
 Eindhoven University of Technology

MASTER

Applying integer programming in high level synthesis scheduling
study on where and how lP can be used in the process of scheduling Data Flow Graphs

van Leeuwen, J.C.

Award date:
1995

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/f37f52ff-d6c6-453a-b70c-8549da1686dc

t(Ïj Eindhoven University of Technology
Department of Electrical Engineering
Design Automation Section (ES)

Applying Integer Programming
in High Level Synthesis Scheduling

Study on where and how lP can be used
in the processof scheduling Data Flow Graphs

By J.C. van Leeuwen
Master Thesis

performed: October 1993- May 1995
supervised by ir. A.H. Timmer

The Eindhoven University of Technology is not responsible for the contentsof training and thesis reports

I

Abstract

A silicon compiler is a tool for the automated design of integrated circuits (I Cs). It
generates the layout of an IC starting from an algorithmic behavioural description
provided by the designer.
High Level Synthesis is the part from a silicon compiler that generates an IC de­
scription in terms of modules, registers, interconneet and a controller description.
Scheduling is a major part of high level synthesis that decides in which cycle step
operations startand finish their execution while holding designer constraints as
the number of resources or the maximum execution time.
Scheduling is in general a NP-complete problem. Therefore all solving methods
that find the optimal scheduling salution are not guaranteed to find the optimum
within acceptable computation time.
One of the optimal methods is the Integer Linear Programming (lP) approach to
the scheduling problem. In this approach the scheduling problem is described as
a set of linear inequalities. A linear (object) function has to be optimised keeping
linear constraints. All variables must have an integer value in the solution.
Recent research showed that applying the node packing (NP) model to the lP
scheduling problem can lead toshorter run times.
This IP:NP model does notlead to all integer solutions in general cases. A branch­
and-bound processis necessary to come to an integer solution. Especially in cases
of detecting infeasibilities in problems this is a very inefficient process. So it is
interesting to extend the IP:NP model as far as possible to come to an all integer
solution.
This thesis shows the process to handle the IP:NP model as efficient as possible.
It also describes some possible extensions to the model. In general the number of
possible additions to complete the model will grow exponential with the size of
the problem.
This thesis shows that the application of the IP:NP model will be of limited use
to the scheduling problem due to its incompleteness or the amount of extra con­
straints.
Still the extended IP:NP model can be applied in certain steps of the scheduling
process. Mostly as support tool in special cases for more run time efficient methods.

Contents

1 Introduetion

2 High Level Synthesis
2.1 The NEAT System

3 Scheduling
3.1 Scheduling Constraints
3.2 ASAP and ALAP scheduling:

4 Integer Linear Programming
4.1 The Node Packing Model
4.2 Odd Holes

5 Integer Programming Scheduling
5.1 Time vs Resource Constrained IP Scheduling
5.2 A Competetive Exact Scheduling Scheme

6 lP Model Optimisation
6.1 Introduetion
6.2 The Applied Node Packing Model
6.3 Constraint Generation

7 Model Enhancement Constraints
7.1 Clique Maximisation
7.2 Indirect Preeedendes
7.3 Violated Clique Constraints .
7.4 Odd Holes Constraints ..

8 Applied Optimisation Results
8.1 Implementation of Optimisations
8.2 Evaluation
8.3 Other Applications .
8.4 Future Work

ii

1

4
5

9
10
11

13
14
15

17
18
19

20
20
21
23

25
25
26
27
30

33
33
34
36
37

9 Con cl usions 39

A Standard Model Test Results 44

B Violated Constraints Search Results 46

c Relaxation Test Results 47

D Module Selection Test Results 48

E Module Assignrnent Test Results 50

lll

Chapter 1

Introduetion

At the Design Automation Section of the Eindhoven University of Technology
software tools are being developed for the automated design of Integrated Circuits
(ICs). A Silicon Compiler is one of these tools. It generates the layout of a chip
starting from an algorithmic behavioural description, provided by the designer.
The synthesis process of the silicon compiler consists of three main parts (see
figure 1.1).

-High level synthesis translates the behavioural description into a data path (a
network of modules (like adders and multiplierst registers and interconnect) and
a controller description. This is a translation with given goals and constraints (like
cycle time, area, power consumption etc.).
- Logic synthesis translates the controller description into a gate network and can
optimise the data path.
- Layout synthesis generates the integrated circuit layout from the gate network
supplied after the previous steps.
See [Mich92] for a more thorough approach to these topics.

The assignment that this master thesis is based on is a small part of high level
synthesis. Chapter 2 consists of a brief introduetion to high level synthesis and
a description of the high level synthesis development environment NEAT. The
research for my master degree assignment is performed in that environment.

The subject of this report is scheduling (described in chapter 3). Scheduling is a
main part of high level synthesis. A scheduler assigns cycle steps to each opera ti on
of the behavioural description without vialating given constraints: the preeedenee
relation between 2 operations is the order of their execution. Resource constraints

1

Functional
Description

Goals and
Constraints

High Level Synthesis

Data Controller
Path I

1
Description

w t

I Logic Synthesis . l ______________________ J ____________________ j
Gate Netwerk

,---------- ---------------------------,

Layout Synthesis

Layout

Figure 1.1: Silicon Compiler Overview

restriet the number of modules which are used to implement all operations. Time
constraints restriet the number of cycle steps in which all operations must be exe­
cuted.

My assignment concerned the research towards the possible use of Integer Linear
Programming (lP) in the high level synthesis scheduling process. This lP schedul­
ing method states the scheduling problem and its constraints as a set of linear
inequalities. The salution of the set of linear inequalities is also the salution of the
scheduling problem. All operations are assigned to specific cycle steps at the time
the IP-solver is finished.
The research aims to check the claims that are made about the efficiency of lP in
the scheduling process. These efficiency claims are made a bout run time efficiency
(i.e. the computing time it takes to get a schedule) and the way the scheduling
problem is modeled in this salution method. The lP salutiontoa schedule problem
is optimal but it can take unacceptable time to compute this solution. Therefore it
is tried to model the lP scheduling problem in a way that is better suited to certain
properties of scheduling. The model that is used hereis the Node Packing (NP)
model. A sequence of processing steps is suggested to make most use of the NP

2

model, to try to keep computation time of the lP schedule acceptable, described in
chapter 6. Apart from research on the already existing method of lP scheduling
this thesis contains possible enhancements to that model, they are described in
chapter 7. In the implementation of the lP scheduler only basic operations and
modules are implemented. The implementation is described and evaluated in
chapter 8.
The goal of this thesis is to evaluate the practical future use of lP in the high
level synthesis scheduling traject. Conclusions are drawn after the research that
has been done on that subject. Some possibilities have beenleftopen for further
research, these possibilities are stated insection 8.4.

3

Chapter 2

High Level Synthesis

High level synthesis is the transition between the behavioural domain and the
structural domain of a design. The behavioural domain gives a functional descrip­
tion of the behaviour of the IC. The structural domain gives a description in terms
of functional modules. There is also the physical domain that describes the design
of the IC in termsof its hardware components. High Level is an abstraction level
of a domain. Each domain is divided in levels of decreasing abstraction: System-,
High-, Logic- and Circuit level. A lower abstraction level gives a more detailed
IC description in the same domain. High level synthesis is the process where an
algorithmic description of anICis translated into a digital network which perfarms
the functionality of the algorithmic specification. In figure 2.1 this processis put in
the context of the complete process of automated IC creation. The domains form
the axes of the Y-chart and the abstraction levels are the nested shells. The bold
arrow shows the high level synthesis translation.

A high-level synthesis system should be able to accept a high-level specification
language and some user constraints. In high level synthesis the algorithmic be­
haviour is represented by a data flow graph (DFG) (see fig 2.2)

The specification is translated using some module library and must regard some
specific objectives, like minimising area or power dissipation. An introduetion to
high level synthesis can be found in [Arts91] and [McFa90].

4

Behavioural Domain Structural Domain
system level

System Spec. CPU, Memory
Algorithm ALU, Reg., Mux., Bus, Controller

Boolean Expressions Gate, FlipFlop

Differential Equations

/
Rectangle, Polygon Group

Standard Cell, Subcell

Macro Cell

Chip, Board

Physical Domain

Figure 2.1: Y-chart Transitionsof High Level Synthesis

2.1 The NEAT System

In high level synthesis several steps are performed subsequently, to achieve the
desired result. At the Design Automation Section (ES) of the Eindhoven University
of Technology these steps are performed on the NEAT database using the available
functions from the NEAT system. The acronym NEAT is derived from New Eind­
hoven Architectural synthesis Tooibox and is the successar of the EASY system
as described in [Stok91]. In the first step of high level synthesis, the behavioural
description of the algorithm which has to be implemented is translated into an
ASCIS DFG [Eijn91]. This graph combined with the goals and constraints, can be
processed by allpartsof the NEAT system.

