussed and a proposal is done to solve the 
problem. This proposal is explored in the rest of the document. 

2.1 Environment and assumptions 
Nowadays most homes have at least one personal computer with an Internet 
connection. Some homes already have two computers that are connected to each other 
so that they can share resources (e.g. a printer, or an Internet connection). In the 
future, more and more devices will be connected to each other: besides computers 
also televisions, stereo’s and DVD players. All these devices will be connected to 
each other using the already available infrastructure devices: simple (and low-cost) 
relay devices. In general, devices are added to the network and not always removed. 
We assume that all devices use IP to communicate with each other. The basic IP 
protocol stack uses best-effort QoS to transfer data, but this is not sufficient for 
guaranteeing e.g. video streaming without interruptions. So if more and more devices 
get added, the chance that congestion occurs gets higher, this in turn can have a 
negative effect on the QoS delivered by the network. 

All data in the home networking environment is sent using peer-to-peer connections. 
This means that all data between devices is sent from interface to interface and not to 
a broadcast address. Therefore, we will not consider multicast in this document. We 
also assume that there are no routers within the home network (only one router that 
connects the home network to the internet), so everything is bridged.  

2.2 Focus 

The focus of this project is on the improvement of the QoS in the home network: how 
can we improve the QoS without extensive changes to the already available 
infrastructure? We focus on the topology of the home network: how is everything 
connected and what are the properties of the paths between the devices. If the 
properties of the paths between devices are known, we can compare the paths and 
offer a better path to the application. By not just choosing a path at random, devices 
have the possibility to choose the best path and thus avoid hick-ups in audio and video 
streams. 

2.3 Other research 

At first we started out with the problem of topology detection. We thought that if we 
know the topology of a home network, we can use this information to offer feedback 
to the user about the status of the network (e.g. location of bottlenecks) and to offer 
better QoS (reroute traffic over better paths). The research on topology detection is 
divided into two areas: one area focuses on protocol-based and the other on 
measurement-base topology detection. 

If looked at the home network, it is very difficult to get the topology information: to 
get complete knowledge about the topology it is necessary to detect all relay devices. 
In a home networking environment the idea about relay devices is that they are 
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completely transparent, so this makes detecting them very hard. Furthermore there is 
not much use for the topology information because a path between two interfaces 
cannot be changed. So actually we are not interested in the complete topology but 
only in the properties of the (static) paths between devices.  

Because at first we started with topology detection and switched later on to measuring 
path properties, we present in this chapter both research areas. Especially because 
both areas have some parts in common: some properties of paths can be used to 
determine the topology of the path (e.g. number of relay-devices). 

Most research in the field of topology detection and path property determination 
focuses on the Internet and not on a home networking environment. These situations 
differ: in the Internet routers are used to relay traffic between end-points and distances 
are large, in the home situation bridges are used to relay traffic and distances are in 
the order of a couple of metres. Because distances in the Internet are much larger, 
packets need more time (mille seconds instead of micro seconds) to get from one 
machine to another. So in the Internet latency or transmission time differences are 
easier to measure because the difference between two paths is not necessarily in the 
order of a couple of micro seconds.  

Because of the difference in relay devices and in distances between devices most 
research that focuses on the Internet cannot be used in the home networking 
environment. 

2.3.1 Protocol-based topology detection 

The aim of the research done in this field is to use already available protocols in a 
network to discover the topology. Devices in the network already use protocols to 
communicate with each other. In the literature there are methods that use these 
protocols to get information about the network topology. Most of these methods are 
based on the fact that relay devices are not completely transparent and offer 
management capabilities like SNMP [5]. This is mostly true in a corporate 
environment or in the Internet, but not in a home networking environment where these 
relay devices offer no management capabilities. Furthermore, if they do offer 
management capabilities, mostly this involves extra configuration that can only be 
done by the more experienced users. 

Some research is focused on analyzing traffic by looking at all the different packets 
that are on the network [6]. However, as seen in [7] this method has many problems; 
the most important problems are: 

• Only detection possible of devices that actually sent traffic 
• Only traffic from and to own device (and broadcasts) can be seen in switched 

networks 
Existing solutions analyse also the protocols between routers (e.g. Spanning Tree 
Protocol or Routing Information Protocol), which makes this research specific for 
Internet and not applicable in a home networking environment because, as stated 
before, the relay devices in a home network are completely transparent and do not act 
as a router but as a bridge. 

2.3.2 Measurement-based topology detection 

The research done in this field focuses on the detection of shared paths and the 
measured properties of the paths in order to know which devices share which paths so 
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that it is possible to derive the topology of the network. In contrary to the research 
that is protocol based, it does not concern the detection of end-point devices but it 
concerns the detection of relay-devices on the path [8]. To detect shared paths it is 
necessary to detect a shared property of two paths: e.g. shared jitter, shared network 
delay, or shared packet loss.  

If we want to measure loss, it is necessary that there is some loss in the network. 
Depending on the used technology loss can only occur when a link is heavily 
congested (most wired links) or occurs most of the time (wireless links). The problem 
with wired networks is that in order to measure the loss, we need to congest the link, 
which is not wanted because we do not want to interfere with the current data streams. 
The problem with wireless links is that extra probe traffic can cause more loss than 
the original situation so again there is interference caused by the probing traffic. It is 
possible to keep track of all the sent and received packets, but it can take a very long 
time before information about loss is known (especially in wired networks, because 
congestion is required).  

Two other properties that we want to measure are bandwidth and latency of the links 
and paths between devices. There are mainly two techniques used to determine these 
properties: single packet and packet pair techniques. Other techniques are a 
combination of these two techniques.  

Single packet techniques focus on the estimation of link bandwidth and not on the 
path bandwidths. Each link has a different latency and slower links will take longer to 

transmit a packet than faster links. Using the formula
latencyontransmissi tt

s
b

−
= , (1) the 

bandwidth b of a link can be calculated if the packet size s, the link latency tlatency and 
the transmission time ttransmission are known. The link latency does not depend on the 
packet size or the link bandwidth: it has a fixed value for a link. If the transmission 
times of multiple packets with variable sizes are plotted, the bandwidth can be 
calculated by taking the inverse of the slope of the graph. 

To determine the link bandwidth of each link of a path, single packet techniques use 
the time to live (TTL) field of an IP packet. This value is decremented at every router 
and if it reaches zero, the router must return an ICMP TTL expired error message. 
Changing the TTL for each packet, gives a set of round trip times. There are some 
problems with this method [9], but the main problem for a home networking 
environment is that only routers change the TTL and bridges do not. Therefore, it is 
not possible to use such a single packet pair technique to get the bandwidth of each 
link in a home network. 

Packet pair techniques focus on the estimation of the available bandwidth of the path 
and not on the estimation of the available bandwidth of a link. Each packet on a link 
experiences a serialisation delay due to the bandwidth of the link. Packet pair 
techniques measure the difference in arrival times of two packets sent immediately 
after each other. It is assumed that each device on a path use store-and-forward to 
forward packets, this means that a packet must first be completely received before it 
can be sent to the next device on the path. The slowest link is responsible for the 
spacing between the two packets because the first packet was fully received (and 
forwarded) while the second packet is still being received. If both packets have equal 
size s and the arrival time difference d between the two packets is known, then the 

bandwidth b can be calculated using
d

s
b = , (2). The difference with formula (1) is 
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that the latency does not have any influence here because both packets have the same 
latency; this means that the delay between the two packets cancels out the latency, 
meaning that d equals ttransmission – tlatency: 

{ }

{ }

{ }
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Both techniques have the disadvantage that measurement errors occur because of 
other traffic on the link or path (cross traffic). Research that is done to filter out this 
cross traffic focuses on the assumption that cross traffic occurs random. For single 
packet techniques this means that it is assumed that cross traffic will only increase 
delays, so if enough packets are sent, one packet will have the minimum delay. This is 
discussed in [10] and [11]. For packet pair techniques, the most common bandwidth 
measurement is the actual bandwidth. In [12] statistical methods are discussed to filter 
out faulty results, but [13] proves that this is not enough. The latter developed a 
bandwidth estimation methodology, which is implemented in the tool pathrate . The 
same people involved with pathrate , also developed the tool pathload  [15] for 
determining the available bandwidth of a path. Another tool that uses the same ideas 
as pathload  is pathChirp  [14]. Both tools are discussed in section 3.2.2 and 
compared in section 3.3.3.  

2.4 Use Cases 
Below we give a few real life examples of situations where a device can offer better 
performance when the device has the ability to choose a better path when all the 
properties of the possible paths are available. 

• A user has a PDA with two interfaces: a wired and wireless interface. When 
the user is walking around the house, the PDA uses its wireless interface to 
communicate with the home network. In general wired connections perform 
better than wireless connections. So when the user puts the PDA in a cradle, 
we prefer that all connections that use the wireless interface are transferred to 
the wired interface without the loss of any of the connections. 

• A user has two displays (e.g. a CRT monitor and a plasma television) and 
wants to watch a video stream from the Internet on one display, and a video 
stream from a DVD player the other display. Of course the user wants both 
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display devices to display the video streams without any hick-ups or artefacts. 
If one (or both) of the display devices have multiple interfaces, possible hick-
ups may be prevented if the video streams were sent over different paths to the 
display devices. 

2.5 Requirements 
If a device wants to offer better network performance to the application, it must first 
determine the properties of the available paths and then it can use this information to 
choose the best path for communication with another device. Because in most 
networks the wired and wireless parts belong to different subnets, we do require that 
our solution works when a device belongs to multiple subnets. The solution has two 
kinds of requirements: requirements concerning the solution itself, and requirements 
concerning the implementation of the solution. 

2.5.1 Requirements of the conceptual solution 

1. A device must have the means to select or change an interface pair on the 
basis of measurement data. 

2. The path that meets the application’s requirements must be chosen and not a 
worse path. 

3. Communication that takes place to determine the best interface pair must limit 
the influence on other traffic on the network to a minimum. 

4. Legacy devices must be able to work with the new devices and vice versa. 

5. It must work without modifications of the relay devices. 

6. The selection and changing of interface pairs must be completely transparent 
for applications. 

2.5.2 Requirements of the implementation 

7. It must use IPv4 for communication with other devices. 

8. It must run on Linux. 

9. It must be programmed in C or C++. 

10. It must not change the application’s traffic because of other (future) standards 
(this means that we are not allowed to encapsulate the traffic in custom made 
packets or set up a custom tunnel between devices). 

11. An application must to able to start sending data without a large delay (the 
response time of the application must remain small). 

12. Current applications must not need (major) adjustments. 

13. It must be possible for an application to choose to use the enhancement: the 
enhancement is optional for the application.  

14. It must also work in the situation where a device belongs to multiple 
broadcast domains. 

15. It should be possible to synchronize all devices to guarantee correct selection 
of a path.  

16. It should be extensible to give new applications access to more “advanced 
functionality”. 
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17. It should enforce the requested bit rate on the application (an application is 
not allowed to send a data stream of a higher bit rate than the application has 
asked for).  

2.6 Solution 
It seems that topology detection will not offer improved QoS in a home networking 
environment because the topologies are very small. Furthermore, the paths in the 
network cannot be changed. This implies that the knowledge of the topology also does 
not give many opportunities to improve QoS. The only positive effect it can have is 
that every device has knowledge about the shared paths, but it is very hard to get this 
knowledge as previous mentioned research has shown. 

The proposal is not to focus on topology knowledge, but to look at the possible paths 
between two end-point devices. Each device has one or more interfaces. These 
interfaces might be connected directly or indirectly to the interfaces of another device; 
in theory there could be multiple paths between two interfaces, but in practise each 
interface combination forms only one path between the two devices. Each path has 
certain properties (e.g. latency, and bandwidth). If all properties of the paths between 
two devices are known, the best path can be chosen. These path properties need to be 
measured and there must be communication between the source and sink so that they 
both know which path is chosen.  

