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Abstract

DNA is best known from the perspective of genetics, but its mechanical properties are also an
interesting and important field of study. These mechanical properties play an important role
in cellular processes such as replication and transcription. To characterize the mechanics of
DNA, physicists measure force-extension curves of individual double-stranded DNA molecules.
They observe that the DNA molecule cooperatively overstretches to a length 1.7 times longer
than B-DNA at a well-defined force of about 65 pN: the overstretching transition. To visualize
these DNA mechanics, fluorescent molecules are bound to the DNA via the process of interca-
lation. However, these intercalators are known to perturb the DNA structure and thus change
the features of the force-extension curve. In particular, the overstretching transition is found
experimentally to shift to higher forces than 65 pN, as a function of intercalator concentration.
In this work, we develop multi-state freely jointed chain models to gain an understanding of
the physical principles behind the effect of intercalative particle binding on the overstretching
transition of double-stranded DNA. We show that a freely jointed chain like model with three
possible segment lengths reproduces experimental force-extension curves, and that this model
captures the physical principles behind the effect of intercalation on the force-extension curve.
The three segment lengths represent B-DNA, overstretched DNA, and intercalated DNA. More-
over, our model agrees quantitatively with the experimentally found linear dependence of the
overstretching force on the intercalator concentration. Finally, our theory predicts a further
elongation to twice the length of B-DNA, induced by intercalative binding at every base pair,
in the force-regime beyond the overstretching transition.
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Chapter 1

Introduction

Deoxyribonucleic acid probably is the most important molecule for the existence of life. This
molecule, better known as DNA, is the carrier of the genetic code that is passed on from gen-
eration to generation and therefore it is the main character in the story of evolution. DNA is
essential for many processes in the human cell. For example, during cell division all 46 DNA
molecules are copied and transferred into the daughter cell. For protein production, DNA is
used as a template for messenger RNA molecules in a process called transcription. Cellular
processes such as replication and transcription are essential for a human being, and a proper
understanding of those processes is therefore very important from a biological perspective [1].

During processes like replication and transcription, the DNA molecule must expose its genetic
information by local unwinding [1]. To enable this unwinding, enzymes must exert mechanical
stress on the DNA molecule. The response to external forces is called the mechanical behavior of
the DNA molecule. Due to its important role in certain vital cellular processes, the mechanical
behavior of DNA has drawn increased attention of biophysicists in recent decades. For reviews
of pioneering work in this field, see Strick et al. [2], Bustamante et al. [3, 4], and Kumar and
Mishra [5] and references therein.

1.1. Mechanical properties of DNA

The mechanical properties of DNA are investigated by relating forces or torques exerted on
DNA to the response of that DNA. This is done both with bulk DNA [6-8] and with single DNA
molecules [9-13]. In the research of the past decades a wide range of such forces and torques
has been used on single DNA molecules. For example, DNA can be twisted [9], bend [10, 11],
or stretched [12, 13]. The focus of this work is on the latter: the stretching of an individual
double-stranded DNA molecule. That is, we focus on the relation between a stretching force
and the resulting extension of the molecule, obtaining a so called force-extension relation.
Much scientific work has already been done on the force-extension relation of DNA molecules.
Experiments have been performed on single-stranded DNA (ssDNA) (for a review, see [5]) and
double-stranded DNA (dsDNA) [2]. The techniques that are used in these experiments are
described in section 2.2.1. A lot of work has also been done on the theoretical side of the
problem. The simplest model available for obtaining the force-extension relation of a polymer
(like DNA) is the freely jointed chain (FJC) model [14, 15]. The FJC or Kuhn model treats
the polymer as a chain of rigid, non-deformable segments (Kuhn segments) joined by perfectly
flexible hinges. In other words, the FJC does not resist bending between the Kuhn segments.
Real polymers, however, do resist bending. A model that takes this into account is the
wormlike chain (WLC) [16-18]. The WLC treats the polymer as a continuum elastic body with
a bend stiffness. A WLC can be characterized by its persistence length, the characteristic length
scale associated with the loss of directional correlation. However, this treatment of a polymer
as a continuum elastic rod is only valid as long as the persistence length is much longer than the
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Figure 1.1: Theoretical force-extension curves of the freely jointed chain (FJC, red) and discrete persis-
tent chain (DPC, black): the expectation value (thermal average) of the normalized extension is plotted
as a function of the stretching force. The normalized extension is obtained by dividing the shortest dis-
tance between the end points, z, by the total length of the chain Ly. The plots use realistic parameters
for ssDNA [15]: 0.6 nm as the length of a Kuhn segment for both the FJC and the DPC and a persistence
length of 1.15 nm for the DPC. The discrete persistent chain is easier to stretch than the freely jointed
chain because the DPC resists bending, while the FJC does not.

physical monomer length. When this constraint is not met, the lack of discreteness in the WLC is
a serious defect in the theory. In 2003, Storm and Nelson [15] proposed a model that combines the
best of two worlds: the discrete persistent chain (DPC) combines bend stiffness with discreteness
by using the rigid segments of the FJC and adding an energy penalty proportional to the square
of the angle between two adjacent segments. Figure 1.1 shows theoretical curves corresponding
to the freely jointed chain (red) and the discrete persistent chain (black). For both curves a
segments size of 0.6 nm has been used, and the discrete persistent chain has a persistence length
of 1.15 nm. Those numbers are characteristic for ssDNA [15]. The curves show the expectation

Z

Lo
extension is obtained by dividing the shortest distance between the end points, z, by the total
length of the chain Lg. The notation () shows that a thermal average is calculated. The figure
shows that the discrete persistent chain is easier to stretch than the freely jointed chain. This
can be understood by realizing that the discrete persistent chain is effectively a freely jointed
chain that resists bending, and therefore favors stretching more than the freely jointed chain
does. The force-extension relation of the freely jointed chain is discussed in more detail in section
3.1.

value of the normalized extension, < > as a function of the stretching force f. The normalized

The overstretching transition

The force-extension curve of double-stranded DNA looks quite different from that of single-
stranded DNA (figure 1.1). In 1996 Cluzel et al. [12] and Smith et al. [13] observed that at
a force of about 65 pN the end-to-end length of the dsDNA molecule suddenly increased by a
factor of 1.7. They assigned this sudden elongation to the unwinding of the double helix (sec-
tion 2.1). As far as we know there is no consensus in the scientific community on the nature
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Figure 1.2: A force-extension curve of dsDNA: the normalized end-to-end length of the DNA (z/L) is
plotted as a function of stretching force f. Around 65 pN the curve shows a cooperative overstretching
transition from B-DNA to a state of DNA that is 70% longer, which we call “overstretched DNA”. Image
taken from [15].

of this unfolded state of DNA at the time of writing this thesis. Some [12, 13, 15, 19] claim
that the the unfolded state is a novel form of non-helical double-stranded DNA, which they
call S-DNA. Others [20-24] claim that the result of the unwinding is a pair of two detached
single-stranded DNA molecules. Recently it was reported that it depends on the experimental
conditions whether S-DNA or ssDNA is formed [25-27]. Regardless of this debate, the result is
an unwound state of DNA which 70% longer than the standard, helical, ground-state of DNA,
which is called B-DNA. The cooperative transition from B-DNA to this new state is now called
the overstretching transition. The work in this thesis is not concerned with the distinction be-
tween S-DNA and ssDNA, so to avoid controversy the state of DNA at forces higher than the
overstretching transition is called the ‘overstretched state’ in the remainder of this thesis. Sec-
tion 2.1 gives more background information about the structures of dsDNA that are relevant for
this thesis. Finally, we note that the overstretching transition only occurs if the dsDNA is free
to rotate, and therefore to untwist, while being stretched [28]. What happens when the dsDNA
is torsionally constrained is beyond the scope of this thesis, and can be found in the work of
Allemand et al. [29] and Leger et al. [30].

Storm and Nelson [15] extended their discrete persistent chain (DPC) model, introduced
above, by allowing each Kuhn segment to be in one of two possible states. The segments can
either be in their ground state, corresponding to B-DNA, or they can be in an excited state,
corresponding to overstretched DNA. A segment in the excited state is 70% longer than one in
the ground state. This leads to the Ising-DPC model, which is a model for the force-extension
curve of dsDNA including the overstretching transition. Figure 1.2 is an example of force-
extension data (dots) of dSDNA together with a fit of the Ising-DPC model to this data (solid
line) [15]. The plot clearly shows the overstretching transition at a force of about 65 pN.

1.2. Intercalators

Experiments and theory on force-extension curves of dsDNA as presented in section 1.1 are use-
ful to gain more understanding of the elastic behavior of dsDNA, and therefore help in obtaining
more insight in biological mechanisms such as DNA replication and transcription. However, they



only give a mesoscopic image: they show the elastic response of an entire DNA molecule to an
externally applied force. They do not provide any information on local microscopic processes
along the DNA molecule. If one wants to gain a better understanding of replication or tran-
scription, obtaining this microscopic information is essential.

For this reason scientists want to be able to actually see the DNA molecules they are in-
vestigating. This is not straightforward since the typical diameter of a DNA strand is about 2
nm [31] and can therefore not be seen with an optical microscope. Morikawa et al. [32] were
the first to succeed in directly observing a single DNA molecule under the microscope by using
fluorescent molecules. Their method was later improved by Matsumoto and co-workers [33].
These molecules bind to the DNA molecule and are designed in such a way that they fluoresce
much brighter in the bound state than in the unbound state [34]. For this reason these particles
are called a fluorescent dye. The result is a DNA-dye complex that fluoresces upon illumination
and which can be observed under the microscope. Using this method, Bianco and co-workers
[35] were able to directly visualize the unwinding of a double-stranded DNA molecule by the
enzyme helicase.

While the work of Bianco et al. shows the great potential of the use of fluorescent dyes,
there is also a major drawback to this use. This drawback is the fact that the dye particles
actually bind to the DNA molecule. It is not hard to imagine that a particle that attaches to
a DNA molecule also modifies the properties of this very DNA molecule. The consequence of
this simple statement is that the data obtained from experiments performed with fluorescent
dyes might have been different if the dyes were not used. But those experiments might not be
executable without the use of dyes. As an example, the helicase activity in the work of Bianco
et al. [35] might have been different in the absence of dye molecules, but the activity can not
be observed in the absence of those same dye molecules. It is for this reason that the role of
fluorescent dyes on the mechanical behavior of DNA has drawn increased attention in the past
decade [36, 37].

Fluorescent dyes are not the only particles that can bind to DNA to form a particle-DNA
complex. Many cellular processes involve protein binding to DNA, such as gene expression,
physical chromosome organizations, DNA replication and genetic recombination [38-41]. The
interaction of small molecules with dsSDNA molecules has also been investigated for the purpose
of rational drug design for cancer therapy [42-44] or the development of other specific and effi-
cient drugs [45]. All these examples illustrate the wide scope of DNA-particle interactions and
the relevance of studying the mechanisms behind them. In this study we focus on one particular
type of particle binding to DNA, being that of intercalation [46, 47]. In this binding mode small
molecules insert their planar aromatic moiety between two adjacent base pairs of the double-
stranded DNA molecule. These small molecules are called intercalators. The mechanism of
dsDNA intercalation is illustrated schematically in figure 1.3. The figure shows the intercalation
of ethidium as an example. It shows how the intercalator is inserted between two adjacent base
pairs of a dsDNA molecule, disrupting the local DNA structure. From this schematical picture
of the binding mechanism, we can understand why intercalation modifies the properties of ds-
DNA. The particles do not simply attach to the outside of the molecule backbone. Instead, they
penetrate into the helical structure and change the local conformation of the dsDNA molecule.
We discuss the binding mechanism of intercalation and its influence on the DNA conformation
in more detail in section 2.1.

The small molecules in the examples of drug design given above [21, 42, 45, 48] are inter-
calators, as well as many fluorescent dyes that are used to visualize DNA during experiments.
Examples of work on intercalating fluorescent dyes include, but are not limited to, references
[32—-35, 48—54]. The wide scope of applications, as discussed here, shows that the scientific rele-
vance of the perturbing effect of intercalation on dsDNA can not only be found in fluorescence
experiments, but also in rational drug design. Moreover, it is not unthinkable that the perturb-



Ethidiom bromids

Figure 1.3: The mechanism of intercalation shown schematically. The intercalating molecule, which is
ethidium in this case, is inserted between two adjacent base pairs of a dsDNA molecule. This disrupts
the local DNA conformation, and therefore modifies the mechanical properties of the dsDNA molecule.
Image taken from [55].

ing effect of intercalation might play a role in cellular processes involving dsDNA, such as those
discussed in the introduction of this thesis.

Force-extension curves and intercalators

The influence of intercalating molecules on the mechanical behavior of DNA can be studied by
investigating force-extension curves, which were already briefly discussed in section 1.1. Several
experimental studies have been performed on the shape of the force-extension curve of dsDNA
as a function of intercalator concentration [21, 48, 54]. Figure 1.4 shows two examples of those
studies. Both studies have measured several force-extension curves for varying concentrations
of particles. The curves are equilibrium curves; they are measured on time scales that allow
the system to equilibrate. Figure 1.4a shows data from the master thesis of Roel Roijmans [54]
where the fluorescent dye SYTOX Orange is used as intercalator. Figure 1.4b shows data from
Vladescu et al. [21], who used ethidium particles as intercalators. In both curves we swapped
the z-axis and the y-axis with respect to the figures in the original references [21, 54], where
the force is plotted as a function of extension. This is a matter of convention. Theoreticians
generally tend to plot the extension as a function of force, while experimentalists tend to do it
the other way around. In this thesis we use the theoretical convention and plot the extension as
a function of force. Also note that figure 1.4a gives the extension of the entire dsDNA molecule
on the y-axis, while figure 1.4b gives the extension per base pair. The experimental techniques
used to obtain these curves are discussed in section 2.2.1.

Both figures show clear evidence for the perturbing effect of intercalator binding on the
force-extension curve of dsDNA. In particular the curves with relatively high concentrations
show completely different qualitative behavior than the zero-concentration curves. Remarkable
effects are the intercalator-induced shift of the overstretching transition, the jump in DNA ex-
tension that marks the transition from B-DNA to overstretched DNA, towards higher forces in
figure 1.4b and the eventual complete disappearance of the cooperative overstretching transition
in both figures. These effects are discussed and analyzed more extensively in section 2.2.2. To
our knowledge, there is no theoretical understanding of these effects yet. In this thesis we de-
velop an analytic theory that models the interaction between dsDNA and intercalating particles,
and that explains the perturbing effect of intercalators on the force-extension curve of dsDNA.
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Figure 1.4: Experimental data that shows the effect of intercalating particles on the force-extension
curves of double-stranded DNA. The intercalators are SYTOX Orange (figure a) and ethidium (figure
b). Both figures show several force-extension curves with different intercalator concentrations. The high-
concentration curves show completely different qualitative behavior than the zero-concentration curves.
Striking features of the high-concentration curves are the intercalator-induced shift of the overstretching
force towards higher forces in (b) and the eventual complete disappearance of the overstretching transition
in both (a) and (b). Note that (a) gives the extension of the entire dsSDNA molecule, while (b) gives the
extension per base pair. The axes are swapped with respect to the original references. Figures modified
from the master thesis of Roel Roijmans [54] (a) and from Vladescu et. al. [21] (b).

Prior theoretical work on dsDNA intercalation

We are not the first to do theoretical modeling on the effect of intercalators on the force-extension
curves of dsDNA. Plenty of polymer models that describe the interplay between dsDNA and
intercalators or other binding particles have been reported in literature [38, 56—61]. For example,
Lam and Zhen [38] used a discrete persistent chain (DPC) model in which they allowed particles
to bind to the Kuhn segments of the chain. They modelled the influence of interacting particles
to the bending regidity of dsDNA by assigning different local persistent lengths to bound and
unbound Kuhn segments. As another example, Zhang and Marko [56] used Maxwell relations
to predict the fraction of bound proteins as a function of applied force or torque.

1.3. Aim of this study

We named several theoretical studies that investigated the effect of particles on the force-
extension curves of dsDNA in the previous section. However, none of those studies [38, 56-61]
looked into the overstretching transition of dsDNA. All theoretical studies on this subject known
to us perform calculations on the influence of bound particles on the force-extension curve of
DNA at forces smaller than the overstretching force. The resulting models can therefore not
explain all features of the data in figure 1.4. Because these studies do not model the overstretch-
ing transition, they cannot predict or explain an intercalator-induced shift in the overstretching
force or the complete disappearance of the cooperative overstretching transition. It is the aim of



this thesis to develop an elastic model of dsDNA-intercalator complexes that does explain these
effects.

The studies mentioned above show that the influence of intercalation on the force-extension
curve of dsDNA is fairly well understood in the low-force regime. That is, this influence is well
understood for forces smaller than the overstretching transition. Therefore, we focus our study
on the high-force regime of the force-extension curve; we focus our study on the location and
magnitude of the overstretching transition, which clearly depend on intercalator concentration
according to figure 1.4b. The nature of these dependencies is not properly understood yet, so our
main goal is to understand what physical principles cause the influence of intercalators on the
overstretching transition. We use analytical theory to gain more understanding of these physi-
cal principles. In doing this we focus on the equilibrium properties of the dsDNA-intercalator
system. The dynamics of the interactions are beyond the scope of this thesis.

To summarize the above and conclude, we present the aim of this thesis:

Research aim: We want to understand the physical principles behind the effect of intercala-
tive particle binding on the location and magnitude of the overstretching transition of double-
stranded DNA.

1.4. Outline of this thesis

We continue this thesis in chapter 2 with biological and experimental background knowledge that
is relevant for our work. We first give a biochemical background of the double-stranded DNA
molecule and the interaction of dsDNA with intercalating particles in section 2.1. In section
2.2.1 we discuss the experimental methods that are used for obtaining force-extension curves,
and we finish the chapter with an analysis of the force-extension results obtained with these
methods. We conclude this analysis with a list of five observed effects of intercalating particles
on the overstretching transition of dsDNA. The rest of this thesis is dedicated to explaining
those five effects.

In chapter 3 we present our first elastic model of double-stranded DNA, the 2-state Kuhn
model. We start by reviewing the freely jointed chain (FJC) model, in section 3.1, which is the
basis for our more advanced models. Then we present the 2-state Kuhn model in section 3.2, and
we calculate the theoretical force-extension relation according to the 2-state Kuhn model. This
force-extension relation is analyzed mathematically in section 3.3, and we compare the results
of the model with experimental data in section 3.4. We finish chapter 3 by concluding that the
2-state Kuhn model is unable to explain the effects listed at the end of chapter 2.

Therefore we develop a more advanced elastic model of dsDNA in chapter 4: the 3-state
Kuhn model. This model is an extension of the 2-state Kuhn model, and takes particle binding
into account. We motivate the modeling choices in section 4.1, after which we present the model
in section 4.2. In sections 4.3 and 4.4 we analyze the 3-state Kuhn model mathematically.
This allows us to come back to our research aim in section 4.5, where we explain the physical
principles behind the influence of intercalators on the overstretching transition of dsDNA. In
section 4.6 we quantify this influence, and in section 4.7 we predict the force-extension curve of
a dsDNA-intercalator complex in a force-regime beyond the overstretching transition.

We finish this thesis with a brief summary of the most important conclusions of this work
in chapter 5, after which we give several suggestions for future research and briefly discuss the
technological relevance of our work. Finally, we give a list of references to literature, a table
with all used symbols, and appendices A and B.

We realize that this thesis might be read by two different types of readers. Some readers might
read this thesis because they are theoretically interested in our methods and work, while others



might read this thesis from a more practical point of view and might be mainly interested in our
results. We have sought to make this thesis interesting for both types of readers. Therefore, we
marked some sections in chapters 3 and 4 with an asterisk. These sections are related to deriva-
tions of our results, or to mathematical analyses that go deeper than most analyses. Sections
marked with an asterisk give a deeper understanding of our model, but this thesis can be read
without them. We leave it to the reader whether or not to read these sections.



Chapter 2

Experiments on DNA

In this chapter we address biological and experimental background knowledge that is required
to understand the theoretical modeling that is done in chapters 3 and 4. In section 2.1 we give
a biochemical background of the double-stranded DNA molecule and the interaction of dsDNA
with intercalating particles. Section 2.2 considers the experimental methods used for obtaining
force-extension curves and gives an analysis of the results obtained with these methods.

2.1. DNA

The helical structure of the double-stranded DNA molecule as we know it today was first sug-
gested by Watson and Crick in 1953 [62], using key data from Rosalind Franklin and Maurice
Wilkins [63]. Two right-handed helical chains are coiled around the same axis. Those two chains
are connected to each other by chemical bonds, which can schematically be seen as steps on a
helical ladder. DNA in this state is called B-DNA. A schematic image of B-DNA is given in
figure 2.1a [62]. This B-DNA has a diameter of 2 nm [31]. On a more detailed level the dsDNA
structure looks like figure 2.1b [54], which shows the chemical details of the dsDNA structure.
Figure 2.1b is in fact a zoom-in of figure 2.1a on 4 steps of the ladder, where the helicity has
been omitted from the figure for clarity. Colors have been used to label the different chemical
groups in the molecule.

The phosphate-deoxyribose backbones of the dsDNA molecule can be seen on the left and
on the right in figure 2.1b. This backbone is a linear structure that consists of alternating sugar
(2-deoxyribose) (orange in figure 2.1b) and phosphate (yellow) groups [64]. The two backbones
of the molecules are connected by so called nucleobases, which form base pairs. Each base is
connected to the sugar group of one of the two backbones, and two bases on different back-
bones bind by hydrogen bonds. These nucleobases come in four types: adenine (green), thymine
(purple), guanine (blue) and cytosine (red). They always pair in the way shown in the figure:
adenine to thymine and guanine to cytosine. Relating this chemical structure in figure 2.1b
to the schematical image of 2.1a, the phosphate-deoxyribose backbones form the helical chains
that define the ‘molecular ladder’ and the base pairs are represented by the ladder steps. The
distance between these ladder steps is 0.34 nm [62] and the ladder makes one complete turn
every 10.5 ladder steps (base pairs) [31]. Or, alternatively put, B-DNA has a twist of 100.8
°/nm [31]. Finally, the arrows in figure 2.1a and the 5’ and 3’ notations in figure 2.1b indicate
that the two backbones are oriented antiparallel. The experiments studied in this thesis (figure
1.4 [21, 54]) were performed with bacteriophage lambda DNA, which is dsDNA that contains
about 48.500 base pairs [31].
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Figure 2.1: Schematical images of double-stranded DNA. (a) The double helical structure of DNA that
was first proposed by Watson and Crick [62]. (b) A zoom in on the chemical details of the structure in
figure (a). The structure is formed by two phosphate-deoxyribose backbones, which are interconnected by
pairs of nucleobases. Four different nucleobases can be found in DNA, being adenine, thymine, guanine
and cytosine. Adenine always binds thymine and guanine always binds cytosine. The colors are used to
label the different chemical groups. Images taken from [62] (a) and [54] (b).

Overstretched DNA

When DNA is overstretched by an external force (section 1.1) the picture of figure 2.1 changes.
The double helix unwinds [12, 13], leading to a different structure of DNA. As mentioned already
in section 1.1 there has been debate on the nature of overstretched DNA since the discovering
of the overstretching transition. Recent work [25-27] has shown that, depending on the experi-
mental conditions, two different forms of overstretched DNA occur. S-DNA is a novel form of
double-stranded DNA that has the same chemical structure as B-DNA, but with greatly reduced
helicity of the backbones [30]. Leger et al. [30] estimated a number of 37.5 base pairs per turn,
corresponding to 22 nm per turn. In comparison, B-DNA has a helicity of 3.6 nm per turn
[31]. In other words, figure 2.1b is valid for S-DNA, but figure 2.1a should be replaced by a
ladder that rotates much slower than the ladder shown. The other possibility is the formation
of two strands of single-stranded DNA: in addition to unwinding of the helical structure, the
hydrogen bonds between the nucleobases are broken, leaving the two backbones unconnected.
In the ladder picture this is equivalent to a ladder where all steps have been broken. Regardless
of the molecular details, overstretched DNA is longer than B-DNA by a factor 1.7, leading to a
distance between base pairs of 0.58 nm [12, 13].

DNA intercalation
When particles bind to DNA via intercalation, they alter the local structure of the DNA molecule

in a different way than overstretching does. Lerman [46] was the first to report about the binding
mechanism of intercalation. He reported that a planar molecule or a planar part of a molecule
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Figure 2.2: A schematic image of ethidium (yellow), intercalated between two adjacent base pairs of
dsDNA. The space required for the intercalation is provided by a local untwisting of the dsDNA helix
and an extension of the backbone. This leads to an increased distance between adjacent base pairs from
0.34 nm to 0.68 nm [66-68]. Image taken from [65].

is inserted between normally neighboring base pairs in a plane perpendicular to the helical axis.
This mechanism was already briefly discussed in section 1.2. There we showed a schematical
image of this process (figure 1.3) to illustrate how the binding of an intercalator disrupts the
local dsDNA structure, and therefore changes the mechanical properties of the dsDNA. Here
we zoom in on that picture and see how the local structure is affected on the scale of a base
pair. Figure 2.2 [65] shows a schematic image of ethidium (yellow) intercalated between two
adjacent base pairs in a dsDNA molecule. The space required for this intercalator is provided
by an extension of the backbone and a local untwisting of the helix, which leads to an increase
of the distance between adjacent base pairs from 0.34 nm to 0.68 nm [66-68]. This doubling of
the distance between adjacent baseapairs can be seen in figure 2.2.

