
 Eindhoven University of Technology

MASTER

Interface selection layer
improving QoS using interface pair selection

van Antwerpen, C.F.

Award date:
2005

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a26f2345-3f0b-4615-820a-76efc562021c

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

MASTER’S THESIS

Interface Selection Layer
Improving QoS using Interface Pair Selection

by

C.F. van Antwerpen

Supervisors:
Dr. J.J. Lukkien

Dr. ir. P.H.F.M. Verhoeven
Dr. ir. M.A. van Hartskamp

Eindhoven, April 2005

 2

ABSTRACT..4

1 INTRODUCTION..5

1.1 OBJECTIVE ..5
1.2 PROBLEM DESCRIPTION...5
1.3 OVERVIEW ..5
1.4 INTENDED AUDIENCE..6
1.5 LIST OF DEFINITIONS...6

2 ANALYSIS..7

2.1 ENVIRONMENT AND ASSUMPTIONS...7
2.2 FOCUS...7
2.3 OTHER RESEARCH...7

2.3.1 Protocol-based topology detection ...8
2.3.2 Measurement-based topology detection ...8

2.4 USE CASES..10
2.5 REQUIREMENTS...11

2.5.1 Requirements of the conceptual solution ..11
2.5.2 Requirements of the implementation...11

2.6 SOLUTION..12

3 MODELS & ALGORITHMS...15

3.1 MODELS..15
3.1.1 Traffic model..15
3.1.2 Path model...16

3.2 MEASURING PATH PROPERTIES...18
3.2.1 Measuring latency ...18
3.2.2 Available bandwidth..21

3.3 ESTIMATION OF PATH PROPERTIES..22
3.3.1 Test network...22
3.3.2 Latency...23
3.3.3 Available bandwidth..34
3.3.4 Conclusion ...35

4 ARCHITECTURE...36

4.1 BERKELEY SOCKET INTERFACE (BSI) ..36
4.2 HIGH-LEVEL MODEL..37
4.3 HANDOVER..38
4.4 MAIN COMPONENTS..41

4.4.1 Pair Selection Layer (PSL) ...41
4.4.2 Main Controller (MC)...41
4.4.3 Device Handler (DH) ..41
4.4.4 Property Collector (PC)..42
4.4.5 Socket Abstraction Layer (SAL) ..42
4.4.6 Interface Abstraction Layer (IAL)...42

4.5 EXTERNAL COMMUNICATION ..43
4.5.1 Detection of ISL devices..43
4.5.2 Gathering interface information ...44
4.5.3 Determination of path properties..44
4.5.4 Selection of interface pair ...45
4.5.5 Sending and receiving data ...46
4.5.6 Synchronisation between ISL devices ...47

4.6 INTERNAL COMMUNICATION...48
4.6.1 Initialization...49
4.6.2 Handling messages..50
4.6.3 Property determination ...52
4.6.4 Interface pair selection..53
4.6.5 Sending data ..53

 3

4.6.6 Receiving data ...55
4.7 CONCLUSION...56

5 IMPLEMENTATION ...58

5.1 LINUX ..58
5.2 FILE DESCRIPTORS AND SOCKETS...58
5.3 DETERMINATION OF THE BEST INTERFACE PAIR...59
5.4 COMPONENTS..59

5.4.1 Pair Selection Layer (PSL) ...60
5.4.2 Main Controller (MC)...60
5.4.3 Device Handler (DH) ..61
5.4.4 Property Collector (PC)..62
5.4.5 Socket Abstraction Layer (SAL) ..62
5.4.6 Interface Abstraction Layer (IAL)...62

5.5 USING ISL; REPLACING STANDARD BSI FUNCTIONS BY OTHERS WITH THE SAME NAME.......63

6 EVALUATION...65

6.1 INTERFACE PAIR SELECTION (STARTUP TEST) ...65
6.1.1 Functionality..65
6.1.2 Performance ..65

6.2 SWITCHING INTERFACE PAIRS (CHANGING TEST)..66
6.2.1 Functionality..66
6.2.2 Performance ..66

6.3 LEGACY DEVICES..66

7 FUTURE WORK ...67

8 CONCLUSION...68

9 ACKNOWLEDGEMENTS ..69

10 REFERENCES...70

 4

Abstract

The Internet is getting larger and larger. Every day more devices get connected to it.
But the same goes for the local networks at people's home. There are however two
major differences between the infrastructure of the Internet and of the home network.
In a home network devices are added but not always replaced and it consists of
mainly low-cost unmanaged devices. The result is a chaotic network with congestion
problems.
The devices in the home network have multiple interfaces and offer all kinds of
services, so the number of connections and the number of paths between devices
(peer-to-peer connections between the interfaces of devices) are increasing. Current
devices choose a path at random when they want to communicate with another device.
To avoid congestion we want to choose which path the device must use. But to make
a good choice we need information about the current state of each of the paths to
compare the paths. We present a solution to offer this path selection functionality to a
device by collecting information about the different paths and using this information
to choose the best path.

 5

1 Introduction

1.1 Objective

This document presents the results of my master’s project “Interface Selection Layer”
at Philips Research Laboratories together with interesting topics for future research.

1.2 Problem description
The Internet is getting larger and larger. Every day more devices get connected to it.
But the same goes for the local networks at people’s home. There are however two
major differences between the infrastructure of cooperate networks (including the
network of ISP’s and universities) and of the home network. In a home network:

• Devices are added but not always replaced (consumers connect new devices to
the current infrastructure and not upgrade old devices with new devices).
Devices are replaced when they are broken, but not to let them cooperate with
a newly added device.

• Mostly low-cost devices are added: most devices are unmanaged (consumers
do not pay extra money for things they do not value, e.g. technical differences
between an unmanaged switch and a managed switch).

People just want to connect new devices without performing lots of configuration
steps (Plug and play), which results into a chaotic network. If all the devices in the
(chaotic) network want to transfer large amounts of information (e.g. video streams),
then it is possible that a part of the infrastructure is used by many devices, which in
turn can lead to congestion. When displaying video streams, the congestion causes the
video to stutter and artefacts may appear. Audio streams are also disturbed and data
streams can suffer from a major slow down. Congestion is not wanted, so how can we
minimize the chances that congestion appears?
The home network consists of a very diverse infrastructure, to which all kinds of
unmanaged devices are connected. These devices have multiple interfaces and offer
all kinds of services, so the number of connections and the number of paths between
devices (peer-to-peer connections between the interfaces of devices) are increasing.
Current devices choose a path (consisting of an interface pair: one interface at the
sender and one at the receiver) at random (mostly the last known working path is
chosen) when they want to communicate with another devices. To avoid congestion
we want to choose which path the device must use. But to make a good choice we
need information about the current state of each of the paths to compare the paths. In
this document a solution is presented to try to minimize the problem of congestion in
a home network by collecting information about the paths, using this information to
compare the paths and choosing a path.

1.3 Overview

In chapter 2 the congestion problem will be discussed in more detail and a solution is
presented to tackle the problem. In chapter 3 the models used to gain a better
understanding of the home networking environment are given together with the
algorithms that use these models and their validation. Chapter 4 presents the
architecture of solution and chapter 5 gives some implementation details. In chapter 6

 6

an evaluation is given. Further research topics and additions to the solution together
with the conclusion of the project are given in the remaining chapters.

1.4 Intended audience
This document is meant for people that have reasonable background knowledge about
computer networks and the terms used in this field. Two good books in this field are
“Computer Networks” written by Andrew S. Tanenbaum [1] and the book
“Interconnections” written by Radia Perlman [2].

1.5 List of definitions

Below is a list of terms with their definitions that are used throughout this document.
Term Definition
Arrival time The time that a packet arrives at the sink
Available Bandwidth Maximum number of bits per second that

can still be transferred over a connection
Bandwidth Number of bits per second
Latency Time that elapses between start of

transmission at source and start of receipt
at sink

Legacy device A device without the Interface Selection
Layer

Link Physical connection between two devices
Loss The amount of packets that gets lost

during a certain interval.
Maximum Bandwidth Maximum number of bits per second that

can be transferred over a connection
Path One or more physical links that form a

connection between two interfaces. There
is only one path between two interfaces,
but there can be multiple paths between
devices.

Serialisation delay Time needed for a packet to be converted
to signals that can be transferred over a
link

Sink The device that receives data
Source The device that sends data
Transmission time Time that elapses between start of

transmission at source and end of receipt
at sink:

bandwidth

size
latencyontimetransmissi +=

Virtual address An IP address created and assigned to an
existing interface by the Interface
Selection Layer to make it possible to
seamlessly handover streams.

 7

2 Analysis
In this chapter the congestion problem is analysed in further detail. First the home
networking environment is discussed and on which problem this project is focussed.
Other research that is done in this field is discussed and a proposal is done to solve the
problem. This proposal is explored in the rest of the document.

2.1 Environment and assumptions
Nowadays most homes have at least one personal computer with an Internet
connection. Some homes already have two computers that are connected to each other
so that they can share resources (e.g. a printer, or an Internet connection). In the
future, more and more devices will be connected to each other: besides computers
also televisions, stereo’s and DVD players. All these devices will be connected to
each other using the already available infrastructure devices: simple (and low-cost)
relay devices. In general, devices are added to the network and not always removed.
We assume that all devices use IP to communicate with each other. The basic IP
protocol stack uses best-effort QoS to transfer data, but this is not sufficient for
guaranteeing e.g. video streaming without interruptions. So if more and more devices
get added, the chance that congestion occurs gets higher, this in turn can have a
negative effect on the QoS delivered by the network.

All data in the home networking environment is sent using peer-to-peer connections.
This means that all data between devices is sent from interface to interface and not to
a broadcast address. Therefore, we will not consider multicast in this document. We
also assume that there are no routers within the home network (only one router that
connects the home network to the internet), so everything is bridged.

2.2 Focus

The focus of this project is on the improvement of the QoS in the home network: how
can we improve the QoS without extensive changes to the already available
infrastructure? We focus on the topology of the home network: how is everything
connected and what are the properties of the paths between the devices. If the
properties of the paths between devices are known, we can compare the paths and
offer a better path to the application. By not just choosing a path at random, devices
have the possibility to choose the best path and thus avoid hick-ups in audio and video
streams.

2.3 Other research

At first we started out with the problem of topology detection. We thought that if we
know the topology of a home network, we can use this information to offer feedback
to the user about the status of the network (e.g. location of bottlenecks) and to offer
better QoS (reroute traffic over better paths). The research on topology detection is
divided into two areas: one area focuses on protocol-based and the other on
measurement-base topology detection.

If looked at the home network, it is very difficult to get the topology information: to
get complete knowledge about the topology it is necessary to detect all relay devices.
In a home networking environment the idea about relay devices is that they are

 8

completely transparent, so this makes detecting them very hard. Furthermore there is
not much use for the topology information because a path between two interfaces
cannot be changed. So actually we are not interested in the complete topology but
only in the properties of the (static) paths between devices.

Because at first we started with topology detection and switched later on to measuring
path properties, we present in this chapter both research areas. Especially because
both areas have some parts in common: some properties of paths can be used to
determine the topology of the path (e.g. number of relay-devices).

Most research in the field of topology detection and path property determination
focuses on the Internet and not on a home networking environment. These situations
differ: in the Internet routers are used to relay traffic between end-points and distances
are large, in the home situation bridges are used to relay traffic and distances are in
the order of a couple of metres. Because distances in the Internet are much larger,
packets need more time (mille seconds instead of micro seconds) to get from one
machine to another. So in the Internet latency or transmission time differences are
easier to measure because the difference between two paths is not necessarily in the
order of a couple of micro seconds.

Because of the difference in relay devices and in distances between devices most
research that focuses on the Internet cannot be used in the home networking
environment.

2.3.1 Protocol-based topology detection

The aim of the research done in this field is to use already available protocols in a
network to discover the topology. Devices in the network already use protocols to
communicate with each other. In the literature there are methods that use these
protocols to get information about the network topology. Most of these methods are
based on the fact that relay devices are not completely transparent and offer
management capabilities like SNMP [5]. This is mostly true in a corporate
environment or in the Internet, but not in a home networking environment where these
relay devices offer no management capabilities. Furthermore, if they do offer
management capabilities, mostly this involves extra configuration that can only be
done by the more experienced users.

Some research is focused on analyzing traffic by looking at all the different packets
that are on the network [6]. However, as seen in [7] this method has many problems;
the most important problems are:

• Only detection possible of devices that actually sent traffic
• Only traffic from and to own device (and broadcasts) can be seen in switched

networks
Existing solutions analyse also the protocols between routers (e.g. Spanning Tree
Protocol or Routing Information Protocol), which makes this research specific for
Internet and not applicable in a home networking environment because, as stated
before, the relay devices in a home network are completely transparent and do not act
as a router but as a bridge.

2.3.2 Measurement-based topology detection

The research done in this field focuses on the detection of shared paths and the
measured properties of the paths in order to know which devices share which paths so

 9

that it is possible to derive the topology of the network. In contrary to the research
that is protocol based, it does not concern the detection of end-point devices but it
concerns the detection of relay-devices on the path [8]. To detect shared paths it is
necessary to detect a shared property of two paths: e.g. shared jitter, shared network
delay, or shared packet loss.

If we want to measure loss, it is necessary that there is some loss in the network.
Depending on the used technology loss can only occur when a link is heavily
congested (most wired links) or occurs most of the time (wireless links). The problem
with wired networks is that in order to measure the loss, we need to congest the link,
which is not wanted because we do not want to interfere with the current data streams.
The problem with wireless links is that extra probe traffic can cause more loss than
the original situation so again there is interference caused by the probing traffic. It is
possible to keep track of all the sent and received packets, but it can take a very long
time before information about loss is known (especially in wired networks, because
congestion is required).

Two other properties that we want to measure are bandwidth and latency of the links
and paths between devices. There are mainly two techniques used to determine these
properties: single packet and packet pair techniques. Other techniques are a
combination of these two techniques.