Current APIs focus on connecting devices rather than interfaces. As a result only a 
single interface is used for a connection and it is not possible to switch between 
interfaces during a connection. To make it possible to switch between interfaces, we 
want to make a layer between the application and the operating system so this 
determination of properties and the switching of interface pairs can be done 
transparent to the application without diving into the source of the operating system. 
This layer is called the Interface Selection Layer (or ISL for short). It offers a 
replacement of the Berkeley Socket Interface (BSI: the API used by UNIX 
applications to communicate between devices) to the application with the same 
interface. This way the application needs not be modified. Furthermore all data that is 
sent and received by the application goes through this layer, which makes it possible 
to have full control of the sending and receiving process (making it possible to add bit 
rate control or packet filtering in the future). This makes it possible to use other means 
to send and receive data besides using only the BSI (see Figure 1). An alternative 
would be to put the ISL into the OS, but then the ISL is hardly portable to other 
Operating Systems (or to another kernel version) and it is harder to develop and 
debug. 
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Figure 1. Overview of the network communication of an application with and 
without ISL. 

  

The greatest challenge was to find methods to determine the properties of each path. 
A large part of this document covers this. A second problem is how to let devices 
work together to determine properties and announce the chosen pairs to each other, 
these are however more implementation issues. If looked at the layers given in Figure 
1 the application is not modified because the ISL offers the same interface as the BSI. 
The ISL determines the available paths using the OS to get information about the own 
interfaces and the BSI to communicate with other devices to get information about 
their interfaces. Comparing the properties of the available paths, the ISL chooses the 
best path and uses the OS to change the local interface. The BSI is used to 
communicate the choice to the other device. An overview of the different tasks is 
given in Figure 2. Our main focus will be on the methods used for property 
determination and on the architecture of the ISL, which we have implemented and 
tested.  
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Figure 2. Collaboration between the different layers 
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3 Models & algorithms 

3.1 Models 

In this section we discuss different models for the traffic in a network and choose one. 
Furthermore a model for a path is given together with a model of the different path 
properties.  

3.1.1 Traffic model 

There are two models to see traffic in a network: 
• Packetized model 
• Fluid model 

The packetized model says that packets of different data streams interleave with each 
other. The fluid model sees the traffic as different data streams that travel parallel to 
each other. In the packetized model, packets do not finish later than in the fluid model 
(see Figure 3). 

 
Figure 3. Packetized model versus fluid model 
 
The fluid model is easier to reason about than the packetized model. This is because 
of the continuous character of the fluid model. At a certain moment in time, both 
streams can be seen and not only a single packet as in the packetized model. In the 
fluid model each stream has a private channel with a certain bandwidth. In the 
packetized model there is an interleaving of streams: only one channel with a certain 
bandwidth. The packetized model captures more aspects of reality so it can explain 
behaviour which cannot be explained with the fluid model (especially when looked at 
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queuing). Therefore we will choose the packetized model for explaining the results of 
our measurements.  

3.1.2 Path model 

Traffic goes from one device to another device using a path. The relation between the 
number of links and the number of relay-devices is Nlinks = Nrelay + 1. If we look at the 
relay-devices, we can see three categories of relay-devices. 

• Store-and-forward relay-devices 
• Cut-through relay-devices 
• Repeater relay-devices 

A store-and-forward relay-device first needs to receive the entire packet from a link 
before it is forwarded onto the next link. A cut-through relay-device only needs to 
receive the address field of a packet before it is able to forward the entire packet, so 
this kind of relay-device can do its work faster than a store-and-forward relay-device 
because only the header needs to be received instead of the complete packet before 
the relay-device can start forwarding the packet. The last category consists of repeater 
relay-devices. These kinds of devices receive data from one link and forward it to all 
other links. Repeaters do not receive a packet entirely before it is forwarded; they start 
forwarding right after the first bit / byte. 
In practise, cut-through relay-devices are very rare and not available to the normal 
consumer. Repeaters are still there but most home networks consist of store-and-
forward relay-devices. So we focus on the repeater and the store-and-forward relay-
devices.  
If we look at a path, it has certain performance properties. The properties that are 
interesting to know are: 

• Latency(path, packet, time): the latency of a packet (of a certain size) on a path 
at a certain time; 

• Total_Bandwidth(path): the maximum bandwidth of a path; 
• Available_Bandwidth(path, time): the available bandwidth of a path at a certain 

time (equal to or lower than Total_Bandwidth(path)); 
• Cost(path, packet): the amount of money or time it costs to send/receive a 

packet over a path; 
• Loss(path, interval): the percentage of packets that get lost on a path during a 

certain interval. 
We are especially interested in the latency and the available bandwidth, because these 
properties can be used to check if it is possible to send a stream of data having certain 
properties. Loss is also an interesting property (e.g. loss profiles for the purpose of 
control), but the problem here is that loss only occurs in heavily congested networks 
or if the network has a bad condition (e.g. wireless network with microwave oven 
nearby, bad cables etc.). This makes it hard to actively measure loss in a not-
congested network without congesting the network itself thereby interfering with the 
current traffic. Furthermore adding measurement traffic to a network with a bad 
condition can decrease the quality of the network even more. It is however possible to 
look at all the traffic that is sent and received to determine the loss, which can be used 
to determine the loss over time. The total bandwidth is nice to know, but it is of no 
use when one wants to see if it is possible to add a new data stream to the network. 
Cost is nice, but cannot be measured without knowing the costs per byte / second etc. 
If the values of the different properties are known they can be used to compare the 
paths with each other and choose the best path. We believe that latency and the 
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available bandwidth are the most useful properties for comparing paths with each 
other, so we focus on these properties.  
In the rest of this chapter models are given to determine the latency and transmission 
time as well as the available bandwidth of a path, in section 3.2 we discuss the 
algorithms that are based on these models to estimate the values of these two 
properties. 

3.1.2.1 Background for measuring latency 
If we look at a path, it consists of N physical links, say li with 0 ≤ i < N and N ≥ 1 
(because there is always at least one link between two connected interfaces). If N ≥ 2, 
then link li and li+1 are connected with each other using a relay-device named ri. This 
relay-device can use store-and-forward or it is a repeater. If a packet p of size s is sent 
from device A to B that are connected using two links (l0 and l1) and a relay-device r0 

(using store-and-forward), r0 first receives the packet completely before it is 
forwarded using the link l1 to device B. This store-and-forward mechanism causes a 
delay before the packet is received by device B (see Figure 4). This delay consists of 
the time the packet is queued in the buffers of the relay-device and the time needed 
for the relay-device to put the packet on the next link of the path. The first depends on 
the presence of cross traffic and the operating rate of the relay-device and the second 
equals the size s of the packet divided by the bandwidth bi of link i [19].  
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Figure 4. Delay on a path caused by a store-and-forward relay-device 
 
If we look at Figure 4, we also see that there passes a certain amount of time before 
the first bit is received at the relay-device. This is the link latency e. If we combine 
the variables and look at Figure 4 we get the following equation for transmission time: 
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We defined the latency of a packet of size s on a path as the transmission time of the 
packet minus the time for the sink to receive the entire packet. Formally, we get:  
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In case there is no cross traffic, the queuing delay q can be neglected. Also in reality 

the link latencies ei are very small compared to
ib

s
. This means that when two devices 

are connected directly to each other (without any relay-devices), the path latency 
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equals 0 seconds. The formula to determine the latency ignores the bandwidth of the 
last link. As a result, the latency of a path can be different in the other direction. 
Therefore the latency of the path needs to be measured in the same direction as the 
data is going to be sent.  

3.1.2.2 Background for measuring available bandwidth 
Each link has a maximum bandwidth, so the maximum bandwidth of a path is the 
maximum bandwidth of the link with the minimal maximum bandwidth. When a 
device wants to send data, it has no use for the maximum bandwidth of each path. 
However the available bandwidth of the path is useful. The available bandwidth of a 
path equals the available bandwidth of the link with the minimum available 
bandwidth. Each link i has an available bandwidth bi in bits per second. Between the 
sending of a packet of size s at the source and receiving the packet at the sink it takes 

ti seconds. So the available bandwidth of a single link i equals
i

i t

s
b = . For the entire 

path consisting of N links we get the equation i
i

iipath b
t

s
bNibb :0: =∧<≤↓= . If 

a stream is sent over the path, it will be received at the bit rate of the slowest link. 
Therefore it is not necessary to look at the available bandwidth of each link to 
estimate the available bandwidth of the entire path; it is enough to only look at the 
available bandwidth of the entire path. 

3.2 Measuring path properties 
In the previous section we discussed the models on how we see traffic and the 
properties of a path. In this section algorithms are discussed that are able to estimate 
the values of the model parameters. 

3.2.1 Measuring latency 

For measuring, we only use arrival time differences between packets to avoid clock 
synchronization between sender and receiver. A small packet has a smaller 
transmission time than a large packet: if the size s of a packet is small, than the 

latency is also small because 
ib

s
 is small. So if we precede a large packet with a much 

smaller packet, the small packets can be used to announce the start and end of the 
sending of the large packet to the sink. We use the so-called packet train given in 
Figure 5.  
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Figure 5. The Big Mac probe 
 
The Big Mac probe (which is a modified sandwich probe [8]) consists of two large 
packets (each 1500 bytes) interleaved with three small packets (each 75 bytes). The 
assumption is that the MTU of the network is the same or higher than the size of the 
large packet. In our case the MTU of the network is 1500. If there is no cross traffic 
on the path (no queuing delay) between a source A and sink B, we get the behaviour 
of the Big Mac probe on the path displayed in Figure 6. 
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Figure 6. The Big Mac probe on a path (N = 3), without cross traffic (q = 0). 
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As seen in Figure 6, the small packet gets queued right after the large packet. So the 
small packet arrives immediately after the large packet. Between the first small packet 
and first large packet an extra delay is introduced at each device that uses store-and-
forward.  
Now we can calculate the path latency of the large packet by using the arrival times ti 
of the small packets: ( ) ( )2402 tttttlatency −−−= .  
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The actual latency is a bit higher because the latency of the first small packet is not 
taken into account. Because the size of the first packet is very small compared to the 

second (large) packet, 
b

ssmall  can be neglected, and thus the latency of the small 

packet equals 0 seconds and ( )
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theoretical latency of the large packet on a path of N links. We show in section 3.3.2 
that the end-point devices also increase the latency of the path.  
Using the arrival times of the small packets, it is also possible to determine the 
transmission time of the large packet on the path: ( )02 ttt ontransmissi −=  which equals 
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Again 
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3.2.2 Available bandwidth 

To measure how much bandwidth is still available, we use the concept of self-induced 
congestion: if the bit rate of a data stream exceeds the available bandwidth of a path, 
then the packets of the data stream are queued at the switch or router connected to the 
link with the lowest available bandwidth. To generate a stream of a certain bit rate, a 
constant number of equally sized packets is sent. Each so-called packet train has a 
different bit rate. This way we get packet trains with differing bit rates. At a certain 
moment the transfer time of each packet will increase because of the extra queuing 
delay (Figure 7). The value of the bit rate of the packet train when the queuing delay 
increases is the available bandwidth of the path. Because both the source and sink 
know about this algorithm, it is only necessary to measure the arrival times of the 
packets at the sink and look at the relative arrival time differences between the 
packets. This method avoids clock synchronization between source and sink. 