We remark that the intercalators described here are a special case of DNA intercalators. We
described how a planar molecule is inserted between normally neighboring base pairs. Such inter-
calators are called mono-intercalators. However, there also exists molecules that insert multiple
planar groups in between base pairs simultaneously. For example, a molecule that inserts two
planar groups, each at different positions along the DNA molecule, is called a bis-intercalator
[69, 70]. However, the experimental data that we are working with (figure 1.4) was obtained
with ethidium (figure 1.4b) and SYTOX Orange (figure 1.4a) as intercalators. Ethidium is well-
known to be a mono-intercalator (as shown in figure 2.2), while SYTOX Orange was reported
to be a mono-intercalator by Yan et al. [71]. For this reason, we focus on mono-intercalation in
this work.

It was experimentally observed [72, 73] that a bound intercalator inhibits other intercalators
to bind at adjacent binding sites on the DNA molecule. This is called the neighbor-exclusion
principle [66]. Jain and Sobell [74, 75] and Vladescu et al. [20] reported that this exclusion
principle is not caused by direct repulsion between intercalated molecules, but that it is a result
of intercalator-induced structural changes in the dsDNA. An important consequence of the ex-
clusion principle would be the fact that a saturated DNA molecule has only half its binding sites
occupied. This is in accordance with the experimentally observed 1.5-fold elongation (instead
of 2-fold) of the DNA molecule at saturation [76, 77].

However, Yan and Marko [57] predicted that at high stretching forces the maximum binding
could be increased to one intercalating molecule per base pair. Indeed, Vladescu et al. [21]
showed that at high stretching forces the overall contour length of saturated DNA (0.68 nm
per base pair) was twice as long as for B-DNA (0.34 nm per base pair). Vladescu et al. [21]
contributed this violation of the neighbor-exclusion principle to the fact that the exclusion is
mediated by structural changes in the DNA backbone. Apparently the strong stretching forces
promote these structural changes because they allow the force to do more work.
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2.2. Experimental obervations

Now that we have seen the molecular structure of double-stranded DNA and the microscopic
picture of DNA overstretching and DNA intercalation, we are ready to review the experiments
that were briefly discussed in section 1.2. First the experimental methods used in force-extension
measurements will be discussed, after which we will discuss the experimental results shown in
figure 1.4 more extensively.

2.2.1. Experimental methods

This section is concerned with the experimental methods used to measure force-extension curves
of dsDNA. While there are more possibilities, mainly magnetic tweezers [56, 57, 59, 60, 78, 79]
and optical tweezers [28, 51-53, 80, 81] are frequently used for this purpose. Another exam-
ple is the use of so called molecular combing [51, 82]. The data given in both figure 1.4a [54]
and figure 1.4b [21] in chapter 1 were obtained with optical trapping, so we will focus on this
technique here. For more information on magnetic tweezers we refer to the available literature
[56, 57, 59, 60, 78, 79].

Optical trapping was first demonstrated by Ashkin et al. [83] in 1986. An optical trap uses
a focussed laser beam to trap an object in a fixed or moving point in space. Optical traps are
capable of stably trapping particles with sizes ranging from diameters much smaller than the
wavelength of light (Rayleigh-size regime) to diameters much larger than the wavelength of light
(ray optics regime) [84]. The size of many particles that are used in biophysical experiments are
in the order of the wavelength of light and therefore they fall in between these two regimes [84].
A correct theoretical description of optical trapping in this intermediate regime is difficult, but
Ashkin showed that ray optics can nevertheless be used to gain qualitative insight in the mech-
anism behind optical trapping [85]. Basically this mechanism comes down to the competition
between two forces. The first force is called the scattering force. The scattering force is caused
by the backscattering of photons on the target particle and this force pushes the particle down
the optical axis. On the other hand there is the intensity gradient force which pulls the object in
the direction of increasing laser intensity. In other words, the intensity gradient force pulls the
particle towards the laser focus. When these forces balance each other, the target particle can
be held at a stable position just downstream of the laser focus: the particle is optically trapped
[84]. For a more extensive explanation of the optical trap we refer to the work of Ashkin [85].

The target particle for DNA force-extension experiments is a micron-scale polystyrene bead.
A dsDNA molecule is attached to such a polystyrene bead at both ends in such a way that only
only one DNA molecule binds to the beads [84]. The result is a system of two polystyrene beads
connected by a DNA molecule. The beads are then optically trapped by a laser set-up, which
controlles the position of both beads separately. When the laser focus moves, the associated
polystyrene bead moves along. If the other bead is kept in place, this leads to a change in end-to-
end length of the DNA molecule. The DNA resists this stretching by pulling on the polystyrene
beads, leading to a slight movement of the beads out of their equilibrium position. This small
shift can be observed by measuring the deflection of the laser light [86, 87]. From this measured
deflection the force exerted by the DNA molecule on the polystyrene beads can be calculated,
which is equal to the force of the beads on the DNA molecule. Since the laser deflection also
contains information about the position of the beads, this method gives the relation between the
end-to-end length of the DNA molecule and the force required to obtain it [51, 84]. The method
is illustrated in figure 2.3, which shows two alternatives for the technique described here. In
figure 2.3a [51] both polystyrene beads are controlled by an optical trap, while in figure 2.3b [2§]
one bead is controlled by an optical trap and the other bead is kept in place by a micropipette.
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Figure 2.3: Schematic drawings of optical trapping techniques for the purpose of measuring force-
extension curves of dsSDNA. A DNA molecule is attached to a polystyrene bead at both ends. The position
of the beads can be controlled by an optical set-up in which a laser is used to trap the polystyrene bead in
the laser focus. When the laser focus moves, the bead moves along, leading to a change in the end-to-end
length of the DNA molecule. The elastic force associated with this end-to-end length pulls the beads
slightly out of its equilibrium position near laser focus, which is detected by analyzing the laser deflection.
The force is then calculated from this deflection. This technique can be performed by controlling both
polystyrene beads in an optical trap (a) or by using an optical trap for one bead and a micropipette to
keep the other bead in place (b). Images taken from [51] (a) and [28] (b).

2.2.2. Experimental results

The optical trapping method described in section 2.2.1 was used to produce the data that was
given in figure 1.4 [21, 54] in section 1.2. We briefly discussed the influence of intercalator concen-
tration on the dsDNA force-extension curves in chapter 1 to explain the aim of this thesis. This
aim is to understand the physical principles behind the influence of intercalative particle binding
on the location and magnitude of the overstretching transition of double-stranded DNA (section
1.3). However, to understand what causes the intercalators to change the force-extension curve,
we first need to determine how the force-extension curves are changed. In this section, we re-
view the data of figure 1.4 and analyze the qualitative behavior of the force-extension curves
as a function of the intercalator concentration. We use our observations in the development of
theoretical models for dsDNA-intercalator systems in chapters 3 and 4. For ease of reading,
we show the data again in figure 2.4. We focus mainly on the data in figure 2.4b, because
ethidium (which is used in figure 2.4b, but not in figure 2.4a) is considered as the standard for
dsDNA intercalation [21, 66, 88|, and the ethidium-dsDNA binding mechanism has been exten-
sively studied [89-91]. By studying the intercalation of ethidium we avoid complications due to
exitations of other, non-intercalative, binding modes, which may interfere if more complicated
intercalators are used. So by studying ethidium we make sure that the particle binding we study
is intercalative in nature.

Figure 2.4 shows that the force-extension curve of dsSDNA changes significantly upon inter-
calation, not only quantitatively but also qualitatively. The most evident change in the shape of
the curves is the disappearance of the overstretching transition, the cooperative transition from
B-DNA to overstretched DNA that is normally accompanied by an elongation of about 70%.
Both figure 2.4a and figure 2.4b show that this decrease in cooperativity upon intercalation
leads to an increase of end-to-end length at forces smaller than the original overstretching force
and a decrease of end-to-end length at forces larger than the original overstretching force. This
behavior might be indicative for a change from a cooperative overstretching transition to an
anti-cooperative transition. Alternatively, there might be a third microscopic state involved if
particles intercalate, that has a length in between that of B-DNA and overstretched DNA. If this
third state becomes important when more particles are available for binding, this might explain
the length increase at low forces and the length decrease at high forces. We know from section
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Figure 2.4: This figure is identical to figure 1.4. It is repeated here for the ease of reading. The experi-
mental data shows the effect of intercalating particles on the force-extension curves of double-stranded
DNA. Both figures show several force-extension curves with different intercalator concentrations. The
high-concentration curves show completely different qualitative behavior than the zero-concentration
curves. Striking features of the high-concentration curves are the intercalator-induced shift of the over-
stretching force towards higher forces in (b) and the eventual complete disappearance of the overstretching
transition in both (a) and (b). Note that (a) gives the extension of the entire dSDNA molecule, while (b)
gives the extension per base pair. The axes are swapped with respect to the original references. Figures
modified from the master thesis of Roel Roijmans [54] (a) and from Vladescu et. al. [21] (b).

2.1 that such a state indeed exists: if a particle intercalates between two DNA base pairs, it
elongates the DNA locally by a factor of 2. However, section 2.1 also tells us that at moderate
forces, a bound intercalator inhibits other intercalators to bind at adjacent binding sites on the
DNA molecule. This leads to an effective maximum elongation upon intercalation of 1.5, which
is indeed in between the length of B-DNA (not elongated) and overstretched DNA (elongated
by a factor 1.7).

Another striking effect of the intercalating particles is the force-shift of the overstretching
transition, which can be seen in figure 2.4b and which was already briefly discussed in sections
1.2 and 1.3. For nonzero concentrations the overstretching force initially increases with particle
concentrations. At the same time the elongation upon overstretching decreases because the
end-to-end length of intercalated DNA molecules is already significantly larger than 1 at forces
smaller than the overstretching force (figure 2.4b). This large end-to-end length for forces
smaller than the overstretching force is also an evident change of qualitative behavior, since
the zero-concentration curve shows an approximately constant extension of about 1 before the
overstretching transition. For even higher concentrations, the overstretching transition vanishes.
This can be seen in figure 2.4a starting at a concentration of 100 nM and in figure 2.4b for
concentrations of 125 nM and more. In these force-extension curves there is no sign of any
cooperativity. A good theoretical model must be able to explain all observations discussed here.

In chapters 3 and 4 we develop such a model. In chapter 3 we develop a 2-state model
(B-DNA and overstretched DNA) to investigate whether a change from cooperativity to anti-
cooperativity might explain the change in qualitative behavior in figures 2.4a and 2.4b. We
conclude that it does not (section 3.5). While this model might explain the disappearance of the
cooperative overstretching transition, we will see that it cannot explain an intercalator-induced
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shift of the overstretching force. Also, we will see that a 2-state model cannot explain why the
end-to-end length of intercalated dsDNA is already significantly larger than 1 for forces lower
than the overstretching force (figure 2.4b, concentrations 5-25 nM). Despite the fact that the
2-state model is not satisfying for our purposes we analyze it extensively. We will do this for
three reasons; first, an understanding of why the 2-state model is insufficient for explaining the
data in figure 2.4 helps understanding why the more advanced 3-state model, that is discussed
in chapter 4, is designed the way it is. The second reason is the relative simplicity of the 2-state
model. The 2-state model is an ideal model to explain the physical concepts that will also be
relevant in the mathematically much more challenging 3-state model. And finally, in chapter 4
we will see that for reasonable parameter choices the 3-state model behaves like a combination
of 2-state models.

In chapter 4 we show how the 2-state model can be extended by including a third molecular
state, which is associated with a part of the dsDNA that is intercalated. We attribute a length
to this state that is twice the length of B-DNA, in accordance with the knowledge about DNA
intercalation from section 2.1. We see that the existence of this third state, in combination with
cooperativity and anti-cooperativity, enables the model to explain all observations given earlier
this section.

To summarize, our aim is to understand the physical principles that govern the influence of
intercalative particle binding on the location and magnitude of the overstretching transition of
double-stranded DNA. To obtain this understanding, we need to understand five intercalator-
induced effects that we observe in figure 2.4:

e A force shift of the overstretching transition as a function of intercalator concentration.

e An end-to-end length that is significantly larger than 1 for forces smaller than the over-
stretching force.

e An end-to-end length increase at forces smaller than the original overstretching force.
e An end-to-end length decrease at forces larger than the original overstretching force.

e The disappearance of the overstretching transition for large concentrations.
A theoretical model that explains these five features of figure 2.4 is able to answer the main

research question. We see in chapter 4 that our 3-state model is indeed capable of explaining
all these features.
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Chapter 3

The 2-state Kuhn model

In this chapter we present our first elastic model of double-stranded DNA, the 2-state Kuhn
model. First we review the standard Kuhn model, which is commonly known as the freely
jointed chain (FJC) model, in section 3.1. Then we present the 2-state Kuhn model in section
3.2, where we also calculate the 2-state force-extension relation. In section 3.3 we analyze this
force-extension relation, followed by a comparison of the model with experimental data in section
3.4. We do not yet discuss the modeling of intercalative binding in this chapter; this is discussed
in chapter 4. We finish the chapter by concluding that the 2-state Kuhn model is unable to
answer our research questions.

3.1. The freely jointed chain

The freely jointed chain (FJC) or Kuhn model forms the starting point for both theoretical
models that we discuss, in this chapter and in chapter 4. The freely jointed chain model is
the simplest polymer model available for investigating force-extension relations. It treats the
polymer as a chain of identical, rigid, non-deformable segments (Kuhn segments) joined by
perfectly flexible hinges [14, 15]. Later in this thesis we introduce multi-state Kuhn models in
which we allow each Kuhn segment to occupy two or three different states. We call them the
2-state and 3-state Kuhn models. For clarity, we refer to the standard Kuhn model as the freely
jointed chain or the 1-state Kuhn model.

To describe a microstate of the FJC, we assign a unit vector ¢ to each Kuhn segment. We
label them such that fi is the unit vector that points in the direction of the i** segment, and 0,
is defined as the angle between #, and the z-axis. The collection of all unit vectors {f,}, together
with the length of a Kuhn segment [, fully describes the configuration of the freely jointed
chain; [, is also called the Kuhn length. An example of such a FJC configuration is given in
figure 3.1. The figure also shows the end-to-end length of the FJC, which is the shortest distance
between the end points of the chain. The contour length is defined as the length along the chain,
which is equal to NI for the 1-state Kuhn model, where N is the number of Kuhn segments.
Obviously, the end-to-end length of a FJC is always smaller than or equal to its contour length.
To calculate the force-extension relation, we apply a stretching force with magnitude f in the
z-direction. The resulting calculation is presented in section 3.1.1, but before that we briefly
address the question of why the freely jointed chain resists stretching.

A freely jointed chain is sometimes referred to as an entropic spring. The origin of this name is in
the fact that all possible microstates of the freely jointed chain are energetically equivalent. After
all, the Kuhn segments are all perfectly rigid and non-deformable, and all hinges are perfectly
flexible. Nevertheless, the freely jointed chain does resist stretching. This is a consequence of
entropy: more distinct microstates exist that belong to a specific end-to-end vector with short
length than microstates that lead to a specific long end-to-end vector. Or, to put it differently,
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End-to-end length

Figure 3.1: A possible configuration of a freely jointed chain (FJC). The rods display the Kuhn segments,
while the circles represent infinitely flexible hinges that connect the Kuhn segments. A unit vector ; is
introduced such that it points in the direction of the i*" Kuhn segment. 6; is the angle between fi and
the z-axis. The configuration of the freely jointed chain is fully described by the Kuhn length [y and the
collection of all unit vectors {#,}. A force f is applied in the z-direction to calculate the force-extension
relation. The result of this force is a certain distance between the end points of the chain, which is called
the end-to-end length.

there is a loss of conformational entropy upon end-to-end length increase. Since all states are
energetically equivalent, this decrease in conformational entropy causes an increase in total free
energy. However, like every physical system the freely jointed chain is more likely to be in a state
with low free energy than in a state with high free energy, and therefore it resists stretching.
Hence the term entropic spring.

3.1.1. The force-extension curve of the freely jointed chain

Now that we understand why the FJC resists stretching, we can calculate quantitatively how. In
other words, we can calculate the force-extension curve of the freely jointed chain. The starting
point is the energy functional for the chain:

L)) I NP [
kT __kBOTZf'ti 72 (3.1)

=1

where e¥C[{#,1] is the total energy of the freely jointed chain, which is normalized by the thermal
energy kpT'. Here T is the temperature and kp is Boltzmann’s constant. Since all microstates
are equivalent for the internal energy of the FJC, the only term arising on the right side of
equation 3.1 is the work done by the chain, which is minus the work performed on the chain
by the stretching force in the z-direction. Thus, the extension is determined by a competition
between energy (the work done) and conformational entropy. Note that there is no energetic
term in equation 3.1 associated with self-avoidance of the chain. We justify this simplification
by pointing out that the probability of a chain under tension crossing itself is negligible.

The first step in the calculation involves the calculation of the partition function, Z. We de-
scribe the required steps here but we omit the actual mathematical operations. The theoretically
interested reader can find the calculations in Appendix A.1.

FJC
Z = Zexp( k:[gf H) (3.2)
{t;}

The free energy F' is now given by

F = —kgT In(2), (3.3)
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and the expectation value of the end-to-end length in the z direction is obtained from the free
energy by differentiation to its conjugated variable. This is minus the force, — f:

oF

(z) = “ar (3.4)
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Figure 3.2: The dimensionless force-extension curve of the freely jointed chain or 1-state Kuhn model

shows the expectation value of the dimensionless extension, <Lio>, as function of the dimensionless force

= k-’;lOT, according to equation 3.8. Here z is the end-to-end length in the z direction, Lg is the contour

length of the chain, [y is the Kuhn length, f is the stretching force, kp is Boltzmann’s constant, and 7' is
the temperature. The curve is general for any FJC, and shows the competition between the work done by
the stretching force (which favors a large end-to-end length z) and the maximization of conformational
entropy (which favors a small end-to-end length z).

The expectation value in equation 3.4 denotes a thermal average. We are interested in the
thermal average because we study the equilibrium properties of dsDNA systems in this thesis
(section 1.3). The final result is the force-extension relation: the expectation value of the end-
to-end length (z) as a function of the stretching force,

k
() = Nl {coth (kJ:OT) - fBzﬂ , (3.5)
1

where cothz = 5 (expx + exp(—=x)) is the hyperbolic cotangent function. Note that the term
Nlp is just the contour length of the chain, which we call Lg. Dividing by the contour length
gives the relative extension as function of force, which is given by the Langevin function:

A\l flo\  kgT
()= () = o (L) -5 (86)

Finally, we define a dimensionless force ;,

— -]l()
= — 3.7
X LT (3.7)



which gives the dimensionless force-extension relation:

z 1
— ) = coth(x) — —. 3.8

<Lo> 00 X (3:8)
The dimenionless force-extension relation is plotted in figure 3.2. Note that the plot represents
any freely jointed chain, since it does not depend on the Kuhn length [y or the temperature 7.
Both are taken into account indirectly in the dimensionless force Y.

3.2. A 2-state Kuhn model for DNA

We now expand the 1-state Kuhn model from section 3.1 by allowing each Kuhn segment to
occupy two different states. We first present the 2-state Kuhn model and discuss the molecular
basis of the model. In other words, we discuss why we choose this model to describe a double-
stranded DNA molecule. Subsection 3.2.3 deals with the calculations of the force-extension
curve of the 2-state Kuhn model. The corresponding results are discussed in section 3.3.

The 1-state Kuhn model is used as the simplest model for the elastic behavior of single-stranded
DNA, but a model for double-stranded DNA requires something more. At a stretching force of
about 65 pN the dsDNA suddenly elongates by a factor of 1.7; this is known as the overstretching
transition. In section 2.1 we gave the biological background of this transition: at forces lower
than the overstretching force, the DNA is in the helical Watson-Crick [62] state that is called B-
DNA. At forces higher than the overstretching force the DNA is in a different, non-helical state
of DNA that we call overstretched DNA and that is 1.7 times longer than B-DNA. The 1-state
Kuhn model does not contain these different states of DNA, and therefore it is not suitable for
dsDNA at high forces.

This deficiency can be overcome by allowing two different states for each Kuhn-segment.
The Kuhn segment can either represent B-DNA or it can represent overstretched DNA. A Kuhn
segment that represents B-DNA has a length of [, while the length of an overstretched Kuhn
segment is 1.7 ;. To keep our model generally valid, we assign a length of v,/ to an overstretched
Kuhn segment, with v, the elongation factor of the overstretched state with respect to B-DNA.
We choose lp = 0.34 nm, the distance between two base pairs in B-DNA. This might seem
contradictory with the fact that the Kuhn length of a freely jointed chain, that is optimal for
fitting force-extension data, should be twice the persistence length of the actual polymer [15].
The persistence length of dsDNA is about 53 nm, more than 150 times the monomer length
of 0.34 nm [15]. This suggests that the Kuhn length [y should be around 300 monomers in
length. Instead, we choose lyp to be one monomer length: the distance between two base pairs.
We do this because we allow each monomer to overstretch independently from other monomers.
If we would use a segment length of 300 monomers, then overstretching always has to occur
with 300 monomers at the same time. That is very undesirable in our model, since this changes
the features of the overstretching transition. Moreover, we use a similar argument in chapter
4, when we allow each base pair to bind an intercalator independently from neighboring base
pairs. The downside of this approach is that the effective persistence length of our model is
much smaller than the actual persistence length of dsDNA. Our choice for the segment length
lp therefore leads to a difference in interpretation between the segment length and the Kuhn
length. The Kuhn length is a characteristic length scale associated with the loss of directional
correlation, while the segment length [y is the length of a single Kuhn segment in the chain.
In a conventional freely jointed chain, the segment length and the Kuhn length are identical.
However, in our model the chosen segment length [ = 0.34 nm is about 300 times smaller than
the Kuhn length of dsDNA.

In addition to the length increase, we assign a free energy penalty €, to a Kuhn segment in the
overstretched state, which shows that B-DNA is the preferred state in the absence of any force.
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Figure 3.3: Two states of DNA in the 2-state Kuhn model. State 0 represents B-DNA and is the ground
state of dsSDNA with a segment length of [,. State 1 represents overstretched DNA with a length of 1.
A free energy penalty €, is associated with the transition from state 0 to state 1.

We call B-DNA, which is the ground state of dsDNA, state 0. Overstretched DNA is referred
to as state 1. We use the state parameter S; to keep track of the state of the ith Kuhn segment:
S; = 0 means the i'® Kuhn segment is B-DNA, while S; = 1 is used for overstretched DNA. In a
force-extension experiment, the value of the state parameter S; is determined by a competition
between the work done by the stretching force, which favors state 1 because it is the longer state,
and the free energy penalty for state 1, 1, which favors state 0. At the overstretching transition
these free energies balance each other. The model is summarized schematically in figure 3.3.
We note that, in reality, it is not unthinkable that the values of these parameters (g1 and ~;)
depend on the type of nucleobase that they describe. However, we do not distinguish between
different nucleobases, so our parameters can be considered as averages over all nucleobases in
the DNA.

One more ingredient has to be added to the model to catch the essential features of the
overstretching transition. From experimental data of the overstretching transition [12, 13] it is
clear that the overstretching transition is cooperative in nature. In other words, as soon as the
helix overstretches at some location along the DNA molecule, it is easier for neighboring base
pairs to overstretch too. This is indicative of the existence of a free energy cost upon the creation
of an ‘interface’ between B-DNA and overstretched DNA. At this ‘interface’ there is a small
volume in the dsDNA molecule that has to adopt properties of both B-DNA and overstretched
DNA. This intermediate state is energetically unfavorable, resulting in a free energy cost for
such an ‘interface’. The quotation marks indicate that we are not talking about an interface in
the conventional sense, such as the interface that separates a liquid from a gas; with interface
we refer to a small volume in dsDNA in between B-DNA and overstretched DNA. In terms of
our model, such an interface exists between a Kuhn segment in state 0 and a Kuhn segment in
state 1. We assign a free energy penalty to each such interface. We call this free energy penalty
the cooperativity parameter and use the symbol A for it. An example of a possible configuration
of the 2-state Kuhn model is given in figure 3.4.