Single packet techniques focus on the estimation of link bandwidth and not on the
path bandwidths. Each link has a different latency and slower links will take longer to

transmit a packet than faster links. Using the formula
latencyontransmissi tt

s
b

−
= , (1) the

bandwidth b of a link can be calculated if the packet size s, the link latency tlatency and
the transmission time ttransmission are known. The link latency does not depend on the
packet size or the link bandwidth: it has a fixed value for a link. If the transmission
times of multiple packets with variable sizes are plotted, the bandwidth can be
calculated by taking the inverse of the slope of the graph.

To determine the link bandwidth of each link of a path, single packet techniques use
the time to live (TTL) field of an IP packet. This value is decremented at every router
and if it reaches zero, the router must return an ICMP TTL expired error message.
Changing the TTL for each packet, gives a set of round trip times. There are some
problems with this method [9], but the main problem for a home networking
environment is that only routers change the TTL and bridges do not. Therefore, it is
not possible to use such a single packet pair technique to get the bandwidth of each
link in a home network.

Packet pair techniques focus on the estimation of the available bandwidth of the path
and not on the estimation of the available bandwidth of a link. Each packet on a link
experiences a serialisation delay due to the bandwidth of the link. Packet pair
techniques measure the difference in arrival times of two packets sent immediately
after each other. It is assumed that each device on a path use store-and-forward to
forward packets, this means that a packet must first be completely received before it
can be sent to the next device on the path. The slowest link is responsible for the
spacing between the two packets because the first packet was fully received (and
forwarded) while the second packet is still being received. If both packets have equal
size s and the arrival time difference d between the two packets is known, then the

bandwidth b can be calculated using
d

s
b = , (2). The difference with formula (1) is

 10

that the latency does not have any influence here because both packets have the same
latency; this means that the delay between the two packets cancels out the latency,
meaning that d equals ttransmission – tlatency:

{ }

{ }

{ }

latencyontransmissi

latencyontransmissi

latencylatency

pp

p
latencyoffset

pp
latencyoffset

ptimearrivalptimearrival

ttd

b

s
ttdef

t
b

s
td

calc
b

s
d

ss

b

s
tt

b

s

b

s
ttd

timearrivaldef

ttd

−=






 +=≡

−+=

≡

=

==≡









++−








+++=

≡

−=

.

.

_.

10

010

0__1__

Both techniques have the disadvantage that measurement errors occur because of
other traffic on the link or path (cross traffic). Research that is done to filter out this
cross traffic focuses on the assumption that cross traffic occurs random. For single
packet techniques this means that it is assumed that cross traffic will only increase
delays, so if enough packets are sent, one packet will have the minimum delay. This is
discussed in [10] and [11]. For packet pair techniques, the most common bandwidth
measurement is the actual bandwidth. In [12] statistical methods are discussed to filter
out faulty results, but [13] proves that this is not enough. The latter developed a
bandwidth estimation methodology, which is implemented in the tool pathrate . The
same people involved with pathrate , also developed the tool pathload [15] for
determining the available bandwidth of a path. Another tool that uses the same ideas
as pathload is pathChirp [14]. Both tools are discussed in section 3.2.2 and
compared in section 3.3.3.

2.4 Use Cases
Below we give a few real life examples of situations where a device can offer better
performance when the device has the ability to choose a better path when all the
properties of the possible paths are available.

• A user has a PDA with two interfaces: a wired and wireless interface. When
the user is walking around the house, the PDA uses its wireless interface to
communicate with the home network. In general wired connections perform
better than wireless connections. So when the user puts the PDA in a cradle,
we prefer that all connections that use the wireless interface are transferred to
the wired interface without the loss of any of the connections.

• A user has two displays (e.g. a CRT monitor and a plasma television) and
wants to watch a video stream from the Internet on one display, and a video
stream from a DVD player the other display. Of course the user wants both

 11

display devices to display the video streams without any hick-ups or artefacts.
If one (or both) of the display devices have multiple interfaces, possible hick-
ups may be prevented if the video streams were sent over different paths to the
display devices.

2.5 Requirements
If a device wants to offer better network performance to the application, it must first
determine the properties of the available paths and then it can use this information to
choose the best path for communication with another device. Because in most
networks the wired and wireless parts belong to different subnets, we do require that
our solution works when a device belongs to multiple subnets. The solution has two
kinds of requirements: requirements concerning the solution itself, and requirements
concerning the implementation of the solution.

2.5.1 Requirements of the conceptual solution

1. A device must have the means to select or change an interface pair on the
basis of measurement data.

2. The path that meets the application’s requirements must be chosen and not a
worse path.

3. Communication that takes place to determine the best interface pair must limit
the influence on other traffic on the network to a minimum.

4. Legacy devices must be able to work with the new devices and vice versa.

5. It must work without modifications of the relay devices.

6. The selection and changing of interface pairs must be completely transparent
for applications.

2.5.2 Requirements of the implementation

7. It must use IPv4 for communication with other devices.

8. It must run on Linux.

9. It must be programmed in C or C++.

10. It must not change the application’s traffic because of other (future) standards
(this means that we are not allowed to encapsulate the traffic in custom made
packets or set up a custom tunnel between devices).

11. An application must to able to start sending data without a large delay (the
response time of the application must remain small).

12. Current applications must not need (major) adjustments.

13. It must be possible for an application to choose to use the enhancement: the
enhancement is optional for the application.

14. It must also work in the situation where a device belongs to multiple
broadcast domains.

15. It should be possible to synchronize all devices to guarantee correct selection
of a path.

16. It should be extensible to give new applications access to more “advanced
functionality”.

 12

17. It should enforce the requested bit rate on the application (an application is
not allowed to send a data stream of a higher bit rate than the application has
asked for).

2.6 Solution
It seems that topology detection will not offer improved QoS in a home networking
environment because the topologies are very small. Furthermore, the paths in the
network cannot be changed. This implies that the knowledge of the topology also does
not give many opportunities to improve QoS. The only positive effect it can have is
that every device has knowledge about the shared paths, but it is very hard to get this
knowledge as previous mentioned research has shown.

The proposal is not to focus on topology knowledge, but to look at the possible paths
between two end-point devices. Each device has one or more interfaces. These
interfaces might be connected directly or indirectly to the interfaces of another device;
in theory there could be multiple paths between two interfaces, but in practise each
interface combination forms only one path between the two devices. Each path has
certain properties (e.g. latency, and bandwidth). If all properties of the paths between
two devices are known, the best path can be chosen. These path properties need to be
measured and there must be communication between the source and sink so that they
both know which path is chosen.

Current APIs focus on connecting devices rather than interfaces. As a result only a
single interface is used for a connection and it is not possible to switch between
interfaces during a connection. To make it possible to switch between interfaces, we
want to make a layer between the application and the operating system so this
determination of properties and the switching of interface pairs can be done
transparent to the application without diving into the source of the operating system.
This layer is called the Interface Selection Layer (or ISL for short). It offers a
replacement of the Berkeley Socket Interface (BSI: the API used by UNIX
applications to communicate between devices) to the application with the same
interface. This way the application needs not be modified. Furthermore all data that is
sent and received by the application goes through this layer, which makes it possible
to have full control of the sending and receiving process (making it possible to add bit
rate control or packet filtering in the future). This makes it possible to use other means
to send and receive data besides using only the BSI (see Figure 1). An alternative
would be to put the ISL into the OS, but then the ISL is hardly portable to other
Operating Systems (or to another kernel version) and it is harder to develop and
debug.

 13

Application

ISL

BSI

OS

Hardware

Application

BSI

OS

Hardware

Figure 1. Overview of the network communication of an application with and
without ISL.

The greatest challenge was to find methods to determine the properties of each path.
A large part of this document covers this. A second problem is how to let devices
work together to determine properties and announce the chosen pairs to each other,
these are however more implementation issues. If looked at the layers given in Figure
1 the application is not modified because the ISL offers the same interface as the BSI.
The ISL determines the available paths using the OS to get information about the own
interfaces and the BSI to communicate with other devices to get information about
their interfaces. Comparing the properties of the available paths, the ISL chooses the
best path and uses the OS to change the local interface. The BSI is used to
communicate the choice to the other device. An overview of the different tasks is
given in Figure 2. Our main focus will be on the methods used for property
determination and on the architecture of the ISL, which we have implemented and
tested.

 14

Application

ISL

BSI OS

Hardware

s
e
n
d
/r
e
c
e
iv
e
 d
a
ta

se
n
d
/r
e
ce
iv
e
 a
p
p
lic
a
tio
n
 d
a
ta

se
n
d
/r
e
ce
iv
e
 I
S
L
 c
o
n
tr
o
l m

e
ss
a
g
e
s

get interface inform
ation

se
lect p

ath

get p
ath prope

rties

send/receive data

s
e
n
d
/r
e
c
e
iv
e
 d
a
ta

g
e
t
in
te
rf
a
c
e
 p
ro
p
e
rt
ie
s

c
h
o
o
s
e
 p
a
th

c
h
a
n
g
e
 lo
c
a
l in

te
rfa

c
e

Figure 2. Collaboration between the different layers

 15

3 Models & algorithms

3.1 Models

In this section we discuss different models for the traffic in a network and choose one.
Furthermore a model for a path is given together with a model of the different path
properties.

3.1.1 Traffic model

There are two models to see traffic in a network:
• Packetized model
• Fluid model

The packetized model says that packets of different data streams interleave with each
other. The fluid model sees the traffic as different data streams that travel parallel to
each other. In the packetized model, packets do not finish later than in the fluid model
(see Figure 3).

Figure 3. Packetized model versus fluid model

The fluid model is easier to reason about than the packetized model. This is because
of the continuous character of the fluid model. At a certain moment in time, both
streams can be seen and not only a single packet as in the packetized model. In the
fluid model each stream has a private channel with a certain bandwidth. In the
packetized model there is an interleaving of streams: only one channel with a certain
bandwidth. The packetized model captures more aspects of reality so it can explain
behaviour which cannot be explained with the fluid model (especially when looked at

Time

P0 P1 P4 P5P2 P3

P0

P1

P2

P3

P4

P5

Packetized model

Fluid model

 16

queuing). Therefore we will choose the packetized model for explaining the results of
our measurements.

3.1.2 Path model

Traffic goes from one device to another device using a path. The relation between the
number of links and the number of relay-devices is Nlinks = Nrelay + 1. If we look at the
relay-devices, we can see three categories of relay-devices.

• Store-and-forward relay-devices
• Cut-through relay-devices
• Repeater relay-devices

A store-and-forward relay-device first needs to receive the entire packet from a link
before it is forwarded onto the next link. A cut-through relay-device only needs to
receive the address field of a packet before it is able to forward the entire packet, so
this kind of relay-device can do its work faster than a store-and-forward relay-device
because only the header needs to be received instead of the complete packet before
the relay-device can start forwarding the packet. The last category consists of repeater
relay-devices. These kinds of devices receive data from one link and forward it to all
other links. Repeaters do not receive a packet entirely before it is forwarded; they start
forwarding right after the first bit / byte.
In practise, cut-through relay-devices are very rare and not available to the normal
consumer. Repeaters are still there but most home networks consist of store-and-
forward relay-devices. So we focus on the repeater and the store-and-forward relay-
devices.
If we look at a path, it has certain performance properties. The properties that are
interesting to know are:

• Latency(path, packet, time): the latency of a packet (of a certain size) on a path
at a certain time;

• Total_Bandwidth(path): the maximum bandwidth of a path;
• Available_Bandwidth(path, time): the available bandwidth of a path at a certain

time (equal to or lower than Total_Bandwidth(path));
• Cost(path, packet): the amount of money or time it costs to send/receive a

packet over a path;
• Loss(path, interval): the percentage of packets that get lost on a path during a

certain interval.
We are especially interested in the latency and the available bandwidth, because these
properties can be used to check if it is possible to send a stream of data having certain
properties. Loss is also an interesting property (e.g. loss profiles for the purpose of
control), but the problem here is that loss only occurs in heavily congested networks
or if the network has a bad condition (e.g. wireless network with microwave oven
nearby, bad cables etc.). This makes it hard to actively measure loss in a not-
congested network without congesting the network itself thereby interfering with the
current traffic. Furthermore adding measurement traffic to a network with a bad
condition can decrease the quality of the network even more. It is however possible to
look at all the traffic that is sent and received to determine the loss, which can be used
to determine the loss over time. The total bandwidth is nice to know, but it is of no
use when one wants to see if it is possible to add a new data stream to the network.
Cost is nice, but cannot be measured without knowing the costs per byte / second etc.
If the values of the different properties are known they can be used to compare the
paths with each other and choose the best path. We believe that latency and the

 17

available bandwidth are the most useful properties for comparing paths with each
other, so we focus on these properties.
In the rest of this chapter models are given to determine the latency and transmission
time as well as the available bandwidth of a path, in section 3.2 we discuss the
algorithms that are based on these models to estimate the values of these two
properties.

3.1.2.1 Background for measuring latency
If we look at a path, it consists of N physical links, say li with 0 ≤ i < N and N ≥ 1
(because there is always at least one link between two connected interfaces). If N ≥ 2,
then link li and li+1 are connected with each other using a relay-device named ri. This
relay-device can use store-and-forward or it is a repeater. If a packet p of size s is sent
from device A to B that are connected using two links (l0 and l1) and a relay-device r0

(using store-and-forward), r0 first receives the packet completely before it is
forwarded using the link l1 to device B. This store-and-forward mechanism causes a
delay before the packet is received by device B (see Figure 4). This delay consists of
the time the packet is queued in the buffers of the relay-device and the time needed
for the relay-device to put the packet on the next link of the path. The first depends on
the presence of cross traffic and the operating rate of the relay-device and the second
equals the size s of the packet divided by the bandwidth bi of link i [19].

T
im
e

t la
te
n
c
y

Figure 4. Delay on a path caused by a store-and-forward relay-device

If we look at Figure 4, we also see that there passes a certain amount of time before
the first bit is received at the relay-device. This is the link latency e. If we combine
the variables and look at Figure 4 we get the following equation for transmission time:

∑ ∑
−

=

−

=

+







+=

1

0

2

0

N

i

N

i
ii

i
ontransmissi qe

b

s
t

We defined the latency of a packet of size s on a path as the transmission time of the
packet minus the time for the sink to receive the entire packet. Formally, we get:

∑ ∑
−

= −

−

=

−+







+=

1

0 1

2

0

N

i N

N

i
ii

i
latency b

s
qe

b

s
t

In case there is no cross traffic, the queuing delay q can be neglected. Also in reality

the link latencies ei are very small compared to
ib

s
. This means that when two devices

are connected directly to each other (without any relay-devices), the path latency

 18

equals 0 seconds. The formula to determine the latency ignores the bandwidth of the
last link. As a result, the latency of a path can be different in the other direction.
Therefore the latency of the path needs to be measured in the same direction as the
data is going to be sent.

