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Preface 

In the beginning of 2005 Jan van Reede of the Global Services division of Philips Lighting 
approached me with an interesting opportunity. He was investigating the monitoring of 
the process of incandescent lamps, a product of which Philips sells over 2 billion pieces 
every year. 

Only recently the sensor data has been extracted from the control system and therefore 
has become available for analysis. The initial question was very broad: What can we 
do with this data? It can be presented in several ways, but how should it be analyzed? 
What underlying information can be surfaced? Is it possible to predict which problems 
are present in the line? Maybe even which root-causes have ledtothese problems? 

Answering these questions has proved to be an extremely exciting exercise. Obviously, 
the training and testing of the developed tool in the beautiful country of Indonesia 
have contributed in this respect. A very interesting experience there has been the 
implementation of a system, developed by Jan van Reede which presents the reject 
levels of all sensors to the operators on areal-time basis. 

I would like to thank Sasha Pogromsky for his insightful comments during my final 
project and my fellow student Luuk van Laake for reviewing several parts. Finally, 
many thanks to Jan van Reede for our brainstorm sessions, and his pleasant company 
on different small islands around Indonesia. 

Harm Peters 

Amsterdam, February 2006 



Summary 

An interesting topic in the field of impravement of manufacturing processes is formed by 
process quality controL It aims to imprave quality and productivity by identifying root­
causes of problems in the production line. Only for the most advanced industries such as 
the wafer and automobile industry effective PQC methodologies have been developed 
[Tob97, AplOl]. For many other industries, that use binary sensors to monitor the 
production process, these methodologies can not be applied however. 

The aim of this research project has been to fill this void by developing a binary metho­
dology. Hereto, the applicability of continuons techniques has been thoroughly exam­
ined. The inherently lower level of information in binary sensor data appears to exclude 
the possibility of rnadeling the relationship between root-causes and sensor data directly. 
Therefore, indirect classification techniques that are based on training need to be used. 

First, an analysis tool has been developed that is able to characterize each production 
period as normal or abnormal, given its binary sensor data. Hereto, a calculation 
process termed entitlement calculation has been introduced. The abnormalities are 
then included as binary features in the description of the system state. Several other 
features, such as correlations relevant from an engineering point of view and events as 
change overscan be added. 

Next, several classification algorithms were developed and tested on the practical case 
of producing incandescent lamps at Philips Lighting. These algorithms are able to 
campare new cases to diagnosed training cases, and as such assess which situation in 
the past is most similar to the current system state. In order to diagnose the training 
cases a camera tool has been developed that is able to take pictures of rejects at 100 
positions before and after each operation. lt is assumed that the root-causes present in 
the current case correspond to the causes in the most similar training case. 

The methodology has been elaborately tested for Philips and yielded very good classifi­
cation results, varying between 80% and 100%. As current waste levels per production 
line account for 90k euro of loss per year [Ree05], and over 200 production lines exist 
around the world, millions of euros of rejects are thrown away. If informing the ope­
rators, technicians and engineers on the present root-causes of probieros leads to only 
percentages of efficiency improvement, savings could be substantial. The recommenda­
tion is, however, to first extend the scope and functioning of the tool. 
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Samenvatting (in Dutch) 

Een interessant aandachtsveld op het gebied van verbetering van productiesystemen is 
process quality control. PQC methodes hebben als doel het verbeteren van kwaliteit en 
productiviteit middels het vaststellen van de hoofd-oorzaken van problemen die in het 
proces aanwezig zijn. Enkel voor de meest geavanceerde productie processen, zoals de 
waferen automobiel industrie, zijn dergelijke methodes in uitgebreide vorm ontwikkelt 
[Tob97, Aplül]. Het blijkt echter niet mogelijk deze methoden direct te gebruiken voor 
andere processen, waar vaak gebruikt wordt gemaakt van binaire sensoren. 

Het doel van dit onderzoeksproject is het ontwikkelen van een PQC methodologie voor 
de binaire industrie. De toepasbaarheid van de continue methodes is allereerst grondig 
onderzocht. Aangezien binaire sensor data minder informatief is dan continue data, 
blijkt het niet mogelijk de relatie tussen de hoofd-oorzaken van problemen en de sensor 
data op een directe manier te modelleren. Om die reden dient uitgeweken te worden 
naar classificatie technieken welke gebaseerd zijn op training. 

Als eerste stap is een analyse tool ontwikkelt welke, gegeven de binaire sensor data, 
elke productie periode als normaal of abnormaal kan bestempelen. Het concept entitle­
ment calculation is hiertoe geïntroduceerd. De abnormale datapunten worden daarna 
meegenomen als binaire eigenschappen van de status van het systeem. Andere systeem 
eigenschappen, zoals het optreden van specifieke correlaties die vanuit de kennis van 
het productie proces relevant worden geacht, of het optreden van gebeurtenissen als 
omstellingen kunnen worden toegevoegd. 

Vervolgens zijn verschillende classificatie algoritmes ontwikkeld en getest voor de pro­
ductie van gloeilampen bij Philips Lighting. Deze algoritmes vergelijken nieuwe cases 
met training cases, en schatten op grond daarvan in op welke situatie uit het verleden de 
huidige case het meest lijkt. Een camera applicatie is ontwikkeld om de training cases 
te kunnen diagnosticeren op aanwezige hoofd-oorzaken van problemen. De applicatie 
kan in een range van 100 posities voor en na elke bewerking foto's van de rejects maken. 
Hierbij wordt aangenomen dat de hoofd-oorzaken aanwezig voor het huidige geval gelijk 
zijn aan die in de meest overeenkomende training case. 

De methodologie is uitgebreid getest voorPhilipsmet zeer goed resultaat. Het percent­
age correcte classificaties varieert tussen de 80% en 100%. Aangezien de huidige afval 
niveau's circa 90k euro per lijn per jaar bedragen [Ree05], en er meer dan 200 productie 
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lijnen over heel de wereld zijn, wordt jaarlijks voor miljoenen euro's aan rejects wegge­
gooid. Als het informeren van operators, technici en engineers omtrent de voorspelling 
van aanwezige hoofd-oorzaken van problemen ook maar tot enkele procenten verbeter­
ing kan leiden, dan kunnen de besparing substantieel zijn. De aanbeveling is echter om 
de methodologie eerst nog verder uit te breiden. 
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Chapter 1 

Introduetion 

In order to imprave quality and productivity, it is highly desirabie to have a fast, 
accurate, and robust process quality control methodology to identify and eliminate root­
causes of quality-related problems for manufacturing processes. 

Only in the most advanced and capital intensive industries as the wafer [Tob97, Gle97] 
and automobile [Ceg96, Aplül] industry, such methodologies have been developed. Cur­
rent practice in most industries is a product-inspeetion oriented measurement strategy. 
Finished and intermediate products are measured and compared with specifications in 
the product design. If products appear to be outside of the specification limits the 
causes of this deviation need to be determined. This search is usually based on the 
experience of operators and sametimes it is very time consuming. 

Unfortunately, there are major difficulties in translating the developed process quality 
control methodologiestoother industries. The developed methodologies rely heavily on 
the specific sensor signals available in each type of industry. Especially the continuous 
character of the sensor data in the most ad vaneed industries as opposed to discrete data 
in some of the other industries prevents the use of these techniques. 

The term continuous sensor is introduced to indicate sensors that measure a continuous 
quantity and produce a continuous output accordingly. Other industries, that produce 
cheaper, simpler products that require less accuracy are aften predominantly monitored 
by binary sensors. These sensors measure a discrete quantity, or detect an event or 
presence, and produce a binary output accordingly. Alternatively a continuous quantity 
is measured but compared to a threshold. 

Two issues seem to contribute toa binary world view in these kind of processes. First, 
because of the less stringent demands on accuracy, it is not necessary in these industries, 
and therefore too expensive, to control the exact product dimensions or properties (as 
is common practice in e.g. thesemi-conductor and automobile industry). It suffices to 
produce the product and check for compliance with certain requirements, and accept 
or reject the product accordingly. 

1 



2 Chapter 1. Introduetion 

Second, because of their simplicity, these products are often characterized by typically 
binary features. For example, a beer bottie in the packaging industry either has, or does 
not have, a crown cork on top of it. The quality of the placement of the crown cork 
would be difficult and therefore too expensive to measure. Therefore a binary sensor that 
checks the mere presence suffices. Equivalently, an incandescent lamp in the lighting 
industry either has, or does not have, a coil connecting the lead-in-wires. Measuring 
the quality of placement of the coil is very complex and expensive. In this industry it 
is more interesting to know which part of the produced lampsis compliant. No process 
quality control methodologies exist however that can indicate real-time whether the 
resulting level is satisfying and what should be clone to improve it. 

1.1 Objective 

The aim of this research project is to develop a process quality control methodo­
logy that is able to identify root-causes of quality-related problems in manufacturing 
processes that are predominantly monitored with binary sensors. 

As such this report contributes in expanding the area of process quality control to a 
multitude of different production processes. 

For this development a guiding context is needed as a platform for testing the newly 
developed tools. The production lines of Philips Lighting offer a suitable environment 
and will form the practical case in this project. This case is used to illustrate how such 
a methodology can be customized to a specific production process. 

The second contribution is therefore the development of a useful quality control tool 
that has the potential to substantially improve manufacturing performance at Philips 
Light ing. 

1.2 Approach 

In Chapter 2 the concept of process quality control is discussed. Next, a framework is 
built for comparison of existing quality control methodologies. Furthermore, a catego­
rization of production processes is presented that allows to evaluate the compliance of 
a specific process with each methodology. 

Using this framework, Chapter 3 then explores literature and contemporary research on 
quality control in the most advanced industries, in which continuous sensors are used 
for monitoring. The monitoring, analysis and classification of quality-related problems 
along with different appropriate ways of rnadeling production processes will be discussed. 

The framework will serve as a guidance in the stepwise development of the binary 
sensor - methodology. Chapter 4 evaluates the applicability of the techniques presented 



1.2. Approach 3 

in Chapter 3 and combines, adapts and extends these techniques yielding a quality 
control methodology for binary industries1. 

Chapter 5 then illustrates how the developed methodology can be made operational for 
the production lines of Philips Lighting. The methodology is tested and its performance 
is evaluated. 

Finally, the conclusions and recommendations for further development are presented in 
Chapter 6. 

1this term is introduced to refer to industries in which predominantly binary sensors are used 
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Chapter 2 

Process Quality Control 

Process quality control consists out of a series of iterative steps with the objective of 
preserving process controL First, these steps will be explained in detail. 

The applicability of a certain methodology to a specific production process is dependent 
on the ability of the process to deliver the needed information. Therefore, a categoriza­
tion of the possible types of production processes is discussed next. This categorization 
facilitates the presentation of an insightful overview of existing methodologies in Chap­
ter 3. 

2.1 Process Quality Controlloop 

Process quality control aims at maintaining optimal process conditions [OttOO] . 

process quality control - a set of tools that is employed to maintain that quality 
level of the production processin which only common causes are present 

With common causes those causes are meant that always tend to be present to some 
extent and are nearly indistinguishable from each other. 

The starting point is a process that is in a state of controL Logically, it needs to be 
monitored whether this state changes. If so, appropriate action needs to be taken. 

Several distinct steps can be distinguished as illustrated in Figure 2.1. 

5 



6 Chapter 2. Process Quality Control 

monitoring analysls classlflcatlon r ----------------------: r----------------------i :----------------------: 
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Figure 2.1: Process Quality Control - loop 

The generally accepted view is that product quality is achieved by cantrolling process 
quality [Hopül] . Therefore, quality control starts with monitoring the production pro­
cess. Manual and automated inspeetion is performed on product and process parameters 
that are in some way indicative of the process its quality level. 

In the next step, the generated quality-related data is analyzed, yielding information 
about the state of the process. 

The conclusions of the extracted information are presented as certain features of the 
system state. These features can take many different forms . Depending on the specific 
analysis techniques, these features may be as specific as exact process faults or as broad 
as any derived variabie that contains some quality information. 

The features are the input for the classification of the system state into distinct root­
cause classes. As such the present root-causes of problems are retrieved. The root­
causes are then finally used as input for feedback into the process . The right feedback 
should reestablish process controL 

Automated monitoring of a processis performed by sensors. Many different types exist, 
a brief overview is presented in Section 3.1. As stated earlier, an important distinction 
can be made between sensors that yield a continuous output and those that perform a 
binary check. The term continuous monitoring is introduced for monitoring with the 
former type of sensors and binary monitoring for predominant use of the latter type 
(see Figure 2.2) . 

If relevant direct and continuous data on quality parameters has been retrieved the 
information density can be very high. This greatly enhances the possibility for successful 
data analysis to yield informative features of the system state. If these features are 
clearly known, the subsequent classification is simplified as well. 



2.2. Categorization by production process 

monitoring 

process 
' 
' ' ' 

t ............................................ J 

classlflcatlon :---------·-·----------i 
' ' : ! 

....__!Pol' ~ continuous ! 
!"" features 

' ' ' 
' ' 
' ! blnary 

' ! features 
' ' ' ' ! 

L--------- - - ---~ëëf.;;;-14 

feedback r--------·-----··-·--.... , 
i ! 
! root .. ! ---------------i' causes 14-•i _________ _. 

' ' t .......... .... .... - ...... .. .... .... .. .. .. J 
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Figure 2.2: PQC - loop indicating the differences caused by continuous and binary 
monitoring 

Binary data, on the other hand, typically offers an indirect and therefore less informa­
tive look at the quality of the process. This poses a huge challenge on the successful 
continuation of the quality control loop. 

The upper branch in Figure 2.2 represents the analysis and classification techniques that 
have been developed for processes that are monitored with continuous sensors. Some 
interesting and insightful examples will be presented in Chapter 3. Extensive literature 
review did not reveal any methodologies readily applicable to the lower branch in the 
figure. It is the aim of this report to develop a combined analysis and classification tool 
that is capable of retrieving the root-causes of present problems for processes that are 
monitored by binary sensors. The subsequent feedback step will not be considered. 

2.2 Categorization by production process 

Production processes can be categorized in several ways. Important factors from the 
quality control - point of view are the nature and structure of the production process 
and the casts associated with producing nonconforming products ([Gro96],[Hop01]) . 

A classification of production processes by nature focusses on the type of operations 
involved in the manufacturing process. This determines which quality parameters can 
be checked and therefore the type of sensing techniques ( and thus sensors) that can be 
used. Figure 2.3 presents such a categorization. 
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Figure 2.3: Categorization of production processes by nature (adapted from [Gro96]) 

It is very well possible that a production process involves (many) different operations, 
and therefore possesses a mixed nature. Normally, the processcanthen be divided into 
a number of parts with a different operation being performed at each part . Therefore, 
ultimately each part can be characterized by a different process nature. 

The process structure is defined as the manner in which material moves through the 
plant [Hopül]. The chosen structure fora certain production process typically depends 
on the volume and the level of standardization of the process. Higher volumes and 
standardization heavily increase the efficiency of automation. The most camman cate­
gorization by process structure is presented in Figure 2.4 . 

The third relevant aspect of production processes is formed by the casts that are asso­
ciated with producing nonconforming products. If these casts are relatively high, large 
expenditure on research and equipment for process control automation is justified. Au­
tomation of process control is desirabie because it can achieve performance beyond the 
limits of human cognitive capability and will ultimately reduce man cast. The large 
expenditure that is usually involved in the research and equipment for such automation 
needs to be outweighed by the savings resulting from the decrease of nonconforming 
products. 
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Figure 2.4: Categorization of production processes by structure (adapted from 
[Hopül]) 

The casts associated with producing nonconforming products are therefore very influ­
ential. In this respect, these costs should be interpreted very broadly, including their: 

• Material costs 

• Production costs 

• Costs of rewor k 

• Possible harm to people 

• Possible harm to the environment 

• Possible failure to comply with production orders 

High levels of automation and expensive sensing solutions are easily justified if they are 
outweighed by these opportunity costs. 

2.3 Summary 

In this Chapter the concept of process quality control has been introduced. The distinct 
steps are formed by the monitoring of the process, the analysis of the data, the classifi­
cation of the system statebasedon the retrieved features and the feed-backbasedon the 
found root-cause. This framework allows a step-wise discussion of existing continuous 
methodologies as wellas a step-wise development of a binary one. 

Furthermore, a categorization of production processes by their nature, structure and 
costs of producing nonconforming products was presented. This categorization facili­
tates the overview of the techniques that will be reviewed. 
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Chapter 3 

Review of continuous 
methodologies 

In this Chapter various continuous process quality control methodologies are discussed. 
First, attention is devoted to the sensing devices used for monitoring. Next, analysis 
techniques aimed at extracting information from the monitoring step are discussed. 
Finally, tools will he discussed that are used to classify system states based on this 
information yielding the root-causes of the problems that are present. 

The obtained overview will serve as a reference for the step-wise development of the 
binary methodology in Chapter 4. 

3.1 Monitoring techniques 

A multitude of different sensing techniques exists. They are based on the detecting and 
transducing capabilities of several distinct measuring elements. An overview of some of 
these measuring elements is presented in tables 3.1 and 3.2. 

The sensing techniques that are used in a particular situation, tagether with the level of 
automation, characterize the automated monitoring process. The applicability of these 
techniques depends on the nature (and sametimes on the structure) of the production 
process. Their suitability is determined by the process structure and the casts associated 
with producing nonconforming products. 