Figure 7. Measured queuing delay of packet trains with increasing bit rate 
 
There are different implementations that use to concept of self-induced congestion to 
measure the available bandwidth. We will compare two of them: pathChirp [14] and 
Pathload [15]. PathChirp uses a packet train with exponential increasing bit rate of the 
packets (Figure 8) to measure the available bandwidth. 
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Figure 8. A packet train with exponential decreasing delay between packets (source: 

[14]) 
 
The packets of a packet train get interleaved with the packets that are already on the 
network. If the bit rate of the packet train exceeds the available bandwidth of the path, 
the arrival time differences between the packets get larger because of queuing delay in 
the relay-devices. The packet train is interleaved with other packets in such a way that 
the bit rate of the packet train is decreased. Comparing different measurements filters 
out temporary cross traffic. Other (cross traffic) streams will lower the available 
bandwidth of a path. This kind of cross traffic is constantly present, so it is possible to 
measure the new value of the available bandwidth.  
Pathload does not use a packet train with an exponential increasing bit rate but a 
packet train with a constant bit rate. Each train has a different delay between packets. 
Because a train has a constant bit rate, it is easier to filter out temporary cross traffic, 
context switching and other temporary anomalies in the network compared to 
pathChirp. But Pathload needs more probing packets before a good estimate can be 
given. We will compare Pathload and pathChirp in section 3.3.3. 
Both algorithms do add extra traffic which causes congestion. But the packet trains 
only consist of a couple of packets, and the queuing can be detected when the packet 
train has the bit rate that equals the available bandwidth of a path, so no packet trains 
of higher bit rates are needed. Therefore, the algorithms minimize the effect that they 
have on the current traffic. 
The measured amount of available bandwidth is only valid as long as no streams are 
added to or removed from the network. So regular measuring of the available 
bandwidth is needed or a technique where only one device is allowed to add a stream 
at a time (after which devices can determine the available bandwidth again, see 
section 4.5.6). Because we believe that chances are very low that multiple devices try 
to add new (large) data streams to the network, we do not take the validity of the 
measurements over time into account. We only require that measurements are 
repeated periodically so that a snapshot of the network status is updated periodically. 

3.3 Estimation of path properties 

The methods that are discussed in the previous section to determine the path property 
values have been implemented and tested. In this section the test set up is given 
together with the results of the tests. 

3.3.1 Test network 

We used two devices: 
• Pentium II 350Mhz with 128MB (Device A) 
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• Pentium III 550Mhz with 128MB (Device B) 
Both devices have Linux as their Operating System and were booted into run level 1 
(single user mode) so that all unnecessary services are disabled. These two devices 
were connected for the latency tests using the following set ups: 

• Cross-link cable (100Mbit/s) 
• One store-and-forward relay device (one 100Mbit/s switch) 
• Two store-and-forward relay devices (two 100Mbit/s switches) 
• One repeater (one 10Mbit/s hub) 
• Two repeaters (two 10Mbit/s hubs) 

The set up with two switches is displayed in Figure 9. This set up is also used to test 
the available bandwidth algorithms because when two extra devices (Device C and D) 
are connected to the switches, the cable that connects both switches acts as a shared 
link with a maximum bandwidth of 100Mbit/s between data streams going from A to  
B and from C to D. 

 
Figure 9. Set up to perform tests with two relay-devices and one shared link. 
 
The tool Iperf [18] is used to generate cross traffic between devices C and D. This 
cross traffic consists of UDP packets (which fit in a level 2 packet) that are sent at a 
constant bit rate.  

3.3.2 Latency 

We extended the probe discussed in the previous chapter with two extra large packets 
(together with two small packets) to show that the all the large packets coming after 
the first one have the same latency. This probe is given in Figure 10. 

 
Figure 10. A packet train consisting of small and large packets 
 
The small packets are each 75 bytes and the large packets are 1500 bytes. This 
includes the IP and UDP headers. Because the MTU of the network equals the size of 
the large packet, there is no extra delay introduced caused by the division and 
reassembling of the packets.  
For each set up we measured the send and arrival times of the packet probe in two 
directions. Because the path between the two devices is the same in both directions, 
we can see if the configuration of the device influences the measurements. 

Device A Device B 

Device C Device D 

Switch X Switch Y 

 
 P1  P3  P5  P7  P9 P2 P4 P6 P8 
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3.3.2.1 Cross-link cable 
The first test we performed is connecting the two devices using one crosslink cable. 
This means there is no relay-device between the two devices and only one link. 
Therefore we only expect extra delay caused by the store-and-forward behaviour of 
the Operating System and NIC of the receiver.  
First we look at the arrival times of a single probe to see if there is a clear distinction 
between the arrival times of the large and small packets (Figure 11). 
 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 
A to B 0 189 196 318 325 448 455 578 584 
B to A 0 200 221 330 349 460 479 587 606 

 
Figure 11. Arrival times of the packet train when there is only one cross-link cable 
 
 A to B B to A 
Mean diff. P3-P2, P5-P4, P7-P6, P9-P8 6.508 19.305 
Mean diff. P5-P3, P7-P5, P9-P7 129.643 128.543 
Mean diff. P3-P1 195.640 220.860 
 
As seen in the above results, the difference between a pair is constant, although when 
sending from the slow device to the fast device, the delay difference between the large 
and small packet is lower than the other way around. This can be explained because 
device A needs more time to handle a packet than device B (because device A is 
slower). 
With a crosslink cable we expected that P3-P1 equals P5-P3 and that the latency 
equals 0. The results however show that in both directions P3-P1 is larger than P5-P3. 
They differ around 66 to 90 microseconds. To determine if this value is independent 
of the size of the packet, we repeated the Big Mac probe experiment over a cross-link 
cable with different sized large packets (ranging from 75 bytes to 1500 bytes), 
measuring from device A to B. Using the arrival times of the small packets we 
calculated the latency of the large packets. The results are given in Figure 12. We see 
that if the large packet increases its size, then the latency also increases. We see that 
the measured latency depends on the size of the packet. We also see that the first few 
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measurements differ from the measurements of the larger packets. This can be 
explained looking at the method used to calculate the latency: if the large packet is 
much larger than the small packet, the impact of the small packet on the latency can 
be neglected. In this experiment however the large packet is a little larger than or 
equals the size of the small packet which makes these first few measurements 
unreliable. The reliable measurements form a straight line that starts at 20 
microseconds. Because we have a chain of several packets, it results into pipelining in 
the transmission. This pipeline needs some time to initialize, which equals the 
estimated value of 20 microseconds. Furthermore there is some sort of handling delay 
which depends on the size of the packet: the handling bandwidth. This handling 
bandwidth equals around 280 Mbit/s and is caused by the handling of the packet by 
the Operating System and the hardware. 
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Figure 12. Latency over a cross-link cable using the Big Mac probe with different 

packet sizes 
 
We extend our model to include the pipeline initialization and the handling bandwidth 
of a path and simplify it by assuming there is no queuing delay and link latency is 
negligible to the latency of the entire path (from application layer to application 

layer): ∑
−

= −

−







++=

1

0 1

N

i Nihandling
initlatency b

s

b

s

b

s
tt  and ∑

−

=








++=

1

0

N

i ihandling
initontransmissi b

s

b

s
tt . 

So when there is only one (Cross-cable) link: 



 26

{ }

{ }

handling
init

N

i Nihandling
init

latency

latency

b

s
t

N

b

s

b

s

b

s
t

tdef

t

+

==

−







++

=

∑
−

= −

1

.

1

0 1

 

For measuring from device B to A we see that the measured arrival time differences 
differ from measuring from A to B. The bhandling is lower here because the arrival time 
differences between the large and small packet are higher than in the previous 
situation. When we repeated the latency determination tests between two identical 
machines, it did not matter which of them the receiver or sender was. The results in 
both directions were the same. Therefore bhandling and tinit depend on the used 
hardware.  

3.3.2.2 One Switch 
The second test we performed is connecting the two devices using one 100Mbit/s 
switch. This means there is one relay-device between the two devices and two links. 
The relay-device uses store-and-forward, so we expect to see an extra delay caused by 
the switch. Using our model, we expect a path latency of 183 microseconds when 
measuring from device A to B. 
First we look at the arrival times of a single probe to see if the small packet arrives 
immediately after the large packet (Figure 13). 
 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 
A to B 0 303 309 432 439 562 568 692 698 
B to A 0 315 335 444 463 574 593 702 721 
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Figure 13. Arrival times of the packet train when there is one switch 
 
We see the same behaviour as with only a crosslink cable. The only difference is the 
arrival time of P2, which is larger. This is exactly what we expected because the 
relay-device has to receive the packet completely before it can be forwarded. The 
second large packet needs the same amount of time to arrive as the second large 
packet with only a cross-link cable. The large packets after the second large packet 
also need the same amount of time as the second large packet to be received. This 
behaviour occurs because the first large packet has ‘initialized’ the pipeline. 
If all arrival times of the packets are plotted, we get the following results: 
 
 A to B B to A 
Mean diff. P3-P2, P5-P4, P7-P6, P9-P8 6.583 19.485 
Mean diff. P5-P3, P7-P5, P9-P7 129.740 128.580 
Mean diff. P3-P1 309.140 335.010 
 
The mean delay difference between P3 and P2 (and the other combinations of a 
successive large packet and small packet) equals the mean delay difference of the set 
up where the two devices are connected using only a crosslink cable. The same goes 
for the mean delay difference between P5 and P3 (and the other successive delay 
differences between small packets). The delay difference of P3 and P1 however is 
much larger, which is caused by the extra store-and-forward delay introduced by the 
switch. The measured latency from device A to B equals 309 – 130 = 179 µs which 
differs only a couple of microseconds with the estimated latency of 183 
microseconds. Furthermore the difference between the P3-P1 values of the situation 
with only a cross-link cable (220.86 – 195.64 = 25.22 µs) equals the difference in this 
situation (335.01 – 309.14 = 25.87 µs), so only bhandling and tinit differ between the two 
paths (A to B and B to A). 
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3.3.2.3 Two Switches 
The third test we performed is connecting the two devices using two 100Mbit/s 
switches. This means there are two relay-devices between the two devices and three 
links. The relay-devices use store-and-forward, so we expect to see an extra latency 
caused by the second switch compared to the situation where there is only one switch. 
In the test with one switch cable, the measurement corresponded with the expected 
latency value. Using the model we calculate an expected latency of 303 µs. 
First we look at the arrival times of a single probe Figure 14. 
 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 
A to B 0 418 424 547 554 677 683 807 813 
B to A 0 430 450 559 578 689 708 817 836 
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Figure 14. Arrival times of the packet train when there are two switches 
 
Again we see exactly what we expected: the first large packet takes much longer than 
all the other packets. Furthermore the other large packets have the same delay as the 
other large packets in case there was only one switch or only a crosslink cable and the 
differences between A to B and B to A stay the same for the different situations. 
 
 A to B B to A 
Mean diff. P3-P2, P5-P4, P7-P6, P9-P8 6.480 19.498 
Mean diff. P5-P3, P7-P5, P9-P7 129.687 128.593 
Mean diff. P3-P1 424.390 449.860 
 
Again the first two rows are the same as previous experiments. The measured latency 
from device A to B is 424 – 129 = 295 µs, which differs less than 10 µs from the 
estimated value.  
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We repeated the Big Mac probe experiment over the path with two switches with 
different sized large packets (ranging from 75 bytes to 1500 bytes), again only 
measuring from device A to B. The measured latencies are given in Figure 15. 
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Figure 15. Latency over a path of two switches using the Big Mac probe with 

different packet sizes 
 
We see the same behaviour as in Figure 12 where the path consisted of only one 
cross-link cable. Again the first couple of measured values are not accurate and the 
measured values equal the estimated values differing less than 10 µs. 
If we put all the measured and predicted latency values of the large packet in one 
graph, we get the graph given in Figure 16. 
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Figure 16. Comparison between measured and predicted latency values 

 

We see that our predicted values almost equal the measured values. So our model is 
usable for the home network although the results of cross traffic are unpredictable 
(see section 3.3.2.7). 

3.3.2.4 One hub 
A hub differs from a switch because a hub does not use a store-and-forward 
mechanism. So we expect that there is no difference between the delay difference of 
P3 and P1 and the delay difference of P5 and P3. The path between device A and B is 
seen as a single link (instead of two). The hubs we use only support 10 Mbit/s, so if 

we look at our model with N = 1: 
handling

initlatency b

s
tt +=  and 

0b

s

b

s
tt

handling
initontransmissi ++= , we can calculate the latency and transmission time of 

the large packet (tinit = 20, bhandling = 280, s = 1500 * 8, b0 = 10): tlatency = 62 µs and 
ttransmission = 1262 µs. We see that the expected latency equals the latency of the large 
packet of the cross-link case. To see if this is true, we first look at the arrival times of 
the individual packets (Figure 17) of the extended Big Mac probe (3.3.2). 
 
