EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Eindhoven University of Technology

MASTER

Interface selection layer
improving QoS using interface pair selection

van Antwerpen, C.F.

Award date:
2005

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a26f2345-3f0b-4615-820a-76efc562021c

TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

MASTER’S THESIS

Interface Selection Layer
Improving QoS using Interface Pair Selection

by
C.F. van Antwerpen

Supervisors:
Dr. J.J. Lukkien
Dr. ir. P.H.F.M. Verhoeven
Dr. ir. M.A. van Hartskamp

Eindhoven, April 2005

ABSTRACT L e

1

INTRODUCTION

1.1 (@ =T LY=o UOTRR 5
1.2 PROBLEM DESCRIPTION. ..t uuitttuteetttteetesteesssaeesstansessrnmnssessssssssessaeeestaaeesstaseerssnsessnnnnnes 5
1.3 (7= =71 =X 5
1.4 INTENDED AUDIENGCEiitttiiietieeeeetteeesetteeesesaeessssmmeeeseasa e eesansssesanesessnassestnssesssmmnnneeees 6
1.5 LIST OF DEFINITIONS. .1t uutieetttttttunseereeesesntaneeeseeestannnnsesssaneeseesrsssnnereeesesersrnnnreemnnaereeees 6

ANALY SIS ..o 7

2.1 ENVIRONMENT AND ASSUMPTIONS ... uttiieitreiesaireieesineiessisese s eesmesssreeesssraeessnneesssrnneenae 7
2.2 FOCUS ettt e e e 7
2.3 OTHER RESEARCHcciiittiieiiiitiesiitie sttt ste e smeesese e s aae e s sba s e s sn et e s sana e e e sn e s emennsraeeenans 7
231 Protocol-based topolOgy DELECLIONcceiviiiiirireirisieerisie et ssenens 8
2.3.2 Measurement-based topology AELECHIONcccveveeriiieirirecr e 8
2.4 USE CASES. ...ittieiitete sttt sttt ettt tesme st e e e a bt e e eab et e s b et e e bt e e e e st eenmne b e e narre e 10
25 REQUIREMENTS ...ttt ettt ettt sttt ettt e sttt e stte e s heeemmeeee s e be e s aaeeeabee e beeambeeanbeeenbee s sneaamnnnseeseeeeans 11
251 Requirements of the conceptual SOIULION..........covueiriiiiinnieerriee e 11
252 Requirements of the implementation.........ccocvevierinncienseess e 11
2.6 SOLUTION ..ttt bttt ssmen e e s e e s 2 s s e s e e mmmnneeeeeeeeaeaaeaeeeeens 12

MODELS& ALGORITHMS....c.cii s 15

3.1 1Y 0] =11 P 15
T O A 11 {1100 o /= OSSOSO 15
3.1.2 Path model

3.2 MEASURING PATH PROPERTIES. ...t iettttttttiieieeestesststneieeessessessnntessstseeesssesrseererrrs 18
321 MEASUMNING [ALENCY ..vvvvveeiiiieierisieess ettt nnne 18
3.22 Available DANOWIALN..........cccoouiiiieccc e 21

3.3 ESTIMATION OF PATH PROPERTIES .1uuuuiieittertttiiieeetererstitinieeessiesesneessssssineeessessseeens 22
G T A 1= 0= ATV o S 22
T X 1= 0oy ST S R PTS 23
3.3.3 Available DANOWIALN..........cocoiuiiiieccc e 34
RIS @0 o Tox 11 = Lo o 35

ARCHITECTURE ... e 36

4.1 BERKELEY SOCKET INTERFACE(BSI)vviiiiiiieiiiiiee sttt et

4.2 HIGH-LEVEL MODELutiiiiiitiee sttt e ettt snmes s ssn e sin e s st e e e s snre e e se s ansmne e

4.3 HANDOVER. ... ettt sttt ettt e st e s s nnmne s b e e e s nanne e a

4.4 IMIAIN COMPONENTS. ...t tutteeuteestee sttt et ee st et e s eesmes e e e be e e saeeebe e e abe e e saeeebeeenseesamnamns sane
4.4.1 Pair SAlection LAaYer (POL) ...ccceceiriieerieeiesisiesesisie s sss s sessesesenens
4.4.2 Main Controller (MC)..............
44.3 DeviceHandler (DH)...............
4.4.4 Property Collector (PC)........cccuneee.

445 Socket ADSITaction Layer (SAL)ccccvceereeieierinieiesesese st esessssee e e e sssesssssesessesessssesesenns
446 Interface ADSraction Layer (IAL) ..ot
4.5 EXTERNAL COMMUNICATION ... ctiitteeeeeeesssiitsneeeeeseassnnre e e e s smmmmns s s s e e e e e s eannnnne e e e e s s snnnnnneeeas
451 DeteCtion Of IS JEVICES.......ceiririeiririeerie ettt
45.2 Gathering interfaceinformation.....
453 Determination of path properties....
454 Sdection of interface pair

455 Sending and reCaIVING Jata........cccuoviieierinieniisieesee s

45.6 Synchronisation betWeen [SL dEVICES ... iieireeirees e 47
4.6 INTERNAL COMMUNICATION

A.6. 1 INITTAHZALION......cuieiiiiriserireee ettt bbbt

4.6.2 Handling messages...........ceunne

4.6.3 Property determination............

4.6.4 Interface pair selection.............

4,65 SENOING UALA......cciiiiieeerec ettt st a e s b et e e b ne e e

6

10

4.6.6 RECEIVING TALAcoeiveueerieiiresieererie ettt sttt s sa ettt eas 55

4.7 [©00] N0 I U= [] N S 56
Y Y AN AN I 58
5.1 I G POTS 58
5.2 FILE DESCRIPTORS AND SOCKETS 1111 iiiitttttttiiieeetersrstsiiseesserssrannsnssstsesaessersssieeeererr. 58
5.3 DETERMINATION OF THE BEST INTERFACE PAIR ...cvtttiiieeereertrtiiieseerserssrnneesessesessesssessnnes 59
54 (000] V=01 = N 1 TP UPRPPRTN 59
541 Pair SEHECtion LAyer (POL) ...ccccccceviiiiirireisisisiesesteesssiesesesssesss e ssssssessssesessssasessesesassnsns 60
542 Main CONrOIEr (MC) ..c.oiuiieiiirieiriiieesesieess ettt s e s 60
543 DeviCe HaNAIEr (DH) ...ccoviieiirieiriiieesisieeses ettt sesesnsns 61
544 Property COHECION (PC)....icirrieiriieiiririeiinisieieneseeeses e 62
545 Socket ADStraction Layer (SAL)cciveeerisieenesseesssisesessssessssesesssssssssssesessssssessssesesssens 62
54.6 Interface ADSIraction Layer (JAL) ...t 62
55 USING ISL; REPLACING STANDARDBSI FUNCTIONS BY OTHERS WITH THE SAME NAME.....63
LAY I I 1 T 65
6.1 INTERFACE PAIR SELECTIONSTARTUP TEST 1ettiutttteiiitieeiiiieeesieeessseeeesssesssneessnnseessnneens 65
B.1.1 FUNCHONAIILY. ..ot bbbttt nnne 65
(ST I == o (o] 110" 0o S 65
6.2 SWITCHING INTERFACE PAIRS(CHANGING TEST)..uvvteiiuvrteesirrieestreessssreeesssseeesssneassssessssnnees 66
B.2.1 FUNCHONAIILY...c.eiviieiiieieisisieese ettt nnne 66
(ST == & (0] 111 0o TR 66
6.3 [=LY XA 0] =1V A0 =5 TN 66
FUTURE WORK ..ottt ettt sttt sae s shaeshe s satssabesatesbessteebessbessbeesanssnseses 67
CONCLUSION ..ottt ettt s sae s sae e s besaa e s b e saseeabesabe et eesbeabaesbeesaessbeesaeeassesanesnseses 68
ACKNOWLEDGEMENTS ... oottt sttt sre s e s e sbassaessbessnaesaessssesanesnbesnean 69
REFERENCQCES. ... oottt st sttt e b e b e s b s he e shaesae e sasesabesabeebessbeesbeesbeesbeesanesnbeses 70

Abstract

The Internet is getting larger and larger. Every dere devices get connected to it.
But the same goes for the local networks at peopleme. There are however two
major differences between the infrastructure ofltiternet and of the home network.
In a home network devices are added but not alwaptaced and it consists of
mainly low-cost unmanaged devices. The resultéhaotic network with congestion

problems.

The devices in the home network have multiple fates and offer all kinds of

services, so the number of connections and the aurb paths between devices
(peer-to-peer connections between the interfacedewvices) are increasing. Current
devices choose a path at random when they wamntontinicate with another device.
To avoid congestion we want to choose which paghdiavice must use. But to make
a good choice we need information about the curséte of each of the paths to
compare the paths. We present a solution to dfferpath selection functionality to a
device by collecting information about the differgraths and using this information
to choose the best path.

1 Introduction

1.1 Objective

This document presents the results of my masteojgq “Interface Selection Layer”
at Philips Research Laboratories together withr@sting topics for future research.

1.2 Problem description

The Internet is getting larger and larger. Every dwre devices get connected to it.
But the same goes for the local networks at pesgieme. There are however two
major differences between the infrastructure ofpewate networks (including the
network of ISP’s and universities) and of the hamaéwork. In a home network:

» Devices are added but not always replaced (consucoemect new devices to
the current infrastructure and not upgrade old cks/iwith new devices).
Devices are replaced when they are broken, butonlet them cooperate with
a newly added device.

» Mostly low-cost devices are added: most devicesuaraanaged (consumers
do not pay extra money for things they do not vatug. technical differences
between an unmanaged switch and a managed switch).

People just want to connect new devices withoutopering lots of configuration
steps (Plug and play), which results into a chaogtwork. If all the devices in the
(chaotic) network want to transfer large amounts@drmation (e.g. video streams),
then it is possible that a part of the infrastruetis used by many devices, which in
turn can lead to congestion. When displaying viskeeams, the congestion causes the
video to stutter and artefacts may appear. Audieasts are also disturbed and data
streams can suffer from a major slow down. Congest not wanted, so how can we
minimize the chances that congestion appears?

The home network consists of a very diverse infuastire, to which all kinds of
unmanaged devices are connected. These devicesrhdiiple interfaces and offer
all kinds of services, so the number of connectamd the number of paths between
devices (peer-to-peer connections between thefaces of devices) are increasing.
Current devices choose a path (consisting of agrfate pair: one interface at the
sender and one at the receiver) at random (madséylast known working path is
chosen) when they want to communicate with anotlesices. To avoid congestion
we want to choose which path the device must usé.t@make a good choice we
need information about the current state of eadh@ipaths to compare the paths. In
this document a solution is presented to try toimie the problem of congestion in
a home network by collecting information about gaths, using this information to
compare the paths and choosing a path.

1.3 Overview

In chapter 2 the congestion problem will be disedss more detail and a solution is
presented to tackle the problem. In chapter 3 tluelets used to gain a better
understanding of the home networking environmem @iven together with the
algorithms that use these models and their vatidatiChapter 4 presents the
architecture of solution and chapter 5 gives sam@ementation details. In chapter 6

an evaluation is given. Further research topicsadditions to the solution together
with the conclusion of the project are given in temaining chapters.

1.4 Intended audience

This document is meant for people that have reddermmckground knowledge about
computer networks and the terms used in this fieldo good books in this field are
“Computer Networks” written by Andrew S. Tanenbaui] and the book
“Interconnections” written by Radia Perlman [2].

1.5 List of definitions

Below is a list of terms with their definitions there used throughout this document.

Term
Arrival time
Available Bandwidth

Bandwidth
Latency
Legacy device

Link
Loss

Maximum Bandwidth

Path

Serialisation delay

Sink
Source
Transmission time

Virtual address

Definition
The time that a packet arrives at the sink

Maximum number of bits per second that
can still be transferred over a connection
Number of bits per second
Time that elapses between start of
transmission at source and start of receipt
at sink
A device without the Interface Selection
Layer
Physical connection between two devices
The amount of packets that gets lost
during a certain interval.
Maximum number of bits per second that
can be transferred over a connection
One or more physical links that form a
connection between two interfaces. There
is only one path between two interfaces,
but there can be multiple paths between
devices.
Time needed for a packet to be converted
to signals that can be transferred over a
link
The device that receives data
The device that sends data
Time that elapses between start of
transmission at source and end of receipt
at sink:

size
bandwidth
An IP address created and assigned to an
existing interface by the Interface
Selection Layer to make it possible to
seamlessly handover streams.

transmissiontime = latency +

2 Analysis

In this chapter the congestion problem is analyiseflirther detail. First the home
networking environment is discussed and on whiablem this project is focussed.
Other research that is done in this field is disedsand a proposal is done to solve the
problem. This proposal is explored in the reshefdocument.

2.1 Environment and assumptions

Nowadays most homes have at least one personal temmith an Internet
connection. Some homes already have two computatsaite connected to each other
so that they can share resources (e.g. a printeandnternet connection). In the
future, more and more devices will be connecte@doh other: besides computers
also televisions, stereo’s and DVD players. Allsthedevices will be connected to
each other using the already available infrastrectievices: simple (and low-cost)
relay devices. In general, devices are added tmé¢thwork and not always removed.
We assume that all devices use IP to communicatie @dch other. The basic IP
protocol stack uses best-effort QoS to transfem,dhtt this is not sufficient for
guaranteeing e.g. video streaming without intefamg So if more and more devices
get added, the chance that congestion occurs dgherh this in turn can have a
negative effect on the QoS delivered by the network

All data in the home networking environment is sesihg peer-to-peer connections.
This means that all data between devices is sent finterface to interface and not to
a broadcast address. Therefore, we will not congiddticast in this document. We
also assume that there are no routers within tmeehoetwork (only one router that
connects the home network to the internet), soytiverg is bridged.

2.2 Focus

The focus of this project is on the improvementhaf QoS in the home network: how
can we improve the QoS without extensive changesh#o already available
infrastructure? We focus on the topology of the Bometwork: how is everything
connected and what are the properties of the pbétween the devices. If the
properties of the paths between devices are knewencan compare the paths and
offer a better path to the application. By not jolsbosing a path at random, devices
have the possibility to choose the best path ansl &void hick-ups in audio and video
streams.

2.3 Other research

At first we started out with the problem of topojodetection. We thought that if we
know the topology of a home network, we can usg itiformation to offer feedback
to the user about the status of the network (egation of bottlenecks) and to offer
better QoS (reroute traffic over better paths). Témearch on topology detection is
divided into two areas: one area focuses on protmmeed and the other on
measurement-base topology detection.

If looked at the home network, it is very difficuti get the topology information: to
get complete knowledge about the topology it iseseary to detect all relay devices.
In a home networking environment the idea abouayralevices is that they are

completely transparent, so this makes detecting thery hard. Furthermore there is
not much use for the topology information becauggath between two interfaces
cannot be changed. So actually we are not intetastéhe complete topology but
only in the properties of the (static) paths betweevices.

Because at first we started with topology detectiod switched later on to measuring
path properties, we present in this chapter botlearech areas. Especially because
both areas have some parts in common: some prepasti paths can be used to
determine the topology of the path (e.g. numbeelaly-devices).

Most research in the field of topology detectiord gmath property determination

focuses on the Internet and not on a home netwgréivironment. These situations

differ: in the Internet routers are used to relayfic between end-points and distances
are large, in the home situation bridges are usewlay traffic and distances are in

the order of a couple of metres. Because distaimcéise Internet are much larger,

packets need more time (mille seconds instead oforseconds) to get from one

machine to another. So in the Internet latencyramgmission time differences are
easier to measure because the difference betweaepdths is not necessarily in the
order of a couple of micro seconds.