11 
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Mechanica} Some 
measuring element examples 

Contacting spindie 
Elastic memher Laad cells 

Proving ring, 

Mass 

Therm al 

Hydrapneumatic 

Diaphragm 
Seismie mass, 
Pendulum 
Thermocouple, 
Bimaterial, 
Chemica! 
phase 
Hydrometer 
(statie) , 
Venturi 
(dynamic) 

Table 3.1: Overview of some sensing techniques basedon mechanica! measuring elements 
( adapted from [Bec95]) 

Electrical 
measuring element 

Resistive 

Inductive 

Capacitive 

Piezoelectric 

Some 
examples 

Contacting, 
Variabie-area 
conductor 
Variabie coil 
dimensions, 
Moving coil 
Changing air 
gap 

Semiconductor junction Junction 
threshold 
voltage, 
Photodiode 
current 

P hotoelectric 

Hall effect 

Photovoltaic, 
Photoemis-
sive 

Table 3.2: Overview of some sensing techniques basedon electrical measuring elements 
( adapted from [Bec95]) 
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3.1.1 Effectiveness of monitoring 

The effectiveness of a sensor system is characterized by the diagnosability that is offered 
by the system, which is defined as its capability to identify major variation sourees 
[Din03a]. The distribution of the sensors in the production system plays a key role in 
this respect. Traditionally, existing literature on this topic has a twofold focus: 

• optimization of multi-station sensor allocation for the purpose of product inspee­
tion (e.g. [Lin64, Yum81]) 

• optimization of allocation of sensors for the purpose of variation diagnosis at a 
single measurement station (e.g. [Udw94, Kha99]) 

More recently, the integration of sensing information from different measurement sta­
tions into a single state-space model has been investigated [Din03b], which yielded the 
optimal allocation of sensors across ( and inside) stations via the mechanism of variation 
propagation. 

3.2 Analysis techniques 

3.2.1 State Space Modeling 

An important class of analysis techniques is based on state space modeling. It is most 
commonly used for processes that posses a predominant assembly nature, possibly com­
bined with some shaping and other processing operations (see categorization of Figure 
2.3). This type of modeling is especially useful in multi-stage manufacturing processes, 
that possess a connected line flow structure (type III of categorization of Figure 2.4) 
[Ceg96] . Important examples of such manufacturing processes can be found in the 
automobile industry and in metal cutting industries [Zho03]. 

The general state space modeling approach starts with the development of a variation 
propagation model which describes how dimensional deviations of the product propagate 
from one process stage to the next. This model can be based on design information of 
the product and the process (as in [Huaül]), for example on CAD information about the 
fixture geometry and location of the measurement points [Ceg96] as is shown schemat­
ically in Figure 3.1. 

The measurements in the automobile industry are normally performed with Optical 
Coordinate Measurement Machines (OCMM) that are installed at multiple locations in 
the multistage manufacturing process. These OCMM's work with CCD cameras and 
arebasedon the photo-voltaic sensing technique from table 3.2. 
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m1 - a -~tP*Us 
P, .1 -locatiD& points 

Figure 3.1: Fixture geometry (Pi) and location of measurement points (mi) in an au­
tomobile manufacturing process (adapted from [Din02)) 

In connected line flow (type III) processes, variation in the product is accumulated as 
the product moves from stage to stage in the production line, as illustrated in Figure 
3.2 [ZhoOO]. 

•• 
~ ... XN-1~ 

Figure 3.2: Variation propagation in multi-stage manufacturing process (taken from 
[ZhoOO)) 

The product quality information (i.e. the dimensional deviation) at stage k is repre­
sented by the state vector xk . Vector uk describes the process faults. Fixture errors, 
machining errors, thermal errors, and so on, manifest themselves as shifts in the mean 
value or increases in the varianee of this vector. Un-modeled errors are represented by 
the noise input vector Wk· The measurements of product quality deviation are denoted 
by Yk· Finally, the measurement noise is denoted by a zero mean random vector vk. 

A linear state space model can then be built to describe the product quality information 
flow, yielding (see [ZhoOOJ for the complete derivation): 

Xk = Ak-1Xk-1 +Bk Uk+ Wk 

Yk = CkXk + Vk 

(3.1) 

In which Ak_1xk_1 represents the quality information transformation from stage k-1 to 
stage k. Bkuk describes how the part quality is affected by the process faults, and Ck 

is the measurement matrix that maps the product quality characteristics to the mea­
surements. The system matrices Ak, Bk and Ck describe the interaction information 
between the process and the product. 
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The state space model can simply be constructed by examining the relation between 
Xk-1, Xk and uk locally, at each stage k. The large body of single-stage operation­
literature can therefore be used. 

y is the deliverable of the monitoring phase, so after building the model it needs to be 
solved for the process faults u with the use of estimation techniques for linear mixed 
models. 

Typical statistica! estimation algorithms are ANOVA, Maximum Likelihood Estima­
tion (MLE), Restricted Maximum Likelihood Estimation (REML) and Minimum Norm 
Quadratic Unbiased Estimation (MINQUE). A comparison of these methods can be 
found in [Din03b] , a review in [Rao98]. 

3.2.2 Spatial Signature Analysis 

The semiconductor industry provides an important example of manufacturing processes 
that are characterized by surface processing operations ( see categorization of Figure 2. 3). 
The primary monitoring tool for the investigation of wafer defects is optica! inspeetion 
[Tob97]. High-resalution images of individual defects are collected off-line to assess 
problems in the manufacturing process. Low-resolution defect wafermaps1 from in-line 
optica! inspeetion tools are used as a less time consuming and less expensive alternative. 

Trends towards larger semiconductor wafer formats and smaller critica! dimensions have 
led to an exponential increase in the volume of visual and parametrie defect data how­
ever. Consequently, automation of analysis has become a necessity [Tob97] . Automation 
of defect analysis on an optica! basis can be performed for jumbled, disconnected and 
connected flow processes ( see categorization of Figure 2.4). 

A promising emerging technology that is based on artificial intelligence is Spatial Sig­
nature Analysis (SSA). A spatial signature (see Figure 3.3) is defined as a unique dis­
tribution of wafer defects originating from a single manufacturing problem. 

The methad tries to capture operator experience with respect to wafer defect analysis 
through a teaching method. The core is formed by an image processing, fuzzy classifier 
system that is able to distinguish between different types of quality defects [Tob97]. In 
this way the bulk of product quality data is transformed into the assignment of a defect 
wafer into a single elemental set. 

The first step in the Spatial Signature Analysis is the conversion of the electronic 
wafermap file into a gray-scale image. Each pixel in this image is assigned an in­
tensity value according to the number of defects in the corresponding area. As such, 
each pixel groups the individual defects on a first level. The conneetion of pixelstoeach 
other, basedon their proximity, then farms clusters of defects. A clustering procedure 
has been developed that groups clusters of pixels into multi-element objects (such as 

1a wafermap is a list of defect coordinate locations generated by an optica!- or laser-based wafer 
inspeetion tooi [Gle97] 
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(c) (d) (e) 

Figure 3.3: Spatial Signatures (taken from [Tob97)) (a) High-resolution optica! defect 
image (b) High-resolution Scanning Electron Microscope defect image ( c) Single wafer 
containing scratch signatures (d) Stack of wafers superimposed highlighting a subtie 
systematic partiele contamination problem ( e) Single wafer showing a spin-coater streak 
pattem 

scratches or streaks). Finally, objects are grouped into elemental sets, depending on 
their morphology and their proximity to neighboring clusters [Tob97]. 

The different elemental sets are global, curvilinear, amorphous and micro-structure. 
Sparsely distributed objects (such as a ring pattem or a random uniform distribution 
of particles) are assigned into the global set. Elongated objects such as scratches or 
streaks belong to the curvilinear set based on attributes as elongation, compactness and 
orientation. The amorphous set contains tightly clustered objects. The micro-structure 
set, finally, contains distributions of pixels whose sub-pixel defects are organized in a 
linear fashion [Tob97]. 

The resulting input into the classification step thus consists of an assignment of the 
wafer into an elemental set, and a characterization of its features. On this knowledge, 
fuzzy techniques are employed to classify the wafer in specified root-cause classes. 

An alternative to SSA is Automatic Defect Classification (ADC). Most ADC systems 
use reference-based image analysis. A segmentation algorithm localizes the defect by 
comparing a defect image with a defect-free reference image. A defect mask is genera­
ted by the algorithm that describes the location and extent of the defect. Features are 
then extracted from the mask and the original pair of images that uniquely describe 
the appearance of the defect. A defect classification algorithm then attempts to auto­
matically categorize the new defect based on training exemplars that are provided by 
the expert human classifier [Gle97]. 
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3.2.3 Diagnostic Feature Extraction with the use of Principal Com­
ponent Analysis 

Yet another type of manufacturing processes is formed by the shaping processes (see 
Figure 2.3). Stamping processes (see Figure 3.4) are an example of this category. 

Figure 3.4: Example of a shaping process (taken from [JinOO]) 

In the monitoring phase of these processes, the stamping force is measured by strain 
gauges (the electrical- resistive type of table 3.2). The resulting tonnage signal can be 
analyzed to provide information about changes in the stamping process that may harm 
product quality [JinOO] . 

Due to the complexity of a stamping process, many process variables can infiuence 
tonnage signals. In practice, the interactions among the stamping process variables 
are very significant and complex. Recent multivariate approaches [Jin99] take these 
correlations into account. In this way analysis tools have been developed that indicate 
whether a processis normal or abnormal, by detection of multivariate wavefarm changes. 

It is difficult to deliver the occurring features in the right form to the classification tooi 
for root-cause finding, however. Several publications ([Rob95], [Koh95], [Che97]) have 
addressed this issue, while focussing on single-fauit situations without consideration of 
the interactions among the process variables. These detection criteria are effective only 
when it is realistic to assume that all other variables are unchanged, which is normally 
not the case [JinOO]. 

A much more interesting analysis approach is the preparation for the classification step 
that consists of the extraction of diagnostic features . With the use of the fractional fac­
torial design of experiments (DOE), [JinOO] proposes a new diagnostic feature-extraction 
methodology. An overview of the analysis steps is presented in Figure 3.5. 
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Select lmporlant Process Variables 

Conduct a Fractional Factorial DOE 

GeiTonnage Signals 
Under Different DOE Setups 

Data Reduction Using PCA 

Project tonnage Signals on the Eigenveetors 
to Get the Principal ComponeniS as Features 

Get Regression Models for the Principal 
Componentsin Tenns ofthe.Process Variables 

Figure 3.5: Diagnostic Feature Extraction approach (taken from [JinOO]) 

If too many variables influence the process the testing of these variables may become too 
complex. It is therefore necessary to select the most relevant ones, based on process en­
gineering knowledge. If there is not suilleient initia! knowledge, a screening experiment 
is suggested by [JinOO] . In the stamping process case, variables as material thickness, 
shut height and punch speed have been selected (see Figure 3.4). 

The next step is to conduct the fractional factorial design of experiments to study the 
effect of the selected process variables. In the DOE each process variable is set to 
normal or abnormal2 . For every possible combination of the process variables (in terms 
of normal versus abnormal), the fault patterns of tonnage signals are then obtained 
(with the use of the strain gauges). Apart from the main effect of each variable, the 
interactions between two variables are of interest as well. 

With the use of Principal Component Analysis (PCA) techniques the resulting vast 
amount of highly correlated data is reduced to a lower dimensionality via orthogonal 
projection [JinOO]. This is achieved via selection of the most significant eigenveetors in 
the original data. 

A tonnage waveform signal obtained from the DOE can he represented by nm measure­
ment points taken along the process cycle. All ne experiments can then he put into a 
matrix E E ~ne x nm . A row vector ef of E then represents one cycle. 

2values corresponding to normal and abnormal situations are again based on process engineering 
knowledge 
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In order to obtain a data matrix with deviations caused by changed process variables 
the average tonnage wavefarm signal f.J,T is needed. f.J,T can be estimated by: 

ne 

eT= 1/neZ::::ef (3.2) 
i=l 

The row veetors of Y are then obtained by subtracting this average from each signal: 

(3.3) 

The resulting matrixcanthen be decomposed with the help of PCA [Joh98] as: 

(3.4) 

The vector Vi E JRnmxl (i = 1, ... , nm) is the normalized eigenvector of the sample 
covariance matrix S of Y according to: 

(3.5) 

1 ne T 

S = n -1 LYiYi 
e i=l 

(3.6) 

where Ài is the eigenvalue conesponding to the eigenvector V i. V is the matrix consisting 
ofthe eigenveetors Vi (i= 1, ... , nm) and farms an orthogonal basis forthespace spanned 
by Y. The principal components ai E JRnexl are finally obtained by projecting Y onto 
the vector Vj (j = 1, ... , nm) as [JinOO]: 

(3.7) 

It is aften observed that when a data set is projected to eigenvectors, typically a few 
eigenveetors that correspond to larger eigenvalues are associated with the systematic 
process variations, whereas the remaining eigenveetors tend to refl.ect the variations 
of the process noise [Joh98]. This first group of eigenveetors then defines the lower­
dimensional orthogonal space to which the original data is projected. In this way the 
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dirneusion of the original PCA model, nm , is reduced to a lower dirneusion n f. The 
originallarge dirneusion of the tonnagesignalef = [eil , ... , einml is therefore expressed 
by a smaller dirneusion of features [aib ... , ain1 ]. 

The effect of the process variabie changes (caused by certain root-causes) on the ton­
nage wavefarm signals will be represented as the changes of these features, which were 
explained to be the most significant principal components. These features are therefore 
the deliverable of the analysis tool. 

3.2.4 Statistica! Process Control 

Statistica! process control is a tool that is able to distinguish random behavior from 
non-random behavior. Monitoring data of any process quality indicating parameter 
belonging to conforming products, or to fault-free production runs, is retrieved by (nor­
mally continuous) sensors [Whe95]. The measurements taken from a stream ofproducts, 
or the measurements of a process parameter retrieved at a certain frequency, can be 
presented as: X1, x2, X3, ... , Xn· 

If these measurements are grouped into histograms, for different production runs, two 
results are possible. The periadie histograms of the measurements either show a consis­
tent pattem of variation, or they will vary from run to run. In the first case, the output 
distribution does not change over time and the process is therefore said to be in a state 
of statistica! controL If it does change however, it is said to be out of control [McC98]. 

When a process is in control some variation will still be present. This variation is due 
to common causes however, which are defined as [Whe95]: 

common causes - those causes of problems that are attributable to the design of the 
process and therefore affect all outputs of the process. 

These common causes can be categorized into the methods, materials, machines, per­
sonnet and environment that make up a process and the inputs required by the process 
[McC98]. The individual variations may be thought of as being created by a constant 
system of a large number of chance causes in which no cause produces a predominating 
effect [She80] . lt is therefore not profitable to try to determine and remave the causes 
of the uncontrolled variation [Whe95]. 

If a process is out of control there are some special causes of variation, termed the 
assignable causes [Whe95] : 

assignable causes - events or actions that are not part of the process design. They are 
typically transient, fleeting events that affect only local areas or operations within 
the process (such as a single worker , machine part , or batch of raw materials or 
components) for a brief period of time. 



3.2. Analysis techniques 21 

In this situation it will be profitable to try to determine and remove the cause of the 
uncontrolled variation, which is achieved by diagnosing the problem and performing 
relevant feedback. 

It is useful to approximate the histogram of the stabie pattem of variation by an arbi­
trary ( and usually continuous) mathematica! function, f (x). This function is called the 
probability distribution function (or probability density function). 

It is defined so that the product f(x)dx approximates the proportion of measurements 
that fall between the values of x and x+ dx [Whe95]. f(x) can be characterized by a 
measure of location (such as the arithmetic average (Jl-) or the median) and a measure 
of dispersion (such as the range, the varianee (a2 ) or the sample standard deviation 
(s)). Normally the average 11- and the standard deviation a ortheir estimators x and s 
are taken [McC98]. 

Standard SPC monitoring techniques divide the possible values of a datapoint, into 6 
zones, each with a width of a, covering the range between 11-- 3 ·a and 11- + 3 ·a. A 
typical division is shown in the following x-chart (Figure 3.6). 

Unllkely event 

t zones: 
!-i+ 3 OI----,.-----'--- U):lper control limit (UCL) -------

- --- --~---·--------------·----·-·---·--·-- --------·-·'-----(Upper Wamlng Umit) ~ 
~~ b 
Range of-----------------­
varlatlon C 

1-1 1---1------- Center llne (CL)---------

c 
B 

· .......... - ...... --·---.. ----· ..... .. . ---...... _ ... .............. . _ . . ............... ... _. _______ ... c._ .. ... (LowtrWamlng Limit) ... 

1-1 - 3 o 1----'L-- ---L,....-- Lower controllimit (LCL) 

UnllkeiY event 

Sàmple 

A 

Figure 3.6: x-chart with SPC controllimits and zones 

If datapoints fall below zone A or above zone a, the chance of this being a random 
fluctuation can be calculated. Assuming the process is in statistica! control and therefore 
justly described by a certain probability distribution function, this chance is known. In 
the case of a normal distribution, for example, this chance is only 0.03 %. So, in this 
case, with 99.97% certainty it can be said that abnormal behavior has occurred during 
the time interval that is the basis of this datapoint. The condusion therefore is that 
the process has been out of control during that period. 
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There arealso other checks [Whe95](all with at least 99.5% certainty) that indicate that 
the process is out of control, as summarized below: 

• point beyond controllimits 

• run of 9 points above or below center line 

• 4 out of 5 points in zone b/B or beyond 

• 2 out of 3 points in zone a/ A or beyond 

• trend of 6 points going up or down 

• cumulative sum of deviations above or below a certain limit 

Apart from this x-chart that monitors the mean of the process, a chart can he created 
for monitoring of the variance. This chart, the R-chart, is created in much the same 
way as the x-chart. The checks for abnormalities in the varianee of the process also 
coincide. 