 P1 P2 P3 P4 P5 P6 P7 P8 P9 
A to B 0 1253 1301 2554 2602 3855 3904 5157 5205 
B to A 0 1339 1359 2639 2659 3940 3959 5240 5259 
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Figure 17. Arrival times of the packet train when there is one hub 
 
As seen in the above graphs, the large packets all have the same transmission time 
(even the first one), meaning that the measured latency equals 0 µs. 
 
 A to B B to A 
Mean diff. P3-P2, P5-P4, P7-P6, P9-P8 48.063 19.438 
Mean diff. P5-P3, P7-P5, P9-P7 1301.453 1300.023 
Mean diff. P3-P1 1300.650 1359.130 
 
From device A to B the measured latency equals: 1300 – 1301 = -1 µs. Latency 
however cannot be a negative value, but because measured values are not 100% free 
from other distortions (e.g. process switching on a device or physical processes) and 
there is the problem of significant numbers of the measured values we say that the 
latency equals 0 µs. This is not what we expected because during the tests with a 

cross-link cable, we came to the conclusion that 
handling

initlatency b

s
tt += . But if we look 

at the estimated transmission time ttransmission = 1262 µs, it seems that the pipeline 
(consisting of the hardware and operating system on both source and sink) needs to 

initialize itself for every packet, adding 
handling

init b

s
t +  to the latency of every packet.  

When measuring from device B to A the latency does not equal 0, furthermore 
another strange thing is seen: sending the packets from device A to B shows a larger 
time difference between P3 and P2 compared to the situation where only switches are 
used. We expected this value to be the same as in the switch situation (which is the 
case when sending packets from device B to A). We expect that the differences are 
not caused by the operating system, but by the hardware because the operating system 
is not changed between the hub case and the switch case.  This means the hardware 
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can influence the measurements: more research in the working of hardware is needed 
to know how much influence the hardware has and if this influence is predictable. 

3.3.2.5 Two hubs 
Because a hub does not use store-and-forward, the amount of hubs on a path should 
have no influence on the packet arrival times, because every bit is forwarded without 
any extra delay. When we repeated the test with two hubs, we saw that there is no 
significant difference between the results with one hub and with two hubs. 

3.3.2.6 Number of relay devices 
A side effect of the latency measurements using the Big Mac probe is that these 
measurements show a relation between the number of (store-and-forward) relay 
devices on a path and the measurement. When all relay devices on a path are equal, 
then each store-and-forward relay device adds the same amount of latency to the total 
latency of a packet. If we put the path latency compared to the number of relay 
devices in a graph we get a straight line as seen in Figure 18. 

Figure 18. Latency compared to the number of store-and-forward relay devices 
 
Unfortunately, this information can only be used to estimate the number of relay 
devices when there is no cross traffic on the network, because cross traffic can have a 
major influence on the measurements (see section 3.3.2.7). 
 

3.3.2.7 Cross traffic 
Using the same set up as used in 3.3.2.3, it is possible to repeat the latency 
measurements with the presence of cross traffic. Because of both traffic models, we 
expect that every packet gets the same extra delay depending on the bit rate of the 
cross traffic. We expect the cross traffic to decrease the bandwidth of a path (lowering 
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therefore increasing the latency of the path. The results of the tests with different 
amounts of cross traffic are presented in Figure 19. 
As seen in the graph (Figure 19), the results do not correspond to what we expected. 
The first couple of packets arrive at the same time no matter how high the cross traffic 
is. The fluid model is not able to describe this behaviour. The packetized model can 
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explain this result because cross traffic gets interleaved with the Big Mac probe which 
can cause packets that do get extra delay and packets that do not get the extra delay 
(Figure 20). The longer the probe is, the higher the probability that one of the packets  

Figure 19. The Big Mac probe on a path with different cross traffic bit rates 
 
in the probe gets an extra delay caused by cross traffic. Because of this, it is not 
possible to use the latency of the second packet pair to determine the number of relay-
devices on the path. 
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Figure 20. Possible scenario with a Big Mac probe without and with cross traffic 
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3.3.3 Available bandwidth 

The set up as given in Figure 9 is used. The bandwidth is measured between device A 
and B. The link between switch X and Y is the shared link with a maximum 
bandwidth of 100Mbit/s. Devices C and D are used to generate cross traffic over the 
shared link. This means that the measured bandwidth between device A and B is 
100Mbit/s without any cross traffic.  
The cross traffic is generated using the Iperf tool consist of UDP packets. Also 
pathChirp and Pathload use UDP packets for their probes. All three tools do not use 
TCP because TCP’s congestion control [16] makes it impossible to let an application 
sent a stream of packets with a predefined bit rate. 
Both pathChirp and Pathload only use the relative delays between probe packets as 
measurement data. The results of pathChirp and Pathload with default options are 
given in Figure 21. Both tools look if there is any queuing delay between two 
consecutive packets. If there is any, then the bit rate of the packet is the maximum 
available bandwidth. 
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Figure 21. Comparison of pathChirp and Pathload 
 
As seen the measured bandwidth by pathChirp is higher than the theoretical available 
bandwidth. Four things can explain this: 

• The UDP traffic pushes away the other traffic including the Iperf traffic which 
was intended to decrease available bandwidth 

• The packets involved in the measurement could be interleaved with the cross 
traffic packets. Therefore part of the cross traffic is not noticed in the 
measurement. 

• Cross traffic causes buffering so that some packets do arrive after each other 
with small delay, which can be interpreted by pathChirp as a high bit rate. 
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• The speed of the home network is very high, which makes detecting queuing 
delays caused by the maximum available bandwidth harder because it is only a 
difference of microseconds with the situation where there is only temporary 
cross traffic. 

Pathload gives closer estimates although these estimates are mostly lower than the 
theoretical bandwidth. This is mainly because a packet train consists of packets with 
the same bit rate that makes it possible to filter out erroneous measurements.  
We also tried to use both algorithms to measure the available bandwidth on an 
IEEE1394 connection between the two devices, but because of Interrupt Coalescence 
[17] (several packets are received before an interrupt is generated), these algorithms 
could not be used because the delay between the arrival times of the packets at the 
application is almost zero. 

3.3.4 Conclusion 

Latency can be measured using multiple Big Mac probes to filter out erroneous 
measurements. This value can only be safely used to determine the number of store-
and-forward devices on the path as long as there is no cross traffic and the 
contribution of individual devices is known. Furthermore the value of the latency also 
depends on the hardware used at the devices: we have seen that two 100 Mbit/s NIC‘s 
do have different behaviours. Another thing that is worth mentioning is that the 
interface adapters also introduce a delay caused by store-and-forward.  
Available bandwidth is hard to measure. The most promising techniques temporarily 
congest a path to cause queuing at the link with the lowest available bandwidth. The 
congestion itself lasts for a couple of milliseconds, but the time needed to get a good 
estimate of the available bandwidth can be higher than 10 seconds because the 
algorithms start with packet train with a low bit rate and increase the bit rate step by 
step. We compared two algorithms. PathChirp uses fewer packets than Pathload but is 
therefore less robust against erroneous measurements caused by cross traffic. 
Cross traffic has major impacts on measurements because it can cause queuing of 
packets at relay-devices. Therefore packets that are expected to have a certain arrival 
time difference can arrive sooner or later because of interleaving cross traffic. If this 
cross traffic is not taken into account, the wrong conclusions can be made on the 
bases of the measurements. 
We have used Pathload to determine the available bandwidth of a path, because it is 
more accurate (although it needs more measurement traffic compared to pathChirp to 
make a good estimate). We also added an additional requirement that in the 
architecture of ISL there will be possibilities to add more property determination 
algorithms in the future or replace existing ones as better algorithms became 
available. 
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4 Architecture 
In this chapter the architecture of ISL is discussed. It is explained how applications 
use the Berkeley Socket Interface, because ISL offers a replacement for this interface. 
Furthermore a high-level model of the complete ISL is given and each component of 
the ISL is discussed separately. We end this chapter with a discussion on how the ISL 
communicates with other devices and how the ISL components communicate with 
each other to perform its tasks. 

4.1 Berkeley Socket Interface (BSI) 

Current applications use the BSI to communicate over a network. To make it possible 
to switch between interfaces during a connection, ISL offers the application an API 
that equals the BSI.  
To understand how the ISL works, it is necessary to know how the BSI is used by 
applications. Depending on the role of the application and the protocol the application 
wants to use, different function calls need to take place in a certain order (see Figure 
22). For a short introduction to programming with the BSI read [20]. 

socket()

bind()(bind())

listen()

accept()

recv() recvfrom()

close()

connect()

send() sendto()

Sender Receiver

TCP UDPTCP UDP

 
Figure 22. The use of the Berkeley Socket Interface 
 
As seen in Figure 22 there are two roles being identified: a sender and a receiver role. 
Each of these roles supports the UDP and TCP protocol. The ISL emulates the 
working of the BSI by intercepting the calls to the BSI functions before they are 
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passed on to the Operating System. Applications need not to be modified because all 
calls to the BSI are intercepted by the ISL. 

4.2 High-level model 
As seen in Figure 1 the ISL is placed between the application and the BSI. The ISL 
also has direct access to the Operating System, which makes it possible for the ISL to 
use interfaces that cannot be used through the BSI. An alternative would be to put the 
ISL into the OS, but then the ISL is hardly portable to other Operating Systems.  

The ISL itself is divided into a couple of components, each with its own tasks. Putting 
all the components together, we get the model describing the complete ISL given in 
Figure 23.  

  

Figure 23. High-level model of the ISL, the solid arrows represent the control flow 
and the dotted arrows represent the data flow 
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The first component is the Pair Selection Layer (PSL). The PSL offers the BSI 
replacement to the application. Second there is the Main Controller (MC) that decides 
which interface pair to choose for a data stream. To give the ISL the possibility to 
change the local interface without losing already (by the application) established 
TCP/IP connections with another device, a layer is introduced that creates virtual 
addresses and maps them to the real interfaces (this is explained in section 4.3). This 
layer is called the Socket Abstraction Layer (SAL). 

A device can have multiple network-interfaces. These interfaces can be of different 
types (e.g. Firewire, 802.3, 802.11a/b/g etc.) and each type of interface has its own 
methods to communicate using its own driver. To abstract from all these different 
types of interfaces, ISL uses an abstraction layer to talk with the different interfaces: 
the Interface Abstraction Layer (IAL). The IAL offers an interface that does not 
differentiate between different types of network-interfaces. Furthermore the IAL 
offers the functionality of switching between the network-interfaces during a 
connection. Therefore, it is possible to communicate with multiple interfaces of 
different types in a generic way. 
Two other components are the Property Collector (PC) and the Device Handler (DH). 
The first is used to collect properties of interface pairs, and the second is used to 
communicate with other devices that use ISL. All the components are described in 
detail in the next chapter. 

4.3 Handover 
Whenever a better interface pair is found for a data stream, ISL hands the stream over 
from the ‘old’ interface pair to the new pair. This handover must be done seamlessly 
without loss of data. Meaning that if there is a TCP/IP connection between two ISL 
devices, it must not be necessary for the two devices to reconnect to each other. The 
problem of the handover of TCP/IP connections is called the TCP hand-off problem.  
We considered various alternatives: 

1. Our first idea was to realize a virtual TCP connection between the two devices 
which was implemented through a real TCP connection. Whenever the 
connection had to be handed over, the real TCP connection would be broken 
and a new real TCP connection would be established and the virtual 
connection would then work with the new real TCP connection. This requires 
a virtual socket number and a real socket number, which are generally 
different. Whenever another interface pair was chosen, the real socket was 
recreated and bound to the chosen interface. The ISL needs to translate the 
virtual socket number to the corresponding (new) real socket number. The 
problem with this method is that TCP/IP connections get disconnected and a 
new connection needs to be established. TCP/IP packets can get lost and the 
handover is not seamless: TCP/IP packets that are already passed on to the 
operating system get lost.  