3.1.2.2 Background for measuring available bandwidth
Each link has a maximum bandwidth, so the maximum bandwidth of a path is the
maximum bandwidth of the link with the minimal maximum bandwidth. When a
device wants to send data, it has no use for the maximum bandwidth of each path.
However the available bandwidth of the path is useful. The available bandwidth of a
path equals the available bandwidth of the link with the minimum available
bandwidth. Each link i has an available bandwidth bi in bits per second. Between the
sending of a packet of size s at the source and receiving the packet at the sink it takes

ti seconds. So the available bandwidth of a single link i equals
i

i t

s
b = . For the entire

path consisting of N links we get the equation i
i

iipath b
t

s
bNibb :0: =∧<≤↓= . If

a stream is sent over the path, it will be received at the bit rate of the slowest link.
Therefore it is not necessary to look at the available bandwidth of each link to
estimate the available bandwidth of the entire path; it is enough to only look at the
available bandwidth of the entire path.

3.2 Measuring path properties
In the previous section we discussed the models on how we see traffic and the
properties of a path. In this section algorithms are discussed that are able to estimate
the values of the model parameters.

3.2.1 Measuring latency

For measuring, we only use arrival time differences between packets to avoid clock
synchronization between sender and receiver. A small packet has a smaller
transmission time than a large packet: if the size s of a packet is small, than the

latency is also small because
ib

s
 is small. So if we precede a large packet with a much

smaller packet, the small packets can be used to announce the start and end of the
sending of the large packet to the sink. We use the so-called packet train given in
Figure 5.

 19

Figure 5. The Big Mac probe

The Big Mac probe (which is a modified sandwich probe [8]) consists of two large
packets (each 1500 bytes) interleaved with three small packets (each 75 bytes). The
assumption is that the MTU of the network is the same or higher than the size of the
large packet. In our case the MTU of the network is 1500. If there is no cross traffic
on the path (no queuing delay) between a source A and sink B, we get the behaviour
of the Big Mac probe on the path displayed in Figure 6.

l0 l1

r0 r1

l2

tlatency

A B

1−Nb

s

t0

t2

t4

∑ ∑
−

=

−

=

+







+

1

0

2

0

N

i

N

i
ii

i

qe
b

s

Figure 6. The Big Mac probe on a path (N = 3), without cross traffic (q = 0).

Three small packets

Two large packets

 20

As seen in Figure 6, the small packet gets queued right after the large packet. So the
small packet arrives immediately after the large packet. Between the first small packet
and first large packet an extra delay is introduced at each device that uses store-and-
forward.
Now we can calculate the path latency of the large packet by using the arrival times ti
of the small packets: () ()2402 tttttlatency −−−= .

() ()
{ }

{ }

() 






 −
−

==−<≤∀=






















++−








+++−






















+−








++

=
−−−

=

+

−

=−−

−

=−

−

=

−

=−

∑∑

∑∑

b

ss
N

bbNiiassumption

b

s

b

s
t

b

s

b

s

b

s
t

b

s
t

b

s

b

s
t

tdef

tttt

tdef

t

smallel

ii

N

i i

el

N

small
offset

N

el
N

i i

el

N

small
offset

N

i i

small
offset

N

i i

el

N

small
offset

i

latency

latency

arg

1

1

0

arg

11

arg
1

0

arg

1

1

0

1

0

arg

1

2402

1

:10::

*2*3

*2

.

}.{

The actual latency is a bit higher because the latency of the first small packet is not
taken into account. Because the size of the first packet is very small compared to the

second (large) packet,
b

ssmall can be neglected, and thus the latency of the small

packet equals 0 seconds and ()
b

s
Nt el

latency
arg1−= which equals our model

∑ ∑
−

= −

−

=

−+







+=

1

0 1

2

0

N

i N

N

i
ii

i
latency b

s
qe

b

s
t when q and e can be neglected. This is the

theoretical latency of the large packet on a path of N links. We show in section 3.3.2
that the end-point devices also increase the latency of the path.
Using the arrival times of the small packets, it is also possible to determine the
transmission time of the large packet on the path: ()02 ttt ontransmissi −= which equals

{ }

{ }

() 







+






−

==−<≤∀=









+−








++

−==

+

−

=

−

=−
∑∑

b

s
N

b

s
N

bbNiiassumption

b

s
t

b

s

b

s
t

tttdef

t

elsmall

ii

N

i i

small
offset

N

i i

el

N

small
offset

ontransmissi

ontransmissi

arg

1

1

0

1

0

arg

1

02

2

:10::

*2

.

 21

Again
b

ssmall is very small compared to
b

s el arg , so 







=

b

s
Nt el

ontransmissi
arg , which again

equals our model ∑ ∑
−

=

−

=

+







+=

1

0

2

0

N

i

N

i
ii

i
ontransmissi qe

b

s
t where q and e are neglected.

3.2.2 Available bandwidth

To measure how much bandwidth is still available, we use the concept of self-induced
congestion: if the bit rate of a data stream exceeds the available bandwidth of a path,
then the packets of the data stream are queued at the switch or router connected to the
link with the lowest available bandwidth. To generate a stream of a certain bit rate, a
constant number of equally sized packets is sent. Each so-called packet train has a
different bit rate. This way we get packet trains with differing bit rates. At a certain
moment the transfer time of each packet will increase because of the extra queuing
delay (Figure 7). The value of the bit rate of the packet train when the queuing delay
increases is the available bandwidth of the path. Because both the source and sink
know about this algorithm, it is only necessary to measure the arrival times of the
packets at the sink and look at the relative arrival time differences between the
packets. This method avoids clock synchronization between source and sink.

Figure 7. Measured queuing delay of packet trains with increasing bit rate

There are different implementations that use to concept of self-induced congestion to
measure the available bandwidth. We will compare two of them: pathChirp [14] and
Pathload [15]. PathChirp uses a packet train with exponential increasing bit rate of the
packets (Figure 8) to measure the available bandwidth.

Q
u

e
u

in
g

 d
e

la
y

Probe packet sending time

Queuing delay
caused by limit

available bandwidth b.
b equals the bit rate of

the probe packets
where the queuing

delay increase starts

Temporary increase
of queuing delay

caused by temporary
cross traffic

 22

Figure 8. A packet train with exponential decreasing delay between packets (source:

[14])

The packets of a packet train get interleaved with the packets that are already on the
network. If the bit rate of the packet train exceeds the available bandwidth of the path,
the arrival time differences between the packets get larger because of queuing delay in
the relay-devices. The packet train is interleaved with other packets in such a way that
the bit rate of the packet train is decreased. Comparing different measurements filters
out temporary cross traffic. Other (cross traffic) streams will lower the available
bandwidth of a path. This kind of cross traffic is constantly present, so it is possible to
measure the new value of the available bandwidth.
Pathload does not use a packet train with an exponential increasing bit rate but a
packet train with a constant bit rate. Each train has a different delay between packets.
Because a train has a constant bit rate, it is easier to filter out temporary cross traffic,
context switching and other temporary anomalies in the network compared to
pathChirp. But Pathload needs more probing packets before a good estimate can be
given. We will compare Pathload and pathChirp in section 3.3.3.
Both algorithms do add extra traffic which causes congestion. But the packet trains
only consist of a couple of packets, and the queuing can be detected when the packet
train has the bit rate that equals the available bandwidth of a path, so no packet trains
of higher bit rates are needed. Therefore, the algorithms minimize the effect that they
have on the current traffic.
The measured amount of available bandwidth is only valid as long as no streams are
added to or removed from the network. So regular measuring of the available
bandwidth is needed or a technique where only one device is allowed to add a stream
at a time (after which devices can determine the available bandwidth again, see
section 4.5.6). Because we believe that chances are very low that multiple devices try
to add new (large) data streams to the network, we do not take the validity of the
measurements over time into account. We only require that measurements are
repeated periodically so that a snapshot of the network status is updated periodically.

3.3 Estimation of path properties

The methods that are discussed in the previous section to determine the path property
values have been implemented and tested. In this section the test set up is given
together with the results of the tests.

3.3.1 Test network

We used two devices:
• Pentium II 350Mhz with 128MB (Device A)

 23

• Pentium III 550Mhz with 128MB (Device B)
Both devices have Linux as their Operating System and were booted into run level 1
(single user mode) so that all unnecessary services are disabled. These two devices
were connected for the latency tests using the following set ups:

• Cross-link cable (100Mbit/s)
• One store-and-forward relay device (one 100Mbit/s switch)
• Two store-and-forward relay devices (two 100Mbit/s switches)
• One repeater (one 10Mbit/s hub)
• Two repeaters (two 10Mbit/s hubs)

The set up with two switches is displayed in Figure 9. This set up is also used to test
the available bandwidth algorithms because when two extra devices (Device C and D)
are connected to the switches, the cable that connects both switches acts as a shared
link with a maximum bandwidth of 100Mbit/s between data streams going from A to
B and from C to D.

Figure 9. Set up to perform tests with two relay-devices and one shared link.

The tool Iperf [18] is used to generate cross traffic between devices C and D. This
cross traffic consists of UDP packets (which fit in a level 2 packet) that are sent at a
constant bit rate.

3.3.2 Latency

We extended the probe discussed in the previous chapter with two extra large packets
(together with two small packets) to show that the all the large packets coming after
the first one have the same latency. This probe is given in Figure 10.

Figure 10. A packet train consisting of small and large packets

The small packets are each 75 bytes and the large packets are 1500 bytes. This
includes the IP and UDP headers. Because the MTU of the network equals the size of
the large packet, there is no extra delay introduced caused by the division and
reassembling of the packets.
For each set up we measured the send and arrival times of the packet probe in two
directions. Because the path between the two devices is the same in both directions,
we can see if the configuration of the device influences the measurements.

Device A Device B

Device C Device D

Switch X Switch Y

 P1 P3 P5 P7 P9 P2 P4 P6 P8

 24

3.3.2.1 Cross-link cable
The first test we performed is connecting the two devices using one crosslink cable.
This means there is no relay-device between the two devices and only one link.
Therefore we only expect extra delay caused by the store-and-forward behaviour of
the Operating System and NIC of the receiver.
First we look at the arrival times of a single probe to see if there is a clear distinction
between the arrival times of the large and small packets (Figure 11).

 P1 P2 P3 P4 P5 P6 P7 P8 P9
A to B 0 189 196 318 325 448 455 578 584
B to A 0 200 221 330 349 460 479 587 606

Figure 11. Arrival times of the packet train when there is only one cross-link cable

 A to B B to A
Mean diff. P3-P2, P5-P4, P7-P6, P9-P8 6.508 19.305
Mean diff. P5-P3, P7-P5, P9-P7 129.643 128.543
Mean diff. P3-P1 195.640 220.860

As seen in the above results, the difference between a pair is constant, although when
sending from the slow device to the fast device, the delay difference between the large
and small packet is lower than the other way around. This can be explained because
device A needs more time to handle a packet than device B (because device A is
slower).
With a crosslink cable we expected that P3-P1 equals P5-P3 and that the latency
equals 0. The results however show that in both directions P3-P1 is larger than P5-P3.
They differ around 66 to 90 microseconds. To determine if this value is independent
of the size of the packet, we repeated the Big Mac probe experiment over a cross-link
cable with different sized large packets (ranging from 75 bytes to 1500 bytes),
measuring from device A to B. Using the arrival times of the small packets we
calculated the latency of the large packets. The results are given in Figure 12. We see
that if the large packet increases its size, then the latency also increases. We see that
the measured latency depends on the size of the packet. We also see that the first few

Device B to Device A
Arrival Times - One probe - Crosslink

Cable

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9

Packet number

A
rr

iv
al

 ti
m

e
(u

se
c)

Device A to Device B
Arrival Times - One probe - Crosslink

Cable

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9

Packet number

A
rr

iv
al

 ti
m

e
(u

se
c)

 25

measurements differ from the measurements of the larger packets. This can be
explained looking at the method used to calculate the latency: if the large packet is
much larger than the small packet, the impact of the small packet on the latency can
be neglected. In this experiment however the large packet is a little larger than or
equals the size of the small packet which makes these first few measurements
unreliable. The reliable measurements form a straight line that starts at 20
microseconds. Because we have a chain of several packets, it results into pipelining in
the transmission. This pipeline needs some time to initialize, which equals the
estimated value of 20 microseconds. Furthermore there is some sort of handling delay
which depends on the size of the packet: the handling bandwidth. This handling
bandwidth equals around 280 Mbit/s and is caused by the handling of the packet by
the Operating System and the hardware.

Latency - Cross-link

0

10

20

30

40

50

60

70

75 22
5

37
5

52
5

67
5

82
5

97
5

11
25

12
75

14
25

packet size (bytes)

la
te

n
cy

 (
u

se
c)

Measured

Estimated

Figure 12. Latency over a cross-link cable using the Big Mac probe with different

packet sizes

We extend our model to include the pipeline initialization and the handling bandwidth
of a path and simplify it by assuming there is no queuing delay and link latency is
negligible to the latency of the entire path (from application layer to application

layer): ∑
−

= −

−







++=

1

0 1

N

i Nihandling
initlatency b

s

b

s

b

s
tt and ∑

−

=








++=

1

0

N

i ihandling
initontransmissi b

s

b

s
tt .

So when there is only one (Cross-cable) link:

 26

{ }

{ }

handling
init

N

i Nihandling
init

latency

latency

b

s
t

N

b

s

b

s

b

s
t

tdef

t

+

==

−







++

=

∑
−

= −

1

.

1

0 1

For measuring from device B to A we see that the measured arrival time differences
differ from measuring from A to B. The bhandling is lower here because the arrival time
differences between the large and small packet are higher than in the previous
situation. When we repeated the latency determination tests between two identical
machines, it did not matter which of them the receiver or sender was. The results in
both directions were the same. Therefore bhandling and tinit depend on the used
hardware.

