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Abstract 

Logic errors in sequentia} circuit designs are an important problem for circuit designers. 
They can delay getting a new product on the market or cause the failure of an electronic 
system that is already in use. The most widely used metbod for sequentia} verification 
is based on extensive simulation. This approach heromes infeasible when the number of 
reaebabie states of the circuit is very large. In the past, there has been considerable re­
search on the use of theorem proving techniques for the verification of sequentia] circuits. 
The application of such methods requires an excessive amount of user guidance which is 
not acceptable in a practical design environment. 

This thesis discusses another approach to address the sequentia] verification problem. In 
this approach, the behaviour of a sequentia] circuit is modeled as a finite state machine. 
State enumeration techniques are used to compute all reachable states of the product 
machine of two finite state machines. The equivalence of the two machines is verified by 
checking that they produce the same sequence of output values for any valid sequence of 
input values. In contrast to theorem proving, state enumeration techniques can be highly 
automated which makesthem easier to incorporate in practical design methodologies. The 
proposed technique is based on the u se of Binary Decision Diagrams to represent next state 
relations and sets of states. This avoids the explicit construction of the state transition 
graph of the finite state machine. Experimental results show that state enumeration 
techniques can handle circuits of practical size. 
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Chapter 1 

Introduetion 

Design correctness is a major concern throughout the design process of an integrated 
circuit. This involves checking several design qualities including functional behaviour, 
timing and testability. In this thesis, the discussion is limited to verifying the functional 
behaviour of a sequentia] circuit. There are several practical reasans for verification. The 
most obvious one is the high costof correcting errors in digital designs. This cost încreases 
with the rising level of integration in digital circuit technology. Another, perhaps less ob­
vîous reason is that despite of the use of automated design software, parts of a design are 
still implemented manually. This is especially true for commercial microprocessor designs 
where custom design techniques are used extensively in an effort to fully exploit CMOS 
performance. 

Simulation has traditionally been used to check certain functional design properties. How­
ever, the simulation approach has proven to be inadequate due to the computational 
demands of the task involved. It is not practically feasible to simulate all possible input 
patterns to verify a hardware design. A relatively recent alternative to simulation is forma] 
verification. Forma! verification can beseen as a (set of) technique(s) which exhaustively 
proves certain functional design properties. Forma! verification is, in some sense, like a 
mathematica] proof. Just as correctness of a mathematically proven theorem holds re­
gardless of the particular values it is applied to, correctness of a formally verified design 
holds regardless of its input values. Thus, consideration of all cases is implicit in a forma] 
verification methodology. 

Verity is a forma] verification tooi developed at the IBM T.J. Watsou Research Center. lt 
can be used to verify the logica! equivalence between a high-level description of a design 
written in Verilog and a transistor-level net-list. Flexibility is allowed in the transistor­
level implementation as a wide variety of implementation styles including statie, dynamic 
and self-timed logic are supported. Verity is in daily use at several IBM design centers. 
It has been used successfully for several mainstream IBM processors including PowerPC1 

processor implementations. 

Tbe current version of Verity addresses the verification of sequentia] circuits in a restricted 

1 Power PC is a trademark of International Business Machines, lncorporated. 
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manner. Registers in both designs must be identified and matebed a priori between the 
high-level description and transistor-level implementation. This reduces the sequentia] 
verification problem to a combinatorial verification problem. This thesis is directed to­
wards extending Verity to perform sequentia! verification. lt involves developing new 
algorithms enabling sequentia] verification for practical designs in a way that requires the 
least anwunt of input from the designer. 

1.1 Scope of the Thesis 

There are a variety of approaches to verify sequentia] circuits. A comprehensive overview 
can be found in [6, 7]. The different techniques can be characterized into two categories: 

1. Techniques adapted from theorem proving based on higher-order logic models take 
a top-down view of the hardware verification problem. They iterative]y modify the 
hypothetical theorem by applying axioms or other previously proven theorems until 
it heemnes a tautology. Because of their generality, these methods can model almost 
any behavioural system property. However, due to the universality, a great deal of 
user knowledge and guidance is required to successfully apply such techniques to 
practica] designs. 

2. State exploration techniques follow a bottom-up approach by explicitly or implicitly 
visiting all reaebabie statesof the product machine MA x .i\.1tB of two Finite State 
1\hchines (FSMs) MAand MB [4, .5, 19]. For all possible transitions from the initia] 
states they check that both machines produces the sameoutput value, thus proving 
the functional equivalence of .. A-1 A and MB with respect to the pair of initia] states. 
The u se of Binary Decision Diagrams (BDDs) to represent sets of states tagether 
with a symbolic depth-first or breadth-first traversal of the state transition graph 
made this approach applicable for designs with a large number of states [4, 16, 19]. In 
contrast to theorem proving, state exploration techniques can be highly automated 
which makes them easier to incorporate into practical design methodologies. On the 
other hand, the size of BDDs for representing sets of states for practical circuits often 
grows exponentially, which limits the general application of such methocls. This is 
a major problem since, beside dynamic variabie ordering techniques, no effective 
variabie pre-ordering technique for this application is known. 

As noted above, formal verification techniques based upon state exploration tencl to be 
more automatic than methods based on theorem provers. In addition, state exploration 
methods can easily produce a counter example trace that helps the user to debug a faulty 
circuit. Both, degree of automation and the option to provide the user with a counter 
example, are major issues in a practical design environment. Therefore, the approach in 
this thesis is directed towards state exploration techniques. 
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1.2 Organization 

The remainder of the thesis is organized as follows. Chapter 2 presents the background 
definitions and terminology on Boolean functions, sequentia] circuits, FSMs and BDDs. 

State exploration techniques for the verification of synchronous sequentia] circuits are the 
subject of chapter 3. The algorithms presented here use a symbolic breadth first search 
of the state-transition graph of the product machine Mx = MA x Ms of the FSMs MA 
and Ms [5]. BDDs are used to represent sets of states and next-state relations. 

Chapter 4 addresses the problem of finding the optimalordering of the next-state relations 
in the case when conjunctive partitioned next-state re]ations are used. The size ofthe BDD 
representing the next-state relation rapidly grows too large for complex circuits. In order 
to overcome this limit, the full next-state relation is represented as a list of conjunct€'d 
next-state relations [4], one for each state bit. The ordering of the next-state relations has 
a significant impact on how ear]y in the computation variables can be quantified out. The 
problem of finding the optima] ordering of the next-state relations which minhuizes the 
size of the intermediate BDD is NP-hard [SJ. 

In chapter 5, we describe the verification approach taken by Verity and show how state 
exploration techniques can be used to verify sequentia) circuits. In addition, it is shown 
how these techniques can be used to present a counter examp]e trace in case of a verification 
failure. Conclusions and topics for future research are discussed in chapter 6. 
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Chapter 2 

Definitions and Terminology 

This chapter presents the definitions and terminology necessary for the remainder of the 
thesis. 

2.1 General Definitions 

An n input, moutput Boolean function Fis a mapping mn ---+ mm where D3 = {0, 1 }. mn 
is called the donwin of F, and mm is called the co-domain of F. If m > 1, then Fis a 
multiplE output function. Let ± = { x1 , · · ·, xn} be the variables spanning the domain and 
Jl. = {y1 , • • ·, Ym} be the variables spanning the co-domain. Then, F can be represented 
as a vector of Yi with i 1, · · ·, m, where each Yi corresponds to a single output Boolean 
function fi, w hich may depend on X i with i = 1, · · ·, n: 

The support of a Boolean function is the set of variables the function depends on. 

Definition 2.1 The image of a function F : D3" ---+ mm, over a specified sub-domain 
c ç mn' is defined as 

F(C) = {JL E mm IJl.= F(±), ± E C}. 

lf C D3", the image of C by F is called the range of F. 
Similarly, the inverse image or pre-image over a specified SUbset A ç mm is the set 

E mn IJL= F(±),Jj_ E A} 

0 

Image and pre-image computations play an important role in the verification algorithms 
which are discussed in Chapter 3. 
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2.2 Sequentia! Circuits and Finite State Machines 

In this thesis we consider single doek synchronous sequentia} circuits composed of com­
binational gates and starage elements. All starage elements are controlled by the same 
doek. A Mealy-type finite state machine (see Figure 2.1) is used to model the behaviour 
of the circuit. 

Definition 2.2 A Mealy finite state machine (FSM) M is characterized by the 6-tuple 

M =(X, Y, S, S 0
, .6., A) 

with 

X the input alphabet, X Ç 18m 
Y the output alphabet, Y Ç 18P 
S a finite set of states, S Ç 18" 
S0 : the set of initia} or reset states 
.6. the next-state function .6. : S x X -+ S 
A : the output function A : S x X -+ Y 

The sets X, Y, S and S0 are non-empty. lt is assumed that all primary inputs and outputs 
as well as all the states are Boolean valued as is generally the case in digital circuits. 
The next-state function .6. and the output function A implicitly define the state transition 
graph (STG) of the given FSM. States that can be reached, under some input sequences, 
from one of the initia} states are called reachable states. D 

The next-state function and the output function generally are multiple output functions. 
For a given circuit with m inputs, p outputs and n state-registers, the next-state function 
is .6. : 18" x 18"' -+ 18". Each component function of .6. is associated with a state register in 
the circuit. The domain of .6. is the product of two Boolean sub-spaces, 18"' corresponding 
to the input space and 18" corresponding to the state space. The variables spanning the 
input space are associated with the primary inputs of the circuit and are called primary 
input variables. The variables spanning the statespace are associated with the outputs of 
the state registers and are called the present state variables. The variables spanning the 
co-domain are associated with the inputs of the state registers and are called the next-state 
variables. The next-state function moelels the combinational logic which determines the 
next-state of a state variable. Similarly, the output function is A: 18n x 18m-+ 18P, where 
the variables spanning the co-domain are associated with the primary outputs ofthe circuit. 