Tampering with processes that are in control may very well lead to worsening of the 
situation [McC98]. Therefore, only if it is almast certain that the process is out of 
control it is sensible to diagnose it to find the assignable cause of this special variation. 
Only in this situation, feedback based on the root-causes that are found is sensible. 

3.3 Classification techniques 

As illustrated in Figure 2.1, the aim of the classification step is to indicate the root­
causes of quality related problems that are present in the production process. Hereto, 
classification techniques use information that comes from the analysis step. The analysis 
techniques of the previous Section presented some examples of data processing that lead 
to informative features . 

The objective of this Section is to present an overview of some important classification 
techniques. Hereto the techniques are qualified as direct , semi-direct and indirect, 
referring to whether a technique pinpoints root-causes directly, via experiments, or via 
comparison to training cases. To he able to indicate root-causes most of the techniques 
need to he trained on which root-causes belang to which features. 
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3.3.1 Direct techniques 

The statespace rnadeling technique (of Section 3.2.1) is an example of an analysis tool 
that models the link between root-causes of problems and features . Therefore, when 
the present features are known (presented as process faults u), the case can directly be 
classified in a root-cause class. 

As explained, after measuring the resulting part quality y in the monitoring step, the 
set of equations 3.1 can be solved for u ([ZhoOO]) with statistica! estimation algorithms 
as ANOVA or MLE (see [Rao98]) . The link between root-causes ofproblems like specific 
fixture errors and features (i.e. dimensional deviations) is modeled as Bk. The process 
fault vector uk at stage k therefore essentially contains the present root-causes already, 
represented as shifts in the mean and varianee of its elements. 

Statistica! hypothesis testing (see e.g. [Mon99]) is used to assess the statistica! signifi­
canee of observed deviations in this vector, and thus the certainty level of presence of 
the root-cause. 

3.3.2 Semi-direct techniques 

In the diagnostic feature extraction technique experiments are executed to abserve the 
effect of changes in process variables on certain features. Hereto, the obtained fea­
tures are used as the response variables in a DOE regression analysis. Via Analysis of 
Variances (ANOVA) it is investigated whether a process variable has a significant ef­
fect on the selected features for the different experiments. The significant variables that 
have the major contributions to a feature's variability are called its diagnostic variables. 
These diagnostic variables are the root-causes behind the occurrence of the features. 

The knowledge obtained via the experimentscan therefore be used to classify new cases, 
based on their observed features, to root-cause classes. 

3.3.3 Indirect techniques 

Indirect techniques make use of the observed link in training cases between features, as 
delivered by an analysis tool, and occurring root-causes. 

Different indirect classification techniques can be distinguished: 
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Decision boundary 

An example of a technique that can be directly applied to monitoring data is linear 
modeling. A mathematica! relationship that characterizes the sensor values for situa­
tions with a certain root-cause is retrieved by using the least squares methad [Bis03]. 
In the same way the situation without the root-cause is modeled . 

In Figure 3.7 an example is illustrated in which a linear decision boundary is fitted 
in between these mathematica! expressions. This decision boundary is then used to 
estimate the presence of the root-cause for new cases. The input variables from the 
monitoring step are XI and x2. In this example the linear model is able to provide a 
good estimate of the presence based on this input. 

:-- -- ·--- -- -~ 

root- ca use 1 
net present 

root- cause 1 
present 

Figure 3. 7: Linear decision boundary for root-cause presence. XI and x2 are sensor 
values or features . Black dots indicate cases in which root-cause 1 is present, whereas 
white dots indicate cases without the root-cause. 

In practice, more input variables lead to a higher dimensionality of the domain. A 
more complex relationship between input and root-causes furthermore leads to a higher 
dimensionality of the decision boundary. In finding a decision boundary that is a good 
approximation of reality a trade-off exists between bias and variance, caused by lower 
and higher order approximations respectively [Bis03]. The bias is a result of the in­
fiexibility of lower order polynomials for rnadeling the boundary, whereas the varianee 
results from overfitting by higher order polynomials. 
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Learning algorithms 

Learning algorithms aim at classifying new cases to classes, dependent on some features. 
These features can be delivered by data pretreatment techniques of the analysis step. 
Essentially these algorithms calculate a similarity between a new case and each of the 
training cases, based on a feature-by-feature comparison [Win98]. An example of a 
learning algorithm is Automatic Defect Classification (ADC), which was presented as 
an alternative approach to the spatial signature analysis discussed in Section 3.2.2. 

The backbarre of a learning algorithm consistsof a similar principle as visualized for the 
decision boundary approach in Figure 3. 7. The difference lies in the capability of the 
algorithm to weigh deviations in different directions in the multi-dimensional space in 
a different manner. This is an advantage over least-square methods. Furthermore, no 
real decision boundary is fitted, but conceptually a virtual one is created as cases are 
classified in the described imaginary space. 

N eural networks 

Neural networks are computer algorithms that possess the ability to learn a specific 
knowledge. They can adapt this knowledge to new situations and are able to provide 
reliable classifications of data [Pac04]. This specific knowledge is learned by iterating 
through a set of exemplar data. Two approaches exist. Learning takes place through 
internal clustering (self-organizing or competitive learning) or through paired training 
sets (supervised learning) [Hay99] . 

Advantages of neural networks include their ability to use various types of data, such 
as multiple input-output data, a combination of qualitative and quantitative data and 
nonlinear data. A disadvantage however is that it is very difficult to get the theoretica! 
expression for the relation between input and output, which makes neural networks 
essentially black boxes [Min05]. 

Fuzzy logic 

The unique aspect of fuzzy logic techniques is that they are able to simultaneously han­
dle bath objective numerical data and subjective linguistic knowledge [Men95]. Using 
traditional rnathematics it is usually impossible to take the linguistic knowledge, which 
can be very informative, into account. An example of a fuzzy logic application was 
found in the spatial signature analysis (see Section 3.2.2). 

Another example of an interesting application of fuzzy logic for fault-type classification 
is described by [Das06] . Here, process faults in power transmission systems are classified 
based on the differences in sequence and magnitude of the fault current. 

Fuzzy techniques consist out of four components: a fuzzifier, rules, an inference engine 
and the defuzzifier [Men95]. The fuzzifier maps the input numbers x into fuzzy sets. In 
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this way, rules that are stated in terms of linguistic variables can be applied to the input. 
The inference engine then handles the way in which the different rules are combined. In 
many applications the defuzzifier then maps the fuzzy output sets back into numbers 
(y). As such a quantitative, nonlinear, mapping y = f(x) between input and output is 
obtained [Men95]. 

3.4 Summary 

In this Chapter various continuous techniques have been reviewed as an important 
reference for the exploratory development of a binary technique. First, some sensing 
principles used in continuous monitoring were introduced. Next, elaborate attention was 
devoted to insightful analysis techniques. Both techniques that are based on product 
parameters and techniques based on process parameters were discussed. 

Finally, some classification techniques were presented. It was illustrated that classifi­
cation can either be direct (i.e. based on prior modeling), semi-direct (i.e. based on 
relationships observed in experiments) or indirect (i.e. basedon comparison to diag­
nosed training cases). During the development of the binary process quality control 
methodology in the next Chapter, parts of the various techniques will be borrowed, 
adapted or extended. 



Chapter 4 

Development of binary 
methodology 

As discussed in Chapter 1, many production processes are predominantly monitored 
with binary sensors. In general, these production processes produce relatively simple 
products that require lower accuracy levels and have lower casts associated with pro­
ducing nonconforming products than in the most advanced industries. These processes 
are monitored by binary sensors because the simpler products are aften characterized 
by typically binary features. It is furthermore not necessary to control the exact pro­
duct dimensions or properties during production. It suffices to produce the product 
and check for compliance with eertaio requirements, which is aften a much cheaper 
approach. 

It would still be very beneficia! for these industries to understand when variation in 
product quality occurs, what causes this variation, and how the optimal process condi­
tions can be restored. As discussed in Section 2.1, the first question is answered in the 
analysis step, the secoud in the classification step and the third in the feedback step1. 

The current challenge is to use the obtained view on process quality control to develop a 
suitable methodology for these kind of processes. This methodology needs to be capable 
of maintaining process control in environments in which mainly binary data comes out 
of the monitoring tool. Section 4.1 discusses the characteristics of this type of data. 

Next, the applicability and suitability of the presented continuous tools for the binary 
case is evaluated. Basedon this evaluation, Section 4.3 discusses the needed adaptations 
and extensions to develop a binary analysis technique. In Section 4.4 the subsequent 
classification step is developed. 

1 As stated before, this latter question will not he discussed in this report 

27 
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In order to allow application to a multitude of different industries, the current de­
velopment will take place on as high a level of abstraction as possible. Making the 
methodology operational for a specific production process then requires additional cus­
tomization. An exemplary procedure is described in Chapter 5. As the performance of 
the methodology can only be tested on a practical platform, the performance evaluation 
is postponed to this section as well. 

4.1 Monitoring with binary sensors 

The term binary sensor was introduced to indicate a sensing device that produces a 
binary output. It is therefore only capable of producing a 0 or a 1. Like with continuous 
sensors, either a product or a process characteristic can be measured. 

In the case of product measurements the binary output means that semi-product x 
does not, versus does, possess characteristic A. The condusion of failure to possess this 
characteristic can already be attached to the check. This would lead to the meaning 
of conforming versus nonconforming, or equivalently, accept versus reject the product. 
Characteristic A can be many different things, ranging from the presence of a component 
to a continuous quality related variabie like resistance, distance or temperature that is 
compared to a standard. 

If process parameters are measured in a binary way, the output possesses the same 
form, but then in relation to the process. Some characteristics are typically binary by 
nature, like a certain operating mode being switched on or off. The control system 
of a process can furthermore be informed on whether a certain process parameter has 
exceeded a critica! value or not, instead of being informed on the precise value. 

In transforming the continuous quality related parameter into a binary check, obviously 
a lot of information on the parameter is lost. Dealing with binary information therefore 
reduces the opportunities for problem analysis. 

So why are not all processes monitored by continuous sensors then? Several reasous 
exist. First, many parameters like compliance, presence, type, or mode, are binary in 
the first place. Another important reason for not monitoring the continuous quantity 
might be the involved complexity and therefore the associated costs. Furthermore, in 
some cases the lost information would not be helpful in determining the presence or 
causes of problems. 

The consequence is that many production processes exist in which we need to do with 
the less informative binary data that is delivered by binary sensors. 
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4.2 Applicability of continuous techniques 

4.2.1 Analysis techniques 

The continuous analysis techniques get their data from a monitoring system with con­
tinuous sensors. These sensors are able to provide real-time values of direct quality 
related product or process parameters. 

Two examples of techniques that monitored product parameters have been given. In 
the statespace modeZing approach (see Section 3.2.1) the dimensions ofthe semi-product 
are exactly known throughout the process. The spatial signature analysis techniques 
of Section 3.2.2 demonstrated the use of visual images cantairring much information on 
contamination and damage of wafers. 

Exemplary for the continuous techniques that monitor direct process parameters, Sec­
tion 3.2.3 presented diagnostic feature extraction. In this analysis technique the primary 
involved process parameter, the stamping force, was monitored for abnormalities. 

In state space modeling, it is crucial to know the exact dimensional deviations of the 
components from each production step to the next, to model the variation propagation. 
Such a complete overview of the dimensions of thesemi-product at every stage can nat be 
produced by binary sensors however. InstaHing continuous sensors of the discussed type 
at each production step, is likely to be an expensive solution, that is only outweighed by 
the savings ifcastsof nonconforming products are very high. As discussed in Chapter 1 
this is usually nat the case in processes that are monitored in a binary way. Therefore 
it is nat possible to model the link between root-causes and features for the binary case. 
The direct classification techniques that rely on the availability of such a model can 
therefore nat be used. The statespace rnadeling approach does offer the interesting and 
potentially useful idea of storing relevant product information in a vector though. 

The visual images of the spatial signature analysis - technique (SSA) can nat be 
captured by binary sensors either. Although continuous sensors can be installed on a 
manufacturing line for this purpose, most processes that are currently monitored in a 
binary way do nat possess the necessary characteristics to make SSA possible. The 
analysis in SSA is based on phenomena that are clearly visible and distinguishable in 
the 2-dimensional plane. This type of phenomena can only be found in processes of 
the 2D oriented surface processing operations nature (see Figure 2.3 for reference). For 
processes that possess a different nature, such as the incandescent lamps production 
lines, it has proven to be far toa diffi.cult to automatically extract meaningful features 
from product images. It is possible however to use this approach in a targeted way as 
in camman Vision appliances. 
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The continuous wavefarm signals that are essential for the diagnostic feature ex­
traction approach can not be captured by binary sensors. If, for the process under 
consideration, such an indicative process parameter is available, it is advisable to inves­
tigate the possibilities of instaHing continuous sensors to monitor it. For many processes, 
among which the incandescent lamps production lines, such a dominating process pa­
rameter does not exist however. Therefore, the semi-direct classification techniques 
can not be used for binary sensors either. 

The final analysis technique, Statistica! Process Control (Section 3.2.4), also seems 
to rely on the availability of continuous data. Normally, direct product or process pa­
rameters that indicate the quality level of the process are compared to a standard. This 
direct continuous data is not available for binary sensors however. As discussed in Sec­
tion 4.1, each datapoint represents the preserree of a certain characteristic A. Whatever 
this characteristic precisely represents, and whatever the consequences of the (lack of) 
possession of it, this means that events are counted. Three cases are possible: 

In the case of a process parameter the characteristic is directly informative on the state 
of the process, and therefore is readily available as a feature that can be diagnosed as a 
next step. 

Product characteristics are informative on the product itself however. From a process 
quality control - point of view the main concern is that the process failed to provide one 
of the products with the needed characteristic. If this is extremely rare and immediately 
alarming, this is clearly an interesting feature. 

However, if it is normal for the production process under consideration that some 
products fail to possess a certain characteristic, and therefore maybe need to be rejected, 
one blemish in itself is no feature yet. Clearly, an analysis is neededof the amount of such 
blemishes in a certain period. If an amount of blemishes can be found that corresponds 
to a situation in which root-causes are present, exceeding this level for a certain sensor 
in a certain period would form an informative feature of the system. In the next Section 
the concept of entitlement will be introduced to calculate these kind of levels. 

If this entitlement calculation can be developed, the occurrence of features for all three 
cases is well defined. Then, these adapted SPC techniques will form a very useful 
analysis tool to transfarm binary data into informative features. This makes indirect 
classification based on these features possible. Therefore, this analysis tool is chosen. 
The calculation of the entitlement level and further adaptations for this analysis tech­
nique will be developed in Section 4.3. 

4.2.2 Classification techniques 

Experiments for the practical case of incandescent lamps production lines have indicated 
that the relationships between sensor values and root-causes in this binary case are too 
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complex for direct classification. Furthermore, efforts to create linear and higher order 
decision boundaries as illustrated in Section 3.3.3 have failed. The noise ratio seems 
to be too high to allow any direct pattem recognition approaches. This underlines the 
usefulness of the entitlement calculation approach. The analysis step has an important 
data pretreatment role to fulfill. The classification step can then be based on the features 
delivered by the adapted SPC analysis tool. These features have a binary nature, 
since they are either present or absent. Several of the discussed indirect classification 
techniques are able to classify cases with these features as input. 

Decision boundaries are not very suitable for this type of data however. Furthermore, 
they possess the disadvantage that features can not easily be weighted in a different 
manner. Fuzzy techniques are possible, but can be unnecessarily complicated. 

Neural networks can establish a relationship based on training cases which is black 
box like. The objective of the classification tool is to deliver root-causes to the opera­
tors, technicians and process engineers for manual feedback. It is therefore especially 
important to establish an insightful classification structure instead of a black box. 

Learning algorithms therefore seem to be the best option for the current development 
of a binary process quality control methodology. Their insightful structure helps in 
identifying the established link between training cases, their features and the occurring 
root-causes. Furthermore, comparison of a new case to its most similar training case 
yields a very transparent overview of similar and different features for both cases. This 
provides the opportunity to investigate misclassification with engineering knowledge. 

Training efforts will be very dependent on the frequency of occurrence of features and 
the amount of distinct root-cause classes that the tool needs to be trained on. lt 
will be situation dependent which classification technique requires most training to be 
accurate. For the Philips case the training efforts involved in employing the learning 
algorithm are expected to be manageable, therefore this technique is chosen for the 
current development. 