3.3.2.2 One Switch
The second test we performed is connecting the two devices using one 100Mbit/s
switch. This means there is one relay-device between the two devices and two links.
The relay-device uses store-and-forward, so we expect to see an extra delay caused by
the switch. Using our model, we expect a path latency of 183 microseconds when
measuring from device A to B.
First we look at the arrival times of a single probe to see if the small packet arrives
immediately after the large packet (Figure 13).

 P1 P2 P3 P4 P5 P6 P7 P8 P9
A to B 0 303 309 432 439 562 568 692 698
B to A 0 315 335 444 463 574 593 702 721

 27

Figure 13. Arrival times of the packet train when there is one switch

We see the same behaviour as with only a crosslink cable. The only difference is the
arrival time of P2, which is larger. This is exactly what we expected because the
relay-device has to receive the packet completely before it can be forwarded. The
second large packet needs the same amount of time to arrive as the second large
packet with only a cross-link cable. The large packets after the second large packet
also need the same amount of time as the second large packet to be received. This
behaviour occurs because the first large packet has ‘initialized’ the pipeline.
If all arrival times of the packets are plotted, we get the following results:

 A to B B to A
Mean diff. P3-P2, P5-P4, P7-P6, P9-P8 6.583 19.485
Mean diff. P5-P3, P7-P5, P9-P7 129.740 128.580
Mean diff. P3-P1 309.140 335.010

The mean delay difference between P3 and P2 (and the other combinations of a
successive large packet and small packet) equals the mean delay difference of the set
up where the two devices are connected using only a crosslink cable. The same goes
for the mean delay difference between P5 and P3 (and the other successive delay
differences between small packets). The delay difference of P3 and P1 however is
much larger, which is caused by the extra store-and-forward delay introduced by the
switch. The measured latency from device A to B equals 309 – 130 = 179 µs which
differs only a couple of microseconds with the estimated latency of 183
microseconds. Furthermore the difference between the P3-P1 values of the situation
with only a cross-link cable (220.86 – 195.64 = 25.22 µs) equals the difference in this
situation (335.01 – 309.14 = 25.87 µs), so only bhandling and tinit differ between the two
paths (A to B and B to A).

Device A to Device B
Arrival Times - One probe - 1 Switch

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9

Packet number

A
rr

iv
al

 ti
m

e
(u

se
c)

Device B to Device A
Arrival Times - One probe - 1 Switch

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9

Packet number

A
rr

iv
al

 ti
m

e
(u

se
c)

 28

3.3.2.3 Two Switches
The third test we performed is connecting the two devices using two 100Mbit/s
switches. This means there are two relay-devices between the two devices and three
links. The relay-devices use store-and-forward, so we expect to see an extra latency
caused by the second switch compared to the situation where there is only one switch.
In the test with one switch cable, the measurement corresponded with the expected
latency value. Using the model we calculate an expected latency of 303 µs.
First we look at the arrival times of a single probe Figure 14.

 P1 P2 P3 P4 P5 P6 P7 P8 P9
A to B 0 418 424 547 554 677 683 807 813
B to A 0 430 450 559 578 689 708 817 836

Device A to Device B
Arrival Times - One probe - 2 Switches

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9

Packet number

A
rr

iv
al

 ti
m

e
(u

se
c)

Device B to Device A
Arrival Times - One probe - 2 Switches

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9

Packet number

A
rr

iv
al

 ti
m

e
(u

se
c)

Figure 14. Arrival times of the packet train when there are two switches

Again we see exactly what we expected: the first large packet takes much longer than
all the other packets. Furthermore the other large packets have the same delay as the
other large packets in case there was only one switch or only a crosslink cable and the
differences between A to B and B to A stay the same for the different situations.

 A to B B to A
Mean diff. P3-P2, P5-P4, P7-P6, P9-P8 6.480 19.498
Mean diff. P5-P3, P7-P5, P9-P7 129.687 128.593
Mean diff. P3-P1 424.390 449.860

Again the first two rows are the same as previous experiments. The measured latency
from device A to B is 424 – 129 = 295 µs, which differs less than 10 µs from the
estimated value.

 29

We repeated the Big Mac probe experiment over the path with two switches with
different sized large packets (ranging from 75 bytes to 1500 bytes), again only
measuring from device A to B. The measured latencies are given in Figure 15.

Latency - Two switches

0

50

100

150

200

250

300

350

75 22
5

37
5

52
5

67
5

82
5

97
5

11
25

12
75

14
25

packet size (bytes

la
te

n
cy

 (
u

se
c)

Measured

Estimated

Figure 15. Latency over a path of two switches using the Big Mac probe with

different packet sizes

We see the same behaviour as in Figure 12 where the path consisted of only one
cross-link cable. Again the first couple of measured values are not accurate and the
measured values equal the estimated values differing less than 10 µs.
If we put all the measured and predicted latency values of the large packet in one
graph, we get the graph given in Figure 16.

 30

Predicted and measured values

0

50

100

150

200

250

300

350

1 2 3

Number of links

L
at

en
cy

 (
u

se
c)

Predicted values

Measured values

Figure 16. Comparison between measured and predicted latency values

We see that our predicted values almost equal the measured values. So our model is
usable for the home network although the results of cross traffic are unpredictable
(see section 3.3.2.7).

3.3.2.4 One hub
A hub differs from a switch because a hub does not use a store-and-forward
mechanism. So we expect that there is no difference between the delay difference of
P3 and P1 and the delay difference of P5 and P3. The path between device A and B is
seen as a single link (instead of two). The hubs we use only support 10 Mbit/s, so if

we look at our model with N = 1:
handling

initlatency b

s
tt += and

0b

s

b

s
tt

handling
initontransmissi ++= , we can calculate the latency and transmission time of

the large packet (tinit = 20, bhandling = 280, s = 1500 * 8, b0 = 10): tlatency = 62 µs and
ttransmission = 1262 µs. We see that the expected latency equals the latency of the large
packet of the cross-link case. To see if this is true, we first look at the arrival times of
the individual packets (Figure 17) of the extended Big Mac probe (3.3.2).

 P1 P2 P3 P4 P5 P6 P7 P8 P9
A to B 0 1253 1301 2554 2602 3855 3904 5157 5205
B to A 0 1339 1359 2639 2659 3940 3959 5240 5259

 31

Device A to Device B
Arrival Times - One probe - 1 Hub

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9

Packet number

A
rr

iv
al

 ti
m

e
(u

se
c)

Device B to Device A
Arrival Times - One probe - 1 Hub

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9

Packet number

A
rr

iv
al

 ti
m

e
(u

se
c)

Figure 17. Arrival times of the packet train when there is one hub

As seen in the above graphs, the large packets all have the same transmission time
(even the first one), meaning that the measured latency equals 0 µs.

 A to B B to A
Mean diff. P3-P2, P5-P4, P7-P6, P9-P8 48.063 19.438
Mean diff. P5-P3, P7-P5, P9-P7 1301.453 1300.023
Mean diff. P3-P1 1300.650 1359.130

From device A to B the measured latency equals: 1300 – 1301 = -1 µs. Latency
however cannot be a negative value, but because measured values are not 100% free
from other distortions (e.g. process switching on a device or physical processes) and
there is the problem of significant numbers of the measured values we say that the
latency equals 0 µs. This is not what we expected because during the tests with a

cross-link cable, we came to the conclusion that
handling

initlatency b

s
tt += . But if we look

at the estimated transmission time ttransmission = 1262 µs, it seems that the pipeline
(consisting of the hardware and operating system on both source and sink) needs to

initialize itself for every packet, adding
handling

init b

s
t + to the latency of every packet.

When measuring from device B to A the latency does not equal 0, furthermore
another strange thing is seen: sending the packets from device A to B shows a larger
time difference between P3 and P2 compared to the situation where only switches are
used. We expected this value to be the same as in the switch situation (which is the
case when sending packets from device B to A). We expect that the differences are
not caused by the operating system, but by the hardware because the operating system
is not changed between the hub case and the switch case. This means the hardware

 32

can influence the measurements: more research in the working of hardware is needed
to know how much influence the hardware has and if this influence is predictable.

3.3.2.5 Two hubs
Because a hub does not use store-and-forward, the amount of hubs on a path should
have no influence on the packet arrival times, because every bit is forwarded without
any extra delay. When we repeated the test with two hubs, we saw that there is no
significant difference between the results with one hub and with two hubs.

3.3.2.6 Number of relay devices
A side effect of the latency measurements using the Big Mac probe is that these
measurements show a relation between the number of (store-and-forward) relay
devices on a path and the measurement. When all relay devices on a path are equal,
then each store-and-forward relay device adds the same amount of latency to the total
latency of a packet. If we put the path latency compared to the number of relay
devices in a graph we get a straight line as seen in Figure 18.

Figure 18. Latency compared to the number of store-and-forward relay devices

Unfortunately, this information can only be used to estimate the number of relay
devices when there is no cross traffic on the network, because cross traffic can have a
major influence on the measurements (see section 3.3.2.7).

3.3.2.7 Cross traffic
Using the same set up as used in 3.3.2.3, it is possible to repeat the latency
measurements with the presence of cross traffic. Because of both traffic models, we
expect that every packet gets the same extra delay depending on the bit rate of the
cross traffic. We expect the cross traffic to decrease the bandwidth of a path (lowering

bi and bN-1 in the model: ∑
−

= − −
−








−
++=

1

0 1

N

i crossNcrossihandling
initlatency bb

s

bb

s

b

s
tt) and

therefore increasing the latency of the path. The results of the tests with different
amounts of cross traffic are presented in Figure 19.
As seen in the graph (Figure 19), the results do not correspond to what we expected.
The first couple of packets arrive at the same time no matter how high the cross traffic
is. The fluid model is not able to describe this behaviour. The packetized model can

0

50

100

150

200

250

300

350

0 1 2

Nr of relay-devices

P
at

h
 l

at
en

cy
 (

u
se

c.
)

 33

explain this result because cross traffic gets interleaved with the Big Mac probe which
can cause packets that do get extra delay and packets that do not get the extra delay
(Figure 20). The longer the probe is, the higher the probability that one of the packets

Figure 19. The Big Mac probe on a path with different cross traffic bit rates

in the probe gets an extra delay caused by cross traffic. Because of this, it is not
possible to use the latency of the second packet pair to determine the number of relay-
devices on the path.

Cross Traffic

Time

Without Cross Traffic

With Cross Traffic

Figure 20. Possible scenario with a Big Mac probe without and with cross traffic

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9

Packet Nr

R
el

at
iv

e
ar

ri
va

l t
im

e

0 Mbit/s

10 Mbit/s

20 Mbit/s

30 Mbit/s

40 Mbit/s

50 Mbit/s

60 Mbit/s

70 Mbit/s

80 Mbit/s

90 Mbit/s

 34

3.3.3 Available bandwidth

The set up as given in Figure 9 is used. The bandwidth is measured between device A
and B. The link between switch X and Y is the shared link with a maximum
bandwidth of 100Mbit/s. Devices C and D are used to generate cross traffic over the
shared link. This means that the measured bandwidth between device A and B is
100Mbit/s without any cross traffic.
The cross traffic is generated using the Iperf tool consist of UDP packets. Also
pathChirp and Pathload use UDP packets for their probes. All three tools do not use
TCP because TCP’s congestion control [16] makes it impossible to let an application
sent a stream of packets with a predefined bit rate.
Both pathChirp and Pathload only use the relative delays between probe packets as
measurement data. The results of pathChirp and Pathload with default options are
given in Figure 21. Both tools look if there is any queuing delay between two
consecutive packets. If there is any, then the bit rate of the packet is the maximum
available bandwidth.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 10
0

CrossTraffic (Mbit/s)

A
va

ila
b

le
 b

an
d

w
id

th
 (

M
b

it
/s

)

Theoretical bandwidth

PathChirp Average

PathChirp Min

PathLoad Min

PathLoad Max

Figure 21. Comparison of pathChirp and Pathload

As seen the measured bandwidth by pathChirp is higher than the theoretical available
bandwidth. Four things can explain this:

• The UDP traffic pushes away the other traffic including the Iperf traffic which
was intended to decrease available bandwidth

• The packets involved in the measurement could be interleaved with the cross
traffic packets. Therefore part of the cross traffic is not noticed in the
measurement.

• Cross traffic causes buffering so that some packets do arrive after each other
with small delay, which can be interpreted by pathChirp as a high bit rate.

 35

• The speed of the home network is very high, which makes detecting queuing
delays caused by the maximum available bandwidth harder because it is only a
difference of microseconds with the situation where there is only temporary
cross traffic.

Pathload gives closer estimates although these estimates are mostly lower than the
theoretical bandwidth. This is mainly because a packet train consists of packets with
the same bit rate that makes it possible to filter out erroneous measurements.
We also tried to use both algorithms to measure the available bandwidth on an
IEEE1394 connection between the two devices, but because of Interrupt Coalescence
[17] (several packets are received before an interrupt is generated), these algorithms
could not be used because the delay between the arrival times of the packets at the
application is almost zero.

3.3.4 Conclusion

Latency can be measured using multiple Big Mac probes to filter out erroneous
measurements. This value can only be safely used to determine the number of store-
and-forward devices on the path as long as there is no cross traffic and the
contribution of individual devices is known. Furthermore the value of the latency also
depends on the hardware used at the devices: we have seen that two 100 Mbit/s NIC‘s
do have different behaviours. Another thing that is worth mentioning is that the
interface adapters also introduce a delay caused by store-and-forward.
Available bandwidth is hard to measure. The most promising techniques temporarily
congest a path to cause queuing at the link with the lowest available bandwidth. The
congestion itself lasts for a couple of milliseconds, but the time needed to get a good
estimate of the available bandwidth can be higher than 10 seconds because the
algorithms start with packet train with a low bit rate and increase the bit rate step by
step. We compared two algorithms. PathChirp uses fewer packets than Pathload but is
therefore less robust against erroneous measurements caused by cross traffic.
Cross traffic has major impacts on measurements because it can cause queuing of
packets at relay-devices. Therefore packets that are expected to have a certain arrival
time difference can arrive sooner or later because of interleaving cross traffic. If this
cross traffic is not taken into account, the wrong conclusions can be made on the
bases of the measurements.
We have used Pathload to determine the available bandwidth of a path, because it is
more accurate (although it needs more measurement traffic compared to pathChirp to
make a good estimate). We also added an additional requirement that in the
architecture of ISL there will be possibilities to add more property determination
algorithms in the future or replace existing ones as better algorithms became
available.