One of the inputs for the high level synthesis process is a set of module-types
called a "library". The information which module types are available and what
operations they can support is also stared in a database file of the NEAT system.
At an abstract level the ASO-file, in which the contents of the NEAT database are
stored, contains a collection of graphs belonging to three distinct categories:

• Data Flow Graphs

• Network Graphs

• Control Graphs

5

process exarnple(b, c)
in boolean b[B];
out boolean c[B];
{

a = 1;
while (a < 3)
do {

a++;
b = b + a;

c = b;

Figure 2.2: An example of an algorithm with corresponding DFG

The network and control graphs will both be constructed and added to the NEAT
database during the high level synthesis process. The network graph contains
the data path consisting of modules that implement the operations in the DFG,
registers to store intermediate data values and the interconnection units. The
control graph contains the controller description and in this description the control
flow is specified.

The NEAT system features a modular mechanism that makes it possible to split
the high level synthesis problem in several manageable parts. Those parts work
in a certain order (depending on the designer demands) on the samedatabase and
use the same predefined functions. Each part can be constructed and maintained
independent from the others. (See figure 2.3).

6

Preselector

Module Allocator

Scheduler

Figure 2.3: The NEAT System

A briefdescription of the modules:

• optimiser: Some optimisations can be applied to the initially created data flow
graph like dead code elimination, constant propagation, common subexpres­
sion elimination, in-line expansion of procedures, tree height reduction, loop
optimisation and memory access optimisations.

• preselector: From a certain library of module types, the preselector tries to
de termine a subset of module types that is optima! for the current DFG.

• module allo ca tor: The exact number of modules of each type that are needed
is determined.

• scheduler: The scheduler assigns a range of cycle steps to every operation
that occurs in the DFG. A cycle step is the fundamental sequencing unit in a
synchronous system.

7

• module binder: Assigns the operations in the DFG to modules.

• register allocator: The register allocator allocates the necessary registers to
hold intermediate data values.

• register binder: Assigns necessary registers to hold intermedia te data values.

• controller generator: Modules like registers, multiplexers and ALUs that can
perfarm a variety of actions are managed by the controller to perfarm the
right actions at the right moment.

• interconnector: The interconnections between all the resulting modules are
allocated by the interconnector. It also binds the data transfers and creates
the multiplexers that switch the right data values to the right nodes.

For more information about the NEAT system see [NEAT92].

8

Chapter 3

Scheduling

The process that decides when operations of the DFG startand finishtheir execution
is called scheduling. Scheduling is one of the major parts in high level synthesis.
During scheduling a trade-oH can be made between execution time and module
area. If an integrated circuit needs to perfarm fast (perform operations parallel)
it needs a large module area. If the IC can perfarm relatively slow (sequentia!
performance) it can be designed with much smaller module area. The relation
between time and area can be visualised by aso-called design space. The general
shape of a design space is fig 3.1. The bound is formed by the time-area curve.
Every salution above that curve is valid. A salution on the curve is desired.

module
area

General Design Space

execution
time

Figure 3.1: General DesignSpace

9

For fast schedules more resources will be needed to implement these schedules.
The goal of scheduling is to find the point in the designspace that best meets the
requirements of the designer.

The scheduling problem is in general a Non Deterministic Polynomial complete
(NP-complete) problem (see [Gare79]) (i.e. the computing time solving the problem
lengthens exponentially with the growing of the amount of parameters in the
computation). Therefore all solving methods that find the optimal salution are not
guaranteed to find that optimum within acceptable computation time. Simple and
special examples will perfarm excellent but in general there will be an exponential
rise in computation time when the number of variables increases.

Therefore two approaches for solving the scheduling problem are possible. The
first approach is to solve the problem with a methad that finds the optimal solution.
The disadvantage is inherent to the NP-complete nature of scheduling: finding the
optimal salution is in general not run time efficient.

The second approach is to apply a heuristic salution method. The solutions found
with this methad are however not guaranteed to be optima!. The process of finding
(near) optimal solutions using heuristics is in most cases much faster than using
the optimal salution methods. Compared to schedulers using the optimal salution
method, heuristic methods find a salution after computation time that is usually
acceptable in practice.

3.1 Scheduling Constraints

The designer can restriet the schedules which he considers to be valid. These
restrictions are often called schedule constraints. The constraints limit the search
space of the scheduler.

Some constraints that are used are:

Preeedenee eonstraints:
A data flow node can start its execution af ter all its predecessors have finished their
execution. The partial execution order is reflected by the preeedenee relations of
the DFG.

Time eonstraints:
The DFG has to be scheduled within a limited number of cycles, denoted by (Tmax).

10

This means for all operations vEV: end(v)5::Tmax1 with end(v) the time an operation
has finished its execution.

Resource constraints:
The number of resources that may be used are determined beforehand. Often
these resources are modules, but one mayalso constrain the number of registers,
multiplexers and interconnect.

Other constraints:
Other constraints that can be used are throughput, power dissipation or combina­
tions of several constraints. Combinations can lead to the situation that novalid
schedule exists.

The task of the scheduler can be described as to find the optimal schedule within
the design space, with respect to the goals and constraints given. The types of
schedule problems that schedulers are mostly based upon are:

Preeedenee constrained scheduling:
These schedule algorithms try to minimise the execution time while preserving
preeedenee constraints. Algorithms to solve preeedenee constrained scheduling
are known as ASAP or ALAP schedulers.

Resource constrained scheduling:
The schedule algorithm tries to minimise the execution time while preserving both
preeedenee and resource constraints.

Time constrained scheduling:
The schedule algorithm tries to minimise the area while preserving both preeedenee
and time constraints.

Feasible constrained scheduling
The schedule algorithm tries to find a schedule salution that fits a combination of
constraints (e.g. time and resource constraints) next to the preeedenee constraints.

3.2 ASAP and ALAP scheduling:

These methods are preeedenee constrained. As Soon As Possible (ASAP) and
As Late As Possible (ALAP) are often used because of their 0(n + e) complexity
(with n the number of operations and e the number of edges in the DFG) and

11

the information they give about a DFG. Both the ASAP and ALAP scheduler do
nottake any further constraints into account. They both genera te a schedule with
minimum execution time without looking at efficient use of hardware.

Let pred(v) = thesetof predecessors of operation v, succ(v) = thesetof successors.
d(vi) = delay of the fastest module type available that can execute operation vi.

For each v E V the ASAP schedule 'P(v) can be defined recursively as:

asap: V ----+IR:

asap(v) = {
0
maxv;Epred(v)asap(Vi) + d(vi)

if pred(v) = 0
otherwise

'P(v) = [asap(v), asap(v) + d(v)]

For each v E V the ALAP schedule 'P(v) can be defined recursively as:

alap: V ----+IR:

a lap(V) = { tm~x
mznv;Esucc(v)alap(vi) + d(vi)

'P(v) = [alap(v)- d(v),alap(v)]

if succ(v) = 0
otherwise

The ASAP and ALAP schedulers are usually run as an initiating procedure prior to
some other scheduling methad that does take more constraints into account. The
resulting [ASAP,ALAP] interval gives for each operation a lower bound (ASAP
value) and an upper bound (ALAP value). The operation has to be scheduled
within this interval. Other schedule methods as in section 5 and section 5.2 make
use of this initiating limitation.

12

Chapter 4

Integer Linear Programming

A linear programming (LP) problem is an optimising problem where a linear
(object) function has to be optimised keepinga number of linear constraints. In
practice many optimising problems demand integer values for their variables.
With that extra constraint on the LP problem, the problem has become an Integer
Linear Programming (lP) problem. An integer linear programming problem has
the following formulation:

MAX {w = ç~}

A~=Q

~>Q

Xj integer, jE IC {1,2,3, ... ,n} (4.1)

In (4.1) is ~ E Rn, ç E Rn, Q E Rm, A is a m x n matrix and I is the index set of
integer variables.

There are two obvious ways for solving an lP problem: the first is to search
the optimum by checking all possible combinations. This method is practically
not possible because the number of combinations grows exponentially with the
increasing number of variables. The second way is to solve the lP problem by
first dropping the integer demands called relaxation (i.e. it becomes a continuous
LP problem). For that problem the optimal salution can be found in polynomial
time, but it is in general cases not an all integer solution. lP solvers based on
the second approach often use the Branch-and-Bound method to come to an all
integer solution. Branching divides a continuous LP problem (with a non integer
solution) into 2 continuous LP subproblems by adding an inequality that restricts

13

a non integer variabie to besmaller or equal than its floor value or an inequality
restricting the variabie to begreater or equal than the ceiling value (i.e. these are the
dosest integer values). Then these subproblems are solved. This process continues
until the subproblems give an integer salution or find no solution. Bounds are
determined from subproblems to findan optima! salution and tostop the creation of
subproblems if the salution is not existing or already below a temporary optimum.
The Branch-and-Bound methad searches all possible integer solutions and the
efficiency of this search process is enlarged by the use of bounds. Theory of lP
problems can be found in [Garf72], [Hend91], [Ková80] and [Taha75].

4.1 The Node Packing Model

The Node Packing (NP model is introduced because structural properties of data
flow graph scheduling can be profitable in this model to obtain more run time
efficient solving of the problem.

According to [Nemh88] the general NP problem is defined as follows:
In a given graph G = (N, E) with N thesetof nodes and E thesetof edges. A node
packing or independent set in Gis a subset of nodes such that nopair in the subset
is joined by an edge. The node packing problem is to find a maximum packing.