Because of the difference in relay devices andistadces between devices most
research that focuses on the Internet cannot bd usethe home networking
environment.

2.3.1 Protocol-based topology detection

The aim of the research done in this field is te akeady available protocols in a
network to discover the topology. Devices in théwwoek already use protocols to
communicate with each other. In the literature é¢hare methods that use these
protocols to get information about the network togy. Most of these methods are
based on the fact that relay devices are not cdeipldransparent and offer
management capabilities like SNMP [5]. This is rostrue in a corporate
environment or in the Internet, but not in a horeéworking environment where these
relay devices offer no management capabilities.theamore, if they do offer
management capabilities, mostly this involves exwafiguration that can only be
done by the more experienced users.

Some research is focused on analyzing traffic lokiteg at all the different packets
that are on the network [6]. However, as seen jriiHis method has many problems;
the most important problems are:

» Only detection possible of devices that actuallyt $eaffic

» Only traffic from and to own device (and broadcastn be seen in switched

networks

Existing solutions analyse also the protocols betweouters (e.g. Spanning Tree
Protocol or Routing Information Protocol), which kaa this research specific for
Internet and not applicable in a home networkingirenment because, as stated
before, the relay devices in a home network areptetely transparent and do not act
as a router but as a bridge.

2.3.2 Measurement-based topology detection

The research done in this field focuses on thectlete of shared paths and the
measured properties of the paths in order to knbwelwdevices share which paths so

that it is possible to derive the topology of thetwork. In contrary to the research
that is protocol based, it does not concern theatiein of end-point devices but it
concerns the detection of relay-devices on the [@#thTo detect shared paths it is
necessary to detect a shared property of two patgsshared jitter, shared network
delay, or shared packet loss.

If we want to measure loss, it is necessary thatethis some loss in the network.
Depending on the used technology loss can only roetwen a link is heavily
congested (most wired links) or occurs most oftiime (wireless links). The problem
with wired networks is that in order to measure ltss, we need to congest the link,
which is not wanted because we do not want tofertemwith the current data streams.
The problem with wireless links is that extra prdtadfic can cause more loss than
the original situation so again there is interfeecaused by the probing traffic. It is
possible to keep track of all the sent and recepaskets, but it can take a very long
time before information about loss is known (esakciin wired networks, because
congestion is required).

Two other properties that we want to measure anelwath and latency of the links
and paths between devices. There are mainly twonigees used to determine these
properties: single packet and packet pair techsiguether techniques are a
combination of these two techniques.

Single packet techniques focus on the estimatiohn&fbandwidth and not on the
path bandwidths. Each link has a different lateaeg slower links will take longer to

transmit a packet than faster links. Using the tdah= S , (1) the

transmission latency
bandwidthb of a link can be calculated if the packet szthe link latencytaency and
the transmission tim&ansmisson are known. The link latency does not depend on the
packet size or the link bandwidth: it has a fixedue for a link. If the transmission
times of multiple packets with variable sizes atettpd, the bandwidth can be
calculated by taking the inverse of the slope efdhaph.

To determine the link bandwidth of each link ofattp single packet techniques use
the time to live (TTL) field of an IP packet. Thialue is decremented at every router
and if it reaches zero, the router must return @WP TTL expired error message.
Changing the TTL for each packet, gives a set ahdotrip times. There are some
problems with this method [9], but the main probldar a home networking
environment is that only routers change the TTL hridges do not. Therefore, it is
not possible to use such a single packet pair tqubrto get the bandwidth of each
link in a home network.

Packet pair techniques focus on the estimatiom®favailable bandwidth of the path
and not on the estimation of the available bandwafta link. Each packet on a link
experiences a serialisation delay due to the battiwof the link. Packet pair
techniques measure the difference in arrival timesvo packets sent immediately
after each other. It is assumed that each devica path use store-and-forward to
forward packets, this means that a packet mustdescompletely received before it
can be sent to the next device on the path. Thgeslblink is responsible for the
spacing between the two packets because the fidtep was fully received (and
forwarded) while the second packet is still beiageived. If both packets have equal
sizes and the arrival time differenag between the two packets is known, then the

bandwidthb can be calculated usibg=§, (2). The difference with formula (1) is

that the latency does not have any influence hecaulse both packets have the same
latency; this means that the delay between thepmakets cancels out the latency,
meaning thatl equaldiransmission — liatency:

d=t t
={def .arrival _time}

_ Spo . Sp Spo
- (toﬁset + tIatency + % + TpJ - (toﬁset + tIatency + _l;J

= {SpO == Spl}

arrival _time_ p1 ~ Larrival _time_ pO

o

= {der 'ttransmission = 1:Ia\tency + E}

d = ttransm'ssion - tlatency

Both techniques have the disadvantage that measuateenrors occur because of
other traffic on the link or path (cross traffiesearch that is done to filter out this
cross traffic focuses on the assumption that cth@dfic occurs random. For single
packet techniques this means that it is assumedctbas traffic will only increase
delays, so if enough packets are sent, one padhkédtave the minimum delay. This is
discussed in [10] and [11]. For packet pair techeg] the most common bandwidth
measurement is the actual bandwidth. In [12] steéismethods are discussed to filter
out faulty results, but [13] proves that this ist mmough. The latter developed a
bandwidth estimation methodology, which is impleteenin the toopathrate . The
same people involved withathrate , also developed the tophthload [15] for
determining the available bandwidth of a path. Aeottool that uses the same ideas
as pathload is pathChirp [14]. Both tools are discussed in section 3.2.2 an
compared in section 3.3.3.

2.4 UseCases

Below we give a few real life examples of situatiomhere a device can offer better
performance when the device has the ability to shoa better path when all the
properties of the possible paths are available.

* A user has a PDA with two interfaces: a wired ancelss interface. When
the user is walking around the house, the PDA usesireless interface to
communicate with the home network. In general wicednections perform
better than wireless connections. So when the ustsrthe PDA in a cradle,
we prefer that all connections that use the wireleterface are transferred to
the wired interface without the loss of any of domnections.

* A user has two displays (e.g. a CRT monitor andagrmpa television) and
wants to watch a video stream from the Interneboe display, and a video
stream from a DVD player the other display. Of seuthe user wants both

10

display devices to display the video streams witlamy hick-ups or artefacts.
If one (or both) of the display devices have midtimterfaces, possible hick-
ups may be prevented if the video streams werecs@mtdifferent paths to the
display devices.

2.5 Requirements

If a device wants to offer better network performano the application, it must first

determine the properties of the available pathsthed it can use this information to

choose the best path for communication with anotierice. Because in most

networks the wired and wireless parts belong tediht subnets, we do require that
our solution works when a device belongs to mutiplibnets. The solution has two
kinds of requirements: requirements concerningsthlation itself, and requirements

concerning the implementation of the solution.

251
1.

10.

11.

12.
13.

14.

15.

16.

Requirements of the conceptual solution

A devicemust have the means to select or change an interfaceopahe
basis of measurement data.

The path that meets the application’s requiremamist be chosen and not a
worse path.

Communication that takes place to determine theibesface paimust limit
the influence on other traffic on the network togimum.

Legacy devicesust be able to work with the new devices and viceaers
It must work without modifications of the relay devices.

The selection and changing of interface paitsst be completely transparent
for applications.

Requirements of theimplementation

It must use IPv4 for communication with other devices.
It must run on Linux.
It must be programmed in C or C++.

It must not change the application’s traffic because bép{(future) standards
(this means that we are not allowed to encapstiatéraffic in custom made
packets or set up a custom tunnel between devices).

An applicationmust to able to start sending data without a large ydélae
response time of the application must remain small)

Current applicationmust not need (major) adjustments.

It must be possible for an application to choose to useetthancement: the
enhancement is optional for the application.

It must also work in the situation where a device belongsmultiple
broadcast domains.

It should be possible to synchronize all devices to guaeaoterect selection
of a path.

It should be extensible to give new applications access doeiadvanced
functionality”.

11

17.1t should enforce the requested bit rate on the applica@mapplication is
not allowed to send a data stream of a higheralé than the application has
asked for).

2.6 Solution

It seems that topology detection will not offer imped QoS in a home networking
environment because the topologies are very srralithermore, the paths in the
network cannot be changed. This implies that thesadge of the topology also does
not give many opportunities to improve QoS. Theyqmositive effect it can have is
that every device has knowledge about the shartt$,paut it is very hard to get this
knowledge as previous mentioned research has shown.

The proposal is not to focus on topology knowledné,to look at the possible paths
between two end-point devices. Each device has aynenore interfaces. These

interfaces might be connected directly or indingttl the interfaces of another device;
in theory there could be multiple paths between imterfaces, but in practise each
interface combination forms only one path betwdentivo devices. Each path has
certain properties (e.g. latency, and bandwidfhllIproperties of the paths between
two devices are known, the best path can be chd$ese path properties need to be
measured and there must be communication betweesotirce and sink so that they
both know which path is chosen.

Current APIs focus on connecting devices rathen thterfaces. As a result only a
single interface is used for a connection and iha$ possible to switch between
interfaces during a connection. To make it possiblswitch between interfaces, we
want to make a layer between the application ara dperating system so this
determination of properties and the switching ofeliface pairs can be done
transparent to the application without diving itih@ source of the operating system.
This layer is called the Interface Selection Layer ISL for short). It offers a
replacement of the Berkeley Socket Interface (Bl API used by UNIX
applications to communicate between devices) to dpplication with the same
interface. This way the application needs not bdifieml. Furthermore all data that is
sent and received by the application goes throbghlayer, which makes it possible
to have full control of the sending and receivimggess (making it possible to add bit
rate control or packet filtering in the future).i¥lmakes it possible to use other means
to send and receive data besides using only the(&® Figure 1). An alternative
would be to put the ISL into the OS, but then tB& lis hardly portable to other
Operating Systems (or to another kernel versior) i&ans harder to develop and
debug.

12

Application Application

ISL

(ON]

0S

Hardware

Hardware

Figure 1. Overview of the network communication of an appglmawith and
without ISL.

The greatest challenge was to find methods to oéterthe properties of each path.
A large part of this document covers this. A secpnoblem is how to let devices

work together to determine properties and annotineechosen pairs to each other,
these are however more implementation issuesokdad at the layers given in Figure
1 the application is not modified because the I8&rs the same interface as the BSI.
The ISL determines the available paths using theddg&t information about the own

interfaces and the BSI to communicate with otheriads to get information about

their interfaces. Comparing the properties of thailable paths, the ISL chooses the
best path and uses the OS to change the localfaoger The BSI is used to

communicate the choice to the other device. An\oger of the different tasks is

given in Figure 2. Our main focus will be on the thuels used for property

determination and on the architecture of the IShjclv we have implemented and
tested.

13

lication

A

e]ep oAI808./puss—»

< yjed asooyd

change local interface —»

Bjep 9AI908./pusas—p
saluadoud soepsyul 106

send/receive data —»

Hardware

Figure 2. Collaboration between the different layers

14

3 Models & algorithms

3.1 Models

In this section we discuss different models forttiladfic in a network and choose one.
Furthermore a model for a path is given togetheh w&i model of the different path
properties.

3.1.1 Traffic model

There are two models to see traffic in a network:

» Packetized model

* Fluid model
The packetized model says that packets of diffedatd streams interleave with each
other. The fluid model sees the traffic as différéata streams that travel parallel to
each other. In the packetized model, packets ddimish later than in the fluid model
(see Figure 3).

Packetized model

PO

Fluid model

PO P2 P4

Time
Figure 3. Packetized model versus fluid model

The fluid model is easier to reason about thanpteketized model. This is because
of the continuous character of the fluid model. @&tertain moment in time, both
streams can be seen and not only a single packiettae packetized model. In the
fluid model each stream has a private channel itbertain bandwidth. In the
packetized model there is an interleaving of steasnly one channel with a certain
bandwidth. The packetized model captures more sspaeality so it can explain
behaviour which cannot be explained with the flionddel (especially when looked at

15

gueuing). Therefore we will choose the packetizedieh for explaining the results of
our measurements.

3.1.2 Path modé€

Traffic goes from one device to another device gisirpath. The relation between the
number of links and the number of relay-deviceNiigs = Nraay + 1. If we look at the
relay-devices, we can see three categories of-tEsgices.
 Store-and-forward relay-devices
» Cut-through relay-devices
* Repeater relay-devices
A store-and-forward relay-device first needs toeree the entire packet from a link
before it is forwarded onto the next link. A cutdhgh relay-device only needs to
receive the address field of a packet before @bie to forward the entire packet, so
this kind of relay-device can do its work fasteartha store-and-forward relay-device
because only the header needs to be received dnstedhe complete packet before
the relay-device can start forwarding the packbe Tast category consists of repeater
relay-devices. These kinds of devices receive fitata one link and forward it to all
other links. Repeaters do not receive a packeteintiefore it is forwarded; they start
forwarding right after the first bit / byte.
In practise, cut-through relay-devices are verg rand not available to the normal
consumer. Repeaters are still there but most hoateonks consist of store-and-
forward relay-devices. So we focus on the repeater the store-and-forward relay-
devices.
If we look at a path, it has certain performancepprties. The properties that are
interesting to know are:
» Latency(path, packet, time): the latency of a pa¢ka certain size) on a path
at a certain time;
Total_Bandwidth(path): the maximum bandwidth ofadihp
Available_Bandwidth(path, time): the available bartdth of a path at a certain
time (equal to or lower than Total_Bandwidth(path))
Cost(path, packet): the amount of money or timeosts to send/receive a
packet over a path;
» Loss(path, interval): the percentage of packets dkélost on a path during a
certain interval.
We are especially interested in the latency andtfaélable bandwidth, because these
properties can be used to check if it is possiblgeind a stream of data having certain
properties. Loss is also an interesting property. (ess profiles for the purpose of
control), but the problem here is that loss onlgurs in heavily congested networks
or if the network has a bad condition (e.g. wirelegtwork with microwave oven
nearby, bad cables etc.). This makes it hard tovedgt measure loss in a not-
congested network without congesting the netwaélfitthereby interfering with the
current traffic. Furthermore adding measurementfitrdo a network with a bad
condition can decrease the quality of the netwesdnanore. It is however possible to
look at all the traffic that is sent and receivedietermine the loss, which can be used
to determine the loss over time. The total bandwidtnice to know, but it is of no
use when one wants to see if it is possible toadéw data stream to the network.
Cost is nice, but cannot be measured without kngwhe costs per byte / second etc.
If the values of the different properties are knotlvay can be used to compare the
paths with each other and choose the best pathb#&lieve that latency and the

16

available bandwidth are the most useful properfiescomparing paths with each
other, so we focus on these properties.

In the rest of this chapter models are given tembeine the latency and transmission
time as well as the available bandwidth of a pathsection 3.2 we discuss the
algorithms that are based on these models to dstitee values of these two
properties.

3.1.2.1 Background for measuring latency

If we look at a path, it consists df physical links, say; with 0O<i <N andN=>1
(because there is always at least one link betweerconnected interfaces).Nf> 2,
then linkl; andli+1 are connected with each other using a relayedavamed;. This
relay-device can use store-and-forward or it ispeater. If a packegtof sizesis sent
from deviceA to B that are connected using two linksdndl,) and a relay-device
(using store-and-forward)ro first receives the packet completely before it is
forwarded using the link, to deviceB. This store-and-forward mechanism causes a
delay before the packet is received by de#gsee Figure 4). This delay consists of
the time the packet is queued in the buffers ofrétay-device and the time needed
for the relay-device to put the packet on the tiektof the path. The first depends on
the presence of cross traffic and the operating othe relay-device and the second
equals the sizeof the packet divided by the bandwidiiof link i [19].