4.3 Analysis technique development 

4.3.1 Entitlement calculation 

As the objective of process quality control is maintaining the state of control in which 
only normal causes are present, a biemishes-level needs to be found that differentiates 
between situations in which only normal causes are present and those in which assignable 
causes occur. As such, a standard is developed to which a new datapoint can be 
compared to assess whether a problem with a certain root-cause is present for the new 
point. To refer to this level the term entitlement level is introduced. 
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entitlement level - the average biemishes level for production periods in which only 
normal causes are present 

This level therefore indicates the best possible quality level for the process given its 
current design and its current state. The term entitlement is used to express that this 
level allows to entitle the state of the process as normal or abnormal. The calculation of 
the entitlement level will yield a distribution that describes the chance of encountering 
every possible count level2 , if only normal causes are present. The upper limit of 
this distribution therefore indicates a count level beyond which, with a high level of 
significance, an assignable cause is present. Camparing values to this upper limit is 
termed an entitlement check. 

entitlement check - determining whether a datapoint possesses assignable causes 
with a high level of significance. This is performed by camparing the datapoint to 
the upper limit that is linked to the entitlement leveland classifying it as abnormal 
if it lies above the upper limit 

Initially, a dataset is needed for the calculation of the entitlement level. Afterwards, 
new datapoints can be submitted to the entitlement check, based on the value for the 
upper limit that was concluded from the entitlement calculation to represent the normal 
datapoints distribution. 

Wheeler [Whe95] discusses a very interesting camman property of all homogeneaus 
datasets which can be used as the care of the calculation of the entitlement level. In 
this respect homogeneity means that all datapoints are random samples of the same, 
stable, underlying probability distribution function [Whe95]. 

property 4.1 - if a dataset is homogeneous, more than 99% of all datapoints lie within 
the 11 - 3 . a and the 11 + 3 . a limits, no matter of what type the underlying 
probability distribution is 

N ote that the definitions of 11 and a are dependent u pon the type of data and the 
knowledge of the underlying probability distribution function, as will be discussed at 
the end of this Session. 

Property 4.1 is illustrated fora variety of distributions in Figure 4.1. 

2In some cases this count level needs to be corrected for the corresponding area of opportunity, see 
Section 4.3.3. The illustrated entitlement calculation procedure, although then based on these corrected 
count levels per unit of area of opportunity, remains unchanged however. 
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Figure 4.1: Different homogeneaus probability distributions (adapted from [Whe95]) 
showing property 4.1. The values inside the distribution functions indicate the exact 
fraction of points inside the limits for these examples 
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The state of the production process in which only normal causes are present does not 
vary over time and therefore forms a stable under lying generator for homogeneaus da­
tapoints. This normal causes distribution, indicated by "N" in Figure 4.2, generates 
the datapoints for situations in which only normal causes are present in the production 
line. Therefore, typically relatively low count levels result from this distribution. In 
practice, the process can get out of control though, leading to an abnormal situation 
in which assignable causes are present. As a result, a different underlying distribution 
generates the higher count levels that are expected for these datapoints with assignable 
causes (indicated by "A" in Figure 4.2). 

p 

N A 

Figure 4.2: The process distribution in practice actually exists of a separate distribution 
of counts when only normal causes are present (N) and one for the assignable causes 
(A) 

If property 4.1 is applied in a repetitive manner, the datapoints in the initial dataset 
can be identified as normal or abnormal. Hereto, the entitlement level (/1) and upper 
limit (/1 + 3 · 0') of the initial practical dataset need to be calculated. Figure 4.3 shows 
the result. 
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Figure 4.3: The practical process distribution with first estimates of entitlement level 
and limits. Those points that lie above the upper limit are identified as belonging to 
the abnormal causes - distribution 

As the abnormal datapoints and normal datapoints come from a different probability 
distribution function the initial practical dataset is not homogeneous, and therefore 
more than 1% of the datapoints is expected to lie above the upper limit. Indeed, the 
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practical case of Philips Lighting shows that in practice much higher percentages are 
found. The datapoints with high count levels are very likely to have been generated by 
the abnormal causes distribution. Therefore, the datapoints that appear to lie above 
the upper limit are identified as abnormal. Filtering these datapoints from the dataset 
(illustrated by colouring them gray) leaves a practical dataset with a higher fraction 
of normal datapoints than the initial set. As a consequence, the entitlement level and 
upper limit of this filtered dataset will he lowered, as illustrated in Figure 4.4. 
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Figure 4.4: Filtering out some abnormal datapoints lowers the entitlement level and 
upper limit 

The result is shown in Figure 4.5. Again, if more than 1% of the datapoints lies above 
the J1 + 3 · (j limit, this is interpreted as a signal that the dataset is not homogeneaus 
yet. Therefore, the abnormal points that lie above this upper limit are filtered out once 
more. 
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Figure 4.5: Still more than 1% of the datapoints lies above the upper limit. The dataset 
is therefore still not homogeneaus 

This process needs to he repeated several times (see Figure 4.6) until only less than 1% 
of the datapoints lies above the /1 + 3 · (j limit. Then, a homogeneaus dataset with only 
the normal datapoints remains. This final result is illustrated in Figure 4.7. 
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Figure 4.6: Another filtering cycle in which abnormal points are filt ered out 
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Figure 4. 7: Final result: A homogeneaus dataset with only the normal datapoints 
without assignable causes. The real entitlement level and value for upper limit have 
now been found 

lt is important to realize that the distinction between normal and assignable causes is 
insome way virtual. As discussed in Section 3.2.4, assignable causes areexternalto the 
process design. No processis designed robust enough to eliminate all possible problems 
however. The focus is not on pinpointing the exact moment that a relatively small cause 
that is always present to some extent, becomes an assignable cause that can be taken 
away. In stead, the distinction serves as a practical trigger to come into action. 

By platting the histogram of the initial practical dataset from the binary sensors it 
can be assessed whether a clear distinction between normal and abnormal cases as 
illustrated in Figure 4.2 indeed appears to exist. Furthermore, monitoring the speed of 
convergence, measured as the amount of filtering cycles ( and amount of filtered points 
per cycle) needed to reach a homogeneaus dataset , can help in assessing whether or 
not the distinction is clear for the practical case under consideration. Hereto, the 
production periods that are characterized as abnormal should be diagnosed to assess 
whether, in most cases, relevant assignable causes are indeed present. Furthermore, it is 
important to check whether identifiable root-causes are indeed absent for periods that 
were characterized as normaL 
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The entitlement calculation needs to be executed for every binary sensor signal. To 
reduce future numerical efforts an automated entitlement calculation tool has been de­
veloped. This tool retrieves data from the control system of a manufacturing line via 
ActiveFactory, places it in an Excel spreadsheet and perfarms the entitlement calcu­
lation procedure. It ultimately yields the entitlement of each datapoint as normal or 
abnormal, presents an overview of the filtering behavior and indicates the descriptive 
statistics of the practical distribution. 

As stated, the specific way of calculating the estimators 'jl and a that define the enti­
tiement level and upper limit in this entitlement calculation depends upon the specific 
type of data. Two important categories can be distinguished: 

Data in subgroups 

If the binary sensor data in a specific situation can be rationally categorized in sub­
groups, such as batches of products, the data is characterized as subgroup data. 

The definitions of 'jl and a for subgroup data are given by these formulas [Whe95]: 

(4.1) 

where: 

Xi = subgroup average for the ith subgroup 

n 8 = number of subgroups 

The size and frequency of these subgroups should be chosen such that the likeliness 
that process changes will occur between the samples, rather than within the samples, 
is maximized [Whe95]. This procedure is relatively subjective though. 

Furthermore: 
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(4.2) 

where: 

s = the size of a subgroup 

d2* = the bias correction factor for using average ranges to estimate variances. lts value 
is dependent upon the size of the subgroup s and the amount of subgroups n 8 [Whe95]. 

and 

R = average range of the subgroups, according to: 

R = L':~1 Rï 
ns 

(4.3) 

where: 

Rï = range of the ith subgroup 

n 8 = number of subgroups 

Data in time series 

If the data from the binary sensors is ordered in time, and no rational subgroups can be 
formed, the data is characterized as time series of data. The best methad to estimate 
[i and êJ for this type of data is suggested by Wheeler [Whe95] to be: 

(4.4) 
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where: 

Xi = value for ith datapoint 

nd = number of datapoints 

Furthermore: 

(4.5) 

where: 

Rï-?>j = the two-point moving range between datapoint i and datapoint j 

nd = number of datapoints 

Depending on the type of data in the initial practical dataset formulas 4.1 and 4.2 
or 4.4 and 4.5 can be used to estimate jl and (7, for the execution of the entitlement 
calculation. 

4.3.2 Fitting a distribution 

U pon completion of the entitlement calculation the normal datapoints have been distin­
guished. If a theoretica! distribution function exists that matches the practical normal 
causes - distribution, the JL and a of this distribution can be used to perform the en­
titlement check for future datapoints in stead of using their estimates jl and (7. This 
entitlement check for new datapoints is described in Section 4.3.4. 

Using the values JL and a of the distribution is beneficia! because the best generalization 
to new data is obtained when the mapping captures the underlying systematic aspects 
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of the data rather than the irregularities present in the practical dataset ( which are 
therefore present in the estimators /i and êi as well) [Bis03]. 

Furthermore, the entitlement check can then be based on those statistics that are repre­
sentative for the specific type of probability distribution. As illustrated in Section 4.3.3 
especially êi is very dependent upon the specific distribution. 

Literature offers some very clear methods that guide in finding the theoretica! distribu­
tion that fits the practical dataset of one of the sensors (e.g. [Lawül, Whe95]). 

A thorough approach can consist out of the following steps (for a more elaborate de­
scription the reader is referred to [Lawül]): 

Assess sample independenee 

Various statistica! techniques, used in finding a fitting theoretica! distribution, require 
that the data x1, xz, ... , Xn are an independent sample from some underlying distribution. 
Correlation plots and scatter diagrams are easy and insightful tools to assess the validity 
of this assumption. 

Hypothesize families of distributions 

Prior knowledge on the type of data can be used to assess possible distributions on 
theoretica! grounds (e.g. untreated binary data has a discrete character). Furthermore, 
summary statistics of the dataset can be insightful. Examples are the range of the 
data, the mean, varianee and skewness. Also, alternative measures for variability like 
the coefficient of variation cv for continuous data and the lexis ratio for discrete data can 
be insightful. Next, histograms can form an insightful graphical estimate of the plot of 
the theoretica! probability distribution. Finally, quantile summaries and boxplots can 
be used. 

Estimation of parameters 

Specifying a distri bution finally involves the estimation of the specific parameters of the 
distribution. Maximum-likelihood estimators (MLE) are a suitable tool to specify an 
estimator for a particular parameter. 

Determining quality of fit 

In order to determine how representative the fitted distributions are several methods 
exist. First, heuristic tools like density /histogram overplots, frequency comparisons, 
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distribution function difference plots and probability plotscan be used. Next, goodness­
of-fit tests like the chi-square test and the Kolmogorov-Smirnov test are insightful to 
assess the degree of conformanee between the practical data and the theoretica! distri­
bution. 

4.3.3 Binomial and Poisson distribution 

Two aften encountered theoretica! distributions for binary sensors are Binomial and 
Poisson because of the discrete character of the counts. Whether the applicable the­
oretica! distribution in a specific situation is Binomial or Poisson is dependent on the 
type of area of opportunity, which is defined as: 

area of opportunity - the maximum possible amount of biemishes that serves as a 
reference to which the amount of occurring biemishes can be related 

Forsome characteristics, several biemishes can take place inside one semi-product. The 
area of opportunity is then formed by the maximum amount of biemishes per product. 
Alternatively, if a semi-product can have one blemish at most, it is interesting how 
many of the semi-products possess such a blemish. 

In the farmer case the area of opportunity is as abstract as some finite region of space, 
time, or product [Whe95], whereas it is as concrete as the number of discrete items in 
the latter. For the farmer case Binomial distributions may apply whereas Poisson may 
be applicable to the latter case. 

The area of opportunity can either be the same for all datapoints, or differ from period 
to period as is usually the case with, for example, the amount of produced products. 
For fixed area of opportunity the entitlement level can be based on the count level 
(xENTJ· For situations in which the area of opportunity is different for each datapoint, 
the entitlement level needs to be adjusted to counts per unit of area of opportunity 
(rENT;) to allow meaningful camparisou of the datapoints. The same distinction exists 
for the upper limit. 

For the binomial distribution, the following conditions need to apply: 

• the area of opportunity for the count must consist of ni distinct items 

• each of the ni distinct items must be classified as possessing, or not possessing 
some characteristic A 
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• the prabability PA that an item has the counted attribute must be the same for 
all ni items in one sample. The value of PA should only differ between samples, 
nat within samples 

• the events (items nat passessing characteristic A) are independent of each ather 

If these canditians are satisfied, and a binamial distribution appears ta provide a good 
fit to the normal causes - dataset, the following formulas apply: 

For fixed area of opportunity 

(4.6) 

where: 

XENT; = entitlement level for counts, for datapoint i 

PA = the probability that an item passesses attribute A 

ni = the amount of examined items 

(4.7) 

where: 

XUL; = upper limit for counts, far datapoint i 
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For varying area of opportunity 

TENT; = J.l, =PA (4.8) 

where: 

TENT; = entitlement level for counts per unit of area of opportunity, for datapoint i 

ruL; = 1-" + 3 · CJ = PA + 3 · (4.9) 

where: 

ruL; = upper limit for counts per unit of area of opportunity, for datapoint i 

nit = the amount of examined items for the sample of time period t 

For the poisson distribution, the following conditions need to apply [Whe95]: 

• the counts are counts of discrete events. These counts are the blemished products 
Xit, where i indicates the sensor and t the time period 

• the discrete events occur within a finite region. This finite region is the area of 
opportunity for the count and is formed by the amount of semi-products Pmt that 
are being producedon machinemin time period t 

• theevents occur independently of each other (memoryless property [RosOO]), and 
the likelihood of an event is proportional to the size of area of opportunity (i.e. 
the more semi-products are being produced, the more blemished products Xit are 
likely to occur) 

• theevents are rare (e.g. Xit < lo ·Pmt (i.e. less than 2% ofproduced semi-products 
are blemished)) 
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If the stated conditions apply and the Poisson distribution appears to provide a good fit 
to the practical dataset, the following formulas can be used to calculate the entitlement 
level and the upper limit: 

For fixed area of opportunity 

where: 

'Ç"'nt 
Lt=l Xit 

XENT· = /-L = 
' nt 

Xit = the count of rejected products by sensor i during period t 

nt = the amount of periods 

'Ç"'nt X. 'Ç"'nt X 
XUL· = fL + 3 . (]' = Lt=l tt + 3 . Lt=l it 

' nt nt 

For varying area of opportunity 

(4.10) 

(4.11) 

If the area of opportunity varies from time period to time period, as is normally the 
case with the amount of products produced per period of fixed length, then the formulas 
become: 

'Ç"'nt 
L....tt-1 Xit 

TENT; = fL = 'Ç"'nt 

Lt=!Pmt 

TUL; = fL + 3 · (]' = 
'Ç"'nt x· 
Lt=l tt + 3 . 

'Ç"'nt 
Lt=l Pmt 

L~!_l Xit 

L:,;1Pmt 
Pmtnew 

(4.12) 

(4.13) 
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where: 

Pmtnew = the amount of products producedon machinemin the new period tnew 

In equation 4.13 for the upper limit, the denominator contains the term Pmtnew which 
is dependent upon the new period tnew· The upper limit is therefore different for each 
datapoint, depending on the amount of products produced. 

4.3.4 Entitlement check 

The entitlement check aims at deciding whether a certain sensor value, of a new pro­
duction period, is normal or abnormal. Hereto, it uses the knowledge of the normal 
causes - distribution. 

The transformation of the value of sensor i for time period t, Xit, into a binary feature 
bfit relating to the same sensor and period is executed as follows: 

If Xit > XUL;, then b fit = 1 
(4.14) 

If Xit :S XUL; , then b fit = Ü 

where: 

Xit = amount of counts for sensor i, in time period t 

XUL; = upper limit of counts of normal causes - distribution, for sensor i 

As discussed, in situations of varying area of opportunity per datapoint, the amount of 
counts needs to be related to the corresponding area of opportunity, the transformation 
then becomes: 
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If rit > ruLil then b fit = 1 
(4.15) 

where: 

rit = amount of counts per unit of area of opportunity for sensor i, in time period t 

ruL; = upper limit of counts per unit of area of opportunity of normal causes - distri­
bution, for sensor i 

The value for xuL; or ruL; is preferably calculated with the use of a well fitting theo­
retica! distribution: 

XUL; = /-L + 3 · (J (4.16) 

or 

(4.17) 

With 1-L and a the parameters of the found theoretica! distribution. 

Note that in the case of a Poisson distribution the upper limit ruL; is different for each 
time period. See Section 4.3.3 for the discussion on this time dependency of the upper 
limit TUL· . 

't 

Alternatively, if no fitting distribution could be found, Ti and a of the last filtering cycle 
of the entitlement calculation procedure need to be used as estimators of the parameters 
1-L and a in estimating XUL; or ruL; for the entitlement check: 

(4.18) 



4.4. Classification technique development 47 

or 

(4.19) 

As such the developed methodology is able to indicate, real-time, whether a phenomenon 
has occurred for each time period. If binary features (bfit) are present, the analysis me­
thodology is also able to pinpoint the location (indicated as i) and time (t) of occurrence. 
This data is printed on screen and the system state is therefore ready to be classified 
in the next quality control step. 

4.4 Classification technique development 

As discussed inSection 3.3.3 learning algorithms can campare a new case to diagnosed 
training cases. Hereto, a certain set of features is predefined. For each training case, 
the algorithm then compares each of the features of the new case to the training case its 
features. As discussed, the developed analysis tool delivers binary features. The first 
step (Section 4.4.1) is therefore toselect the most relevant binary features as input for 
the comparison algorithm. 