In other words: find a maximum set N' c N such that for each edge e E E at most
one end node is in N' .
The node packing problem is NP-hard for general graphs, see [Gare79].

The most elementary node packing description is that from all edges of G one node
is in the packing.

V . bl { 1 the node n is chosen in the packing
ar·za es Xn O h . ot erw1se

lP Edge Formulation of Node Packing:

M AX L Xn .such that Xn + Xw :::; 1 (V{n,w}EE) (4.2)
nEN

The edge tormulation of node packing gives poor bounds on the search space of the
problem. The node packing problem can be transformed into a clique formulation.

14

A clique of Gis a subset of the nodes with the property that each pair of nodesin
that subset is linked by an edge. A packing contains no more than one node from
each clique of G. Maximal cliques are known to be possible integral facets for the
node packing problem. Facets are restrictions to the salution space.

The problem description now becomes:

Clique Formulation of Node Packing:

MAX 2: Xn such that 2: Xn:::; 1 for all Cliques C (4.3)
nEN nEG

This problem description provides a least as good and generally much tighter
bound on the problem since every edge is contained in some clique. There is a
linear inequality for each clique in the graph. Unfortunately the number of cliques
is possibly exponential. It is NP-hard todetermine all maximum cliques, soit can
not be expected to solve the problem exactly, but we can get an upper bound on its
optimal value by finding a salution that satisfies a subset of all clique inequalities.

4.2 Odd Holes

Other known possible facets are odd holes without cords. A hole in a graph is a
subset of nodes (of at least 4 nodes) such that the subgraph induced by the subset
is a cycle without chords. Without cords means that no 2 nodesof the subset can
share an edge that doesnotbelang to the cycle. A hole is said to be an odd hole if
it contains an odd number of nodes.
If Pis a node packing and thesetof nodes H farms an odd hole of size 2k + 1, then
IPnHI:::; k:

Odd Hole inequality:

2: Xn :::; k wher·e IHI = 2k + 1 (4.4)
nEH

The odd hole inequalities are satisfied by all incidence veetors (the nodes n c PnH)
of packings P. An interesting property connected to odd holes is that they cannot
be obtained from linear combinations of the clique inequalities and non-negativity

15

so they can be used to tighten the relaxation of the node packing model more to an
all integer solution.

Unfortunately the odd hole inequalities generally do not define facetsof the convex
hull of packings (i.e. the salution space of the problem). To obtain facets the odd
hole inequalities have to be lifted. Lifting is adding variables that are not in the
odd hole set H into the odd hole inequality. The coefficients O'n are as large as
possible while validity of the equation is preserved.

Lifted Odd Hole inequality:

O'n 2: 1 and O'n is integer.
L Xn + L O'nXn ::=; k where IHI = 2k + 1 (4.5)

nEH nf/;H

Figure 4.1 is an example of a graph representing an odd hole (as stated in formula
(4.4)) that can be lifted (according to formula (4.5)).

Figure 4.1: Odd Hole formation by nodes 1 to 5. Possible lifting with node 6 with
O'n = 5.

The total number of alllifted odd hole inequalities is possibly exponential. So the
finding of all of the lifted odd hole inequalities is in general cases not run time
efficient. Again the application of a subset of alllifted odd hole inequalities gives
an upperbound on the exact value of the solution.

16

Chapter 5

Integer Programming Scheduling

The set of scheduling algorithms contains not many optimal salution methods
because of their run time inefficiency. Beuristics give better run time results in
many practical cases. This does not mean that optimal salution methods should
not be the subject of research. They can very well be used as a basic approach that
can be refined with additional algorithms. In that way they become practically
useful. One of the optimal salution methods is scheduling using Integer Linear
Programming (lP).

The general idea behind the lP approach to scheduling is to describe the scheduling
problem as a set of linear inequalities. This set consists of the constraints which
the schedule is limited by and the object function that has to be optimised. Solving
the system of linear inequalities with an lP solver leads to an optimal salution but
not within a certain predictabie time limit because of the NP-complete character
of the scheduling problem. Soit is important to see that lP scheduling can only be
of practical use if special properties of high level synthesis scheduling are used in
the rnadeling to limit the complexity of the lP problem.

The scheduling problem is modeled as an assignment problem, where the vari­
ables represent a placement of DFG operations in 2-dimensional space. The 2-
dimensional space is defined by time (control steps) and area (functional mod­
ules). From the graph initially a variabie is generated for each possible scheduling
combination of operation, module (or module type in case of time constrained
scheduling) and execution cycle step.

A general lP solver is used to optimise the object function while preserving the
constraints. The lP solver tries to find a salution for the schedule by assigning

17

values to the variables that are feasible to alllinear equations. It is exactly known
through these variables which operation is scheduled in which cycle step onto
which module or module type. Thesetof linear inequalities of the lP tormulation
of the schedule problem consists of three kinds of constraints following the formu­
lations insection 6.2.

After the generation of the constraints according tothelP model for scheduling it
is solved as a standard lP problem. First the LP relaxation of the problem is solved.
If the salution is notall integer the branch-and-bound algorithm is used to achieve
that. Special models as node packing can be used to try to limit the necessary
branch-and-bound influence. In the following chapter the possibility of further
improvements through applying the node packing model to the lP scheduling
problem is described (chapter 6).

5.1 Time vs Resource Constrained lP Scheduling

The major difference between the resource and time constrained implementation
of lP scheduling is the way modules are handled. Resource constrained scheduling
uses modules as resources. Time constrained scheduling applies module types as
resources. This different approach to resources has consequences:
Resource constrained lP schedulers sametimes have short run times due to the
application of efficient models like node packing. Time constrained scheduling
cannot be modeled as a strict node packing problem because of the module con­
straints which do not represent cliques [Gebo91]. Therefore time constrained lP
schedulers are hardly very efficient, good models are not known for this scheduling
problem. It is clear that improvements have to be made befare it is possible to use
lP scheduling in practical cases and the time constrained version needs adaptations
if to be used at all. The test results (See Appendix A) from the lP scheduler support
these conclusions. The implementation of the resource constrained scheduler is
already extended with a procedure for reducing execution intervals of operations.
It gives the upper bound on the execution intervals and that makes the scheduler
feasible constrained (find the best fit) rather than resource constrained. In this fash­
ion the scheduler is modeled as pure node packing. In the resource constrained
version there is possibly still corruption of the model due to the object function that
is not according the node packing model. By finding the lower bound on necessary
resources this is transformed into a feasible scheduling problem that is certain to
be a node packing formulation.

18

5.2 A Competetive Exact Scheduling Scheme

The lP methad is not the only exact methad for scheduling. For example: the
branch-and-bound algorithm can also be used under types of schedulers that do
not apply integer programming. The taskof lP and additional rnadeling is pruning
the search space of the problem to reduce search time. In Binary Schedule Graph
(BSG) scheduling this can efficiently be taken care of by bipartite graph matching.
Many of the common high level synthesis systems schedule operations by assigning
their begin values directly to specific cycle steps. In [Timm95] it is proven that for
feasible scheduling (with time and resource constraints applied in the model) the
existence of a schedule can be decided more efficiently by finding a correct ordering
of the operations. A correct ordering means a linear ordering that corresponds to
a feasible schedule.

This leads to the following schedule approach: An ordering is imposed by matching
for each module type the operations with their Operation Execution Interval (OEI)
one-by-one to a specific Module Execution Interval (MEI). Edges that can not be
part of a complete matching are removed and the conesponding execution intervals
are reduced by this.

In the branch-and-bound process it is also interesting to trytostart the process with
the best suited varia bles. The use of bipartite graph matchings give the possibility
to find those bottlenecks in the problem. Analysis of the matchings is an effective
way of steering the process.
More on run time efficient branch-and-bound scheduling with use of bipartite
graph matching can be found in [Timm95].

The reason that BSG scheduling is introduced hereis that the processof solving the
scheduling problem can benefit from the properties of both the BSG- and lP-model
if they are applied in a concurrent way.

19

Chapter 6

lP Model Optimisation

6.1 Introduetion

In this chapter improvements are given on the lP model for resource constrained
scheduling. They are the result of exploitation of the node packing model and
using a structural approach toward the solving process. In [Timm94] it is shown
that the only possible efficient way to use the lP scheduling model is resource
constrained in combination with lower bound estimated time constraints. So the
total constraint set results in a feasible type of scheduling. With feasible scheduling
the goal is to get a fit salution for the set of constraints without further regard of
an object function.

In general scheduling cases the node packing modelleads toa fractional salution
of the lP relaxation. This imperfection raises the question whether rnadeling the
scheduling problem as an lP problem can result in run time efficiency improve­
ments at all. [Nemh92] introduces a standard procedure structure to solvenode
packing problems in the most efficient run time possible:

- Preprocessing: basic lP rnadeling (node packing constraints).

- Applied heuristics (if available).

- LP relaxation.

- Constraint generation: processing non integer variables.

- Branch-and-Bound.

20

The standard techniques in the procedure are the LP relaxation and branch-and­
bound process. They have already been described in the chapter 5. Beuristics are
not used in our model because the goal of the assignment was to test the value of
the optimal method of integer programming to scheduling. Constraint generation
considers the results of the relaxation and tries tobring that closer to the desired
all integer solution before applying the inefficient branch-and-bound process.