We note that, at this point, we have created a 2-state Kuhn model that is designed to explain
the overstretching transition of dsDNA. In other words, the 2-state model is designed to explain
the behavior of the force-extension curve of dsDNA in the absence of particle binding; we have
not yet modeled intercalative binding. We introduce intercalators in our models in chapter
4. Before we do this, we first want to analyze and understand the 2-state Kuhn model for a
couple of reasons. In doing so we show that the 2-state model is not capable of answering our
research questions. This shows that the influence of intercalative binding cannot be attributed
to a rescaling of parameters that dictate the force-extension curve in the absence of binding
(1, A, 71). Instead, it shows that we need a more sophisticated model to take binding into
account, which justifies the complexity of the 3-state Kuhn model that we introduce in chapter
4. Moreover, the relative simplicity of the 2-state model makes it suitable for explaining the
physical concepts that will also be relevant in the mathematically much more challenging 3-state
model. And finally, in chapter 4 we will see that for reasonable parameter choices the 3-state
model largely behaves like a combination of three 2-state models. A proper understanding of
the 2-state Kuhn model is therefore very useful for analyzing the 3-state model in chapter 4.
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Figure 3.4: An example of a possible configuration of the 2-state Kuhn model. The example shows Kuhn
segments in state 0 (S = 0), representing B-DNA, and Kuhn segments in state 1 (S = 1), representing
overstretched DNA. Segments in state 1 are elongated with respect to state 0 with a factor 1, which is
1.7 for the overstretching transition of dsDNA. In addition to the free energy penalty for a Kuhn segment
in state 1, as displayed in figure 3.3, there is a free energy penalty A for an interface between two Kuhn
segments in different states.

3.2.1. The absence of bend stiffness

This 2-state approach for modeling the overstretching transition of dsDNA is not new. As briefly
mentioned in section 1.1 of the introduction, Storm and Nelson [15] used exactly that approach.
They introduced the Ising-DPC model, which is an extension of their discrete persistent chain
(DPC) model. In this Ising-DPC model they allowed each Kuhn segment to be in one of two
possible states in exactly the same way as we allow our Kuhn segments to be in either state 0
or state 1 (figure 3.3). They also use a free energy penalty equivalent to £1 and a cooperativity
parameter equivalent to A. In other words, they expanded their DPC model in exactly the same
way that we expanded the freely jointed chain model. Indeed, we could just as well have named
our 2-state model the Ising-FJC model. Therefore, the only difference between our 2-state Kuhn
model and their Ising-DPC model is exactly the same as the difference between the DPC model
and the FJC model: the presence (DPC) versus absence (FJC) of bend stiffness. The Ising-
DPC model penalizes bending between two Kuhn segments, and therefore the model contains
a persistence length that is much larger than the actual monomer length. Our 2-state Kuhn
model does not. Force-extension data shows that the persistence length of dsDNA is around 53
nm, more than 150 times the monomer length (0.34 nm) [15, 31].

The question arises why we neglect the bending stiffness of the dSDNA. The answer can be
found in our main research question. We are interested in the influence of intercalative particle
binding on the overstretching transition of dsDNA. Or, to put it differently, we are interested
in the influence of intercalative particle binding on the high-force regime of the force-extension
curve. The influence of bend stiffness or persistence length in the high-force regime is found
in the way in which the stretching force diverges when the end-to-end length approaches the
contour length: f ~ (Lo — z)~® [18]. The coefficient « is equal to 1 for a freely jointed chain
model, while &« = 2 for the worm-like chain and the discrete persistent chain. However, we
are mainly interested in the approximate length of the chain at a given force, rather than in
the asymptotic behavior of this length. Existing data of the overstretching transition of dsDNA
(figure 1.2) shows that a force which is large enough to overstretch B-DNA has already stretched
it to an extent that the end-to-end length is approximately equal to the contour length. Due to
the large stretching force, there is hardly any bending left in the molecular chain. Therefore the
degree to which the chain resists bending, the bend stiffness, is not important for our purposes
in the high-force regime.

While the significance of bend stiffness for this work is limited, including bend stiffness would
greatly increase the complexity of our model. Introducing a bend resistance between the Kuhn
segments effectively leads to an additional cooperativity parameter in the model: a correlation
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between the unit vectors ¢; and £i+1. This complicates calculations of the force-extension relation
greatly. For the details of this calculation we refer to the work of Storm and Nelson [15], but
the most important consequence of this additional cooperativity mechanism is that the model
cannot be solved analytically and that a variational scheme is necessary to approximate the
force-extension curve [15, 18]. Our 2-state model, however, can be solved analytically. We
present the results in section 3.2.3. While not a trivial expression, we are able to gain more
understanding about our system by systematically analyzing it. Moreover, calculating force-
extension curves is much more straightforward for our analytical result than for the variatonal
approach of the Ising-DPC model. In our view, this complication and extra effort is not worth
the limited improvement of our model in the large-force regime, especially since we wish to focus
on the complication due to the particle binding and the addition of a third molecular state in
chapter 4. Recall that the aim of our work is to understand the essential physics involved in
the influence of intercalators on the force-extension curve. To understand what are the leading
physical principles that dictate this influence, we keep our model as simple as possible and only
introduce parameters if we think they are essential for gaining this understanding. Finally, we
note that the other frequently used polymer model that contains bend stiffness, the worm-like
chain (section 1.1), is not suitable for our multi-state models because its lack of discreteness.

3.2.2. A course-grained model

We have come to the point where we have introduced the 2-state Kuhn model, and considered
which parameters to take into account and which to neglect. In principle, we are now ready to
start with the calculations of the force-extension curve. Before that, however, we need to ask
ourselves one more question. This question concerns the difference in complexity between an
actual DNA molecule and the complexity of a freely jointed chain or Kuhn model. In chapter
2, we showed the helical structure of dsDNA in figure 2.1a. More molecular details are shown
in figure 2.1b, that shows the chemical structure of the phosphate-deoxyribose backbone and
the paired nucleobases. A real dsDNA molecule is even more complex since interactions arise
between non-neighboring atoms along the backbone when the molecule is formed into a helical
structure. And yet we model this very dsDNA molecule by regarding it as a chain of perfectly
rigid rods that are free to rotate with respect to each other. What justifies this great reduction
of complexity?

The answer to this question lies in our approach of coarse-graining: we average over all
microscopic details of the dsDNA and we use a small number of effective parameters that model
the essential features of the molecule. Consider the 2-state model that we just introduced: we
used four independent parameters for this model: Iy, 71, €1 and A. Of these four parameters,
lo (physical monomer length) and ~; (elongation of such a monomer upon overstretching) have
a clear microscopic background. For the other two parameters, €; and A, there is no obvious
microscopic picture: they are effective paremeters. Their origin might be in structural transition
in the DNA itself or in interactions of the DNA with the surrounding solution. While £; and A
might be interesting topics of study, we do not attempt to state anything about their nature,
their origin or their microscopic background because that is not the aim of this study. Regard-
less of their origin, we do know from experimental data (section 1.1 [12, 13]) that microscopic
interactions exist that effectively lead to a free energy penalty upon overstretching (¢1) and a
free energy penalty for an interface between a Kuhn segment in state 0 and a Kuhn segment
in state 1 (). In other words, we present a coarse-grained model that we use to capture the
essential features of the force-extension curve of dsDNA. The justification of doing so can be
found in our results. Section 3.4.1 shows that our model indeed captures the essential features
of dsDNA overstretching.
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We now derive the force-extension curve for the 2-state Kuhn model. The reader that is mainly
interested in our results can skip section 3.2.3 and continue reading in section 3.3.

3.2.3. Methods and calculations*

We use the same principles in the derivation of the force-extension relation of the 2-state Kuhn
model that we used when deriving the force-extension relation of the 1-state Kuhn model in
section 3.1.1. The difference is in the mathematics, which is more difficult due to the extra
Kuhn state and the cooperativity between the two states.

We start again by formulating the energy functional of the chain:

g2-state[ ({1 £G1] _ i [_ flg [T+ S; (71— 1)]

N-1
t;-2 S, AM1—=146s.s.,). (3.9
kBT kBT i +€1 z:| =+ ; ( Sz,Sz+1) ( )

i=1

The first term in the energy functional is the work done by the chain. Comparing with
equation 3.1 for the 1-state Kuhn model, we notice that the length [y has been replaced by
lo[1+ S; (71 — 1)], which is equal to Iy for S; = 0 and ~1lp for S; = 1. Recall that S; = 0 repre-
sents B-DNA and S; = 1 represents overstretched DNA. The second term in equation 3.9 gives
the free energy penalty for overstretching and the final term displays the free energy penalty for
interfaces between state 0 and state 1 segments (0/1-interfaces) in the chain. Here dg; s,,, is the
Kronecker delta, which is equal to 1 if S; = S;41 and equal to 0 otherwise. Note that both &
and A\ are not divided by the thermal energy kpT. This is because we define both £; and A as
dimensionless free energies by normalizing them to kp7'. In other words, the unit-bearing free
energy penalties are given by kgTe; and kT A. As in the case of the 1-state Kuhn model, we
neglect self avoidance in the energy functional.

From here on we take the same steps that we took for the 1-state Kuhn model in section
3.1.1, and again we only present the required steps but omit mathematical details. The complete
derivation is presented in Appendix A.2. This derivation is an important part of our work, and
we encourage the theoretically interested reader to study it. However, the rest of this thesis can
be read without studying the derivation in Appendix A.2.

We first calculate the partition function, but now the summation over all possible microstates
involves a summation over all sets {S;} as well as over all sets of unit vectors {#;}.

2—state[ff .
Z =33 eop (—5 k[{t%}’ {S’}]> . (3.10)
(i} {Si} B

Calculating this partition function is, however, much more difficult than calculating the partition
function of the 1-state Kuhn model (Appendix A.1). In the case of the 1-state Kuhn model the
partition function factorized (equation A.3), because all Kuhn segments behave independently.
However, in the 2-state Kuhn model the cooperativity parameter A causes an interaction between
neighboring Kuhn segments, which prevents the partition function from factorizing. We employ
a technique called the transfer matriz method [92] to calculate the non-factorized partition
function. The details of the calculations can be found in Appendix A.2. In the final steps of the
derivation we calculate the free energy and the expectation value of the end-to-end according to
equations 3.3 and 3.4, repeated here for convenience,

F = —kgT In(2), (3.11)
(2) = —g? (3.12)
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The result of the calculations presented in Appendix A.2 in the infinite-chain limit reads

z 1 2
li 2N 2 2z h h
im <L0> 5 < X + coth (x) + 71 coth( VlX)>

N—oo

" [cosh (m1x) + exp(e1) (cosh(x) — 71 coth(y1x) sinh(x))] — coth(x) sinh(y1x)
_l’_

=
2\/4 exp (€1) 71 sinh (x) sinh (71 x) exp (—2X) + ( — exp (1) 1 sinh (x) + sinh (1)) )

(3.13)
Here the extension is again normalized on Lo = Nly and x = k]%%r is a normalized force which
was first defined in equation 3.7. Lg is the contour length of the 1-state Kuhn model, but

not necessarily the contour length of the 2-state Kuhn model. The latter varies because of

the variable length of the Kuhn segments. Therefore, the normalized extension <Li0> has a

maximum value of ~; instead of 1. Recall that 73 = 1.7 for the overstretching transition of
dsDNA. sinhz = J(expa — exp(—x)), cosha = J(expz + exp(—z)) and cothz = P are the
hyperbolic sine, cosine and cotangent respectively.

As can be seen from equation 3.13, we have used the thermodynamic limit, or ground-state
approximation, (N — oo) in the derivation of the force-extension relation. This simplifies the
calculations and, more importantly, greatly reduces the complexity of the expression for the
extension as a function of force. This enables us to analyze the force-extension relation analy-
tically in section 3.3. We justify this approximation by noting that the difference between the
thermodynamic limit result and the exact result, for an arbitrary number of Kuhn segments IV,
is only significant at a very small number (N < 50) of segments (Appendix B). The experimen-
tal results that we study (figure 1.4 [21, 54]) were obtained by stretching bacteriophage lambda
DNA that contains about 48.500 base pairs (section 2.1). Since every Kuhn segment models
one base pair (lp = 0.34nm, section 3.2), this means that the thermodynamic limit is a very
reasonable approximation to use in this thesis. Appendix B shows the exact result for arbitrary
N graphically, compares this with the thermodynamic limit result, and justifies the statement
that the thermodynamic limit is a decent approximation for N = 50.

3.3. The force-extension curve of the 2-state Kuhn model

The reader who skipped section 3.2.3 should know that we defined 1 and A to be dimensionless
free energies by normalizing them to the thermal energy kpT'.

We presented the force-extension relation of the 2-state Kuhn model in equation 3.13. In this
section we analyze this expression and explore how the behavior of the force-extension curve
depends on the system parameters. We illustrate this analysis by showing the force-extension
relation in graphical form. We start with an example of the non-cooperative case; we plot a
dimensionless force-extension curve with A = 0 in figure 3.5. The force-extension curve of the
1-state Kuhn model (freely jointed chain) is plotted as a reference. The values of &1 (= 15) and
A (= 0) are chosen because they produce a plot that clearly illustrates the features of the 2-state
force-extension curve. They are not representative for dsSDNA. The elongation factor +; is 1.7.
Section 3.4 relates the model to experimental data on dsDNA.

For small forces the 2-state force-extension curve in figure 3.5 is indistinguishable from the
1-state force-extension curve. The work done by such a low force is not enough to overcome the
free energy penalty €1 and to excite a Kuhn segment from state 0 to state 1. At higher forces
(16 < x < 28), however, some Kuhn segments are excited to state 1 and the force-extension
curve starts deviating from the single-state case. This force regime shows a coexistence of Kuhn
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Figure 3.5: A dimensionless force-extension curve of the 2-state Kuhn model (black) with axes that
are identical to those in figure 3.2. The force-extension curve of the 1-state Kuhn model (freely jointed
chain) is plotted as a reference. For small forces (x < 16) the 2-state curve is indistinguishable from
the single-state curve, and approximately all Kuhn segments are in state 0. At high forces (y 2 28),
approximately all Kuhn segments are excited to state 1, with corresponding length 1l = 1.7ly. The
chain then behaves like a freely jointed chain with segment length ~;ly instead of ly. At intermediate
forces (16 < x < 28) Kuhn segments in states 0 and 1 coexist. We call this force regime the overstretching
transition. The vertical line indicates the center of this overstretching transition, and the corresponding
force is called the overstretching force (xo1). The values of the system parameters, €1 (= 15) and A (= 0),
are not representative for dsDNA, but they are chosen because they produce a plot that clearly illustrates
the features of the 2-state force-extension curve.

segments in state 0 and Kuhn segments in state 1. At even higher forces (x 2 28), approximately
all Kuhn segments are excited to state 1. The chain then behaves like a freely jointed chain
again. The only difference is that in that case all Kuhn segments have a length of 11y instead of
lo. We call the force-regime that shows coexistence between state 0 and state 1 the overstretching
transition. The center of this overstretching transition is marked with a vertical line in figure 3.5.
This is the point on the curve where 50% of the Kuhn segments is in state 0 and the other 50%
is in state 1. We call the corresponding force the overstretching force, and use the symbol xo1
for it. The subscript 01 indicates that this is the overstretching force of the transition between
freely jointed chains with segments in state 0 and state 1 respectively. In chapter 4 we encouter
transitions between other states than 0 and 1 as well.

We already understand the force-extension relation of the freely jointed chain; we studied it in
section 3.1. The more interesting regime of the 2-state force-extension curve is the overstretching
transition. The transition is characterized by two independent quantities: the position of the
transition and the transition width. We analyze them in sections 3.3.1 and 3.3.2 respectively.

3.3.1. The position of the overstretching transition

We define the position of the overstretching transition as the overstretching force xo1, that was
defined above and given by the vertical line in figure 3.5. We calculate the overstretching force
from equation 3.13 by using that half of the Kuhn segments is in state 0 and the other half
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in state 1 at this force. This indicates that the end-to-end length is exactly in between the
end-to-end lengths of freely jointed chains with short (lp) and long (v1ly) segments. The average
of these two end-to-end lengths is given by

z 1 1 1
— = —| coth(x) — — + 71 coth —— . 3.14
(&) 2( (0 = %+ 7 coth(r) X) (3.14)

The first two terms in equation 3.14 give the expression of the FJC with segment length [
(equation 3.8). The last two terms give the force-extension relation of an FJC with segment
length v1lg that is normalized on Ly = Nlj.

Note that equation 3.14 gives the the first term in the 2-state force-extension relation (equa-
tion 3.13). In other words, the first term in equation 3.13 describes the average of a state 0 FJC
and a state 1 FJC. The second term gives the deviation from this average. Equating the second
term to 0 therefore gives the position of the overstretching force. The resulting equation can
be reduced to equation 3.15. We omit the proof, but the interested reader can verify that the
numerator of the second term reduces to 0 if equation 3.15 applies,

. 1 .
sinh (x01) = o~ exp(—e1) sinh (y1x01) - (3.15)

Equation 3.15 does not have an exact solution. However, we can approximate the solution if
we assume that the dimensionless force xo1 is large. That is, if fly is large compared with kgT
at the position of the overstretching transition. In that case the force has stretched the chain
to an end-to-end length of approximately Ny before it overstretches. In other words, for forces
approaching the overstretching force, all angles between Kuhn segments are close to zero and the
mechanical energy dominates the thermal energy. In mathematical terms this condition implies
that sinh(yo1) = eXp(Xm)*zeXP(*Xm) ~ BXP(QXm), leading to

1
exp (xo1) = %exp(—élJerXm)- (3.16)

The solution of equation 3.16 gives

e1 +logm

) 3.17
-1 (3:17)

Xo1 =
which defines the position of the overstretching transition. For forces smaller than xg1, a Kuhn
segment is favored to be in state 0, because that state has the lowest free energy. In this case
the free energy penalty for state 1 dominates the work done by the stretching force. If x > xo1,
the work dominates over the free energy penalty and Kuhn segments are favored to be in state
1.

We make this more explicit by substituting the definition of the dimensionless force x (equa-
tion 3.7) in equation 3.17 and rearranging terms. This yields for the unit-bearing overstretching
fOI'CG, f017

foilo(v1 —1) = kgTer + kpTlogyi. (3.18)

The left hand side in equation 3.18 represents the work by the stretching force when a single
Kuhn segment is elongated from a length of [y to a length of v1lg. The first term on the right
hand side is the free energy penalty upon this elongation, as defined in section 3.2. Recall that
e1 is defined as this free energy penalty normalized by kpT (section 3.2.3). The second term on
the right hand side is a renormalization of the penalty 1. It has an entropic origin that is quite
subtle; when a state 0 segment is elongated to a state 1 segment, the length increase is [y (71 — 1).
However, in reality a segment is never perfectly aligned with the z-direction (the direction of the
force). So to obtain a length increase in the z-direction of Iy (y; — 1), the long segment needs
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a greater degree of alignment with the force than the short segment. In other words, it has to
reduce its polar angle 0. In our model, a reduction of the angle 6 is a reduction of conformational
entropy. That is a consequence of our choice to calculate the partition function by integrating
over the angles ¢ and 6 and not over Cartesian coordinates (Appendix A.2, equation A.12 and
associated footnote). Therefore, to obtain the work on the left hand side of equation 3.18,
an entropic penalty has to be imposed on state 1. We speculate that this entropic penalty is
kT log~i. In the end, however, this entropic term is not very relevant for our purposes. It is
just a rescaling of a phenomenologic free energy 1. We can easily absorb the rescaling in &
without the loss of generality. So the right hand side of equation 3.18 represents the free energy
penalty upon elongation of a single Kuhn segment.

When f > fo1 the left hand of equation 3.18 is larger than the right and the work dominates
the free energy penalty: state 1 is favored over state 0. When f < fp1 the right hand term is
larger and the free energy penalty upon overstretching is larger than the energy reduction by
the work: state 0 is favored over state 1.

Finally we note that the cooperativity parameter A does not appear in equation 3.17; the
position of the overstretching transition does not depend on the cooperativity of the transition.
A only influences the width of the transition.

3.3.2. The width of the overstretching transition

Figure 3.5 clearly shows that the overstretching transition is not infinitely sharp. It has a certain
width. The 2-state force-extension curve of figure 3.5 is plotted again in figure 3.6. However,
this plot shows two reference curves: a freely jointed chain with all segments in state 0 and a
freely jointed chain with all segments in state 1. The overstretching transition is the region of
the curve where the 2-state extension is in between those of the state 0 and state 1 freely jointed
chains. This region is marked with the blue vertical lines. The black vertical line again indicates
the position of the overstretching force (section 3.3.1).

Below we calculate the width of the overstretching transition and investigate the influence
of the cooperativity parameter A on this width. First, however, we answer the question of why
the transition has a nonzero width. After all, we calculated the position of the overstretching
force xo1 in the previous section. We stated that for y < xo1 state 0 is favored over state 1 and
for x > xo1 it is the other way around. Why, then, are there already Kuhn segments in state 1
for x < xo01 and still Kuhn segments in state 0 for x > xo1?

The answer is entropy. Entropy favors a mixing of state 0 and state 1, since there a more
possible microstates with a mix of states 0 and 1 than with only one of them. In the end, it
is not the energy of the total chain, but the free energy ' = E — T'S that is minimized. The
smaller the energy difference between states 0 and 1 is, the larger the influence of the mixing
entropy Smiz iS. This causes a significant amount of Kuhn segments to be in the energetically
unfavored state at forces close to the overstretching force.

Alternatively, the coexistence of states 0 and 1 can be understood by considering the prob-
ability distribution of the Kuhn segments, which is given by the Boltzmann distribution. This
distribution gives the probability P, of a system to be in a certain microstate v according to
equation 3.19,

E,
P, x exp <_k‘ T) , (3.19)
B

where E, is the energy corresponding to microstate v. Equation 3.19 shows that there is always
a finite probability for a system to be in an energetically unfavored state. If we consider a single
Kuhn segment as our system, this means that there is always a finite probability for the segment
to be in state 1 even if state 0 has a lower energy. In fact, it is even very unlikely for all segments
to be in the energetically favored state simultaneously; the expectation value for the fraction of
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Figure 3.6: The 2-state force-extension curve (black) that was also shown in figure 3.5, with two reference
curves: the state 0 FJC (red), with segment length [y, and the state 1 FJC (green), with segment length
Y1lp = 1.7lyp. The blue verticle lines mark the overstretching transition: the force regime where the
extension is in between those of the two reference curves. The black vertical line displays the center of
the overstretching transition: the overstretching force.

Kuhn segments in state 1, Ps,—1, is given by

Pg_, = (3.20)

which is the well-known expression for the probability of the excited state in a two level system.
Equation 3.20 can easily be derived from equation 3.19 by normalizing the total probability of
the Kuhn segment to be in any state to 1. Here AE = E; — Ej is the free energy difference
between states 1 and 0, which does not only include the free energy penalty €1 + In~y;, but also
the work done.

Equation 3.20 shows why the overstretching transition in figure 3.5 is not infinetely sharp.
Close to the overstretching force the free energy difference AFE is small and the probability for a
Kuhn segment to be in state 1 is approximately % For forces larger than the overstretch force,
AFE becomes negative and state 1 dominates the force-extension curve. Finally, we would like to
remark that the explanation using the Boltzmann distribution, given here, and the explanation
using mixing entropy, given above, are completely equivalent and describe the same physical
principle.
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In the following we calculate the width of the overstretching transition. This section can be
skipped if desired. We advise the reader who does so to continue reading at the subheading
‘The cooperativity parameter \’.

Calculating the transition width*

Now that we know why the overstretching transition has a nonzero width, we are ready to
calculate how large this width is, and how it depends on the parameters of the model. For
this calculation we use the general force-extension relation of the 2-state Kuhn model (equation
3.13). Before we start the calculation, however, we need to define what we mean by width.
The 2-state force-extension curve gets arbitrarely close to the state 0 and state 1 freely jointed
chains for small and large forces respectively (figure 3.6), but it is never exactly equal to either
of them. Thus, the definition of the transition width depends on how close we want the 2-state
curve to approach complete saturation in one of the two Kuhn states. Our goal is, however, to
find how the width depends on our system parameters rather than find a specific number for it.
We introduce a parameter ¢ to define the transition width. We first present the equation from
which we calculate the transition width, and use this equation to explain the meaning of ¢. The
equation is given by

" [cosh (71x) + exp(e1) (cosh(x) — 71 coth(y1x) sinh(x))] — coth(y) sinh(y1x)

2
2\/4 exp (1) 1 sinh (x) sinh (71 x) exp (—2X) + ( — exp (e1) y1 sinh (x) + sinh (y1x) )

_ %(% coth (y1x) — coth(x) )¢ (3.21)

The left hand side of equation 3.21 is equal to the second term in the 2-state force-extension
relation (equation 3.13). Recall from section 3.3.1 that this term represents the deviation of the

normalized extension, <Lio>’ from the normalized extension at the overstretching force, <Li0> .
X01
The right hand side multiplies our new parameter ¢ with the difference between the extension of

a chain saturated in state 1 and the extension at the overstretching force, <Lio> . This leads to
X01
an interpretation of ¢ as a measure for the saturation of the chain in state 1. If ¢ = 1 the chain

is completely saturated and the extension is equal to that of a state 1 FJC. ¢ = —1 represent the
exact opposite: complete saturation in state 0. ¢ = 0 represents a state with equal amounts of
state 0 and state 1 and therefore defines the overstretching force. Indeed, if we substitute ¢ = 0
in equation 3.21 we retrieve the equation that lead to the expression for the overstretching force
in section 3.3.1.