 36

4 Architecture
In this chapter the architecture of ISL is discussed. It is explained how applications
use the Berkeley Socket Interface, because ISL offers a replacement for this interface.
Furthermore a high-level model of the complete ISL is given and each component of
the ISL is discussed separately. We end this chapter with a discussion on how the ISL
communicates with other devices and how the ISL components communicate with
each other to perform its tasks.

4.1 Berkeley Socket Interface (BSI)

Current applications use the BSI to communicate over a network. To make it possible
to switch between interfaces during a connection, ISL offers the application an API
that equals the BSI.
To understand how the ISL works, it is necessary to know how the BSI is used by
applications. Depending on the role of the application and the protocol the application
wants to use, different function calls need to take place in a certain order (see Figure
22). For a short introduction to programming with the BSI read [20].

socket()

bind()(bind())

listen()

accept()

recv() recvfrom()

close()

connect()

send() sendto()

Sender Receiver

TCP UDPTCP UDP

Figure 22. The use of the Berkeley Socket Interface

As seen in Figure 22 there are two roles being identified: a sender and a receiver role.
Each of these roles supports the UDP and TCP protocol. The ISL emulates the
working of the BSI by intercepting the calls to the BSI functions before they are

 37

passed on to the Operating System. Applications need not to be modified because all
calls to the BSI are intercepted by the ISL.

4.2 High-level model
As seen in Figure 1 the ISL is placed between the application and the BSI. The ISL
also has direct access to the Operating System, which makes it possible for the ISL to
use interfaces that cannot be used through the BSI. An alternative would be to put the
ISL into the OS, but then the ISL is hardly portable to other Operating Systems.

The ISL itself is divided into a couple of components, each with its own tasks. Putting
all the components together, we get the model describing the complete ISL given in
Figure 23.

Figure 23. High-level model of the ISL, the solid arrows represent the control flow
and the dotted arrows represent the data flow

Application

Pair Selection Layer

Socket
Abstraction

Layer

Interface Abstraction Layer

Main
Controller

Berkeley Socket Interface

OS

Property
Collector

Device
Handler

 38

The first component is the Pair Selection Layer (PSL). The PSL offers the BSI
replacement to the application. Second there is the Main Controller (MC) that decides
which interface pair to choose for a data stream. To give the ISL the possibility to
change the local interface without losing already (by the application) established
TCP/IP connections with another device, a layer is introduced that creates virtual
addresses and maps them to the real interfaces (this is explained in section 4.3). This
layer is called the Socket Abstraction Layer (SAL).

A device can have multiple network-interfaces. These interfaces can be of different
types (e.g. Firewire, 802.3, 802.11a/b/g etc.) and each type of interface has its own
methods to communicate using its own driver. To abstract from all these different
types of interfaces, ISL uses an abstraction layer to talk with the different interfaces:
the Interface Abstraction Layer (IAL). The IAL offers an interface that does not
differentiate between different types of network-interfaces. Furthermore the IAL
offers the functionality of switching between the network-interfaces during a
connection. Therefore, it is possible to communicate with multiple interfaces of
different types in a generic way.
Two other components are the Property Collector (PC) and the Device Handler (DH).
The first is used to collect properties of interface pairs, and the second is used to
communicate with other devices that use ISL. All the components are described in
detail in the next chapter.

4.3 Handover
Whenever a better interface pair is found for a data stream, ISL hands the stream over
from the ‘old’ interface pair to the new pair. This handover must be done seamlessly
without loss of data. Meaning that if there is a TCP/IP connection between two ISL
devices, it must not be necessary for the two devices to reconnect to each other. The
problem of the handover of TCP/IP connections is called the TCP hand-off problem.
We considered various alternatives:

1. Our first idea was to realize a virtual TCP connection between the two devices
which was implemented through a real TCP connection. Whenever the
connection had to be handed over, the real TCP connection would be broken
and a new real TCP connection would be established and the virtual
connection would then work with the new real TCP connection. This requires
a virtual socket number and a real socket number, which are generally
different. Whenever another interface pair was chosen, the real socket was
recreated and bound to the chosen interface. The ISL needs to translate the
virtual socket number to the corresponding (new) real socket number. The
problem with this method is that TCP/IP connections get disconnected and a
new connection needs to be established. TCP/IP packets can get lost and the
handover is not seamless: TCP/IP packets that are already passed on to the
operating system get lost.

2. Another option is to use Mobile IP [24]. But Mobile IP has some
disadvantages:

• The infrastructure of the home network needs to be changed (not only
the sender and receiver device but also the relay-devices).

• All traffic is routed through a home agent and not directly between the
sender and receiver (implying that there is always a small part of the

 39

path which cannot be changed: I.e. the receiver cannot actually change
because you keep the traffic to the home agent unless the home agent
is the server).

3. The method chosen for ISL is a combination of the ideas of J.J. Lukkien,
P.H.F.M. Verhoeven and Philips Research Laboratories. We create a ‘virtual
interface’ for each socket in the form of an IP address (which we call the
virtual address) that we assign to a real interface (with its own IP address,
which we call the real address). In other words: one physical interface gets
multiple IP addresses (the real address and one or more virtual addresses:
Figure 24).

Device A

10.10.15.28

Interface A0

192.168.1.1

Interface A1

192.168.2.1

Device B

10.10.47.81

Interface B0

192.168.1.2

Interface B1

192.168.2.2

Application Application

Figure 24. One interface with multiple IP addresses (a virtual and real address)

If another interface pair is chosen by the Main Controller, the virtual address is moved
from one real interface to another real interface. Using this method the virtual IP
address stays the same, but the MAC address corresponding to the (virtual) IP address
changes. Therefore the changing of interfaces is done one level lower (level 2) than
the level of TCP/IP (level 3), which in turn make it possible to do seamless handover
of TCP/IP connections.
If the MAC address of an IP address changes, all the devices need to be informed of
this change. The announcement is done by broadcasting an unsolicited ARP-reply
packet containing the virtual IP address and the new MAC address Figure 25. This
method of virtual addresses makes it possible to route traffic using a direct path
between sender and receiver without changes to relay-devices. A downside of this
method is that it is only applicable in a home network where each interface pair is
within the same broadcast domain because the virtual addresses are from the same
subnet. Also, the change of MAC address could be interpreted by the network as
packet spoofing, triggering all kinds of alarms.

 40

Figure 25. Switching between interfaces, Step1: Device A assigns virtual address to

old and new interfaces and sends ARP reply; Step 2: Device B receives
reply and updates ARP table, Device A removes virtual address from old
interface.

It is also possible to move the real address to another interface, but then the previous
interface of the real address is not available anymore because it does not have an IP
address. Giving it a new real IP address is not an option, because it is not known
which addresses are already in use and suitable for the device. Also DHCP can return
the old address which is used by the other interface. Furthermore if the real address is
moved to another interface it is not possible to change the interface pair for only one
stream at a time: all streams are moved from one interface to the other. With our
method we do not have this problem because we use a virtual address for each stream.
Using virtual addresses and routing them through the real interfaces makes it
impossible to use multiple interfaces for one stream and therefore combining the
bandwidth of the paths. Combining interfaces for one TCP/IP connection is only
possible if the transport layer is modified because the traffic needs to be divided over
multiple paths and recombined at the other end. So another handover method is
needed to accomplish this (we suggest a possible method in section chapter 7: using
NAT between virtual addresses and real addresses).
In our current implementation the virtual addresses are taken from the range 10.10.x.y
with subnet mask 255.255.0.0. The values for x and y are taken at random. This could
allow streams to get the same address, but chances are very low. For our proof-of-
concept implementation this method suffices.

 41

4.4 Main components
In the previous section (4.2) a complete overview of ISL is given. In this chapter each
component is discussed separately. Interactions between the different components and
between ISL devices are given in sections 4.5 and 4.6.

4.4.1 Pair Selection Layer (PSL)

The purpose of the PSL is to offer an interface to the application. This interface
contains the same function calls as the Berkeley Socket Interface (See
/usr/include/sys/socket.h on a UNIX based system for a complete overview of each
function with its parameters, or Figure 22 for a quick overview). PSL extends this
interface with a couple of new function calls that enable new applications to
communicate the properties of the data that they want to send (e.g. the bit rate of the
traffic, the maximum allowed latency). Existing applications can be used without any
modification to their source code and new applications can easily be written to use the
extra functionality ISL has to offer. Read section 5.5 for information about how
applications can use the ISL.

4.4.2 Main Controller (MC)

The Main Controller keeps track of all data streams that applications send and receive.
It knows which interface pair is used for each stream and it chooses another interface
pair if a new interface pair offers better performance than the current used path for the
stream. A cost function is used to determine the cost of each possible path between
the sender and receiver, making it possible to compare paths with each other. The path
with the lowest cost is chosen.

The Main Controller only looks at possible interface pairs between devices and not at
combining local interfaces together so that multiple interfaces are used for the same
stream. Combining interfaces is a problem by itself and therefore left open for future
research (see also section 4.3).

The Main Controller asks all the properties of possible interface pairs between the
sender and receiver from the Property Collector. Depending on these properties it tries
to make the best choice.

When an application wants to receive data, it listens at first on a by the application
selected network-interface and waits for an incoming connection or incoming data on
that interface. The receiver should listen on the IP address (assigned to a network-
interface) selected by the application to let non ISL enabled devices connect or send
data to the receiver. It depends on the used handover method if this is possible, see
section 4.3.

Because the (receiver) application generally does not know who the sender will be, it
is not possible for the receiver to determine the best pair of interfaces between the
receiver and the future sender. The sender can determine the best pair of interfaces
because it knows to which receiver it wants to connect and send data. Therefore only
the sender chooses the best interface pair and not the receiver.

4.4.3 Device Handler (DH)

The Device Handler keeps track of which ISL enabled devices are connected to the
network and handles all control communication between ISL-enabled devices (see

 42

sections 4.5 and 4.6). The detection of ISL devices is done by listening on the network
for broadcast messages sent by ISL devices; therefore it cannot detect non-ISL
enabled devices. The ISL is actually a service offered by devices and the detection of
ISL enabled devices can be implemented using a service discovery protocol (e.g.
Simple Service Discovery Protocol (SSDP) [25]).

The DH has knowledge about the local and remote interfaces (e.g. the address and the
type of each interface). The Device Handler sends and receives broadcasts containing
the device identifiers and the information about interfaces. This information is given
to the Property Collector.

4.4.4 Property Collector (PC)

The purpose of the Property Collector is to maintain a complete map of all interface
pairs together with the properties of the interface pairs of which the device itself is
part of. The Main Controller uses the Property Collector to get all properties of each
possible pair of interfaces and to keep track of the status of each stream. The Property
Collector gets information about the remote devices and their interfaces from the
Device Handler. The Property Collector queries the IAL for the properties of the paths
where the device itself is part of.

If an application wants to send data to a non-ISL enabled device, the Property
Collector knows the receiver is non-ISL enabled because it has no information about
that device (otherwise the Property Collector would have received information from
the Device Handler). Because all devices need to announce themselves to each other
there is some initialization time for each device before they can start sending data.
Else it is possible that an ISL device does not know about another ISL device because
the announcement information did not yet arrive or was lost. More about these ISL
device announcements can be read in section 4.5.1.

We have only looked at property determination methods where both devices use ISL
and not at methods for determining path properties between an ISL and a non-ISL
enabled device. It should be possible to determine these properties using standard
methods (e.g. ping to determine latency) or non-standard one-side only methods (e.g.
let all local interfaces try to connect to the remote interface of the non-ISL device, the
local interface that sets up the connection the fastest is probably the best interface to
connect to the non-ISL device). So it is the responsibility of the Property Collector to
get the properties of paths formed with a non-ISL device.

4.4.5 Socket Abstraction Layer (SAL)

The SAL assigns the socket numbers whenever an application wants to create a
socket. The SAL uses the IAL to create a virtual address for each socket and assigns
these virtual addresses to a real interface (see section 4.3). The SAL keeps track of all
these socket numbers and knows which virtual address belongs to which real
interface.

4.4.6 Interface Abstraction Layer (IAL)

Some types of interfaces offer extra functionality to communicate with interfaces of
the same type. A Firewire interface has for example the feature to reserve certain
bandwidth for a stream of data in contrast to an 802.3 interface. Also not all interfaces
use IP to communicate. That is where the IAL comes in. It gives the ISL the

 43

possibility to talk to all kinds of different interface types without knowing the
difference between them. The IAL has knowledge about the local interfaces, their
drivers and how to communicate with them. The IAL is used to send and receive data
and is used to get the properties of a path. The IAL makes no difference between the
sending and receiving of ISL control messages and application data.

4.5 External communication

In this section all communications between ISL-enabled devices is discussed. The
external communication is used for the following tasks:

• Detection of ISL devices
• Gathering interface information
• Determination of path properties
• Selection of an interface pair
• Sending and receiving data
• Synchronization between ISL devices

These tasks are discussed in more detail in the subsections of this section.

4.5.1 Detection of ISL devices

There are different methods for service discovery in a network (e.g. SSDP [25] or
SLP [26]). Most methods are a combination of unicast and broadcast messages. To
keep it simple (because our focus is on the property determination and architecture of
ISL), we only use periodic broadcast messages to discover whether a device has ISL
or not. The downside of this method is that it adds an extra delay when a new device
is added to the network. This extra delay equals the interval at which the broadcast
messages are sent. The broadcast can also be used for a kind of keep-alive message on
the network and if the broadcast message contains information about the network-
interfaces of the device, this information exchange can be done before any application
tries to communicate with another device.