In practice the solving of an lP scheduling problem depends heavily on the branch­
and-bound process. It is therefore of importance that the model results in an as tight
as possible search space before the branch-and-bound is started. In this chapter
the features in the suggested procedure and their application tothelP scheduling
problem are described.
The node packing model is the basis for this process.

6.2 The Applied Node Packing Model

Recent research [Gebo92] showed that applying the node packing model [Nemh88]
to the lP scheduling problem (IP:NP) sometimes can lead to short run times. The
node packing model is introduced through an adaptation of the linear inequality
formulation. The constraints are all clique inequalities. In [Gebo92] proof is given
that this tormulation compared to earlier formulations leads to a tighter solution
space forthelP solver. According to [Gebo92] solving the preeedenee constraints
together with module- and operation assignment constraints solves the following
problem: It produces a schedule, by simultaniously mapping each code operation
toa time cycle (maintaining the partial order among operations), and binding each
operation toa functional module.

In this section the feasible constrained lP scheduling tormulation is presented. The
following notations are used:

• A data flow graph D FG is represented by a tuple (V, E), where V is thesetof
nodes (operations) and E thesetof directed edges representing dependendes
between operations.

• Cis the list of available cycles, c E C.

• EI (v) is the list of cycles (execution interval) in which operation v E V could
be performed.

21

• Lis thesetof module types, n(l) E N\{0} is the number and ar·ea(l) the area
of modules of type l E L.

• Mis thesetof available modules, mE M.

• Ç(v) is the mapping from an operation v E V toa module type in the set L.

• tt(v) is thesetof modules that operation v E V ean be mapped on.

• d(v) is the delay of an operation v E V mapped on module type Ç(v) E L.

• di i(v) is the data introduetion interval of an operation v E V mapped on
module type Ç(v) E L (the dii is the minimal number of eycles required
between the data arrivals for two exeeutions).

• x(v, c, m) = 1 (x(v, c, m) E {0, 1}) represents that operation v E V, binded to
module m E M startsits exeeution in eycle c E C.

Fortherest of this thesis the applied module library is trivia!, i.e. operations ean be
assigned to only one module type. The model is applieable on non-trivia! module
libraries as well.

The IP:NP seheduling eonstraints are:

The operation assignment eonstraints ensure that the start of eaeh operation is
assigned to one eycle step and to one module.

VvEV : I: I: x(v, c, m) = 1, Vcfi.EI(v) : x(v, c, m) = 0. (6.1)
cEEI(v) mE~-t(v)

The module eonstraints prevent that more than one operation is assigned to a
module in the same eycle step.

c+dii(v)-1

VmEMVcEC: I: I: x(v,s,m):Sl. (6.2)
vEVImE~-t(v) s=c

The preeedenee eonstraints ensure that the preeedenee relations between opera­
tions in the DFG are maintained:

\l(v,w)EE\IcEEI(v)nEI(w) :

I: I: x(w,s,m)+ I: L:x(v,s,m):Sl. (6.3)
mE~-t(w) s:S:c+d(v)-1 mE~-t(v) c:S:s

22

The application of node packing can be modeled by a node packing graph defined
by the constraints: nodes for all variables xi E {0, 1 L and edges for pairs of
variables that can nothave value 1 at the same time. The gainis found through
cliques inthenode packing graph that form possible facetsof the salution space of
the problem.

An example of a node packing graph is shown in fig 6.1. The edges in the
graphare formed using the equations of this section, they are all illegal scheduling
combinations. That kind of graph is called a conflict-graph.

(a) (b)

Figure 6.1: Node packing graph for 2 operations with preeedenee relation: a befere
b, showing in bold a clique facet for cycle step c=2 in (a) and c=3 in (b) of inequality
6.3

6.3 Constraint Generation

Constraint generation is the step in the procedure that reviews the LP:NP relaxation
of the standard eenstraint set that is generated out of a given problem in the first
steps. In most cases the LP:NP relaxation results in a not-all-integer solution. If
the relaxation is not all integer it means that the search polyhedron is not tight
enough. It can betried to formulate extra constraints within the model to eenstrain
the variables that are not integer. This should lead to a IP:NP formulation with
morefacetsof the salution space of the problem. The search is for constraffits that
can describe such facets, like: maximum cliques or odd holes without cords.

23

The constraints have to be built with the non integer variables that were violated
in the relaxation of the problem. Then those constraints could be added to the
original constraint list. This would again restriet the search polyhedron. The effort
is to find so many violated constraints that the search polyhedron is restricted to
the integer salution which is implied by the description with all constraints of
facets. If this can not be achieved it is already satisfactory if the search space of the
problem is restricted so the underlying branch-and-bound procedure can solve it
with acceptable run time efficiency.

The processof constraint generation can be visualised in the following way:
The NP model of the scheduling problem can be seen as a conflict model so the
NP graph can be seen as a conflict graph. This means that all edges in the graph
conneet the operations that can not be scheduled in the sametime cycle at the same
module. The NP graph is a construction of all impossibilities in the schedule.

• The search for extra constraints is a search for more scheduling impossibilities.

• Another possible step forward in the model is the search for combinations of
edges that are already in the conflict graph (from different constraints) but
are not explicitly stated in the constraint list. This means that they are not
directly considered in the relaxation and that they have no effect as bound on
the search space.

24

Chapter 7

Model Enhancement Constraints

7.1 Clique Maximisation

The easiest enhancement of the model is the search for cliques that can be extended
(because they were not maxima!). The only possibility that was found which can
appear in general cases of scheduling DFGs, is the case that 3 or more operations
are all preeedenee related: operation A befare B, B befare C, A befare C and also
their execution intervals overlap. This results in a clique formulation invalving
A,B and C. An illustration of such a situation is shown in figure 7.1.

Figure 7.1: Node packing graph for 3 operations with preeedenee relation: a befare
b, b befare c, a befare c, showing in bold a clique for cycle step c=5 of inequality
7.1. Most edges between all variables of operation b have been omitted for clarity.

25

Multi Operation Preeedenee Clique Constraints (MOPC):

V (111 ,1J2), .. ,(v1 ,v;),(112,113), .. ,(1'2,11;), .. ,(Vi-l ,v;)EE V cEEl(VJ)nEI(112) .. nEI(v;) :

, Cw-l+d(vw-1)-1

L L L x(vw,s,m) + L L x(v1,s,m)::; 1 (7.1)
w=2 mE!i(vw) s=cw=Cw-1-d(vw)+l mE!i(vl) cl=c~s

(7.1) is the general formal representation of possible qlique maximisation as in the
situation that is mentioned in the previous paragraph. Since this situation is very
limited in existence it is not the unique extension that is needed to enhance the
model.

7.2 Indirect Precedencies

An actdition seemed to be the use of so called indirect precedencies. These are
preeedenee relations between operations that are predecessors or successors but
not in the direct sense. They are connected by a path in the DFG. A part of their
respective execution intervals is not valid if they are both scheduled in that part.
The minimallength of execution time of the interconnecting DFG path is to long
to obtain a valid schedule. This is illustrated in figure 7.2.

0 El=[1,4]

~ delay a= 1

~ EI=[2,5]

J delay b = 1

0 El=[3,6]

(a) (b)

Figure 7.2: (a) a DFG example with operations a,b,c with their execution interval
between brackets, (b) The node packing graph equivalent of (a). The bold dotted
edge is an example of an indirect preeedenee relation, between a and c. If operation
a is scheduled in cycle 3 then c can not be scheduled in cycle 4, because b has to be
executed in between. This edge is notpresent in the standard constraints.

Unfortunately this extra set of preeedenee relations is not of direct importance since

26

in [Chau94] is proven that the resulting indirect preeedenee clique constraints are
linear dependent on the direct preeedenee constraint set. Still they can be of use in
other sets of violated constraints on top of existing preeedenee relations as we will
mention later.

7.3 Violated Clique Constraints

A set of clique constraints that is not linear dependent on one of the known IP:NP
model constraints is a crossover between resource and preeedenee relations.
The proof of linear independenee consistsof actual vialation of these constraints af­
ter relaxation of the LP:NP formulation. Preeedenee relations are defined between
pairs of operations (see 6.2). If an operation maintains that relationship with more
than one operation that can be scheduled on the same module, we speak of multi­
ple precedencies. Extra cliques exist, caused by the combination of those multiple
preeedendes and resource demands. An example of a clique of that kind is shown
in figure 7.3.

CYCLE Cl C2 C3

MODULE

Ml

M2

M3

Figure 7.3: Node packing graph for three operations with 2 preeedenee relations:
a before d, and b befare d, showing in bold a clique for cycle step c=2 of inequality
5.2. A MPO clique exists also between the other operation sets { a,b} and d in c=2

27

Formula (7.2) represents the set

Multi Precedent Operations Constraints (MPO):

\1 {(v1,w) , .. ,(v;,w)IJ.L(v)=~-t(vJ)n .. nJ.i(v;):;i:0} \1 cEEI(VJ) .. nEI(vi)nE I(w) \1 mEJ.L(v) :
Vi C

E x(w,s,n) + E E x(u,s,m):; 1 (7.2)
s<:::c+d(u)-1 u=v1 s=c-d(u)+1

These multiple preeedendes can exist between an operation and sets of operations
through direct preeedenee relationship (successors, predecessors) and also with
sets through the indirect preeedenee relationship, mentioned in the previous sec­
tion.