The definition for the transition width depends on the degree of saturation that we define
to bound the overstretching transition. In other words, the definition depends on our choice for
¢. This choice is arbitrary; we can use any number between 0 and 1 for ¢. Figure 3.7 illustrates
the interpretation of ¢; the figure adds three possible definitions of transition width W, together
with the corresponding values of ¢, to the force-extension curves of figure 3.6.

To calculate the width W we need to solve equation 3.21 for y. We have been unable to
solve this equation analytically. This is why we choose to make the same approximation that we
made for deriving the overstretching force: x >> 1 (section 3.3.1). This simplifies the hyperbolic
sine, cosine and cotangent and leads, after rearranging, to

(1 —1) [exp (71x) — 1 exp(e1 + x) 1

- = Sn-1)g (322)

2\/471 exp [61 +(m+1)x— 2>\] + [— y1exp (x +¢€1) +exp (71x)
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Figure 3.7: Three possible definitions of the transition width are added to force-extension curves of 3.6,
to illustrate the interpretation of the saturation parameter ¢, which is defined according to equation 3.21.
¢ represents the saturation of the chain in state 1: ¢ = 1 means that all Kuhn segments are in state 1,
¢ = —1 signifies that all Kuhn segments are in state 0 and ¢ = 0 represents a state with equal amounts
of state 0 and state 1. A choice for ¢ defines the transition width; a large value for ¢ corresponds to a
wide overstretching transition and a small value of ¢ corresponds to a narrow overstretching transition.
The choice for ¢ is arbitrary.

Equation 3.22 can be solved analytically. The result, by standard calculus, is given by

In|14+—22 <¢ + \/¢2 + eXp(2)\)<1 - ¢2>>]
G +1n " exp(2\) (1—¢2)
y1—1 v —1
1
= xoi(e1,m) + 3 Wor(A, 71, 9)- (3.23)

Equation 3.23 shows two terms. The first term is the overstretching force xg1. This means that
the second term gives the difference between the force corresponding to a saturation of ¢ and
the overstretching force. The second term thus represents exactly half of the transition width,
which we give the symbol Wy;. The subscript 01 again indicates that the width concerns the
transition from state 0 to state 1. Equation 3.23 is used for plotting the vertical lines in figure
3.7. The width is thus given by

1+'m2)\)2€1qs2)(¢+\/¢2+exp(2)\)<1 —¢2)>]

Wo = . 3.24
01 po— (3.24)

21n

For arriving at equation 3.24 we used that the overstretching transition is antisymmetric in x
around the overstretching force xg1, which allows us to multiply the second term in equation
3.23 by 2 to obtain the transition width. This antisymmetry can be proved by showing that
this term, %Wm, is antisymmetric in ¢: %Wm(—qﬁ) = —% Wo1(¢). This means that a certain
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level of saturation in state 1 (corresponding to a certain ¢) and an equal level of saturation
in state 0 (corresponding to —¢) are equally far away from the overstretching force. In other
words, that means that the transition is antisymmetric in x around xg1. We omit the proof here.

Now we go back to equation 3.23 for a moment, and consider the second line in the equa-
tion. Note that xp1 depends on e; but not on A, while for Wy it is the other way around.
This can be easily understood by considering the origin of £; and A in our model (section 3.2);
the penalty upon overstretching for a single Kuhn segment (¢1) determines at which force the
overstretching occurs, while the penalty for a 0/1-interface dictates the cooperativity and thus
the width of this transition. Also note that Wy, depends on only two system parameters: A
and 71; ¢ is just a number that can be chosen arbitrarily. The dependence on 7 is easy to
understand; we recognize the term ﬁ from the expression for the position of the transition
(section 3.3.1). Since the width is in essence a difference between two positions on the curve,
this factor also occurs in the equation for the width. In the next paragraph we look further into
the dependence of Wy; on A.

The cooperativity parameter A

Note for the reader who skipped the previous: the width of the overstretching transition depends
on an arbitrary definition. We introduced a parameter ¢ that we call the saturation parameter,
which is a measure for the degree of saturation of the molecular chain in state 1. The transition
width is a function of ¢. The result of the calculation is given in figure 3.24.

The 2-state force-extension curves shown so far (figures 3.5, 3.6 and 3.7) correspond to the
non-cooperative case (A = 0). However, experimentally measured force-extension curves (figure
1.2) show that the overstretching transition is much sharper than in figure 3.5. This is why
we introduced the cooperativity parameter A in our model. Here we look into non-zero A and
its influence on the width of the transition. Figure 3.8 shows this width as a function of A,
according to equation 3.24.

The figure uses v = 1.7 and ¢ = %\/ﬁ ~ 0.707. The choice for ¢ will become clear soon.
Figure 3.8 shows two distinct regimes. The right side of the figure shows the cooperative (A > 0)
regime where the width decays exponentially with increasing cooperativity. The other regime is
anti-cooperative (A < 0) and shows that the width increases linearly with increasing anticooper-
ativity (decreasing \). The red curve in figure 3.8 shows the exponential relation for positive A,
while the blue curve shows the linear relation for negative A. From experiments [12, 13] we know
that the overstretching transition of dsDNA is cooperative. This suggests that only the right
side of figure 3.8 is relevant for our work. However, in chapter 4 we encouter a 2-state Kuhn
model that is anti-cooperative in nature. This is related to the neighbor-exclusion principle for
intercalation of dsDNA (section 2.1). We elaborate more on this in chapter 4. For now this
means that we analyze both the cooperative and the anti-cooperative case of the 2-state model.

We start with the cooperative (A > 0) 2-state Kuhn model. Figure 3.8 suggests that the
transition width decreases exponentially with A in the cooperative regime. Indeed, by taking
the limit of large A in the equation for the transition width (equation 3.24), an exponential
relation is shown. Since A only appears in exponents, this limit is already satisfied for relatively
small A, which is also suggested by figure 3.8. The obtained relation is displayed by the red
curve in figure 3.8, and is given by

1 4¢
14% = exp(—A).
A>>0 - 1 W p( )

Equation 3.25 shows two prefactors. The first depends on +; in the same manner that the

(3.25)
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Figure 3.8: The width of the overstretching transition, defined by ¢ = %\/5 ~ 0.707, as a function
of the cooperativity parameter A, according to equation 3.24. The transition width shows two distinct
regimes. The left side of the figure shows the anti-cooperative regime (A < 0), where the width increases
linearly with decreasing A, or increasing anti-cooperativity. The right side shows the cooperative regime
(A > 0), where the width decreases exponentially with A. The elongation factor is y; = 1.7.

general expression for the width (equation 3.24) does. The second prefactor is a function of
¢. As explained in the text above and in figure 3.7 this is just a number that depends on the
definition for the width. For ¢ = /2 (figure 3.8) this number is 4. We speculate that the
exponential decay is related to a Boltzmann distribution. The width of the transition tells us
something about the influence of entropy on the transition. Entropy maximization corresponds
to as much mixing between states 0 and 1 as possible, which corresponds to maximization of
the transition width. But as A (the free energy penalty for a 0/1-interface) increases, the free
energy penalty for a such a mix of states increases. The probability that such a state occurs
scales with the Boltzmann factor of this free energy penalty. This causes the probability of a
mix state to decrease exponentially with A\. We speculate that this causes the transition width
to decrease exponentially with A as well.

An example of a cooperative force-extension curve is given in figure 3.9. The figure shows
the non-cooperative curve of figures 3.5, 3.6 and 3.7 together with a cooperative curve (A = 2)
with the same values for 1 and «;. The vertical lines indicate the transition widths according
to equation 3.24 with ¢ = %\/5

We conclude the cooperative case with a final remark about the validity of equation 3.25.
We mentioned that we assume A >> 0 to obtain equation 3.25. This is, however, an approxi-

mation. We actually have to assume that A >> %ln (%) to derive equation 3.25. For ¢ — 0

and ¢ — 1 this deviates significantly from A >> 0. However, it does not make sense to take a
¢ very close to either 0 or 1, since in that case we define a width that is either very small or
very large. Hence those numbers do not reflect a sensible choice for the transition width. Since
we are free to choose ¢, we choose ¢ = %\/5 In that case A >> %ln (i) reduces to A >> 0.

T—¢2
This choice for ¢ is used in figures 3.8 and 3.9.
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Figure 3.9: 2-state force-extension curves with A = 0 (dark blue) and A = 2 (light blue), with state
0 FJC (red) and state 1 FJC (green) as references. The vertical lines indicate the transition widths
(¢ = $V2), and show that the cooperative curve (A = 2) has a much smaller transition width than the
non-cooperative curve (A = 0).

The anti-cooperative 2-state model

The other regime in figure 3.8 is the anti-cooperative regime, which corresponds to A < 0
and is given by the left side of the figure. A negative value for the cooperativity parameter
A induces an energy bonus for a 0/1-interface and therefore favors a mixing of states 0 and 1.
Naturally, this leads to a wider overstretching transition. As briefly mentioned before, we study
the anti-cooperative case because we encouter it when studying the intercalated state of dsDNA
in chapter 4. The biological background is studied there, for now we just focus on the model.

We derive an expression for the width in the anti-cooperative case by taking the opposite
¢2
1—¢2
A << 0. The result is displayed by the blue curve in figure 3.8, and is given by

402
—4)\ 2In (1—¢2>
71 —1 m—1

limit that we took in the cooperative case: \ << %log ( ) We approximate this again by

Wicco = (3.26)

The second term in the expression is just a constant that depends on the definition of the width.
The first term is more interesting. It shows that the width increases linearly with decreasing
A, as suggested by the left side of figure 3.8. We show an example of a force-extension curve
to illustrate the influence of negative A on the transition width and to explain the linearity and
the prefactor 4. This force-extension curve is shown in figure 3.10, which shows the same data
as figure 3.9 but replaces the cooperative A = 2 curve with the anti-cooperative A = —3 curve.

Figure 3.10 reveals an interesting aspect of the anti-cooperative overstretching transition; it
shows a more complicated shape than the cooperative and non-cooperative transitions. Both
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Figure 3.10: 2-state force-extension curves with A = 0 (dark blue) and A = —3 (light blue), with state
0 FJC (red) and state 1 FJC (green) as references. The transition width of the anti-cooperative case
(A = —3) is much larger than the width of the non-cooperative case (A = 0). The anti-cooperative curve
shows a transition that consists of two regions with relatively high slope at the edges of the transition,
and a region with relatively small slope in between. We call the latter the 0/1-plateau, and it represents

a state of the chain that shows an alternating pattern of Kuhn segments in states 0 and 1. The figure is
plotted with ¢ = % 2 and vy, = 1.7.

the cooperative and the non-cooperative overstretching transition show a convex force-extension
curve for forces smaller than the overstretching force (x < xo1) and a concave curve for forces
larger than the overstretching force (x > xo1). This is, however, not true for the anti-cooperative
transition. The transition shows two regions with relatively high slope at the transition edges
with a large region in between that has a relatively small slope. This plateau in the middle of
the transition describes a state of the chain that shows an alternating pattern of segments in
state 0 and state 1, resembling the Neél state that is found in anti-ferromagnetic systems. This
0/1-plateau exists because at forces around the overstretching force the free energy bonus for a
0/1-interface is larger than the difference between free energies corresponding to the individual
states 0 and state 1. In other words, the interfacial bonus A dominates the other free energies
in the system. In this regime the chain is relatively insensitive for changes in force, so it can be
considered as a separate macroscopic state of the chain. This gives the macroscopic chain states
0/0 (all segments in state 0), 0/1 (alternating pattern of states 0 and 1) and 1/1 (all segments
in state 1) with two transitions, between 0/0 and 0/1 and between 0/1 and 1/1. The distance
in force between those two transitions gives a good indication of the width of the complete
overstretching transition.

We now use a heuristic argument to understand why the transition width increases linearly
with A. Consider a chain that is in the 0/0 state. What force fopo—01 do we need to stretch it
towards the 0/1 state? The work done by the force to stretch half of the segments to state 1 has
to overcome the free energy penalty corresponding to that state. So, for each segment that is
excited in state 1, it has to overcome the free energy penalty €1 and it has to pay the free energy
penalty for a 0/1-interface A\ twice, once for each neighbor that remains in state 0. Equating
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the work and the energy penalty gives,

(m1 = Dlofoosor = kpT'(e1 + 2A). (3.27)

Note that the free energy penalty for a 0/1-interface is actually a free energy bonus because A
is negative. Equation 3.27 can be rearranged to obtain an indication for the normalized force
required for the 0/0 — 0/1 transition,

€1+ 2\

X00—01 ~ o (3.28)

We use the same argument for the transition from a chain in state 0/1 that is stretched to
state 1/1. The only difference with the 0/0 — 0/1 transition is that this time the 0/1-interface
disappears instead of arises. This gives

(71 = Dlofor—s11 ~ kpT(e1 —2N), (3.29)
which can be rearranged to
€1 — 2\
Xo01—11 =~ 711 1 (3.30)

We obtain an indication of the width of the total overstretching transition by calculating the
difference between the forces in equations 3.28 and 3.30. This result is given by

—4\

ﬁ7 (3.31)

Wic<o & X01—11 — X00—01 =

which is equal to the first term in equation 3.26. So the width increases linearly with decreasing
A with a prefactor of 4 because the width is determined by the difference in required work
between creating and destroying a 0/1-interface.

3.4. Analyzing the experimental data

In section 3.3 we completely analyzed the force-extension relation of the 2-state Kuhn model.
We showed the shape of the 2-state force-extension curve, defined the overstretching transition
in terms of position and width and analyzed their depence on the system parameters €1, A and
~v1. We gave special attention to the influence of the sign of A, resulting in a cooperative (A > 0)
or anti-cooperative (A < 0) overstretching transition. This section relates these concepts to
experimental data of dsDNA. First we compare data of the overstretching transition of dsDNA
to our model in section 3.4.1, and in section 3.5 we try to explain the influence of intercalating
particles on the force-extension curve of dSDNA by comparing our 2-state model to corresponding
experimental data (figure 1.4).

3.4.1. The overstretching transition

Figure 1.2 in section 1.1 showed an experimental force-extension curve of dsDNA, together with
a theoretical fit of Storm and Nelsons Ising-DPC model [15]. Now we compare these data to
our model. Qualitatively we already know that our model captures the essential features of
figure 1.2; we saw that our 2-state model is capable of producing a force-extension curve with
a cooperative overstretching transition in figure 3.9. The next step is a quantative comparison:
what values of the parameters of our model, €1, A and =1, correspond to the experimental data?
The latter is evident: v; = 1.7; the elongation factor ; dictates the maximum extension and
the length increase of the chain at the overstretching transition, which was found to be 1.7 by
Cluzel et al. [12] and Smith et al. [13].
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The other parameters require more analysis. We start with ;. We found in section 3.3.1 that
this is the parameter that determines the position of the overstretching transition. Therefore,
we use the experimentally observed position of the overstretching transition, 65 pN [12, 13], to
estimate £1. We rewrite equation 3.17 to express €1 in terms of the unit-bearing force fo1,

= forlo(m1 — 1)

" T —In~;. (3.32)

We substitute numbers for the quantities in equation 3.32 to obtain a value for the free energy
penalty e;. We use y; = 1.7, kg = 1.38 - 10 2pN nm K=, fo; = 65 pN and 7' = 300 K.
For Iy we use the contour length of a single base pair, lp = 0.34 nm [62]. Substituting these
numbers in equation 3.32 gives €1 = 3.2, and for the total overstretching free energy penalty
€1 + Invy; = 3.7. Recall that £; is defined as a dimensionless quantity (section 3.2.3), so the
unit-bearing free energy penalty upon overstretching is 3.7 k7. This number is in the order of
relatively weak intramolecular interactions like Van der Waals interactions (~1kgT [31]) or the
net free energy of a hydrogen bond in a aqueous solution (1 —2kgT [31]). Hydrophobic energies
between hydrophobic objects and water have interactions energies of about 7 kg7 nm~=2 [93],
so these might play a role as well. We also note that 3.7 kgT is substantially smaller than the
strength of a covalent bond (90 — 350 kgT") [31]. This indicates that the free energy penalty for
overstretching of 3.7 kgT is in the right order of magnitude. It is large enough to overcome the
intramolecular forces that govern the spatial structure of the dsDNA, but small enough that the
primary structure of the molecule is left intact. Indeed, the overstretching changes the spatial
structure of the dsDNA, but it leaves the primary structure (the backbones) intact.

Note that the relatively small free energy penalty of 3.7 kpT suggests that thermal fluc-
tuations that cause DNA to overstretch locally should occur regularly, even in the absence
of a stretching force. After all, the corresponding Boltzmann factor (equation 3.19) becomes
exp(—3.7) &~ 0.025. According to equation 3.20, this yields a ratio of Kuhn segments in state 1
and Kuhn segments in state 0 of ~ %, suggesting that approximately 1 in 40 Kuhn segments
should be in state 1 at any moment due to spontaneous overstretching. This number seems to
be too large, but of course the free energy penalty for the 0/1-interface has to be taken into
account as well. After estimating a number for the cooperativity parameter, we briefly come
back to this point.

The last parameter is the cooperativity parameter A, which is related to the transition width
(section 3.3.2). We determine A by using equation 3.24, the general expression for the transition
width. To do so we need a number for the width: Smith et al. [13] note that the force range
over which the overstretching transition occurs is ~2 pN. In order to calculate A from this force
range, using equation 3.24, we need to know what value of ¢ to use. Smith et al. [13] do not
specify their definition of width, they just mention that the width is ~2 pN. We estimate that
a reasonable choice for the width corresponds to a ¢ in the region 0.7 — 0.95. We illustrate this
estimate in figure 3.11.

Figure 3.11 shows four 2-state force-extension curves with £1 = 3.2, v = 1.7 and varying A.
The values of A are based on the transition width of ~2 pN, which corresponds to 0.16 in terms
of the dimensionless force x (equation 3.7), and which is shown in the figure by vertical lines.
The cooperativity parameters (A) of the 2-state force-extension curves are chosen such that the
transition width is equal to 0.16 with ¢ = 0.7, ¢ = 0.8, ¢ = 0.9 and ¢ = 0.95 respectively.
The figure illustrates why we estimate ¢ to be a number between 0.7 and 0.95; the four graphs
could all lead to an estimate of the transition width of ~2 pN. The corresponding values of A
(equation 3.24) are 3.6, 3.9, 4.3 and 4.7 respectively. Based on the observation by Smith et al.
we are not able to determine A in two significant digits; we take A = 4. A was defined (section
3.2) as a dimensionless free energy, so the unit-bearing free energy penalty for a 0/1-interface is
about 4 kgT.
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Figure 3.11: This figure is used to estimate the cooperativity parameter A from experimental data.
Smith et al. [13] report that the width of the overstretching transition is ~ 2 pN. To calculate A from
this observation, we need to know how they defined the transition width. In other words, we need to
know how to define a value for the saturation parameter ¢. We plotted the 2-state force-extension curve
(e1 =32,y =1.7) for ¢ = 0.7, $ = 0.8, ¢ = 0.9 and ¢ = 0.95, with corresponding A such that the
transition width is found to be 2 pN, or 0.16 in dimensionless units (equation 3.7). The corresponing

values of A are 3.6, 3.9, 4.3 and 4.7 respectively. Since all of these choices for ¢ seem to be reasonable,
we take A = 4.

We now briefly come back to the topic of spontaneous overstretching, that we discussed in the
context of 1. We see now that, for a single Kuhn segment to overstretch, a free energy barrier
of e1 + 2A &~ 12kpT has to be overcome. The probability that a thermal fluctuation would
cause this in the absence of a stretching force can now be calculated from equations 3.19 and
3.20 to be ~ 107°. This analysis strongly suggests that the existence of a free energy penalty
for an interface between B-DNA and overstretched DNA prevents dsDNA from overstretching
spontaneously.

With 74 = 1.7, &1 = 3.2 and A = 4 we estimated numbers for all model parameters. This
allows us to compare our model to experimental data. Figure 3.12 shows the theoretical curve
of the 2-state model (a) and the experimental data with corresponding Ising-DPC fit [15] (b).
Note that the force-axes of figures 3.12a (dimensionless) and 3.12b (in pN) differ. This is, how-
ever, not a problem. As explained above, the parameters in the 2-state model are chosen such
that the position (£1), width (\) and extent (1) of the overstretching transition match with the
experimental data. We plot figure 3.12 to compare the shapes of the curves and to see whether
our 2-state model captures the essential features of the dsDNA force-extension curve.

Based on figure 3.12, we conclude that our 2-state model does capture the essential features
of the dsDNA force-extension curve. Both figures 3.12a and 3.12b show an initial entropic
stretching regime (section 3.1) followed by overstretching transitions with comparable widths.
The most important difference between the two figures is the degree of saturation towards a
normalized length of 1 in the entropic regime. The experimental data (figure 3.12b) shows a
very rapid increase in extension in the first 10 pN, followed by a plateau with a normalized
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Figure 3.12: The force-extension curve of dsDNA. Figure (a) shows the theoretical result of the 2-state
Kuhn model and shows the dimensionless force xy = kj;l% on the z-axis, figure (b) shows experimental
data with corresponding Ising-DPC fit [15] and shows the force in pN on the z-axis. The parameters of
the 2-state model in (a) (1 = 3.2, A =4, 1 = 1.7) are chosen such that the position, width and extent
of the overstretching transition match those of the experimental data in (b). The most obvious difference
between figures (a) and (b) is the degree of saturation towards a normalized length of 1 in the entropic
regime (force smaller than the overstretching force). This deviation was anticipated (section 3.2.1) and
is caused by the absence of bend stifness in the 2-state Kuhn model. We find, however, that our analysis
of the overstretching transition is not affected by this deviation. Since we focus on the force-extension
curve in the high-force regime, we argue that this simplification is justified.

extension of approximately 1 over a force range of ~ 55 pN before the dsSDNA overstretches. The
2-state model, however, shows a much slower increase of the normalized extension in the entropic
regime. Even at the overstretching force, the normalized extension Lio is still smaller than 0.9.
The reason for this difference is the absence of bend stiffness in our model; a chain that resists
bending has a persistence length that is significantly longer than the segment length, making the
chain easier to stretch. Recall that the persistence length of dsDNA is about 53 nm, more than
150 times the segment length (0.34 nm) [15]. To illustrate this point, we plot the force-extension
curves of a freely jointed chain with a segment length of 0.34 nm and a discrete persistent chain
with a segment length of 0.34 nm and a persistence length of 53 nm in figure 3.13, where the
z-axis shows the force in pN. The figure gives the force-extension curves on a force range of
0 — 65 pN, which corresponds to the entropic regime in figure 3.12. The curves show that the
DPC is significantly easier to stretch than the FJC. We conclude that the slow saturation to
a normalized extension of 1 of our model (figure 3.12a) with respect to the experimental data
(figure 3.12b) can indeed be contributed to the absence of bend stiffness in the theory.

We already anticipated this limitation of our model in section 3.2.1, where we discussed the
influence of bend stiffness and concluded that is it not essential for achieving our goal; we want
to understand the mechanisms behind the disturbing effect of intercalative particle binding on
the force-extension curve of dsDNA in the high-force regime (section 1.3). In trying to achieve
our goal we leave any complexity out of our model if we think that this additional complexity
does not help us understanding the effect of intercalative binding in the high-force regime. We
accept that these simplifications prevent us from fitting our model to the data, as long as we
understand what physical principles dictate the experimental observations. We explained in
section 3.2.1 why, in our view, bend stiffness is such a complication that is not necessary to
understand the essential physical principles. In this section we found an additional argument for
this view; we calculated £; by using equation 3.17, which assumes that x >> 1. In other words,
it assumes that the chain has reached a sufficient degree of saturation towards an extension of
1 at the overstretching force. Based on figure 3.12a one could question whether this is a good
approximation. However, the exact free energy penalty, found with equation 3.15, agrees with
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Figure 3.13: The force-extension curves of a freely jointed chain with a segment length of 0.34 nm
(red) and a discrete persistent chain with a segment length of 0.34 nm and a persistence length of 53 nm
(black). These numbers are representative for dsDNA. The figure shows the great impact of neglecting
bend stiffness on the entropic regime of the force-extension curve; the DPC is much easier to stretch.
This explains the difference in the entropic regime between the theoretical 2-state force-extension curve
in figure 3.12a and the experimental data in figure 3.12b. However, we show that this difference does not
affect the features of the overstretching transition, which justifies the simplification of neglecting bend
stiffness.

the value of £ found with equation 3.16 on five signficant digits (we use only two: 1 = 3.2).
This indicates that the properties of the overstretching transition are not affected by the change
in the entropic regime, and justifies our choice of neglecting bend stiffness.