A

€1 Packet arrived at
- 4 device B
< s/b —
2 Lo
ad Jo £ I
T F || Packet arrived at relay
€p device rq
S/bo
(I .
A) B

Figure 4. Delay on a path caused by a store-and-forward ‘edayce

If we look at Figure 4, we also see that there gmsscertain amount of time before
the first bit is received at the relay-device. Tisighe link latencye. If we combine
the variables and look at Figure 4 we get the falhg equation for transmission time:

N-1 s N-2
ttransmission = ;.:(H + QJ + Z(;ql

We defined the latency of a packet of sézen a path as the transmission time of the
packet minus the time for the sink to receive thiire packet. Formally, we get:

N1 g N-2 s
tlalencyzz H"'q +ZQi_b
i=0 N-1

i=0 |
In case there is no cross traffic, the queuingydglaan be neglected. Also in reality

the link latencie® are very small comparedge. This means that when two devices

are connected directly to each other (without ashay-devices), the path latency

17

equals 0 seconds. The formula to determine thadgtgnores the bandwidth of the
last link. As a result, the latency of a path candifferent in the other direction.

Therefore the latency of the path needs to be medso the same direction as the
data is going to be sent.

3.1.2.2 Background for measuring available bandwidth

Each link has a maximum bandwidth, so the maximamdiwidth of a path is the
maximum bandwidth of the link with the minimal maxim bandwidth. When a
device wants to send data, it has no use for themoen bandwidth of each path.
However the available bandwidth of the path is wiséfhe available bandwidth of a
path equals the available bandwidth of the linkhwthe minimum available
bandwidth. Each link has an available bandwidkhin bits per second. Between the
sending of a packet of size s at the source areiviag the packet at the sink it takes

ti seconds. So the available bandwidth of a singleiliequald, :tE. For the entire

path consisting oN links we get the equatidm,,, = <l b :0<i<NOb = tE ‘b > If

a stream is sent over the path, it will be receigedhe bit rate of the slowest link.
Therefore it is not necessary to look at the abélebandwidth of each link to
estimate the available bandwidth of the entire p#tls enough to only look at the
available bandwidth of the entire path.

3.2 Measuring path properties

In the previous section we discussed the modelh@m we see traffic and the
properties of a path. In this section algorithms discussed that are able to estimate
the values of the model parameters.

3.21 Measuring latency

For measuring, we only use arrival time differenbesveen packets to avoid clock
synchronization between sender and receiver. A Ismpatket has a smaller
transmission time than a large packet: if the sizef a packet is small, than the

: S . . :
latency is also small becau%e is small. So if we precede a large packet withuaim

smaller packet, the small packets can be usedriousice the start and end of the
sending of the large packet to the sink. We usesthealled packet train given in
Figure 5.

18

Two large packets

Three small packets

Figure 5. The Big Mac probe

The Big Mac probe (which is a modified sandwichh@d8]) consists of two large
packets (each 1500 bytes) interleaved with threallgmackets (each 75 bytes). The
assumption is that the MTU of the network is themsar higher than the size of the
large packet. In our case the MTU of the network580. If there is no cross traffic
on the path (no queuing delay) between a soAraad sinkB, we get the behaviour

of the Big Mac probe on the path displayed in Fégéir

tIatency

lo I

o

(7]

N-1 s N-2
R
i=0

=0 i

Figure 6. The Big Mac probe on a patN £ 3), without cross trafficg(= 0).

19

As seen in Figure 6, the small packet gets queighd after the large packet. So the
small packet arrives immediately after the largeke& Between the first small packet
and first large packet an extra delay is introduaedach device that uses store-and-
forward.

Now we can calculate the path latency of the Iqn@eket by using the arrival timgs

of the small packet; ., = (t, —t,) - (t, ~t,).

t latency

= {def 1

(t

latency }

to) - (t —t,)

2{o|ef t}

toff Ssma“ + z % _— offset + Nz_:l Ssma”
bN—l i=0 i i=0 bi

(+ 3* small +ZSarge Sarge} (+ 2% smaJI +NZ:Sarge]
T by F b by, by & b

N-1 i
= {assumption {0i :0<i <N -1:b ==b,,)}

(N - 1)[S arge ; Sarai J

The actual latency is a bit higher because thend¢gt®f the first small packet is not
taken into account. Because the size of the fasket is very small compared to the

second (large) packet%% can be neglected, and thus the latency of thelsmal

packet equals 0 seconds &g, =(N _1)54a_brge which equals our model

bty Z(—+a]+2q.

theoretical latency of the large packet on a p&tN nks. We show in section 3.3.2
that the end-point devices also increase the lgtehthe path.

Using the arrival times of the small packets, itaiso possible to determine the
transmission time of the large packet on the pail;i<on :(t2 —to) which equals

1:transmis:sion

= {def 'ttransmission = t2 - tO}

S 25 S
+ 2 * “small + _targe -t + small

N-1 i=0 | i=0 i

when q and e can be neglected. This is the
N—l

={assumption {0i :0<i<N-1:h ==b,,)}

(2- N)(Lﬂgﬂ'j + N(STQJ

20

Sy
Again % is very small compared té?, SOty anamission = N(Szge

J, which again
N-2

N-1
equals our moddl, , ¢ icson = Z(ES + QJ + Zqi whereq ande are neglected.
i=0

i=0

3.2.2 Available bandwidth

To measure how much bandwidth is still available,use the concept of self-induced
congestion: if the bit rate of a data stream exsdbd available bandwidth of a path,
then the packets of the data stream are queuée atitch or router connected to the
link with the lowest available bandwidth. To geriera stream of a certain bit rate, a
constant number of equally sized packets is sesthEo-called packet train has a
different bit rate. This way we get packet trainghwdiffering bit rates. At a certain
moment the transfer time of each packet will inseehecause of the extra queuing
delay (Figure 7). The value of the bit rate of gaeket train when the queuing delay
increases is the available bandwidth of the pattcaBse both the source and sink
know about this algorithm, it is only necessarynieasure the arrival times of the
packets at the sink and look at the relative arrtirae differences between the
packets. This method avoids clock synchronizatemmvben source and sink.

Queuing delay

caused by limit

= _ available bandwidth b.
° Temporary increase b equals the bit rate of
> | of queuing delay the probe packets
£ taused by temporary where the queuing
2 cross traffic delay increase starts
o }_{ L
o
o
o
O
S
o o © O
o © 0 0 9a°

Probe packet sending time
Figure 7. Measured queuing delay of packet trains with ingireabit rate

There are different implementations that use tacephof self-induced congestion to
measure the available bandwidth. We will compare ofvthem: pathChirp [14] and
Pathload [15]. PathChirp uses a packet train wiffoaential increasing bit rate of the
packets (Figure 8) to measure the available bartbwid

21

probe packets

1 2 N-4 N-3 N-2 N-I N
TV~ TY Ty Ty T Ume
Figure 8. A packet train with exponential decreasing delayvkeen packets (source:

[14])

The packets of a packet train get interleaved withpackets that are already on the
network. If the bit rate of the packet train exce#te available bandwidth of the path,
the arrival time differences between the packetsagger because of queuing delay in
the relay-devices. The packet train is interleavéd other packets in such a way that
the bit rate of the packet train is decreased. Gomg different measurements filters
out temporary cross traffic. Other (cross traffatjeams will lower the available
bandwidth of a path. This kind of cross traffic@nstantly present, so it is possible to
measure the new value of the available bandwidth.

Pathload does not use a packet train with an expi@hancreasing bit rate but a
packet train with a constant bit rate. Each trais & different delay between packets.
Because a train has a constant bit rate, it iee&sifilter out temporary cross traffic,
context switching and other temporary anomaliestia network compared to
pathChirp. But Pathload needs more probing padkefisre a good estimate can be
given. We will compare Pathload and pathChirp ictisa 3.3.3.

Both algorithms do add extra traffic which causesgestion. But the packet trains
only consist of a couple of packets, and the queuoan be detected when the packet
train has the bit rate that equals the availabfelfaédth of a path, so no packet trains
of higher bit rates are needed. Therefore, therigfigns minimize the effect that they
have on the current traffic.

The measured amount of available bandwidth is galid as long as no streams are
added to or removed from the network. So regulaasueng of the available
bandwidth is needed or a technique where only evecd is allowed to add a stream
at a time (after which devices can determine thailave bandwidth again, see
section 4.5.6). Because we believe that chancegeaydow that multiple devices try
to add new (large) data streams to the networkdwenot take the validity of the
measurements over time into account. We only regtirat measurements are
repeated periodically so that a snapshot of theer&tstatus is updated periodically.

3.3 Estimation of path properties

The methods that are discussed in the previouseect determine the path property
values have been implemented and tested. In tlisosethe test set up is given
together with the results of the tests.

3.3.1 Test network

We used two devices:
* Pentium Il 350Mhz with 128MB (Device A)

22

* Pentium Il 550Mhz with 128MB (Device B)
Both devices have Linux as their Operating Systachwaere booted into run level 1
(single user mode) so that all unnecessary senacegslisabled. These two devices
were connected for the latency tests using thewatlg set ups:

» Cross-link cable (100Mbit/s)

» One store-and-forward relay device (one 100Mbit/gch)

» Two store-and-forward relay devices (two 100Mbstfgtches)

» One repeater (one 10Mbit/s hub)

» Two repeaters (two 10Mbit/s hubs)
The set up with two switches is displayed in Figar&his set up is also used to test
the available bandwidth algorithms because whenetia devices (Device C and D)
are connected to the switches, the cable that ctmbeth switches acts as a shared
link with a maximum bandwidth of 100Mbit/s betwegata streams going from A to
B and from C to D.

Device C Device D

Device A Device B

—{ Switch X l—{ Switch Y l—

Figure 9. Set up to perform tests with two relay-devices and shared link.

The tool Iperf [18] is used to generate cross icdéetween devices C and D. This
cross traffic consists of UDP packets (which fitainevel 2 packet) that are sent at a
constant bit rate.

3.3.2 Latency

We extended the probe discussed in the previoyst@hwith two extra large packets
(together with two small packets) to show that alieghe large packets coming after
the first one have the same latency. This prolgéven in Figure 10.

Figure 10.A packet train consisting of small and large pasket

The small packets are each 75 bytes and the laagkets are 1500 bytes. This
includes the IP and UDP headers. Because the MTtbleofietwork equals the size of
the large packet, there is no extra delay introducaused by the division and
reassembling of the packets.

For each set up we measured the send and arnnes$ tof the packet probe in two
directions. Because the path between the two devicéhe same in both directions,
we can see if the configuration of the device iaflces the measurements.

23

3.3.21 Cross-link cable

The first test we performed is connecting the twwides using one crosslink cable.
This means there is no relay-device between the demces and only one link.

Therefore we only expect extra delay caused bystbee-and-forward behaviour of
the Operating System and NIC of the receiver.

First we look at the arrival times of a single prdb see if there is a clear distinction
between the arrival times of the large and smalkpts (Figure 11).

PL [P2 [P3 [P4] P5] P6] P7] Pg Pd
AtoB |0 189 | 196 | 318| 325| 448 455 578 584
0

Arrival time (usec)

~
o
S

-3
=3
S

N
=3
S

w B n
g 8 8
Arrival time (usec)

B
3

Bto A 200 | 221 | 330| 349| 460 479 587 606
Device A to Device B Device Bto Device A
Arrival Times - One probe - Crosslink Arrival Times - One probe - Crosslink
Cable Cable

700
600 //0
/ 500
o)/
= 300
f_/ ‘= 200 ///
100

/ 0
1

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

o

Packet number Packet number

Figure 11.Arrival times of the packet train when there isyoahe cross-link cable

AtoB BtoA
Mean diff. P3-P2, P5-P4, P7-P6, P9-P§ 6.508 19.305
Mean diff. P5-P3, P7-P5, P9-P7 129.643 128.543
Mean diff. P3-P1 195.640 220.860

As seen in the above results, the difference betvageair is constant, although when
sending from the slow device to the fast device,dblay difference between the large
and small packet is lower than the other way arodiis can be explained because
device A needs more time to handle a packet thaiceld8 (because device A is
slower).

With a crosslink cable we expected that P3-P1 esqi&-P3 and that the latency
equals 0. The results however show that in botctdons P3-P1 is larger than P5-P3.
They differ around 66 to 90 microseconds. To deteent this value is independent
of the size of the packet, we repeated the Big Mabe experiment over a cross-link
cable with different sized large packets (rangimgnf 75 bytes to 1500 bytes),
measuring from device A to B. Using the arrival ésnof the small packets we
calculated the latency of the large packets. Thaltg are given in Figure 12. We see
that if the large packet increases its size, thenldtency also increases. We see that
the measured latency depends on the size of tHepaWe also see that the first few

24

measurements differ from the measurements of thgerapackets. This can be
explained looking at the method used to calculagelatency: if the large packet is
much larger than the small packet, the impact efsimall packet on the latency can
be neglected. In this experiment however the lgrgeket is a little larger than or

equals the size of the small packet which makesethfgst few measurements
unreliable. The reliable measurements form a ditaiine that starts at 20

microseconds. Because we have a chain of seveariisa it results into pipelining in

the transmission. This pipeline needs some timeantialize, which equals the

estimated value of 20 microseconds. Furthermonetisesome sort of handling delay
which depends on the size of the packet: the hagdbandwidth. This handling

bandwidth equals around 280 Mbit/s and is causethéyhandling of the packet by
the Operating System and the hardware.

Latency - Cross-link

~
o

(o2}
o

a1
o

N
o

—e— Measured

—=— Estimated

w
o

latency (usec)

N
o

.

0 T T T T T T T T 1T 1T 1 1 T 1 T 71 1

\)
Vv
N

=
o

SR SRR A SR

packet size (bytes)

Figure 12.Latency over a cross-link cable using the Big Meabe with different
packet sizes

We extend our model to include the pipeline inizi@lion and the handling bandwidth
of a path and simplify it by assuming there is neeung delay and link latency is
negligible to the latency of the entire path (fr@pplication layer to application

N-1 N-1
layer): 1:Iatency = tinit + > + Z(Esj - bs and ttransrris’on = 1:init + b > + Z[bi]

bhandl ing i=0 N-1 handling i=0
So when there is only one (Cross-cable) link:

25

tIatency

={def 1

Iatency}

N-1
Lt +L+Z(EJ_ >
bhandling i=0 bi bN -1

-{n=1

S

t o+

" bhandling

For measuring from device B to A we see that thasueed arrival time differences

differ from measuring from A to B. Th@anaing iS lower here because the arrival time
differences between the large and small packethégbker than in the previous

situation. When we repeated the latency deternunatésts between two identical
machines, it did not matter which of them the reeeior sender was. The results in
both directions were the same. Therefdygning and tin: depend on the used

hardware.

3.3.2.2 One Switch

The second test we performed is connecting the dexces using one 100Mbit/s
switch. This means there is one relay-device betvbe two devices and two links.
The relay-device uses store-and-forward, so weaxpesee an extra delay caused by
the switch. Using our model, we expect a path ateof 183 microseconds when
measuring from device A to B.

First we look at the arrival times of a single prdb see if the small packet arrives
immediately after the large packet (Figure 13).