The next-state relation which can be derived from the next-state function plays an impor­
tant role in the verification algorithms discussed in chapter 3. Intuitively, a pair of states 
( s', s) is contained in the next-state relation if state s' is reachable in one step from state 
s under some valid input vector~- More formally: 

Definition 2.3 Let f be the Boolean function vector of next-state functions f : 18"' x 
18"-+ 18". Let X= {xt,···,xm} be thesetof input variables, V= {s1 ,···,sn} be the 
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Primary inputs 

Present state 

Log ie 

Primary outputs 

I 
I 
I 
I 

Next state 

Clock 

Figure 2.1: Mealy machine model 

set of present state variables and V' = { .s~, · · ·, s:J be the set of next-state variables. Tlle 
next-statc rclation or characteristic function of J, denoted by N: D3"' x 1B11 x 113n--+ D3, is 
defined as: 

N(X, V, V') rr (< = fi(:r,§.)) 
l;Si:Sn 

where fi represents the next-state function for each state bit. The next-state relation is a 
functional representation of the following set: 

0 

The next-state relation can be abstracted from the primary inputs if we are only interesteel 
in the existence of an input value rather than the va]ue itself. In that case, the next-state 
relation heemnes a binary relation N(v', ll'). The next-state relation of a synchronous 
sequentia} circuit can easily be derived from its structure. As a practical example, consider 
the modulo 8 counter in figure 2.2. 
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Figure 2.2: Synchronous circuit example: modulo 8 counter 

The next-state functions for each state bit of the counter are given by: 

I 

s2 = (sa A SJ) fB s2 

The equations above are used to define the relations for the individual state bits: 

Na(V, V')= (s~ =:'sa) 

NJ(V, v') = (s~ =sa fB SJ) 

Nz(V, V')= (s; =:(sa A sJ) fB s2) 

(2.1) 

(2.2) 

(2.3) 

which describe the constraints that each s; must satisfy in alegal transition. The next­
state relations for the individual state bits are combined by taking their conjunction to 
form the next-state relation for the complete circuit: 

(2.4) 

In section 2.3, we show how Binary Decisions Diagrams can be used to represent next-statP 
relations. 
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The product machine of two FSMs plays an important role in the verification algorithms 
which are discussed in the next chapter. It can be formally defined as: 

Definition 2.4 Theproductmachine/vtxofapairofmachinesMA = (X,Y,SA,S~,.6.A,AA) 
and .~\ttB = (X,Y,SB,S~,.6.B,AB) is characterized by Mx = (X,Y,S,S0,.6.,A) with 

s =SA x SB 
so = s~ x s~ 
.6. ((sA,SB),x) = (.6.A(SA,x),~B(SB,X)) 
A ((c'lA,sB),x) = (AA(sA,x) = AB(<qB,x)) 

The product machine Mx is made up of the two machines running in parallel. The states 
of Mx are pairs of states, one from MA and one from MB· The next-state function .6. of 
Mx is defined to map pairs of states to pairs of states by applying ~A to the first state 
in the pair and .6.B to the second one. D 

Assume machines MA and MB are two FSMs to be compared. Intuitively, .\trA and 
.~\1 B are functionally equivalent if both machines have an identical interface and if, from 
a given pair of initial states, both machines produce the same sequence of output values 
for any valid sequence of input values. Figure 2.3 illustrates the equivalence check for 
two synchronous FSMs. The subscripts A and B are used to distinguish between both 
machines. 

Clod< 

Figure 2.3: The product machine built of two FSMs 
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For the sake of functional comparison, the product machine Mx = MA x MB is built. 
The primary input signals .±.A and .±.B are interconnected and driven by a common set of 
independent variables .f. All corresponding outputs are compared pairwise by xor func­
tions whose results are logically ored to form signa] c. The two machines are said to be 
functionally equivalent if and only if after initializing both machines MA and MB totheir 
initia] states, any input sequence produces a constant zero value on output c. Notice that 
no assumptions are made about the state encoding of the two FSMs to be compared. 

If the FSMs MA and MB do nothave state registers, both circuits implement a combina­
torial fundion where the output valnes do not depend on past input values. In this case, 
successful comparison of the two circuits for a single doek cycle proves functional equiv­
alence for any input sequence. This case is classified as combinatorial logic verification. 
The more general case where A and B contain arbitrary sets of state registers is referred 
to as sequentia[ logic verification. In this thesis, no distinction is made between a FSl\1 
and a synchronous digital circuit. 

2.3 Binary Decision Diagrams 

This section briefly reviews the concept of Binary Decision Diagrams (BDDs). A more 
elaborate description can be found in [2}. Binary decision diagrams provide a compact, 
canonical form for the representation and manipulation of Boolean functions. They are 
formally defined as: 

Definition 2.5 A binar·y decision diagmm (BDD) is a directed acydic graph (DAG) rep­
resentation of a logic function. Each node in the DAG represents a Boolean function F 
and has an associated variabie X i and edges to exactly two other nocles ( functions) in the 
DAG. The node Fis written as the tuple (xi, T, E) where Xi is called the top variabie of 
the function F, T is the positive cofactor of F with respect to Xi and Eis the negative 
cofactor with respect to Xi. The node F thus represents the function: F = xiT + xiE. 
The sink nocles with nil then and else pointers, represent the Boolean constant functions 
0 and 1. 0 

When using BDDs it is necessary to define an ordering on the Boolean variables. The 
variabie at the root of the BDD is earlier in the ordering than all other variables. Each 
variabie has a rank number which represents its position in the ordering. Ordered Binary 
Decision Diagrams are formally defined as: 

Definition 2.6 An ordered binary decision diagram (OBDD) is a BDD with the constraint 
that the input variables are ordered. Every root-to-leaf path in the OBDD visits the input 
variables in strictly ascending order, i.e., 

VvEV rank(v) < min(rank(then(v)),rank(else(v)) 

where rank( v) denotes the ordering position of variabie v. 0 

Definition 2. 7 A r·educed or·der·ed binary decision diagram (ROBDD) is an OBDD which 
does not contain a node v with THEN(v) = ELSE(v) nor does it contain clistinct nodes v 
and 1/ such that the su bgraphs rooted by v and v' are isomorphic. o 
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An important property of the ROBDD data structure is that it is a canonical farm, i.e., 
two BoaJean functions are equivalent if and only if they have the same ROBDD, assuming 
the samevariabie ordering. In this report the term BDD is used to refer to reduced ordered 
binary decision diagrams. The advantage of BDDs over other canonical representations 
of Boolean functions ( such as a truth table) is that they are usually more compact and 
efficient algorithms exist to manipulate them. A partienlar application of BDDs is the 
representation of sets as charaderistic functions defined as follows: 

Definition 2.8 Let C be a set and A Ç C. The charaderistic fundion of A is the function 
.l'A : C-+ 13 defined by: 

,l' (a) = { 1 if a E A 
A 0 otherwise 

0 

A characteristic function is nothing but another representation of a subset of a set. A 
characteristic function itself can be represented efficiently by a BDD, which is often murh 
more compact than an explicit list of all elements. In addition, set operations can be 
represented by Boolean operations on the BDDs. For instance, the union of two sets is 
found by oring their BDDs. Relations can be represented as BDDs in a way similar to the 
representation of sets. 

Definition 2.9 Let R be a binary relation over the sets A and B. The character·istic 
fundion of R Ç A x B is a function .l'R : A x B -+ 13 de:fined by: 

v ( b) _ { 1 if (a, b) E R ··•R a, - h . 0 ot erw1se 

0 

The relation R can be represented by the BDD for its charaderistic function. As a practical 
example, consider the most significant state bit of the modulo 8 counter described in 
section 2.2. lts next-state relation can be written as: 

(2.5) 

The conesponding characteristic function can be written as: 

Figure 2A shows the corresponding BDD. For the sake of simplicity, the BDD does not 
contain complement edges. Note that the structure of the graph depends on the chosen 
variabie ordering. In this case, the variabie order is s0 , 8 1 , s;, s2 . 
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E 

E 

0 0 

Figure 2.4: BDD representation for cbaracteristic function XR(V, V'). 

Boolean quantifiers sucb as tbe existential operator and tbe universa] operator can also be 
implemented witb BDDs as follows. Tbe existential quantification ( also called srnoothing) 
of a Boolean variabie v witb respect to tbe Boolean formula f can be computed as 

3 V J = fv + fv 

w bere fv is tbe usu al cofactor operation. Similarly, tbe universa] operator ( also called the 
consensus operator) can be computed as 

Vv J = fv.fv 

Tbe generalized cofactor is a new operator wbicb can be used to reduce an image com­
putation to a range computation. Tbis operator was initially proposed by Coudert et al. 
in [5] and called tbe constrain operator. It can be formally defined as: 

Definition 2.10 Let F : 18" -+ 18. Furtbermore, let c : 18" -+ 18 witb c -:f 0 and let 
x 1 -< Xz -< · · · -< Xn be an ordering of its input variables. Tbe generalized cofactor of F 
witb respect to c, denoted by Fe is defined as: 

Fe= F 0 1rc 

w bere tbe o symbol denotes functional composition. Tbe mapping 1r c : 18" -+ 18" is defined 
as follows: 

if c(!!:) = 1 
if c(!!:) = 0 

witb d(!!:,J!J = L lxi- Yii2n-i 
I<i<n 
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1l'c is a projection that maps a minterm ;r to the minterm 1!.. in the onset of c which has 
the dosest distance to ;r according to the distance d. The particular form of the distance 
guarantees the uniqueness of 1!.. in this definition for any given variabie order. 

0 

Intuitively, the representation of Fe is simplified by adding or removing minterms from 
the don't care set of c. Usually (but not always), the size of the BDD representing Fe is 
smaller than the BDD representation of F. A key property of the operator is that the 
image of a function F under a sub-domain c is equal to the range of the function Fe. 
The generalized cofactor can be computed efficiently in a single post-order traversal of the 
BDD representations of F and c [19]. 

2.3.1 Implementation of the BDD Package 

Verity uses the BDD package available from the Design Automation Section at Eindhoven 
University of Technology. This package is based upon the BDD implementation as de­
scribed by Brace, Rudell and Bryant [2]. The ITE operator forms the core of the package. 
ITE is a higher-order Boolean function defined for three arguments F,G,H which computes 
ij F then G else H. This is equivalent to 

ITE (F,G,H) = F.G + F.H 

The ITE operation can be used to implement all two argument Boolean operations. As 
ITE is the logica] function performed at each node of the BDD, it is an efficient building 
block for many operations on the BDD. The programming language function for the ITE 
operator will be written as ite. 

A global hash table, called the unique table, is used to allow a BDD node< v, T, E > to he 
found in constant time. The unique table uses a hash function on the tuple < v, T, E > to 
map the unique table en try to the BDD node F = ( 1J, T, E). All the nodes with the same 
hash value are stored in a linked list. Before a new node is added to the BDD, a lookup in 
the unique table determines if the node for tllat function already exists. If so, the existing 
node is used. Otherwise, a new node is created and stored in the unique table. With this 
technique, the BDD can be kept reduced without ever calling areduce function. 