An overview of severallearning algorithms that can handle binary features is presented 
by [Win98]. None of the discussed algorithms is readily suitable for the quality control 
purpose, however. Therefore, inSection 4.4.2 a new algorithm will be developed, based 
on discussed algorithms by Winiwarter [Win98]. 

4.4.1 Binary feature selection 

The aim of the comparison algorithm is to campare system states. A learning algorithm 
is able to campare veetors that contain features of the system, if presented in a binary 
way. These system state veetors St for each time period t therefore need to possess the 
following kind of structure: 

bf11 0 

bf21 

st= bf3t 0 = e.g. 

Figure 4.8: Structure of system state vector 



48 Cbapter 4. Development of binary metbodology 

The phenomena that are delivered by the analysis technique are very informative on 
the system state. The first set of binary features of the system state vector is therefore 
formed by the results of the entitlement check for every single sensor, for the past 
production period. Hereto, the bfit 's that are delivered by the analysis tool can directly 
be used. 

Are there any other features of the system state known, that can imprave the system 
state description? It was illustrated in the state space rnadeling approach that engi­
neering knowledge can be helpful in descrihing the system state. Given the engineering 
knowledge of the specific production process under consideration, some mutually oc­
curring abnormal values may typically point to another root-cause than in the case of 
a single abnormal value. As comparison algorithms assess the similarity between cases 
basedon the amount of similar binary features (in a weighted manner), the inclusion of 
binary features that represent the occurrence of such correlations can imprave the clas­
sification correctness rate. Therefore, a second interesting set of binary features of the 
system state vector represents whether or not these typical correlations are occurring 
for the case under consideration. 

Assuming that such a special correlation exists between the sensor values of sensor i 
and sensor j, this second set of binary features is determined as follows: 

If bfit = 1 and bh = 1, then bfqt = 1 

(4.20) 

If bfit = 0 or bh = 0, then bfqt = 0 

where: 

b fit = occurrence of a phenomenon for sensor i 

bfqt = qth binary feature of the system state vector 

Analogously, it is possible that engineering knowledge suggests that an abnormal sensor 
value Xk, while sensor value xz is normal, points towards a specific root-cause. The 
conesponding binary feature bfr is then determined as: 
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If bfkt = 1 and bftt = 0, then bfrt = 1 

(4.21) 

If bfkt = 0 or bftt = 1, then bfrt = 0 

A third and final category of binary features that can give information on the system 
state is formed by occurring events. Examples of possibly interesting events are: 

• stops 

• breakdowns 

• change overs 

• shift identification tags 

• rnainterrance activities 

If such an event, v, occurs the corresponding bfvt = 1, if not, bfvt = 0. The descriptive 
power of these events lies in the fact that their occurrence can increase the likelihood 
of the preserree of a certain root-cause. 

Some problems, like bad adjusted machine parts, typically occur more often after rnain­
terrance activities or change overs, during which they are often replaced. 

Because ofthe different way ofworking of different shift teams, some problems may occur 
more often for a certain team. This explains the descriptive power of shift identification 
tags regarding the prediction of the preserree of certain root-causes. 

4.4.2 Learning algorithms 

The core of the algorithm is to campare each of the discussed binary features of the 
system state vectorsof the new case, denoted by Snew, with the features of the training 
state vector Str· Based on whether both cases contain bfï or not, a certain measure of 
similarity needs to be constructed. This allows the selection of the most similar training 
case after iterating through all cases Strt. 
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nf 

SI M(snew, Str) = L a(snew;. Str;) 

i=l 

where: 

n f = amount of features 

1 if Snewi = 1/\ Stri = 1 

0 otherwise 

1 if Snewi = 1/\ Stri = 0 

0 otherwise 

• Ótr ( Snewi, Stri) = 

1 if Snewi = 0 1\ Stri = 1 

0 otherwise 

nf 

L Ónew ( Snewi, Stri) 

i=l 
nf 

L Ótr ( Snewi, Stri) 

i=l 

(4.22) 

Winiwarter [Win98] discusses several methods of weighing the binary features. For 
the current classification purpose none of the discussed weighing methods is completely 
suitable however. 

The core of the classification principle is that the system state will typically contain 
certain binary features for certain root-causes. It is therefore possible to assign an 
importance factor to each feature for each root-cause class. A simple but effective 
parameter is formed by the proportion of training cases that possess bfï in class j. 
Classification correctness can then be improved by weighing the correspondence and 
difference between present features according to this feature- importance parameter. 
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With this extension, equation 4.22 becomes: 

SI M(snew, Str) 

where: 

nf 

L CT(Snewo Str;) · 'Trji 

i=l 
nf 

L 8new(Snew;, StrJ · (1- 'Trji) 

i=l 
nf 

L 8tr ( Snew;, Str;) · 7r ji 

i=l 

'Trji = the proportion of cases in class j that contains feature i 

j = the class of the training case Str 

4.4.3 Training the tooi 
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(4.23) 

The comparison algorithm can only be used after some thorough training. The system 
state veetors of training cases are automatically delivered by the developed analysis 
tool. Training the diagnosis tool therefore consists of linking the present root-causes to 
these system state vectors. 

The presence of root-causes in the training cases can be investigated by several other 
tools. The principle of diagnosing picturesof semi-products that was part of the spatial 
signature analysis - technique seems very interesting to diagnose problems. Depending 
on the specific production process, the pictures taken at those moments and places at 
which a problem is occurring may be very useful to find the root-causes and therefore 
train the classification tool. Another possibility suggested by spatial signature analysis 
was the use of operator knowledge. A final possibility is the use of documentation. 
Problems that have been fixed by maintenance personnel can be investigated to yield 
their root-causes. 
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4.4.4 Testing and use 

The final step of the development of the binary process quality control methodology 
consists of test ing. The classification correctness ra te needs to be assessed by camparing 
the prediction of present root-causes by the tooi to their actual presence. 

Performance optimization can be achieved by altering the content of the system state 
vector. Certain informative binary featurescan be added, while less informative features 
can be excluded. Extra training of the tooi might help in improving the classification 
correctness. 

Depending on the specific situation, the emphasis will be on the reduction of false alarms 
or on the achieved sensitivity of the tooi. 

After the performance of the tooi has been optimized the automated methodology can 
be put into use by coupling the relevant parts of it to the information stream that 
comes from the binary sensors. An exemplary procedure of all these steps is described 
in Chapter 5. 

4.5 Summary 

The aim of this Chapter was the development of a binary process quality control metho­
dology. After discussing the specific properties of binary sensor data the consequence 
of using this type of data for the applicability of the continuous techniques of Chap­
ter 3 was discussed. SPC techniques proved useful in determining features for some 
cases (process errors and rare product errors) but a decision procedure needed to be 
developed for common product errors. For this purpose the entitlement calculation 
was developed, which is able to identify each of the training datapoints as normal or 
abnormal. Furthermore, the latter points are automatically filtered out. 

Next, a procedure was described for fitting a distribution that represents the resulting set 
of normal datapoints, and the specific properties of Binomial and Poisson distributions 
(aften encountered in the case of discrete count data) were discussed. Section 4.3.4 
discussed the subsequent determination of abnormality for new datapoints, which is 
preferably based on the parameters of the found distribution. 

Then, a classification tooi for these new datapoints was developed. Indirect classifica­
tion appeared most suitable, and therefore classification was based on comparison to 
previously diagnosed training cases. Basically the amount of similar binary features for 
the system state vector of the new case and of each of the training cases is assessed in 
a weighted manner. 

The developed methodology is therefore based on the characterization of new datapoints 
by evaluation of the possession of several binary features, a subsequent comparison to 
diagnosed training cases, and finally a link to the root-cause of its most similar training 
instance. 



Chapter 5 

Customizing and testing the 
developed methodology 

The final step, after the development of the binary process quality control methodo­
logy, is the customization to a specific production process. As mentioned earlier, the 
production process of iocandescent lamps at Philips Lighting will serve as the practical 
platform. 

InSection 5.1.1 an overview of this production processis presented. As the automated 
process quality control techniques that are currently in use are limited, the current 
application is expected to yield good results. 

As a first step, attention is devoted to the monitoring of the process, which is performed 
by binary sensors. 

Next, the application of the developed analysis techniques to this data are discussed. 
After the calculation of the entitlement levels, it is tried to characterize the normal 
datapoints by a theoretica} distribution. For the training period of one month the 
entitlement checkthen delivers the occurring abnormal values. 

The classification step, as developed in Section 4.4, is then customized to the incau­
descent lamps process. Firstly, the content of the state vector is deducted by selecting 
relevant binary features. Next, for the training period, the present root-causes are de­
termined by employing a camera tool, especially developed for this purpose. The final 
customization step, the actual training of the classification tooi, consists of linking these 
root-causes to their state vectors. 

In Section 5.6, the customized tools are then put into use for the first time. The 
predictions of present root-causes as yielded by the combined efforts of the analysis and 
classification tools are then compared to the actual root-causes. This information is 
again retrieved by employing the camera tooi. The correctness of the classification is 
then finally assessed. 

53 
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5.1 Philips Lighting 

5.1.1 Production processof incandescent lamps 

Philips Lighting is a leader in the lighting industry. Yearly about 2 billion incandescent 
and 0.8 billion fluorescent lamps are produced by Philips in many factories in different 
partsof the world. The production processof these lamps can predominantly be char­
acterized as "assembly" of semi-products. At many points in a production line there 
are sensors that check for compliance with a certain requirement and produce a binary 
output accordingly. As such, semi-products are approved or rejected by these sensors. 
If a product is rejected it means that components are lost and because 70 %1 of the 
cost price of a lamp is formed by its components, rejects must be avoided as much as 
possible, especially near the end of the line. 

Lamp production lines consist of a number of indexing turrets that are coupled via 
control transports and buffer transports. The production system can be characterized 
as automated, indexed, processing high volumes and quite robust. 

The product types that are under consideration in this research project are those that 
are most common and have the largest production volumes, the incandescent lamps. 

Production of incandescent lamps for Philipsis dorre on more than 200 production lines 
which are very much similar. Production lines consist of coupled machines that are 
indexing turrets with rigid mechanization driven by cams. The turrets are mills with a 
certain amount of product holders (depending on the machine) on the outside. In this 
way access for all operations is ensured, and because the mills are indexing, products 
can pass various production stages on one machine. 

Most (standard) lamps are producedon Philips B-groups that have a production speed 
of 4500 prod/hr. On a B-group there are approximately 25 sensors to identify rejects. 
Siemens 85 or 87 is used as control system (PLC) on most of the B-groups for syn­
chronizing the machines and for rejecting defect semi-products. Some of the lines have 
been extended with a monitoring system that stores the sensor signals from the control 
system. 

5.1.2 Characterization of production process 

Following the categorization of Section 2.2 the production process of Philips Lighting 
needs to be assessed in terms of its nature, structure, and its casts of faulty products. 

The nature of the process is a combination of assembly operations and some processing 
operations (see Figure 2.3). Most assembly operations belong to the subcategory of 
permanent joining processes (e.g. melting the stem into the bulb, and threading), with 
some exceptions belonging to the mechanica! fastening type (e.g. placement of a coil). 

1this is the percentage for incandescent lamps 
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The processing operations consist of some shaping processes (e.g. bending the lead-in­
wires) and some property enhancing operations (e.g. heat treatments for the bulb) . 

The structure of the production process is the connected line flow structure (type lil in 
Figure 2.4). The costs associated with producing nonconforming products are relatively 
low (compared to the most advanced industries). 

This type of production process that is mainly categorized by an assembly nature per­
formed in a continuous flow structure is often observed and is therefore a useful example. 

5.1.3 Current process quality control techniques 

Current practice at Philips is that only the monitoring process is automated. Sensors 
check the compliance of the product with a certain condition and produce a binary out­
put accordingly. The subsequent analysis and diagnosis phase, as wellas the feedback, 
are based on the experience of the operators, technicians and process engineers, rather 
than following automated methodologies that make use of modeling. It is therefore ex­
pected that starting to make use of the data that is produced by the monitoring system 
can greatly reduce the current amount of rejected products. 

5.2 Monitoring the process 

In figure 5.1 an overview of the B-group contiguration is given. The different machines 
are indicated as well as the positioning of the sensors that check product compliance. 

5.2.1 Stem making machine 

Inthestem making machine (indicated as SMM in the figure) the first components are 
melted together to make a stem. A fiare, which is a small hat-shaped glass product 
with a hole in it is put in the product holder. Next two lead-in-wires are inserted into 
this open fiare. Finally an exhaust-tube which has the form of a long (11 cm) hollow 
glass tube is pushed through the hole in the fiare. 

The first sensor in the line checks the preserree of the exhaust-tube by a simple mechan­
ica} action. If this tube appears to be absent the product will not be transferred at the 
last position of the mill but will in stead be thrown into a reject-bin. The fiare and 
exhaust-tube are now heated above the glassmelting temperature Tm. Two squeezing 
blocks damp the fiare from two sides, as such melting it together with the exhaust-tube 
that is going through it. The result is a fiatterred piece in the middle of thesemi-product 
in which two holes are blown in order to open the access to the exhaust-tube channel 
for a pumping process later in the line. 
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Figure 5.1: Overview of B-group production line 

The semi-product that leaves this machine is called a stem. To reduce the internal 
pressures in the glass stem, a slow cool down process follows in the annealing oven 
(indicated as ANO). This open oven serves as a buffer at the same time. 

5.2.2 Mounting machine 

Sterns then enter the mounting machine (MM) by a vacuum transfer and the presence 
of the lead-in-wires is checked. If one or two of the wires appear to he missing ( or bent, 
which also results in this sensor giving a positive signal) the product will he thrown 
away and no coil needs to he added. An intelligent coil feeder system then provides 
coils on an indexing drum. A transfer unit picks up a coil and places it with both ends 
at the endsof the two lead-in-wires. Next, a mechanica} movement clamps the endsof 
the wires around the coil ends to provide fixation. 

The next sensor checks whether it is possible tosend a current through the lead-in-wires 
and coil. Afterwards the lead-in-wires are spread. Then, two support wires are added 
by inserting them into the melted top of the stem. 

The presence of these wires is checked by a sensor, and if present, the wires are folded 
around the middle of the coil, forming a pigtail, in order to support the coil. This is 
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necessary because the coil elangates as it heats up during the use. 

Befare the semi-product leaves the mounting machine it is checked once again for the 
presence of a coil by sending a current through it once more. If the product is still 
conforming it moves on, if not it is rejected into a bin. 

5.2.3 Sealing and pumping machine 

The new semi-product, which is now called a mount, is then transferred to the sealing 
machine (SM) in which the bulbs are placed over the mounts and melted together. The 
infeed of both bulbs and mounts is checked. If the vacuum transfer of the bulb fails 
the bulb is either braken or has fallen out of the transfer unit. Because of this the 
corresponding product needs to be rejected. 

After melting the mount and bulb together, the product is checked for its seal shape 
and the presence of the exhaust-tube (it might have been braken during transport, it 
is also possible that the entire lamp fell out of the machine during the transfer). All 
rejected products are again thrown into a reject-bin. 

The newly formed lamps are then transferred, via vacuum transfer units, to the pumping 
machine (PM). Here the repetitive pumping process begins in which all air is gradually 
replaced by a neon-fluor gas mixture. To make this possible a pumping unit is attached 
via rubber tubes to the exhaust-tube of the lamp. 

When this process is finished the lamp is checked for possible leaks ( dependent on the 
actual pressure value a categorization is made between good lamps, relative leaky lamps 
and lamps with an absolute leak). Next, the exhaust-tube through which the gas has 
flown is pinched. 

It is checked how long this pinching takes to make sure that the exhaust-tube that is 
braken in this process is of a high enough temperature to ensure easy breaking ( otherwise 
the pinching blocks would be damaged by the hard glass). Leaky lamps and those in 
which the pinching was too fast or too slow will be removed. 

5.2.4 Threading and finishing machine 

The lamps then go on the lamp transport machine (LTM) which serves as the second 
buffer in the line. Lamps are transported towards the threading machine (TRM) in 
which a cap will be placed over the lead-in-wires at the bottorn side of the lamp. This 
cap is first filled with cement in the cap filling machine (CF), in order to make it stick 
to the lamp. 



58 Chapter 5. Customizing and testing the developed methodology 

After threading the lamp is transferred to the finishing machine (FINM) in which the 
result of the threading is checked by trying to send a current through the lead-in-wires 
and coil. If no current fl.ows the threading has failed (for instanee one of the lead-in-wires 
might be trapped inside the cap), or the product is not compliant in another way. 

Good products praeeed to the wire cutting process in which the two topwires ( or the 
topwire and the sidewire, dependent on product type) are being cut. After transferral 
to the lower mill of the finishing machine the lamps arrive at the soldering unit which 
places a bit of solder on the ends of the wires to ensure conneetion to the cap. 

The current through the product is then finally measured to assess whether the lamp 
is working or not. If the lamp appears to be leaking the current value will be different. 
Lamps through which the measured current flow is not within specifications are then 
finally rejected at the end of the line. 

Good products leave the production line for automated transport to the packaging line. 

5.3 Scope determination 

It is not realistic nor sensible to choose the entire production line as the scope for the 
current experiments with this tool. The main objective is to assess the potential of 
the developed binary process quality control methodology. It is therefore preferred to 
customize and thoroughly test the newly developed tool for the beginning of the line 
only, rather than creating a partly operationalized tool for the entire line. 