Finally, we note that the entropic regime is the reason why we did not fit our model to
experimental data to obtain numbers for the parameters 1 and A; the large difference in the
degree of saturation towards an extension of 1 prevents the model to produce a good fit. However,
the relative simplicity of our model allowed us to obtain analytical expression for the transition
position and width in section 3.3. From these expression we were able to obtain reliable numbers
for e1 and A.

3.5. The influence of intercalating particles

We saw in the previous section that our 2-state Kuhn model captures all essential features of
the overstretching transition of dsDNA. The next question is whether it can also explain the
influence of intercalative particles on this overstretching transition. In other words, can the 2-
state Kuhn model produce a force-extension curve that captures the essential features of figures
1.4a [54] and 1.4b [21]7

We have not yet discussed how we could take intercalative particle binding into account. For
now, however, we do not focus on the specific modeling. Instead, we study whether the influence
of intercalative binding can be attributed to a rescaling of the parameters that are already in
the 2-state model. In the end, our 2-state model only contains three independent parameters:
1, €1 and A. If we want the 2-state Kuhn model to explain the experimental data, we should be
able to do this by changing of one or more of these parameters as some function of the particle
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concentration. In this section we show that any change of the model parameters is insufficient
for explaining figures 1.4a and 1.4b.

We consider ~; first. The low concentration curves of both figures 1.4a and 1.4b show that
this parameter has to remain 1.7 even in the presence of intercalators: they show a change in
the overstretching transition, which indicates the influence of the intercalators, but they show
a length of 1.7 times B-DNA for forces larger than the overstretching transition. The 20 nM
curve in figure 1.4a and the 10 nM curve in figure 1.4b give the best examples of this behavior.
A consequence of this observation is that «; has to be a constant in the model. However, the
large-concentration curves (125 nM, 1000 nM and 2500 nM) in figure 1.4b show that the dsDNA
molecule is able to reach a normalized extension that is larger than 1.7. In other words, lengths
that are larger than ~; are achieved under certain circumstances. This is not possible in the
2-state Kuhn model. We need to add an additional parameter to be able to explain this.

In addition to the problems with the large extensions, there are more arguments to support
the claim that the 2-state model is insufficient for explaining experimental data. In section 2.2.2
we analyzed figure 1.4 and concluded that a good theoretical model has to be able to explain
a couple of features. One of those features is the fact that the extension increases for small
forces and decreases for large forces. The only way to achieve this in the 2-state Kuhn model
is by introducing anti-cooperativity (A < 0) in the transition. In the same experimental curves
(figure 1.4b: 5, 10, 20 and 25 nM) we observe a shift of the overstretching transition towards
higher forces. However, this overstretching transition clearly remains cooperative (A > 0). While
in principle the 2-state model could explain both the anti-cooperativity (negative ) and the
shifting of the overstretching transition (increasing €1), it can never do both; it is not possible
to create a force-extension curve that shows an extension larger than 1 for forces that occur
before a cooperative overstretching transition. We conclude that our 2-state model is not able
to explain the influence of intercalative particle binding on the force-extension curve of dsDNA,
purely because the mechanics are very different in the presence of particles.
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Chapter 4

Modeling particle binding and the
3-state Kuhn model

In this chapter we present an elastic model of dsSDNA that takes into account the intercalative
binding of particles to DNA: the 3-state Kuhn model. This model is based on the 2-state Kuhn
model (chapter 3), and adds a third molecular state to the model. We motivate this model in
section 4.1, after which we present the model in section 4.2. In sections 4.3 and 4.4 we analyze
the 3-state Kuhn model mathematically. This allows us to come back to our research aim in
section 4.5, where we explain the physical principles behind the influence of intercalators on the
overstretching transition of dsDNA. In section 4.6 we quantify this influence, and in section 4.7
we predict the force-extension curve of a dsDNA-intercalator complex in a force-regime beyond
the overstretching transition.

4.1. Expanding the 2-state Kuhn model

We concluded chapter 3 with the observation that the 2-state Kuhn model captures the essential
features of the high-force regime of the dsDNA force-extension curve. However, we also con-
cluded that the 2-state Kuhn model is not able to produce force-extension curves that resemble
experimental data. Therefore the 2-state Kuhn model does not contribute to our understanding
of the interaction between intercalators and dsDNA and how these interactions affect the force-
extension curve. Our next step is to expand our 2-state model so that it is able to explain the
experimental observations. In this section we address the question of how we should do this.
We use two kinds of arguments: biophysical knowledge about intercalative binding to dsDNA
(section 2.1) and the observations that we did by studying the experimental force-extension
curves (section 2.2.2).

We discussed in section 2.1 that, in an intercalation process, a planar molecule or a planar
part of a molecule is inserted between normally neighboring base pairs in a plane perpendicular
to the helical axis [46]. This results in an increase of the distance between adjacent base pairs
from 0.34 nm to 0.68 nm [66-68]. In other words, dsDNA stretches locally to twice its normal
contour length if an intercalator is bound. If we want to model this intercalation correctly,
the corresponding Kuhn segment should also be twice as long as the standard segment length.
This gives rise to the introduction of a third molecular state in our model, which we call state
2. State 2 represents intercalated DNA and is twice as long as B-DNA: v9 = 2. Here 2 is
the elongation factor of state 2, defined in the same way as 7; in section 3.2. In the absence
of intercalators, this state is energetically unfavorable because of the large stress in the DNA
backbone caused by the elongation. This is why we do not see evidence for the existence of
this state in force-extension curves that do not take into account intercalation. However, if an
intercalator binds the dsDNA, the corresponding free energy penalty might be overcome by the
free energy bonus for binding. This might explain the high-concentration curves in figure 1.4b,
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that show a normalized extension larger than 1.7.

We also discussed in section 2.1 that, at moderate stretching forces, a bound intercalator
prohibits other intercalators to bind at adjacent binding sites on the dsDNA [72, 73], which is
called the neighbor-exclusion principle [66]. Nordmeier et al. [76] and Coury et al. [77] found
that the neighbor-exclusion principle leads to an 1.5-fold elongation of the contour length at
saturation, but later Yan and Marko [57] predicted that at high stretching forces the maximum
binding could be increased to one intercalator per base pair. Their prediction was confirmed
by Vladescu et al. [21]. We can relate this knowledge about intercalation to the observations
we did by studying the experimental force-extension curves in section 2.2.2. At moderate forces
the neighbor-exclusion principle prevents the dsDNA to be completely saturated with interca-
lators, leading to an alternating pattern of Kuhn segments in state 0 and state 2. This leads
to an effective segment length of H% = 1.5, which is in between the segment lengths of B-
DNA (state 0) and overstretched DNA (state 1). This effective segment length becomes more
important when more intercalators are available for binding. This might explain the length
increase at forces smaller than the overstretching force and the length decrease at force larger
than the overstretching force, both as a function of intercalator concentration. However, the
large-concentration curves in figure 1.4 show a normalized extension longer than 1.7, even at low
forces. This suggests that the neighbor-exclusion principle is not only violated at high forces
[57], but also at high concentrations. If so, then state 2 might explain the effects related to both
the intermediate length (1.5) and the longer length (2).

The goal of this chapter is to achieve our research aim: we want to understand the physical
principles behind the effect of intercalative particle binding on the location and magnitude of
the overstretching transition of double-stranded DNA. In section 2.2.2 we analyzed experimental
data and presented a list of five effects of intercalators on the overstretching transition of dsDNA
that we needed to understand in order to answer our primary research question. These effects
are

e A force shift of the overstretching transition as a function of intercalator concentration.

e An end-to-end length that is significantly larger than 1 for forces smaller than the over-
stretching force.

An end-to-end length increase at forces smaller than the original overstretching force.

An end-to-end length decrease at forces larger than the original overstretching force.
e The disappearance of the overstretching transition for large concentrations.

In section 4.5 we explain all these effects. We show that they are a direct consequence of the
addition of a third molecular state that is twice as long as B-DNA, and that is energetically
favored in the presence of intercalating particles. In sections 4.2, 4.3 and 4.4 we develop the
3-state Kuhn model, and analyze it mathematically. These sections serve as a justification for
the conclusions in section 4.5.

4.2. 3 states of DNA

In the previous section we discussed how we expand the 2-state model of dsDNA to create
a model that is capable of explaining experimental data. We concluded that a third state is
required in our model. We call it state 2, with corresponding state parameter S; = 2. We use
this third state to describe a part of the dsDNA that is intercalated. In this section we introduce
the 3-state Kuhn model. We start by discussing how we take the binding of an intercalator into
account in our model.
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4.2.1. Modeling intercalative binding to dsDNA

We briefly discussed the process of intercalation in section 2.1. Upon binding to dsDNA, an
intercalator is inserted between normally neighboring base pairs in a plane perpendicular to the
helical axis, which locally alters the structure of the dsDNA. This is a complicated process in
which many chemical groups are involved. However, completely in line with the modeling of the
overstretching transition in chapter 3, we use the approach of coarse-graining here. We average
over all microscopic details of the dsDNA and we use effective parameters that capture the
essential features of the intercalation process. We model the locally altered structure of dsDNA
by changing the segment length of the Kuhn segment that is intercalated. The intercalated
segment is twice as long as B-DNA, thus v, = 2.

In addition to the length modification, a free energy is associated with changing the Kuhn
segment from B-DNA to intercalated DNA. This is completely analogous to the introduction of
state 1 in chapter 3. However, the free energy penalty for state 2 is more complicated than the
penalty for state 1, because particle binding is involved. We study mono-intercalators (section
2.1), so one intercalator binds one base pair. In our model, one base pair corresponds to one
Kuhn segment. Therefore, we describe the binding of intercalators by a Langmuir-like adsorption
model [94], in a similar way that is used, for example, in the context of templated polymerization
[95, 96]. Every Kuhn segment can either bind exactly one intercalator or no intercalator at all.
The free energy penalty that is related to changing a Kuhn segment from state 0 to state 2 and
binding an intercalator, AF», is given by

AEQ = &9 — W. (41)

The first term, o is the free energy penalty that is associated with changing the dsDNA from
state 0 to state 2. This free energy contains contributions from deforming the dsDNA into a
new configuration, binding the intercalator and the interplay between binding and deformation.
It also contains a contribution related to the interaction of unbound intercalators with the
surrounding solution; when an intercalator binds the dsDNA, it leaves the solution, so the
disappearance of interactions between an intercalator and the solution contributes to the free
energy €9. We do not distinguish between the free energies of deformation and binding because
we assume that a Kuhn segment is only in state 2 if a particle intercalates this Kuhn segment.
While the dsDNA could, in principle, assume the state 2 configuration in the absence of a
particle, we conclude from experimental data that it does not [12, 13], even at large forces.

The second term is the chemical potential, u, of free intercalators in solution, which are
available for binding to the DNA molecule. We define the chemical potential as the Gibbs free
energy per particle. The chemical potential term is a consequence of entropy, and expresses that
more particles bind to the dsDNA if more particles are available in solution. We assume that
the solution is ideal [97], in which case the chemical potential p is given by

C
uw = kpTln <55.6> , (4.2)
Here C' is the concentration of intercalators in solution in moles per liter (M). The number 55.6
gives the molar concentration in moles per liter of the solvent, which is water. The reciprocal
of this density is a typical volume scale of the solvent, which is the appropriate volume scale for
this problem. In the remainder of this thesis, we will express the chemical potential in units of
the thermal energy kT, as we did with all energies. Thus,

g = In (5506> (4.3)
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In using equation 4.3 we assume a simplification. The chemical potential y is a measure of the
concentration of free intercalators in solution. If an intercalator binds to the dsDNA molecule,
the number of bound intercalators increases and therefore the amount of free intercalators de-
creases. In other words, i is a function of the number of Kuhn segments in state 2. To avoid this
complication, we assume that the number of free intercalators is much larger than the number
of bound intercalators, which allows us to treat the number of free intercalators as a constant.
We justify this assumption by noting that, in the experimental setup used for obtaining force-
extension data [84], only one dsDNA molecule is available for intercalative binding. Thus, the
number of binding locations is much smaller than the number of free intercalators. This allows
us to treat p as a constant that only depends on the experimentally controlled intercalator
concentration.

The introduction of state 2 with segment length 2l and free energy penalty €9 — 1, together
with state 0 and state 1, gives the three states of the 3-state Kuhn model. They are schematically
summarized in figure 4.1.

State 0 AE =0
lo
State 1 AFE = €1
Y1lo
State 2 AFE = €2 — U

Ya2lo

Figure 4.1: Three states of DNA in the 3-state Kuhn model. State 0 represents B-DNA and is the
ground state of dsDNA with a segment length of [;. State 1 represents overstretched DNA with a length
of v;l,. A free energy penalty €; is associated with the transition from state 0 to state 1. State 2
represents intercalated DNA with a length of ~,l,. A free energy penalty o — p is associated with the
transition from state 0 to state 2, which signifies the binding of an intercalator to the dsDNA.

4.2.2. Cooperativity and anti-cooperativity

In section 3.2 we introduced a cooperativity parameter A, that penalizes an interface between a
Kuhn segment in state 0 and a Kuhn segment in state 1 (a 0/1-interface), in our 2-state model.
We based this parameter on experimental observations [12, 13] of the overstretching transition,
that taught us that the transition was cooperative in nature, leading to A > 0. Here we repeat
this procedure. Figure 4.1 displays the three states of DNA in our 3-state model. Any of these
states can be neighbors to each other, so we need more than one cooperativity parameter to
obtain a correct description for our 3-state model. As we did in chapter 3, we base our choices
on experimental findings.

To start with, we model the interactions between states 0 and 1 in the same manner as we
did in chapter 3. So A is a free energy penalty for a 0/1-interface, while we do not penalize a 0/0-
interface or a 1/1-interface. In addition, we use experimental observations regarding intercalated
dsDNA to assign cooperativity parameters to interfaces where state 2 is involved. First, we
consider a 2/2-interface. We already discussed this interface, in a somewhat different context,
in section 2.2.2. We discussed the neighbor-exclusion principle that inhibits two neighboring
Kuhn segments to both be in state 2. We also discussed that, in the high force regime, this
exclusion principle is violated. Based on these experimental observations, we introduce a free
energy penalty for a 2/2-interface, which we call . Indeed, if 0 is chosen positive, this might
explain both experimental observations; at low forces the penalty prevents a 2/2-interface to
occur, but at high forces the amount of work done becomes important. State 2 is the longest
state (y2 = 2), so if the stretching force is sufficiently large it might overcome the free energy
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penalty ¢ and allow neighboring segments to both be in state 2.

Finally we add a free energy penalty n for a 1/2-interface. We base this on the work of
Biebricher et al., whose preliminary results [98] show that intercalated dsDNA molecules do
not overstretch cooperatively if they are stretched fast. That is, if the timescale of stretching
is much smaller than the timescale of the dsDNA-intercalator interactions. This suggests that
intercalated DNA is stabilized against overstretching. Relating this to our model, their obser-
vations suggest that Kuhn segments in the ground state (state 0, B-DNA) have more difficulty
overstretching (to state 1) if other Kuhn segments are in the intercalated state (state 2). We
model this by assigning a positive free energy penalty to a 1/2-interface (n > 0). We note that
these force-extension curves of Biebricher et al. are not representative for this work; they stretch
fast, so their system is not in equilibrium. Our calculations assume equilibrium, which reflects
that the dsDNA-intercalator interactions occur on much faster timescales than the stretching.
However, the free energy penalties in the model should not depend on the timescales involved.
The remaining interfaces (0/0, 1/1 and 0/2) are not penalized. We present a tabular overview
of the cooperativity parameters A\, § and 7 and the interfaces where they work in table 4.1.

Sit1 =0 1] Sig1 =1 Sip1 =2
S; =0 0 A 0
Si =1 A 0 n
SZ' = 0 n )

Table 4.1: The cooperativity parameters of the 3-state Kuhn model. The row number gives the state
of the i'" Kuhn segment, while the column number gives the state of Kuhn segment i + 1. The symbols
in the table give the free energy penalties that are associated with the interfaces between segment ¢ and
i+ 1. In our study A, § and 7 are all positive.

The reason that we do not assign free energy penalties or bonuses to 0/0-, 1/1- and 0/2-interfaces,
is that these penalties could be gauged away without changing the model. As an example, say
that we would assign a free energy penalty x to a 1/1-interface. This would give us penalties for
a 0/1-interface (A), a 1/1-interface () and a 1/2-interface (). In other words, we penalize state
1 for having any interface. Every Kuhn segment in our model always has two neighboring Kuhn
segments and thus two interfaces. Since we cannot change the number of interfaces a Kuhn
segment has, penalizing a Kuhn segment in state 1 for having any interface is effectively the
same thing as penalizing the Kuhn segment itself for being in state 1. However, we already have
a free energy penalty for a Kuhn segment in state 1: £;. This allows us to reduce the hypothetical
1/1-penalty & to zero and simultaneously rescale the 0/1-penalty A, the 1/2 penalty n and the
state 1 penalty €1, without changing the physics of the system!. In other words, introducing a
free energy for a 1/1-interface, x, does not add any new physics to our model, but rather leads
to a rescaling of the other parameters. For this reason we do not penalize a 1/1-interface.

The same argument applies to the other interfaces that we do not penalize. Thus, the zeros
in table 4.1 are not simplifications, and A, § and n describe the most general case of coopera-
tivity in the 3-state model. Finally, note that the reasoning above assumes that there are
no edge effects in play, since it uses that every Kuhn segment has two neighbors. In chapter
3 we assumed a very large number of particles to calculate our partition function (N — o0),
and we use the same assumption in this chapter. Therefore, edge effects can indeed be neglected.

We conclude this section by showing a possible configuration of the 3-state Kuhn model in
figure 4.2. The figure shows Kuhn segments in states 0, 1 and 2, together with the according

!The interested reader can verify that the this rescaling has to be done according to A — X — %n, n—n— %H,
and €1 — €1 + k.
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Figure 4.2: A possible configuration of the 3-state Kuhn model. The configuration shows Kuhn segments
in states 0 (B-DNA), 1 (overstretched DNA) and 2 (intercalated DNA), with corresponding segment
lengths Iy, 71lo and a2l respectively. The cooperativity parameters A, § and 7 penalize 0/1-interfaces,
2/2-interfaces and 1/2-interfaces respectively.

Kuhn vectors lyt;, 'yllofi and ’yglofi. The figure also shows the free energy penalties for a 0/1-
interface (\), a 2/2-interface (¢) and a 1/2-interface (n7). Recall that the free energy penalties
for states 1 and 2 are given in figure 4.1.

4.2.3. Methods and calculations*

Now that we have defined our 3-state Kuhn model, we calculate the corresponding force-
extension curve. As we did for the 2-state Kuhn model (section 3.2.3), we start by formulating
the free energy functional of the 3-state Kuhn model, e37s%t[{£ .} {S;}]. Tt is given by

23— state[{ } { flo 55 0 +719s;,1 + 205, 2)
il § 3 (3) 2 + (5 —+ —u (5 .
k [ k Z 51 Si,1 ( ) Si,2
N—-1

_|_

A (05,008,110 + 05,108,1,0) + 1 (05,,108,,1,2 + 05,208, 1,1) + 6 (85,205, 2 )] . (44)
=1

The expression looks more complicated than the 2-state free energy functional, but it essentially
contains the same terms. The first term in the first summation represents the work done by the
chain. In this work term, (85, 0 + 710s;.1 + 720s;.2) gives the length of the i*" Kuhn segment.
Here dg, p, is the Kronecker delta, which is equal to 1 if S; = n and equal to 0 otherwise. This
gives lg for the segment length if S; = 0, v1lg if 5; = 1 and 2l if S; = 2. The second and
third term give the free energy penalties €; and €2 — p for Kuhn states in state 1 and state
2 respectively. The second summation, that runs from ¢ = 1 to ¢ = N — 1, gives the free
energies associated with interfaces between Kuhn segments. It penalizes 0/1-interfaces (), 1/2-
interfaces (1) and 2/2-interfaces (6). Note the difference between ¢ and d; ;: the former gives
the free energy penalty for a 2/2-interface, while the latter is the Kronecker delta with elements
7 and j.

From here on, the calculation of the force-extension is analogous to the 2-state force-extension
calculation. We do not repeat it here, but rather refer to section 3.2.3 for an outline of the
required calculations. We do not present the final result for the force-extension relation in an
equation, because the resulting expression is quite unwieldy. Instead, we present the results
of the 3-state Kuhn model in graphical form in the upcoming sections. We refer to Appendix
A.3 for an explanation of why the calculation generates such an unwieldy expression. The
interested reader can also find an outline of the required steps for the derivation of the 3-state
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force-extension relation in Appendix A.3.

4.3. The force-extension curve of the 3-state Kuhn model

In this section we analyze the force-extension relation of the 3-state Kuhn model, which is the
result of the calculations in section 4.2.3. Here we focus on the mathematical analysis of the
force-extension relation and the corresponding properties, and in section 4.6 we relate these
properties to the experimental data of figure 1.4.

We begin this analysis by showing an example of a 3-state force-extension in figure 4.3. The
free energies (61 = 7,9 =1, A =4, 0 = 8, n =8, u = —10) do not represent experimental
data, which is discussed in section 4.6. The elongation factors are v; = 1.7 and 2 = 2. The

2.0
1.5+
T~
«[§ 1.0
~~———"
= 3-state Kuhn model
0.5 = (/1-model
= 0/2-model
= 1/2-model
0 5 10 15 20

(_ flo

X kBT)

Figure 4.3: An example of a force-extension curve of the 3-state Kuhn model in the presence of in-
tercalators is shown in black. The purple curve shows the 3-state force-extension curve in the absence
of intercalating particles, and is equal to the cooperative 2-state force-extension curve from chapter 3.
The black curve agrees qualitatively with experimental data (figure 1.4b, concentrations 5, 10, 20 and 25
nM). Especially note that the black curve shows four of the five effects of intercalators that we listed in
chapter 2: the shift in the overstretching transition, the end-to-end increase (decrease) at force smaller
(larger) than the original overstretching force and the larger than 1 end-to-end length for forces smaller
than the overstretching force. The other two curves are reference curves that represent 2-state models in
which one of three states is excluded. The blue curve represents a 0/2-model, which excludes state 1, and
the red curve represents the 1/2-model, which excludes state 0. Similarly, the purple curve corresponds
to the 0/1-model. The 3-state force-extension curve follows the 0/2-model closely for low forces and the
1/2-model for large forces. The two regimes are separated by the overstretching transition. The free
energies used for the plot (61 = 7,60 =1, A=4,0 =8, n =8, u = —10) do not represent experimental
data. The elongation factors are 7; = 1.7 and <2 = 2, and the axes are the same as the axes used in
chapter 3, showing the dimensionless extension as a function of the dimensionless force.

purple curve in figure 4.3 shows the force-extension curve in the absence of intercalating particles
(u — —o0), which is equal to the cooperative 2-state force-extension relation from chapter 3.
The black curve gives the 3-state force-extension relation at a chemical potential p that is large
enough to perturb the force-extension curve. Indeed, the black curve clearly deviates from
the purple curve. In fact, the black curve resembles the experimental data from figure 1.4b
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(concentrations 5, 10, 20 and 25 nM) pretty well. That is, the curves show the same qualitative
behavior. If we look back to the intercalator-induced effects that we want to understand (section
2.2.2), we even see that this theoretical force-extension curve already shows four of these effects:
it shows an end-to-end length increase at forces smaller than the original overstretching force, an
end-to-end length decrease at forces larger than the overstretching force, an end-to-end length
significantly larger than 1 at forces smaller than the overstretching force, and a force-shift of
the overstretching transition. This qualitative agreement with experimental data is promising,
but to really understand the influence of intercalators on the force-extension curve of dsDNA,
we need to quantify these effects.

We mentioned in section 4.2.3 that the force-extension relation of the 3-state Kuhn model
is an unwieldy expression. This complicates the mathematical analysis and prevents us from
quantifying the 3-state model in the same manner that we quantified the 2-state Kuhn model
in chapter 3. However, we learn a lot about the force-extension relation of the 3-state model
by studying figure 4.3. It shows three reference curves in addition to the 3-state force-extension
curve. The purple curve was already mentioned briefly, and represents the chain in the absence
of intercalating particles. In other words, this curve represents the chain in the absence of state
2. Therefore, we call the corresponding model the the 0/1-model, representing that it is a 2-state
model which includes state 0 and state 1, but excludes state 2. Similarly, we also introduce the
0/2-model, a 2-state model in which we exclude overstretched DNA (state 1), and the 1/2-model,
that excludes B-DNA (state 0). Figure 4.3 shows the 0/2-model (blue) and 1/2-model (red) as
references for the 3-state force-extension curve. This leads to an interesting observation: the
plotted 3-state curve (black) closely follows the force-extension curve of the 0/2-model at low
forces and that of the 1/2-model at high forces. These two regimes are separated by a sharp
transition: the overstretching transition. We show in section 4.5 that this is an immediate
consequence of the positive free energy penalty between state 1 and state 2, . For now we just
assume n > 0, and come back to this point in section 4.5.