PL [P2 [P3 [P4a] P5[P6] P7[Pg P9
AtoB |0 303 | 309 | 432| 439 562 568 692 698
BtoA |0 315 | 335 | 444| 463| 574 593 702 721

26

Device A to Device B Device Bto Device A
Arrival Times - One probe - 1 Switch Arrival Times - One probe - 1 Switch

800 800
700 /" 700 //0
600 600

500 500

400 / 400 /‘/’/

300 = 300

200 / 200 /

100 / 100 /
) 4 0 —@

0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

>
Arrival time (usec)

Arrival time (usec)

Packet number Packet number

Figure 13.Arrival times of the packet train when there is emétch

We see the same behaviour as with only a crosshke. The only difference is the

arrival time of P2, which is larger. This is exgctthat we expected because the
relay-device has to receive the packet completelpre it can be forwarded. The

second large packet needs the same amount of tinagrive as the second large
packet with only a cross-link cable. The large maslkafter the second large packet
also need the same amount of time as the secoge fecket to be received. This
behaviour occurs because the first large packefritialized’ the pipeline.

If all arrival times of the packets are plotted, get the following results:

AtoB BtoA
Mean diff. P3-P2, P5-P4, P7-P6, P9-P§ 6.583 19.485
Mean diff. P5-P3, P7-P5, P9-P7 129.740 128.580
Mean diff. P3-P1 309.14D 335.010

The mean delay difference between P3 and P2 (amdbtier combinations of a
successive large packet and small packet) equalsméan delay difference of the set
up where the two devices are connected using oclpsslink cable. The same goes
for the mean delay difference between P5 and P8 {lae other successive delay
differences between small packets). The delay rdiffee of P3 and P1 however is
much larger, which is caused by the extra storefandlard delay introduced by the
switch. The measured latency from device A to Baégj309 — 130 = 17@s which
differs only a couple of microseconds with the rested latency of 183
microseconds. Furthermore the difference betweerPB+P1 values of the situation
with only a cross-link cable (220.86 — 195.64 =22q1s) equals the difference in this
situation (335.01 — 309.14 = 25.8%), S0 onlybhangiing @ndtinic differ between the two
paths (A to B and B to A).

27

3.3.2.3 Two Switches

The third test we performed is connecting the tvavices using two 100Mbit/s
switches. This means there are two relay-devicésdan the two devices and three
links. The relay-devices use store-and-forwardysoexpect to see an extra latency
caused by the second switch compared to the situatihere there is only one switch.
In the test with one switch cable, the measurememntesponded with the expected
latency value. Using the model we calculate an etgoklatency of 308s.

First we look at the arrival times of a single pedfigure 14.

PL [P2 [P3 [P4 P5] P6| P7] P8 Pd
AtoB |0 418 | 424 | 547| 554| 677 683 807 818
BtoA |0 430 | 450 | 559 578] 689 708 81y 836

Device A to Device B
Arrival Times - One probe - 2 Switches

=

900

800

700

600

500

400

Arrival time (usec)

300
200

100

0 1
1

2 3 4 5 6 7 8 9

Packet number

Arrival Times - One probe - 2 Switches

900

Device B to Device A

800

700

600

500

400

Arrival time (usec)

300

200

100

0

]

2 3 4 5 6 7 8 9

Packet number

Figure 14.Arrival times of the packet train when there are switches

Again we see exactly what we expected: the firgfdgacket takes much longer than
all the other packets. Furthermore the other |pagkets have the same delay as the
other large packets in case there was only one&lswit only a crosslink cable and the
differences between A to B and B to A stay the stonéhe different situations.

AtoB BtoA
Mean diff. P3-P2, P5-P4, P7-P6, P9-P§ 6.480 19.498
Mean diff. P5-P3, P7-P5, P9-P7 129.687 128.593
Mean diff. P3-P1 424.390 449.860

Again the first two rows are the same as previogeements. The measured latency
from device A to B is 424 — 129 = 29, which differs less than 13@s from the
estimated value.

28

We repeated the Big Mac probe experiment over #it@ with two switches with
different sized large packets (ranging from 75 byte 1500 bytes), again only
measuring from device A to B. The measured latesnaie given in Figure 15.

Latency - Two switches

350

300 -

250
)
® 200
=) /.//l// —e— Measured
g 150 —=— Estimated
E /

100

50 | ./././././
0 +#

R R R S N S S S S
AN AN S IR N AN

packet size (bytes

Figure 15.Latency over a path of two switches using the Bichrobe with
different packet sizes

We see the same behaviour as in Figure 12 whergdtte consisted of only one
cross-link cable. Again the first couple of measuvalues are not accurate and the

measured values equal the estimated values diffézss than 1Qs.
If we put all the measured and predicted latendyesof the large packet in one
graph, we get the graph given in Figure 16.

29

Predicted and measured values

350
300 +
250
g
(2] i
2 200 —e— Predicted values
>
% 150 | —s— Measured values
5]
-
100 -
50
0

1 2 3

Number of links

Figure 16.Comparison between measured and predicted latealogs/

We see that our predicted values almost equal #esured values. So our model is
usable for the home network although the resultsroés traffic are unpredictable
(see section 3.3.2.7).

3.3.24 0nehub

A hub differs from a switch because a hub does us® a store-and-forward
mechanism. So we expect that there is no differ&eteeen the delay difference of
P3 and P1 and the delay difference of P5 and P8 pakth between device A and B is
seen as a single link (instead of two). The hubsuses only support 10 Mbit/s, so if

. s
we look at our model with N = 1. t.. =t,+—— and

bhandl ing

s S L
=t . + +—, we can calculate the latency and transmissioe tifn

" bhandling 0

the large packet;f: = 20, bhangiing = 280,s = 1500 * 8,bp = 10): tjatency = 62 HS and
transmisson = 1262us. We see that the expected latency equals theclate the large
packet of the cross-link case. To see if thisug,twe first look at the arrival times of
the individual packets (Figure 17) of the extenBegiMac probe (3.3.2).

t

transmission

PL [P2 [P3 [P4 P5| P6] P7] Pg Pd

AtoB |0 1253| 1301] 2554 260 3855 3904 5157 5205

BtoA |0 1339| 1359 2639 2659 3940 39p9 5240 5259

3C

Device A to Device B Device B to Device A
Arrival Times - One probe - 1 Hub Arrival Times - One probe - 1 Hub

6000 6000

5000 /H 5000 ;
/—0 4000

3000 /

/ 2000
1000 / 1000
0

hdl 0

IS
S
S
]

3000

Arrival time (usec)

N
=1
S
S

Arrival time (usec)

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Packet number Packet number

Figure 17.Arrival times of the packet train when there is b

As seen in the above graphs, the large packetsag# the same transmission time
(even the first one), meaning that the measuretd¢gtequals Qis.

AtoB BtoA
Mean diff. P3-P2, P5-P4, P7-P6, P9-P§ 48.063 19.438
Mean diff. P5-P3, P7-P5, P9-P7 1301.453 1300.023
Mean diff. P3-P1 1300.650 1359.130

From device A to B the measured latency equals013301 = -1us. Latency
however cannot be a negative value, but becaussumhvalues are not 100% free
from other distortions (e.g. process switching oste&ice or physical processes) and
there is the problem of significant numbers of theasured values we say that the
latency equals Qus. This is not what we expected because duringdbts with a

. But if we look

cross-link cable, we came to the conclusion that, =t +

init
handling

at the estimated transmission tii@nsmsson = 1262 s, it seems that the pipeline
(consisting of the hardware and operating systerbaih source and sink) needs to

initialize itself for every packet, addirtg,, + to the latency of every packet.

andling
When measuring from device B to A the latency does equal O, furthermore
another strange thing is seen: sending the pabketsdevice A to B shows a larger
time difference between P3 and P2 compared toitixation where only switches are
used. We expected this value to be the same deeiswitch situation (which is the
case when sending packets from device B to A). W& that the differences are
not caused by the operating system, but by theNselbecause the operating system
is not changed between the hub case and the seas# This means the hardware

31

can influence the measurements: more researcleiwdnking of hardware is needed
to know how much influence the hardware has attsfinfluence is predictable.

3.3.25Two hubs

Because a hub does not use store-and-forward ntibere of hubs on a path should
have no influence on the packet arrival times, bseavery bit is forwarded without
any extra delay. When we repeated the test with alos, we saw that there is no
significant difference between the results with bnb and with two hubs.

3.3.2.6 Number of relay devices

A side effect of the latency measurements usingBige Mac probe is that these
measurements show a relation between the numbdstofe-and-forward) relay
devices on a path and the measurement. When ajl delvices on a path are equal,
then each store-and-forward relay device addsahesamount of latency to the total
latency of a packet. If we put the path latency parad to the number of relay
devices in a graph we get a straight line as se&imgure 18.

350
300 -
250
200 A

150 -
100 -
50
0

Path latency (usec.)

0 1 2

Nr of relay-devices

Figure 18.Latency compared to the number of store-and-forweliad/ devices

Unfortunately, this information can only be usedestimate the number of relay
devices when there is no cross traffic on the ntwlmecause cross traffic can have a
major influence on the measurements (see secti?. 3).

3.3.2.7 Crosstraffic

Using the same set up as used in 3.3.2.3, it isilpesto repeat the latency
measurements with the presence of cross trafficase of both traffic models, we
expect that every packet gets the same extra dielpgnding on the bit rate of the
cross traffic. We expect the cross traffic to daseethe bandwidth of a path (lowering

b and by.; in the modelt =t +L+El S - S) and

|] il " bhandling i=0 bl _bcross bN—l _bcross
therefore increasing the latency of the path. Témults of the tests with different
amounts of cross traffic are presented in Figure 19
As seen in the graph (Figure 19), the results dacagespond to what we expected.
The first couple of packets arrive at the same mmenatter how high the cross traffic
is. The fluid model is not able to describe thifidgour. The packetized model can

32

explain this result because cross traffic getgledwed with the Big Mac probe which
can cause packets that do get extra delay and fgaitlet do not get the extra delay
(Figure 20). The longer the probe is, the highergiobability that one of the packets

1400
1200 -

—o— 0 Mbit/s
£ 20 Mbit/s
= 30 Mbit/s
S 800 !
£ —¥— 40 Mbit/s
e —e— 50 Mbit/s
> 600 A .
E —+—60 Mbit/s
E —=—70 Mbit/s

400 - ———80 Mbit/s
90 Mbit/s
200
0 =
1 2 3 4 5 6 7 8 9
Packet Nr

Figure 19.The Big Mac probe on a path with different crosdfic bit rates

in the probe gets an extra delay caused by cra$ficirBecause of this, it is not
possible to use the latency of the second packetgdetermine the number of relay-
devices on the path.

Without Cross Traffic

Cross Traffic . .
With Cross Traffic

Time

Figure 20.Possible scenario with a Big Mac probe without a#itth cross traffic

33

3.3.3 Available bandwidth

The set up as given in Figure 9 is used. The baittivis measured between device A
and B. The link between switch X and Y is the sHaliek with a maximum
bandwidth of 100Mbit/s. Devices C and D are usedédperate cross traffic over the
shared link. This means that the measured bandviidttveen device A and B is
100Mbit/s without any cross traffic.

The cross traffic is generated using the Iperf toohsist of UDP packets. Also
pathChirp and Pathload use UDP packets for theibgs. All three tools do not use
TCP because TCP’s congestion control [16] makespbssible to let an application
sent a stream of packets with a predefined bit rate

Both pathChirp and Pathload only use the relatekays between probe packets as
measurement data. The results of pathChirp andd@atiwith default options are
given in Figure 21. Both tools look if there is aqueuing delay between two
consecutive packets. If there is any, then thedid of the packet is the maximum
available bandwidth.

120

100 -
Q)
o)
S 801 —m— Theoretical bandwidth
% PathChirp Average
£ 60 - PathChirp Min
c
S —x— PathLoad Min
% 40 —e— PathLoad Max
%
>
<

20

0

RS T S SR S S VR
CrossTraffic (Mbit/s)

Figure 21.Comparison of pathChirp and Pathload

As seen the measured bandwidth by pathChirp isehitjtan the theoretical available
bandwidth. Four things can explain this:
» The UDP traffic pushes away the other traffic inohg the Iperf traffic which
was intended to decrease available bandwidth
* The packets involved in the measurement could tezlé@aved with the cross
traffic packets. Therefore part of the cross teafis not noticed in the
measurement.
» Cross traffic causes buffering so that some padfetarrive after each other
with small delay, which can be interpreted by pdtincCas a high bit rate.

34

* The speed of the home network is very high, whigkes detecting queuing
delays caused by the maximum available bandwidttiendecause it is only a
difference of microseconds with the situation wherere is only temporary
cross traffic.

Pathload gives closer estimates although thesmasts are mostly lower than the
theoretical bandwidth. This is mainly because &ehatrain consists of packets with

the same bit rate that makes it possible to fdtdgrerroneous measurements.

We also tried to use both algorithms to measure avelable bandwidth on an

IEEE1394 connection between the two devices, baalee of Interrupt Coalescence
[17] (several packets are received before an mpens generated), these algorithms
could not be used because the delay between tivalaimes of the packets at the
application is almost zero.

3.34 Conclusion

Latency can be measured using multiple Big Mac @soto filter out erroneous
measurements. This value can only be safely useeétermine the number of store-
and-forward devices on the path as long as thermoiscross traffic and the
contribution of individual devices is known. Funthrere the value of the latency also
depends on the hardware used at the devices: veedean that two 100 Mbit/s NIC's
do have different behaviours. Another thing thatwisrth mentioning is that the
interface adapters also introduce a delay causestiolg-and-forward.

Available bandwidth is hard to measure. The mostsing techniques temporarily
congest a path to cause queuing at the link wighidivest available bandwidth. The
congestion itself lasts for a couple of millisecendut the time needed to get a good
estimate of the available bandwidth can be highe@mnt10 seconds because the
algorithms start with packet train with a low bdtte and increase the bit rate step by
step. We compared two algorithms. PathChirp usesrfpackets than Pathload but is
therefore less robust against erroneous measurscamsed by cross traffic.

Cross traffic has major impacts on measurementausecit can cause queuing of
packets at relay-devices. Therefore packets tleaégpected to have a certain arrival
time difference can arrive sooner or later becaddaterleaving cross traffic. If this
cross traffic is not taken into account, the wrarmnclusions can be made on the
bases of the measurements.

We have used Pathload to determine the availalsidviddth of a path, because it is
more accurate (although it needs more measuremadfit tompared to pathChirp to
make a good estimate). We also added an additice@lirement that in the
architecture of ISL there will be possibilities &mld more property determination
algorithms in the future or replace existing ones leetter algorithms became
available.

35

4 Architecture

In this chapter the architecture of ISL is discdsdeis explained how applications
use the Berkeley Socket Interface, because ISk#eeplacement for this interface.
Furthermore a high-level model of the complete iSgiven and each component of
the ISL is discussed separately. We end this chaptie a discussion on how the ISL
communicates with other devices and how the ISL pmments communicate with
each other to perform its tasks.

4.1 Berkeley Socket Interface (BSI)

Current applications use the BSI to communicate aveetwork. To make it possible
to switch between interfaces during a connecti&h, offers the application an API
that equals the BSI.

To understand how the ISL works, it is necessargrniow how the BSI is used by
applications. Depending on the role of the applicaéind the protocol the application
wants to use, different function calls need to tplkeee in a certain order (see Figure
22). For a short introduction to programming whie 8SI read [20].