The performance of the ite function is improved by the use of a memory function, the 
computed table. Unlike the unique table, the computed table has finite memory. Only 
the results of most recent computations are held. While the unique table is instrumental 
in maintaining the reduced form, the computed table is just for speeding-up ite compu­
tations. The table maps three nocles F,G and H totheresult node ite(F,G,H) once this 
result has been computed. The computed tableis implemented as a hash-based cache, 
i.e., a hash table without a collision chain. In case of collision, the new entry replaces the 
old one. Each entry in the computed table occupies 4 words: 3 words which form the key 
for the operation (e.g., ITE(F,G,H) uses F,G and H as the key) and a single word \vhich is 
the operation result. A ratio of one cache entry is maintained for every four unique table 
entries so that the total memory usage of the package, including the overhead of the hash 
tables, is 24 bytes per BDD node on a 32 bit machine. 
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In order to recycle memory, the BDD package uses garbage collection based on reference 
counting. Each node in the BDD has a reference count, representing the number of other 
nocles that refer to it. A node with a reference count 0 is called dead; all nocles with 
positive reference counters are called alive. If a new node is created causing the unique 
table to become too full, then either garbage collection is performed (if the number of dead 
nocles in the DAG exceeds a given percentage, for instanee 10% of the total number of 
nocles in the DAG) or the unique tableis increased in size by a factor two. If the reference 
count overflows, the node will become frozen. A frozen node can never be freed. 

Attributed edges have been proposed by several authors to improve BDD performance [10, 
14, 17]. The edges in the BDD are tagged to indicate a modification of the function it 
points to. This reduces the size of the DAG by allowing a single node to represent several 
different functions. One trick that can be used is by explicitly indicating that a nocle's 
variabie is to be interpreteel negated, i.e., the roles of the then anel the else edges are 
to be exchanged. This so called inverted input edge can be represented by a bit in the 
pointer value. This implementation trick is based on the fact that some bits of a pointer 
have a constant value because of memory alignment requirements. A sufficient rule to 
maintain a canonkal BDD is to force the memory address of the then pointer to he less 
than the memory address of the else pointer. Another attribute edge is the complemented 
edge. lt indicates that the conneeteel forntula is to be interpreted as the complement of 
the ordinary formula. Thus with complement edges, f and ] share the same subgraph. 
f is an ordinary pointer to the subgraph and 7 is a complement pointer. Again, a bit 
in the pointer value can be used to represent the edge. A dot on an edge indicates it is 
a completeel edge. To maintain a canonical form, the place where complement edges are 
used must be constrained: 

1. The then link of every node must be a non-compiementeel edge and 
2. the 1-function is represented by a non-complemented edge to the only terminal node; 

the 0-function is a complemented edge to this node. 

As a resuit, always the left memher of each equivalent pair shown in figure 2.5 is chosE>n. 

~-~ ~-~ ~-~ ~-~ MMMAMAMM 
Figure 2.5: Four equivalent pairs of BDDs with complement edges. 

Dynamic variabie ordering [18] is used to address the problem that the size of the BDD 
representation fora given Boolean function depends on the chosen variabie order. Dynamic 
variabie ordering changes the current variabie order as BDD operations are performed. 
This is clone periodically by applying a minimization algorithm which rearelers the variables 
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of the BDD to reduce its size. Because the variabie order is no Jonger statie, this technique 
is referred to as dynamic variabie ordering. Dynamic variabie ordering differs from the 
typical use of BDDs where variables are ordered once when the BDD is created and 
the order is maintained throughout all subsequent processing. Details of Rudell's sifting 
algorithm, which has been incorporated into the package, can be found in [15]. 

2.3.2 lmplementation of a BDD Package for Sequentia} Verification 

A BDD package for sequentia} verification bas been developed based upon the theory pre­
senteel in the previous sections. The package bas been implemented as an extension to the 
BDD package mentioned in section 2.3.1. It provides specific functions for verification of 
sequentia} circuits. In particular, state variables have been introduced to incorporate state 
information into BDDs. State variables are treated in exactly the same way as combinata­
rial variables except they have additional information about their initial state and related 
next-state functions. The hash table structure of the unique table bas been adapted to 
store this information for each state variable. The package uses an ordering for the BD D 
variables in which present and next-state variables are interleaved. State variables are 
introduced by a call to the function bdd_create_state_var which automatically creates a 
pair of state variables in such a way that every present state variabie s is adjacent to its 
conesponding next-state variabie 8

1

• The introduetion of state variables in pairs is bene­
ficia} for image computation ( see chapter 3 ). One of our current tasks involves adapting 
Rudell's sifting algorithm [18] in such a way that corresponding state variables are kept in 
pairs. Several algorithms and routines of the package are discussed in more detail in the 
next chapter. The integration into Verity is described in chapter 5. 
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Chapter 3 

Algorithms for FSM Verification 

In this chapter we consider the problem of verifying the equivalence of two FSM's. The 
algorithms we discuss are based on an implicit enumeration of all the reaebabie states in 
the STG of the FSM. The state enumeration techniques are not only applicable to sequen­
tia} verification but can also be used for state extraction and state minimization [12]. 

The functional equivalence of two sequentia} circuits, i.e., two Mealy machines MA and 
MB, can be verified by traversing the STG of the product machine Mx =MA x MB and 
searching fora transition where the two machines generate different output values [5]. If no 
such transition is found aft er exploring the whole reaebabie part of the STG, equivalence 
of MA and MB is proved. Thus, sequentia} verification of a FSM requires representing 
the STG of the product machine Mx and to traverse it either backwarcis of forwards to 
find the set of reaebabie states. The forward traversal starts from a set of initia} states 
and repeatedly computes the set of states reachable from the previous calculated set. This 
requires an image evaluation of the transition function. The backwards traversal starts 
from a given set of states and computes the states from which that set is reached. This 
requires a pre-image evaluation of the transition function. 

The explicit construction of the STG of the product machine is a very memory consuming 
operation. Therefore, it is restricted to machines with only a few states. Other approaches 
traverse the product machine without explicitly building its STG. Basically, there are two, 
well-known strategies to traverse the STG ofthe product machine: depth-first and breadth­
first traversal [5]. Depth-first traversal suffers from the fact that the number of steps for 
the traversal is linear in the number of reachable states. This is the reason that the depth­
first strategy is only suited for machines with a relative small number of states. The second 
strategy perfarms a breadth-first traversal of the STG. This strategy exercises multiple 
transitions in the STG simultaneously (implicit enumeration) and sets of stat es (e.g. the 
set of states visited thus far) are stared inthefarm of charaderistic functions (BDDs ). The 
breadth-first traversal algorithm is presented in detail in section 3.1. In section 3.2, we 
look at two algorithms for image computation. Section 3.3 presents experimental results 
camparing the two image computation algorithms. Improvements are discussed in section 
;3.4. 
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3.1 Finding Reachable States 

Reachable state computations are the fundamental part of st;:;te machine verification. Let 
S0 be the set of initia! states, represented by the BDD S0 (V). Our goal is to derive an 
algorithm which computes the BDD S(V), representing the set of all reachable states. 
Consicier first the set .'it, of states reaebabie in at most one step from S0 . Clearly, a state 
Si belongs to .5\ if Si E So or there exists a state Si E So and a transition (Si, Sj) in the 
next-state relation N. Thus, the set S1 is given by 

·'h =SoU {.~'I 3s [sE So I\ (s,s') EN]} (3.1) 

Given the BDDs So(V) and N(V, V'), tbe BDD representing .S\ can be computed by 
performing the logica] operations conesponding to expression ;3.1. 

S1 (~'') = So(V') V [S0 (V) I\ N(V, V')] (3.2) 

Similarly, the states reaebabie in at most two steps from S0 are represented by 

Sz(V') = S1(V') V 3 [S1(V) I\ N(v', V')] 
vEV 

( 3.3) 

In genera!, the states reaebabie in at most k + 1 steps are represented by 

.'h(V') V 3 [Sk(V) I\ N(V, V')] 
vEV 

(3.4) 

Notice that eacb set of states is a superset of the previous one. Since the total number of 
statesis finite, a fixed point exists1

, i.e. at some point Sk+1 = Sk. At this point, no further 
states are reachable. Thesetof all reaebabie statesis represented by S(V) = Sk(V). The 
breadth-first traversal function in algorithm :u repeatedly computes Sk+ 1 (V) from Sk(V) 
to obtain the set of all reachable states. Tbis process converges wben no new states can 
be reaehed. Note that testing for convergence is easy, since testing BDDs for equivalence 
is a constant time operation. At each iteration, the set of states visited so far, SA:(V) is 
updated by adding the set of newly reached states .'h(V)- Sk-I (V). In addition, it is 
verified tbat both machines produce tbe same output value. Tbis is clone by intersecting 
the set of newly reached states with the output of the product machine. A result different 
from constant zero indicates the existence of a miscompare state. Most of the compu­
tational effort of the algoritbm goes into tbe image computation of the set of reaebabie 
states. Two image computation algorithms will be discussed in section 3.2. 

1 A fixed point of a function is some value x such that f( x) x. 
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function bdd_bfs_traversal (out, init: BDD) : Boolean 
BDD new; /* Newly reached states * / 
BDD reached; /* States seen so far *I 
BDD old_reached; 
BDD current; /* States to be treated *I 

reached := old_reached := current := init; 

do { 

old_reached := reached; 

new := bdd_irnage ( current) 
new := bdd_renarne (new); 
new := bdd_and_not (new,reached); 
reached := bdd_or (reached, new); 

if (BDD_Q_P (bdd_and (out,new)) return false; 

current := new; 
} while (!BDD_EQUALP (reached, old_reached)); 

return true; 

Algorithm ;3.1: Bread th-first traversal algorithm 

The set of newly reached states are obtained in terms of the next-state variables. In order 
to update the set of reached states and to use the set S'k(V) - S'k-l (V) as a starting 
point for the next iteration, it is necessary to rename all next-state variables to present 
state variables. Algorithm 3.2 shows the basic algorithm to perfarm the substitution of 
all next-state variables by their conesponding present state variables. The bdd_rename 

function creates a copy of the original BDD by replacing each node ( v', T, E) with a node 
( v, T, E). The function is called at the top level with the root node as argument and the 
mark tielels of the nocles being either all true or all false. The value of a node's mark field 
is compiementeel as it is visited in order to avoid solving su bproblems more than once. As 
each node is visited exactly once, the number of recursive calls to bdd_rename is IJl. 

The performance of the bdd_rename function can be improved in two ways. First, it is 
beneficia} to use a variable order in which the present and next-state variables are inter­
leaved with conesponding present and next-state variables adjacent to each other. This 
specific order guarantees that the ranknumber of a variabie being substituted is smaller 
than the ranknumbers of sub-results from recursive calls. As a result, it is possible to 
perfarm a call to the find-or-add operation instead of a full i te computation 2 . Empirically, 
this provides a substantial savings in time. 

2 The find-or-addoperation either finds an existing BDD node in the unique table or creates a new node 
if the given node does not exist. 
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function bdd_renamc (BDD f): BDD 
BDD g,h; 

if f = BDD_O V f = BDD_l 
return f; 

else 
[fis a triple (v', T, E)] 
g := bdd_rename (T); 
h := bdd_rename (E); 

return bdd_ite (v,g,h); 
endif 

Algorithm 3.2: Rename algorithm 

A seeond impravement is to use aresult raehe. This cache maps the three arguments v', 
T and E to the result node R ( v, T, E) once it bas been eomputed. 