The current attention is therefore specifically restricted to the first two machines, the 
stem making machine and the mounting machine. 

The training and testing of the developed tools is performed during two periods of one 
month each, on the B4 line of Philips Lighting located in Surabaya, Indonesia. 

5.4 Analysis technique customization 

Employing the analysis tool, that was developed inSection 4.3, consists out of a number 
of steps: 

• calculate the entitlement level 

• try to fit a theoretica! distribution 

• perfarm the entitlement check for new data 

To provide a clear exemplary procedure for employing the newly developed process 
quality control methodology, each of these steps will be elaborately discussed. 
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5.4.1 Entitlement calculation 

The entitlement calculation aims at retrieving an average value for the amount of pro­
duct blemishes for those cases in which only problems with normal causes are present 
in the production process. This procedure requires quite some effort as illustrated in 
Section 4.3.1: 

• identify what is counted by the binary sensors in the process under consideration 

• identify the type of area of opportunity and find the proper basis for it 

• identify abnormal production periods by using information from the control sys­
tem and documentation 

• employ the developed automated entitlement calculation procedure 

• check whether datapoints that are characterized as abnormal indeed display assignable 
causes, and whether normal datapoints lack assignable causes 

As can be concluded from the description of the production process of incandescent 
lamps at Philips Lighting, the binary sensors check product compliance. If a sensor 
detects a blemish fora certain product, the entire product is classified as nonconforming. 
The product is then rejected, without being tested on other characteristics by the other 
sensors. The count data per sensor therefore consists out of rejected products by that 
sensor. 

As nonconforming products are not tested by other sensors anymore, the amount of 
possible detected blemishes per product is strictly limited to one. The amount of lamps 
that can be nonconforming therefore only depends u pon the amount of lamps produced. 
The area of opportunity in the current case is therefore formed by the amount of lamps 
produced in a certain production period. 

Selecting a proper time basis for one production period involves several considerations. 
On the one hand side, the shorter this time basis, the sooner the analysis tool can display 
the information it retrieves. After a quick diagnosis, this impraves the possibilities for 
useful feedback on the found root-causes. On the other hand, the time basis needs to be 
long enough to have a substantial amount of rejects in each period ( averages around 0, 
1 or 2 hamper the entitlement calculation). After trying several time bases "one hour" 
proved to be suitable for the current case 
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Next, abnormal production periods need to be identified. Those production periods 
that were nat intended to produce lamps but were used for minor or major adjustments, 
investigations, change-overs or maintenance activities are identified and excluded from 
the dataset. 

This identification is based on the amount of lamps that have been produced Pmt, with 
m the relevant machine of the production line. The threshold has been based on ~ 
the capacity of the machines, which corresponds to approximately Pmt = 2000 

threshold 

lamps. This information has been retrieved, real-time, from the control system of 
the production line. A verification is performed by consulting the documentation of 
production and maintenance activities and planning. 

The next important step is the employment of the automated entitlement calculation 
procedure. The needed information is the amount of biemishes and the conesponding 
area of opportunity. For the current case the farmer values are represented by the 
amount of rejects of each of the sensors per hour Xit. The latter values are formed by 
the amount of lamps produced per hour by the machine on which the respective sensor 
is located Pmt. As can be concluded from the description of the monitoring equipment 
at Philips Lighting as described in Section 5.2, the following information is available: 

x11 = amount of stem without exhaust-tube rejects 

x21 = amount of stem without lead-in-wire rejects 

X31 = amount of mount without coil, check 1 rejects 

X4 1 = amount of mount without support wire 1 rejects 

xs1 = amount of mount without support wire 2 rejects 

X51 = amount of mount without support wire 1 & 2 rejects 

X71 = amount of mount without coil, check 2 rejects 

PSMMt = amount of lamps producedon the stem making machine 

PMMt = amount of lamps producedon the mounting machine 

All this data is available for every hour. In the training period of one month, which 
was the basis for the entitlement calculation, 275 production hours have been analyzed. 
In total, 33 production periods were characterized as nat strictly intended to produce 
lamps. For the other 242 production hours, every combination of sensor value and 
amount of lamps produced is retrieved from the control system of the incandescent 
lamps production line. This is performed with the ActiveFactory application of the 
software package Excel, on an automated andreal-time basis. The 3388 datapoints are 
transformed into 1694 reject percentages per sensor per hour, in the following manner: 
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Xit 01 
rit=-· 100;o 

Pmt 
(5.1) 

where: 

rit = reject percentage for sensor i on machine m 

Xit = amount of counted rejects for sensor i 

Pmt = amount of products producedon machine m 

Next, the type of the data needs to be assessed. No subgroups can be distinguished 
within the data. The datapoints are generated over time though, with one datapoint 
for every hour. The data therefore needs to be treated as time series data. The upper 
limit is therefore calculated with equations 4.4 and 4.5, as illustrated for time series 
data in Section 4.3.1. 

The results of the subsequent automated entitlement calculation procedure are summa­
rized in Table 5.1. The overall average of normal and abnormal production periods is 
indicated. Flirthermore the final entitlement level that was found, and the upper limit 
belonging to the last filtering cycle are presented. 

sensor: 1 2 3 4 5 6 7 

r\ 0.25 2.5 2.1 0.30 0.14 0.18 0.36 
TENT; 0.21 2.3 1.5 0.20 0.11 0.17 0.30 
ruL; 0.68 4.2 3.6 0.70 0.44 0.47 0.85 

Table 5.1: Results of automated entitlement calculation. Final entitlement level and 
upper limit are indicated for counts per unit of area of opportunity 

The final step in the entitlement calculation procedure is the analysis of convergence 
behavior and assignable causes. In the table below the amount of abnormal values de­
tected during the entitlement calculation for each sensor is presented. The convergence 
behavior is illustrated by indicating the amount of values filtered in each of the filtering 
cycles. 
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sensor: 1 2 3 4 5 6 7 

# abnormal values 11 13 21 15 14 9 15 
1 st cycle 7 11 16 10 11 6 8 
2nd cycle 4 1 4 5 3 2 4 
3rd cycle 0 1 1 0 0 1 2 
4th cycle 0 0 0 0 0 0 1 
5th cycle 0 0 0 0 0 0 0 

Table 5.2: Convergence behavior of entitlement calculation. The amount of abnormal 
values is indicated, as well as in which filtering cycle the points were identified as 
abnormal and thus excluded from the dataset 

For periods in which no abnormal values were detected, no causes appeared to dominate 
on the first two machines. It can therefore be affirmed that normal production periods 
did nat contain assignable causes. 

The 98 abnormal values occurred in 75 distinct production periods. This means that 
in approximately 30% of the production hours problems were present on the first two 
machines of the incandescent lamps line. Judging from the frequency of occurring 
problems, while being present at the production line for a period of 3 months, this 
seems a very realistic figure. 

5.4.2 Fitting a distribution 

In Section 4.3.2 the steps involved in finding a theoretica! distribution fitting practi­
cal data were discussed. The current challenge is to find out whether a well fitting 
distribution exists to the normal datapoints that have been found by the entitlement 
calculation process. These steps [Law01] will now be employed and the results for one 
of the datasets ( the mount without coil check 1 - sensor) will be briefly discussed. 

Assess sample independenee 

As a measure of sample dependenee the correlation between subsequent datapoints is 
calculated. This correlation Pt,t+1 between rt and rt+1 fort= 1, ... , nt- 1 appears to be 
Pt,t+1 = 0.56. This is substantially higher than 0, therefore the data from subsequent 
time periods are nat independent. 

The scatter diagram of Figure 5.2 leads to the same conclusion. Here, the !nt pairs 
consisting of rt and rt+1 for t = 1, ... , nt -1 are plotted. If the rt 's would be independent 
these values would be scattered randomly throughout the first quadrant. A clear positive 
correlation appears to exist, as indicated by the least squares estimate line that has a 
positive slope. 
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Figure 5.2: Scatter plot of the pairs of rt and rt+l showing a positive correlation 

The figure does indicate however that the correlation is especially apparent for those 
time periods with higher reject percentages (the upper right zone of the first quadrant). 
As problems apparently tend to stick around period after period, this indicates that the 
probieros in these relatively troublesome time periods are not dealt with effectively. This 
coincides with the expectation of the situation, and the positive correlation is therefore 
not a surprise either. The implementation of the process quality control methodology 
that is currently under development could vastly improve this situation by pinpointing 
the present root-causes of these troubles. 

Below the scatter diagram of the zone of datapoints for which rt E [0, 1.5] is presented. 
The correlation coefficient is still significant Pt,t+l = 0.34. The exponential, Bino­
mial and Poisson distribution that require independent data (memoryless property) are 
therefore not suitable for this dataset. 

The datasets of the other sensors are not independent either, as shown in Table 5.3. 
The correlation Pt,t+l between rt and rt+l fort= 1, ... , nt- 1 is shown. 

sensor: 1 2 3 4 5 6 7 

Pt,t+l 0.15 0.32 0.56 0.43 0.33 0.36 0.15 

Table 5.3: Correlation Pt,t+l between subsequent datapoints for all 7 sensor - datasets 
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Figure 5.3: Scatter plot for rt E [0, 1.5], still showing a positive correlation 

Hypothesize families of distributions 

No samples within the data can be distinguished between which, as opposed to within 
which, variation would logically occur. Therefore, the binomial distribution appears to 
be unsuitable once more. 

The coeffi.cient of variation of the dataset is cv = 0.57. For exponential and Poisson 
distributions cv = 1, regardless of the shape parameter f3 or ..\. Since cv = 0.57 is 
significantly different from 1, the use of exponential and Poisson distributions is ruled 
out once more as well. 

As the discrete count levels Xt are divided by the respective amount of lamps produced 
Pmt to make them comparable, the resulting percentages rt are continuous figures (see 
Section 5.4.1). For the continuous gamma and Weibull distributions a cv < 1 means 
that the shape parameter a: > 1. 

In Table 5.4 the cv values for the other datasets are presented. Most sensor - datasets 
have a similar cv to the mount without coil check 1 dataset. There are only two excep­
tions. The very low value of cv2 = 0.27 belonging tothestem without lead-in-wire sensor 
indicates that the a of this dataset is very low compared to its mean. The cv5 = 1.02 
of the mount without support wire 1 &2 check indicates that f..L and a of this dataset are 
almast equal. 

sensor: I 1 2 3 4 5 6 7 

cv 1 o.74 0.27 0.57 0.75 1.02 0.65 0.65 

Table 5.4: Coeffi.cient of variation cv for all 7 sensor - datasets 
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Below a histogram of the datart for t = 1, ... , nt - 1 is presented. Hereto, the reject 
percentages are divided into bins with a width of 0.30 and the respective frequencies 
are counted. 
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Figure 5.4: Histogram of number of occurrences of rt in bins 

The gamma and Weibull families of distributions seem most likely to provide a good fit 
to the practical dataset. 

Estimation of parameters 

The ultimate form of the gamma and Weibull distributions is dependent upon a shape 
and a scale parameter, a and /3 respectively. The Maximum Likelihood Estimator 
(MLE) algorithm in Matlab is used todetermine the values fora and /3 for both distri­
butions: 

Gamma( a, /3) = (3.13, 0.48) 

Weibull(a, /3) = (0.37, 1.88) 

The latter result a < 1 (!), indicates that the best possible fit of the dataset by a 
Weibull function is monotonously decreasing, which is not similar to the histogram of 
the dataset at all. Weibull is therefore not able to provide a good fit to the dataset 
under consideration. 
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The same situation is encountered for the other datasets. For these sets the gamma 
distribution therefore appears most suitable as well, with exception of the 5th dataset 
(for which cv~ 1) . The Maximum Likelihood Estimators with 95% confidence intervals 
for the parameters of the gamma distribution are tabulated below for all datasets. 

sensor: 1 2 3 4 5 6 7 

a 2.2 14 3.1 2.0 1.7 2.6 2.2 
alowerbound 1.7 11 2.4 1.6 1.2 2.1 1.8 

aupperbound 2.7 17 3.9 2.5 2.2 3.2 2.6 
{3 0.098 0.16 0.48 0.10 0.077 0.066 0.14 

f3lowerbound 0.076 0.13 0.36 0.079 0.055 0.050 0.11 

f3upperbound 0.12 0.20 0.60 0.12 0.099 0.082 0.17 

Table 5.5: Estimates and 95% confidence interval bounds for the shape and scale pa-
rameter a and {3 for fitting a gamma distribution to all 7 sensor - datasets 

Determining quality of fit 

In Figure 5.5 the plot of the gamma(3.13, 0.48) distribution in the histogram of the 
practical dataset is shown to assess its conformance. 
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Figure 5.5: Approximation of practical dataset by gamma(3.13, 0.48) distribution 

The differences appear to be toa substantial to accept the distribution. The Kolmogorov­
Smirnov tests reach the same condusion for all datasets. 

As cv ~ 1 for the 5th dataset, a Poisson distribution may be more appropriate for this 
sensor. The MLE for À appears to be 0.166. The discrepancy between the Poisson(À = 
0.166) distribution and the histogram of the 5th dataset appears to be toa large as well. 
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5.4.3 Entitlement check 

For the sensor data no well fitting theoretica! distribution has been found. This is partly 
caused by the dependency of the data. Furthermore, the amount of variation in the 
data is high, which would decrease if more datapoints were obtained. 

As a result, the entitlement check of the data in the training period needs to be per­
formed with the use of equation 4.19, basedon the descriptive statistics that were found 
to represent the normal causes - distribution. As explained in Section 4.3.4, these es­
timators coincide with the statistics that were used in the last filtering cycle of the 
entitlement calculation. 

The same 98 values that were characterized as abnormal during the entitlement calcu­
lation are therefore detected by the entitlement check as well. These abnormal values 
occurred in 75 distinct production periods. More precisely, 58 periods of the 242 were 
characterized by 1 abnormal value. Another 11 periods were characterized by 2 simul­
taneous abnormal values. Finally, during 6 production periods 3 sensor values were 
abnormal. 

In 35 of the 75 abnormal production periods an assignable cause has been detected. 
The condusion therefore is that only for approximately 1 out of every 2 abnormal cases 
an assignable cause could be found. Given the complex nature of the search process 
for assignable causes it is very likely that certain causes have been present for most of 
the other abnormal cases as well, but could simply not be detected. One reason is the 
difficulty of employing the camera tool in the right time and right manner. Furthermore, 
Indonesian employees sametimes tampered with the process without explaining present 
root-causes. In these situations conclusions on the presence of assignable causes could 
not be drawn with full confidence. 

The trade-off in these instances is that inclusion of these periods as training cases 
increases the amount of training of the tool, while decreasing the confidence in classi­
fication correctness of these training cases. The choice has been to assign root-causes 
to production periods only in those cases in which it is very sure that this root-cause 
had been present. This choice is made because avoiding misclassification of training 
cases improves the future classification correctness rate, which is the ultimate goal of 
the methodology. 

Taking these difficulties into account the overall resulting entitlement of production 
periods as normal or abnormal seems to be sensible. 
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5.5 Classification technique customization 

It is the objective of the classification tool to use the information as delivered by the 
analysis tool, to retrieve and indicate the present root-causes. Hereto, the binary fea­
tures delivered by the analysis tool are put into a state vector that describes the system 
state of the production line, as discussed inSection 4.4.1. As the retrieval of root-causes 
is quite a complicated task, it is important to use the delivered information optimally. 
A smart choice of binary features can ensure this. 

5.5.1 Binary feature selection 

The three types of phenomena that can bedelivered by the analysis tool were discussed 
to be (see Section 4.4.1): 

• abnormal values for a certain sensor 

• special correlations between abnormal values if relevant from an engineering point 
of view 

• events like stops, breakdowns, change overs, etc. 

The first category of phenomena can be directly translated into binary features. 

Regarding the second category, the following correlations could be very interesting from 
an engineering point of view: 

• abnormal stem without lead-in-wires and abnormal mount without coil, check 1; 
because the coil is placed in between the lead-in-wires. 

• abnormal mount without support wire 1; and normal mount without support wire 
1 & 2; because then the insertion or supply of support wire 1 is failing sometimes, 
rather than a problem with rolling which would affect both wires at the same 
time. 

• abnormal mount without support wire 2; and normal mount without support wire 
1 & 2; because then the insertion or supply of support wire 2 is failing sometimes, 
rather than a problem with rolling which would affect both wires at the same 
time. 

• abnormal mount without support wire 1 & 2; and abnormal mount without coil, 
check 2; because this could mean that the coil is somehow damaged after the 1st 
check, because of a wrong rolling process for the support wires 
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So, in total, there are 11 binary features for descrihing the state of this part of the 
production line. The system state vector is indicated in Figure 5.6. 

bf1t abnormal stem without exhaust-tube value 

bt2, abnormal stem without /ead-in-wires value 

bf3t abnormal mount without coi/ check 1 value 

bf4t abnormal mount without supporl wire 1 value 

bf5t abnormal mount without supporl wire 2 value 

s= bf6t = abnormal mount without supporl wire 1 &2 value t 

bf7t abnormal mount without coil check 2 value 

bfst both stem without UW and coil check 1 high 

bfgt both supporl wire 1&2 and coi/ check 2 high 

bf10t high supporl wire 1 but low supporl wire 1&2 

bf11t high supporl wire 2 but low supporl wire 1&2 

Figure 5.6: System state vector that describes the current status of the first part of the 
production line 

The third category of phenomena are nat included yet. The possible benefits of including 
the occurrence of these kind of events will be investigated inSection 5.6.1. 