The second set of clique constraints is a consequent development of the previous.
It exists if there are several operations, that can be scheduled from the sametime
cycle and on the same module, that have a multiple preeedenee relationship with
another group of operations with the same property (not necessarily the same
module type). The result of such arelation between two groups of operations is a
set of cliques that exists across modules. An example of this set of constraints is
shown in figure 7.4. Formula (7.3) represents the clique constraint set.

Multi Precedent Sets Constraints (MPS):

U= {v1 .. vi} cV with Jl(U) = 11(v1) n .. n Jl(vi) # 0,
T = {wJ .. wi} cV with Jl(T) = 11(w1) n .. n Jl(wi) # 0:

For all u E U, t E T -t (u, t) E E

'v'ucv 'v'rcv 'v'CJ) .. nEJ(v;)nEJ(w1) .. nEJ(w;) 'v'mE~-t(T) 'v'nE~-t(U):
Wi C2 CJ

E E x(t,s,m) E x(u,s,n):;l
t=wt s=c2-d(t)+l u=v1 s=c1 -d(u)+1

(7.3)

Again this relation exists between groups of operations with direct or indirect
preeedenee relations between them.

The main interest in these 3 clique constraint sets is to obtain more control on the use
of resources in the enhanced NP model. In the standard NP model (of section 6.2)
the control is limited to single modules, not on the number of modules of a certain
type. Because the extra multiple preeedenee constraints relate different modules,
they can help to enhance the model if they are added to the list of constraints.

It is proven in [Timm94} that the MOPC and MPO clique constraints form a

28

CYCLE Cl

MODULE

MI

M2

M3

TO DEC2M3 C
2

TO abC2M3

~ ff M ~~ ~ ~
I/ I/

I 1 I I

I\

~~ 'll \ TO abC2M2

TO EDC2Ml

C3

MPS clique
2 more MPS cliques

Resource

Operation edge

Preeedenee edge

Figure 7.4: Node paeking graph for 2 operation sets with preeedenee relations:
{ a,b} befare { e,d}, showing in bold a clique for eycle step ct = 2 and c2 2
of inequality 5.3. For clarity reasans operation edges have been omitted where
neeessary, but all variables of the same operation are fully intereonneeted over
cydes and modules

closer cut of the search polytope than the constraint enhancement mentioned in
[Chau94]. Also these constraint sets are formed as possible faeets according to
the node packing model. However if these clique sets do not appear in the IP:NP
model, the formulation in [Chau94] is still valid. The latter is more universa! but it
is nota node packing formulation soit does not represent faeets of the NP polytope
in the strict node paeking scheduling modeL

29

7.4 Odd Holes Constraints

After the discovery of two sets of violated clique constraints the relaxation of
exemplary scheduling problems still had no complete integer solution. Literature
on the theory of node packing problem optimising (see [Nemh92]) states apart
from maximal cliques also odd holes as possible facets of the polyhedron. Research
continued in the direction of finding odd holes in the IP:NP scheduling modeL

In the case of the IP:NP scheduling model the found odd holes are a consequence
of the earlier mentioned multiple preeedenee and resource constraints.
A set of operations U, that can all be scheduled on the same modules, has a multiple
preeedenee relationship with one eperation (MPO). The odd hole is formed with
variables from operations in that set, with modules of one type (1). The number
of variables in the odd hole must be 2 * n(l) 1 so the odd hole equation limit
(kin formula (4.5)) is n(l), the number of available modules of the module type.
This will eenstrain the schedule in cycles that the odd holes are situated with the
number of modules of that type.

The odd hole can safely be lifted with all ether variables within the same cycle
of the operations that have variables in the odd hole. These variables must have
lifting factor an 1, the odd hole equation is preserved because their sum will
always be smaller than the number of available modules of the type l.

Next the odd hole is lifted with a variabie of the operatien that holds the multiple
preeedenee relation with thesetUin the MPO. From now on this is called the
lifting variable. Because this operatien is preeedenee related withall operations
with variables in the hole, its lifting factor can be an n(l). This can be done with
all variables of this eperation that are related to the odd hole through the MPO.

The odd hole constraints as they can be used in the IP:NP scheduling model are
described in formula (7.4).An example is worked out in figure 7.5.

Resource Preeedenee Odd Hole Constraints (RPOH):

U= {vl··vi} CV with Ç(U) = Ç(v1) n .. n Ç(vi) =f- 0,
For all sets MPO(U, w) with i> 3 VcEEl(vl) .. nEJ(v,)nEI(w) v/EÇ(U):

Vi C

L: L: L: x(u,s,n) aw L: L: x(w,s,m):::::; n(l) (7.4)
u=v1 nEMjtype=ly s==c-d(u)+1 mEt.t(w) s:::;c+d(u)-1

30

CYCLE Cl 1 C4
I -- Resource edge

-- Operation edge
I - - - - Preeedenee edge
I

1 - RP Odd hole

- - ' Lifting edges

Figure 7.5: Node packing graph for operations with resource odd hole relation:
showing in boldan odd hole in cycle step c=3 with possible lifting with operation
d in cycle step c=2 due to preeedenee relations between (a,d), (b,d) and (e,d). Here
o:w = n(l) = 3, all other bold faced operations can be added according to inequality
5.6. For clarity some operation edges have been omitted, all variables of the same
operation are fully interconnected over cycles and modules. For the same reason
the preeedenee edges between d and a,b,e in cycle c=2 have been omitted.

It can be interesting for the result of the RPOH to have a trade off (if possible) in
the odd hole between the multiplication factor o:w - 1 of the lifting variabie and
another varia bie. This can be done with variables from operations in the set R. The
operations in R can be scheduled on modules of the sametype and in the same
time cycle as the operations with variables in the odd hole. However they are not
in the related MPO because they have no preeedenee relation with the operation
of the lifting variable. Of course this trade off can only be done as long as o:w > 1.
The possibility fortrade off occurs if the value of the new variabie (after relaxation)
is larger than the value of the lifting variable. It can also be of interest to involve
as many operations as possible in the constraint of the samemodule type to get

31

more global constraining. The trade off is formulated in(7.5). O:'w2 is the new
multiplication factor of the lifting variabie w after the trade off.

Enhanced Odd Hole (EOH):

0 = {v1 .. vi} cV with l = Ç(O) E Ç(v1) n .. n Ç(vi) # 0,

For all .sets RPOH(O, w) with O:'w > 1 :

{RPOH(O,w) with aw2 = aw -IRI 1\ aw2;::: 1}
c

+ L L L x(r, .s, n) :S n(l) (7.5)
{rERI(r,w)~E 1\ Ç(O)EÇ(r)} nEM!type=Ç(O) s=c-d(r)+l

Another possible impravement of the effect of the odd hole constraint is the lifting
with variables of an indirect precedent operation (as mentioned in section 7.2)
instead of a direct precedent operation. The set of indirect preeedenee related
operations in the odd hole can be larger than a direct related set. This way more
operations are involved in the constraint, creating larger impact on the IP:NP
search space. This impravement represents a more global constraint on resources.
A formulation is given in (7.7).

Multiple Indirect Preeedenee Set (MIS):

A path P of precedent related edges exists in a D FG G between: node v ---+

node w then d(P) is the sum of delays of operation nodesin P including v up to w.

MIS(U,w) = {(v,w)lv EU 1\ :3 P: v---+ w 1\ EI(v) n (EI(w)- d(P) + 1) # 0}
(7.6)

Indirect Preeedenee Odd Hole (IOH):

EI(U) =EI(v1) n .. n EI(vi)

For all sets MIS(U, w) with i ;::: 3 VcEEI(U)n(EI(w)-d(P(U)) VIEÇ(U):
Vi C

2:: 2:: 2:: x (u, .s, n) + aw 2:: 2:: x (w, s, m) :::; n (z)
u=vl nEM!type=l s=c-d(u)+1 mE11-(w) s~c+d(u)-1

(7.7)

The IOH constraints can be refined according to (6.5) in the same way as RPOH
constraints with operations fram U that are not in MIS(U, w) .

32

Chapter 8

Applied Optimisation Results

All suggested model optimisations from the previous chapter (7) have been tested
on several standard exemplary grap hs. A very good test case was the Fast Discrete
Cosine Transformation graph (FDCT from [Deny90]) with different upper bound
time restrictions. The different optimising possibilities will be treated in this chap­
ter. The first section describes the way that they can be applied in the IP:NP model.
The results of the different optimisations will bedescribed in the second section as
well as an evaluation of their effects.

8.1 Implementation of Optimisations

The first step in the procedure of using the lP model optimally as stated in chapter
6 is the IP:NP clique formulation. As described insection 6.2 this basic modeling
is implemented for the scheduling problem after [Gebo92]. This model has been
implemented and tested thoroughly in previous research (see [Leeu93] for the
implementation and results in Appendix A).