3.2 Image Computation 

Image computation is the basic operation in the breadth-first traversal algorithm. Given a 
set of present states, the set of states reaebabie in one step is computed using either next­
state functions or relations. Several research groups proposed BDD-based techniques for 
image computation. Here, the methods developed by Burch, Clarke et al. [4] and Touati 
et al. [19] are discussed. 

Touati's technique for computing the image of a set of states uses a conjunction of next­
state fundions to re present the complete next-state relation. However, they combine 
this technique with Coudert 's Constro in operation to restriet the result of the next-state 
fundions to the set of reached states. This reduces the problem of computing the image 
of a set to that of computing the range of a function. The set Sk+l is eomputed from the 
set sk using the expression: 

sk+1 (V')= /h(V') V 3 II [vi Constrain(fi(V), Sk(V))] 
vEV . 

1 :St :Sn 

where the image of the set Sk(V) is computed using the product 

3 IT [v: = Constrain(fi(V),Sk(V))] 
ttEV 1 

(3.5) 

(:3.6) 

The product in expression 3.6 can be computed using a simple iteration loop. However, it 
is more efficient to use a recursive algorithm whieh deeomposes the Boolean and operatien 
of the n equivalence fundions vi = Constrain(Ji(V), Sk(V)) into a binary tree of Boolean 
and operations. The eqnivalence operations are performed at the leaves of the tree and 
form the terminal cases of the recursion. After computing a binary and on the two suh­
results of the recursive calls, say p, variables from the quantification set V w hich appear 
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only in p can be quantified out. Notice that this essentially requires a specification of the 
quantification order of the variab)es. The quantification and the and operation can bP 
done in one pass over the BDDs with an algorithm called AndExists [16]. This reduces 
the storage requirements. Algorithm 3.3 outlines this approach. The function is called at 
the top level with three BDD veetors j, v' and q as arguments. The first BDD vector, j, 
represents the vector of next-state functions. The second BDD vector v1

, represents the 
next-state variables. The BDD vector q represents the vector of quantification sets. The 
BDD Sk represents the current set of states. 

fuuction bdd_image (BDD * /, BDD *v', BDD*q, BDD Sb int left, int right): BDD 
BDD r,ht,ho; 

if (left right) 
r := bdd_constrain (f[Ieft], Sk); 
return bdd_xnor (v'[left], r); 

el se 
int spliLpos := (right -left +1)/2; 
h1 bdd_image (!, v',q, S'k,ieft, left + spliLpos -1); 
ho bdd_image (!, v', q, S'k ,Jeft + spliLpos, right ); 
return bdd_and_exists (/z 1 ,ho, q); 

eudif 

Algorithm 3.3: Image computation algorithm 

Another BDD based technique to compute the image of a set of states bas been reported 
by Burch, Clarke et al [4]. Their algorithm repeatedly computes the set Sk+1 from .'h 
and checks the equivalence of .'h and Sk+l in order to determine whether a fixed point 
has been reached, similar to Touati's approach. However, the fixed point iteration loop 
is based on an expression which is slightly different from expression 3.4. The set Sk+ 1 of 
states reaebabie in k + 1 or fewer steps is given by 

Sk+1 (V1
) S0 (V1

) V 3 [Sk(V) 1\ N(V, V')) 
vEV 

( :3. 7) 

The image of a set is computed with the relational product 

3 [Sk(V) 1\ N(V, V')] 
vEV 

(3.8) 

which performs the Boolean and operation on the set of states reached so far, Sk, and the 
next-state relation N together with the existential quantification over all variables in the 
set V. Note that the set Sk contains all states which have been reached so far, including 
states reached in previous iterations. As a result, transitions which have been calculated 
in previous iterations are computed again. Afterwards, the set sr+I contains all stat es 
which are reachable in k + 1 or fewer steps except for the initia! set of states. Tbe set 
Sk+I can he obtained by taking the union of the initial set of states S0 and Sk+1 • 
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Algorithm 3.4 shows the relational product function bdd_rel_prod which can be used to 
perfarm the image computation of expression 3.8. The computation is clone in one pass 
over the BDDs Sk(V) and N(V, V'). The motivation for this algorithm is to avoid pro­
ducing the entire BDD for Sk(V) 1\ N (V, V') which is aften very large. This is clone by 
applying existential quantification to the results of the subproblems as soon as they be­
come available. Empirically, this provides a substantial savings in space and time. The 
BDD Sk+l (V') is computed with the call bdd_rel_prod (Sk(V), N(V, V'), V). 

The performance of the algorithm can be improved by using a result cache. In this case, 
entries in the cache are of the form (f, g, E, r ), where E represents the set of quantification 
variables and J, g and r are the BDDs. If such an en try is in the cache, it means that a 
previous call to bdd_reLprod (j,g,E) returned r as its result. The algorithm, as shown, is 
independent of assumptions on the BDD variabie ordering. In section 3.4 we will discuss 
an improved algorithm for the case that present and next-state variables are interleaved. 
Other possible implementation details which improve the performance of the algorithm 
indude: 

1. lf the top variabie is being quantified out and the result from the recursive then step 
is true, the result of the or operation is true and it is not necessary to do the else 
recursion. 

2. lf the top variabie among the operandsis below the last variabie in thesetof quantifi­
cation variables, it is possible to perfarm the and operation on the current operands 
and return this result. 

3. The size of the result cache is extended dynamically if the number of occurrences in 
the cache exceeds a given upperbound. 

The set of quantification variables E can be represented in several ways. Possible options 
are a linked list, a bit-vector or a BDD. We use a BDD representation. This reduces the test 
if the cache contains an entry of the farm (f,g, E) to simple pointer address camparisous 
which can be performed in constant time. Speed is an important consideration here as 
the cache is checked ISI.fN I times in the worst case. The complexity of the relational 
product algorithm can be stated as O(ISf.fNI.22n) which is the number of disjunctions 
to be performed (fSI.INI in the worst case) times the square of the largest possible BDD 
size 2n. 
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functiou bdd_reLprod (f,g: BDD, E: set of variables): BDD 
BDD ho, h1, r; 

iff = BDD_O V g = BDD_O 
return BDD_O 

else iff = BDD_l 1\ g = BDD_l 
return BDD_l 

else if(f,g,E,r) is in result cache 
return r 

el se 
let x be the top variabie of f 
let y be the top variabie of g 
let z be the topmost of x and y 
ho:= bdd_reLprod(flz=o,YL:=O, E) 
h1 := bdd_reLprod(flz=l, Ylz:::l, E) 
if zEE 

r := bdd_or(hl, ho) 
el se 

r := bdd_ite(z, h1, ho) 
endif 
insert (f,g,E,r) in the result cache 
return r 

endif 

Algorithm 3.4: Relational product algorithm 

3.3 Experimental results 

The image computation algorithms described in the previous section have been imple­
mented in C and integrated into the sequentiaJ BDD package mentioned in section 2.3.2. 
This section presents experimental results cmnparing Burch's relational product methad 
with Touati's approach for image computation. The comparison was done early in the 
project. At that point both image computation algorithms were implemented without 
their specific optimizations. More specific, we used the relational product implementation 
shown in algorithm 3.4. In Touati's algorithm, present state variables were quantified after 
each image computation instead of on-the-fly. The results obtained from the comparison 
were used toselect one methad as the default algorithm for image computation. Table 3.1 
shows the results of performing reachability analysis using 23 sequentia] benchmark cir­
cuits from the IWLS'91 benchmark set3 . The first three columns give the number of state 
variables, the depth of the STG and the number of reachable states. The next three 
columns list cpu time, memory, the size of the largest intermediate BDD genera.ted by the 
bdd_r·eLprod function and the size of the next-sta.te rela.tion using Burch 's a.lgorithm. The 
last three columns report the cpu time, memory and the size of the largest intermediate 

3 The IWLS'91 benchmark set includes a directory of 40 sequentia! circuits (smlexamples). This includes 
the ISCAS'85 and ISCAS'89 benchmarks. The circuits s208.1, s420.1, s838.1 and s9234.1 are correct.ed 
with respect to the original versions in the ISCAS'89 benchmark set 
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BDD generated by the bdd_image function using Touati's algorithm. All experiments were 
run on a IBM RS6000 workstation, model 370, a 60 MIPS machine. The initia} state was 
set to all zeros in each case. The time figures reported include parsing of the input file 
and building the BDDs for the next-state functions of the state variables. The reported 
numbers for memory usage represents the maximum amount of memory needed by the 
BDD package to perfarm the computations. The figures include overhead resulting from 
the hash tables used in the BDD package. Bath methods use tbe same variabie order. 
Garbage collection was invoked when more than 25% of the nocles in the unique table 
were dead. Tbe dynamic variabie ordering option was disabled during these experiments. 
During BDD processing, a maximum of one million BDD nocles was placed on the BDD 
package, i.e., the memory was limited to approximately 24 Mb. In four cases, (s8:38.1, 
sl423, s5378 and s9234.1), it was not possible to build the BDDs for the next-state func­
tions within this limitation. 19 of the 23 example circuits were able to complete both with 
Burch's and Touati's algorithm. Forthese examples, the runtime increased by an average4 

of 1.6 when Touati's algorithm was used. This can be explained by camparing the size 
of the intermediate BDDs generated by bath image computation algorithms. For all ex­
amples, the intermediate BDDs generated by the bdd_image function are larger than the 
intermediate BDDs generated by the bdd_reLprod function. In addition, Burch algorithm 
benefits from its result cache. We experienced that for this set of examples, on the average 
20% of the calls to the bdd_reLprod function could be handled by the cache. Extending 
Touati's algorithm with aresult cache is not straightforward due to the variahle length of 
the BDD vector arguments 

3.4 Improvements 

Image computation is a key operation in the sequentia} verification algorithms discussed 
in the previous sections. Two refinements to perfarm image computation more effidently 
are discussed in this section. A technique called partitioned next-statc relations will he 
discussed in the next chapter. 