2. Another option is to use Mobile IP [24]. But Mobile IP has some 
disadvantages:  

• The infrastructure of the home network needs to be changed (not only 
the sender and receiver device but also the relay-devices).  

• All traffic is routed through a home agent and not directly between the 
sender and receiver (implying that there is always a small part of the 
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path which cannot be changed: I.e. the receiver cannot actually change 
because you keep the traffic to the home agent unless the home agent 
is the server). 

3. The method chosen for ISL is a combination of the ideas of J.J. Lukkien, 
P.H.F.M. Verhoeven and Philips Research Laboratories. We create a ‘virtual 
interface’ for each socket in the form of an IP address (which we call the 
virtual address) that we assign to a real interface (with its own IP address, 
which we call the real address). In other words: one physical interface gets 
multiple IP addresses (the real address and one or more virtual addresses: 
Figure 24).  

 
Device A

10.10.15.28

Interface A0

192.168.1.1

Interface A1

192.168.2.1

Device B

10.10.47.81

Interface B0

192.168.1.2

Interface B1

192.168.2.2

Application Application

 
Figure 24. One interface with multiple IP addresses (a virtual and real address)  

 
If another interface pair is chosen by the Main Controller, the virtual address is moved 
from one real interface to another real interface. Using this method the virtual IP 
address stays the same, but the MAC address corresponding to the (virtual) IP address 
changes. Therefore the changing of interfaces is done one level lower (level 2) than 
the level of TCP/IP (level 3), which in turn make it possible to do seamless handover 
of TCP/IP connections. 
If the MAC address of an IP address changes, all the devices need to be informed of 
this change. The announcement is done by broadcasting an unsolicited ARP-reply 
packet containing the virtual IP address and the new MAC address Figure 25. This 
method of virtual addresses makes it possible to route traffic using a direct path 
between sender and receiver without changes to relay-devices. A downside of this 
method is that it is only applicable in a home network where each interface pair is 
within the same broadcast domain because the virtual addresses are from the same 
subnet. Also, the change of MAC address could be interpreted by the network as 
packet spoofing, triggering all kinds of alarms. 
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Figure 25. Switching between interfaces, Step1: Device A assigns virtual address to 

old and new interfaces and sends ARP reply; Step 2: Device B receives 
reply and updates ARP table, Device A removes virtual address from old 
interface. 

 
It is also possible to move the real address to another interface, but then the previous 
interface of the real address is not available anymore because it does not have an IP 
address. Giving it a new real IP address is not an option, because it is not known 
which addresses are already in use and suitable for the device. Also DHCP can return 
the old address which is used by the other interface. Furthermore if the real address is 
moved to another interface it is not possible to change the interface pair for only one 
stream at a time: all streams are moved from one interface to the other. With our 
method we do not have this problem because we use a virtual address for each stream. 
Using virtual addresses and routing them through the real interfaces makes it 
impossible to use multiple interfaces for one stream and therefore combining the 
bandwidth of the paths. Combining interfaces for one TCP/IP connection is only 
possible if the transport layer is modified because the traffic needs to be divided over 
multiple paths and recombined at the other end. So another handover method is 
needed to accomplish this (we suggest a possible method in section chapter 7: using 
NAT between virtual addresses and real addresses). 
In our current implementation the virtual addresses are taken from the range 10.10.x.y 
with subnet mask 255.255.0.0. The values for x and y are taken at random. This could 
allow streams to get the same address, but chances are very low. For our proof-of-
concept implementation this method suffices.  
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4.4 Main components 
In the previous section (4.2) a complete overview of ISL is given. In this chapter each 
component is discussed separately. Interactions between the different components and 
between ISL devices are given in sections 4.5 and 4.6. 

4.4.1 Pair Selection Layer (PSL) 

The purpose of the PSL is to offer an interface to the application. This interface 
contains the same function calls as the Berkeley Socket Interface (See 
/usr/include/sys/socket.h on a UNIX based system for a complete overview of each 
function with its parameters, or Figure 22 for a quick overview). PSL extends this 
interface with a couple of new function calls that enable new applications to 
communicate the properties of the data that they want to send (e.g. the bit rate of the 
traffic, the maximum allowed latency). Existing applications can be used without any 
modification to their source code and new applications can easily be written to use the 
extra functionality ISL has to offer. Read section 5.5 for information about how 
applications can use the ISL. 

4.4.2 Main Controller (MC) 

The Main Controller keeps track of all data streams that applications send and receive. 
It knows which interface pair is used for each stream and it chooses another interface 
pair if a new interface pair offers better performance than the current used path for the 
stream. A cost function is used to determine the cost of each possible path between 
the sender and receiver, making it possible to compare paths with each other. The path 
with the lowest cost is chosen. 

The Main Controller only looks at possible interface pairs between devices and not at 
combining local interfaces together so that multiple interfaces are used for the same 
stream. Combining interfaces is a problem by itself and therefore left open for future 
research (see also section 4.3). 

The Main Controller asks all the properties of possible interface pairs between the 
sender and receiver from the Property Collector. Depending on these properties it tries 
to make the best choice.  

When an application wants to receive data, it listens at first on a by the application 
selected network-interface and waits for an incoming connection or incoming data on 
that interface. The receiver should listen on the IP address (assigned to a network-
interface) selected by the application to let non ISL enabled devices connect or send 
data to the receiver. It depends on the used handover method if this is possible, see 
section 4.3. 

Because the (receiver) application generally does not know who the sender will be, it 
is not possible for the receiver to determine the best pair of interfaces between the 
receiver and the future sender. The sender can determine the best pair of interfaces 
because it knows to which receiver it wants to connect and send data. Therefore only 
the sender chooses the best interface pair and not the receiver. 

4.4.3 Device Handler (DH) 

The Device Handler keeps track of which ISL enabled devices are connected to the 
network and handles all control communication between ISL-enabled devices (see 
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sections 4.5 and 4.6). The detection of ISL devices is done by listening on the network 
for broadcast messages sent by ISL devices; therefore it cannot detect non-ISL 
enabled devices. The ISL is actually a service offered by devices and the detection of 
ISL enabled devices can be implemented using a service discovery protocol (e.g. 
Simple Service Discovery Protocol (SSDP) [25]).  

The DH has knowledge about the local and remote interfaces (e.g. the address and the 
type of each interface). The Device Handler sends and receives broadcasts containing 
the device identifiers and the information about interfaces. This information is given 
to the Property Collector. 

4.4.4 Property Collector (PC) 

The purpose of the Property Collector is to maintain a complete map of all interface 
pairs together with the properties of the interface pairs of which the device itself is 
part of. The Main Controller uses the Property Collector to get all properties of each 
possible pair of interfaces and to keep track of the status of each stream. The Property 
Collector gets information about the remote devices and their interfaces from the 
Device Handler. The Property Collector queries the IAL for the properties of the paths 
where the device itself is part of. 

If an application wants to send data to a non-ISL enabled device, the Property 
Collector knows the receiver is non-ISL enabled because it has no information about 
that device (otherwise the Property Collector would have received information from 
the Device Handler). Because all devices need to announce themselves to each other 
there is some initialization time for each device before they can start sending data. 
Else it is possible that an ISL device does not know about another ISL device because 
the announcement information did not yet arrive or was lost. More about these ISL 
device announcements can be read in section 4.5.1. 

We have only looked at property determination methods where both devices use ISL 
and not at methods for determining path properties between an ISL and a non-ISL 
enabled device. It should be possible to determine these properties using standard 
methods (e.g. ping to determine latency) or non-standard one-side only methods (e.g. 
let all local interfaces try to connect to the remote interface of the non-ISL device, the 
local interface that sets up the connection the fastest is probably the best interface to 
connect to the non-ISL device). So it is the responsibility of the Property Collector to 
get the properties of paths formed with a non-ISL device.  

4.4.5 Socket Abstraction Layer (SAL) 

The SAL assigns the socket numbers whenever an application wants to create a 
socket. The SAL uses the IAL to create a virtual address for each socket and assigns 
these virtual addresses to a real interface (see section 4.3). The SAL keeps track of all 
these socket numbers and knows which virtual address belongs to which real 
interface. 

4.4.6 Interface Abstraction Layer (IAL) 

Some types of interfaces offer extra functionality to communicate with interfaces of 
the same type. A Firewire interface has for example the feature to reserve certain 
bandwidth for a stream of data in contrast to an 802.3 interface. Also not all interfaces 
use IP to communicate. That is where the IAL comes in. It gives the ISL the 
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possibility to talk to all kinds of different interface types without knowing the 
difference between them. The IAL has knowledge about the local interfaces, their 
drivers and how to communicate with them. The IAL is used to send and receive data 
and is used to get the properties of a path. The IAL makes no difference between the 
sending and receiving of ISL control messages and application data. 

4.5 External communication 

In this section all communications between ISL-enabled devices is discussed. The 
external communication is used for the following tasks: 

• Detection of ISL devices 
• Gathering interface information 
• Determination of path properties 
• Selection of an interface pair 
• Sending and receiving data 
• Synchronization between ISL devices 

 
These tasks are discussed in more detail in the subsections of this section. 

4.5.1 Detection of ISL devices 

There are different methods for service discovery in a network (e.g. SSDP [25] or 
SLP [26]). Most methods are a combination of unicast and broadcast messages. To 
keep it simple (because our focus is on the property determination and architecture of 
ISL), we only use periodic broadcast messages to discover whether a device has ISL 
or not. The downside of this method is that it adds an extra delay when a new device 
is added to the network. This extra delay equals the interval at which the broadcast 
messages are sent. The broadcast can also be used for a kind of keep-alive message on 
the network and if the broadcast message contains information about the network-
interfaces of the device, this information exchange can be done before any application 
tries to communicate with another device.  

Every ISL device sends a broadcast message, containing the identifier of the device, 
the amount of interfaces together with the properties of the interfaces (e.g. the address 
and type of each interface). This broadcast is sent on all interfaces that use IPv4. This 
is done because an ISL device can belong to multiple broadcast domains (see 
requirements 7 and 14). The name of the device is a Universal Unique Identifier 
(UUID) that is used for ISL to uniquely identify each device. Therefore ISL knows 
how many ISL devices are connected to the network and how many interfaces each 
device has together with the properties of the interfaces. 

When a device receives such a message, it checks if it already has knowledge about 
the existence of the sender. If not, it will add the device to the list of known devices. 
The device also stores a timestamp of the last received broadcast of each device, so 
that ISL can detect whether a device is still connected to the network or not. If a 
device has not received a broadcast from another ISL device for a certain amount of 
time, it is presumed that the device is not operational or connected to the network 
anymore. ISL does not keep track on what interfaces the same broadcast message is 
received. It does however store the number of the interface on which the first 
broadcast message is received and uses this interface for further ISL communication 
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with the other device. An ISL device does not send a response back to the sender of 
the broadcast message. 

Before an application can communicate with another device, ISL needs to know if the 
other device also uses ISL or not. Therefore the initialization time of a newly 
connected ISL device equals the interval time at which broadcasts are sent.  

4.5.2 Gathering interface information 

As discussed in the previous section, the broadcast message sent by all ISL devices 
contains the properties of their interfaces. Whenever an ISL device receives a 
broadcast from another ISL device, it knows the type and address of the interfaces of 
the other device and there is no need for extra communication.  

Another option was that a device queries another device about its interfaces using 
unicast messages. But this would involve extra communication between ISL devices 
before an application can start its own communication with the other device, which 
makes this method quite inefficient. The broadcast message that is used for 
identifying ISL devices is very small, so the information about the interfaces can be 
added without extra overhead in communication. This information consists of the IP 
address and the type of the interface (e.g. 802.3, Bluetooth etc.). 