Additional constraints for this model as described in the previous chapter 7 were
implemenled in 2 different ways.
The first way follows the procedural structure of optimising the use of the NP
model as stated in chapter 6: First IP:NP modeling and a LP:NP relaxation step,
then find constraints that are violated by non integer variables in that relaxation.
These violated constraints are added to the constraint list of the IP:NP modeland
again LP:NP relaxation follows. This procedure can be repeated to try to make all

33

variables in the relaxation integer and a salution is reached.
The second way profits of the relaxation analysis of the first way. The additional
constraints are put into a general description and they are implemented into the
basic IP:NP model. This way there is immedia te profit of the extra constraints and
relaxation can be closer to the solution.

8.2 Evaluation

The results of the IP:NP model application on scheduling FDCT with the 3 basic
constraint sets according to [Gebo92] looked promising but could nat convince in
all cases. FDCT with an upper bound of 9 or 10 time cycles with the used (wrong)
lower bound estimation of necessary resources is nat feasible, the IP:NP rnadeling
could nat find that out in acceptable time (see Appendix A).

Analysis of the LP:NP relaxation during tests learned that the salution seldom is
all integer at once. This means that the IP:NP model of the problem is nat as tight
as should be. Mostly the underlying branch-and-bound procedure has to be used
to come to an integer solution. Infeasible problems take unacceptable time to solve
because all (impossible) solutions have to be checked befare they can definitively
be rejected.

Analysis of the relaxation has uncovered already three kinds of constraints that are
violated by non integer variables. The methad of adding violated constraints after
the relaxation step gives good insight in the consequences of the applied IP:NP
model to scheduling problems.
The addition of violated clique constraints results in a change in the relaxation
that is more toward a salution of the involved variables. The search space of the
problem shrinks by adding previously violated constraints.

A direct negative result is a shift of non integer values to other variables that give
cause for other violated cliques in the next salution step. This can reset variables
that were integer in the previous relaxation tonon-integer values. This happens
if there exists parallelism in the graph that is nat completely covered by specHic
constraints.
From this observation can be concluded that the salution will nat be all integer if
nat all possible violated clique constraints are added in the model. It is efficient
to put the complete set of potential violated constraints already in the basic IP:NP
model. Then of course a formal description must be available.

34

Unfortunately the number of violated constraints can become toa large to be effi­
ciently solved if they are linearly independent. An example of the large numbers
of violated constraints can be found in Appendix B.

Final tests have been done to find an efficient applicable set of extra constraints
with as strong as possible effect on the process. These tests were especially run
to check their effect on the possibility of finding infeasibilities sooner than the
original model or the bipartite scheduling graph model ([Timm95]) that is used
for initial module selection and execution interval analysis. The tests resulted in
further application of a restricted number of additional constraints only. Only
odd hole constraints are applied in the model restricted to preeedenee relations
between a group of operations that can all be scheduled on the samemodule type
and an indirect predecessor or successar with only one predecessor or successar in
between (see section 7.4). This limits the number of constraints that are added to
the model considerably.

The tests that compared the models concentrated on detecting schedule config­
urations that are nat feasible. Specifically FDCT with upper time bound 9 and
10 cycles with a lower bound estimation on necessary resources that is toa low
(i.e. nat enough resources are reserved for a feasible schedule). The tests were
run in the situation that the module selection is being performed with the bipartite
schedule graph (BSG) method. Each step this methad takes, the intermediateresult
can be verified on feasibility by using it in the IP:NP modeland by computing a
relaxation. If the relaxation salution from one of the models to the problem can
conclude that it is nat feasible then this methad perfarms better then the others
that fail.

The effect on the salution of the odd hole model enhancement in the cases of FDCT
9 and 10 time cycles, results in better performance than the standard model and
the BSG model. It immediately detects the infeasibility of FDCT 9 cycles with
estimated resources. The standard model fails to do that and the BSG model takes
more time to come to that conclusion. In the case of FDCT 10 cycles with the esti­
mated resources nat one of the models co mes to early detection of infeasibility. Still
the odd hole model enhancement leads to better performance than the standard
model or the BSG model. The detection of infeasibility of local parts in the search
tree is insome cases earlier than the BSG model. Nevertheless global infeasibility
of the problem is nat detected. Results of verification tests on FDCT withupper
time bound 10 cycles in the processof module selection can be found in Appendix
D.

35

The application of more additional constraints to the model did notimprave the
results of the odd hole enhanced model. With this argumentation the limitation on
extra constraints is justified. The execution time is still influenced by the generation
of this limited extra set of constraints because of the number of constraints that is
considerably higher than in the standard model. See the results of the relaxation
tests on FDCT in Appendix C.

8.3 Other Applications

Due to the problems with exponential growth of the number of constraints and
the inherent non integral result of the rnadeling if their number is limited, the
application possibilities of the IP:NP model will be limited.
In case the search space is not all integer, the lP process is depending on a branch­
and-bound process to come to an integer solution. Already a methad is known for
more efficient scheduling through a branch-and-bound methad based on bipartite
scheduling graphs (see [Timm94]). So the lP processis as a general stand alone
scheduler inferior even in its best known possible form.

This does not mean that the lP model is of no value to the scheduling process.
lP rnadeling gives a global view on the scheduling problem where for instanee
the BSG model works at a localleveL Detecting infeasibility is a typical global
problem. Tests showed that insome cases the extended IP:NP model comes to
an earlier infeasibility detection of suggested schedules then other models. The
application of the IP:NP model could be an extra verification tool on top of other
models, as in module selection with the BSG model. The cases that the BSG model
fails may be corrected by an IP:NP modeling.

Another possibility of applying the extended IP:NP model is the use of inter­
mediate relaxations as a steering mechanism for the branch-and-bound process.
Because the local attention of the branch-and-bound process it can not detect pos­
sibie bottlenecks in graphs that must be scheduled. In many cases it is of interest
to start branching in parts of the graph where there are not so many scheduling
possibilities. This way the search tree will be less wide because each schedule
decision can influence the rest of the process and limit other choices that still have
to be made. Beuristics can be derived from the LP:NP relaxation to find the right
starting variables for branching in the graph.

Both applications do not use the extended IP:NP model stand alone because that

36

would not be run time efficient. The IP:NP model is of use as a support tool
to other possible models. Especially to the BSG model because they are directly
related through the branch-and-bound process.

8.4 Future Work

In [Nemh92] is stated that if the problem model is pure node packing, variables can
be fixed on integer values if they are produced by a LP relaxation because they will
hold this integer value in an all integer solution. If the IP:NP model is applied to
the scheduling problem, time constrained scheduling (due to resource constraints)
and resource constrained scheduling (due to the object function) arenotpure node
packing problems. So this would only count for scheduling with a given upper
time bound and an estimated lower bound on the number of resources (feasible
scheduling). The consequences of this possibility could be very interesting for
further application of IP:NP to the scheduling problem.

If all variables that are 0 or 1 in the relaxation can be fixed on there value, the prob­
lem can be reduced for following processing to a problem with less variables.It also
gives a chancetogenera te specific additional constraints that are violated in the re­
laxation by variables that are not yet integer. It prevents variables that are already
integer to participate in the relaxation again to satisfy the additional constraints so
the effect of extra constraints is maximised. The amount of additional constraints
would be restricted to those that constrain the non integer varia bles. Until now all
possible violated constraints have to be added to get an all integer polytope and
their number can grow exponentially.

Future research can be doneon the consequences of this possibility. The applica­
bility of IP:NP in the scheduling process would be greatly enlarged. Por example
tagether with the BSG model in the process of Execution Interval Analysis (EIA)
(see [Timm94]) were execution intervals are minimised. After an EIA step using
the BSG model the LP relaxation can be used to fix a number of integer variables.
The integer variables influence the original EIA problem because it means that
some operations are assigned or can not be assigned to modules and time cycles.
That information can be added in the EIA which can be performed again on this
new instanee of the problem. Because the search space has changed this can give
new, more restrictive results. EIA and IP:NP relaxation can be executed repeat­
edly until no more impravement occurs in the number of integer variables, then
the strictest execution intervals possible through this method are available. This

37

impravement can be very helpful in large problems with great parallelism in the
graph, to detect if there are possibly not enough resources reserved to come to a
feasible schedule. Restrietion of execution intervals leads to smaller scheduling
problems because less variables are needed.

Due to large numbers of constraints and variables the IP:NP scheduling problem
becomes execution time inefficient. Therefore it is also of importance for future
research to try to decrease the number of variables in the problem. A possi­
bie methad is the assignment of operations to the first possible module without
regarding binding information (which modules are connected to which). This pre­
vents that variables from that operation withall other possible modules are taken
into account as well. This is a simple procedure if a trivia! library of modules
is used because all possible modules are of the same module type. In cases of
non-triviallibraries it is necessary to knowon what module type an operation has
to be scheduled toperfarm this procedure. Tests have been performed with this
procedure while using a trivia! library, results can be found in Appendix E. The
preliminary condusion from these tests must be that there is no real impravement
for general graphs using this method.

38

Chapter 9

Conclusions

Because of the exponential character of the necessary constraint generation it is not
efficient to use the IP:NP scheduling model on general graphs. The underlying
branch-and-bound mechanism supporting the Bipartite Scheduling Graph (BSG)
rnadeling already has a far better performance. The use of the IP:NP model will be
limited to the function of verification tooi in module selection, steering mechanism
to another branch-and-bound based scheduler and global infeasibility detection
(in the processof execution interval analysis).