Every ISL device sends a broadcast message, containing the identifier of the device,
the amount of interfaces together with the properties of the interfaces (e.g. the address
and type of each interface). This broadcast is sent on all interfaces that use IPv4. This
is done because an ISL device can belong to multiple broadcast domains (see
requirements 7 and 14). The name of the device is a Universal Unique Identifier
(UUID) that is used for ISL to uniquely identify each device. Therefore ISL knows
how many ISL devices are connected to the network and how many interfaces each
device has together with the properties of the interfaces.

When a device receives such a message, it checks if it already has knowledge about
the existence of the sender. If not, it will add the device to the list of known devices.
The device also stores a timestamp of the last received broadcast of each device, so
that ISL can detect whether a device is still connected to the network or not. If a
device has not received a broadcast from another ISL device for a certain amount of
time, it is presumed that the device is not operational or connected to the network
anymore. ISL does not keep track on what interfaces the same broadcast message is
received. It does however store the number of the interface on which the first
broadcast message is received and uses this interface for further ISL communication

 44

with the other device. An ISL device does not send a response back to the sender of
the broadcast message.

Before an application can communicate with another device, ISL needs to know if the
other device also uses ISL or not. Therefore the initialization time of a newly
connected ISL device equals the interval time at which broadcasts are sent.

4.5.2 Gathering interface information

As discussed in the previous section, the broadcast message sent by all ISL devices
contains the properties of their interfaces. Whenever an ISL device receives a
broadcast from another ISL device, it knows the type and address of the interfaces of
the other device and there is no need for extra communication.

Another option was that a device queries another device about its interfaces using
unicast messages. But this would involve extra communication between ISL devices
before an application can start its own communication with the other device, which
makes this method quite inefficient. The broadcast message that is used for
identifying ISL devices is very small, so the information about the interfaces can be
added without extra overhead in communication. This information consists of the IP
address and the type of the interface (e.g. 802.3, Bluetooth etc.).

4.5.3 Determination of path properties

The Property Collector periodically collects the properties of the paths of which the
device is part of. A property is determined between two devices: the device that
initiates the property determination is the sender and the other device is called the
receiver. The sender initiates the determination of a path property by sending a
message to the receiver telling it which property is going to be determined with which
interface pair. The receiver is now able to prepare the local interface that is involved
in the path property determination and send a message back when the receiver is
ready for the measurement to begin. The complete sequence of communication steps
is displayed in Figure 26.

 45

Sender Receiver

Announce measurement

Ready to start measurement

Measurement

Result

Figure 26. Sequence of communication steps for executing a measurement

The internal communication between the components of the ISL is discussed in
section 4.6.

4.5.4 Selection of interface pair

For each interface pair between two devices, a score is calculated using a cost
function and the best pair is chosen. This process takes place at the sender; therefore,
the receiver does not know which interface pair is chosen by the sender. The sender
however does not know to which remote interface the remote virtual address is
mapped, so it is not possible to send a simple message to the receiver telling it to
change a certain mapping. To let the receiver know which local interface to use, the
sender must send a message to the receiver containing the receiver’s virtual address
(which identifies the stream to the receiver) together with the selected interface (see
section 4.6.2).

This message gives the receiver the information needed to change the assignment of
the virtual address to the real interface. After the receiver has changed the mapping, it
sends an acknowledgement back so that the sender can also change the mapping. See
Figure 27 for a sequence diagram describing the interface pair switching process.

 46

Figure 27. Sequence of communication steps for changing an interface pair

The sender lets the receiver to change the mapping first because if the receiver is not
able to change the mapping, the receiver can inform the sender without the TCP/IP
connection getting lost. When the receiver has changed the mapping TCP/IP makes
sure that packets do not get lost by retransmitting them until the sender has also
changed the mapping. UDP packets however do get lost. Another option would be to
let ISL block all the traffic, but ISL has no control over all packets that are already
passed to the Operating System before the change of the mapping, so this option is not
chosen.

4.5.5 Sending and receiving data

The actual sending and receiving of application data is done by the IAL. From the
application’s point of view, the ISL is transparent and the sending and receiving of
data is done through the Berkeley Socket Interface.

To comply with the standards of the different kinds of traffic, no additional header is
added to the data (requirement 10). But when an ISL device wants to wait for
incoming data, it first creates a virtual address and maps it to a real interface. This
mapping is then broadcasted to all other ISL devices, so that they have knowledge of
this virtual address. If an application wants to send data to another ISL device, the ISL
changes the destination address given by the application to the receiver’s virtual
address.

The sender also creates a virtual address, but it does not broadcast the information
about the virtual address to all other devices because the virtual address will only be
used to connect to another (virtual) address and not for receiving incoming
connections. See Figure 28 for the sequence of communication steps.

A downside of this method is that it is necessary for a sender to be already connected
to the network before the receiver starts listening. Otherwise the sender could miss the

 47

broadcast message containing the virtual interface information and therefore the
sender does not have the information needed to connect to the receiver: it simply does
not know about the virtual interface’s existence. There are two possible solutions to
this problem. The first is to add the information about the current existing virtual
interfaces to the periodic keep-alive broadcast message. The second is to add some
ISL specific protocol between the two ISL devices so that the virtual interface
information can be exchanged between them during a set up of a connection. Because
we merely want to offer a proof-of-concept implementation we do not address this
problem in our implementation.

Sender Receiver

Broadcast Virtual Interface

Connect to Virtual Interface

Create Virtual InterfaceCreate Virtual Interface

Figure 28. Sequence of communication steps for making a connection between a

sender and receiver.

4.5.6 Synchronisation between ISL devices

When a property is determined, the value of the property is a kind of snapshot of the
path’s condition at a certain moment in time. If a device adds a stream to the network,
the measured value could be inconsistent with the current network condition. This
could introduce a live lock: consider a device sending a stream over a not-optimal
path, so another path is selected, which causes another stream of another device being
sent over a not-optimal path. Both ISL devices could keep switching between paths,
so we need a method that lets the ISL devices converge to a stable state. To solve this
problem, determining properties and setting up a path should together be one
transaction that can only be performed by one ISL device and not by multiple ISL
devices simultaneously. This however does not solve the situation where a legacy
device starts a data stream between the property determination and the starting of a
data stream between two ISL devices. In this situation the ISL device has to change
the path only once, because the legacy devices do not change their ‘selected’ path, so
the ‘live lock’-problem is not an issue here.

Requirement 15 states that it should be possible to synchronize all ISL devices to get
a stable state. There are different methods known in the literature to perform an
atomic transaction using distributed mutual exclusion [21]. The rest of this section
discusses these methods.

 48

There are two mainly two methods: the first method is to let all devices select one
device as the coordinator and let each device ask the coordinator for permission to
perform a transaction, the second method is to let all devices form a token ring, the
device that has the token can do a transaction. Both methods suffer from the problem
that not all devices can communicate with each other because devices can belong to
multiple broadcast domains (requirement 14). Therefore it is necessary that each
broadcast domain has one coordinator or one token.

It is not difficult to elect a coordinator or set up a token ring in one broadcast domain,
because each device has a unique ID the bully or ring algorithm can be used for
election [21].

There are a few problems when a token ring is used to offer distributed mutual
exclusion to perform a transaction:

• The network gets flooded by the tokens because a device only rarely needs to
determine properties and change a path.

• A device can only perform a transaction when it has the tokens of each
broadcast domain the device belongs to. This can easily result into deadlock
when two devices both belonging to two broadcast domains each have one
token and want to do a transaction. It can also result into a live lock when
there is a time out on how long a device can hold a token and the two devices
keep alternating the two tokens.

The coordinator method does not have the first problem. But it does have the second
problem: a device needs to have permission from all the coordinators. Now the same
problem occurs when two devices belong to the same two broadcast domains and
each device only has permission from one of the two coordinators. This can only be
solved when there is only one coordinator in the entire network, which is only
possible if devices act as a bridge between broadcast domains to let permission
requests travel from one broadcast domain to the other broadcast domain.

This is however very sensitive to failure, because when a device crashes (or is
disconnected) the network can be split up into two separate broadcast domains that
have no bridge between them. However if an election is held each time a network
change occurs (e.g. a device is connected or disconnect), then a network change
should not be a problem (assuming that algorithms are used to handle pending
permission requests).

To guarantee correctness of measurement values at the time a device wants to start a
stream, synchronization between the ISL devices is needed. A token ring is not
suitable because a device only rarely wants to select another path, so the coordinator
method must be used. However because this allows the ISL devices to act as bridges
between broadcast domains, it would increase the complexity of our proof-of-concept
implementation. Because we only want to prove that it is possible to offer path
selection to an application by only looking at the properties of a path, we have not
included such a distributed mutual exclusion algorithm in our implementation.

4.6 Internal communication

In section 4.5 we described the communication that takes place between two devices.
But inside a device there is also communication between the different components. In
this section we look at the internal communication steps that need to be done to
perform the following tasks:

 49

• Initialization of the ISL device
• Handling control messages
• Property determination
• Interface pair selection
• Sending application data
• Receiving application data

The internal communication steps are given in the form of sequence diagrams. Each
solid arrow represents a function call and the dotted arrows represent a return value.
Return values that only report if a function call was successful are not displayed in the
sequence diagrams.

4.6.1 Initialization

Before ISL can do anything, it needs to initialize itself. The component Main calls the
‘initialize’ method of the Device Handler, the Property Collector and the SAL. This
causes each component to initialize its private variables and creates the necessary
threads for the different tasks of each component.
The Property Collector, the SAL and Main only initialize variables and create the
necessary threads (more about the different threads in section 5.4). The Device
Handler also performs a couple of initialization steps using the other components:

• Get information about the local interfaces
• Start broadcasting presence messages periodically
• Start listening for incoming ISL control messages

To get information about the local interfaces, access to the operating system is
required. The IAL has access to the operating system, so the Device Handler asks the
IAL for the information about the local interfaces. The Device Handler passes this
information on to the Property Collector (Figure 29).

Figure 29. Getting information about the local interfaces

The Device Handler sends periodic broadcasts to distribute its availability to the other
devices on the network. The IAL is used to set up a socket and send the broadcast
messages (Figure 30), more on the different messages in section 4.6.2.

 50

Figure 30. Sending periodic broadcasts

The last initialization step of the Device Handler is to set up a socket for incoming
ISL control messages. After an ISL control message is handled by the Device
Handler, it waits for another incoming message (Figure 31).

DeviceHandler IAL

createSocket()

bindSocket()

recvData()

handleMessage

received message M?

Figure 31. Receiving ISL control messages

4.6.2 Handling messages

The Device Handler receives ISL control messages from other ISL devices.
Depending on the type of the message, certain actions need to be performed by ISL.
The different ISL control messages are given in following table.

 51

Name Contains Description
M1 • Device ID

• Interface information
Broadcasted announcement of presence
of a device with its interfaces

M2 • Real address
• Virtual address

Broadcasted announcement of a newly
created virtual address

M3 • Virtual address
• New local interface

Announcement of an interface pair

M4 • Type of measurement
• Remote interface number
• Local interface number

Announcement of a measurement

If the Device Handler receives M1, it passes on the information to the Property
Collector so that both the components have the ability to store the information or
know that an already known device is still connected to the network.
When message M2 is received, the Device Handler passes this information on to the
IAL which can use this information to translate real addresses (from the application)
to the virtual addresses (more on this in section 4.6.5 and 4.3).

Figure 32. Handling of message M1 (left) and message M2 (right)

If a stream of data is running between two devices, an interface pair is announced to
the receiver of the data stream using message M3. The Device Handler of the receiver
uses the IAL to move the virtual interface to the newly selected interface. When this is
done, it sends a message back to the sender so that the sender can also change his
local interface (more on this in 4.6.4).

DeviceHandler IAL

Interface Pair announcement

changeRoute()

sendData()

M3

Ready

Figure 33. Handling of message M3 (change local interface)

 52

When a device (the sender) wants to determine a property of a path, it sends a
measurement announcement to the device on the other end of the path (the receiver).
This announcement contains the type of measurement that is going to take place and
the name of the interfaces involved in the measurement. The receiver prepares itself
for the measurement and sends a message back when it is ready to start the
measurement. Because the device receives an announcement, the device knows that it
has the receiver role in the measurement. The measurement can now start. This
measurement is handled by the IAL. When the measurement is done, the receiver
sends a message back containing the result of the measurement (Figure 34). More on
the property determination at the receiver side can be found in section 5.4.6.

Figure 34. Handling of message M4 (getting ready for a measurement)

Both M3 and M4 messages are handled as a kind of remote procedure call mechanism
(RPC [22]) messages. This means that the sender of the messages blocks until the
receiver calls the required functions and sends the result back before the sender can
continue.

4.6.3 Property determination

In section 4.6.2 we discussed how a measurement announcement is handled on the
receiver side, here we give the sequence diagram of the sender side. The properties
are collected by the Property Collector. The Property Collector gets the properties
from the IAL, which determines the properties. The Property Collector keeps a table
containing all the detected devices with their interfaces and periodically determines
the properties of the paths of which the device itself is part of. The Property Collector
tells the Device Handler that it wants to determine a path property. The Device
Handler makes sure the other device (the receiver) knows this. The Property Collector
calls the IAL to determine the property, and the IAL returns the value of the property
that is received from the other device. The Property Collector stores this property
value in the graph.

 53

ReceiverSender

DeviceHandlerPropertyCollector IAL

announceMeasurement()

sendData()

Ready for measurement

Receiver is ready

getProperty()

Result

DeviceHandlerIAL

Measurement announcement

giveProperty()

sendData()

M4

givePropertyThread()Ready

measurement

Result

Figure 35. Determination of a path property

4.6.4 Interface pair selection

The Main Controller keeps track of all the running data streams and periodically
checks the properties for the possible paths between two devices of a stream. It asks
the Property Collector of all the properties of each path and determines the best path.
If the current path is not the best path, the Main Controllers announces the new
interface pair to the remote device using the Device Handler. After the remote device
has changed his interface (see Figure 33), the SAL is used to change the local
interface. The SAL uses the IAL to do this switch.