Sender Receiver

|
|
|
TCP ubpP | TCP

l l UDP
| |
I ! I
| |
| |
| |

socket()

connect()

send() sendto() recvfrom()

Figure 22.The use of the Berkeley Socket Interface

As seen in Figure 22 there are two roles beingtifiet: a sender and a receiver role.
Each of these roles supports the UDP and TCP mbtdhe ISL emulates the
working of the BSI by intercepting the calls to tB&I functions before they are

36

passed on to the Operating System. Applicationsl ne¢ to be modified because all
calls to the BSI are intercepted by the ISL.

4.2 High-level model

As seen in Figure 1 the ISL is placed between pgi@ation and the BSI. The ISL
also has direct access to the Operating Systenchwhakes it possible for the ISL to
use interfaces that cannot be used through the/B&hlternative would be to put the
ISL into the OS, but then the ISL is hardly poreata other Operating Systems.

The ISL itself is divided into a couple of compotsgreach with its own tasks. Putting
all the components together, we get the model @esgrthe complete ISL given in
Figure 23.

Application

|

|

|
v v
Pair Selection Layer

‘ v o
Main
Controller

I

|

|

A \ 4 :
Device Property :
|

|

|

|

Handler Collector

+
|
|
|
|
|
|
|
|
|

v Vv
Socket

Abstraction

Layer

v ¥ |

Interface Abstraction Layer

I

I
| Berkelev Socket Interfa JI

ON

Figure 23.High-level model of the ISL, the solid arrows regegt the control flow
and the dotted arrows represent the data flow

37

The first component is the Pair Selection LayerlL(PShe PSL offers the BSI

replacement to the application. Second there id/thi@ Controller (MC) that decides
which interface pair to choose for a data streamgive the ISL the possibility to

change the local interface without losing alreatly the application) established
TCP/IP connections with another device, a layemisoduced that creates virtual
addresses and maps them to the real interfacesigtexplained in section 4.3). This
layer is called the Socket Abstraction Layer (SAL).

A device can have multiple network-interfaces. Ehagerfaces can be of different
types (e.g. Firewire, 802.3, 802.11a/b/g etc.) eadh type of interface has its own
methods to communicate using its own driver. Totralcs from all these different
types of interfaces, ISL uses an abstraction l&ayealk with the different interfaces:
the Interface Abstraction Layer (IAL). The IAL offe an interface that does not
differentiate between different types of networtenfaces. Furthermore the IAL
offers the functionality of switching between thetwork-interfaces during a
connection. Therefore, it is possible to commumicatith multiple interfaces of
different types in a generic way.

Two other components are the Property Collector) @@ the Device Handler (DH).
The first is used to collect properties of intedgeairs, and the second is used to
communicate with other devices that use ISL. A# tomponents are described in
detail in the next chapter.

4.3 Handover

Whenever a better interface pair is found for adateam, ISL hands the stream over
from the ‘old’ interface pair to the new pair. Thiandover must be done seamlessly
without loss of data. Meaning that if there is aPT® connection between two ISL
devices, it must not be necessary for the two @svio reconnect to each other. The
problem of the handover of TCP/IP connections ikedahe TCP hand-off problem.
We considered various alternatives:

1. Ouir first idea was to realize a virtual TCP conim@tbetween the two devices
which was implemented through a real TCP connectihenever the
connection had to be handed over, the real TCPeamtiom would be broken
and a new real TCP connection would be establisaed the virtual
connection would then work with the new real TCRrection. This requires
a virtual socket number and a real socket numbdriclhware generally
different. Whenever another interface pair was ehpghe real socket was
recreated and bound to the chosen interface. Thené&gds to translate the
virtual socket number to the corresponding (neval socket number. The
problem with this method is that TCP/IP connectiges disconnected and a
new connection needs to be established. TCP/IPegadan get lost and the
handover is not seamless: TCP/IP packets thatlezady passed on to the
operating system get lost.

2. Another option is to use Mobile IP [24]. But Mobil®® has some
disadvantages:

* The infrastructure of the home network needs tahmnged (not only
the sender and receiver device but also the retaices).

» All traffic is routed through a home agent and dioéctly between the
sender and receiver (implying that there is alwaysnall part of the

38

path which cannot be changed: I.e. the receivenataactually change
because you keep the traffic to the home agenssiitee home agent
is the server).

3. The method chosen for ISL is a combination of ttheas of J.J. Lukkien,
P.H.F.M. Verhoeven and Philips Research Laboraoki¢ée create a ‘virtual
interface’ for each socket in the form of an IP redd (which we call the
virtual address) that we assign to a real interf@ah its own IP address,
which we call the real address). In other wordse physical interface gets
multiple IP addresses (the real address and onmmooe virtual addresses:
Figure 24).

Device A Device B

Application Application
I Interface AO Interface BO

192.168.1.1 192.168.1.2
\ J v

10.10.15.28 10.10.47.81
Interface A1 Interface B1

192.168.2.1 192.168.2.2

Figure 24.0ne interface with multiple IP addresses (a virauad real address)

A

If another interface pair is chosen by the Main tGafer, the virtual address is moved
from one real interface to another real interfddsing this method the virtual 1P
address stays the same, but the MAC address corndisig to the (virtual) IP address
changes. Therefore the changing of interfaces e dme level lower (level 2) than
the level of TCP/IP (level 3), which in turn makeossible to do seamless handover
of TCP/IP connections.

If the MAC address of an IP address changes, ald#vices need to be informed of
this change. The announcement is done by broadgast unsolicited ARP-reply
packet containing the virtual IP address and the MRAC address Figure 25. This
method of virtual addresses makes it possible tderaraffic using a direct path
between sender and receiver without changes tg-daeaices. A downside of this
method is that it is only applicable in a home rekwwhere each interface pair is
within the same broadcast domain because the Viatldresses are from the same
subnet. Also, the change of MAC address could berpreted by the network as
packet spoofing, triggering all kinds of alarms.

39

Device A Device B

Application Application
I Interface AQ Interface BO I

192.168.1.1 192.168.1.2
v Y

10.10.15.28 10.10.47.81
Interface A1 Interface B1

19216821 | [— - — i 2.168.2.2
92.168 ARP reply 192.168

:

Device A Device B

Application Application
1 Interface AO Interface BO I

192.168.1.1 192.168.1.2
Y \i
10.10.15.28 10.10.47.81

Interface A1 Interface B1

192.168.2.1 ~ > 192.168.2.2

Figure 25.Switching between interfaces, Stepl: Device A assigrtual address to
old and new interfaces and sends ARP reply; St&efice B receives
reply and updates ARP table, Device A removes airaddress from old
interface.

It is also possible to move the real address tahemanterface, but then the previous
interface of the real address is not available argnbecause it does not have an IP
address. Giving it a new real IP address is nobption, because it is not known
which addresses are already in use and suitabldadevice. Also DHCP can return
the old address which is used by the other interfarthermore if the real address is
moved to another interface it is not possible tange the interface pair for only one
stream at a time: all streams are moved from otexface to the other. With our
method we do not have this problem because we ustial address for each stream.
Using virtual addresses and routing them through teal interfaces makes it
impossible to use multiple interfaces for one streand therefore combining the
bandwidth of the paths. Combining interfaces foe ArCP/IP connection is only
possible if the transport layer is modified becailsetraffic needs to be divided over
multiple paths and recombined at the other end.aGather handover method is
needed to accomplish this (we suggest a possibleashén section chapter 7: using
NAT between virtual addresses and real addresses).

In our current implementation the virtual addresmestaken from the range 10.10.x.y
with subnet mask 255.255.0.0. The values for xyaatk taken at random. This could
allow streams to get the same address, but chameegery low. For our proof-of-
concept implementation this method suffices.

40

4.4 Main components

In the previous section (4.2) a complete overviéwSa is given. In this chapter each
component is discussed separately. Interactionsdeet the different components and
between ISL devices are given in sections 4.5 afd 4

4.4.1 Pair Selection Layer (PSL)

The purpose of the PSL is to offer an interfaceth® application. This interface

contains the same function calls as the Berkeleyck&o Interface (See

lusr/include/sys/socket.h on a UNIX based systemafeomplete overview of each

function with its parameters, or Figure 22 for acuoverview). PSL extends this

interface with a couple of new function calls themable new applications to

communicate the properties of the data that theyt weasend (e.g. the bit rate of the
traffic, the maximum allowed latency). Existing &pations can be used without any
modification to their source code and new applaratican easily be written to use the
extra functionality ISL has to offer. Read secti®® for information about how

applications can use the ISL.

442 Main Controller (MC)

The Main Controller keeps track of all data strednad applications send and receive.
It knows which interface pair is used for eachatmeand it chooses another interface
pair if a new interface pair offers better perfonoathan the current used path for the
stream. A cost function is used to determine the ob each possible path between
the sender and receiver, making it possible to @mpaths with each other. The path
with the lowest cost is chosen.

The Main Controller only looks at possible intedguairs between devices and not at
combining local interfaces together so that mudtipiterfaces are used for the same
stream. Combining interfaces is a problem by itaelfi therefore left open for future
research (see also section 4.3).

The Main Controller asks all the properties of jassinterface pairs between the
sender and receiver from the Property Collectopddéing on these properties it tries
to make the best choice.

When an application wants to receive data, itristat first on a by the application

selected network-interface and waits for an incapgannection or incoming data on

that interface. The receiver should listen on tReatdress (assigned to a network-
interface) selected by the application to let n8h enabled devices connect or send
data to the receiver. It depends on the used handuoethod if this is possible, see
section 4.3.

Because the (receiver) application generally datsknow who the sender will be, it

is not possible for the receiver to determine thetlpair of interfaces between the
receiver and the future sender. The sender camndiet the best pair of interfaces
because it knows to which receiver it wants to emtand send data. Therefore only
the sender chooses the best interface pair anth@oeceiver.

4.4.3 DeviceHandler (DH)

The Device Handler keeps track of which ISL enaldedices are connected to the
network and handles all control communication betwéSL-enabled devices (see

41

sections 4.5 and 4.6). The detection of ISL devisene by listening on the network
for broadcast messages sent by ISL devices; threratocannot detect non-ISL
enabled devices. The ISL is actually a servicereffdy devices and the detection of
ISL enabled devices can be implemented using acgeniscovery protocol (e.g.
Simple Service Discovery Protocol (SSDP) [25]).

The DH has knowledge about the local and remotafates (e.g. the address and the
type of each interface). The Device Handler semdisraceives broadcasts containing
the device identifiers and the information aboueifaces. This information is given
to the Property Collector.

4.4.4 Property Collector (PC)

The purpose of the Property Collector is to mamgicomplete map of all interface
pairs together with the properties of the interfaeérs of which the device itself is
part of. The Main Controller uses the Property €aibhr to get all properties of each
possible pair of interfaces and to keep track efdtatus of each stream. The Property
Collector gets information about the remote deviaed their interfaces from the
Device Handler. The Property Collector queriesl#iefor the properties of the paths
where the device itself is part of.

If an application wants to send data to a non-13labted device, the Property
Collector knows the receiver is non-ISL enabledadbese it has no information about
that device (otherwise the Property Collector woliddve received information from
the Device Handler). Because all devices need nowmce themselves to each other
there is some initialization time for each deviaddoe they can start sending data.
Else it is possible that an ISL device does notkkabout another ISL device because
the announcement information did not yet arrivemass lost. More about these ISL
device announcements can be read in section 4.5.1.

We have only looked at property determination meéshehere both devices use ISL
and not at methods for determining path propettietsveen an ISL and a non-ISL
enabled device. It should be possible to deterntiese properties using standard
methods (e.g. ping to determine latency) or nonesed one-side only methods (e.g.
let all local interfaces try to connect to the reéenmterface of the non-ISL device, the
local interface that sets up the connection thee§iss probably the best interface to
connect to the non-ISL device). So it is the resgality of the Property Collector to
get the properties of paths formed with a non-18izce.

445 Socket Abstraction Layer (SAL)

The SAL assigns the socket numbers whenever aricapph wants to create a
socket. The SAL uses the IAL to create a virtualreds for each socket and assigns
these virtual addresses to a real interface (sg®set.3). The SAL keeps track of all
these socket numbers and knows which virtual addtesdongs to which real
interface.

4.4.6 Interface Abstraction Layer (IAL)

Some types of interfaces offer extra functionaldycommunicate with interfaces of
the same type. A Firewire interface has for exantpée feature to reserve certain
bandwidth for a stream of data in contrast to aa8hterface. Also not all interfaces
use IP to communicate. That is where the IAL correslt gives the ISL the

42

possibility to talk to all kinds of different interce types without knowing the
difference between them. The IAL has knowledge alibe local interfaces, their
drivers and how to communicate with them. The IAlused to send and receive data
and is used to get the properties of a path. Thenakes no difference between the
sending and receiving of ISL control messages pptication data.

45 External communication

In this section all communications between ISL-déedlolevices is discussed. The
external communication is used for the followingkist

» Detection of ISL devices

» Gathering interface information

» Determination of path properties

» Selection of an interface pair

» Sending and receiving data

» Synchronization between ISL devices

These tasks are discussed in more detail in theestibns of this section.

451 Detection of ISL devices

There are different methods for service discovenainetwork (e.g. SSDP [25] or
SLP [26]). Most methods are a combination of urtieasl broadcast messages. To
keep it simple (because our focus is on the prgmitermination and architecture of
ISL), we only use periodic broadcast messagessiwoder whether a device has ISL
or not. The downside of this method is that it addsextra delay when a new device
is added to the network. This extra delay equadsititerval at which the broadcast
messages are sent. The broadcast can also beousekiifid of keep-alive message on
the network and if the broadcast message contaiosmation about the network-
interfaces of the device, this information exchaoge be done before any application
tries to communicate with another device.

Every ISL device sends a broadcast message, cmgdhme identifier of the device,
the amount of interfaces together with the propsrtf the interfaces (e.g. the address
and type of each interface). This broadcast is serdtll interfaces that use IPv4. This
is done because an ISL device can belong to meltipbadcast domains (see
requirements 7 and 14). The name of the device Wniaersal Unique ldentifier
(UUID) that is used for ISL to uniquely identify @adevice. Therefore ISL knows
how many ISL devices are connected to the netwndklkow many interfaces each
device has together with the properties of theriates.

When a device receives such a message, it chedkalitady has knowledge about
the existence of the sender. If not, it will add tievice to the list of known devices.
The device also stores a timestamp of the lasiveddroadcast of each device, so
that ISL can detect whether a device is still cate@ to the network or not. If a
device has not received a broadcast from anotHedé&sice for a certain amount of
time, it is presumed that the device is not openaii or connected to the network
anymore. ISL does not keep track on what interfabessame broadcast message is
received. It does however store the number of tiierface on which the first
broadcast message is received and uses this o#eida further ISL communication

43

with the other device. An ISL device does not sarmésponse back to the sender of
the broadcast message.

Before an application can communicate with anotiestice, ISL needs to know if the
other device also uses ISL or not. Therefore thBalization time of a newly
connected ISL device equals the interval time atlwhroadcasts are sent.

45.2 Gathering interfaceinformation

As discussed in the previous section, the broadoassage sent by all ISL devices
contains the properties of their interfaces. Whenean ISL device receives a
broadcast from another ISL device, it knows theetgpd address of the interfaces of
the other device and there is no need for extranwomication.