To achieve this goal the IP:NP model should be enhanced as far as possible. This
makes the search space polyhedron of the problem as small as possible.
The enhancement is best done according to a standard procedure:

1. Basic rnadeling

2. LP relaxation

3. Violated constraint generation (repeated cycle with step 2. is possible)

4. Branch-and-bound (if requested).

Violated constraint sets can be put into the basic model or violated constraints
can be added to the constraint list for next relaxation steps after they have been
detected. An evaluation has to be doneon the methad of adding extra constraints
on top of the standard IP:NP model. Because the first relaxation step has to have
efficient execution time and the growth of the number of constraints is possibly
exponential with growing number of variables, notall clique constraints can be

39

added in the first step. After the analysis of the relaxation stillnotall violated extra
constraints can be added because of their large number which makes the solver
less run time efficient.

Experiments showed that the extra odd hole constraints give the best results in
our exemplary schedule prablems. To get immediate profit of this extra set, they
were added as constraint set in the basic IP:NP model. The result of this model
enhancement was not as strang as was hoped.
The exponential grawth of the number of violated constraints in grawing prab­
lems confirmed the suspicion that there is no complete rnadeling possible in general
graphs. Complete rnadeling means that the prablem can bedescribed withall pos­
sibie facetsof the salution polytope and that an all integer salution is immediately
available. If rnadeling is complete then the number of constraints is too large, if the
number of constraints leads to acceptable run time efficiency then the rnadeling is
not as tight as possible. So not all facets of the salution polyhedran are modeled.

The positive result of the enhanced IP:NP model is achieved in combination with
a BSG branch-and-bound scheduling model. In different cases that combination
comes to a faster infeasibility detection result than the stand alone BSG branch­
and-bound model.

There are still test prablems that were not directly detected as infeasible as should
have been. Therefore it should be stated that the modeling, even after total addi­
tion of the found extra constraint sets, is not as tight as possible. Large prablems
still have a search space polyhedran that is too big to solve efficiently. Even if
more violated constraint sets can be found it would not be efficient to add them
all to obtain a complete integer solution. Beuristics should be found to come to a
satisfying and efficient solving method.

A possible impravement might be the fixation of integer variables after the LP re­
laxation in case of feasibility scheduling. If that pracess is repeatedly interchanged
with execution interval analysis this could prune the search space of the prablem
in a fast way. This works especially well in cases of infeasibility or on graphs with
a lot of parallelism. This impravement is basedon the praperty of strictly formed
node packing prablems: integer valued variables in the relaxation stay integer in
the resulting solution. This is an interesting future research subject.

40

Bibliography

[Alva90] R. Alvarez-Valdés, J.M. Tamarit, uThe Project Scheduling Polyhedron
Dimension, Facets and Lifting Theorems" European Journalof Operations
Research 67, pp 204-220,North Holland, Amsterdam, 1990.

[Arts91] H.M.A.M. Arts, M.J.M. Heijligers, H.A. Hilderink, A.H. Timmer, uHigh
Level Synthesis of Digital Systems" International Tutorial Paper, Sep. 1991.

[Berk94] M.R.C.M. Berkelaar, ulp_solve" a public domain MILP solver available
by anonymous ftp from ftp.es.ele.tue.nl.

[Chau94] S. Chaudhuri, R.A. Walker, J. Mitchell, u Analyzing and Exploiting the
Stru.cture of the Constraints in the ILP Approach to the Scheduling Prob­
lem" Technica! Report, Renssela er Polytechnic Institute, Department of Com­
puter Science, Troy, New York, July 1994.

[Deny90] P. Denyer, uSAGE-A User Directed Synthesis Tooi" Proc. of the ASCIS
Open Workshop on Synthesis Techniques for (lowly) multiplexed Datapaths,
Leuven, Belgium, August 1990.

[DeSi90] C. DeSimone, uLifting Facetsof the Cut Polytope" Operations Research
Letters 9, pp 341-344, North Holland, Amsterdam, 1990.

[Eijn91] J.T.J. van Eijndhoven, G.G. de Jong, L. Stok, uThe ASCIS Data Flow
Graph: Semantics and Textual Format" Eindhoven University of Technology
EUT Report 91-E-251 June 1991.

[Gare79] M.R. Garey, D.S. Johnson, "Computers and Interactability: A Guide to
the Theory of NP-Completeness" Freeman, 1979.

[Garf72] R.S. Garfinkel, G.L. Nemhauser, ulnteger Programming" John Wiley &
Sons,New York, 1972.

41

[Gebo91] C.H. Gebotys, M.I. Elmasry, "Simultaneous Scheduling and Allocation
for Cast Constrained Optimal Architectural Synthesis" Proc. 28th DAC, pp.
2-7, 1991.

[Gebo92] C.H. Gebotys, M.I. Elmasry, "Optimal VLSI Architectural Synthesis"
Kluwer, The Netherlands, 1992, ISBN 0-7923-9223-X.

[Hend91] TT.H.B. Hendriks, P. Van Beek "Optimaliserings Technieken: Principes
en Toepassingen" Bohn Stafl ue Van Logh urn, Houten, 1991, ISBN 90-313-12 41-
X.

[Hoes93] C.P.M. van Hoesel, "Introduction to Polyhedral Combinatorics, Cutting
Plane Methods, and Branch-and-Cut Algorithms" Eindhoven University of
Technology, June 1993.

[Ková80] L.B. Kovács, "Combinatorial Methods of Discrete Programming"
Mathematica! Methods of Operations Research, Vol2. Akadémiai Kiadó, Bu­
dapest, 1980.

[Leeu93] J.C. van Leeuwen, "High Level Synthesis Scheduling Using Integer
Linear Programming" Training Report, Eindhoven University of Technology,
The Netherlands, May 1993.

[McFa90] M.C. McFarland, A.C. Parker, R. Camposano, "The High-Level Synthe­
sis of Digital Systems" Proc. of the IEEE, Vol. 78, No. 2, pp. 301-318, 1990.

[Mich92] P.Michel, U. Lauther, P. Duzy, "The Synthesis Approach to Digital Sys­
tem Design" Kluwer Academie Publishers Boston/Dordrecht/London 1992,
ISBN 0-923-9199-3.

[Moré93] J.J. Moré, S.J. Wright, "Optimization Softwareguide" Frontiers in Ap­
plied Mathematics, vol. 14, SIAM, Philadelphia, 1993, ISBN 0-89871-322-6.

[NEAT92] M. Heijligers, H. Arts, R. Hilderink, A.H. Timmer, W. Philipsen, "The
NEAT System" Private Communications, 1992.

[Nemh88] G.L. Nemhauser, LA. Wolsey, "Integer and Combinatorial Optimiza­
tion" Wiley Interscience, New York, 1988, ISBN 0-471-82819-X.

[Nemh92] G.L. Nemhauser, G. Sigismondi, "A Strong Cutting Plane/Branch-and­
Bound Algorithm for Node Packing" Journal of the Operations Research
Society, vol. 43, pp. 443-457, U.K., May 1992.

42

[Padb79] M.W. Padberg, ncovering Packing and Knapsackproblems" Annals of
Discrete Mathematics, vol. 4, Discrete Optimization I, North Holland, Ams­
terdam, 1979.

[Rama91] L. Ramachandran, D.D. Gajski, "An Algorithm for Component Se­
lection in Performance Optimized Scheduling" Proc. ICCAD-91, pp 92-95,
1991.

[Stok91] L. Stok, u Archtectural Synthesis and Optimization of Digital Systems"
PhD thesis, Eindhoven University of Technology, Eindhoven, the Nether­
lands, July 1991.

[Taha75] H.A. Taha, 11lnteger Programming, Theory, Applications and Compu­
tations" Academie Press, New York, 1975.

[Timm93a] A.H. Timmer, M.J.M. Heijligers, L. Stok, J.A.G. Jess, 11Module Selection
and Scheduling using Unrestricted Libraries", Proc. EDAC/EuroASIC '93,
pp. 547-551, 1993.

[Timm93b] A.H. Timmer, J.A.G. Jess, 11Execution Interval Analysis under Re­
source Constraints" Digest of technica! papers of ICCAD '93,pp. 454-459,
1993.

[Timm94] A.H. Timmer, PhD thesis, preliminary version, Eindhoven University
of Technology, Eindhoven, The Netherlands, 1994.

[Timm95] A.H. Timmer, J.A.G. Jess, 11Exact Scheduling Strategies basedon Bi­
partite Graph Matching" To appear in proc. of the European Design & Test
Conference, Paris, France, March 1995.

[DeWi85] P. DeWilde, E. Deprettere and R. Nouta, 11 Paralleland Pipelined VLSI
Implementations of Signal Processing Algorithms", in S.Y. Kung, H.J. White­
house and T. Kailath, uVLSI and Modem Signal Processing", Prentice Hall,
pp. 258-264,1985.

[Wols80] LA. Wolsey, 11Heuristic Analysis, Linear Programming and Branch­
and-Bound" Mathematica! ProgrammingStudy 13, Combinatorial Optimiza­
tion II, North Holland, Amsterdam, Aug. 1980.