Note the strong analogy with the behavior of the cooperative 2-state force-extension curve,
that we studied in section 3.3.2. This 2-state force-extension curve (figure 3.9) first closely
follows the state 0 freely jointed chain (which we could call, analogous to the nomenclature just
introduced, the 0-model) at low forces. Then, it undergoes the sharp, cooperative overstretching
transition, after which it closely follows the state 1 freely jointed chain (1-model). In both cases,
the more extended model can be described by two regimes in which it follows simpler models,
which are separated by the overstretching transition. So, to gain more understanding of how
the overstretching transition is affected by intercalative binding, we first need to understand
the 0/2- and 1/2-models. However, the reader that is mainly interested in our results can skip
sections 4.3.1 and 4.3.2, and continue reading in section 4.4.

4.3.1. The 0/2-model*

We start by analyzing the 0/2-model. This is a 2-state Kuhn model that arises when state 1
is excluded from the 3-state Kuhn model. In other words, it originates from the 3-state Kuhn
model by taking the limit of £; — co. Hence, the energy functional £%/2-m0del[{f 1 {51] of the
chain is given by

50/2—model .E , Sz N Iy (05, 0 + V205, AP
{id (53] _ 5| _ o Csiotimdsa) g 5oy s

kT kT
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_
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+ [(5 (6Si7265i+172)
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. (4.5)

In chapter 3 we calculated the force-extension relation of the 2-state model, which was in fact
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the 0/1-model. Equation 4.5 gives the energy functional of the 0/2-model, which is also a 2-state
Kuhn model. Hence, the derivation of the force-extension relation goes completely analogous to
the derivation in section 3.2.3 and Appendix A.2. We directly present the result, again in the
infinite-chain limit,

lim <Z0/2> — % < _2 + coth (x) + 72 coth(’mX))

N—oo \ Lo X

V2

cosh (72x) + exp(e2 — p + 0) <cosh(x) — 2 coth(y2x) sinh(x))] — coth(y) sinh(~2x)
_|_

=
2\/4 exp (€2 — i + 20) 2 sinh () sinh (y2x) + ( —exp (€3 — p + 0) y2 sinh (x) + sinh (y2x) )
(4.6)

Equation 4.6 closely resembles the force-extension relation of the 0/1-model (equation 3.13). In
fact, equation 4.6 can be obtained from equation 3.13 by substituting v; — v2, A — —%6 and
€1 — €2 — i+ 0. In other words, the force-extension relation of the 0/2-model is nothing new,
it is just the force-extension relation of the 0/1-model with a rescaling of the three parameters
of the model (1, &1 and A). We can understand this by considering table 4.2, which shows the
cooperativity parameters of the 0/2-model.

Sig1 =0 | Sig1 =2
S;i =0 0 0
Si =2 0 )

Table 4.2: The cooperativity parameters of the 0/2-state Kuhn model. The row number gives the state
of the i*" Kuhn segment, while the column number gives the state of Kuhn segment i + 1. The numbers
in the table give the free energy penalties that are associated with the interfaces between segment i and
1+ 1. Together with the elongation factor 7o and the free energy penalty €2 — p for state 2, this table
characterizes the 0/2-model.

Together with the free energy penalty for state 2, g — p, and the elongation factor of state 2,
2, table 4.2 defines the 0/2-model. Now we can rescale these parameters, without changing the
physics of the system, in a similar manner as we did in section 4.2.2 to show that our 3-state
cooperativity parameters A, § and 7 give the most general case of the 3-state Kuhn model.
Using the fact that only energy differences between states matter, we can rescale the free energy
penalty for a 2/2-interface to 0, and simultaneously assign a penalty of —%5 for a 0/2-interface
and rescale €9 — jt — 9 — p1 + 6.2 This leads to a new table of cooperativity parameters, given
in table 4.3.

Note that this table represents the 2-state Kuhn model that we discussed in chapter 3, with a
free energy penalty for an interface between different segments, and no penalties for interfaces
between equal segments. Hence, this system can be mapped on the 0/1-model with the mapping
—%5—>)\, Yo — 1 and €9 — u + 0 — £1.

The anti-cooperative 2-state Kuhn model

The analysis above shows that the 0/2-model is just an example of the anti-cooperative 2-state
Kuhn model, which we analyzed in section 3.3.2. It is anti-cooperative because § is positive,

2To prove that this rescaling does not change the physics of the system, consider a subsystem of n (n>1)
adjacent Kuhn segments in state 2 and both its neighbors, which are in state 0. The free energy of this subsystem
is unaffected by the rescaling. A subsystem that does not contain such a string is completely in state 0 and
therefore not affected by the rescaling either.
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S; =0 0 —50
S; =2 —29 0

Table 4.3: The cooperativity parameters of the 0/2-model, after rescaling. The rescaling also affects
the free energy penalty for state 2, which becomes €2 — p + §. This model is now equal to the 2-state
Kuhn model (with states 0 and 1) that was studied in chapter 3, with mapping —%5 — A, 72 — 71 and
eo—p+6—eq.

thus —%5, which has the role that A\ has in section 3.3, is negative. Moreover, this can be easily
understood by considering the physical meaning of §: it penalizes interfaces between two Kuhn
segments in state 2. Hence, the transition from state 0 to state 2 is anti-cooperative. So we
can use all results for the anti-cooperative transition, that we obtained in section 3.3, using the
mapping y1 — y2, A — —%5 and 1 — g2 — pu+9. This gives for the position of the 0/2-transition

go—pu+6+Iny

— 4.7
X02 o1 ) (4.7)
and for the 0/2-transition width, in the limit of 6 >> 0,
4¢?
28 21n <71_¢2)
Wozs>>0 = + : (4.8)

Y2 —1 Y2 —1

Recall from section 3.3.2 that A << 0 is already satisfied for A relatively close to 0, as was
shown by figure 3.8. That figure shows that the linear dependence of the width on A is valid
for A < —1. Thus, equation 4.8 is valid for 6 = 2. As we did in section 3.3.2, we defined the
saturation parameter ¢ = %\/5

We note an important difference between equations 4.7 and 4.8 and the corresponding equa-
tions for the 2-state Kuhn model of chapter 3 (the 0/1-model): the width and the position are
not independent. While the width only depends on the cooperativity parameter ¢, and not
on the penalty €2 — u, the position of the transition depends on both 9 — p and 4. So the
cooperativity parameter influences both the width and the position of the transition. This can
be understood by considering the meaning of the position of the transition. It signifies the force
at which a system that is completely in state 0 (state 0 FJC) is equally likely as a system that
is completely in state 2 (state 2 FJC). In chapter 3, the cooperativity parameter (\) did not
influence this since it does not play a role in either of these systems: it is only relevant on
interfaces between them. However, in the 0/2-model, § penalizes every interface in a state 2
FJC, so it shifts the position of the transition towards higher forces. Indeed, equation 4.7 shows
that the position increases with increasing §. We plot an example of a force-extension curve of
the 0/2-model in figure 4.4. The free energies (6 = 8, €9 = 1 and p = —10) are equal to those
used in figure 4.3, and are not representative for experimental data of dsDNA; this plot is only
used to analyze the 0/2-model. The elongation factor v = 2 reflects intercalative binding to
dsDNA.

Figure 4.4 shows a force-extension curve of the 0/2-model in black. The shape of this curve
was analyzed in section 3.3.2; it shows a wide overstretching transition, with two regimes with
relative high slopes at the edges of the transition, and a relatively flat plateau in the middle. In
section 3.3.2 we called this plateau the 0/1-plateau. Here we call it the 0/2-plateau, for obvious
reasons. The 0/2-plateau represents a state of the chain that shows an alternating pattern of
Kuhn segments in state 0 and Kuhn segments in state 2, or a 0/2-Neél state. This leads to the
appearance of three macroscopic states of the chain: 0/0 (all segments in state 0), 0/2 (0/2-Neél
state) and 2/2 (all segments in state 2). In between those regimes are two transitions, which
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Figure 4.4: The force-extension curve of the 0/2-model (black) shows three regimes. At low forces
(x £ 12), all Kuhn segments are in state 0, so the 0/2-model follows the force-extension curve of the
freely jointed chain with Kuhn segment Iy (red). Moderate forces (12 < x < 28) excite Kuhn segments
to state 2, but they are not large enough to excite two neighboring Kuhn segments due to the free energy
penalty 0. This leads to the 0/2-plateau, which represents a 0/2-Neél state. In this regime, the 0/2-model
resembles a freely jointed chain with segment length H‘% lo (blue). High forces (x = 28) are large enough
to overcome the energy penalty J, so all Kuhn segments are excited towards state 2: the curve resembles
a freely jointed chain with Kuhn segment 72l (green). The vertical blue lines indicate the positions of
these transitions (equation 4.9 and 4.10), while the black vertical line gives the center of the transition
from state 0 to state 2, and is given by equation 4.7. The free energies (§ =8, o = 1 and p = —10) are
not representative for dsDNA.

are indicated by the blue vertical lines in figure 4.4. We denote the transition forces as xpo—02
and xg2_20 respectively, and we calculate them below. The black vertical line indicates the
center of the transition from state 0 to state 2, yp2. It is the force at which the free energies
of macroscopic states 0/0 and 2/2 are equal, and it is given by equation 4.7. Finally, figure 4.4
shows freely jointed chains with segment lengths Iy (red), 14-272 lop (blue) and ~2ly (green), with
~v2 = 2, which emphasize the existence of the 0/0-, 0/2- and 2/2-regimes of the force-extension
curve. Note that figure 4.4 shows the same 0/2-model force-extension curve as figure 4.3 (blue
curve) does, but figure 4.4 shows a larger force range. This high-force regime of the 3-state Kuhn
model, for forces significantly larger than the overstretching transition, is discussed in section
4.7.

We finish the analysis of the 0/2-model by calculating the transition forces xgp—o2 and
X02—s29. First, however, we need to define them more precisely. We define xg2_,22 as the force
where the extension is exactly in between that of the FJC with segment length H% lo (blue
curve in figure 4.4) and the FJC with segment length 75l (green curve in figure 4.4). Or, to
put it differently, we define ygo_,20 as the force where the chain is halfway towards complete
saturation in state 2. This means that the saturation parameter ¢ = % Similarly, xoo—o02 is
defined by ¢ = —%. Using this definition, we calculate xoo—o02 and xp2—22 using the equations
for the transition position yg2 (equation 4.7) and the transition width Ws~<¢ (equation 4.8).

93



This gives
e2 — p+1n(572)

_ 4.9
X00—02 o (4.9)
for the transition from macroscopic state 0/0 to macroscopic state 0/2, and
g2 — 1+ 26+ In (372)
X02-22 = 5 (4.10)

v —1

for the transition from macroscopic state 0/2 to macroscopic state 2/2. The vertical blue lines
in figure 4.4 are plotted by using equations 4.9 and 4.10.

Note that xgo_02 does not depend on §. This can be understood by realizing that it describes
a transition from macroscopic state 0/0 to macroscopic state 0/2. Neither of this states shows
neighboring segments in state 2, so the transition between them should not depend on 4. Instead,
this transition is governed by the competition between the work done, fly(y2 — 1), and the free
energy cost, €9 — 4 In 2, of exciting a single Kuhn segment to state 2. For the explananation
of the In yo term, see section 3.3.1. Recall that this is the same competition that determines the
position of the overstretching transition in the 2-state Kuhn model. Indeed, equation 4.9 closely
resembles the expression for the transition position in the 2-state model (equation 3.17) with
substitutions es — p — €1 and y2 — 7.

The transition between macroscopic states 0/2 and 2/2, x(y_,99, does depend on §. We
understand equation 4.10 by considering the free energy cost of exciting a Kuhn segment to
state 2, if both its neighbors are already in state 2. This cost is the free energy penalty for state
2, €9 — i+ In~ye, and twice the cost for a 2/2-interface, 6. This gives e3 —  + Inys + 20 as the
free energy penalty. Equation 4.10 gives the force required to overcome this free energy penalty.

4.3.2. The 1/2-model*

The analysis of the 1/2-model is analogous to the analysis of the 0/2-model, so we will show the
most important results and refer to section 4.3.1 for the background. The 1/2-model originates
from the 3-state Kuhn model by excluding state 0 from the system. This results in the energy
functional of the chain,

g1/2—model fi S N Flo (7105 1+ 7205 2) -
kB[;} {Si}] — Z _ 0 (m I:;T 205,,2) B, 24e,05,1+ (g9 — 1) 05, 2
=1
N-1
+ Z [n ((552'71551'4,1,2 + 5Si:26si+1,1) + 5 (5Si:26si+132)]7 (411)
i=1

which leads, after a calculation analogous to that in section 3.2.3 and Appendix A.2 to the
force-extension relation of the 1/2-model, in the infinite chain limit,

z 1 2
lim ( 22Y = [ - 24 y1 coth (y1X) + 2 coth(y2x) | + e T
N—ro0 Ly 2 X

[72 cosh (y2x) — 71 coth(y1x) Sinh(wx)} + ypedTe2tn [71 cosh (v1x) — 72 coth(y2x) Sinh(%x)]

2
2\/4’)/1"}/2626+51+62+“ sinh (y1x) sinh (y2x) + (661+77+“’)/1 sinh (y2x) — edte2+4 sinh (71 x) >
(4.12)

Equation 4.12 can also be obtained from the 0/1-model force-extension curve (equation 3.13) by
a mapping of parameters. This can be done by substituting e; - eo—p—e1+96, A = n— %(5 and
= %, as well as multiplying the force-extension relation by v; and replacing x — v1x. The
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rescaling of €1 and A can be explained using tables similar to tables 4.2 and 4.3. The rescaling
of vy — % signifies that the effective elongation factor in the 1/2-model is the elongation of a
Kuhn segment upon changing from state 1 to state 2. Finally, multiplication by ; and replacing
X — 71X correspond to rescaling the y-axis and z-axis respectively, which is required because
the shortest segment length in the 1/2-model is 11y instead of lp.

The position and width of the transition can be calculated from equation 4.12, similar to
how we calculated the position and the width in chapter 3. The result is

- 22
€2 — [ €1+5+1n<ﬁ)

X12 = ; (4.13)
2N

for the position of the transition from state 1 to state 2, x12, and

2In |1+ 72(;58()1(11(22_)277) <<25 + \/(]52 + exp(2n — 9) (1 — ¢2>>]
Wia = (4.14)
Y2 — 7

for the width of the 1/2-transition. In contrast to our analysis of the 0/1-model and the 0/2-
model, we cannot conclude whether the transition is cooperative or anti-cooperative based on
the background information from section 2.1. The cooperativity parameter of the 1/2-model is
n— %(5 . We know that both n and § are positive, but their ratio is unknown. Thus, we do not
make assumptions on the sign of n — %(5 for now, and work with the general expression for the
width (equation 4.14). An example of a force-extension curve of the 1/2-model is given in figure
4.5. The figure shows an example of a cooperative case, in which n > %5, and thus shows a
cooperative transition from a regime where the curve follows a freely jointed chain with segment
length 1y (red) to a regime where the curve follows a freely jointed chain with segment length
~v2lo (green). The vertical lines indicates the position of the transition 12, as given by equation
4.13. Note that we did not see any evidence of state 2 in the 1/2-model that was shown in figure
4.3 (red curve). This is because both 1/2-interfaces (1) and 2/2-interfaces () are penalized.
This transition would have been visible if a larger window on the force-axis had been used.
The free energies (§ =4, n =18, 61 =7, e =1 and u = —10) do not represent experimental
data on dsDNA. The elongation factors v = 1.7 and 72 = 2 do represent dsDNA. We do not
give an example of an anti-cooperative case (n < %6), but this figure would look similar to the
anti-cooperative transition of the 0/2-model, as shown in figure 4.4.

The influence of intercalators

We conclude this section by answering how intercalators influence the force-extension curves of
the 0/2- and 1/2-models. We observe that the widths of both the 0/2-model and the 1/2-model
are independent of the chemical potential p, and thus they are not influenced by intercalative
binding. Only the positions of the transitions are affected, and both decrease with p (equations
4.7 and 4.13). These observations can easily be understood by considering the way in which
intercalators are taken into account in the model. A free energy bonus of u is assigned to a
Kuhn segment that binds an intercalator, which effectively leads to a rescaling of the free energy
penalty of state 2. If more intercalators are added to the solution, u becomes larger, and state
2 is more favored over the other states. We have seen before, in chapter 3, that rescaling the
free energy penalty for a certain state shifts the position of the transition, but leaves the width
unaffected.
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Figure 4.5: An example of a force-extension curve of the 1/2-model (black), that shows a cooperative
transition (7 > 16) from a state 1 FJC (red) to a state 1 FJC (green). The position of the transition,
X12, is given by equation 4.13 and displayed by the vertical line. The 1/2-model can also produce an
anti-cooperative transition if 7 < 6. The free energies (6 =4, n =8, &1 =7, e2 = 1 and p = —10)
do not represent experimental data on dsDNA. The elongation factors v; = 1.7 and 2 = 2 do represent
dsDNA.

4.4. The overstretching transition in the 3-state model

We start this section by shortly summarizing the most import insights of sections 4.3.1 and 4.3.2
for the reader that skipped those sections. We have seen that the 0/2-model and the 1/2-model
can be mapped on the 2-state Kuhn model of chapter 3, but that the width and the position
of the corresponding transitions are not independent. We have seen that the 0/2-model is an
anti-cooperative 2-state Kuhn model, and we calculated the positions of the transitions between
the macroscopic states 0/0 (all Kuhn segments in state 0), 0/2 (alternating pattern of state 0
and 2, or 0/2-Neél state) and 2/2 (all Kuhn segments in state 2). We refer to those transition
positions as xgo—o02 and xg2—22, and both decrease when p increases. Finally, we have seen that
the cooperativity of the 1/2-model depends on the sign of 1 — %5.

Now that we understand the physics and the force-extension curves of the 0/2- and 1/2-model,
we go back to the example of the 3-state force-extension curve in figure 4.3. We observed earlier
that the force-extension curve of the 3-state model (black) follows the 0/2-model closely for
low forces, and then undergoes the cooperative overstretching transition towards the 1/2-model.
We pointed out that this is analogous to the 2-state model that follows the state 0 FJC for low
forces, and then undergoes the cooperative overstretching transition to the state 1 FJC. In chap-
ter 3 we found that the transition force xg1, which gives the overstretching force in the 2-state
model, is determined by the competition between the extra work upon overstretching and the
free energy penalty for state 1 (equation 3.18). In other words, at the transition force the free
energies, including the contribution of the work, of state 0 and state 1 are equal. We now use the
same approach to determine the overstretching transition of the 3-state Kuhn model: we equate
the free energy of the 0/2-model to that of the 1/2-model. As can be seen in figure 4.3, the

56



influence of state 2 on the 1/2-model is negligible at the force of the overstretching transition;
the 1/2-model is identical to a state 1 FJC. This effect is also seen in the experimental data
of figure 1.4b (0 and 10 nM), which shows a constant extension of about 1.7 times the B-DNA
contour length directly after the overstretching transition. Hence, we equate the free energy of
the 0/2-model to the free energy of a 1/1-model. The 1/1-model is a freely jointed chain with
segment length v1lp, and every Kuhn segment receives a free energy penalty €1.

We already calculated the free energies of the 0/2-model (Fp2) and the 1/1-model (F11),
which were intermediate results in the derivations of the force-extension curves (equations 3.11
and 3.12). The free energy of the 1/1-model, Fi1, is given by

Fii = —kgTN [m <4;> +ln (eXp(_el);mh(%X)ﬂ . (4.15)

The free energy of the 0/2-model is more complicated. We do not present Fjo in an equation,
but the theoretically interested reader can easily obtain it by substituting equation A.35 in
equation A.33 (Appendix A.2) and performing the parameter mapping from the 0/1-model to
the 0/2-model that was explained in section 4.3.1. Equating Fy and Fi; yields a complicated
equation that we do not solve analytically in the general case. We can, however, approximate it
in certain force regimes. We illustrate this graphically by plotting the free energies as a function
of the dimensionless force x in figures 4.6, 4.7 and 4.8. To do so, we divide the free energy by N,
obtaining the free energy per Kuhn segment, and by kg7, to obtain a dimensionless free energy.
Finally, we subtract the first term in equation 4.15, because it does not depend on the length of
a Kuhn segment and both Fi; and Fyo contain it. The resulting dimensionless free energies per
Kuhn segment are plotted in figure 4.6a, for a set of parameters that is suited for illustrating
our methods (6 =4, 1 =7,e9 =1, p = —16, 71 = 1.7 and 2 = 2). The red curve shows the
free energy of the 1/1-model (second term in equation 4.15) as a function of x, while the blue
curve shows the free energy of the 0/2-model. The free energy of the 1/1-model appears to be
a linear function of x for xy = 1. Indeed, in the limit of large x, the hyperbolic sine in equation
4.15 reduces to an exponent, and the free energy is reduced to

. Fiy 4 exp(—e1 +71X)
1 —1 — ] = —1 = — In(2~7). 4.16
x;rgl kTN n ( X > n < 2v1 MX et n( ’71) ( )

A linear fit of the 1/1-model free energy in figure 4.6a gives a slope of -1.7 and an offset of
8.22 =~ ¢1 + In(27,), consistent with equation 4.16.

The 0/2-model free energy shows more complicated behavior. However, while the expression
for the free energy is rather unwieldy, figure 4.6a shows an interesting feature of this free energy:
it consists of three regions where the free energy is approximately a linear function of x. Two
forces mark the transitions between these regions. The transition forces are indicated by the
vertical blue lines and given by xpo—o02 (equation 4.9) and xp2—20 (equation 4.10). So, the
transitions between the linear regimes of the 0/2-model free energy coincide with the transitions
between the macroscopic states 0/0, 0/2 and 2/2. This suggests that the leftmost region in figure
4.6a represents the 0/0-state, the rightmost region represents the 2/2-state, and the region in
between describes the 0/2-state. Indeed, linear fits of the three regions show that the regions
have slopes of -1 (left), -1.5 (middle) and -2 (right), corresponding to the average elongation
factors of those macroscopic states.

Using this observation, we can solve F; = Fp2 by assuming that the intersection between the
two curves occurs at a force y that corresponds to one of the three regimes discussed above. We
can greatly simplify the expression for Fpo in any of those three regimes, allowing us to give an
analytical approximation of the solution. We now consider the three cases one by one. We have
seen an example of the first case in figure 4.6a. We note that this method fails if the intersection
occurs close to one of the transition forces. In that case, we solve Fi; = Fyo numerically.
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Figure 4.6: The free energies of the 0/2-model (blue) and the 1/1-model (red) are plotted in figure
(a). The free energy of the 1/1-model is a linear function of the dimensionless force x (for x = 1), while
the free energy of the 0/2-model shows three linear regimes. The forces xoo—o2 and xo2—22 indicate the
transitions between those linear regimes. The leftmost regime describes the macroscopic 0/0 state, the
regime in the middle describes a macroscopic 0/2 state, and the rightmost regime represents a macroscopic
2/2 state. The intersection of both free energy curves gives the overstretching force of the 3-state model,
and is indicated by the green vertical line. In this case the intersection occurs in the leftmost region of the
0/2-model, thus in the region where all segments are in state 0. Hence, intercalation (state 2) does not
influence the overstretching transition, and the overstretching force is equal to that of the 2-state model
of chapter 3. Figure (b) shows the corresponding force-extension curves. Indeed, the 3-state curve (black)
completely overlaps the 0/1-model curve (purple). The 0/2-model is given in blue and the 1/1-model is
given in red. The parameters in these plots are 6 = 4,61 =7, e0 =1, u=—-16,71 =17, %2 =2, A =4
and n = 8.

The green vertical line in figure 4.6a shows the force at which Fy; = Fp. We pointed out,
earlier in this section, that this is the force where the overstretching transition occurs. In figure
4.6b we plotted the force-extension curves of the 3-state model (black), the 1/1-model (red),
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the 0/2-model (blue) and the 0/1-model (purple) with the same parameters that where used
in figure 4.6a, complemented with A = 4 and n = 8. Note that the 0/1-model (purple) is not
visible because it is completely covered by the 3-state model (black). Figure 4.6b shows the same
x-axis as 4.6a. The green vertical line is located at the same position, and gives the position of
the overstretching transition, as anticipated. Note that the blue lines indeed give the positions
of x00—02 and xg2—22 in figure 4.6b. We can now calculate the position of the overstretching
transition analytically by considering in which regime of the 0/2-model it occurs. The green
line is located to the left of both blue lines, so the 0/2-model is in the 0/0 regime at the point
of the overstretching transition. This allows us to simplify the expression for Fjz by assuming
X << Xo00—02- This gives, for the overstretching force,

e1+1lny

4.17
n—1 (4.17)

X00—11 =

where the subscript 00 — 11 indicates that the overstretching transition occurs from state 0/0
in the 0/2-model to the 1/1-model. Equation 4.17 is equal to the 2-state overstretching force
that we known from chapter 3 (equation 3.17). This can be understood by realizing that if the
overstretching occurs in the 0/0-regime, there is no influence of state 2 in the model. Hence, the
3-state model behaves as the 0/1-model in that limit. Indeed, figure 4.6b shows that the 3-state
force-extension curve and the 0/1-model force-extension curve overlap completely.