Another option was that a device queries anotheicdeabout its interfaces using

unicast messages. But this would involve extra camioation between ISL devices

before an application can start its own commurocatvith the other device, which

makes this method quite inefficient. The broadcasssage that is used for
identifying ISL devices is very small, so the infation about the interfaces can be
added without extra overhead in communication. Tifigrmation consists of the IP

address and the type of the interface (e.g. 8@u&tooth etc.).

4.5.3 Determination of path properties

The Property Collector periodically collects theperties of the paths of which the
device is part of. A property is determined betwéen devices: the device that
initiates the property determination is the sera®d the other device is called the
receiver. The sender initiates the determinationagbath property by sending a
message to the receiver telling it which propestgaing to be determined with which
interface pair. The receiver is now able to pregheelocal interface that is involved
in the path property determination and send a ngeskack when the receiver is
ready for the measurement to begin. The complejaesee of communication steps
is displayed in Figure 26.

44

Sender Receiver

| Announce measurement

Ready to start measurement—

Result
T
|
|
|
|
|
|

Figure 26.Sequence of communication steps for executing aunement

The internal communication between the componeftth® ISL is discussed in
section 4.6.

45.4 Selection of interface pair

For each interface pair between two devices, aest®rcalculated using a cost
function and the best pair is chosen. This protasss place at the sender; therefore,
the receiver does not know which interface paikhesen by the sender. The sender
however does not know to which remote interface ri@ote virtual address is
mapped, so it is not possible to send a simple agesso the receiver telling it to
change a certain mapping. To let the receiver kadich local interface to use, the
sender must send a message to the receiver cowgtahe receiver’s virtual address
(which identifies the stream to the receiver) tbgetwith the selected interface (see
section 4.6.2).

This message gives the receiver the informatiomed¢o change the assignment of
the virtual address to the real interface. After taceiver has changed the mapping, it
sends an acknowledgement back so that the sendedszachange the mapping. See
Figure 27 for a sequence diagram describing tlegfante pair switching process.

45

Sender Receiver

Announce interface pair

> Change mapping

Ready (Mapping changed at receiver)—]

> Change mapping
H
|
|
|
|
|
|

Figure 27.Sequence of communication steps for changing anfate pair

The sender lets the receiver to change the magpsidecause if the receiver is not
able to change the mapping, the receiver can infblensender without the TCP/IP
connection getting lost. When the receiver has gbdrthe mapping TCP/IP makes
sure that packets do not get lost by retransmittimgm until the sender has also
changed the mapping. UDP packets however do getAosther option would be to
let ISL block all the traffic, but ISL has no cooiltrover all packets that are already
passed to the Operating System before the charipe ofiapping, so this option is not
chosen.

455 Sending and receiving data

The actual sending and receiving of applicatioradatdone by the IAL. From the
application’s point of view, the ISL is transparemd the sending and receiving of
data is done through the Berkeley Socket Interface.

To comply with the standards of the different kirdgraffic, no additional header is
added to the data (requirement 10). But when an d8lice wants to wait for
incoming data, it first creates a virtual addresd enaps it to a real interface. This
mapping is then broadcasted to all other ISL deyise that they have knowledge of
this virtual address. If an application wants todsdata to another ISL device, the ISL
changes the destination address given by the apiplic to the receiver’s virtual
address.

The sender also creates a virtual address, bueis diot broadcast the information
about the virtual address to all other devices isedhe virtual address will only be
used to connect to another (virtual) address and fap receiving incoming
connections. See Figure 28 for the sequence of eonwation steps.

A downside of this method is that it is necessaryaf sender to be already connected
to the network before the receiver starts listen®dtherwise the sender could miss the

46

broadcast message containing the virtual interfiaéermation and therefore the
sender does not have the information needed toeobio the receiver: it simply does
not know about the virtual interface’s existencheie are two possible solutions to
this problem. The first is to add the informatiomoat the current existing virtual
interfaces to the periodic keep-alive broadcastsangs. The second is to add some
ISL specific protocol between the two ISL devices that the virtual interface
information can be exchanged between them duriset ap of a connection. Because
we merely want to offer a proof-of-concept implenation we do not address this
problem in our implementation.

Sender Receiver

| |
| |
— —

> Create Virtual Interface > Create Virtual Interface

Broadcast Virtual Interface——

Connect to Virtual Interface

\

Figure 28.Sequence of communication steps for making a cdiomeloetween a
sender and receiver.

45.6 Synchronisation between | SL devices

When a property is determined, the value of the@ny is a kind of snapshot of the
path’s condition at a certain moment in time. fevice adds a stream to the network,
the measured value could be inconsistent with tireent network condition. This
could introduce a live lock: consider a device $egda stream over a not-optimal
path, so another path is selected, which causabemsiream of another device being
sent over a not-optimal path. Both ISL devices ddidep switching between paths,
so we need a method that lets the ISL devices cgawve a stable state. To solve this
problem, determining properties and setting up & pehould together be one
transaction that can only be performed by one I8tiak and not by multiple ISL
devices simultaneously. This however does not stieesituation where a legacy
device starts a data stream between the propettynd@ation and the starting of a
data stream between two ISL devices. In this sdnahe ISL device has to change
the path only once, because the legacy deviceotohange their ‘selected’ path, so
the ‘live lock’-problem is not an issue here.

Requirement 15 states that it should be possibsynehronize all ISL devices to get
a stable state. There are different methods knowihe literature to perform an
atomic transaction using distributed mutual exdnsj21]. The rest of this section
discusses these methods.

47

There are two mainly two methods: the first meti®do let all devices select one

device as the coordinator and let each device laslkcoordinator for permission to

perform a transaction, the second method is talledevices form a token ring, the

device that has the token can do a transactiorh Bethods suffer from the problem

that not all devices can communicate with eachrdiieeause devices can belong to
multiple broadcast domains (requirement 14). Theeefit is necessary that each
broadcast domain has one coordinator or one token.

It is not difficult to elect a coordinator or sqi & token ring in one broadcast domain,
because each device has a unique ID the bullyngr aigorithm can be used for
election [21].

There are a few problems when a token ring is usedffer distributed mutual
exclusion to perform a transaction:

* The network gets flooded by the tokens becausevi@edenly rarely needs to
determine properties and change a path.

* A device can only perform a transaction when it k@ tokens of each
broadcast domain the device belongs to. This caitye@sult into deadlock
when two devices both belonging to two broadcashalns each have one
token and want to do a transaction. It can alsaltresto a live lock when
there is a time out on how long a device can hdlokan and the two devices
keep alternating the two tokens.

The coordinator method does not have the firstlprobBut it does have the second
problem: a device needs to have permission frorthallcoordinators. Now the same
problem occurs when two devices belong to the samoebroadcast domains and
each device only has permission from one of the daardinators. This can only be
solved when there is only one coordinator in théremetwork, which is only
possible if devices act as a bridge between braaddamains to let permission
requests travel from one broadcast domain to therdiroadcast domain.

This is however very sensitive to failure, becawdeen a device crashes (or is
disconnected) the network can be split up into sgparate broadcast domains that
have no bridge between them. However if an eledtoheld each time a network

change occurs (e.g. a device is connected or digo)) then a network change

should not be a problem (assuming that algorithmes wsed to handle pending

permission requests).

To guarantee correctness of measurement valués dinte a device wants to start a
stream, synchronization between the ISL devicegseisded. A token ring is not
suitable because a device only rarely wants tacsal@other path, so the coordinator
method must be used. However because this allosvESih devices to act as bridges
between broadcast domains, it would increase theplexity of our proof-of-concept
implementation. Because we only want to prove ihas possible to offer path
selection to an application by only looking at fr®perties of a path, we have not
included such a distributed mutual exclusion alomiin our implementation.

4.6 Internal communication

In section 4.5 we described the communication tdets place between two devices.
But inside a device there is also communicatiomvben the different components. In
this section we look at the internal communicatgiaps that need to be done to
perform the following tasks:

48

 Initialization of the ISL device

» Handling control messages

* Property determination

* Interface pair selection

» Sending application data

* Receiving application data
The internal communication steps are given in trenfof sequence diagrams. Each
solid arrow represents a function call and theadb#rrows represent a return value.
Return values that only report if a function caisassuccessful are not displayed in the
sequence diagrams.

4.6.1 |Initialization

Before ISL can do anything, it needs to initialitzelf. The component Main calls the
‘initialize’ method of the Device Handler, the Pesty Collector and the SAL. This
causes each component to initialize its privataabées and creates the necessary
threads for the different tasks of each component.
The Property Collector, the SAL and Main only iaiize variables and create the
necessary threads (more about the different thré@adsection 5.4). The Device
Handler also performs a couple of initializatioaps using the other components:

» Get information about the local interfaces

» Start broadcasting presence messages periodically

» Start listening for incoming ISL control messages

To get information about the local interfaces, ascéo the operating system is
required. The IAL has access to the operating syste the Device Handler asks the
IAL for the information about the local interfaceBhe Device Handler passes this
information on to the Property Collector (Figure.29

—

DeviceHandler 1AL PropertyCollector

getlLocallnterfaces()

InterfaceList

addDevice()
|
|
- |
|

Figure 29.Getting information about the local interfaces
The Device Handler sends periodic broadcasts taluite its availability to the other

devices on the network. The IAL is used to set wgpeket and send the broadcast
messages (Figure 30), more on the different messageection 4.6.2.

49

—

DeviceHandler 1AL

I___

createSocket()

connectSocket()

sendData() M1
Periodically

Figure 30.Sending periodic broadcasts

The last initialization step of the Device Handiero set up a socket for incoming
ISL control messages. After an ISL control messagdandled by the Device
Handler, it waits for another incoming message Fag31).

—

DeviceHandler |

|
|
—L

|___

createSocket()

bindSocket()

recvData()

received message M?

> handleMessage

Figure 31.Receiving ISL control messages

4.6.2 Handling messages

The Device Handler receives ISL control messagesn frother ISL devices.
Depending on the type of the message, certainrectieed to be performed by ISL.
The different ISL control messages are given itofaing table.

5C

Name | Contains Description

M1 * Device ID Broadcasted announcement of presence
« Interface information of a device with its interfaces

M2 * Real address Broadcasted announcement of a newly
« Virtual address created virtual address

M3 e Virtual address Announcement of an interface pair
* New local interface

M4 » Type of measurement Announcement of a measurement
* Remote interface number
» Local interface number

If the Device Handler receives M1, it passes on itifermation to the Property

Collector so that both the components have thatyhd store the information or

know that an already known device is still conneédtethe network.

When message M2 is received, the Device Handlesegathis information on to the
IAL which can use this information to translatelraddresses (from the application)
to the virtual addresses (more on this in sectiérbdand 4.3).

DeviceHandler PropertyCollector 1AL DeviceHandler IAL
T
|
I

Virtual Interface announcement M2
addVirtuallnterface() - T

Figure 32.Handling of message M1 (left) and message M2 (yight

addDevice()

If a stream of data is running between two devieesinterface pair is announced to
the receiver of the data stream using message MS8DEvice Handler of the receiver

uses the IAL to move the virtual interface to tlesvly selected interface. When this is

done, it sends a message back to the sender sthéhaender can also change his
local interface (more on this in 4.6.4).

DeviceHandler IAL

changeRoute()

sendData() Ready

Figure 33.Handling of message M3 (change local interface)

51

When a device (the sender) wants to determine pepno of a path, it sends a
measurement announcement to the device on the etideof the path (the receiver).
This announcement contains the type of measurethants going to take place and
the name of the interfaces involved in the measargnThe receiver prepares itself
for the measurement and sends a message back whenready to start the

measurement. Because the device receives an arement the device knows that it
has the receiver role in the measurement. The mmasat can now start. This
measurement is handled by the IAL. When the measeme is done, the receiver
sends a message back containing the result of #dasumement (Figure 34). More on
the property determination at the receiver sidelimfound in section 5.4.6.

DeviceHandler 1AL
T T
il i
Measurement announcement M4
e K-
giveProperty()
givePropertyThread()
sendData() Result

Figure 34.Handling of message M4 (getting ready for a measarg)

Both M3 and M4 messages are handled as a kinchadteeprocedure call mechanism
(RPC [22]) messages. This means that the send#reomessages blocks until the
receiver calls the required functions and sendsékalt back before the sender can
continue.

4.6.3 Property determination

In section 4.6.2 we discussed how a measurememuacament is handled on the
receiver side, here we give the sequence diagratheo$ender side. The properties
are collected by the Property Collector. The Priyp&ollector gets the properties
from the IAL, which determines the properties. Hreperty Collector keeps a table
containing all the detected devices with their riftees and periodically determines
the properties of the paths of which the devicelfits part of. The Property Collector
tells the Device Handler that it wants to determagyath property. The Device
Handler makes sure the other device (the recekrans this. The Property Collector
calls the IAL to determine the property, and thé Ikturns the value of the property
that is received from the other device. The Prgp&dllector stores this property
value in the graph.