3.4.1 Frontier Set Simplification 

An optimization introduced by Coudert and Madre [5} called frontier set simplification 
can aften be used to speed up image computations. This technique tries to reduce the size 
of the BDD representing the set of states on the search frontier, i.e., the set of states in 
Si+t but not in Si. Consider the set S2 of states reaebabie in at most two steps from 80 : 

(3.9) 

Notice that it is also possible to obtain 82 with an image computation from the set of 
states on the search frontier S1 - So as this will yield a superset of .'h - St (it may also 
indude some states in 81 ): 

{s'l 3s [sE St 821\ (s,s') EN]} (3.10) 
4 Averages are computed as arithmetic mean of the ratio computed for each example individually. 
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I Burch 's approach j Touati 's approach 
Example latehes stat es depth cpu mem inter Next-state cpu mem inter 

(sec) (Kb) (Nodes) (Nodes) (sec) (Kb) (Nodes) 
s27 3 6 3 0.1 373 6 10 0.1 373 31 
s208.1 8 256 256 0.5 378 13 52 0.9 443 19 
s298 14 218 19 0.5 454 59 293 0.6 390 210 
s344 1.5 2625 7 2.7 590 695 637 2.7 589 2.529 
s349 15 2625 7 1.7 590 694 636 2.7 589 25:31 
s382 21 8865 151 18.0 594 273 1163 18.0 594 :)48 
s386 6 13 8 0.2 379 14 64 0.7 379 51 
s400 21 8865 1.51 20.0 594 273 11 G3 18.4 594 348 
s420.1 16 65536 65536 161.0 594 34 118 392.0 588 3.5 
s444 21 8865 151 3.5 594 204 388 9.7 796 257 
s510 6 47 47 0.5 390 18 150 0.5 390 19 
s526 21 8868 151 4.1 594 244 507 11.1 594 :360 
s641 19 1544 7 4.2 1265 168 2454 10.0 917 1:3207 
s713 19 1544 7 7.9 1265 168 2454 13.4 917 1:3207 
s820 5 25 11 0.5 387 15 107 0.5 387 78 
s832 5 2.5 11 0.5 387 15 107 0.5 387 78 
s838.1 32 ? ? - - - - - -
sll96 18 2616 3 26.0 3337 1103 798:3 15.0 39:33 29506 
s142:3 74 ? ? - - - - - -
sl488 6 48 22 0.6 445 25 179 0.7 445 47 
sl494 6 48 22 0.6 445 25 179 0.7 445 47 
s.5378 179 ? ? - - - - - -
s9234.1 211 ? ? - - - - - - -
Ratio 1.0 1.6 

Table 3.1: Comparison between Burch's and Touati's image computation a1gorithm 
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The set 52 can he obtained by ad ding all the states in S1 • Thus, the expression for .'h can 
be rewritten as: 

s2 = SI u { s' I 3 s [s E s~ 1\ ( s, s') E N) } (3.11) 

where S~ is the frontier /h- 80 • It is suflident to take any S~ satisfying .'h-So Ç Si Ç S1. 
Given this freedom, we like to choose S~ so that its BDD representation is smaJL This can 
he done using the generalized co-factor operation defined in section 2.3. The generalized 
co-factor function takes two BDDs S(V) and C(V) as input. S(V) can he viewed as 
the state set and C(V) as the care set. It produces an output BDD S'(V) such that 
S(V) 1\ C(V) = S'(V) 1\ C(V). That is, S(V) and S'(V) evaluate to the same value for the 
statesin the care set C(V). Intuitively, the representation of the set S(V) is simplified by 
adding or removing statesnot in C(V). Usually, the size of S'(V) is less than the size of 
S(V). U sing this idea, the algorithm for computing the set of reachahle states is modified 
as follows. Let Si he the set of of states reaebabie after i steps, then 

Si+l S; U {s'l 3s [sE 8; 1\ (s,i) EN)} 
= si u {s' I 3 s [sE Generalized_CoFactar(Si, -.si-d 1\ (8, /)EN] } 

Notice that using frontier set simplification does not result in memory savings; all of the 
BDDs in the original reachability algorithm are still computed. The potential advantage of 
frontier set simplifîcation is that smaller BDDs are used in the image computation. How­
ever, the results in table 3.2 indicate that for the set of examples used bere, the frontier 
set simplifîcation technique, combined with Burch's approach, does not lead to a major 
reduction of computation time. 

3.4.2 lmproved Relational Product Algorithm 

This section describes an optimized relational product algorithm. 1t can he used if the 
conesponding present and next-state variables are ordered in pairs. In that case, the next­
state to present state renaming can be done during the relational product computation 
rather than as a separate operation afterwards. Section 3.2 described how the bdd_reLprod 
function can he used to compute a relational product of the form: 

S(V') = 3 [S(V) 1\ N(V, V')] 
vEV 

(3.12) 

In the standard breadth-fîrst traversal algorithm, this operation is foliowed by the next­
state to present state renaming in order to express the set of reached states in terms of 
present state variables. A slight modifîcation allows computing the relational product and 
the substitution in a single recursive pass over the BDDs S(l/) and N(V). 

Reeall from section 3.2 that the basic step in the bdd_rel_prad routine is to perform the nor­
mal conjunction except when an element ofthe quantifîcation set V bas to he built. In that 
case, existential quantification is performed. Notice that the resulting BDD S(V') only de­
pends on next-state variables, i.e., all present state variables are existentially quantified. In 
other words, the conjunction operation generates BDD nodes of the form (v', T, E). Due 
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I Burch's approach I Frontier set simpl. I 
Example latehes states depth cpu mem cpu mem 

(sec) (Kb) (sec) (Kb) 
s27 3 6 3 0.1 373 0.1 373 
s208.1 8 256 256 0 .. 5 378 0.6 443 
s298 14 218 19 0.5 454 0.5 3.54 
s344 15 2625 7 2.7 590 1.7 589 
s349 15 2625 7 1.7 590 1.7 589 
s382 21 8865 151 18.0 594 10.3 639 
s386 6 13 8 0.2 379 0.2 379 
s400 21 8865 151 20.0 594 10.2 641 
s420.1 16 65536 65536 161.2 594 173.0 4696 
s444 21 8865 1.51 3.8 .594 2.6 594 
s510 6 47 47 0.5 390 0.5 390 
s526 21 8868 151 4.1 594 3.3 594 
s641 19 1544 7 4.2 126.5 4.5 1256 
s71:3 19 1544 7 7.9 1265 8.0 12.56 
s820 5 25 11 0.5 387 0.5 387 
s832 5 25 11 0.5 387 0 .. 5 387 
s838.1 32 ? ? - - - -

s1196 18 2616 3 26.0 3337 47.4 4696 
s1423 74 ? ? - - - -
s1488 6 48 22 0.6 44.5 0.6 445 
s1494 6 48 22 0.6 445 0.6 445 
s5:378 179 ? ? - - - -

s9234.1 211 ? ? - - - -
I RatiO 1.0 1 o.92 

Table 3.2: Comparison between Burch's algorithm and relational product algorithm 
using frontier set simplification 
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to tbe recursive implementation of the algoritbm, wbere subproblems are solved befare 
the disjunction or conjunction operation and the inter]eaved variabie ordering, it is safe 
to create a triple ( v, T, E) instead of ( v', T, E). In this way, the renaming of next-state by 
present state variables can be avoided. Tbe impact of this optimization bas been measured 
by computing the set of reaebabie states using Burch's relational product algorithm and 
our improved relational product algorithm. The results are detailed in table 3.4.2. The 
benchmark circuits are taken again from the IWLS'91 benchmark set. The runtime for 
this set of examples is reduced by an average of 32% when our improved relational product 
algorithm is used. The optimization obviously has more impact if the depth of tbe STG 
is larger. 

Burch's alg. Im prc;veda!g. 
Example latehes states depth cpu mem cpu mem 

(sec) (Kb) (sec) (Kb) 
s27 3 6 3 0.1 373 0.1 373 
s208.1 8 256 256 0.5 378 0.3 378 
s298 14 218 19 0.5 454 0.4 390 
s:344 1.5 2625 7 2.7 590 1.0 528 
s382 21 8865 151 18.0 .594 6.1 .594 
s:386 6 13 8 0.2 379 0.2 379 
s400 21 8865 151 20.0 594 6.2 594 
s420.1 16 65536 6.5536 161.2 594 58.4 59.5 
s444 21 886.5 151 3.5 594 1.2 594 
s510 6 47 47 0.5 390 0.4 390 
s526 21 8868 151 4.1 594 1.4 594 
s641 19 1544 7 4.2 126.5 3.6 1265 
s713 19 1544 7 7.9 1265 7.4 1265 
s820 5 25 11 0.5 387 0.5 387 
s832 5 25 11 0.5 387 0.4 387 
s8:38.1 :32 ? ? - -
s1196 18 2616 3 26.0 3337 19.9 2689 
sl42:3 74 ? '? - - - -
sl488 6 48 22 0.6 445 0.6 381 
sl494 6 48 22 0.6 44.5 0.6 381 
s.5378 179 'I 'I - - - -
s9234.1 211 ? '? - - - -

I Ratw 1.0 1 o.68 

Table 3.3: Comparison between Burch's relational product algorithm and our im­
proved relatîonal product algorithm. 
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Chapter 4 

Partitioned N ext-state Relations 

4.1 Problem Statement 

In the previous chapter, we discussed the breadth-first tra versa] technique along with 
two metbods for image computation. Experimental results indicated tbat tbe relational 
product metbod developed by Burch, Cl arke et al [4] performeel better than Touati 's [ 19] 
image computation algorithm. The basic step of Burch 's algorithm involves performing 
relational product computations of the form 

3 [s(F) A N(ll, V')] 
vEV 

( 4.1) 

Thus, it is crucial to perfarm this step as efficiently as possible. For example, a special 
algorithm bas been presen.ted which computes expression 4.1 without building the BDD 
for S(V)AN(V, V) which could become impractically large. Unfortunately, tbe BDD rep­
resenting the next-state relation itself can become very big. Being fm·ced to construct this 
BDD bas been a major limitation in trying to verify complex circuits. In the remainder 
of this chapter we describe a technique for overcoming this problem by using more than 
one BDD to represent the next-state relation. 

Reeall from section 2.2 that the next-state relation of a synchronous sequentia! circuit can 
he written as a conjunction of next-state relations 

N(X, ll, V')= No(X, ll, V') A··· A Nn-I(X, V, V') 

Each individual next-state relation Ni(X, V, ll') determines the new state of one register 
as a function of the old state and the inputs. From this expression, it is easily deduced 
that the number of nocles in the BDD representing the complete next-state relation in tbe 
worst case grows as the product of the number of nocles in the individual next-state rela­
tions, yielcling exponential growtb. lf the complete next-state relation is represented as a 
list of implicitly conjuncted next-state relations, the number of BDD nocles is the sum of 
the nocles in the component next-state relations, yielding linear growth. This ohservation 
was made by Burch, Clarke et al. [4] who used the term par-titioned next-state r·elation,<; 
for it. 

27 



Since the next-state relation for a synchronous circuit is a conjunction of relations, the 
relational product has the farm 

S(V') = 3 [s(V) 1\ (No( X, V, v') ···I\ Nn-1 (X, V, v'))T 
vEV 
x EX 

( 4.2) 

The main problem in computing S(V'), without building the full conjunction of next-state 
relations, is that existential quantification does nat distribute over conjunction. However, 
it is possible to divide the computation of a full relational product into a sequence of 
smaller steps by using properties of the conjunction operation. 