Shifting the overstretching transition

In the example of figure 4.6 we saw no influence of intercalating particles, because the chemi-
cal potential (u = —16) was too small. Now we add more intercalators to the solution, which
we model by increasing u, and study how this affects the free energies and the force-extension
curves. All other parameters are kept constant. Figure 4.7 shows the free energies and the
force-extension curves for y = —8.5. Figure 4.7a shows two green vertical lines, indicating that
there are two forces at which the free energies of the 0/2-model and the 1/1-model are equal.
In between the green lines, the 1/1-model has a lower free energy, but outside the green lines
the free energy of the 0/2-model is lower. In other words, there are two transitions between the
0/2-model and the 1/1-model in the force-extension curve of the 3-state Kuhn model. The first
indicates the overstretching transition, while the second gives a transition from an overstretched
chain (1/1-state) to the even longer state of complete intercalative saturation (2/2-state), in
which every base pair is intercalated. We discuss this high-force regime in section 4.7.

Figure 4.7b shows both transitions at the positions of the green vertical lines. The same
colors that were used in figure 4.6b are used here: the 3-state Kuhn model is given in black, the
0/2-model in blue, the 1/1-model in red and the 0/1-model in purple. The blue vertical lines
give the positions of the transitions in the 0/2-model. The 3-state model is now clearly deviating
from the 0/1-model. The overstretching transition has shifted to a higher force, and the 3-state
model obtains an elongation of more than 1 for forces smaller than the overstretching force. We
analyze the physical reasons for these changes in section 4.5. Here we focus on the mathematical
side of the model. We now obtain approximate expressions for the transitions that are given by
the green lines, by taking the appropriate limits when solving Fj; = Fpe. The overstretching
transition is found in between the blue lines in figure 4.7, hence xgo—02 << X << Xo02-22, which
gives

e1— (e2 —p) +1n (]%) i1

X02—11 = %(72+ 1 . (4.18)

Equation 4.18 has the same structure as equation 4.17, but now the parameters of state 1 (e,
~1) are replaced by the difference between state 1 and the average of states 0 and 2. Indeed, it
describes the overstretching transition from a system with half of its segments in state 0 and the
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Figure 4.7: The free energies (a) and force-extension curves (b) for the same parameters that were used
in figure 4.6, but the chemical potential y is increased from -16 to -8.5. The free energies in figure (a)
now show two intersections. The first is located in between the two blue vertical lines and represents the
overstretching transition. Thus, the overstretching transition occurs from a state with an alternating 0/2
pattern to a completely overstretched chain (state 1). This leads to a shift of the overstretching transition
towards higher forces, which can be seen by comparing the position of the 3-state overstretching transition
with the overstretching transition of the 0/1-model (purple). It also leads to an elongation of more than 1
for forces smaller than the overstretching force. The second intersection is not an overstretching transition,
but gives the transition from a completely overstretched state (1/1) to a completely intercalated state

(2/2).

other half in state 2, to a system with all segments in state 1. We note that this expression is,
strictly speaking, only valid if the anti-cooperativity of the 0/2-system is large enough that the
force-extension curve is completely flat in between ygo—02 and xp2_22. We see in figure 4.7b that
this is not the case. Hence, the position of the green lines is calculated by numerically solving
the exact equation for the free energies. However, equation 4.18 gives a proper and insightful
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approximation for the force, that is very close to the actual force.
The other transition in figure 4.7b is found to the right of both blue lines, thus we take
X >> X02-s22, Which gives

EQ—H—51+6+1H(%>
X11-22 = . (4.19)
T2 M

Equation 4.19 is equal to equation 4.13, the transition force of the 1/2-model. Indeed, this force
describes the transition from a 1/1-state to a 2/2-state, which is exactly the 1/2-transition. We
stress that this transition is mot an overstretching transition. Instead, at this force the chain
changes from the overstretched state into the completely intercalated state, where every base
pair is intercalated. If such a transition would occur in an experiment, this would be detectable
in a force-extension measurement, but it should also be detectable with fluorescence microscopy.
After all, the fluorescence intensity is a measure of the number of bound intercalators. Interca-
lation at every base pair should therefore significantly increase the fluorescence intensity.

The disappearance of the overstretching transition

Equations 4.18 and 4.19 show the influence of p (and thus, of the intercalation concentra-
tion) on the overstretched state (state 1) in the force-extension curve. The overstretching force
X02—11 1S an increasing function of p, while the 1/2-transition yi1—22 is a decreasing function
of pu. This is caused by the fact that increasing u favors state 2 over state 1, so the free energy
of the 0/2-model is lowered with respect to the free energy of the 1/1-model. Therefore, xp2—11
increases, while x11-22 decreases with p. Thus, when p is increased, the green lines (figure 4.7b)
approach each other until, eventually, they overlap. If y is increased beyond that point, the free
energies of the 1/1-model and the 0/2-model do not intersect anymore: Fpy is lower than Fiq
for any force. At this chemical potential, the overstretched state (state 1) does not occur in the
molecular chain anymore, and this is reflected in the force-extension curve: the disappearance
of state 1 naturally leads to the disappearance of the overstretching transition. An example of
such a situation is given in figure 4.8, where p is increased from -8.5 to -5.

Figure 4.8a shows that the free energies Fya (blue) and Fy; (red) do not intersect at any force.
The free energy of the 0/2-model (Fp2) is lower than the free energy of the 1/1-model (Fyq) for
all forces. Thus, state 1 will not occur in the DNA. Figure 4.8b shows that the corresponding
3-state force-extension curve does not show any sign of state 1; the 3-state force-extension curve
(black) completely overlaps the force-extension curve of the 0/2-model (blue), and does not show
the cooperative overstretching transition.

4.4.1. The influence of the chemical potential

We now aim to calculate the chemical potentials that corresponds to the changes in behavior
from figure 4.6 to figure 4.7, and from figure 4.7 to figure 4.8. In other words, we aim to
calculate the chemical potential at which the overstretching transition first deviates from the
zero-particle overstretching transition, and the chemical potential at which the overstretching
transition disappears.

We start with the first. This is the lowest chemical potential at which the 3-state force-
extension curve shows a sign of state 2. This occurs approximately when the overstretching
transition is located around ygp_o2. Or, in terms of the figures, when the green vertical line
coincides with the leftmost blue vertical line. The free energy equation, Fys = Fi1, does not give
a straightforward analytical solution in between the regimes described above, so we approximate
this chemical potential by equation the solution for the overstretching transition in the y <<
X00—02 regime (equation 4.17) and that in the ypo—02 << X << X02-»22 regime (equation 4.18).
This leads to
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Figure 4.8: The free energies (a) and force-extension curves (b) for the same parameters that were used
in figures 4.6 and 4.7, but the chemical potential 4 is increased to -5. The free energies in figure (a) do not
intersect: the free energy of the 0/2-model is lower than the free energy of the 1/1-model for all forces.
Thus, the overstretched state (state 1) does not occur in the DNA anymore. The 3-state force-extension
curve (black) in figure (b) completely overlaps the force-extension curve of the 0/2-model. There is no
influence of the 1/1-model (red) in the 3-state force-extension curve, so state 1 does not play a role in the
3-state force-extension curve. Naturally, this leads to a disappearance of the overstretching transition.

9 —1
7 —1
Here the subscript ‘min’ indicates that this is an indication for the smallest chemical potential
that changes the force-extension curve of the 3-state model. The last term, picor is a correction
that is a function of 7, and 5 only, and originates from the logarithmic terms in equations 4.17
and 4.18. It is of the order of 0.1 (in dimensionless units), which is smaller than the error caused
by the approximation that lead to equation 4.20. Therefore, we neglect it. The expression that

Hmin = €2 — €1+ Heorr- (420)
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remains can be understood by rewriting it, which yields

€2 — HUmin ~ €1
Y2 —1 -1
Equation 4.21 shows that, at pi,, the positions of the 00/02-transition (equation 4.9) and
0/1-transition (equation 3.17) are approximately equal. Thus, iy is the minimal chemical
potential where state 2 is present in the molecular chain in the force-regime of the overstretch-
ing transition (x ~ xo1). This causes the intercalators (state 2) to change the overstretching
transition.

(4.21)

We continue by calculating fiy,qz, the maximal chemical potential that still shows an overstretch-
ing transition. If g > fnez, the overstretching transition disappears and the force-extension
curve looks like the black curve in figure 4.8b. We explained above that the disappearance of
the overstretching transition is associated with the absence of an intersection between the Fiq
and Fpy curves (figure 4.8a), while before the disappearance they intersect twice (figure 4.7a).
At pmas, the point of disappearance, the free energy equation has exactly one solution, so the
vertical lines in figure 4.7 coincide.

We calculate 4, in the same way in which we calculated fiin. In the relevant regime,
there is no straightforward analytical solution of Fy; = Fyo, so we approximate fimq: by equating
the expressions for both green vertical lines, 211 (equation 4.18) and X112 (equation 4.19)
This results in
72— 1 +5271*’Y2*1
=1 -1
where o is again a small correction factor, which depends only on v and 79, and that we
neglect. This expression gives the chemical potential where xp2—11 and x11-22 are equal to
each other, but also equal to xo2—22 (equation 4.10), the force where the 0/2-model undergoes
the transition from the macroscopic state 0/2 to the macroscopic state 2/2. Thus, at fmq, the
macroscopic states 0/2, 1/1 and 2/2 all have the same free energy. At higher chemical potential,
X11-22 < X02-s11, SO as soon as the system would overstretch (xo2—11), it would immediately
stretch further to state 2/2. Therefore, there is no overstretching transition for y > fimaz-

Mmaw = 62 - 51 + /14007’7", (422)

Together, fmin and fhnee give an indication for the range of chemical potentials that shifts
the overstretching transition. At u < pmin the overstretching transition is not shifted, while at
I > [tmaz there is no overstretching transition at all. Thus, the chemical potentials pisp;f¢, that
shift the overstretching transition, obey

Y2 —1 y2—1 271 =72 —1
- < it < €2 — o 4.23
€2 71_152 Hshift < €2 — €1 1 + -1 (4.23)
and the window of chemical potentials that do so, W,,, is thus given by
291 — v — 1
YL et § (0.2

71 —1

Since 71 and v, are known, equation 4.24 allows us to determine the value of the cooperativity
parameter 0 from experimental data, by studying the range of chemical potentials that show a
force-extension curve with shifted overstretching transition. We do this in section 4.6.

We conclude this section with a summary in graphical form of the influence of u on the 3-
state Kuhn model. We show the 3-state force-extension curves of figures 4.6b (u = —16), 4.7b
(u = —8.5) and 4.8b (= —5) in one plot, together with the curve corresponding to p = —10.
The result is given in figure 4.9. The figure shows all three regimes discussed in this section: the
unaffected overstretching transition (u = —16), the shifted overstretching transition (4 = —10
and p = —8.5) and the force-extension curve that shows no overstretching transition at all
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Figure 4.9: A graphical summary of section 4.4: 3-state force-extension curves are plotted for a range

of chemical potentials that covers all regimes discussed in this section. The p = —16 curve shows an
overstretching transition that is not affected by intercalative binding. The curves with g = —10 and
1 = —8.5 show an overstretching transition that is shifted towards higher forces, and the yp = —5 curve

shows no overstretching transition at all. The other parameters are given by 6 = 4, ¢y = 7, g3 = 1,
v1=17v=2 A=4andn=_8.

(n = —5). Figure 4.9 captures all five features of the experimental force-extension curves that
we listed in chapter 2. In the next section we analyze the physical background of these features.

4.5. Explaining experimental observations

In section 4.4 we analyzed the overstretching transition of the 3-state Kuhn model as a function
of . The results, as summarized in figure 4.9, show that the 3-state Kuhn model reproduces all
features of the influence of intercalation that we observed in the experimental data of Vladescu
et al. [21] (figure 2.4b). We now return to the five observations that we listed in section 2.2.2.
The mathematical and graphical analysis of the 3-state Kuhn model allows us to give physical
interpretations to these observations. We discuss each of the observations and analyze why they
occur in the 3-state model. If we understand why the coarse-grained 3-state Kuhn model shows
this behavior, we also understand the leading physical principles behind the changes in the real
system. The five features of force-extension curves in the presence of intercalators, as listed in
section 2.2.2, are

e A force shift of the overstretching transition as a function of intercalator concentration.

¢ An end-to-end length that is significantly larger than 1 for forces smaller than the over-
stretching force.

An end-to-end length increase at forces smaller than the original overstretching force.

An end-to-end length decrease at forces larger than the original overstretching force.

The disappearance of the overstretching transition for large concentrations.
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A force shift of the overstretching transition as a function of intercalator concen-
tration.

The first intercalator-induced effect that we analyze is the most striking change in the force-
extension curves: the shift of the overstretching force towards higher forces as a function of the
intercalator concentration. We clearly observe this effect in figure 4.3 and quantified it in section
4.4. Obviously, the effect is caused by the increased influence of the intercalated state (state 2)
in the model. Intercalated base pairs have a different length and a different free energy penalty
than non-intercalated base pairs, thus they influence the force-extension curve. However, for a
shift in the overstretching force to occur, as seen in figure 1.4b, another ingredient of the 3-state
Kuhn model is essential: the cooperativity parameter 7. Recall that 1 penalizes an interface
between a Kuhn segment in state 1 and a Kuhn segment in state 2. Thus 7 represents a free
energy penalty associated with an intercalated base pair neighboring an overstretched base pair.
We introduced this cooperativity parameter based on the preliminary results of Biebricher et
al. [98] in section 4.2.2, which suggest that such a free energy penalty might exist. We assumed
that n is positive in the entire analysis of section 4.4, and here we show that the existence of
a positive free energy penalty n is indeed essential for the shift of the overstretching transition.
To do so, we plot the force-extension curves of figure 4.3 again, but we reduce n to 0. The result
is plotted in figure 4.10.
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Figure 4.10: This figure shows the example of figure 4.3, but the free energy penalty for a 1/2-interface
n is reduced to 0. The force-extension curve of the 3-state Kuhn model is shown (black), as well as the
force-extension curves of the 0/1-model (purple), the 0/2-model (blue) and the 1/2-model (red). In the
absence of a positive free energy penalty 7, the overstretching transition does not shift towards higher
forces as a function of u. Instead, the overstretching transition directly disappears as soon as some Kuhn
segments are intercalated. This shows that the existence of a positive 7 is essential for explaining the
experimental data of figure 1.4b.

Figure 4.10 does not show a shift in the overstretching transition. On the contrary, it does
not show a cooperative overstretching transition at all. To understand why 7 plays such an
essential role in the shift of the overstretching transition, we consider what happens when the
chemical potential p approaches pim, (equation 4.20) from below. At this chemical potential,
the influence of state 2 in the 0/2-model starts around the same force as the influence of state
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1 in the 0/1-model (x00—02 = Xxo01)- If n would be equal to 0, as in figure 4.10, states 1 and
2 could independently occur. This would lead to a macroscopic state where states 0, 1 and 2
are all present. At forces larger than the original overstretching force, x > xo1, state 1 has a
lower free energy than state 0, so most Kuhn segments in state 0 are excited in state 1, while
the intercalated Kuhn segments (state 2) are unaffected. This leads to a normalized extension
that is larger than 1.7 because some segments are in state 1 (73 = 1.7), while others are in
state 2 (y2 = 2). Furthermore, the presence of intercalated Kuhn segments would break the
cooperativity of the overstretching transition, because it allows the chain to have Kuhn seg-
ments in state 0 and Kuhn segments in state 1 in the chain simultaneously, without paying the
free energy penalty A. This is possible because the sequence of states 0-0-1-1 does pay the free
energy penalty A\ at the 0/1-interface, but the sequence of states 0-0-2-1-1 would not pay any
interfacial free energy penalty. The 3-state Kuhn model in figure 4.10 indeed shows both these
effects.

However, this picture completely changes when 7 is larger than 0. This penalizes a 1/2-
interface, and states 1 and 2 cannot occur independently anymore. State 1 now pays a free
energy penalty for interfaces with both state 0 and state 2, so both sequences 0-0-1-1 and 0-0-2-
1-1 pay an energy penalty: A for the 0/1-interface and n for the 1/2-interface respectively. Hence,
the overstretching transition remains cooperative even in the presence of state 2. Furthermore,
an extension of more than 1.7 is not observed at forces slightly higher than the overstretching
force because states 1 and 2 do not occur simultaneously, and all Kuhn segments are in state 1
after the overstretching transition.

We have seen that a nonzero 7 is essential for a cooperative overstretching transition towards
an elongation of 1.7 in the presence of intercalators. The last question we need to answer is
why the overstretching force increases with u. This is also an immediate consequence of 7. It
is caused by the fact that the overstretching transition does, in the presence of intercalators,
not start from a chain with all segments in state 0. Instead, some Kuhn segments are in state
2 at the original overstretching force yg;. Not only the Kuhn segments in state 0, but also the
Kuhn segments in state 2, need to change into state 1 at the overstretching transition. However,
changing a Kuhn segment from state 2 to state 1 costs more free energy than changing a Kuhn
segment from state 0 to state 1 at that force. Thus, changing the partly intercalated chain into
a completely overstretched chain is more difficult than changing a completely state 0 chain to
a completely overstretched chain. So the force needs to do more work before the overstretching
transition is realized, and the overstretching transition shifts towards higher forces.

An end-to-end length that is significantly larger than 1 for forces smaller than
the overstretching force.

Now we understand why the overstretching transition shifts towards higher forces, this effect is
straightforward to understand. We saw that the shifted overstretching transition is a transition
from a chain that is partly intercalated to an overstretched chain. Intercalated DNA is longer
than B-DNA, so the chain has a normalized end-to-end length of more than 1 just before it
overstretches.

An end-to-end length increase at forces smaller than the original overstretching
force.

This effect is closely related to the previous effect. The difference is that the previous effect
answers why the end-to-end length is larger than 1 for forces lower than the shifted overstretch-
ing force, while here we discuss why the end-to-end length increases with u for forces lower
than the original overstretching force xo1 (equation 3.17). However, we just saw that the over-
stretching transition only shifts if there are already intercalated Kuhn segments at the original
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overstretching force. Thus, for xy < xo1, intercalators change the chain from a completely B-
DNA state to a largely largely B-DNA state, with some intercalated Kuhn segments. State 2
(intercalated) is longer than state 0 (B-DNA), which causes the end-to-end length to increase.

An end-to-end length decrease at forces larger than the original overstretching force.

In between the original and the shifted transitions, the average segment length is in between [
and v1lp = 1.7y, because in this force regime up to 50% of the Kuhn segments is intercalated,
which corresponds to an average segment length of WTHZO = 1.51p. The introduction of this
effective state with a segment length in between those of states 0 and 1 causes both the end-to-
end length decrease at x > xo1 and the increase at x < xo1-

The disappearance of the overstretching transition for large concentrations.

We studied this effect in section 4.4. We attribute this effect to the intercalator binding at
every base pair at large u. When g — pimee (equation 4.22), the overstretching transition shifts
towards higher forces. At the same time, the free energy of the macroscopic 2/2-state decreases
as a function of u as well. Hence, the transition from state 1/1 to state 2/2 (x11-22) shifts
towards lower forces. We saw in section 4.4 that when these transition forces are equal, the
overstretching transition disappears. At such high chemical potentials, the free energy of the
intercalated state is so low that the 0/2-model is favored over the 1/1-model even at forces that
are normally not large enough to allow intercalation at every base pair. Hence, the overstretched
state (state 1) itself disappears from the chain, and so does the overstretching transition.

We now understand the physical principles behind the five effects of intercalative binding on
the location and extent of the overstretching transition of dsDNA. Thus, we have answered our
research question and we have achieved the primary goal of this thesis. However, our 3-state
Kuhn model allows for a further analysis of the influence of intercalators on the force-extension
curve of dsDNA. The next two sections are dedicated to this further analysis.

4.6. A quantative comparison to experimental data

In section 4.4 we performed calculations on the effects of intercalator binding in the 3-state Kuhn
model, and showed that the experimentally observed effects can be reproduced with the 3-state
model. Now we seek to quantify the comparison between the 3-state model and the experimental
data. First we study the shift of the overstretching force quantitatively, after which we determine
values for the parameters in our model.

4.6.1. Quantifying the force shift of the overstretching transition

The experimental data of Vladescu et al. (figure 1.4b [21]) show the force-extension curves of
dsDNA as a function of the ethidium concentration. Five of these curves show an overstretching
transition. We plot the corresponding overstretching force as a function of concentration in
figure 4.11.

Figure 4.11 shows that the overstretching force fover in pN is a linear function of the inter-
calator concentration in the regime of 0 - 25 nM. We compare this to the quantative predictions
of our 3-state Kuhn model. We calculated the overstretching force as a function of the chemical
potential i in section 4.4, resulting in equation 4.18. This expression shows that the dimension-
less overstretching force xg2—11 is a linearly increasing function of p, which suggests that the
overstretching force would increase logarithmically with the particle concentration, according to
equation 4.3. This is in contradiction with the experimental data in figure 4.11.
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Figure 4.11: The overstretching force fover in pN as a function of the intercalator concentration C' in
nM, according to the experimental data of Vladescu et al. [21]. The red dots correspond to the force-
extension curves in figure 1.4b that show an overstretching transition. The black line gives a linear fit to
the data.

However, equation 4.18 was derived in section 4.4 under the assumption that ypo—02 <<
X << Xo02-22- This assumption reflects that, at the overstretching force, the 0/2-model is in
a 0/2-Neél state. In other words, this assumes that the force-extension curve of the 0/2-model
is approximately flat at the overstretching transition. The 3-state curve overlaps with the 0/2-
model at forces lower than the overstretching force, thus the 3-state curve is also assumed to
be approximately flat before it overstretches. Figure 1.4b shows that this is not true for the
experimental data. The extensions all increase significantly up to the overstretching transi-
tions. This indicates that the overstretching transition occurs in the force regime x ~ x00—02,
where the number of intercalated Kuhn segments is increasing as a function of force. This force
regime is in between the regimes corresponding to equations 4.17 and 4.18. Therefore, we cal-
culate the overstretching force as a function of y in this regime by numerically solving Fpo = Fi;.

Based on figure 4.11, we expect the shift in the overstretching transition to be linear with
intercalation concentration. So, using the relation between C' and p (equation 4.3), we expect
the force shift to increase exponentially with the chemical potential u. To check whether our
model agrees with the data of the force-shift in figure 4.11, we plot the logarithm of the force
shift, In(xover(1t) — Xover(t — —00)), as a function of the chemical potential . Here yover(1t)
gives the overstretching force as function of the chemical potential, and yover(1t — —00) gives
the overstretching transition in the absence of intercalators. The result is presented in figure
4.12.

Figure 4.12 uses the same model parameters as figures 4.6, 4.7 and 4.8 (y; = 1.7, 72 = 2,
€1 ="7,e9=1,6 =4, n7n =8 and X\ = 4), but the chemical potential y is varied from -16 to
-8. This includes the examples of both figure 4.6 (u = —16) and figure 4.7 (1 = —8.5). The fit
shows the linear dependence of the logarithmic force-shift as a function of u. Thus, we can write

In Xover(ﬂ) - Xover(,u — _OO) =a-pu+ b, (4.25)
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Figure 4.12: The logarithm of the force shift of the overstretching transition in the 3-state Kuhn model
is plotted as a function of the chemical potential, in the regime where x ~ xo0—o02. The red dots are
produced by numerically equating the free energies of the 0/2-model and the 1/1-model, Fpo = Fiy.
The fit shows that this logarithm increases linearly with the chemical potential, so the force shift itself
increases exponentially with the chemical potential. The validity of this exponential regime ends around
1= —9, where the dots start deviating from the fit. The model parameters used for this plot are y; = 1.7,
Yo=2,61=T,ea=1,0=4,n=8 and A\ = 4.

where a and b are the slope and intercept of the linear fit respectively. We now rewrite this
expression,

Xover (1) = Xover(pt — —00) +exp(a -y +b)

C
= Xover - 1 — b
Xover(t — —00) + exp <a n(55'6> + )

a
= Xover(tt = —00) + exp(b) - <C> , (4.26)
55.6

where we used equation 4.3 in the second step. We now determine the dependence of the fitting
parameters a and b on the parameters of the 3-state Kuhn model to compare our model to the
experimental data. We omit the analysis and present the results directly. First, the slope a is
independent of all model parameters and is always equal to 1. Thus, the 3-state Kuhn model
gives a linear dependence of the overstretching force on the concentration,

exp(b
Xover(u) = Xover(:u — _OO) + 52)(6) -C, (427)

which agrees with the experimental data shown in figure 4.11. The value of the intercept b does
depend on the system parameters, and is given by

-1
b:”YQ

1 €1 — €2 + beorr, (4'28)

where b.o is a correction on the value of b that depends on v, and 9, which we neglect for
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simplicity. To understand the value of the intercept, we substitute it in the first line of equation
4.26,

2 — 1
-1
We note that the value of b is exactly minus the smallest chemical potential that shifts the
overstretching transition, pmin (equation 4.20). So we can rewrite equation 4.29 to obtain

Xover (4) = Xover(ft = —00) 4 exp (u + €1 — 82)- (4.29)

x(1) = x(p = —00) + exp(p — Lmin)- (4.30)

This gives a new interpretation of p,,. Since the overstretching transition shifts exponentially
with u, there is no smallest chemical potential that shifts the overstretching transition. Instead,
it is the characteristic chemical potential of the exponential increase of the overstretching force.
The exponential nature of this force-shift is related to the exponential increase, as a function
of force, of intercalated Kuhn segments in the force-regime before the overstretching transition.
This exponential increase of intercalated segments was found by Biebricher et al. [98] and by
Roel Roijmans [54], and is also predicted by our 3-state Kuhn model.