52

Sender Receiver

PropertyCollector DeviceHandler IAL 1AL DeviceHandler

1 F

i i i
I | I
I | I
announceMeasurement() ! ' '
| | |
| | |
— —
sendData() M4 Measurement announcement
Ready for measurement giveProperty()
e ,,,,,,,,,,,,,,,,,
~~~_ Ready givePropertyThread()
_ T AR
Receiver is ready i S~ sendData()
S | >
|
LJ .

getProperty() measurement !
. | !
Result Result |
Ko———mmmmmmm - bom e K ----1r-—" [~~~ !
|
L |
|
|

Figure 35.Determination of a path property

4.6.4 Interface pair selection

The Main Controller keeps track of all the runnidgta streams and periodically

checks the properties for the possible paths betwse devices of a stream. It asks
the Property Collector of all the properties oflegath and determines the best path.
If the current path is not the best path, the M@mntrollers announces the new

interface pair to the remote device using the De¥andler. After the remote device

has changed his interface (see Figure 33), the $Aused to change the local

interface. The SAL uses the IAL to do this switch.

Main PropertyCollector DeviceHandler SAL 1AL
T T T T T
| | | | |
| | | | |
™M | | | |
| | | |
| | | |
| | |
getProperty } } }
for each path | | |
| | | :
announcelnterfacePair() ﬂ sendData() M3
| |
Remote interface changed Reédy Ready
R e L e K—---
1 1
|
} changeRoute() } changeRoute()
i Local interface changéd Ready
Ke——m—————— Fommmmmm e —— T T [
|
|
|
|
|

Figure 36.Determine best interface pair and choose this pair

4.6.,5 Sendingdata

An application uses the interface of the PSL tadsamd receive data using the steps
given in Figure 22. The PSL translates the BSkdallcalls to Main. Main passes the

53



calls on to the SAL that keeps an administratioralothe created sockets and their
state. The SAL also creates the necessary virtldieases for each socket using the
IAL.

As seen in Figure 22 there is a difference betwbenfunction calls when UDP or
TCP is used. First we give the sequence diagraftnation calls when an application
uses TCP.

PSL Main DeviceHandler SAL 1AL
| | | | |
| | | | |
—L — | — —L
socket() createSocket() createSodket() createSocket()
|
bind() bindSocket() bindSocK‘et() createVirtuallnterface()
_ |
| Virtual Interface information
|
i bindSocket()
|
Virtual Interface information
S e Fommm—m—-om
|
broadcastVinuallnterface(ﬂ sendData() M2
N .
1 ?
0
connect() connectSocket() connectSocket()
_ |
If socket is not already bound to an interface, connectSocket()
the virtual interface is created by the SAL,
but this information is not broadcasted (because
the application does not bind itself to an interface,
other devices do not need this information).
|
I
send() sendData() sendData() sendData() Data
)
close() destroySocket() destroySoéket() destroySocket()
—p +
|
|
| — —
|
|

Figure 37.Sender application using TCP to communicate

Because theind call is optional when sending data, the ISL doesshmoadcast the
created virtual address wheind is not used.

UDP is connectionless, so tb@nect function of the PSL is not called. It is however
possible to have connected UDP sockets (see [80]whenever an application uses
thesendto , we connect to the address that is an argumesghato . This connecting
does not add extra overhead because no actualat@me made but only the remote
address is stored so that whamd it used, the operating system knows to which
address the data must be sent. This is done to tkeepame sequence of function
calls as with TCP so that all the components exéepthe PSL do not make a
difference between UDP and TCP traffic.

54



PSL Main DeviceHandler SAL 1AL
| |
| | | | |
—L — | — —L
socket() createSocket() createSoq‘ket() createSocket()
|
bind() bindSocket() bindSocK‘et() createVirtuallnterface()
—_ |
} Virtual Interface information
|
i bindSocket()
|
Virtual Interface information
Koo  EE R
|
broadcastVirtuallnterface(ﬂ sendData() M2
- .
i
|
.
sendto() connectSocket() connectSocket()
_ |
If socket is not already bound to an interface, connectSocket()
the virtual interface is created by the SAL,
but this information is not broadcasted (because
the application does not bind itself to an interface,
other devices do not need this information).
|
|
sendData() sendData() sendData() Data
close() destroySocket() destroySoéket() destroySocket()
) H

Figure 38.Sender application using UDP to communicate

The IAL has knowledge of all virtual interfaces time network together with their
original addresses (combination of IP address amtirumber). If a device wants to
connect or send data to another device, the |Ahstedes the address it gets from the
application to the corresponding virtual address.

4.6.6 Receivingdata

The receiver must always bind to a local addresispamt number. Thereforgnd is
always called. Applications normally have the ploiisy to listen to all interfaces
(using the BSI twind to 0.0.0.0) but to have full control of which irfeces are used,
we create a virtual address and bind a socket thjiréz that virtual address. The
create andbind operations are the same as for the sender appiicgtven in
section 4.6.5. All other operations ripple from 8L through the Main and SAL to
the IAL.

55



PSL Main DeviceHandler SAL 1AL
1 1 1 1 1
. . I . .
socket() createSocket() createSodket() createSocket()
|
bind() bindSocket() bind Sock‘et() createVirtuallnterface()
|
R
i Virtual Interface information
| K——-mm—m o
! bindSocket()
|
Virtual Interface information
R [ —
|
|
broadcastVirtual Interface(')—j sendData() M2
N I
|
1 i
listen() listenSocket() listenSocket() listenSocket()
R 1
accept() acceptSocket() acceptSocket() acceptSocket()
|
EEEEEE— T
New socket New socket New socket New socket
|
——————— K—-----------| K- K-
recv() recvData() recvData() recvData() Data
)
+ —==----
close() destroySocket() destroySocket() destroySocket()
SN H

Figure 39.Receiver application using TCP to communicate

The UDP case is described by a more simple sequiageam because the listen and
accept functions are not used here.

PSL Main DeviceHandler SAL 1AL
T T T T T
| | | | |
i * ! * i
sockety() createSocket() createSoqket() createSocket()
bind() bindSockel() bindSocI{et(] createVirtuallnterface()
-y ,
} Virtual Interface information
L
| bindSocket()
|
Virtual Interface information
R
|
. ! T
broadcastVlrtuallnterface(ﬂ sendData() M2
_[ |
i
L
recvfrom() recvData() recvData() recvData() Data
—_—— | + e ,,,,,
close() destroySocket() destroySogke1() destroySocket()
N H

Figure 40.Receiver application using UDP to communicate
4.7 Conclusion

Using the architecture as displayed in Figure 23sitpossible to separate the
application’s tasks from the ISL tasks so that bo#m do their work separately

56



(requirements 6 and 11). Furthermore by implementte ISL as a layer it is easily

portable to other kernel versions and easier teldgvand debug. Because the ISL
offers the Berkeley Socket Interface to the appibca applications do not require

modifications before they can use the ISL (requerni?2).

The current handover method (4.3) is suitable ihoae network situation. The
TCP/IP connections are preserved and it is possibddange the path of each stream
separately. But the legacy support is not optinelhecause legacy devices have no
knowledge about the virtual addresses. An imprawethod is needed as discussed in
chapter 7 to fully support legacy devices.

57



5 Implementation

In this chapter implementation details are discdissgout ISL. Information is given
about the environment for which ISL is implement&de explain how the Main
Controller chooses an interface pair and how thedbeer between interface pairs
takes place. At the end we discuss implementatietaild about the different ISL
components (e.g. the function of the different &laie in each component) and it is
explained how an application can use ISL.

5.1 Linux

We have chosen to develop ISL in C++ for the Limaperating system. We have
chosen for Linux because ISL requires access toldoel parts of an operating
system. Also implementation on Linux was a requeatof the project (requirement
8) as other parts of the project were working omulki Since the source of Linux is
available, that OS is chosen. The techniques Blatuses could also be applicable to
other OSes.

To support the handover of connections betweenfates (see section 4.3), we use
the third party utilitiesifconfig ’ (assigning virtual addresses to real interfaces)
‘arping ' [23] (for sending ARP replies). Furthermore thdity Pathload is used to
determine the available bandwidth of a path. Thesés are called from inside the
ISL using thesystem statement, which also has a negative effect opénrmance
of ISL. Better performance can be given when thbge party tools are integrated
into the ISL.

The current implementation of ISL is a proof-of-cept implementation, meaning
that it is only there to show that our idea of dffg interface switching to an
application is possible. The performance of theentrimplementation could be better
(see chapter 6). We believe that the ISL shouléhtegrated into the Linux kernel,
which will offer a major performance boost to ti$t |

The entire ISL is written in C++ which makes it fadile between different OSes
(requirement 9). Only parts of the IAL need to lesvritten when it is ported to
another OS, because the IAL contains OS specifitsp@.g. the access to the
interfaces and the handover between interface)pairs

5.2 Filedescriptorsand sockets

Thesocket function call of the Berkeley Socket Interfaceates a socket and returns
the descriptor of the created socket in the forra afimber (which we call the socket
number). The socket number is actually a Linuxdiscriptor. Not only the functions
of the BSI can use these socket numbers, but dlser dunctions like file access
functions (e.gselect , read , write ; see their corresponding manual pages for more
info). The ISL only offers replacement functions the BSI and not for all these
other functions (Figure 41) because we only needtéycept the function calls which
are used for the actual communication with othefiads (e.g. setting the remote and
local address, establishing connections etc.).

The ISL creates real sockets for every call to sheket function call by the
application and returns the actual file descrippoimber of the created socket.
Therefore, the socket numbers returned by the I8lbackwards compatible with all
other functions that use file descriptors.

58



Interface Selection Layer

Application

‘ PsL ‘ Main SAL

‘ - ‘ ‘ o ‘

|
I
— .
update stream status ~|_stitch to local virtual address translate to remote virtual address BSI function
| » | »l
Return value '|_F update stream status translate to remote real address Return value

Non BSI function

Return value

Figure 41.Communication between an application and the OB 8L

As seen in Figure 41 the ISL only intercepts ctilshe Berkeley Socket Interface.
All other calls go directly to the operating systdfra BSI call is intercepted, the PSL
passes the call on to the Main Controller, whicdaips the status of a stream (e.qg. if
it is being created, bound to an interface, sendingeceiving data). The Main
Controller passes it on to the Socket Abstractiagdr, which (if necessary) creates a
virtual address for the socket and binds a crestettet to the virtual address. The
Interface Abstraction Layer translates the realatenaddress to the virtual remote
address and then establishes connections or sataisodthe virtual address using the
operating system. If a message is received frormaaVl address, the IAL translates
the virtual address to the remote address bef@asimathe message to the SAL. The
SAL passes the message to the Main Controller afoittican update the status of the
stream, and the MC passes it back through the &8ietapplication.

5.3 Determination of the best interface pair

The Property Collector has a list of properties é¢ach path. It tries to keep this
property list up to date by periodically determmithe properties of the paths the
device is part of. The Main Controller uses theperty Collector to get the properties
of the possible paths for the data streams thecdetgelf has initiated. For each active
stream the Main Controller periodically compardspalssible paths with each other
by using a cost function to determine the costaufhepath. Because of the limited
time for the project, we kept the cost functionywsimple: the path with the lowest
transmission time is the path with the lowest e@wst thus this path will be selected.

5.4 Components

In section 4.4 we discussed the different tasksagch component. To make ISL more
efficient, we used different threads in the compuas¢o do certain tasks in parallel. In
this section we discuss these threads and othéementation specific details.

One thread is always there: the application’s olanead. This thread uses the PSL,
Main, SAL and ISL (Figure 42).

59



accept() —» acceptSockel() —» acceptSockel() —» acceptSockel() —» accept() —»

bind() —» bindSocket() — bindSocket() — bindSocket() —» binc() —
connect(] —» connectSocket() — connectSockel() —» createVirtuallnterface() —» conneci() —»
sockel() —» createSockel() —» createSockel() —» connectSockel() —» socket()/close() —»
close() —» destroySocket() —» destroySocket() —» createSockel() —» 'ifconfig"() —»
listen() —» listenSockel() —» listenSocket() —» destroySocket() — listen() —»
recv()/recvfrom() —» recvData() —» recvDatz() —» listenSockel() —» recv()/recvfrom() —»
send()/sendto(} —» sendData() —» sendData() —» recvData()/sendData() —» send()/sendto() —»
Y,
O
Pty A
lp//.7 09
2 &
n S
%, S
%, Ed
Ce
K/
Device Handler

Figure 42.The application’s thread

54.1 Pair Selection Layer (PSL)

The PSL is only used by the application threadadts as the interface to the
application. It contains the Main Controller agatis global object. The PSL is not an
object, but a list of public available functionstkat it resembles the BSI.

5.4.2 Main Controller (MC)

This object uses the Singleton pattern (Figure[23]) to ensure there is only one
Main Controller associated with the applicationtti®using ISL. During tests we
found out that each application thread or processntiates its own ISL. In the future
the ISL should be made a singleton per device ahger process or thread.

Singleton

-instance : Singleton

+Instance() : Singleton
-Singleton()

Figure 43.The Singleton pattern

The Main Controller consists of one thread: theatn handler thread. This thread is
responsible for keeping track of all running streaby periodically asking all the
properties from the Property Collector and selectire best path for each stream. The
new path is announced with the Device Handler. Wtien new path has been
successfully announced, the Main Controller usesSIAL to change the path (Figure
44).

Because the selecting of an interface pair is doreeseparate thread (separate from
the application’s thread), it is possible for thpgplécation to immediately start sending
and receiving data without a delay needed for 8le to choose the best interface
pair.

6C



ha,
"9@/?% "ifconfig"() —»
S0 "send ARP reply"() —»
send() —»
recv() —»

Property Collector

Device Handler

Figure 44.The stream handler thread

5.4.3 DeviceHandler (DH)

The Device Handler consists of two threads: oneaithifor broadcasting the periodic
messages containing the local interface informadiath device ID, and one thread for
receiving and handling ISL control messages.

The first thread uses the IAL to get the interfat®rmation and for sending the
broadcast message (Figure 45). The second threasdhes IAL to communicate with
other ISL devices and the Property Collector topkdee network graph up to date
(Figure 46).

getLocallnterfaces() —» getifaddrs() —»
sendData() —» send() —»

Device Handler 1AL Os

Figure 45.The broadcast thread

=
O
(]

- givePropertyThread() —»

recvData()
giveProperty() —» recv() —»
sendData() —» send() —»
addVirtualinterface() —» "ifconfig"() —»
changeRoute() —» "send ARP reply"() —»

—

- [
Device Handler IAL 0s

H <—addDevice()

Property Collector

Figure 46.The message handler thread

61



5.4.4 Property Collector (PC)

The Property Collector consists of one thread,ptmperty handler thread, which is
responsible for determining the properties of ladl possible paths, making it possible
for the Main Controller’'s thread to choose a pathilevother properties are being
determined. The Device Handler is used to announoeeasurement to the other
device that is involved in the measurement and Ifie is used for the actual
measuring of the property (Figure 47).

send() —»
getProperty() —» recv() —»
[ a |
Froperty Collector O
Property Collector IAL (OS]

<4—announceMeasurement()

Device Handler

Figure 47.The property handler thread

Measuring properties and comparing paths are dgnevb separate threads. This
allows a fast comparison of paths because pathbeaompared with each other with
only a couple of properties known. A downside a$ therformance enhancement is
that it is possible for the Main Controller to s#la non optimal path because not all
properties are determined yet or the determinefepti@s are outdated.

5.4.5 Socket Abstraction Layer (SAL)

The SAL is used by the application’s thread foratrg virtual interfaces if
necessary. The stream handler thread of the Mamr@ter uses the SAL to change
the chosen interface pair for a stream (Figure 44).

5.4.6 Interface Abstraction Layer (IAL)

The IAL is used by all other threads to communioatth other devices or to get
information about the own device by accessing therating system. The IAL also
contains the algorithms to perform measurementdetermine the path properties.
The mediator pattern [27] is used to keep adding measurement algorithms for
new properties simple (Figure 48).

62



Interface Role

-type

+measure()

1 #measureLatency()
#measureBandwidth()

JL

802_3 Sender Receiver

+measureLatencySender()
+measurelLatencyReceiver()
+measureBandwidthSender()
+measureBandwidthReceiver()

Figure 48.The mediator pattern used in the IAL

The class Interface offers a virtual API for eagtwork type (e.g. 802.3). When the
IAL must determine a property (for the Property |€dor or the Device Handler) it
creates a Sender or Receiver object with an attialctierface object. The IAL knows
the type of the interfaces involved in measuring thquested path property, so it
knows which Interface object it must attach. If tReoperty Collector wants to
determine a property, the IAL creates a Senderctbgise a Receiver object is