The basic technique to compute the relational product in equation 4.2 is as follows. Note 
that the next-state relations can be combined in any order as conjunction is associative 
and commutative. In addition, although conjunction does nat commute with existential 
quantification, sub-formulas can be moved out of the scope of existential quantification if 
they do nat depend on any of the variables being quantified. As a result, it is possible to 
conjunct the N;(X, V, V') with S(V) one at a time and quantifying out each variabie v 
when none ofthe remaining N;(X, V, V') depend on v. Since quantification tends to reduce 
BDD size by reducing the number of variables, the strategy is to combine the next-state 
relations in such an order that the variables can be quantified out as soon as possible. 
This technique is referred to as early quantification 1 . 

The next-state ordering problem can be defined fomrally as: 

Next-state Ordering Problem (NOP) 
Instance: Given a conjunctive partitioned next-state relation with n state variables. In 
this case, the relational product computation can be written as: 

s' (V') = 3 [s(V) 1\ No( X, V, V') 1\ · .. I\ Nn-l (X, V, V')] ( 4.~1) 
vEV 
x EX 

Minimization Task: Find an ordering of the next-state relations Ni(X, V, V'), i = 
0, · · ·, n - 1 which minhuizes the intermediate BDD size during the relational product 
computation. 

An ordering of the next-state relations N0 , • • ·, Nn_ 1 can bedescribed by the permutation 
p {Np(o)(X,V,V'),···,Np(n-l)(X,V,V')}. Thesolution spaceisgiven by 

S = {all permutations 1r on n next-state relations} 

with ISI n!. The problem of computing an ordering that mmmnzes the size of the 
intermediate BDDs during the relational product cornputation is NP-hard [8]. 

1The relationaJ product aJgorithm described insection 3.2 which combines conjunction and quantifica­
tion in a bottam up manner is aJso an example of early quantification. Another example includes the use 
of the And_Exist operation in Touati's image computation algorithm. 
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The permutation describes the order in which the next-state relations Ni(X, V, V') are 
combined. For each i, let Di be thesetof variables in V and X that Ni( X, V, V') depends 
on. Thesetof variables which can be quantified out at the i-tb step of a relational product 
computation is given as: 

n-1 

Ei= Dp(i)- U Dp(k) 
k=i+1 

Thus, Ei is thesetof variables contained in Dp(i) that are not contained in Dp(k) for any 
k larger than i. The Ei are pairwise disjoint and their union is equal to V. Given a 
permutation p, the relational product can be computed as 

S1(X, V, V') 

Sz(X, V, V') 

3 [s(V) 1\ Np(o)(X, V, V')] 
x,vEEo 

3 [s1(V) 1\ Np(I)(X, V, V')] 
x,vEEJ 

The ordering p has a significant impact on how early in the computation state variables 
can be quantified out. This affects the size of the BDDs constructed and the efficiency 
of the verification procedure. Thus, it is important to choose p carefully. As a practical 
example con si der the next-state relations of the 3-bit counter described in section 2.2. 
The next-state relation of the least significant state bit depends only on vo ancl v~. The 
next-state relation of the most significant bit depencls on v; ancl the whole set of v0 , v1 

and v2 • The set 5(~/) of states reaebabie from the set S(V) can be computecl as follows: 

( 4.4) 

Here, the next-state relations are ordereel from N0 to N2• In this case it is not possible to 
quantify out any present state variabie until the last iteration and a BDD that depends 
on 2n variables is generateeL If the next-state relations are ordered from N~ to N~, the 
set S(V') can be computecl as 

( 4.5) 

N ow, it is possible to eliminate one state variabie per iteration and the maximal number 
of state variables in the BDD will be n + 1. So, without a goocl order p, the relational 
product computation will usually be much slower ancl consume morespace than using the 
full next-state relations. 

A final remark is that it is usually not beneficia} to completely partition the next-state 
relation. lnstead, it is more useful to combine several next-state relations into one BDD. 
Fewer BDD nocles may be needeel in this representation due to the node sharing mecha­
nism. Combining some of the BDDs in a partitioned next-state relation can also speed up 
the verification algorithms. 
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4.2 Evaluation 

The use of partitioned next-state relations has been evaluated using an encryption circuit 
called KEY as a benchmark circuit2 • The choke of this partienlar circuit en a bies us to 
compare our results with the ones reported by Burcb, Clarke et al. [4] wbo describe a 
similar experiment. Tbe KEY circuit bas 228 state variables ( countO througb count3, Co 
through C111 and Do tbrough D11 t), 258 inputs (start, encrypt and keyO tbrough kf;y255) 
and 193 outputs. The next-state functions for each of the countj state variables depend 
on start, encrypt and counti for i ::; j. The next-state function for each of the C'j depend 
on start, encrypt, Cj, Dj, count0 tbrough count3 and two of tbe keyi inputs. Tbe same is 
true for the next-state function for each Dj. The partienlar support for eacb state variabie 
indicates that tbe KEY circuit can be viewed as 113 communicating finite sub-automata. 
One automata for tbe count0 through count3 state variables, and for each i from 0 to 111 
one automata containing the Cj and Dj variables. 

The variabie ordering used in the reaebabie state computation was selected manually. The 
start, encrypt and counti variables were put at the top of the ordering as each next-state 
function depend on them. The Cj and Dj variables were interleaved and the keyi inputs 
were put near the Cj and Dj that depend on them. With this ordering, it was impossible 
to construct the BD D for the full next-state relation. However, it was possible to u se 
tbree partitions: one for the counti variables, one for the Cj variables and one for the 
Dj varia bles. The BD Ds for the partitions had 37, 3591 and 5200 nocles respectively. 
The reaebabie state set of the circuit contains 1.348 · 1067 states. lt took 1705 secouds to 
compute this set when a fully partitioned next-state reiation was used and 142 secouds for 
the three partitioned case, a speed up of a factor 12. The runtimes were measured on a 
130 Mips IBM RS6000 Model 390. Burch, Clarke et al. [4] reported runtimes (on a Spare 
station +1) of 1019 and 41 secouds respectively. These times are obtained using a better 
variabie order. Their BDD representation for the three partitioned case had 33, 2464 and 
2.566 nocles respectively. Although it is difficult to campare the results directly due to 
the difference in computer hardware, their result clearly benefits from the better ordering. 
We expect that a future implementation of dynamic variabie ordering which keeps the 
state variables ordered in pairs will reduce this difference in runtime. The experimental 
results dearly indicate the benefits of partitioned next-state relations and of recombining 
individual partitions. In addition, it seems possible to verify synchronous circuits with an 
extremely large number of states. 

4.3 Discussion 

The major reasou to use the partitioned next-state relation technique is to avoid the ex­
ponential growth of the BDD representing the next-state relation. A disadvantage of the 
tecbnique is that one image computation on the complete next state reiation becomes a 
series of image computations, one for each of tbe component next state relations yielding 
slower execution. The use of partitioned next-state relations represents a trade off between 

2 There are actually t.wo sequentia! benchmark circuits called KEY, one with 228 latehes and one with 
56 latches. The one with 228 latehes is used here. 
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spending more time ar allorating more memory to the image computation. A possible way 
to control this trade off is to combinesome of the Ni(V, V') into one BDD by forming their 
conjunction. Notice that the technique is somewhat limited as existential quantification 
only distributes over conjunction in the special case when one of the conjuncts does nat 
depend on the variabie being quantified. Nevertheless, there are cases where the support 
of the component relations is sufficiently disjoint to make this technique effective. 

The BDD representation of the next-state relation can be constructed in a straight forward 
iterative or recursive way. In our current implementation, we monitor the size of the par­
tial generated results and stop the construction if the BDD exceeds a given upper bound 
(e.g. 5000 BDD nocles ). In that case, image computation is performed using partitioned 
next-state relations. 

A final observation is that the trick of combining the relational product computation with 
the next-state to present state renaming can be used tagether with partitioned next-state 
relations due to the disjoint character of the sets of quantification variables. A next-state 
variable can be renamed if the corresponding present state variabie is contained in the 
current quantification set. Our current research focuses on finding an efficient algorithm 
to determine orders in which the next-state relations are conjuncted. 
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Chapter 5 

Verification Approach of Verity 

Verity is a forma} verification tooi developed in IBM for the verification of CMOS proces­
sor designs. It verifies tl1e logica} equivalence between a high-level description of a design 
such as Verilog and a transistor-level net-list. Flexibility is allowed in the transistor-leve] 
implementation as a wide variety of implementation styles including statie, dynamic and 
self-timed logic are supported. Verity bas a logic debugger builtinto it. In case of a veri­
fication failure between the high-level specification and the implementation, the debugger 
will pinpoint regions where the error is most likely. 

Tbe current version of Verity addresses the verification of sequentia! circuits in a strict 
way. It is hased upon a verification model in which corresponding registers must lw 
identified and matebed a priori in both designs. This requires that hoth designs have the 
same numher of registers and use an identical state encoding. As a result, the sequentia! 
behaviour of the design eau not be verified if the number of registers in hoth designs do 
not match or a different state encoding is used. This chapter considers the extension of 
Verity for sequentia! verification. Section 5.1 presents the general verification metbodology 
which bas been applied withiu Verity1 • In section 5.2, we describe how state enumeration 
techniques can be used for sequentia] circuit verification and error diagnosis. 

5.1 Verification Methodology 

The ultimate goal of the functional verification is to achieve exhaustive coverage across the 
entire design. However, because of the computational complexity, verification algorithms 
can not he applied directly on the entire chip. Using design partitioning, a two-part 
hierarchical verification methodology has been developed: 

1. The individual pieces of the design (referred to as macros) are verified independently. 
Specific logica} boundary conditions associated with macro input and output signals 
are asserteel by the designers. These assertions describe the set of signa! patterns 
which can occur at the inputs of a partienlar macro. The valid input patterns are 
referred to as the care-set. Input assertions are used as verification constraints, 
whereas output assertions are validated. 

1The text insection 5.1 has been reprinted from [11] with permission of the authors. 
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2. The composition of macros to farm the complete design is verified for bath correct­
ness and consistency. This essentially checks the integrity of the macro interconnec­
tion including the correct wiring and the consistency of the assertions between the 
individual macros. 

Figure 5.1 shows a simple example of a hierarchical design description. A line di vides the 
set of macrosin two groups: (1) Thesetof leaf macrosis defined as thesetof all hierarchy 
nodes for which the conesponding sub-circuit can be verified as one piece (macros F, G, 
H). (2) All remaining macros (A,B, C, D, E) farm thesetof super-macros which campose 
the complete design in terms of the set of leaf macros. Functional verification is applied 
to confirm the correctness of this composition and to check the consistency between all 
macro assertions. 