4.5.3 Determination of path properties 

The Property Collector periodically collects the properties of the paths of which the 
device is part of. A property is determined between two devices: the device that 
initiates the property determination is the sender and the other device is called the 
receiver. The sender initiates the determination of a path property by sending a 
message to the receiver telling it which property is going to be determined with which 
interface pair. The receiver is now able to prepare the local interface that is involved 
in the path property determination and send a message back when the receiver is 
ready for the measurement to begin. The complete sequence of communication steps 
is displayed in Figure 26. 
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Sender Receiver

Announce measurement

Ready to start measurement

Measurement

Result

 
Figure 26. Sequence of communication steps for executing a measurement 

 

The internal communication between the components of the ISL is discussed in 
section 4.6.  

4.5.4 Selection of interface pair 

For each interface pair between two devices, a score is calculated using a cost 
function and the best pair is chosen. This process takes place at the sender; therefore, 
the receiver does not know which interface pair is chosen by the sender. The sender 
however does not know to which remote interface the remote virtual address is 
mapped, so it is not possible to send a simple message to the receiver telling it to 
change a certain mapping. To let the receiver know which local interface to use, the 
sender must send a message to the receiver containing the receiver’s virtual address 
(which identifies the stream to the receiver) together with the selected interface (see 
section 4.6.2).  

This message gives the receiver the information needed to change the assignment of 
the virtual address to the real interface. After the receiver has changed the mapping, it 
sends an acknowledgement back so that the sender can also change the mapping. See 
Figure 27 for a sequence diagram describing the interface pair switching process.  
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Figure 27. Sequence of communication steps for changing an interface pair 

 

The sender lets the receiver to change the mapping first because if the receiver is not 
able to change the mapping, the receiver can inform the sender without the TCP/IP 
connection getting lost. When the receiver has changed the mapping TCP/IP makes 
sure that packets do not get lost by retransmitting them until the sender has also 
changed the mapping. UDP packets however do get lost. Another option would be to 
let ISL block all the traffic, but ISL has no control over all packets that are already 
passed to the Operating System before the change of the mapping, so this option is not 
chosen. 

4.5.5 Sending and receiving data 

The actual sending and receiving of application data is done by the IAL. From the 
application’s point of view, the ISL is transparent and the sending and receiving of 
data is done through the Berkeley Socket Interface. 

To comply with the standards of the different kinds of traffic, no additional header is 
added to the data (requirement 10). But when an ISL device wants to wait for 
incoming data, it first creates a virtual address and maps it to a real interface. This 
mapping is then broadcasted to all other ISL devices, so that they have knowledge of 
this virtual address. If an application wants to send data to another ISL device, the ISL 
changes the destination address given by the application to the receiver’s virtual 
address. 

The sender also creates a virtual address, but it does not broadcast the information 
about the virtual address to all other devices because the virtual address will only be 
used to connect to another (virtual) address and not for receiving incoming 
connections. See Figure 28 for the sequence of communication steps. 

A downside of this method is that it is necessary for a sender to be already connected 
to the network before the receiver starts listening. Otherwise the sender could miss the 
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broadcast message containing the virtual interface information and therefore the 
sender does not have the information needed to connect to the receiver: it simply does 
not know about the virtual interface’s existence. There are two possible solutions to 
this problem. The first is to add the information about the current existing virtual 
interfaces to the periodic keep-alive broadcast message. The second is to add some 
ISL specific protocol between the two ISL devices so that the virtual interface 
information can be exchanged between them during a set up of a connection. Because 
we merely want to offer a proof-of-concept implementation we do not address this 
problem in our implementation. 

Sender Receiver

Broadcast Virtual Interface

Connect to Virtual Interface

Create Virtual InterfaceCreate Virtual Interface

 
Figure 28. Sequence of communication steps for making a connection between a 

sender and receiver. 

4.5.6 Synchronisation between ISL devices 

When a property is determined, the value of the property is a kind of snapshot of the 
path’s condition at a certain moment in time. If a device adds a stream to the network, 
the measured value could be inconsistent with the current network condition. This 
could introduce a live lock: consider a device sending a stream over a not-optimal 
path, so another path is selected, which causes another stream of another device being 
sent over a not-optimal path. Both ISL devices could keep switching between paths, 
so we need a method that lets the ISL devices converge to a stable state. To solve this 
problem, determining properties and setting up a path should together be one 
transaction that can only be performed by one ISL device and not by multiple ISL 
devices simultaneously. This however does not solve the situation where a legacy 
device starts a data stream between the property determination and the starting of a 
data stream between two ISL devices. In this situation the ISL device has to change 
the path only once, because the legacy devices do not change their ‘selected’ path, so 
the ‘live lock’-problem is not an issue here. 

Requirement 15 states that it should be possible to synchronize all ISL devices to get 
a stable state. There are different methods known in the literature to perform an 
atomic transaction using distributed mutual exclusion [21]. The rest of this section 
discusses these methods. 



 48

There are two mainly two methods: the first method is to let all devices select one 
device as the coordinator and let each device ask the coordinator for permission to 
perform a transaction, the second method is to let all devices form a token ring, the 
device that has the token can do a transaction. Both methods suffer from the problem 
that not all devices can communicate with each other because devices can belong to 
multiple broadcast domains (requirement 14). Therefore it is necessary that each 
broadcast domain has one coordinator or one token.  

It is not difficult to elect a coordinator or set up a token ring in one broadcast domain, 
because each device has a unique ID the bully or ring algorithm can be used for 
election [21]. 

There are a few problems when a token ring is used to offer distributed mutual 
exclusion to perform a transaction: 

• The network gets flooded by the tokens because a device only rarely needs to 
determine properties and change a path. 

• A device can only perform a transaction when it has the tokens of each 
broadcast domain the device belongs to. This can easily result into deadlock 
when two devices both belonging to two broadcast domains each have one 
token and want to do a transaction. It can also result into a live lock when 
there is a time out on how long a device can hold a token and the two devices 
keep alternating the two tokens. 

The coordinator method does not have the first problem. But it does have the second 
problem: a device needs to have permission from all the coordinators. Now the same 
problem occurs when two devices belong to the same two broadcast domains and 
each device only has permission from one of the two coordinators. This can only be 
solved when there is only one coordinator in the entire network, which is only 
possible if devices act as a bridge between broadcast domains to let permission 
requests travel from one broadcast domain to the other broadcast domain.  

This is however very sensitive to failure, because when a device crashes (or is 
disconnected) the network can be split up into two separate broadcast domains that 
have no bridge between them. However if an election is held each time a network 
change occurs (e.g. a device is connected or disconnect), then a network change 
should not be a problem (assuming that algorithms are used to handle pending 
permission requests). 

To guarantee correctness of measurement values at the time a device wants to start a 
stream, synchronization between the ISL devices is needed. A token ring is not 
suitable because a device only rarely wants to select another path, so the coordinator 
method must be used. However because this allows the ISL devices to act as bridges 
between broadcast domains, it would increase the complexity of our proof-of-concept 
implementation. Because we only want to prove that it is possible to offer path 
selection to an application by only looking at the properties of a path, we have not 
included such a distributed mutual exclusion algorithm in our implementation. 

4.6 Internal communication 

In section 4.5 we described the communication that takes place between two devices. 
But inside a device there is also communication between the different components. In 
this section we look at the internal communication steps that need to be done to 
perform the following tasks: 
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• Initialization of the ISL device 
• Handling control messages  
• Property determination 
• Interface pair selection 
• Sending application data 
• Receiving application data 

The internal communication steps are given in the form of sequence diagrams. Each 
solid arrow represents a function call and the dotted arrows represent a return value. 
Return values that only report if a function call was successful are not displayed in the 
sequence diagrams. 

4.6.1 Initialization 

Before ISL can do anything, it needs to initialize itself. The component Main calls the 
‘initialize’ method of the Device Handler, the Property Collector and the SAL. This 
causes each component to initialize its private variables and creates the necessary 
threads for the different tasks of each component. 
The Property Collector, the SAL and Main only initialize variables and create the 
necessary threads (more about the different threads in section 5.4). The Device 
Handler also performs a couple of initialization steps using the other components: 

• Get information about the local interfaces 
• Start broadcasting presence messages periodically 
• Start listening for incoming ISL control messages 

 
To get information about the local interfaces, access to the operating system is 
required. The IAL has access to the operating system, so the Device Handler asks the 
IAL for the information about the local interfaces. The Device Handler passes this 
information on to the Property Collector (Figure 29). 

 
Figure 29. Getting information about the local interfaces 
 
The Device Handler sends periodic broadcasts to distribute its availability to the other 
devices on the network. The IAL is used to set up a socket and send the broadcast 
messages (Figure 30), more on the different messages in section 4.6.2. 
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Figure 30. Sending periodic broadcasts 

 

The last initialization step of the Device Handler is to set up a socket for incoming 
ISL control messages. After an ISL control message is handled by the Device 
Handler, it waits for another incoming message (Figure 31). 

DeviceHandler IAL

createSocket()

bindSocket()

recvData()

handleMessage

received message M?

 
Figure 31. Receiving ISL control messages 

4.6.2 Handling messages 

The Device Handler receives ISL control messages from other ISL devices. 
Depending on the type of the message, certain actions need to be performed by ISL. 
The different ISL control messages are given in following table. 
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Name Contains Description 
M1 • Device ID 

• Interface information 
Broadcasted announcement of presence 
of  a device with its interfaces 

M2 • Real address 
• Virtual address 

Broadcasted announcement of a newly 
created virtual address 

M3 • Virtual address 
• New local interface 

Announcement of an interface pair 

M4 • Type of measurement 
• Remote interface number 
• Local interface number 

Announcement of a measurement 

 
If the Device Handler receives M1, it passes on the information to the Property 
Collector so that both the components have the ability to store the information or 
know that an already known device is still connected to the network. 
When message M2 is received, the Device Handler passes this information on to the 
IAL which can use this information to translate real addresses (from the application) 
to the virtual addresses (more on this in section 4.6.5 and 4.3). 

 
Figure 32. Handling of message M1 (left) and message M2 (right) 
 
If a stream of data is running between two devices, an interface pair is announced to 
the receiver of the data stream using message M3. The Device Handler of the receiver 
uses the IAL to move the virtual interface to the newly selected interface. When this is 
done, it sends a message back to the sender so that the sender can also change his 
local interface (more on this in 4.6.4).  

DeviceHandler IAL

Interface Pair announcement

changeRoute()

sendData()

M3

Ready

 
Figure 33. Handling of message M3 (change local interface) 
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When a device (the sender) wants to determine a property of a path, it sends a 
measurement announcement to the device on the other end of the path (the receiver). 
This announcement contains the type of measurement that is going to take place and 
the name of the interfaces involved in the measurement. The receiver prepares itself 
for the measurement and sends a message back when it is ready to start the 
measurement. Because the device receives an announcement, the device knows that it 
has the receiver role in the measurement. The measurement can now start. This 
measurement is handled by the IAL. When the measurement is done, the receiver 
sends a message back containing the result of the measurement (Figure 34). More on 
the property determination at the receiver side can be found in section 5.4.6. 

 
Figure 34. Handling of message M4 (getting ready for a measurement) 

 

Both M3 and M4 messages are handled as a kind of remote procedure call mechanism 
(RPC [22]) messages. This means that the sender of the messages blocks until the 
receiver calls the required functions and sends the result back before the sender can 
continue. 