created. The only method that needs to be calledhbylAL is the measure()
method. The creation of the Role object (SendelReceiver together with the
attachment of the Interface object) determines Wwpiotected method is called by the
measure() method.

When a measurement announcement is received HyHhttom another ISL device
(4.6.2), the IAL creates a separate thread thatsviai the actual measuring to begin.
The IAL sends a message back to the sender of #asumement announcement after
which the measurement is started by the sendern\Whe measurement is finished,
the thread sends the result of the measurement back

5.5 Using ISL; replacing standard BSI functions by others with the
same hame

In this section we want to look at how an applimatcan use the ISL. An application
must not need changes before it can use the ISjuifeEment 12), so we want to
avoid source code modifications. For this reasenl8L offers the same interface as
the BSI, which causes the problem of name claskeause the standard C library
already contains the functions the ISL offers. Void source code modifications and
the problem of name clashes, we compile the IS4 stzared library and make sure an
application makes use of this shared library irdstefathe BSI. The later is done by
setting the environment variableD_PRELOADto our ISL library fbiSL.so ),
meaning that it gets loaded before all other lilesar

To avoid setting this variable manually, we impleneel a kind of ‘wrapper
application’ do this for you:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

63



int main(int argc, char *argv[])

putenv("LD_PRELOAD=IibISL.s0");
execvp(argv[l],&argv[l]);
return O;

The above wrapper program first sets the environmanable and then starts the
application with all its parameters (which the wrap program itself got as its own
parameters). This method does not require recotigpilaf the application’s source.
ISL should also be extensible to give new applceti access to more advanced
functionality (requirement 16). This is done by nigidhg the application’s source
adding#include “psl.h” to the application’s header files. When this isi@othe
new ISL functions can be added to the applicatisnisrce. The ISL library must still
be loaded using the method described earlier sxsction.

To avoid name clashes when the ISL itself calls #céual BSI functions, the
Dynamic Linking library (bdl.so ) is used. Else, when the ISL calls a function of
the BSI directly, a loop appears because not theegponding function of the C
library is called but the corresponding functiontleé PSL. To avoid this, we get the
function pointer of each BSI function using theddaling code:

int (*_libc_socket)(int domain, int type, int proto col);
void* _libc_handle = NULL,;
if ((_libc_handle = dlopen("libc.s0.6", RTLD_LAZY)) 1= NULL)
_libc_socket = (int (*)(int, int, int))dlsym(_lib c_handle,
"soc ket");

}
int libc_socket(int domain, int type, int protocol)

intr=-1;
r = (*_libc_socket)(domain, type, protocol);
return r;

So instead of calling the functicicket , we call the functiombc_socket  with all
its parameters. Thibc_socket  function passes all the parameters to the function
pointer of the ‘real socket function’ (for more infsee the manual page asym °).

For debugging purposes, we have prefixed all thefBi&ctions offered by the PSL
with isl_ and added the declarations of the prefixed funstim thepsi.n header
file. Therefore it is not necessary to override skendard BSI using thed PRELOAD
environment variable. The shared ISL library netedse available to the application
(it is enough to put the library in a directory tbfe library path, e.gusr/lib ).
Furthermore the application’s source need to haw@ctude “psl.h” instead of
the #include <sys/socket.h> and all occurrences of BSI functions in the
application’s source need to be prefixed visth .

64



6 Evaluation

In this chapter we discuss how we have evaluatedmbrking of the ISL. We test
whether ISL selects the best interface pair (thth péth the lowest cost, see 5.3) and
if a new interface pair is selected when a bettgerface pair is available.
Furthermore the performance and the legacy sumddS&L are discussed (e.g. how
will ISL operate in a network with non-ISL enabléevices?).

6.1 Interface pair selection (startup test)

To test if the best path is selected when ISL #stetl we have used two devices
(Pentium 4's) each with two interfaces (a 100Mbasd a 10Mbit/s NIC). Both
devices use Linux (Debian) as their Operating Systehe complete set up is given
in Figure 49.

Device A Device B
100 100 Mbit/s switch 100
Mbit/s Mbit/s
10Mbit/s Cross-link cable 10Mbit/s

Figure 49.Test set up

A video stream is set up between Device A and BeBiaising GStreamer [28], using
a modified sink and source plug-in for transmissising TCP [29]. We made sure
that the video stream uses the 10Mbit/s path whetrdamer is started. All the BSI
function calls in these plug-ins were prefixed wéth because it was not possible to
use the wrapper program: it resulted into multipistances of the ISL per device,
because GStreamer uses multiple threads. So relediopi of GStreamer’'s TCP

source and sink source code was necessary.

6.1.1 Functionality

We saw that the LEDs on the 100Mbit/s switch arebiimking which implies that
the 10Mbit/s path is used instead of the 100Mipath. After a while ISL determines
that the 100Mbit/s path has a smaller transmissioe and chooses the 100Mbit/s
path. After the path switch GStreamer continue@astiing the video without a
disconnection. We also used Ethereal [30] to vaht indeed the packets were first
sent over the 10Mbit/s path and later over the i@ path.

6.1.2 Performance

While the video is streaming from Device A to B, sex a lot of hiccups in the video
displayed at Device B (each less than a secondenWSL performed the switch
between paths, the video stopped until the patbhcbwias completed. The hiccups
are caused by the handling of the (ISL) threadshkyoperating system and because

65



our implementation is not made for performancer@lae pieces of code that are not
efficient: lots of memory allocations, de-allocatsoand — in the end — unnecessary
copying of data). The stopping of the video durangath switch is caused because
external third party tools are used to performsich (so a new process is created
for each tool when called and multiple ARP-replyhets — to avoid loss - are sent
with an interval of 1 second between packets). Taky during the path switch
should be minimized by adding extra buffering antkgrating the third party tools
with the ISL.

When comparing paths it is not necessary to knavettact values of the properties
of each path; only knowing their order is enouglsée which path is the best path.
Therefore simplifying the property determinatiomaithms could also give better
performance to the ISL because properties are kreasirer.

6.2 Switching interface pairs(changing test)

To test if ISL changes its selection when a bgih comes available we used the
same set up as given in Figure 49. We disconneleed00MDbit/s path so at first ISL
can only select the 10Mbit/s path.

6.2.1 Functionality

While the video is streaming we connected the 100Mipath and saw that in a
couple of seconds ISL changes the 10Mbit/s pattl bgesStreamer to the 100Mbit/s
path, which we again verified with Ethereal.

6.2.2 Performance

The same performance issues as in the previougbtégtare seen here.

6.3 Legacy devices

When the sender is a legacy device it is not ableohnect to an ISL device because
of the chosen handover method. An ISL receivertesea virtual address and assigns
this address to a real interface. When an appbicain an ISL enabled device listens
for incoming connections or messages it listenghenvirtual address and not on a
real address. Because legacy devices have no kigevte the virtual addresses, they
are not able to connect to ISL devices.

When the sender is an ISL device and the receilegacy devices, the ISL device is
able to connect to the legacy device, becausesitnmainformation about a virtual
address it connects direct to the real addreskeofegacy device. The only problem
here is that ISL has no extra functionality to offe improve the quality of the
connection (see chapter 7).

A possible solution to let legacy devices conneciSL devices is to change the
handover method. Instead of directly assigningruai address to a real interface, it
should be possible to change the internal routimg device so that all the traffic sent
to a certain port on a certain address is forwatdeal virtual address and the other
way around. So the main idea is to put some kindNAT between the virtual
addresses and the real addresses.

66



7 Futurework

During the project, we came up with new ideas toauld lead to future
improvements for ISL. Also some parts of the curi&L need to be optimized to
make it suitable for use in real devices. A listimferesting future work is given
below.

Use standard protocols: When an ISL device is connected to the networkiging a
combination of unicast and broadcast messagesathstewaiting for all devices to
send their periodic broadcast message: replaceutinent broadcasting method with a
standard protocol such as the Simple Service D&goRrotocol (SSDP) [25], (also
used in UPnP). This can also minimize the initetiian time.

Implement ISL in the kernel: Let the ISL replace the Berkeley Socket Interface
implementation so that it is part of the kernel @nerefore can operate on a lower

level. The main advantage that, in practise, itelaghan a layer on top of the kernel.

This also makes it possible to let the ISL be glstion per device and not per process
or thread.

Develop and evaluate cost functions to compare paths and select the best path:
Look at comparison algorithms and look at how tonpare paths when property
values are known so that a cost function is usedietermine the best path for each
stream.

Improve legacy support: Add NAT functionality to ISL (see 6.3), which mes it
possible to let ISL be compatible with legacy degiand offer the possibility of using
multiple interfaces for one stream.

Develop one-sided property determination algorithms: Look for property
determination algorithms that also work in a situatwhere the other device is non-
cooperative (e.g. to determine path properties éetvan ISL and a legacy device).

Develop measurement algorithms for other types of interfaces. Evaluate how well
the current property determination algorithms arigable for measuring properties of
paths which do not use 802.3 and develop propetigrohination algorithms for these
other technologies if the current algorithms aresuitable.

Add an ISL specific API: To let applications have more control on whiclthgahe
ISL may use or to help ISL by setting the minimuaqguirements of a path, a ISL
specific ISL is needed which newly developed agians can use to make better use
of the ISL.

67



8 Conclusion

Looking at the possible interface pairs betweeniasvis a new topic and not yet
covered in the literature. Property determinatisran already known topic, where
already lots of research is done (see section)2.X8/2 have used the already known
knowledge of property determination and, if it wascessary, modified it for the
home network situation.

We used the Big Mac probe to measure latency antpamed different algorithms
based on self-induced congestion to measure thialalabandwidth of a path. Cross-
traffic causes distortions in the measurements amwle research is needed to
investigate the effect of cross-traffic on the meaments. Also we have only
focussed on wired networks and not on wireless omdsv Wireless networks will
introduce a whole new challenge because of infleefrom the outside world
(microwave ovens and other distortions) so wirelessvorks is a separate topic. In
the end, exact determination of the path propeisi@apossible but it is not necessary
to determine the exact values of the propertiely, am estimate is needed to compare
paths. We are not interested in small differencas/éen paths, but only in the large
differences.

The presented architecture makes it possible fpligtions to use the ISL without
any modifications. Furthermore both the applicatzom the ISL can do their work
separately so that the implementation uses multithleeads to improve the
performance.

We looked at different handover methods and usedngbination of two ideas. The
combination works, although it is not possible lEgacy devices to connect to an ISL
device because the legacy device has no knowldoget she virtual addresses used
by the handover method. Furthermore, the datarstrealted until the handover has
finished.

This document is a good start in the new topimtdrface selection by presenting an
overview of different algorithms to measure patlopgarties and a few handover
methods which can be used in the presented artiméedco offer a device the

possibility to select different paths for communica with another device. Interface

Selection reduces the congestion of the networkofigring a more balanced

utilization of the network’s infrastructure.

68



9 Acknowledgements

I would like to thank my supervisors Johan LukkiBichard Verhoeven and Michael
van Hartskamp for their guidance and encouragenhanrig the course of the project.
Although the comments of Johan were strict and sdmae harsh, they were always
reasonable and fair and they have proven to bea@rgtructive during the course of
my project. Also, | would like to thank the peopdé the SwA group at Philips
Research Laboratories and especially my room nat&hilips (Chavdar, Ruud and
Melissa) for their support and the friendly workiagmosphere. Furthermore | want to
thank Jan Ouwens for his help with setting up G8irer and his TCP/IP plug-in for
GStreamer.

Finally, 1 would like to thank my parents and mylfgiend Marie-Anne for their
continuing support and understanding while | waskimg on my project.

69



10References

[1] Andrew S. Tanenbaum, “Computer Networks — Fourditi@&”, Prentice Hall,
ISBN 0130661023

[2] Radia Perlman, “Interconnections — Second Editiohddison Wesley, ISBN
0201634481

[3] Differentiated Services (diffserv) working group,
http://www.ietf.org/html.charters/diffserv-charteim|

[4] Integrated Services (intserv) working group,
http://www.ietf.org/html.charters/intserv-chartemnth

[5] Simple Network Management Protocol (SNMP) — Netwviblanagement RFCs
sorted by topic (see topics about SNMP),
http://www.simpleweb.org/ietf/rfcs/rfcbytopic.html

[6] David C.M. Wood, Sean S. Coleman, Michael F. Sctay&Fremont: A System
for Discovering Network Characteristics and Protg&ntuniversity of Colorado,
1993 Winter USENIX — January 25-29, 1993 — San Dji€A

[7] Michael F. Schwartz, David H. Goldstein, RichardNeves, David C.M. Wood,
“An Architecture for Discovering and Visualizing @tacteristics of Large
Internets”, CU-CS-520-91, February 1991, DepartmeihtComputer Science,
University of Colorado

[8] Mark Coates, Rui Castro, Robert Nowak, “Maximum dlikood Network
Topology Identification from Edge-based Unicast Bl@@ments”, In Proc. ACM
SIGMETRICS 2002 11-20. ACM Press, New York.

[9] James Curtis, Tony McGregor, “Review of Bandwidstimation Techniques”,
Department of Computer Science, University of WeaikaHamilton, New
Zealand, http://wand.cs.waikato.ac.nz/old/wand/galibns/bwest-review/

[10] V. Jacobson, “Pathchar — A tool to infer charasters of Internet paths”,
Presented at the Mathematical Sciences Researchitutms (MSRI);
ftp://ftp.ee.lbl.gov/pathcharApril 1997.

[11] Allen B. Downey, “Using Pathchar to estimate Intdriink characteristics”,
ACM SIGCOMM Computer Communication Review, Volumé®, 2lssue 4
(October 1999), Pages 241-250, ISSN: 0146-4833.

[12] Kevin Lai, Mary Baker, “Measuring Bandwidth”, Depaent of Computer
Science, Stanford University,
http://mosquitonet.stanford.edu/~laik/projects/imett/publications/infocom1999/
html/nettimer.html

7C



[13] Constantinos Dovrolis, Parameswaran RamanathandDdwore, “What do
packet dispersion techniques measure?” UniverdityVsconsin and CAIDA,
www.pathrate.org

[14]  Vinay J. Ribeiro, Rudolf H. Riedi, Richard G. Banag, Jiri Navratil, Les
Cottrell, “pathChirp: Efficient Available BandwidtiEstimation for Network
Paths”, Department of Electrical and Computer Eegiimg — Rice University,
SLAC/SCS-Network Monitoring — Stanford University.

[15] Manish Jain, Constantinos Dovrolis, “Pathload: asweement tool for end-
to-end available bandwidth”, Computer and InformatSciences, University of
Delaware www.pathrate.org

[16] M. Allman, V. Paxson, W. Stevens, “TCP Congestiamttol”, RFC 2581.

[17] Ravi Prasad, Manish Jain, Constantinos Dovrolisfféids of Interrupt
Coalescence on Network Measurements”, College ofhfitwing, Georgia Tech.,
USA, Passive and Active Measurements (PAM) confageApril 2004.

[18] Ajay Tirumala, Feng Qin, Jon Dugan, Jim FergusoeviK Gibbs, “Iperf: The
TCP/UDP bandwidth measurement todlttp://dast.nlanr.net/projects/Iperf/

[19] Kevin Lai, Mary Baker, “Measuring Link Bandwidthsslug a Deterministic
Model of Packet Delay”, Department of Computer 8cée Stanford University.

[20] Brian “Beej” Hall, “Beej's Guide to Network Prograning — Using Internet
Sockets” http://www.ecst.csuchico.edu/~beej/guide/net/

[21] Andrew S. Tanenbaum, “Modern Operating Systems”entre-Hall
International Editions, ISBN 0-13-595752-4.

[22] Sun Microsystems Inc., “RPC — Remote Procedure GalProtocol
Specification”, RFC 1050.

[23] Thomas Habets, “Arping v2.05",
http://www.habets.pp.se/synscan/programs.php?progen

[24] P  Routing for Wireless/Mobiles Hosts (mobileip) &ter,
http://www.ietf.org/html.charters/mobileip-chartsiml

[25] Simple Service Discovery Protocol 1.0 — Operatingheut an Arbiter,
Internet Engineering Task Force, Internet-Draft:
http://www.upnp.org/download/draft_cai_ssdp_v1 X3.t

[26] Service Location Protocol (svrloc) Charter,
http://www.ietf.org/html.charters/svrloc-chartentit

[27] Erich Gamma, Richard Helm, Ralph Johnson, JohnsMks, “Design
Patterns”, Addison-Wesley Professional.

71



[28] “GStreamer - Open Source Multimedia Framework”,
http://gstreamer.freedesktop.org/

[29] Jan Ouwens, “Media Streaming over both Wired andel&$s In-Home
Network”,
http://www.win.tue.nl/~iradovan/research/afstud@eimchten/streaming.htm

[30] Ethereal: A Network Protocol Analyzdtttp://www.ethereal.com

72



	Abstract
	1 Introduction
	2 Analysis
	3 Models & algorithms
	4 Architecture
	5 Implementation
	6 Evaluation
	7 Future work
	8 Conclusion
	9 Acknowledgements
	10 References