The basic idea of hierarchical verification is to reduce the complexity of the verification 
task by excluding instances of sub-circuits from the verification of the calling super-macro. 
The circuits of the excluded sub-macros are removed from the hierarchical design descrip­
tion and replaced by black boxcs. For example, when super-macro C of the circuit in 
figure 5.1c is being verified, leaf macros F, G and H are black-boxed. 
The hierarchical verification is controlled by a skeleton which defines all macros for which 
Verity is actually applied. The complete comparison of two design representations rf-'­
quires an identical verification skeleton on bath sides. The verification skeleton shown in 
figure 5.1a consistsof two super-macros (A,C) and the three leaf macros (F,G,H). The 
resulting five verification tasks for Verity are illustrated in figure 5.1b through figure S.ld. 
When verifying a super-macro by black-boxing sub-macros, the following verification steps 
are performed to ensure completeness: 

• All inputs of sub-macros are considered as verification outputs which are, in addition 
to all primary outputs, functionally compared between the two representations. 

• Sub-macro outputs are considered as verification inputs which are driven by inde­
pendent variables, common for the two design representations. 

• Verification constraints asserted at sub-macro inputs are tested on the super-macro 
level. Since the sub-macros are verified only with respect to those constraints, their 
test on the higher level effectively validates this assumption. 

• Assertions at sub-macro outputs are used to constrain the input space for super­
macro verification. The correctnessof these assertions is confirmed during sub-macro 
verifi cation. 

The verification view of a partienlar super-macro J11, which calls two instances, /1 and 1'2, 
of sub-macro M2, is given in Figure 5.2. Figure 5.2(b) shows the corresponding control 
files for Ml and M2 which describes the verification tasks to be performed by Verity. 
Each control file contains the port definition, which is common to all representations of a 
partienlar macro, and other details specific to the representation. For MI, these details 
include the black-boxing directive for bath instauces of macro M2, a constraint for the 
possible input values, and a test on the outputs. The input eaustraint describes the care~ 
set for verification, which in this specific example includes all input patterns with at least 



(a) 

(b) 

F 

t Hierarchy Verification 
( Superrnacros) 

Golden Verification Line 

! Leaf-macro Verification 

(c) 

F 

(t Hierarchy nodes for which VERITY is applied 

Q Hierarchy nodes which are flattened 

• Hierarchy nodes which are black-boxed 

Figure ,5,1: Hierarchy example: (a) verification skeleton, (b-d) set of result­
ing verification tasks. 
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(a) 

(b) 

Submacro rnpuiS beoollk: 

verificatJOn outputs 

rnputs 

?!.!ODULE Ml. 
!NPlJT A, B. C; 

OUTPUT D, E, F; 

IMPLEMENTATION lmpl Ml; 

DIRECTIVES 
BLACKBOX Ml(ll,l2); 

ASSERTAl :=A I BIC; 

TEST Tl:= Dl ElF. 
END; 
MODEL MI (FILE= "mLspice"): 

END: 
END; 

Submacro outputs become 

vmfication Îll.puts 

MODULE M2; 
lt-;PL"T 0, P; 

OL"TPL"T Q, R; 
!MPLEMENTATION lmpl M2, 

DIRECTIVES 
ASSERT A2 := 0 I AP; 
TEST T2:=(Q&AR)I(AQ&R); 

END, 
MODEL M2 (FILE= "m2.spice"), 

E:-.ID; 

END; 

Figure 5.2: Verification of super-macro Ml where two instances of sub­
macros M2 are black-boxed: (a) hierarchy structure, (b) cor­
Tesponding control files. 

one input having a logica] value of 1. Output tests are checked for tautology. The control 
file for M2 is used in a similar way. 
The hierarchical verification of the super-macro consists of two tasks: 

1. the verification of sub-macro lv/2 proves the equivalence of the various implementa­
tions of that macro with respect to the input constraint A2. This includes the test 
for functional equivalence of outputs Q and R and the validation of test 1'2. 

2. macro Ml is verified with the two instauces of M2 black-boxed. The black-boxing 
imposes four additional equivalence tests for sub-macro inputs /1.0, Il.P and /2.0, 
12.P ofinstances l1 and /2, respectively. Further, the sub-macro outputs ll.Q, Il.R, 
12.Q, and !2.R are treated as independent verification inputs, constrained by the 
test expressions /1.1'2 and /2.1'2. 

As already defined, the set of leaf macros consists of all of the sub-circuits of the design 
hierarchy which can be verified as one unit. Excluding sequentia! circuit parts, such 
as latches, these leaf macros are :flattened. Thus no restrictions are imposed on their 
hierarchical description. After :flattening, Verity extracts the Boolean function of tlw 



outputs for both design representations and compares them with respect to the input 
constraints. Sequentia! circuit elements need to be excluded from the macro verification 
process. They have to be black boxed and conesponding instauces must be matebed 
between the design representations being compared. This requires that both designs have 
the same number of registers and use identic.al state encoding. The goal of the work 
described in this thesis is to extend Verity in such a way that sequentialleaf macro circuits 
can be verified. The restrietion of sequentia! verification to leaf macro cells in combination 
with a hierarchical verification approach reduces the complexity of the verification task 
and makes it possible to use the techniques described in chapter 3 in a practical design 
environment. 

5.2 Verification of Sequentia! Leaf-Macros 

In this section, we show how the sequentia! verification techniques discussed in chapter 3 
can be used to verify sequentia! leaf macro circuits. To simplify the discussion and to 
focus on the main idea of sequentia! leaf macro verification, a simple gate-level circuit in­
stead of a transistor-level circuit is used as a practical example. However, the verification 
procedure described here reflects the fact that Verity specifically addresses transistor-level 
verification. 

The application of Verity to transistor-level designs proceeds in two steps. First, a gen­
eral path based extraction algorithm is used to extract a functionally equivalent gate-level 
network from the transistor design. Second, the verification step proves the correct im­
plementation of the circuit against a given specification. The extraction of the gate-level 
network is based on Junctional nets in the transistor circuit. These nets include all primary 
inputs, primary outputs and nets which control gates of MOS transistors. The extraction 
procedure assigns two Boolean functions J1 and J0 to each functional net. For a primary 
input, both polarities of the conesponding input variabie are assigned to J1 and J0 (e.g. 
a 1 = a, a0 = ä). For primary outputs and internal nets, the ON sets of P and j 0 describe 
the set of input patterns for which the net is driven to VDD and GROUND, respectively. 
In other words, J1 (Xi) = 1 means that there is a path ofinterconnected transistors from 
that net to VDD such that all transistors are conducting if pattern Xi is applied at the 
circuit inputs. In a similar manner, j 0 (Xi) 1 denotes some path to GROUND. The 
verification step compares P and J0 of each output against the specified functions F 1 and 
F 0

• In addition to the comparison of the circuit outputs, a set of consistency checkscan 
be formulated for each functional net. For example the intersection of P and j 0 detects 
collisions where the net is driven simultaneously to VDD and GROUND. Similarly, the 
union of both functions specifies a condition for which a net is floating. 
As a practical example, we consider the modulo 8 counter circuit described in section 2.2. 
This circuit has three state-bits so, s1 and s2. The subscripts A and B are used to dis­
tinguish between the implemented and the specified design, respectively. The two driving 
functions of the most significant state bit 83 are 

j l - ( 1 1 ) ' 1 - 8 0 1\ 8 1 EB s2 A A A (5.1) 

(5.2) 
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The conesponding specified functions F 1 and F 0 are defined as: 

( 5.:3) 

( 5.4) 

The functional equivalence of j1 against F 1 is established by a call to the function 
bdd_seq_equal. This function accepts two BDD arguments f and g and returns a Boolean 
value determining the equivalence of its arguments. lt can be used for both the combina­
torial and the sequentia} equivalence test. The combinatorial equivalence test is covered 
by the macro BDD_EQUALP (f,g) which perfarms a simple pointer equivalence check in 
order to find out if the BDDs f and g are canonical. For the sequentia} verification case, 
the logica} xor of f and g is created. The state variables are extracted recursively from 
the output function and their conesponding next-state functions. lf no state variables are 
found combinatorial verification is applicable and we can safely return false. The state 
variables are used to construct the next-state relation and the initia} state of the circuit. 
The bdd_bfs_traversalfunction computes the set ofreachable states and determines at each 
iteration if the product function jl EB F 1 produces a logica} 0. 

function bdd_.seq_equal (f,g: BDD): Boolean 
BDD out, next, init, s; 

if BDD_EQUALP(f,g) 
return true; 

el se 
out := bdd_xor (f,g); 
s := bdd_extracLstate_variable.s (output); 
if (BDD_ VOlD_P (s)) return false; 
next := bdd_nexL.state_re/ation (s); 
init := bdd_geLiniL.state (s); 
return bdd_bf.s_traver.sal (s,next,init,out); 

eudif 

Algorithm .5.1: BDD function for the functional equivalence test ofBDDs containing 
state variables. 

Verity's extraction procedure will perform a call to the bdd_seq_equal function for every 
output comparison or consistency check. During each call, a different subset of the STG 
of the product machine is traversed, depending on the state variables in the two argument 
BDDs. The bdd_bfs_traversal function uses the improved relational product algorithm de­
scribed in section 3.4.2 to perform the necessary image computations. This algor:ithm uses 
aresult cache to imprave its performance. In genera}, it is not necessary to clean the result 
cache after each fixed point computation. In fact, it is better to keep the results and use 
them in consecutive computations. We observed a significant caching across different calls 
to the bdd_rcl_prod function. For example, when verifying the modulo 8 counter example, 
the top-level of the bdd_rel_prod function was called 125 times. It was possible to return 
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the correct result in 56 times ( 46%) directly from the top-level. 

The extraction of sequentia} loops in transistor-level circuits bas not been implemented 
yet. The appendices shows some preliminary verification results obtained from gate-level 
circuits. Appendix A contains the report file generated by Verity for the verification of the 
modulo 8 counter example described in section 2.2. Appendix B shows the conesponding 
control file. Appendices C and D contain the verification results for an 11-bit linear­
feedback shift-register. 

5.2.1 Error Diagnosis for Sequentia} Circuits 

A forma} verification tooi which just verifies that an implemented design matches a given 
correct specification is not very useful in a practical design environment. From a usage 
point of view, designers are primarily interested in locating and correcting possible design 
errors. Thus a forn1al verification tool should provide the user with additional information 
in case of a misrompare between two designs. For combinatorial circuits this information 
consists of a set of counter examples in the form of input patterns for the erroneous out­
puts. For sequentia] circuits, the information consists of a complete error pattern trace, 
i.e., a set of error patterns specifying the values of primary inputs and state variables for 
each particular time frame from the initia} state to the state where the misrompare occurs. 