5.5.2 Training the tooi 

Training the developed binary methodology consists of linking the occurring root-causes 
to their state vectors. To make this possible all root-causes of problems that occurred 
during the training period need to be known. As discussed in Section 4.2, the use of 
product images as in the spatial signature analysis technique may be very useful to find 
the root-cause of a problem. Pictures of the semi-products should therefore be taken 
at those instauces that a problem occurs. Simply photographing all semi-products 
would lead to the need to diagnose 4000 different photos every hour ( the machine 
capacity) though. Obviously this is too large a training effort. For the incandescent 
lamps production line typically only a small percentage of semi-products is affected 
by a problem however. To avoid these high training burdens a camera tool should be 
developed that is able to take pictures of rejects only, as these pictures would reveal 
most about the root-cause of a problem. 
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The control system of the production line, S7, controls the rejection of the products. lf 
a sensor rejects a product it sends a signal to the control system. The control system 
then marks the index position of this product in the machine mill. It is therefore able 
to trigger the camera to take a picture of exactly these rejects. 

In this way the camera tool would be able to takepicturesof rejects during the operation 
and of the resulting nonconforming product. In order to make semi-products that go 
into the operation diagnosable as well the functioning need to be adapted. The camera 
should takepicturesof all products, but only savethem if thesemi-product appears to be 
nonconforming. This is the ultimate way of functioning of the camera tool. As a result 
it can be placed up to 100 positions before or after the sensor position. Therefore, it is 
possible to investigate the quality characteristics of the semi-products at 200 different 
positions. 

An overview of the conneetion between the control system and the camera tool, and 
the pulses used for triggering can be found in Appendix A. 

The developed camera tool is now used to investigate the root-causes of problems that 
occur in the production line. To know when problems are occurring, the real-time 
overview of abnormal sensor values is used as a trigger. FUrthermore, intensive com­
munication with the operating staff of the line is needed. The experimental setup with 
this camera is illustrated in Figure 5. 7 and schematically in Figure 5.8. 

Figure 5.7: Overview of experimental setup. The camera is located on the right hand 
side of the mounting machine for a check on the rolling process 
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Figure 5.8: Schematic overview of the experimental setup 
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The 242 production hours intended for producing lamps during the training month, have 
been used for the training of the tool. As discussed in Section 5.4.3, the entitlement 
check characterized 75 production periods as abnormal. During these periods, the 
interesting problems on the first machines of the pilot line have been diagnosed with 
the camera tool. 

The following root-causes of problems appeared to dominate: 

1. Lead-in-wires are being bent during vacuum transfer from annealing oven to 
mounting machine ( and they are therefore not detected, leading to a stem without 
LIW failure), also this could result in the failure to place a coil in between the 
lead-in-wires, leading to a failed coil check 1. 

2. Lead-in-wires broken during bending process. Because of bad quality semi-product 
or misaligned bending unit the lead-in-wires break after the stem without LIW 
check which leads to a failed coil check 1. 

3. Coil misaligned on drum because of bad setting of the drum alignment plate. Coil 
transfer fails, or coil clamped at one side of the stem only. The stem will fail coil 
check 1. 

4. Bad coil transfer system. The system can be misaligned, or the sucker settings 
are wrong. Coil transfer fails, leading to a failed coil check 1. 

5. Rolling process for the support wires is misaligned which causes failure in the 
rolling process ( and the support wires are then not detected, leading to a failed 
mount without support wire 1f32 check), also this can damage the coil which would 
cause the mount to fail on coil check 2. 

6. Insertion or supply of support wire 1 malfunctioning. 

7. Insertion or supply of support wire 2 malfunctioning. 
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Each of these root-causes reoccurred a number of times. In total 35 times one of these 
assignable root-causes was found . Every time one of these root-causes occurred the 
conesponding state vector was retrieved from the analysis tool. 

The training cases that belang to the root-causes 2, 3 and 4 appear to have exactly 
the same state vector. This means that these root-causes are indistinguishable with the 
present sensors. Therefore, they are combined into one single root-cause class that is 
distinguishable from all other root-causes. This yields the following root-causes classes: 

rc1 = bent lead-in-wires 

rc2 = misaligned coil on drum, bad coil transfer system or lead-in-wires braken 

rc3 = misaligned support wire rolling process 

rc4 = malfunctioning insertion or supply of support wire 1 

rc5 = malfunctioning insertion or supply of support wire 2 

rc6 = no root-causes present 

In Appendix B an overview is presented of the state veetors of all training cases be­
longing to each of the root-cause classes. Also the state veetors of instances in which 
no root-causes were found to be present are presented. 

It can beseen that 3 of the 21 distinct state veetors have occurred in different situations. 
That is, each of these three veetors have been found to occur while a certain root­
cause was present (a different root-cause for each of these veetors !), but also while 
no assignable causes have been found. As discussed earlier, due to the complexity of 
finding root-causes , the fact that no root-causes could be found does nat necessarily 
mean that no causes have been present for these cases. Furthermore, as it is preferred 
to develop a sensitive tool, it is less harmful for the tool to suggest the possible presence 
of root-causes while in fact none are present, than to fail to indicate actual presence. 
Inclusion of the double occurring state veetors as training cases for bath the respective 
root-cause classes and the no problems present - class leads to the algorithm indicating 
bath options. The choice is to omit these 3 state veetors as training cases for the no 
problems present - class. 

Following the same sensitivity argument, 3 rarely occurring ( only once or twice during 
one month) other no problems present - state veetors have been omitted as training 
cases for this class. It is again preferred to increase the chances of coupling situations 
with alarms to their root-causes. 

The state veetors that were found to belong to the different occurring root-causes are 
put in the database of the comparison algorithm. This algorithm is programmed in 
Matlab. The m-file can be found in Appendix C. 
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5.6 Testing the customized methodology 

During the test period of one month, 270 production hours were analyzed by the analysis 
tool. Of these production periods, 42 were judged as nat strictly intended to produce 
lamps. Therefore, 228 datapoints were available for testing. Of these datapoints, the 
entitlement check characterized 73 as abnormal. 

Next, the state veetors of these 228 production periods were constructed by using the 
binary features as delivered by the analysis tool. The diagnosis tool then compared 
these state veetors to the veetors of the training cases, to yield an expectation of the 
present root-cause. 

As a check for classification correctness, the camera tool was used for the abnormal 
cases and for a sample of the normal cases as well. For 38 of the 73 abnormal cases 
a root-cause could clearly be distinguished by the camera tool, whereas a root-cause 
could nat be found for the remaining 35 cases. 

Summarizing, the following different situations can be distinguished: 

1. no abnormal values, no assignable cause present 

2. certain abnormal values, no assignable cause detected 

3. no abnormal values, a certain assignable cause is present 

4. certain abnormal values, a certain assignable cause is detected 

The first category of cases occurred 155 times. Therefore, the classification of this 
category of cases has been checked with a sample, of 10 cases. None of the 10 investigated 
sample cases without abnormal values, were found to possess any root-causes. Therefore, 
this category is concluded to possess a 100% correct classification rate. This is aresult 
of the high sensitivity of the analysis tool. 

The second category occurs more aften as a direct consequence. Although the enti­
tiement check indicates the abnormality of the resulting level and suggests the presence 
of an assignable cause, research with the camera tool did nat result in finding such a 
distinguishable cause. As indicated earlier, the investigation with the camera tool may 
have been employed in the wrong place, time or way. Same problems simply seize befare 
they can be detected. Alternatively, rarely occurring root-causes may have been present 
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that are not included in the list of dominating occurring root-causes (see Section 5.5.2), 
and are therefore not subject to investigation. 

For the test period this situation occurred 35 times. Of these 35 times the diagnosis 
tool classified 21 cases as not possessing any of the dominating root-causes. Therefore, 
60 % of this type of situations can be said to be correctly categorized. The remaining 
14 cases, equivalent to 19% of all abnormal cases, are somehow divided between cases 
in which the employment of the camera tool failed to detect the present root-cause, and 
in misclassified cases because of oversensitivity. 

The third category can not occur because this would violate the employed definitions. 
Root-causes do occur in periods without abnormal values but are sometimes effectively 
dealt with on a very short notice. These cases therefore do not result in abnormal 
values, and are therefore said to be normal, so no assignable causes are said to be 
present. Whether or not this is a reasonable assumption depends upon the specific 
situation. For Philips Lighting it was concluded at the end of Section 5.4.1 that no 
causes seemed to dominate in cases without abnormal values. 

The fourth case is by far the most interesting. Here, root-causes are present, unlike 
in the first two categories. Furthermore, these root-causes are not already dealt with 
effectively, as opposed to what happens in the third category. So this is the situation 
for which the process quality control methodology has been designed. The diagnosis 
tool should indicate the right root-cause, which would allow the subsequent feedback 
by the operators. 

Two situations are possible. Either the right root-cause is indicated, which is a correct 
classification, or the wrong root-cause is indicated, a misclassification. 

As stated, during the testing period of one month, use of the camera tool concluded that 
38 production periods that were characterized as abnormal were found to belong to one 
of the root-cause classes. The amount of test cases for each root-cause class is indicated 
below. Furthermore, the correct classification rate for each root-cause classis presented. 
Finally, for the misclassified test cases it is indicated to which other root-cause classes 
the cases have been classified. 

root-cause class: rq rc2 rc3 rc4 rc5 

#test cases 9 12 8 5 4 
correct classification rate 89% 92% 100% 80% 100% 

misclassification to rc2 rc4 rc1 

Table 5.6: Classification results 
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5.6.1 Classification rate optimization 

Usefulness of current features 

Regarding the first category of features, the abnormal sensor values, all features appear 
to contribute except the stem without exhaust-tube feature. As all training cases with 
this feature were found to possess none of the currently considered root-causes it is likely 
that a certain root-cause on the stem making machine should be taken into account as 
another dominating root-cause. It is expected that bent or clogged channels of the input 
carroussel of exhaust-tubes, leads to increased failure on this check. Future investigation 
on this matter is therefore recommended. 

Earlier, it has been assumed that the classification rate would improve by taking corre­
lations that are relevant from an engineering point of view explicitly into account. This 
assumption was based upon the way of working of the comparison algorithm. As this 
algorithm looks at the amount of binary features that are the same for the training and 
testing case (in a weighted manner) it is very likely that it is beneficia! to include those 
correlations which point towards specific root-causes. 

For the current scope of the tool the tests can partly affirm this assumption. For root­
cause class 5 ( rc5 ) the classification correctness ra te is increased by 20% because of the 
inclusion of bfn. For the other root-cause classes the inclusion of the correlations does 
not lead to improvements yet. 

The reason lies within the limited scope of the current application of the tool. Currently 
only the first two machines are considered, which means that only 7 sensors deliver their 
input at the moment. Therefore, for the training cases only 21 different state veetors 
have been found, of which only 14 described system states with a root-cause present. 
Most test cases are therefore exactly similar to one of these training cases (76% to be 
precise). Logically, the inclusion of correlations can only be beneficia! for cases that are 
not exactly similar to training cases, which is rare at the moment. 

If the scope of the developed methodology will be extended to the entire production 
line, information from 22 sensors will be used. Because of more simultaneously occurring 
abnormal values in different parts of the line, many more cases will have veetors that 
are not exactly similar to training vectors. It is expected that the correlations between 
abnormal values, that are relevant from an engineering point of view, will then further 
improve the classification correctness rate. 
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Additional binary features 

It is possible to extend the delivered information with all kinds of events, like stops, 
breakdowns, change overs, shift identification tags and maintenance activities. 

The training period indicated that no distinction in the state veetors of the dominating 
root-causes 2, 3 and 4 existed. Typically the problems with settings of the drum align­
ment plate and the coil transfer system (root-causes 3 and 4) are expected to occur 
more frequently after change overs of coil type. Root-cause 2, broken lead-in-wires, 
is expected to be unaffected by the coil type change over. As an exemplary test, the 
system state vector has therefore been extended with this binary feature: 

b h2t = change over of coil type in period t - 1 

Of the 8 (similar) training state veetors belonging to the combined root-cause class 
rc2, 2 veetors correspond to dominating root-cause 2, whereas 6 veetors corresponded 
to dominating root-causes 3 and 4. None of the root-cause 2 veetors appeared to have 
occurred immediately aftera change over, whereas 3 out of the 6 other veetors did occur 
after a change over of coil type. 

Inclusion of the additional binary feature leads to the correct classification of 4 of the 
9 occurrences of dominating root-causes 3 and 4 during the test period. The other 
5 occurrences of these dominating root-causes did not follow a change over and can 
therefore not be distinguished by the new binary feature. Nevertheless, 44 % of the test 
cases belonging to these dominating root-causes can now, correctly, be further identified 
as belonging to these specific root-causes in stead of to the braader category of rc2. 

5.7 Summary 

First, the process of producing incandescent lamps was elaborately discussed, and at­
tention was devoted to the binary sensors involved. Next, the needed customization 
steps of the analysis tool were discussed, among which the determination of a suitable 
area of opportunity and the execution of the developed automated entitlement calcu­
lation. The validity of the resulting characterization of datapoints was checked with 
a camera tool and discussed. Finally, it was tried to characterize the datasets with 
theoretica! distributions but the Kolmogorov-Smirnov tests indicated substantial dis­
crepancies. Therefore, the final entitlement check of the training data was based on the 
descriptive statistics of the data. 

The first step in the customization of the classification technique was the selection of 
relevant binary features. Basedon engineering knowledge some interesting correlations 
were taken into account to characterize the system state. Subsequently, the development 
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of a camera tool that knows which semi-products will be rejected was discussed. With 
help of this camera the present root-cause can be identified, by diagnosing pictures 
taken of rejected products before, during or after a faulty operation. The dominating 
root-causes for the training period were retrieved in this way, and linked to the system 
state veetors of the periods in which they occurred. 

The next step has been the testing of the newly developed methodology by assessing 
its classification correctness rate for a testing period of one month. The resulting rates 
were satisfactory. Finally, some adaptations to further imprave the performance of the 
tool were executed and tested. 
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Chapter 6 

Conclusions and 
recommendations 

6.1 Conclusions 

The objective of this research project was twofold. The first part was an exploratory 
study into the possibilities of developing a binary process quality control methodology. 
The second part consisted out of the implementation of the tools that were developed. 
For the production process of incandescent lamps at Philips Lighting the methodology 
was customized and elaborately tested. 

Binary process quality control methodology 

As binary sensors in general offer less informative data the application of analysis tech­
niques to describe the system state appeared limited. As a consequence, direct classi­
fication techniques based on rnadeling of the input-output relationship were impossible 
for the practical case under consideration. To be able to indicate root-causes, the clas­
sification technique therefore needed to be built on a training procedure. In the search 
for a sound description of the system state, an entitlement calculation procedure was 
developed that can indicate whether each sensor value of a production period is normal 
or abnormal. By diagnosing system states with a developed camera tool a basis for 
comparison of cases was created. 

Philips Lighting case 

The results of the implementation of the methodology after customization at Philips 
Lighting were promising. Currently, the scope is limited to the first two machines of the 
line. Based on the information of the 7 sensors present on these machines, new cases 
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could reliably be classified into 6 distinct root-cause classes. Classification correctness 
rates varied between 80% and 100%. 

Studies on the reject data indicated that at the moment problems are not always dealt 
with effectively. The high positive correlation between paired hourly values for instance, 
indicates that problems tend to stick around. Informing the operators, teehuidans 
and engineers on the root-cause predictions of the developed process quality control 
methodology would give them important input for feedback into the process. It is 
expected that manufacturing performance will improve as a consequence. Research 
within Philips Lighting [Ree05] indicates that approximately 90k euro is wasted per 
line per year. As more than 200 lines exist all over the world, only small percentages of 
improvements could lead to substantial savings. However, it is not advised to implement 
the system yet. First, extension towards the entire line and additional investigation are 
recommended. 

Other industries 

The positive results for this practical case indicate that the developed methodology may 
be very useful for other binary industries as well. 

6.2 Recommendations 

Binary process quality control methodology 

For the classification tool different algorithms with different ways of weighing the binary 
features have been tried on the current dataset. The, relatively simple, algorithm of 
Section 4.4.2 displayed the highest classification correctness for the current case, but 
for other situations or after more training or inclusion of more sensors more advanced 
weighing methods may provide better results. In Appendix E two alternative algorithms 
which are based on the selectivity of the features are included, as programmed in Matlab. 
It is recommended to campare the classification results of these different algorithms for 
new applications. 

InSection 5.6.1 it was concluded that the domain ofroot-cause classes probably misses a 
root-cause on the stem making machine. It is recommended to investigate the inclusion 
of this root-cause. Some suggestions for possible causes were given. 

Philips Lighting case 

For Philips Lighting it is furthermore recommended, as mentioned, to extend the train­
ing of the developed methodology to the entire production line. If the other 5 machines 
will betaken into account as well, 15 more sensor signals will be available for descrihing 
the system state. Then, many more root-causes, that manifest on these other machines, 
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are expected to become predictable. As the root-cause finding scope will increase, it 
is strongly recommended to perfarm thorough investigation into optimization of the 
usefulness of the distinct root-cause classes befare implementing the methodology. 