4.6.3 Property determination 

In section 4.6.2 we discussed how a measurement announcement is handled on the 
receiver side, here we give the sequence diagram of the sender side. The properties 
are collected by the Property Collector. The Property Collector gets the properties 
from the IAL, which determines the properties. The Property Collector keeps a table 
containing all the detected devices with their interfaces and periodically determines 
the properties of the paths of which the device itself is part of. The Property Collector 
tells the Device Handler that it wants to determine a path property. The Device 
Handler makes sure the other device (the receiver) knows this. The Property Collector 
calls the IAL to determine the property, and the IAL returns the value of the property 
that is received from the other device. The Property Collector stores this property 
value in the graph. 
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ReceiverSender

DeviceHandlerPropertyCollector IAL

announceMeasurement()

sendData()

Ready for measurement

Receiver is ready

getProperty()

Result

DeviceHandlerIAL

Measurement announcement

giveProperty()

sendData()

M4

givePropertyThread()Ready

measurement

Result

 
Figure 35. Determination of a path property 

4.6.4 Interface pair selection 

The Main Controller keeps track of all the running data streams and periodically 
checks the properties for the possible paths between two devices of a stream. It asks 
the Property Collector of all the properties of each path and determines the best path. 
If the current path is not the best path, the Main Controllers announces the new 
interface pair to the remote device using the Device Handler. After the remote device 
has changed his interface (see Figure 33), the SAL is used to change the local 
interface. The SAL uses the IAL to do this switch. 

 
Figure 36. Determine best interface pair and choose this pair 

4.6.5 Sending data 

An application uses the interface of the PSL to send and receive data using the steps 
given in Figure 22. The PSL translates the BSI calls to calls to Main. Main passes the 
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calls on to the SAL that keeps an administration of all the created sockets and their 
state. The SAL also creates the necessary virtual addresses for each socket using the 
IAL.  
As seen in Figure 22 there is a difference between the function calls when UDP or 
TCP is used. First we give the sequence diagram of function calls when an application 
uses TCP. 

PSL

socket()

bind()

connect()

send()

close()

Main

createSocket()

SAL

createSocket()

IAL

createSocket()

bindSocket() bindSocket()

DeviceHandler

broadcastVirtualInterface()

createVirtualInterface()

Virtual Interface information

bindSocket()

Virtual Interface information

sendData()

connectSocket() connectSocket()

connectSocket()If socket is not already bound to an interface, 

the virtual interface is created by the SAL, 

but this information is not broadcasted (because 

the application does not bind itself to an interface, 

other devices do not need this information).

sendData() sendData() sendData()

destroySocket() destroySocket() destroySocket()

M2

Data

 
Figure 37. Sender application using TCP to communicate 
 
Because the bind  call is optional when sending data, the ISL does not broadcast the 
created virtual address when bind  is not used. 
UDP is connectionless, so the connect  function of the PSL is not called. It is however 
possible to have connected UDP sockets (see [20]). So whenever an application uses 
the sendto , we connect to the address that is an argument of sendto . This connecting 
does not add extra overhead because no actual connection is made but only the remote 
address is stored so that when send  it used, the operating system knows to which 
address the data must be sent. This is done to keep the same sequence of function 
calls as with TCP so that all the components except for the PSL do not make a 
difference between UDP and TCP traffic. 
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Figure 38. Sender application using UDP to communicate 
 
The IAL has knowledge of all virtual interfaces in the network together with their 
original addresses (combination of IP address and port number). If a device wants to 
connect or send data to another device, the IAL translates the address it gets from the 
application to the corresponding virtual address.  

4.6.6 Receiving data 

The receiver must always bind to a local address and port number. Therefore bind  is 
always called. Applications normally have the possibility to listen to all interfaces 
(using the BSI to bind  to 0.0.0.0) but to have full control of which interfaces are used, 
we create a virtual address and bind a socket directly to that virtual address. The 
create  and bind  operations are the same as for the sender application given in 
section 4.6.5. All other operations ripple from the PSL through the Main and SAL to 
the IAL.  



 56

PSL

socket()

bind()

listen()

recv()

close()

Main

createSocket()

SAL

createSocket()

IAL

createSocket()

bindSocket() bindSocket()

DeviceHandler

broadcastVirtualInterface()

createVirtualInterface()

Virtual Interface information

bindSocket()

Virtual Interface information

sendData()

listenSocket() listenSocket() listenSocket()

recvData() recvData() recvData()

destroySocket() destroySocket() destroySocket()

accept() acceptSocket() acceptSocket() acceptSocket()

New socketNew socketNew socketNew socket

M2

Data

 
Figure 39. Receiver application using TCP to communicate 
 
The UDP case is described by a more simple sequence diagram because the listen and 
accept functions are not used here.  

 
Figure 40. Receiver application using UDP to communicate 

4.7 Conclusion 

Using the architecture as displayed in Figure 23 it is possible to separate the 
application’s tasks from the ISL tasks so that both can do their work separately 
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(requirements 6 and 11). Furthermore by implementing the ISL as a layer it is easily 
portable to other kernel versions and easier to develop and debug. Because the ISL 
offers the Berkeley Socket Interface to the application, applications do not require 
modifications before they can use the ISL (requirement 12).  

The current handover method (4.3) is suitable in a home network situation. The 
TCP/IP connections are preserved and it is possible to change the path of each stream 
separately. But the legacy support is not optimal yet because legacy devices have no 
knowledge about the virtual addresses. An improved method is needed as discussed in 
chapter 7 to fully support legacy devices. 
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5 Implementation 
In this chapter implementation details are discussed about ISL. Information is given 
about the environment for which ISL is implemented. We explain how the Main 
Controller chooses an interface pair and how the handover between interface pairs 
takes place. At the end we discuss implementation details about the different ISL 
components (e.g. the function of the different threads in each component) and it is 
explained how an application can use ISL. 

5.1 Linux 
We have chosen to develop ISL in C++ for the Linux operating system. We have 
chosen for Linux because ISL requires access to low-level parts of an operating 
system. Also implementation on Linux was a requirement of the project (requirement 
8) as other parts of the project were working on Linux. Since the source of Linux is 
available, that OS is chosen. The techniques that ISL uses could also be applicable to 
other OSes. 
To support the handover of connections between interfaces (see section 4.3), we use 
the third party utilities ‘ifconfig ’ (assigning virtual addresses to real interfaces) and 
‘arping ’ [23] (for sending ARP replies). Furthermore the utility Pathload is used to 
determine the available bandwidth of a path. These tools are called from inside the 
ISL using the system  statement, which also has a negative effect on the performance 
of ISL. Better performance can be given when these third party tools are integrated 
into the ISL. 
The current implementation of ISL is a proof-of-concept implementation, meaning 
that it is only there to show that our idea of offering interface switching to an 
application is possible. The performance of the current implementation could be better 
(see chapter 6). We believe that the ISL should be integrated into the Linux kernel, 
which will offer a major performance boost to the ISL.  
The entire ISL is written in C++ which makes it portable between different OSes 
(requirement 9). Only parts of the IAL need to be rewritten when it is ported to 
another OS, because the IAL contains OS specific parts (e.g. the access to the 
interfaces and the handover between interface pairs).  

5.2 File descriptors and sockets 
The socket  function call of the Berkeley Socket Interface creates a socket and returns 
the descriptor of the created socket in the form of a number (which we call the socket 
number). The socket number is actually a Linux file descriptor. Not only the functions 
of the BSI can use these socket numbers, but also other functions like file access 
functions (e.g. select , read , write ; see their corresponding manual pages for more 
info). The ISL only offers replacement functions for the BSI and not for all these 
other functions (Figure 41) because we only need to intercept the function calls which 
are used for the actual communication with other devices (e.g. setting the remote and 
local address, establishing connections etc.). 
The ISL creates real sockets for every call to the socket  function call by the 
application and returns the actual file descriptor number of the created socket. 
Therefore, the socket numbers returned by the ISL are backwards compatible with all 
other functions that use file descriptors.  
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Figure 41. Communication between an application and the OS with ISL 

 

As seen in Figure 41 the ISL only intercepts calls to the Berkeley Socket Interface. 
All other calls go directly to the operating system. If a BSI call is intercepted, the PSL 
passes the call on to the Main Controller, which updates the status of a stream (e.g. if 
it is being created, bound to an interface, sending or receiving data). The Main 
Controller passes it on to the Socket Abstraction Layer, which (if necessary) creates a 
virtual address for the socket and binds a created socket to the virtual address.  The 
Interface Abstraction Layer translates the real remote address to the virtual remote 
address and then establishes connections or sends data to the virtual address using the 
operating system. If a message is received from a virtual address, the IAL translates 
the virtual address to the remote address before passing the message to the SAL. The 
SAL passes the message to the Main Controller so that it can update the status of the 
stream, and the MC passes it back through the PSL to the application. 

5.3 Determination of the best interface pair 

The Property Collector has a list of properties for each path. It tries to keep this 
property list up to date by periodically determining the properties of the paths the 
device is part of. The Main Controller uses the Property Collector to get the properties 
of the possible paths for the data streams the device itself has initiated. For each active 
stream the Main Controller periodically compares all possible paths with each other 
by using a cost function to determine the cost of each path. Because of the limited 
time for the project, we kept the cost function very simple: the path with the lowest 
transmission time is the path with the lowest cost and thus this path will be selected.  

5.4 Components 
In section 4.4 we discussed the different tasks of each component. To make ISL more 
efficient, we used different threads in the components to do certain tasks in parallel. In 
this section we discuss these threads and other implementation specific details. 
One thread is always there: the application’s own thread. This thread uses the PSL, 
Main, SAL and ISL (Figure 42).  
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Figure 42. The application’s thread 

5.4.1 Pair Selection Layer (PSL) 

The PSL is only used by the application thread; it acts as the interface to the 
application. It contains the Main Controller as a static global object. The PSL is not an 
object, but a list of public available functions so that it resembles the BSI. 

5.4.2 Main Controller (MC) 

This object uses the Singleton pattern (Figure 43, [27]) to ensure there is only one 
Main Controller associated with the application that is using ISL. During tests we 
found out that each application thread or process instantiates its own ISL. In the future 
the ISL should be made a singleton per device and not per process or thread. 

 
Figure 43. The Singleton pattern 

 

The Main Controller consists of one thread: the stream handler thread. This thread is 
responsible for keeping track of all running streams by periodically asking all the 
properties from the Property Collector and selecting the best path for each stream. The 
new path is announced with the Device Handler. When the new path has been 
successfully announced, the Main Controller uses the SAL to change the path (Figure 
44).  

Because the selecting of an interface pair is done in a separate thread (separate from 
the application’s thread), it is possible for the application to immediately start sending 
and receiving data without a delay needed for the ISL to choose the best interface 
pair. 
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Figure 44. The stream handler thread 

5.4.3 Device Handler (DH) 

The Device Handler consists of two threads: one thread for broadcasting the periodic 
messages containing the local interface information and device ID, and one thread for 
receiving and handling ISL control messages. 

The first thread uses the IAL to get the interface information and for sending the 
broadcast message (Figure 45). The second thread uses the IAL to communicate with 
other ISL devices and the Property Collector to keep the network graph up to date 
(Figure 46). 

 
Figure 45. The broadcast thread 
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Figure 46. The message handler thread 
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5.4.4 Property Collector (PC) 

The Property Collector consists of one thread, the property handler thread, which is 
responsible for determining the properties of all the possible paths, making it possible 
for the Main Controller’s thread to choose a path while other properties are being 
determined. The Device Handler is used to announce a measurement to the other 
device that is involved in the measurement and the IAL is used for the actual 
measuring of the property (Figure 47).  
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Figure 47. The property handler thread 

 

Measuring properties and comparing paths are done by two separate threads. This 
allows a fast comparison of paths because paths can be compared with each other with 
only a couple of properties known. A downside of this performance enhancement is 
that it is possible for the Main Controller to select a non optimal path because not all 
properties are determined yet or the determined properties are outdated. 

5.4.5 Socket Abstraction Layer (SAL) 

The SAL is used by the application’s thread for creating virtual interfaces if 
necessary. The stream handler thread of the Main Controller uses the SAL to change 
the chosen interface pair for a stream (Figure 44). 