43

Appendix A

Standard Model Test Results

lP schedule results for the fifth wave digital filter from [DeWi85] WDELF (table
1) and the fast discrete eosine transfarm from [Deny90] FDCT (table 2). The test
schedules are all pre-processed with execution interval analysis. The first col­
umn with CPU times represents the CPU times of the lP solver for the resource
constrained methad with upper time bound and lower bound area estimation.
The second column with CPU times represents the time contrained methad with­
out lower bound area estimation. The CPU-times of the lP solver lp_solve (see
[Berk94]) on a HP9000/755 (in seconds):

Table 1: results for WDELF.

cycles

17
18
19
20
21
22
23
24
25
26
27
28

mult
d=2

3
2

1

1

add
d=1

3
2

2

1

CPU times CPU times
lP solver with lP solver without
LB estimation (sec) LB estimation (sec)
Resource constrained Time Constrained

0.05 0.11
0.08 0.16
0.11 12.36
0.16 631.68
0.04 73.22
0.69 5416.80
0.49 stopped after 51607.3 sec
1.57 *
1.67 *
2.02 *
2.75 *
12.84 *

44

Table 2: results for FDCT.

CPU times CPU times
lP solver with lP solver without

mult add LB estimation (sec) LB estimation (sec)
cycles d=2 d=1 Resource constrained Time Constrained

8 8 4 0.53 0.09
9 13988 *
10 5 4 * *
11 4 3 266 *
12 78 *
13 4 2 851 *
14 3 2 268 *
15 801 *
16 507 *
17 419 *
18 2 2 578 *
19 306 *
20 409 *
21 662 *
22 1600 *
23 330 *
24 466 *
25 453 *
26 2 1 3093 *
27 * *
28 2105 *
29 4765 *
30 4757 *
31 8738 *
32 5954 *
33 4467 *
34 1 1 * *

* Stopped after several hours of CPU time.

45

Appendix B

Violated Constraints Search Results
Test cases of FDCT with feasible scheduling in 8-25 time cycles.
A comparative table with quantative results of 3levels of search for violated con­
straints: No search, limited search to direct preeedenee and search for all violated
constraints of the sets described in this thesis.

Table: Violated Constraint Generation for FDCT.

ma x initia! number number of number of
cycle of constraints additional violated additional violated

without search constraints constraints
for vialation after limited after complete

search search

fdct (lines) (lines) (lines)

8 142 6 234
9 189 342 1393
10 288 586 4974
11 250 527 3647
12 397 874 9770
13 444 670 9658
14 470 561 8999
15 525 797 11956
16 584 695 14601
17 639 1130 17675
18 602 499 11180
19 716 457 17713
20 772 677 20990
21 828 882 24211
22 885 889 27547
23 940 984 31582
24 996 1166 35721
25 1052 1274 39558

The number of violated constraints is counted after 1lp-relaxation step.

46

Appendix C

Relaxation Test Results

Test cases of FDCT with feasible scheduling in 8-25 time cycles.
A comparative table of execution times. Showing the effect of additional odd
hole constraints on the execution time of the relaxation. The LP:NP relaxation is
computed by lp_solve v1.4 on a HP9000/735.

Table: Relaxation Times for FDCT.

ma x

cycle

fdct

8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25

CPU times of
the relaxation
of the NP model
without extra
constraints

(sec)

0.1
0.4
1.3
0.6
2.1
3.1
3.1
4.8
5.2
6.7
5.3
5.1
6.0
6.5
7.1
8.9
10.1
11.8

CPU times of
the relaxation of
the NP model with
extra odd hole
constraints

(sec)

0.2
1.85 (infeasibility detected!)
7.6
7.7
29.7
38.7
24.1
60.6
139.6
158.5
18.7
39.9
74.7
75.1
101.1
112.2
99.3
116.9

47

Appendix D

Module Selection Test Results

Verification of the initial BSG module selection process for FDCT withupper time
bound 10 cycles and with an infeasible module set of 3 adders and 5 multipliers.
The table shows the points in the search tree where the IP:NP model verification
on top of the BSG model is successful in finding non feasibilities where the BSG
model does not. The steps where the odd hole enhanced model is more effective
than the standard model are bold faced. The verification is done by relaxation of
the intermedia te problem.

Table: Verfkation Results for FDCT 10 cycles

(a): Part of search tree, with numbers 1/2/3:
1 = the number of vertices in the branch-and-bound search tree
2 = the number of branches, i.e. the number of of times an operation is matched

without detecting immediately that the matching leads to an incorrect ordering.
3 = the number of times a matching was immediately detected to be incorrect,

(so the branch-and-bound process does not follow such a branch)
(b): detected infeasible by standard model relaxation
(c): CPU times of the relaxation in seconds
(d): detected infeasible by odd hole enhanced model relaxation
(e): CPU times of the relaxation in seconds

(a) (b) (c) (d) (e) (a) (b) (c)

6/1/27 no 0.58 yes 1.19 6/1/28 yes 0.67
6/1/29 yes 0.38 yes 1.22 6/1/30 yes 0.61
6/1/31 yes 0.4 yes 1.62 6/1/39 yes 0.61
6/1/41 yes 0.65 yes 1.67 6/1/49 yes 0.38
6/1/55 yes 0.4 yes 1.22 6/1/62 yes 0.42
7/2/68 no 0.6 yes 1.21 7/2/69 yes 0.42
7/2/70 yes 0.42 yes 1.51 7/2/71 yes 0.41
7/2/72 yes 0.44 yes 1.35 7/2/80 yes 0.43
7/2/82 no 0.68 yes 1.41 7/2/90 yes 0.39
continued on the next page

48

(d) (e)

yes 1.22
yes 1.26

yes 1.28
yes 1.25
yes 1.54
yes 1.93
yes 1.78
yes 1.78
yes 1.48

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

7/2/96 yes 0.42 yes 1.49 7/2/103 yes 0.48 yes 1.39

~/3/104 yes 0.39 yes 0.95 8/3/106 yes 0.36 yes 1.18

8/3/107 yes 0.34 yes 0.92 8/3/109 yes 0.59 yes 1.29

8/3/112 yes 0.36 yes 0.94 8/3/113 yes 0.59 yes 0.99

8/3/115 yes 0.41 yes 1.32 8/3/117 yes 0.34 yes 1.21

8/4/119 no 0.72 yes 1.57 9/4/122 yes 0.34 yes 1.11

9/4/126 yes 0.34 yes 1.22 9/4/129 yes 0.34 yes 1.22

9/4/134 yes 0.35 yes 1.11 9/5/140 yes 0.73 yes 1.43

12/7/164 yes 0.65 yes 1.18 12/7/165 yes 0.42 yes 1.86

12/7/166 yes 0.42 yes 1.3 12/7/167 yes 0.44 yes 1.94

12/7/168 yes 0.41 yes 1.62 12/7/176 yes 0.43 yes 1.53

12/7/178 no 0.66 yes 1.39 12/7/186 yes 0.42 yes 1.57

12/7/192 yes 0.64 yes 1.31 12/7/199 yes 0.67 yes 1.68

13/8/205 no 0.61 yes 1.2 13/8/206 yes 0.42 yes 1.55

13/8/207 yes 0.66 yes 1.58 13/8/208 yes 0.44 yes 1.29

13/8/209 yes 0.45 yes 1.61 13/8/217 yes 0.69 yes 1.31

13/8/219 no 0.71 yes 1.77 13/8/227 yes 0.45 yes 1.51

13/8/233 yes 0.43 yes 1.75 13/8/240 yes 0.74 yes 1.44

13/9/241 no 0.46 yes 1.44 14/9/242 yes 0.41 yes 1.18

14/9/244 yes 0.42 yes 1.11 14/9/245 yes 0.39 yes 0.98

14/9/247 yes 0.42 yes 1.0 14/9/250 yes 0.58 yes 1.22

14/9/251 yes 0.4 yes 1.03 14/9/253 yes 0.43 yes 1.34

14/9/255 yes 0.39 yes 1.03 14/10/257 no 0.64 yes 1.71

Module selection search tree continues, verification test aborted after reaching this point.

49

Appendix E

Module Assignment Test Results
Test cases of FDCT with feasible scheduling in 8-25 time cycles.
A comparative table of execution times. Showing the execution times of the IP:NP
scheduler with standard model versus the scheduler that assigns operations to
modules without regarding binding information and this way restricting the num­
ber of variables in the IP:NP model.
Tests have been run with lp_solve v1.4 on a HP9000/735.

Execution Times for FDCT.

ma x CPU times CPU times
cycle lP solver lP solver

without module with module
assignment assignment

fdct (sec) (sec)

8 0.9 1.08
9 * *
10 * *
11 128.36 92.65
12 101.77 67.98
13 501.37 *
14 230.33 242.13
15 242.84 183.98
16 589.56 727.28
17 852.97 1339.7
18 239.94 81.88
19 449.21 425.08
20 495.88 529.76
21 435.74 434.01
22 2637.5 2496.26
23 853.51 854.26
24 1588.27 1589.82

* Stopped after several hours of CPU time.

50