Figure 36. Determine best interface pair and choose this pair

4.6.5 Sending data

An application uses the interface of the PSL to send and receive data using the steps
given in Figure 22. The PSL translates the BSI calls to calls to Main. Main passes the

 54

calls on to the SAL that keeps an administration of all the created sockets and their
state. The SAL also creates the necessary virtual addresses for each socket using the
IAL.
As seen in Figure 22 there is a difference between the function calls when UDP or
TCP is used. First we give the sequence diagram of function calls when an application
uses TCP.

PSL

socket()

bind()

connect()

send()

close()

Main

createSocket()

SAL

createSocket()

IAL

createSocket()

bindSocket() bindSocket()

DeviceHandler

broadcastVirtualInterface()

createVirtualInterface()

Virtual Interface information

bindSocket()

Virtual Interface information

sendData()

connectSocket() connectSocket()

connectSocket()If socket is not already bound to an interface,

the virtual interface is created by the SAL,

but this information is not broadcasted (because

the application does not bind itself to an interface,

other devices do not need this information).

sendData() sendData() sendData()

destroySocket() destroySocket() destroySocket()

M2

Data

Figure 37. Sender application using TCP to communicate

Because the bind call is optional when sending data, the ISL does not broadcast the
created virtual address when bind is not used.
UDP is connectionless, so the connect function of the PSL is not called. It is however
possible to have connected UDP sockets (see [20]). So whenever an application uses
the sendto , we connect to the address that is an argument of sendto . This connecting
does not add extra overhead because no actual connection is made but only the remote
address is stored so that when send it used, the operating system knows to which
address the data must be sent. This is done to keep the same sequence of function
calls as with TCP so that all the components except for the PSL do not make a
difference between UDP and TCP traffic.

 55

PSL

socket()

bind()

sendto()

close()

Main

createSocket()

SAL

createSocket()

IAL

createSocket()

bindSocket() bindSocket()

DeviceHandler

broadcastVirtualInterface()

createVirtualInterface()

Virtual Interface information

bindSocket()

Virtual Interface information

sendData()

connectSocket() connectSocket()

connectSocket()If socket is not already bound to an interface,

the virtual interface is created by the SAL,

but this information is not broadcasted (because

the application does not bind itself to an interface,

other devices do not need this information).

sendData() sendData() sendData()

destroySocket() destroySocket() destroySocket()

M2

Data

Figure 38. Sender application using UDP to communicate

The IAL has knowledge of all virtual interfaces in the network together with their
original addresses (combination of IP address and port number). If a device wants to
connect or send data to another device, the IAL translates the address it gets from the
application to the corresponding virtual address.

4.6.6 Receiving data

The receiver must always bind to a local address and port number. Therefore bind is
always called. Applications normally have the possibility to listen to all interfaces
(using the BSI to bind to 0.0.0.0) but to have full control of which interfaces are used,
we create a virtual address and bind a socket directly to that virtual address. The
create and bind operations are the same as for the sender application given in
section 4.6.5. All other operations ripple from the PSL through the Main and SAL to
the IAL.

 56

PSL

socket()

bind()

listen()

recv()

close()

Main

createSocket()

SAL

createSocket()

IAL

createSocket()

bindSocket() bindSocket()

DeviceHandler

broadcastVirtualInterface()

createVirtualInterface()

Virtual Interface information

bindSocket()

Virtual Interface information

sendData()

listenSocket() listenSocket() listenSocket()

recvData() recvData() recvData()

destroySocket() destroySocket() destroySocket()

accept() acceptSocket() acceptSocket() acceptSocket()

New socketNew socketNew socketNew socket

M2

Data

Figure 39. Receiver application using TCP to communicate

The UDP case is described by a more simple sequence diagram because the listen and
accept functions are not used here.

Figure 40. Receiver application using UDP to communicate

4.7 Conclusion

Using the architecture as displayed in Figure 23 it is possible to separate the
application’s tasks from the ISL tasks so that both can do their work separately

 57

(requirements 6 and 11). Furthermore by implementing the ISL as a layer it is easily
portable to other kernel versions and easier to develop and debug. Because the ISL
offers the Berkeley Socket Interface to the application, applications do not require
modifications before they can use the ISL (requirement 12).

The current handover method (4.3) is suitable in a home network situation. The
TCP/IP connections are preserved and it is possible to change the path of each stream
separately. But the legacy support is not optimal yet because legacy devices have no
knowledge about the virtual addresses. An improved method is needed as discussed in
chapter 7 to fully support legacy devices.

 58

5 Implementation
In this chapter implementation details are discussed about ISL. Information is given
about the environment for which ISL is implemented. We explain how the Main
Controller chooses an interface pair and how the handover between interface pairs
takes place. At the end we discuss implementation details about the different ISL
components (e.g. the function of the different threads in each component) and it is
explained how an application can use ISL.

5.1 Linux
We have chosen to develop ISL in C++ for the Linux operating system. We have
chosen for Linux because ISL requires access to low-level parts of an operating
system. Also implementation on Linux was a requirement of the project (requirement
8) as other parts of the project were working on Linux. Since the source of Linux is
available, that OS is chosen. The techniques that ISL uses could also be applicable to
other OSes.
To support the handover of connections between interfaces (see section 4.3), we use
the third party utilities ‘ifconfig ’ (assigning virtual addresses to real interfaces) and
‘arping ’ [23] (for sending ARP replies). Furthermore the utility Pathload is used to
determine the available bandwidth of a path. These tools are called from inside the
ISL using the system statement, which also has a negative effect on the performance
of ISL. Better performance can be given when these third party tools are integrated
into the ISL.
The current implementation of ISL is a proof-of-concept implementation, meaning
that it is only there to show that our idea of offering interface switching to an
application is possible. The performance of the current implementation could be better
(see chapter 6). We believe that the ISL should be integrated into the Linux kernel,
which will offer a major performance boost to the ISL.
The entire ISL is written in C++ which makes it portable between different OSes
(requirement 9). Only parts of the IAL need to be rewritten when it is ported to
another OS, because the IAL contains OS specific parts (e.g. the access to the
interfaces and the handover between interface pairs).

5.2 File descriptors and sockets
The socket function call of the Berkeley Socket Interface creates a socket and returns
the descriptor of the created socket in the form of a number (which we call the socket
number). The socket number is actually a Linux file descriptor. Not only the functions
of the BSI can use these socket numbers, but also other functions like file access
functions (e.g. select , read , write ; see their corresponding manual pages for more
info). The ISL only offers replacement functions for the BSI and not for all these
other functions (Figure 41) because we only need to intercept the function calls which
are used for the actual communication with other devices (e.g. setting the remote and
local address, establishing connections etc.).
The ISL creates real sockets for every call to the socket function call by the
application and returns the actual file descriptor number of the created socket.
Therefore, the socket numbers returned by the ISL are backwards compatible with all
other functions that use file descriptors.

 59

Figure 41. Communication between an application and the OS with ISL

As seen in Figure 41 the ISL only intercepts calls to the Berkeley Socket Interface.
All other calls go directly to the operating system. If a BSI call is intercepted, the PSL
passes the call on to the Main Controller, which updates the status of a stream (e.g. if
it is being created, bound to an interface, sending or receiving data). The Main
Controller passes it on to the Socket Abstraction Layer, which (if necessary) creates a
virtual address for the socket and binds a created socket to the virtual address. The
Interface Abstraction Layer translates the real remote address to the virtual remote
address and then establishes connections or sends data to the virtual address using the
operating system. If a message is received from a virtual address, the IAL translates
the virtual address to the remote address before passing the message to the SAL. The
SAL passes the message to the Main Controller so that it can update the status of the
stream, and the MC passes it back through the PSL to the application.

5.3 Determination of the best interface pair

The Property Collector has a list of properties for each path. It tries to keep this
property list up to date by periodically determining the properties of the paths the
device is part of. The Main Controller uses the Property Collector to get the properties
of the possible paths for the data streams the device itself has initiated. For each active
stream the Main Controller periodically compares all possible paths with each other
by using a cost function to determine the cost of each path. Because of the limited
time for the project, we kept the cost function very simple: the path with the lowest
transmission time is the path with the lowest cost and thus this path will be selected.

5.4 Components
In section 4.4 we discussed the different tasks of each component. To make ISL more
efficient, we used different threads in the components to do certain tasks in parallel. In
this section we discuss these threads and other implementation specific details.
One thread is always there: the application’s own thread. This thread uses the PSL,
Main, SAL and ISL (Figure 42).

 60

broadcastVirtualInterface()

se
nd
D
at
a(
)

Figure 42. The application’s thread

5.4.1 Pair Selection Layer (PSL)

The PSL is only used by the application thread; it acts as the interface to the
application. It contains the Main Controller as a static global object. The PSL is not an
object, but a list of public available functions so that it resembles the BSI.

5.4.2 Main Controller (MC)

This object uses the Singleton pattern (Figure 43, [27]) to ensure there is only one
Main Controller associated with the application that is using ISL. During tests we
found out that each application thread or process instantiates its own ISL. In the future
the ISL should be made a singleton per device and not per process or thread.

Figure 43. The Singleton pattern

The Main Controller consists of one thread: the stream handler thread. This thread is
responsible for keeping track of all running streams by periodically asking all the
properties from the Property Collector and selecting the best path for each stream. The
new path is announced with the Device Handler. When the new path has been
successfully announced, the Main Controller uses the SAL to change the path (Figure
44).

Because the selecting of an interface pair is done in a separate thread (separate from
the application’s thread), it is possible for the application to immediately start sending
and receiving data without a delay needed for the ISL to choose the best interface
pair.

 61

Figure 44. The stream handler thread

5.4.3 Device Handler (DH)

The Device Handler consists of two threads: one thread for broadcasting the periodic
messages containing the local interface information and device ID, and one thread for
receiving and handling ISL control messages.

The first thread uses the IAL to get the interface information and for sending the
broadcast message (Figure 45). The second thread uses the IAL to communicate with
other ISL devices and the Property Collector to keep the network graph up to date
(Figure 46).

Figure 45. The broadcast thread

a
d
d
D
e
v
ic
e
()

Figure 46. The message handler thread

 62

5.4.4 Property Collector (PC)

The Property Collector consists of one thread, the property handler thread, which is
responsible for determining the properties of all the possible paths, making it possible
for the Main Controller’s thread to choose a path while other properties are being
determined. The Device Handler is used to announce a measurement to the other
device that is involved in the measurement and the IAL is used for the actual
measuring of the property (Figure 47).

a
n
n
o
u
n
c
e
M
e
a
s
u
re
m
e
n
t(
)

se
nd
D
at
a(
)

re
cv
D
at
a(
)

Figure 47. The property handler thread

Measuring properties and comparing paths are done by two separate threads. This
allows a fast comparison of paths because paths can be compared with each other with
only a couple of properties known. A downside of this performance enhancement is
that it is possible for the Main Controller to select a non optimal path because not all
properties are determined yet or the determined properties are outdated.

5.4.5 Socket Abstraction Layer (SAL)

The SAL is used by the application’s thread for creating virtual interfaces if
necessary. The stream handler thread of the Main Controller uses the SAL to change
the chosen interface pair for a stream (Figure 44).

5.4.6 Interface Abstraction Layer (IAL)

The IAL is used by all other threads to communicate with other devices or to get
information about the own device by accessing the operating system. The IAL also
contains the algorithms to perform measurements to determine the path properties.
The mediator pattern [27] is used to keep adding new measurement algorithms for
new properties simple (Figure 48).

 63

Figure 48. The mediator pattern used in the IAL

The class Interface offers a virtual API for each network type (e.g. 802.3). When the
IAL must determine a property (for the Property Collector or the Device Handler) it
creates a Sender or Receiver object with an attached Interface object. The IAL knows
the type of the interfaces involved in measuring the requested path property, so it
knows which Interface object it must attach. If the Property Collector wants to
determine a property, the IAL creates a Sender object; else a Receiver object is
created. The only method that needs to be called by the IAL is the measure()
method. The creation of the Role object (Sender or Receiver together with the
attachment of the Interface object) determines which protected method is called by the
measure() method.

When a measurement announcement is received by the DH from another ISL device
(4.6.2), the IAL creates a separate thread that waits for the actual measuring to begin.
The IAL sends a message back to the sender of the measurement announcement after
which the measurement is started by the sender. When the measurement is finished,
the thread sends the result of the measurement back.

5.5 Using ISL; replacing standard BSI functions by others with the
same name
In this section we want to look at how an application can use the ISL. An application
must not need changes before it can use the ISL (requirement 12), so we want to
avoid source code modifications. For this reason the ISL offers the same interface as
the BSI, which causes the problem of name clashes because the standard C library
already contains the functions the ISL offers. To avoid source code modifications and
the problem of name clashes, we compile the ISL as a shared library and make sure an
application makes use of this shared library instead of the BSI. The later is done by
setting the environment variable LD_PRELOAD to our ISL library (libISL.so),
meaning that it gets loaded before all other libraries.
To avoid setting this variable manually, we implemented a kind of ‘wrapper
application’ do this for you:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

 64

int main(int argc, char *argv[])
{
 putenv("LD_PRELOAD=libISL.so");
 execvp(argv[1],&argv[1]);
 return 0;
}

The above wrapper program first sets the environment variable and then starts the
application with all its parameters (which the wrapper program itself got as its own
parameters). This method does not require recompilation of the application’s source.
ISL should also be extensible to give new applications access to more advanced
functionality (requirement 16). This is done by modifying the application’s source
adding #include “psl.h” to the application’s header files. When this is done, the
new ISL functions can be added to the application’s source. The ISL library must still
be loaded using the method described earlier in this section.
To avoid name clashes when the ISL itself calls the actual BSI functions, the
Dynamic Linking library (libdl.so) is used. Else, when the ISL calls a function of
the BSI directly, a loop appears because not the corresponding function of the C
library is called but the corresponding function of the PSL. To avoid this, we get the
function pointer of each BSI function using the following code:

int (*_libc_socket)(int domain, int type, int proto col);
void* _libc_handle = NULL;

if ((_libc_handle = dlopen("libc.so.6", RTLD_LAZY)) != NULL)
{
 _libc_socket = (int (*)(int, int, int))dlsym(_lib c_handle,
 "soc ket");
}

int libc_socket(int domain, int type, int protocol)
{
 int r = -1;
 r = (*_libc_socket)(domain, type, protocol);
 return r;
}

So instead of calling the function socket , we call the function libc_socket with all
its parameters. The libc_socket function passes all the parameters to the function
pointer of the ‘real socket function’ (for more info, see the manual page of ‘dlsym ’).