5.4.6 Interface Abstraction Layer (IAL) 

The IAL is used by all other threads to communicate with other devices or to get 
information about the own device by accessing the operating system. The IAL also 
contains the algorithms to perform measurements to determine the path properties. 
The mediator pattern [27] is used to keep adding new measurement algorithms for 
new properties simple (Figure 48). 
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Figure 48. The mediator pattern used in the IAL 

 

The class Interface offers a virtual API for each network type (e.g. 802.3). When the 
IAL must determine a property (for the Property Collector or the Device Handler) it 
creates a Sender or Receiver object with an attached Interface object. The IAL knows 
the type of the interfaces involved in measuring the requested path property, so it 
knows which Interface object it must attach. If the Property Collector wants to 
determine a property, the IAL creates a Sender object; else a Receiver object is 
created. The only method that needs to be called by the IAL is the measure()  
method. The creation of the Role object (Sender or Receiver together with the 
attachment of the Interface object) determines which protected method is called by the 
measure()  method. 

When a measurement announcement is received by the DH from another ISL device 
(4.6.2), the IAL creates a separate thread that waits for the actual measuring to begin. 
The IAL sends a message back to the sender of the measurement announcement after 
which the measurement is started by the sender. When the measurement is finished, 
the thread sends the result of the measurement back.  

5.5 Using ISL; replacing standard BSI functions by others with the 
same name 
In this section we want to look at how an application can use the ISL. An application 
must not need changes before it can use the ISL (requirement 12), so we want to 
avoid source code modifications. For this reason the ISL offers the same interface as 
the BSI, which causes the problem of name clashes because the standard C library 
already contains the functions the ISL offers. To avoid source code modifications and 
the problem of name clashes, we compile the ISL as a shared library and make sure an 
application makes use of this shared library instead of the BSI. The later is done by 
setting the environment variable LD_PRELOAD to our ISL library (libISL.so ), 
meaning that it gets loaded before all other libraries.  
To avoid setting this variable manually, we implemented a kind of ‘wrapper 
application’ do this for you:   
 
#include <stdio.h> 
#include <unistd.h> 
#include <stdlib.h> 
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int main(int argc, char *argv[]) 
{ 
  putenv("LD_PRELOAD=libISL.so"); 
  execvp(argv[1],&argv[1]); 
  return 0; 
} 
 
The above wrapper program first sets the environment variable and then starts the 
application with all its parameters (which the wrapper program itself got as its own 
parameters). This method does not require recompilation of the application’s source. 
ISL should also be extensible to give new applications access to more advanced 
functionality (requirement 16). This is done by modifying the application’s source 
adding #include “psl.h”  to the application’s header files. When this is done, the 
new ISL functions can be added to the application’s source. The ISL library must still 
be loaded using the method described earlier in this section. 
To avoid name clashes when the ISL itself calls the actual BSI functions, the 
Dynamic Linking library (libdl.so ) is used. Else, when the ISL calls a function of 
the BSI directly, a loop appears because not the corresponding function of the C 
library is called but the corresponding function of the PSL. To avoid this, we get the 
function pointer of each BSI function using the following code: 
 
int (*_libc_socket)(int domain, int type, int proto col); 
void* _libc_handle = NULL; 
 
if ((_libc_handle = dlopen("libc.so.6", RTLD_LAZY))  != NULL) 
{ 
  _libc_socket = (int (*)(int, int, int))dlsym(_lib c_handle,  
                                               "soc ket"); 
} 
 
int libc_socket(int domain, int type, int protocol)  
{ 
  int r = -1; 
  r = (*_libc_socket)(domain, type, protocol); 
  return r; 
} 
 

So instead of calling the function socket , we call the function libc_socket  with all 
its parameters. The libc_socket  function passes all the parameters to the function 
pointer of the ‘real socket function’ (for more info, see the manual page of ‘dlsym ’).  

For debugging purposes, we have prefixed all the BSI functions offered by the PSL 
with isl_  and added the declarations of the prefixed functions to the psl.h  header 
file. Therefore it is not necessary to override the standard BSI using the LD_PRELOAD 
environment variable. The shared ISL library needs to be available to the application 
(it is enough to put the library in a directory of the library path, e.g. /usr/lib ). 
Furthermore the application’s source need to have a #include “psl.h”  instead of 
the #include <sys/socket.h>  and all occurrences of BSI functions in the 
application’s source need to be prefixed with isl_ .  
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6 Evaluation 
In this chapter we discuss how we have evaluated the working of the ISL. We test 
whether ISL selects the best interface pair (the path with the lowest cost, see 5.3) and 
if a new interface pair is selected when a better interface pair is available. 
Furthermore the performance and the legacy support of ISL are discussed (e.g. how 
will ISL operate in a network with non-ISL enabled devices?). 

6.1 Interface pair selection (startup test) 

To test if the best path is selected when ISL is started we have used two devices 
(Pentium 4’s) each with two interfaces (a 100Mbit/s and a 10Mbit/s NIC). Both 
devices use Linux (Debian) as their Operating System. The complete set up is given 
in Figure 49. 
 

Device A

100

Mbit/s

10Mbit/s

Device B

100

Mbit/s

10Mbit/sCross-link cable

100 Mbit/s switch

 
Figure 49. Test set up 
 
A video stream is set up between Device A and Device B using GStreamer [28], using 
a modified sink and source plug-in for transmission using TCP [29]. We made sure 
that the video stream uses the 10Mbit/s path when GStreamer is started. All the BSI 
function calls in these plug-ins were prefixed with isl_  because it was not possible to 
use the wrapper program: it resulted into multiple instances of the ISL per device, 
because GStreamer uses multiple threads. So recompilation of GStreamer’s TCP 
source and sink source code was necessary. 

6.1.1 Functionality 

We saw that the LEDs on the 100Mbit/s switch are not blinking which implies that 
the 10Mbit/s path is used instead of the 100Mbit/s path. After a while ISL determines 
that the 100Mbit/s path has a smaller transmission time and chooses the 100Mbit/s 
path. After the path switch GStreamer continued streaming the video without a 
disconnection. We also used Ethereal [30] to verify that indeed the packets were first 
sent over the 10Mbit/s path and later over the 100Mbit/s path. 

6.1.2 Performance 

While the video is streaming from Device A to B, we see a lot of hiccups in the video 
displayed at Device B (each less than a second). When ISL performed the switch 
between paths, the video stopped until the path switch was completed. The hiccups 
are caused by the handling of the (ISL) threads by the operating system and because 
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our implementation is not made for performance (there are pieces of code that are not 
efficient: lots of memory allocations, de-allocations and – in the end – unnecessary 
copying of data). The stopping of the video during a path switch is caused because 
external third party tools are used to perform the switch (so a new process is created 
for each tool when called and multiple ARP-reply packets – to avoid loss - are sent 
with an interval of 1 second between packets). This delay during the path switch 
should be minimized by adding extra buffering and integrating the third party tools 
with the ISL. 
When comparing paths it is not necessary to know the exact values of the properties 
of each path; only knowing their order is enough to see which path is the best path. 
Therefore simplifying the property determination algorithms could also give better 
performance to the ISL because properties are known earlier. 

6.2 Switching interface pairs (changing test) 
To test if ISL changes its selection when a better path comes available we used the 
same set up as given in Figure 49. We disconnected the 100Mbit/s path so at first ISL 
can only select the 10Mbit/s path.  

6.2.1 Functionality 

While the video is streaming we connected the 100Mbit/s path and saw that in a 
couple of seconds ISL changes the 10Mbit/s path used by GStreamer to the 100Mbit/s 
path, which we again verified with Ethereal. 

6.2.2 Performance 

The same performance issues as in the previous test (6.1) are seen here. 

6.3 Legacy devices 
When the sender is a legacy device it is not able to connect to an ISL device because 
of the chosen handover method. An ISL receiver creates a virtual address and assigns 
this address to a real interface. When an application on an ISL enabled device listens 
for incoming connections or messages it listens on the virtual address and not on a 
real address. Because legacy devices have no knowledge of the virtual addresses, they 
are not able to connect to ISL devices. 
When the sender is an ISL device and the receiver a legacy devices, the ISL device is 
able to connect to the legacy device, because it has no information about a virtual 
address it connects direct to the real address of the legacy device. The only problem 
here is that ISL has no extra functionality to offer to improve the quality of the 
connection (see chapter 7).  
A possible solution to let legacy devices connect to ISL devices is to change the 
handover method. Instead of directly assigning a virtual address to a real interface, it 
should be possible to change the internal routing on a device so that all the traffic sent 
to a certain port on a certain address is forwarded to a virtual address and the other 
way around. So the main idea is to put some kind of NAT between the virtual 
addresses and the real addresses.  
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7 Future work 
During the project, we came up with new ideas that could lead to future 
improvements for ISL. Also some parts of the current ISL need to be optimized to 
make it suitable for use in real devices. A list of interesting future work is given 
below. 

Use standard protocols: When an ISL device is connected to the network by using a 
combination of unicast and broadcast messages instead of waiting for all devices to 
send their periodic broadcast message: replace the current broadcasting method with a 
standard protocol such as the Simple Service Discovery Protocol (SSDP) [25], (also 
used in UPnP). This can also minimize the initialization time. 

Implement ISL in the kernel: Let the ISL replace the Berkeley Socket Interface 
implementation so that it is part of the kernel and therefore can operate on a lower 
level. The main advantage that, in practise, it faster than a layer on top of the kernel. 
This also makes it possible to let the ISL be a singleton per device and not per process 
or thread. 

Develop and evaluate cost functions to compare paths and select the best path: 
Look at comparison algorithms and look at how to compare paths when property 
values are known so that a cost function is used to determine the best path for each 
stream. 

Improve legacy support: Add NAT functionality to ISL (see 6.3), which makes it 
possible to let ISL be compatible with legacy devices and offer the possibility of using 
multiple interfaces for one stream. 

Develop one-sided property determination algorithms: Look for property 
determination algorithms that also work in a situation where the other device is non-
cooperative (e.g. to determine path properties between an ISL and a legacy device). 

Develop measurement algorithms for other types of interfaces: Evaluate how well 
the current property determination algorithms are suitable for measuring properties of 
paths which do not use 802.3 and develop property determination algorithms for these 
other technologies if the current algorithms are not suitable.  

Add an ISL specific API: To let applications have more control on which paths the 
ISL may use or to help ISL by setting the minimum requirements of a path, a ISL 
specific ISL is needed which newly developed applications can use to make better use 
of the ISL. 
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8 Conclusion 
Looking at the possible interface pairs between devices is a new topic and not yet 
covered in the literature. Property determination is an already known topic, where 
already lots of research is done (see section 2.3.2). We have used the already known 
knowledge of property determination and, if it was necessary, modified it for the 
home network situation.  

We used the Big Mac probe to measure latency and compared different algorithms 
based on self-induced congestion to measure the available bandwidth of a path. Cross-
traffic causes distortions in the measurements and more research is needed to 
investigate the effect of cross-traffic on the measurements. Also we have only 
focussed on wired networks and not on wireless networks. Wireless networks will 
introduce a whole new challenge because of influence from the outside world 
(microwave ovens and other distortions) so wireless networks is a separate topic. In 
the end, exact determination of the path properties is impossible but it is not necessary 
to determine the exact values of the properties, only an estimate is needed to compare 
paths. We are not interested in small differences between paths, but only in the large 
differences. 

The presented architecture makes it possible for applications to use the ISL without 
any modifications. Furthermore both the application and the ISL can do their work 
separately so that the implementation uses multiple threads to improve the 
performance.  

We looked at different handover methods and used a combination of two ideas. The 
combination works, although it is not possible for legacy devices to connect to an ISL 
device because the legacy device has no knowledge about the virtual addresses used 
by the handover method. Furthermore, the data stream is halted until the handover has 
finished. 

This document is a good start in the new topic of interface selection by presenting an 
overview of different algorithms to measure path properties and a few handover 
methods which can be used in the presented architecture to offer a device the 
possibility to select different paths for communication with another device. Interface 
Selection reduces the congestion of the network by offering a more balanced 
utilization of the network’s infrastructure.  
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