The algorithm to generate a sequentia} error trace proreeds as follows. The equivalence of 
two BDDs f and g containing state variables can he established by a call to the function 
bdd_seq_equal as described in section 5.2. This function will perform a forward traversal 
computation to calculate the set of reachable states. The state set Sk(V) which contains 
exactly the states reaebabie from the initia} state s0 , in k transitions or less, is stored at 
each iteration. The forward traversal stops whenever a miscompare state is reached. Let 
us assume that a misrompare state Sk is reached in the kth time step. In that case, a 
backward traversal computation starting from Sk can be used to report an error trace. 
The backward traversal iteratively computes a sequence of minterms (Sk-I,···, s0 ) such 
that sk-1 is reaebabie from sk-2 in one transition. To assure that s; is in S,(V) an arbi­
trary minterm s; contained in the intersection of the forward and the backward computed 
state set for that particular time frame is selected. The obtained sequence of minterms 
( so, · · ·, Sk-1) specifies an error trace leading to the miscampare state Sk. 

The algorithm described above is currently being implemented in the sequentia} BDD 
package described in section 2.3.2. 
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Chapter 6 

Conclusions and Future 
Directions 

The main subject of this thesis is the development of automatic algorithms for the ver­
ification of synchronous sequentia} circuits. Several state enumeration based verification 
algorithms have been discussed in chapter 3. Experimental results indicated that the 
relational product metbod developed by Burch, Clarke et al. [4] perforn1ed better than 
Touati's [19] image computation algorithm. Additional improvements on the relational 
product metbod have been described. 

Experimental results with the KEY benchmark circuit demonstrated the benefits of par­
titioned next-state relations and of recombining individual portions of the component 
next-state relations. The evaluation also indicated that state enumeration techniques can 
be used to verify synchronous circuits with an extremely large number of states. 

lt bas also been shown how state enumeration based techniques can be used within Verity 
to verify gate-level sequentialleaf-macro circuits. In addition, an algorithm for the genera­
tion of a sequentia} error trace in case of a verification failure bas been described. Finally, 
a sequentia} BDD package bas been implemented as an extension to the BDD package 
mentioned in section 2.3.1. 

There are several questions that would benefit from future research. The first is the ex­
traction of sequentia} loops in transistor-level circuits. This bas not been implemented 
yet. As a result, it remains an open question how the algorithms discussed in this thesis 
perfarm on transistor-level circuits. A question of partienlar interest is the size of the 
transistor-level circuits that could be verified. 

Another problem is finding automatic methods for determing efficient orders in which 
to process and combine parts of the next-state relation. A common problem of BDD­
based verification methods is that a good variabie ordering must be found. The problem 
bere is that an ordering which minimizes the size of the BDD representing the next-state 
relation does not necessarily lead to an ordering which is good for the representation of 
the set of reached states. Ordering strategies for BDDs containing state variables have 
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been proposed by several authors. Touati [19] suggests an ordering henristic based on 
minhuizing the cumulative variabie support of the latches. Jeong [9] describes an ordering 
algorithm based on the algebraic structure of the circuit. A recent paper addresses the 
problem of obtaining good variables orderings for the BDD representation of a system 
of interacting FSMs [1]. A general disadvantage of these approaches is that they are 
application specific, i.e., there is no henristic which always gives good results. We intend 
to adapt Rudell's sifting algorithm for dynamic variabie ordering [18] in such a way that 
the invariant that corresponding next and present-state variables are created in pairs is 
not violated. 
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Appendix A 

Report file modulo-8 counter 

This appendix shows the report file generated by VERITY for the verification of the modulo­
S counter example described in section 2.2. 

+------------------------------------------------------+ 
I Verity 3.1 (C) Copyright IBM Corporation, 1993, 1994 I 
+------------------------------------------------------+ 

Customized version: TEST 

Veri:fication results tor design "count3" run on Fri Sep 30 09:17:52 1994 

Assertien file tor golden model 
Version of golden model 
Assertion file tor verified model 
Version of verified model 

./count3.verity 
VIM 
./count3.verity 
BLA2 

count3, BLA2: Correct outputs (0-function) 

00 
01 
02 

count3, BLA2: Correct outputs (1-function) 

00 
01 
02 

Verification summary of 
against 

Golden Model 
Golden Version 

Number of Nets 
Number of Switches 

count3 
count3 

count3 
VIM 
4 
0 

I BLA2 
I VIM 



Number of Assertions 
Number of Tests 

Compare Model 
Compare Version 

Number of Nets 
Number of Switches 
Number of Assertions 
Number of Tests 

0 
0 

count3 
BLA2 
4 
0 

0 
0 

Results of comparison between outputs/cutpoints performed 
Total number of comparisons 6 
Successful 
Failed 

Results of tests performed 
Total number of tests 
Successful 
Failed 

Results of consistency checks 
Total number of checks 
Successful 
Failed 

Resulting path statistics 
Total number of paths 
Number of false paths 
Number of true paths 

Resulting path statistics 
Total number of paths 
Number of false paths 
Number of true 

Total memory used 
Total CPU seconds 

paths 

Verity Return Code: 0 

for 

for 

6 
0 

0 
0 

0 

performed 
12 
12 
0 

design "count3", 
6 
0 
6 

design "count3", 
6 
0 
6 

832 KBytes 
10.7 s 
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Appendix B 

Control file modulo-S counter 

This appendix shows the control file specifying the specification and the implementation of the 
modulo-8 counter example described in section 2.2. 

MODULE count3; 

INPUT IN; 
OUTPUT 00,01, 02; 

BEGIN 
IMPLEMENTATION VIM count3 (MER.GE="YES"); 

EXTR.ACTOR. "statie. chk"; 

INPUT IN; 
OUTPUT 00,01,02; 

DIR.ECTIVES 
BEGIN 

ORDERING (00,01,02)=(IN); 
END; 

SPECIFICATION 
BEGIN 

DO := (~00[-1]); 

01 := 00(-1] tt 01(-1]; 
02 := (00[-1] t 01[-1]) tt 02[-1]; 

END; 
END; 

IMPLEMENTATION BLA2 count3; 
EXTR.ACTOR. "statie. chk"; 

INPUT IN; 
OUTPUT 00,01,02; 

SPECIFICA TI ON 
BEGIN 

4.5 



oo := <-oo[-1]); 
01 := 00[-1] t& 01[-1]; 
02 := (00[-1] & 01[-1]) && 02[-1]; 

END; 
END; 

END; 
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Appendix C 

Report file 11-bit linear-feedback 
shift-register. 

This appendix shows the report file generated by VERITY for the verification of an 11-bit linear­
feedback shift-register. Appendix D contains the conesponding control file. 

+------------------------------------------------------+ 
I Verity 3.1 (C) Copyright IBM Corporation, 1993, 1994 I 
+------------------------------------------------------+ 

Customized version: TEST 

Verification results for design "lfsr11" run on Fri Oct 14 23:16:27 1994 

Assertien file for golden model 
Version of golden model 
Assertien file for verified model 
Version of verified model 

.llfsr11.verity 
VIM 
.llfsr11.verity 
BLA2 

lfsr11, BLA2: Correct outputs (0-function) 

011 

lfsr11, BLA2: Correct outputs (1-function) 

011 

Verification summary of 
against 

Golden Model 
Golden Version 

Number of Nets 
Number of Switches 
Number of Assertiens 
Number of Tests 

Compare Model 

lfsr11 I BLA2 
lfsr11 I VIM 

lfsr11 
VIM 
12 
0 
0 

0 

lfsr11 
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Compare Version BLA2 
Nwnber of Nets 12 
Nwnber of Switches 0 
Nwnber of Assertions 0 
Nwnber of Tests 0 

Results of comparison between outputs/cutpoints performed 
Total number of comparisons 2 
Successful 2 
Failed 0 

Results of tests performed 
Total nwnber of tests 40 
Successful 40 
Failed 0 

Results of consistency checks performed 
Total nwnber of checks 64 
Successful 
Failed 

64 
0 

Resulting path statistics 
Total nwnber of paths 
Nwnber of false paths 
Nwnber of true paths 

for design "lfsr11", version "VIM": 
22 

Resulting path statistics 
Total nwnber of paths 
Nwnber of false paths 
Nwnber of true paths 

Total memory used 
Total CPU seconds 

Verity Return Code: 0 

0 
22 

for design "lfsrll", version "BLA2": 
22 
0 
22 

3456 KBytes 
5707.25 s 
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Appendix D 

Control file 11-bit linear-feedback 
shift-register 

This appendix shows the control file specifying the specification and the implementation of the 
11-bit linear-feedback shift-register. Linear-feedback shift-register circuits are frequently used for 
internal pseudorandom test pattern generation. 

MODULE ltsril; 
I* 11 bit lfsr pattern generator: x~11 + x-2 + 1 *I 

INPUT IN; 
OUTPUT 011; 

BEGIN 
IMPLEMENTATIDN VIM ltsril (MERGE="YES"); 

EXTRACTDR "static.chk"; 

INPUT IN; 
NET 01,02,03,04,05,06,07,08,09,010; 
OUTPUT 011; 

DIRECTIVES 
BEGIN 

ORDERING (01,02,03,04,05,06,07,08,09,010,011) 
=(IN,01,02,03,04,05,06,07,08,09,010,011); 

END; 

SPECIFICATION 
BEGIN 

01[0] := 1; 02[0] := 1; 03 (0] := 1; 07 [0] 
04[0] := 1; 05[0] := 1; 06[0] := 1; 08[0] 
09[0] .- 1; 010 [0] := 1; 011 [O] .- 1; 
01 .- 09 [ -1] &:& 011 [ -1]; 
02 := 01[-1]; 
03 := 02[-1]; 
04 : = 03 [ -1]; 
05 .- 04[-1]; 
06 .- 05[-1]; 
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07 := 06[-1]; 
08 := 07[-1]; 
09 := 08[-1]; 
010 := 09[-1]; 
011 :=010[-1]; 

END; 
END; 

IMPLEMENTATION BLA2 lfsr11; 
EXTRACTOR "statie. chk"; 

INPUT IN; 
NET 01,02,03,04,05,06,07,08,09,010; 
OUTPUT 011; 

SPECIFICATION 
BEGIN 

01 [0] := 1; 02[0] .- 1; 03[0] 
04[0] .- 1; 05[0] := 1; 06[0] 
09[0] := 1; 010[0] .- 1; 011[0] 
01 := 09[-1] && 011[-1]; 
02 :: 01[-1]; 
03 .- 02[-1]; 
04 := 03[-1]; 
05 := 04[-1]; 
06 := 05[-1]; 
07 := 06[-1]; 
08 := 07[-1]; 
09 : = 08 [ -1]; 
010 : = 09 [ -1] ; 
011 := 010[-1]; 

END; 
END; 

END; 

.-

.-
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1 

; 

; 

; 

07[0] := 1; 
08[0] := 1; 