An interesting salution to increase the sensitivity of the tool regarding specific root­
causes is the instanation of extra sensors. Additional sensors, at smart places, can 
deliver very informative features about the system state. It is strongly recommended 
to investigate the extension of the monitoring tool for impravement of classification 
correctness and an increase of classification accuracy within root-cause classes. 

Other industries 

The recommendation for other binary industries is to test the performance of the de­
veloped methodology for their respective processes. The aim has been to make the 
development of the tools as insightful as possible in order to allow easy application and 
adaptation to these other industries. The level of abstraction in the definitions of tenets 
as binary features, entitlement calculation and system state vector is of such a high level 
that this should be relatively straightforward, especially given the exemplary procedure 
of customization for Philips Lighting. 
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Appendix A 

Camera tooi 

The pulses of the camera tool are triggered via the software package Wonderware. 
Figure A.l illustrates the conneetion between the control system and the camera tool. 

Monitoring screen WW: 
Selection of "Active"-reject 
Selection of moment for trigger 

pul se 

Figure A.l: Overview of conneetion between Wonderware application and Rejana 
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88 Appendix A . Camera tool 

The pulse signals are illustrated in Figure A.2. 

Trigger 

+2 4V . • 

1k2 

------··-··--C 

Reject At 360 
degrees 

Figure A.2: Pulses that are sent from the control system to the camera 

A labview application has been built. A user-interface has been developed in order to 
be able to adjust the diverse settings (Figure A.3) . 

Figure A.3: Operating window in the user-interface 



Appendix B 

Training cases 

In this appendix the state veetors St of the training cases are presented. These veetors 
are automatically delivered by the analysis tool in Excel. 

The state veetors are categorized per root-cause class. This information is retrieved by 
employing the camera tool during the corresponding time periods. 

bfi bh bh bf4 bfs bf6 bh bfs bfg bflO bfu I occurrences: 

0 1 1 0 0 0 0 1 0 0 0 3 
0 1 1 0 0 1 0 1 0 0 0 1 
1 1 1 0 0 0 0 1 0 0 0 1 
0 1 1 0 1 0 0 1 0 0 1 1 

Table B.1: State veetors during training period for root-cause: rc1 = bent lead-in-
wires. The values of all binary features and amount of occurrences of the state vector 
are indicated 

bj4 bfs bf6 bh bfs bfg bflO bfu I occurrences: 

0 0 1 0 0 0 0 0 0 0 0 8 

Table B.2: rc2 = misaligned coil on drum, bad coil transfer system or lead-in-wires 
broken 
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bh bh bh bf4 bfs b/6 bh bfs bfg bflO bfu I occurrences: 

0 0 0 1 0 1 1 0 1 0 0 2 
0 0 0 0 0 0 1 0 0 0 0 2 
0 0 0 0 1 1 1 0 1 0 0 1 
0 0 0 0 0 1 1 0 1 0 0 1 

Table B.3: rc3 = misaligned support wire rolling process 

bh bh bh bf4 bfs b/6 bh bfs bfg bflO bfn I occurrences: 

0 0 0 1 0 0 0 0 0 1 0 5 
0 0 1 1 0 0 0 0 0 1 0 3 
1 0 0 1 0 0 0 0 0 1 0 1 

Table B.4: rc4 = malfunctioning insertion or supply of support wire 1 

bh bh bh bf4 b/5 b/6 bh bfs bfg bflO bfu I occurrences: 

0 0 0 0 1 0 0 0 0 0 1 5 
0 0 0 0 1 1 0 0 0 0 0 1 

Table B.5: rc5 = malfunctioning insertion or supply of support wire 2 

bh bh bh bf4 bf5 b/6 bh bfs bfg bflO bfu I occurrences: 

0 0 0 0 0 0 0 0 0 0 0 167 
1 0 0 0 0 0 0 0 0 0 0 9 
0 0 0 0 0 0 1 0 0 0 0 8 
0 1 0 0 0 0 0 0 0 0 0 6 
0 0 0 0 1 0 0 0 0 0 1 5 
0 0 1 0 0 0 0 0 0 0 0 4 
0 0 0 1 0 0 0 0 0 1 0 4 
0 0 0 0 0 1 0 0 0 0 0 2 
0 0 0 0 1 1 0 0 0 0 0 1 
0 1 0 0 0 0 1 0 0 0 0 1 

Table B.6: TCB = no root-causes present. The training cases below the line have nat been 
included in the database of the comparison algorithm (see Section 5.5.2 for explanation) 



Appendix C 

Matlab m-file of algorithm 

% DATA 
% classes is a cell array of Ni class matrices (double array) C_i. 
% C_i consist of Nt training cases xT_it. 
% xT_it is a row vector containing Nk feature values f_itk (1 or 0). 
% 
% INPUT 
% x is a vector to be classified . 
% 
% OUTPUT 
% simclass is a row vector containing the indices of the class x is 
% assigned to and training case with which it has highest similarity 
% (it is a matrix in case of equal similarity to more than one 
%training case). 
% sim is the maximum similarity value. 

clear all 
close all 
clc 

%% put training cases below 

classes{l}= [0 1 1 0 0 0 0 1 0 0 
0 1 1 0 0 1 0 1 0 0 
1 1 1 0 0 0 0 1 0 0 
0 1 1 0 1 0 0 1 0 0 

classes{2}=[0 0 1 0 0 0 0 0 0 0 

0; % included 3 times 
0; 
0; 
1] 

0] % included 8 times 
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92 Appendix C. Matlab m-file of algorithm 

classes{3}=[0 0 0 1 0 1 1 0 1 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 0 1 0 
0 0 0 0 0 1 1 0 1 0 

classes{4}=[0 0 0 1 0 0 0 0 0 1 
0 0 1 1 0 0 0 0 0 1 
1 0 0 1 0 0 0 0 0 1 

classes{5}=[0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 

classes{6}=[0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 0 0 

%% determine number of features 
size(classes{1});Nk=ans(2); 

0; % included 
0; % included 
0; 
0] 

0; % included 
0; % included 
0] 
1· , % included 
0] 
0; % included 
0; % included 
0; % included 
0] % included 

%% init determine x-independent values 
Ni=length(classes); 

%% determine x-independent values 
for i=1:Ni % loop over classes 

size(classes{i});Nt(i)=ans(1); 
pf(i,:)=sum(classes{i})./Nt(i); 

2 times 
2 times 

5 times 
3 times 

5 times 

167 times 
9 times 
8 times 
6 times 

% fraction (f=1) I (all f), per feature, per class 

end 
pf 

%% classify inputs until ready 
ready=O; 
while ready==O 

clc 
x=input('Enter vector to classify. '); 

%% init classification loop 
i=1; 
t=1; 
simnow=O; 
class=classes{i}; 
for k=1:Nk% loop over features 

if x(k)==1 
if class(t,k)==1 



end 

end 

simnow=simnow + pf(i,k); 
elseif class(t,k)==O 

simnow=simnow- (1- pf(i,k)); 
end 

elseif x(k)==O 

end 

if class(t,k)==1 
simnow=simnow- pf(i,k); 

end 

sim=simnow; 
simclass=[i,t]; 

ï.ï. classification loop 
for i=1:Ni ï. loop over classes 

class=classes{i}; 
for t=1:Nt(i) % loop over training cases 

simnow=O; 

end 
end 
sim 
simclass 

for k=1:Nk% loop over features 
if x(k)==1 

end 

if class(t,k)==1 
simnow=simnow + pf(i,k); 

elseif class(t,k)==O 
simnow=simnow- (1- pf(i,k)); 

end 
elseif x(k)==O 

end 

if class(t,k)==1 
simnow=simnow- pf(i,k); 

end 

if simnow>sim(1) 
sim=simnow; 
simclass=[i,t]; 

elseif simnow==sim(1) & length(find(simclass==i))==O 
sim=simnow; 
simclass=[simclass;i,t]; 

end 

ready=input('Finished classifying? [O=no, 1=yes] '); 
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Appendix D 

Test cases 

In this Appendix the test case system state veetors Stet are included. 

The veetors are categorized by root-cause class of the root-cause that was actually 
present. It is indicated in the tables to which root-cause class re; the state vector was 
assigned by the comparison algorithm. 

bfi bh bh bf4 bfs bf6 bh bfs bfg bfw bfu I occurr.: I class. to: 

0 1 1 0 0 0 0 1 0 0 0 5 TC! 

0 1 1 0 0 1 0 1 0 0 0 2 TC! 

0 1 1 0 1 0 0 1 0 0 1 1 TC! 

0 0 1 0 0 0 0 0 0 0 0 1 TC2 

Table D.1: Test case state veetors Ste1 for actual root-cause: rc1 = bent lead-in-wires. 
The present binary features are indicated, as well as the amount of occurrences of the 
test vector. In the last column the class to which the test case was actually classified is 
presented 
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bh bh bh bf4 bfs bf6 bh bfs bfg bflD bfu I occurr.: I class. to: 

0 0 1 0 0 0 0 0 0 0 0 10 rc2 
0 0 1 1 0 0 0 0 0 1 0 1 rq 

0 0 1 0 0 1 0 0 0 0 0 1 rc2 

Table D.2: Actual root-cause: rc2 = misaligned coil on drum, bad coil transfer system 
or lead-in-wires braken 

bh bh bh bf4 bfs bf6 bh bfs bfg bflD bfu I occurr.: I class. to: 

0 0 0 0 1 1 1 0 1 0 0 3 TC3 

0 0 0 0 0 1 1 0 1 0 0 3 TC3 

0 0 0 1 0 1 1 0 1 0 0 1 TC3 

0 0 0 0 0 0 1 0 0 0 0 1 TC3 

Table D.3: Actual root-cause: rc3 = misaligned support wire rolling process 

bh bh bh bf4 bfs bf6 bh bfs bfg bflD bfu I occurr.: I class. to: 

0 0 1 1 0 0 0 0 0 1 0 3 rq 

0 0 0 1 0 0 0 0 0 1 0 1 rc4 
0 1 1 1 0 0 0 1 0 1 0 1 rc1 

Table D.4: Actual root-cause: rq = malfunctioning insertion or supply of support wire 
1 

bh bh bh bf4 bfs bf6 bh bfs bfg bflD bfu I occurr.: I class. to: 

0 0 0 0 1 0 0 0 0 0 1 2 rcs 
0 0 0 0 1 1 0 0 0 0 0 1 rc5 

0 0 0 0 1 0 1 0 0 0 1 1 rc5 

Table D.5: Actual root-cause: rcs = malfunctioning insertion or supply of support wire 
2 
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bh bh bh bf4 bfs bf6 bh bfs bfg bfw bfu I occurr.: I class. to: 

0 0 0 0 0 0 0 0 0 0 0 155 TC6 
0 1 0 0 0 0 0 0 0 0 0 10 TC6 
1 0 0 0 0 0 0 0 0 0 0 7 TC6 
0 0 0 0 0 0 1 0 0 0 0 4 TC6 
0 0 0 1 0 0 0 0 0 1 0 4 TC4 
0 0 1 0 0 0 0 0 0 0 0 3 TC2 

0 0 0 0 1 1 0 0 0 0 0 2 rcs 
0 0 0 0 1 0 0 0 0 0 1 2 rcs 
1 1 0 0 1 0 0 0 0 0 1 1 rcs 
0 0 0 0 0 1 0 0 0 0 0 1 rcs 
1 1 1 0 0 0 0 0 0 0 0 1 rc1 

Table D.6: Actual root-cause: rc6 = no root-causes present 
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Appendix E 

Matlab m-file of alternative 
algorithms 

The two alternative algorithms are presented here in one m-file. These algorithms 
calculate the selectivity, a certain measure of predictive power, of each feature. If, for 
instance, for class i a certain feature k is included in all training cases the selectivity of 
this feature for this class is said to be 1. On the other hand, if this feature would be 
excluded as often as included (both 50% of the cases) the selectivity is set at 0. 

As such, these algorithms assess the importance of features for a certain class and take 
this into account while assessing the similarity of a new case to training cases. 

This selectivity can either be averaged over all classes (run with average==l), or be 
determined per class (run with average==O). 

% DATA 
% classes is a cell array of Ni class matrices (double array) C_i. 
% C_i consist of Nt training cases xT_it. 
% xT_it is a row vector containing Nk feature values f_itk (1 or 0). 
% 
% INPUT 
% x is a vector to be classified . 
% 
% OUTPUT 
% simclass is a row vector containing the indices of the class x is 
% assigned to and training case with which it has highest similarity 
% (it is a matrix in case of equal similarity to more than one 
%training case). 
% sim is the maximum similarity value. 

clear all 
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close all 
clc 

%% put training cases below 

classes{!}= [0 1 1 0 0 0 0 1 0 0 0; % included 3 times 
0 1 1 0 0 1 0 1 0 0 0; 
1 1 1 0 0 0 0 1 0 0 
0 1 1 0 1 0 0 1 0 0 

classes{2}=[0 0 1 0 0 0 0 0 0 0 

classes{3}=[0 0 0 1 0 1 1 0 1 0 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 1 1 0 1 0 
0 0 0 0 0 1 1 0 1 0 

classes{4}=[0 0 0 1 0 0 0 0 0 1 
0 0 1 1 0 0 0 0 0 1 
1 0 0 1 0 0 0 0 0 1 

classes{5}=[0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 1 0 0 0 0 

classes{6}=[0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 0 0 

%% determine number of features 
size(classes{1});Nk=ans(2); 

0; 
1] 

0] 

0; 
0; 
0; 
0] 

0; 
0; 
0] 
1; 
0] 
0; 
0; 
0; 
0] 

% included 

% included 
% included 

% included 
% included 

% included 

% included 
% included 
% included 
% included 

%% init determine x-independent values 
Ni=length(classes); 

%% determine x-independent values 
for i=1:Ni % loop over classes 

size(classes{i});Nt(i)=ans(1); 
pf(i,:)=sum(classes{i})./Nt(i); 

8 times 

2 times 
2 times 

5 times 
3 times 

5 times 

167 times 
9 times 
8 times 
6 times 

% fraction (f=1) I (all f), per feature, per class 
pf 

end 

S=1-4.*pf.*(1-pf); % selectivity = 1 for all f_itk = 1 or 0 
% selectivity = 0 for 50% of f_itk = 1, or 50% of f itk 0 
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average=input('Do you want to average selectivity? 
[1=yes, average over classes I O=no, determine selectivity per class] '); 

if average==O 
w=S; 

elseif average==1 
w=mean(S); % averageS over classes, per feature 

end 

if average==1 

%% classify inputs until ready 
ready=O; 
while ready==O 

clc 
x=input('Enter vector to classify. '); 

%% init classification loop 
i=1; 
t=1; 
simnow=O; 
class=classes{i}; 
for k=1:Nk % loop over features 

if x(k)==1 

end 

if class(t,k)==1 
simnow=simnow + pf(i,k)*w(k); 

elseif class(t,k)==O 
simnow=simnow- (1- pf(i,k))*w(k); 

end 
elseif x (k) ==0 

if class(t,k)==1 
simnow=simnow- pf(i,k)*w(k); 

end 
end 

sim=simnow; 
simclass=[i,t]; 

%% classification loop 
for i=1:Ni % loop over classes 

class=classes{i}; 
for t=1:Nt(i) % loop over training cases 

simnow=O; 
for k=1:Nk % loop over features 
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end 

end 
end 
sim 
simclass 

end 

Appendix E. Matlab m-file of alternative algorithms 

if x(k)==1 
if class(t,k)==1 

simnow=simnow + pf(i,k)*w(k); 
elseif class(t,k)==O 

simnow=simnow- (1- pf(i,k))*w(k); 
end 

elseif x(k)==O 
if class(t,k)==1 

simnow=simnow- pf(i,k)*w(k); 
end 

end 

if simnow>sim(1) 
sim=simnow; 
simclass=[i,t]; 

elseif simnow==sim(1) & length(find(simclass==i))==O 
sim=simnow; 
simclass=[simclass;i,t]; 

end 

ready=input('Finished classifying? [O=no, 1=yes] '); 

elseif average==O 

%% classify inputs until ready 
ready=O; 
while ready==O 

clc 
x=input('Enter vector to classify. '); 

%% init classification loop 
i=1; 
t=1; 
simnow=O; 
class=classes{i}; 
for k=1:Nk % loop over features 

if x(k)==1 
if class(t,k)==1 

simnow=simnow + pf(i,k)*w(i,k); 
elseif class(t,k)==O 



end 
end 

simnow=simnow- (1- pf(i,k))*w(i,k); 
end 

elseif x(k)==O 
if class ( t, k) ==1 

simnow=simnow- pf(i,k)*w(i,k); 
end 

end 
end 
sim=simnow; 
simclass=[i,t]; 

%% classification loop 
for i=1:Ni % loop over classes 

class=classes{i}; 
for t=1:Nt(i) % loop over training cases 

simnow=O; 

end 
end 
sim 
simclass 

for k=1:Nk % loop over features 
if x(k)==1 

end 

if class(t,k)==1 
simnow=simnow + pf(i,k)*w(i,k); 

elseif class(t,k)==O 
simnow=simnow- (1 - pf(i,k))*w(i,k); 

end 
elseif x(k)==O 

if class(t,k)==1 
simnow=simnow- pf(i,k)*w(i,k); 

end 
end 

if simnow>sim(1) 
sim=simnow; 
simclass=[i,t]; 

elseif simnow==sim(1) & length(find(simclass==i))==O 
sim=simnow; 
simclass=[simclass;i,t]; 

end 

ready=input('Finished classifying? [O=no, 1=yes] '); 
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