For debugging purposes, we have prefixed all the BSI functions offered by the PSL
with isl_ and added the declarations of the prefixed functions to the psl.h header
file. Therefore it is not necessary to override the standard BSI using the LD_PRELOAD
environment variable. The shared ISL library needs to be available to the application
(it is enough to put the library in a directory of the library path, e.g. /usr/lib).
Furthermore the application’s source need to have a #include “psl.h” instead of
the #include <sys/socket.h> and all occurrences of BSI functions in the
application’s source need to be prefixed with isl_ .

 65

6 Evaluation
In this chapter we discuss how we have evaluated the working of the ISL. We test
whether ISL selects the best interface pair (the path with the lowest cost, see 5.3) and
if a new interface pair is selected when a better interface pair is available.
Furthermore the performance and the legacy support of ISL are discussed (e.g. how
will ISL operate in a network with non-ISL enabled devices?).

6.1 Interface pair selection (startup test)

To test if the best path is selected when ISL is started we have used two devices
(Pentium 4’s) each with two interfaces (a 100Mbit/s and a 10Mbit/s NIC). Both
devices use Linux (Debian) as their Operating System. The complete set up is given
in Figure 49.

Device A

100

Mbit/s

10Mbit/s

Device B

100

Mbit/s

10Mbit/sCross-link cable

100 Mbit/s switch

Figure 49. Test set up

A video stream is set up between Device A and Device B using GStreamer [28], using
a modified sink and source plug-in for transmission using TCP [29]. We made sure
that the video stream uses the 10Mbit/s path when GStreamer is started. All the BSI
function calls in these plug-ins were prefixed with isl_ because it was not possible to
use the wrapper program: it resulted into multiple instances of the ISL per device,
because GStreamer uses multiple threads. So recompilation of GStreamer’s TCP
source and sink source code was necessary.

6.1.1 Functionality

We saw that the LEDs on the 100Mbit/s switch are not blinking which implies that
the 10Mbit/s path is used instead of the 100Mbit/s path. After a while ISL determines
that the 100Mbit/s path has a smaller transmission time and chooses the 100Mbit/s
path. After the path switch GStreamer continued streaming the video without a
disconnection. We also used Ethereal [30] to verify that indeed the packets were first
sent over the 10Mbit/s path and later over the 100Mbit/s path.

6.1.2 Performance

While the video is streaming from Device A to B, we see a lot of hiccups in the video
displayed at Device B (each less than a second). When ISL performed the switch
between paths, the video stopped until the path switch was completed. The hiccups
are caused by the handling of the (ISL) threads by the operating system and because

 66

our implementation is not made for performance (there are pieces of code that are not
efficient: lots of memory allocations, de-allocations and – in the end – unnecessary
copying of data). The stopping of the video during a path switch is caused because
external third party tools are used to perform the switch (so a new process is created
for each tool when called and multiple ARP-reply packets – to avoid loss - are sent
with an interval of 1 second between packets). This delay during the path switch
should be minimized by adding extra buffering and integrating the third party tools
with the ISL.
When comparing paths it is not necessary to know the exact values of the properties
of each path; only knowing their order is enough to see which path is the best path.
Therefore simplifying the property determination algorithms could also give better
performance to the ISL because properties are known earlier.

6.2 Switching interface pairs (changing test)
To test if ISL changes its selection when a better path comes available we used the
same set up as given in Figure 49. We disconnected the 100Mbit/s path so at first ISL
can only select the 10Mbit/s path.

6.2.1 Functionality

While the video is streaming we connected the 100Mbit/s path and saw that in a
couple of seconds ISL changes the 10Mbit/s path used by GStreamer to the 100Mbit/s
path, which we again verified with Ethereal.

6.2.2 Performance

The same performance issues as in the previous test (6.1) are seen here.

6.3 Legacy devices
When the sender is a legacy device it is not able to connect to an ISL device because
of the chosen handover method. An ISL receiver creates a virtual address and assigns
this address to a real interface. When an application on an ISL enabled device listens
for incoming connections or messages it listens on the virtual address and not on a
real address. Because legacy devices have no knowledge of the virtual addresses, they
are not able to connect to ISL devices.
When the sender is an ISL device and the receiver a legacy devices, the ISL device is
able to connect to the legacy device, because it has no information about a virtual
address it connects direct to the real address of the legacy device. The only problem
here is that ISL has no extra functionality to offer to improve the quality of the
connection (see chapter 7).
A possible solution to let legacy devices connect to ISL devices is to change the
handover method. Instead of directly assigning a virtual address to a real interface, it
should be possible to change the internal routing on a device so that all the traffic sent
to a certain port on a certain address is forwarded to a virtual address and the other
way around. So the main idea is to put some kind of NAT between the virtual
addresses and the real addresses.

 67

7 Future work
During the project, we came up with new ideas that could lead to future
improvements for ISL. Also some parts of the current ISL need to be optimized to
make it suitable for use in real devices. A list of interesting future work is given
below.

Use standard protocols: When an ISL device is connected to the network by using a
combination of unicast and broadcast messages instead of waiting for all devices to
send their periodic broadcast message: replace the current broadcasting method with a
standard protocol such as the Simple Service Discovery Protocol (SSDP) [25], (also
used in UPnP). This can also minimize the initialization time.

Implement ISL in the kernel: Let the ISL replace the Berkeley Socket Interface
implementation so that it is part of the kernel and therefore can operate on a lower
level. The main advantage that, in practise, it faster than a layer on top of the kernel.
This also makes it possible to let the ISL be a singleton per device and not per process
or thread.

Develop and evaluate cost functions to compare paths and select the best path:
Look at comparison algorithms and look at how to compare paths when property
values are known so that a cost function is used to determine the best path for each
stream.

Improve legacy support: Add NAT functionality to ISL (see 6.3), which makes it
possible to let ISL be compatible with legacy devices and offer the possibility of using
multiple interfaces for one stream.

Develop one-sided property determination algorithms: Look for property
determination algorithms that also work in a situation where the other device is non-
cooperative (e.g. to determine path properties between an ISL and a legacy device).

Develop measurement algorithms for other types of interfaces: Evaluate how well
the current property determination algorithms are suitable for measuring properties of
paths which do not use 802.3 and develop property determination algorithms for these
other technologies if the current algorithms are not suitable.

Add an ISL specific API: To let applications have more control on which paths the
ISL may use or to help ISL by setting the minimum requirements of a path, a ISL
specific ISL is needed which newly developed applications can use to make better use
of the ISL.

 68

8 Conclusion
Looking at the possible interface pairs between devices is a new topic and not yet
covered in the literature. Property determination is an already known topic, where
already lots of research is done (see section 2.3.2). We have used the already known
knowledge of property determination and, if it was necessary, modified it for the
home network situation.

We used the Big Mac probe to measure latency and compared different algorithms
based on self-induced congestion to measure the available bandwidth of a path. Cross-
traffic causes distortions in the measurements and more research is needed to
investigate the effect of cross-traffic on the measurements. Also we have only
focussed on wired networks and not on wireless networks. Wireless networks will
introduce a whole new challenge because of influence from the outside world
(microwave ovens and other distortions) so wireless networks is a separate topic. In
the end, exact determination of the path properties is impossible but it is not necessary
to determine the exact values of the properties, only an estimate is needed to compare
paths. We are not interested in small differences between paths, but only in the large
differences.

The presented architecture makes it possible for applications to use the ISL without
any modifications. Furthermore both the application and the ISL can do their work
separately so that the implementation uses multiple threads to improve the
performance.

We looked at different handover methods and used a combination of two ideas. The
combination works, although it is not possible for legacy devices to connect to an ISL
device because the legacy device has no knowledge about the virtual addresses used
by the handover method. Furthermore, the data stream is halted until the handover has
finished.

This document is a good start in the new topic of interface selection by presenting an
overview of different algorithms to measure path properties and a few handover
methods which can be used in the presented architecture to offer a device the
possibility to select different paths for communication with another device. Interface
Selection reduces the congestion of the network by offering a more balanced
utilization of the network’s infrastructure.

 69

9 Acknowledgements
I would like to thank my supervisors Johan Lukkien, Richard Verhoeven and Michael
van Hartskamp for their guidance and encouragement during the course of the project.
Although the comments of Johan were strict and somewhat harsh, they were always
reasonable and fair and they have proven to be very constructive during the course of
my project. Also, I would like to thank the people of the SwA group at Philips
Research Laboratories and especially my room mates at Philips (Chavdar, Ruud and
Melissa) for their support and the friendly working atmosphere. Furthermore I want to
thank Jan Ouwens for his help with setting up GStreamer and his TCP/IP plug-in for
GStreamer.

Finally, I would like to thank my parents and my girlfriend Marie-Anne for their
continuing support and understanding while I was working on my project.

 70

10 References
[1] Andrew S. Tanenbaum, “Computer Networks – Fourth Edition”, Prentice Hall,

ISBN 0130661023

[2] Radia Perlman, “Interconnections – Second Edition”, Addison Wesley, ISBN

0201634481

[3] Differentiated Services (diffserv) working group,

http://www.ietf.org/html.charters/diffserv-charter.html

[4] Integrated Services (intserv) working group,

http://www.ietf.org/html.charters/intserv-charter.html

[5] Simple Network Management Protocol (SNMP) – Network Management RFCs

sorted by topic (see topics about SNMP),
http://www.simpleweb.org/ietf/rfcs/rfcbytopic.html

[6] David C.M. Wood, Sean S. Coleman, Michael F. Schwartz, “Fremont: A System

for Discovering Network Characteristics and Problems”, University of Colorado,
1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

[7] Michael F. Schwartz, David H. Goldstein, Richard K. Neves, David C.M. Wood,

“An Architecture for Discovering and Visualizing Characteristics of Large
Internets”, CU-CS-520-91, February 1991, Department of Computer Science,
University of Colorado

[8] Mark Coates, Rui Castro, Robert Nowak, “Maximum Likelihood Network

Topology Identification from Edge-based Unicast Measurements”, In Proc. ACM
SIGMETRICS 2002 11-20. ACM Press, New York.

[9] James Curtis, Tony McGregor, “Review of Bandwidth Estimation Techniques”,

Department of Computer Science, University of Waikato, Hamilton, New
Zealand, http://wand.cs.waikato.ac.nz/old/wand/publications/bwest-review/

[10] V. Jacobson, “Pathchar – A tool to infer characteristics of Internet paths”,

Presented at the Mathematical Sciences Research Institute (MSRI);
ftp://ftp.ee.lbl.gov/pathchar/, April 1997.

[11] Allen B. Downey, “Using Pathchar to estimate Internet link characteristics”,

ACM SIGCOMM Computer Communication Review, Volume 29, Issue 4
(October 1999), Pages 241-250, ISSN: 0146-4833.

[12] Kevin Lai, Mary Baker, “Measuring Bandwidth”, Department of Computer

Science, Stanford University,
http://mosquitonet.stanford.edu/~laik/projects/nettimer/publications/infocom1999/
html/nettimer.html

 71

[13] Constantinos Dovrolis, Parameswaran Ramanathan, David Moore, “What do
packet dispersion techniques measure?” University of Wisconsin and CAIDA,
www.pathrate.org

[14] Vinay J. Ribeiro, Rudolf H. Riedi, Richard G. Baraniuk, Jiri Navratil, Les

Cottrell, “pathChirp: Efficient Available Bandwidth Estimation for Network
Paths”, Department of Electrical and Computer Engineering – Rice University,
SLAC/SCS-Network Monitoring – Stanford University.

[15] Manish Jain, Constantinos Dovrolis, “Pathload: a measurement tool for end-

to-end available bandwidth”, Computer and Information Sciences, University of
Delaware, www.pathrate.org

[16] M. Allman, V. Paxson, W. Stevens, “TCP Congestion Control”, RFC 2581.

[17] Ravi Prasad, Manish Jain, Constantinos Dovrolis, “Effects of Interrupt

Coalescence on Network Measurements”, College of Computing, Georgia Tech.,
USA, Passive and Active Measurements (PAM) conference, April 2004.

[18] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, Kevin Gibbs, “Iperf: The

TCP/UDP bandwidth measurement tool”, http://dast.nlanr.net/projects/Iperf/

[19] Kevin Lai, Mary Baker, “Measuring Link Bandwidths Using a Deterministic

Model of Packet Delay”, Department of Computer Science, Stanford University.

[20] Brian “Beej” Hall, “Beej’s Guide to Network Programming – Using Internet

Sockets”, http://www.ecst.csuchico.edu/~beej/guide/net/

[21] Andrew S. Tanenbaum, “Modern Operating Systems”, Prentice-Hall

International Editions, ISBN 0-13-595752-4.

[22] Sun Microsystems Inc., “RPC – Remote Procedure Call - Protocol

Specification”, RFC 1050.

[23] Thomas Habets, “Arping v2.05”,

http://www.habets.pp.se/synscan/programs.php?prog=arping

[24] IP Routing for Wireless/Mobiles Hosts (mobileip) Charter,

http://www.ietf.org/html.charters/mobileip-charter.html

[25] Simple Service Discovery Protocol 1.0 – Operating without an Arbiter,

Internet Engineering Task Force, Internet-Draft:
http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt

[26] Service Location Protocol (svrloc) Charter,

http://www.ietf.org/html.charters/svrloc-charter.html

[27] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design

Patterns”, Addison-Wesley Professional.

 72

[28] “GStreamer – Open Source Multimedia Framework”,
http://gstreamer.freedesktop.org/

[29] Jan Ouwens, “Media Streaming over both Wired and Wireless In-Home

Network”,
http://www.win.tue.nl/~iradovan/research/afstudeeropdrachten/streaming.htm

[30] Ethereal: A Network Protocol Analyzer, http://www.ethereal.com

	Abstract
	1 Introduction
	2 Analysis
	3 Models & algorithms
	4 Architecture
	5 Implementation
	6 Evaluation
	7 Future work
	8 Conclusion
	9 Acknowledgements
	10 References