We emphasize that equations 4.25 to 4.30 are only valid for relatively small shifts in the
overstretching transition. The validity of these equations ends when either the overstretching
transition enters the force regime where the 0/2-model shows the alternating 0/2-state (in which
case equation 4.18 is valid) or when the overstretching transition disappears because i > fmaq
(equation 4.22). In figure 4.12 this is observed at a chemical potential of about -9, where the
calculations start to deviate from the linear fit.

4.6.2. The parameters of the 3-state Kuhn model

In this section we connect the theory of the 3-state Kuhn model to available experimental data
to determine values for the parameters of the model, v1, ¥2, €1, €2, A, 4, and 7.

To start with, the introduction of intercalators in the model cannot change the parameters
that are related to overstretched DNA (state 1) only. Thus, &1 = 3.2, A = 4 and v = 1.7.
Furthermore, we already know that 9 = 2 based on the biological background information
of section 2.1. This leaves the free energies €5, § and 1. We start by estimating the free
energy penalty J, that penalizes interfaces between two intercalated Kuhn segments and is thus
respounsible for the neighbor-exclusion principle (section 2.1). We saw that ¢ dictates the position
of the transition between the macroscopic states 0/2 and 2/2 in the 0/2-model (equation 4.10).
Unfortunately, the 3-state Kuhn model does not show this transition under the circumstances
used for obtaining figure 1.4b. The 3-state model shows, however, that the window of chemical
potentials that shift the overstretching transition is a function of ¢ as well (equation 4.24). We
now estimate § by studying the force-extension curves in figure 1.4b that are influenced by
intercalators. The figure shows overstretching transitions for the curves with concentrations of
0, 5, 10, 20 and 25 nM. The 5 nM curve shows a shift of the overstretching transition of about
8 pN, corresponding to 0.7 in dimensionless units according to the definition of y = k];%‘ Thus,
it corresponds roughly to fimin, which would show a shift of 1 in dimensionless units (equation
4.30). Hence, figure 1.4b shows a concentration increase with a factor 5 (25 nM with respect
to 5 nM), corresponding to an increase in pu of In(5) ~ 1.6. From this, the minimum value of ¢
in the experimental data is ~ 3, obtained by equation 4.24. However, the first force-extension
curve that does not show an overstretching transition is obtained with a concentration of 125
nM, which corresponds to a factor 25 concentration increase, or an increase in p of In(25) ~ 3.2.
Thus, the maximum value of § is determined by equation 4.24 to be ~ 6. Thus we estimate the
cooperatity parameter ¢ to be between 3 and 6. More data in between concentrations 25 nM
and 125 nM is required to give a better estimate.

Next, we evaluate €5. Recall that €2 — p is the free energy penalty for state 2. We relate
1 to the experimental intercalator concentration C' according to equation 4.3, which gives the
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value of p for every force-extension curve in figure 1.4b. We use these values, together with the
linear shift of the overstretching force as a function of concentration, to calculate 2. We found
this linear dependence both in the experimental data of Vladescu et al. [21] (figure 4.11) and in
our theory (equation 4.27). To compare theory and experiment, we first multiply the theoretical
result, equation 4.27, by kf—OT to obtain the dimension of force, substitute equation 4.28 for b,
and then equate the experimentally and theoretically found slopes to obtain 2. The slope of

figure 4.11 is 1.3 pN/nM, thus

kBTexp <zf:i€1 — 52)

55.6 lp

.C =13-10°-C, (4.31)

where the slope of figure 4.11 is multiplied by 10° because C is the intercalator concentration in
M (instead of nM), and % is expressed in pN. We solve equation 4.31 for €5 and substitute the
known values of €1, 71 and 2, to obtain €2 &~ —18. Thus the free energy penalty o = —18kpT,
where the minus sign shows that it is actually a free energy bonus. &5 contains contributions
from deformations in the dsSDNA and from the binding free energy of an intercalator. Since state
2 is not observed experimentally [12, 13], the deformation in the dsDNA is very likely to give a
positive contribution to €2. Thus, the binding free energy of dsDNA intercalation is a free energy
bonus of at least ~ 20 kgT'. The other free energies in our model (1 = 3.2, A =4,3 < ¢ < 6) are
significantly smaller, so the question arises why this interaction free energy is so large. However,
we are not the first to find free energies for interactions between dsDNA and intercalators in this
order. For example, Reha et al. [99] found stacking energies between ethidium and A-T base
pairs, at a mutual distance of 0.33 nm, in the order of ~ 38 kgl using computer simulations.
Note that 0.33 nm is approximately the distance between ethidium and the nearest base pair in
intercalated dsDNA, since it is half the distance between neighboring base pairs. Using similar
methods, the stacking energies between different base pairs were found to be in the order of
—11kpT to —19kpT, depending on the type of nucleotide [100]. The difference between these
interactions gives an indication of the binding free energy for intercalation, and this difference
is indeed in the order of —20kgT. Reha and co-workers attributed this large interaction free
energy to electrostatic and dispersion forces, because the intercalator is electrically charged and
highly polarizable [99]. Indications for the role of electrostatics were also found experimentally:
Waring [89] found that an increasing salt concentration in the solution significantly decreases
the interaction strength between dsDNA and ethidium. This suggests that the electrostatic
interaction is reduced due to charge screening. Additionally, other effects might contribute to
the binding free energy as well. For example, hydrophobic forces are suggested to play a role in
ethidium-dsDNA interactions [101]. This might be related to the fact that ethidium molecules,
which are partly hydrophobic, break their contact with water when they intercalate dsDNA.
We perform a rough estimate of this hydrophobic interaction energy to check whether this force
could play a significant role. We estimate the surface of an ethidium molecule to be in the
order of 1 nm?, based on the size of a C-C bond (0.120 — 0.154 nm [102]), while the hydrophobic
interaction free energy of a hydrophobic object with water is about 7 kg7 nm~2 [93]. Since an
ethidium molecule has two sides, the total hydrophobic energy is in the order of 14kgT. This
estimate shows that hydrophobic forces might, next to electrostatic and dispersion forces, play
a significant role in the binding free energy of ethidium to dsDNA.

The last parameter is the cooperativity parameter 7, which penalizes 1/2-interfaces. We
concluded (section 4.5) that a positive value of 7 is essential for the shift of the overstretching
force. However, to obtain a number for 77 we need to observe coexistence of states 1 and 2. We
do not clearly observe such coexistence in the experimental data, so we can only determine a
lower limit for n. Figure 1.4b shows that the overstretching transition remains very sharp even
when the force shift is rather large, which is the case in the 25 nM curve. Our model shows that
the width of the overstretching transition is inversely proportional to the difference in length

71



between the state before the transition and the state after the transition. In the case of the 25
nM curve, this difference is rather small, but still the overstretching transition remains sharp.
We conclude form this that 1 must be relatively large. By comparing the data to our model, we
estimate n 2 6. More information about 7 could be obtained from experimental data of even
higher forces, a regime that we discuss in section 4.7.

Summarizing, we have used experimental data to find estimates for all our model parameters.
The elongation factors are y; = 1.7 and 2 = 2, the cooperativity parameters are given by A = 4,
3 < d < 6and n > 6, and the free energy penalties for states 1 and 2 are given by 1 = 3.2
and g9 = —18. All free energies (), 0, 1, €1 and £92) are given in units of the thermal energy
kgT. We conclude this section by comparing the resulting force-extension curves to experimen-
tal data. Figure 4.13 shows the theoretical curves (a) corresponding to the experimental data
[21] in (b). Note that the axes of the theoretical plot (figure 4.13a) are adjusted to the axes of
the experimental plot to allow for a better comparison. Furthermore, note that the extension
axis in figure (b) starts at 0.25 nm instead of 0.
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Figure 4.13: The theoretical force-extension curves of the 3-state Kuhn model (a) corresponding to
the experimental data of Vladescu et al. [21] in (b). The chemical potentials in (a) correspond to the
concentrations in (b) according to equation 4.3, and corresponding curves in (a) and (b) are plotted in
the same color. The similarity between (a) and (b) is evident. The low-force regimes differ because of the
lack of bend stiffness in the model. The force shift of the overstretching transition, however, is captured
very well in the theoretical curves. The theoretical high concentration curves (u = —19.9, u = —17.8 and
1= —16.9) also resemble the experimental curves very well.

The chemical potentials in figure (a) are chosen such that they correspond to the concentrations
in figure (b), according to equation 4.3. Corresponding curves are plotted in the same color.
The agreement between figures 4.13a and 4.13b is evident. The low-force regime of the theo-
retical curves (a) deviates from the the experimental curves (b) due to the previous discussed
absence of bend stiffness. However, the observed force shift of the overstretching transition is
captured very well in the theoretical curves, as well as the disappearance of the overstretching
transition for higher concentrations and the corresponding elongations beyond 1.7. The theo-
retical high-concentration curves (u = —19.9, p = —17.8 and p = —16.9) deviate slightly from
the experimental curves because they show slightly larger extensions than the corresponding
experimental curves. This is best seen around the force of the original overstretching transition
(65 pN), where the experimental curves intersect the zero-intercalator (black) curve at lower
extension than the theoretical curves do. This is probably related to bend stiffness. Husale et
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al. [103] and Vladescu et al. [20] found that the persistence length of ethidium intercalated
dsDNA is smaller than the persistence length of bare dsDNA. The high-concentration curves
represent dsDNA with a high degree of intercalation, so this explains why the theoretical curves
slightly overestimate the length increase of the high-concentrations curves with respect to the
low concentration curves.

We conclude with the observation that figure 4.13 shows that the theoretical curves resemble
the experimental curves very well, and that the 3-state Kuhn model captures all essential features
of the influence of intercalative particle binding on the overstretching transition of dsDNA.

4.7. Intercalation at every base pair in the high-force regime

We conclude this chapter by analyzing a regime in the force-extension curve that is not described
in the data of Vladescu et al. [21]. This is the force regime well above the overstretching
transition. The force-extension curves of figure 4.13b stop in or shortly after the overstretching
transition. In this section we predict the behavior of these force-extension curves in higher force-
regimes. Our 3-state Kuhn model has shown to work very well at forces around the overstretching
force, and now we explore its behavior in this highest-force regime.

The high-concentration curves in figure 4.13 (u = —19.9, p = —17.8 and pu = —16.9) show
normalized extensions of more than 1.7, approaching 2. We interpret this as a violation of the
neighbor-exclusion principle (section 2.1), leading to intercalation at every base pair. However,
the 3-state Kuhn model also predicts this violation for lower chemical potentials. We predict
that the curves in figure 4.13b that show a shift in the overstretching force (5, 10, 20 and 25
nM) would show this violation as well if the curves would be extended to larger forces. In other
words, we predict that these curves also show a normalized extension that approaches 2 if the
stretching force is increased sufficiently.

We base this prediction on our analysis of the 0/2- and 1/2-models. Both show that, if
forces are sufficiently large, the macroscopic 2/2-state will be excited (figures 4.4 and 4.5). In
this state the neighbor-exclusion principle is violated and every base pair is intercalated. This is
caused by the fact that the stretching force does work on the chain. The macroscopic 2/2-state
corresponds to the longest possible molecular chain, twice as long as B-DNA. Hence, the 2/2-
state maximizes the work that the stretching force can do. If this force is sufficiently large, the
work dominates the free energy penalties, including ¢, and thus violates the neighbor-exclusion
principle. Recall from chapter 2 that the exclusion principle is believed [21] to be mediated by
structural changes in the dsDNA backbone, rather than by direct steric repulsion. The large
stretching forces promote these structural changes because they allow the force to do more work.

To demonstrate this effect, we show the force-extension curves of figure 4.13a again, but
now we extend the force axis to 240 pN. The result is given in figure 4.14. It shows that,
indeed, all force-extension curves approach a normalized length of 2 (0.68 nm per base pair)
if the force is large enough. The only exception is the black curve, which represents dsDNA
in the absence of intercalative binding. The curves show cooperative transitions from the 1/1-
model to the 0/2-model, as discussed in section 4.4. The corresponding transition forces can be
calculated by solving Fpo = Fi1. If x >> x02-22, the solution can be approximated by equation
4.19. This approximation is accurate for the p = —23.1 and g = —22.4 curves in figure 4.14.
The cooperativity parameter of the transition is given by 1 — %(5 (section 4.3.2). We estimated
3 < § <6 andn > 6 for ethidium binding to dsDNA, so the transition is indeed cooperative.
However, it is possible that there exist DNA-intercalator complexes for which n < %5 , in which
case the transition to state 2/2 at high forces would be anti-cooperative.

In our analysis of the high-force regime we have assumed that the DNA molecule does not
rupture if stretching forces of the order of 100 pN are applied. The 3-state Kuhn model does
not take breaking into account, so we cannot predict whether this assumption is valid. However,
it is reported in literature [3] that dsDNA molecules have been stretched to forces in the order
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Figure 4.14: The force-extension curves of figure 4.13a are plotted again, but the force axis is extended
to a force of 240 pN. The 3-state Kuhn model predicts that, in the presence of intercalating dye, all
force-extension curves are stretched to a state in which every Kuhn segment (base pair) is intercalated,
if the stretching force is large enough. This violation of the neighbor-exclusion principle is attributed to
the work done by the stretching force, which overcomes the free energy penalty § at high forces. The
higher the chemical potential is, the smaller the force that is required for intercalation at every base pair.

of 1000 pN before they broke. Under the circumstances of these experiments, we expect to find
intercalation at every base pair before the DNA molecule breaks.

Summarizing, our model explains normalized extensions that are larger than 1.7, which are
observed in experimental data [21] at large concentrations, by violation of the neighbor-exclusion
principle. Our model predicts that large stretching forces also induce violation of this exclusion
principle. In both cases this happens because state 2 is energetically favored over the other
states. In the first case state 2 is favored because its free energy penalty, €2 — 1, becomes small
if the chemical potential p is large enough. In the latter case state 2 is favored because it is
longer than the other states, and thus favored because it allows the stretching force to do more
work.
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Chapter 5

Conclusions & outlook

This chapter is concerned with the main conclusions of our work, followed by an outlook to
possible future research. We finish with a section in which we discuss the technological relevance
of our work.

5.1. Conclusions

In this thesis we developed multi-state Kuhn models to gain an understanding of the physical
principles behind the effect of intercalative particle binding on the location and magnitude of the
overstretching transition of double-stranded DNA. We performed an analysis on experimental
data of this effect, and used this analysis as a starting point of our theoretical study. We
concluded that a 2-state Kuhn model, while appropriate for bare dsDNA, is not sufficient for
explaining the influence of intercalators on the high-force regime of the force-extension curve.
We expanded our model with a third molecular state, representing intercalated DNA, obtaining
the 3-state Kuhn model. We compared our theory to experimental data to estimate numbers
for the parameters in the 3-state Kuhn model. Using these numbers to produce force-extension
curves, we showed remarkable agreement between the experimental and theoretical curves in
the high-force regime. This demonstrates that our 3-state Kuhn model captures all essential
features of the effect of intercalative particle binding on the overstretching transition of double-
stranded DNA, and therefore that the 3-state Kuhn model gives an appropriate description of
dsDNA-intercalator complexes.

The agreement between our theory and experimental data allowed us to explain what physical
principles dictate the intercalator-induced changes in the force-extension curve of dsDNA. The
most remarkable changes that are observed in experimental data are the intercalator-induced
shift of the overstretching force and the total disappearance of the overstretching transition for
large intercalator concentrations. Both effects, as well as smaller side effects, can completely
be explained by the introduction of a third molecular state, in addition to B-DNA and over-
stretched DNA. This third state is twice as long as B-DNA, and is excited by anti-cooperative
binding of intercalators. This leads to a molecular chain that is partly intercalated at average
intercalator concentrations, with an effective length that is in between those of B-DNA and
overstretched DNA. We showed that this partly intercalated DNA is energetically favored over
overstretched DNA, which causes the overstretching transition to shift towards higher forces.
When the intercalator concentration is increased further, the anti-cooperative nature of binding
can be overcome, which leads to intercalation at every base pair. This causes the overstretching
transition to disappear. Moreover, we showed that a free energy penalty for an interface between
overstretched DNA and intercalated DNA is essential in order to obtain the force shift of the
overstretching transition.

Finally, our 3-state Kuhn model predicts the force-extension curve of dsDNA-intercalator
complexes in the force-regime beyond the overstretching transition. This force-regime is not
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reported in experimental literature. We predict that every dsDNA molecule in the presence of
intercalators will eventually elongate to a length that is twice the original contour length, if
the stretching force is large enough. This elongation is caused by intercalation of every base
pair at such a stretching force. This effect should be visible in force-extension data, but also in
fluorescence data.

5.2. Outlook

In this thesis we focused on gaining a deeper understanding of the physical principles behind
the effect of intercalative binding on the force-extension curve of double-stranded DNA. We
kept our model as simple as possible, because this allowed us to analyze the mathematical and
physical properties of our model extensively. This analysis enabled us to understand the physical
principles behind the effect of intercalators on the overstretching transition of dsDNA, and
therefore it enabled us to achieve our goal. A consequence of this approach is that we neglected
certain dsDNA properties that were not essential for gaining the desired understanding. The best
example of this is the absence of bend stiffness in our model, which causes our low-force regime
to deviate from the experimentally observed low-force regime. A straightforward extension of
our model would include bend stiffness between adjacent Kuhn segments. Another possible
extension of the 3-state Kuhn model would be the introduction of extensible Kuhn segments,
which would behave like Hookean springs instead of perfectly rigid rods. However, the stretch
modulus of B-DNA is known to be well above 1000 pN [15, 31]. Upon overstretching, the stretch
modulus of dsDNA is even increased by an order of magnitude [15]. Since overstretching occurs
around 65 pN, we do not expect that introducing extensibility of Kuhn segments would induce
significant changes in the model. The force-extension relation of an extended 3-state Kuhn
model could be calculated numerically and used to fit experimental data. We predict that the
introduction of bend stiffness, and possibly the extensibility of Kuhn segments, is sufficient for
obtaining a good fit to experimental data.

We suggest that an other important future direction is the introduction of reaction dynamics
to our model. We have focused on equilibrium only, because this was appropriate for the
experimental data that we explained. However, some intercalators show much slower binding
kinetics than those of ethidium [48, 98, 104, 105]. This results in intercalative binding on
timescales in the order of or larger than the timescale of stretching. Our theory is inappropriate
for such intercalators because we assume the complete system to be in thermal, mechanical and
chemical equilibrium. Indeed, experimentalists find different force-dependent behavior for these
intercalators, including hysteresis effects [48, 98, 105]. A useful extension of our 3-state Kuhn
model would be the the introduction of binding kinetics, which should lead to a dynamic model
for intercalative binding that is valid for both fast and slow intercalators. In addition, a dynamic
model could be used to study the distribution of overstretched and intercalated Kuhn segments
on the dsDNA molecule, whereas we have only discussed the average degree of overstretching
and intercalation on the dsDNA molecule.

5.3. Technological relevance

In the introduction of this thesis we described the motivation for our work. Intercalative binding
to double-stranded DNA is an important mechanism in the study of dsDNA using fluorescent
dyes. The interaction of intercalators with dsDNA has also been studied for the purpose of
rational drug design, and it is likely that intercalation plays a role in certain cellular processes
that involve particle binding to dsDNA. Our work contributes to a better understanding of
dsDNA-intercalator interactions and therefore contributes to the understanding of the processes
described above.
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However, our work also has potential applicability in the context of designer materials.
Double-stranded DNA has shown to be a very interesting material in this context. Branched
dsDNA molecules have been used to create two and three dimensional structures completely
composed of DNA, ranging from a um to a cm scale [6-8, 106]. Suggested applications of these
designed DNA structures include nanorobotics [6] and biomedical applications such as drug
delivery, tissue engineering and cell transplant therapy [106]. Um et al. [106] report that the
properties of these dsDNA structures can be tuned by using other molecules to interact with the
dsDNA. They suggest that this allows DNA to be engineered as a designer material. Our work
on the interactions between dsDNA and intercalative molecules might be applied in this context,
where intercalators might be used to control the mechanical properties of the DNA structures.
The insights about these interactions obtained in our work might assist the rational design of
the properties of such structures.

Finally, our methods might be applied in a wider context of interactions between small
molecules and macromolecules. We modeled the interaction between intercalators and dsDNA,
but due to our method of coarse-graining we only used a few typical properties of these inter-
actions. We largely worked with phenomenological free energies. The success of this approach
in our work suggests that similar approaches might be successful in other interactions between
macromolecules and small molecules as well.
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List of symbols

Table A: Alphabetically ordered list of the symbols, including interpretation and dimension, as used in
this thesis.

Symbol Interpretation Dimension
a Slope of linear fit -

b Intercept of linear fit -

beorr Small correction to b -

C Concentration of intercalators M

E, Energy of a general state v pN nm

€t Eigenvector of T corresponding to Ay -

e_ Eigenvector of T corresponding to A -

f Stretching force pN

F Free energy pN nm
foo—so1 Transition force between states 0/0 and 0/1 in the 0/1-model pN

Joo—11 Transition force between states 0/0 and 1/1 in the 3-state model pN

fo1 Transition force between states 0 and 1 in the 0/1-model pN

Foo Free energy of the 0/2-model pN nm

Fi1 Free energy of the 1/1-model pN nm

1 Number of Kuhn segment -

kp Boltzmann’s constant pN nm K~!
kT Thermal energy pN nm

lo Length of a Kuhn segment in state 0 nm

Ly Contour length nm

M A general matrix -

N Number of Kuhn segments -

P, Probability of a system to be in state v -

S Entropy pN nm K—!
S; State parameter of the i Kuhn segment -

{S:} Collection of all state parameters S; -

Sz Mixing entropy pN nm K1

State 0 Microscopic state representing B-DNA -
State 0/0  Macroscopic state: all segments in state 0 -
State 0/1  Macroscopic state: alternating states 0 and 1 -
State 0/2  Macroscopic state: alternating states 0 and 2 -
State 1 Microscopic state representing overstretched DNA -
State 1/1  Macroscopic state: all segments in state 1 -
State 1/2  Macroscopic state: alternating states 1 and 2 -
State 2 Microscopic state representing intercalated DNA -
State 2/2  Macroscopic state: all segments in state 2 -
T Transfer matrix -

Continued on next page.
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Table A — Continued from previous page.

Symbol Interpretation Dimension
T Temperature K
ti Unit vector in direction of i*"* Kuhn segment -
{t;} Collection of all unit vectors #; -
1% Vector used in the transfer matrix method -
U A general vector -
vy Multiple of inner product of V and €4 -
v_ Multiple of inner product of V and -
W A general vector -
W Width of a general 2-state transition -
Wor Width of the 0/1-transition -
Woa Width of the 0/2-transition -
W, Range of chemical potentials that shift the overstretching transition -
z End-to-end length nm
Z Unit vector in the z-direction -
Z Partition function -
« Exponent of divergence of f -
" Elongation factor of state 1 -
Y1l Length of a Kuhn segment in state 1 nm
9 Elongation factor of state 2 -
Y2l Length of a Kuhn segment in state 2 nm
0 Free energy penalty for a 2/2-interface -
AE Free energy penalty for a general state -
AFE, Free energy penalty for state 2 -
€1 Free energy penalty for state 1 -
€2 — I Free energy penalty for state 2 -
g0/2=model " Fyee energy of the 0/2-model pN nm
gl/2—model " Fyee energy of the 1 /2-model pN nm
g2state Free energy of the 2-state Kuhn model pN nm
gd—state Free energy of the 3-state Kuhn model pN nm
gFIc Free energy of the freely jointed chain pN nm
n Free energy penalty for a 1/2-interface -
0 Polar angle -
K Hypothetical free energy penalty for a 1/1-interface -
A Free energy penalty for a 0/1-interface -
Ay Largest eigenvalue of the transfer matrix T' -
A Smallest eigenvalue of the transfer matrix T -
I Chemical potential a -
Leorr Small corrections to pimar and fmin -
Hmaz Largest chemical potential that shows an overstretching transition -
Kmin Characteristic chemical potential of exponential increase -
Kshift All chemical potentials that shift the overstretching transition -
v A particular microstate of a system -
0] [): Azimuthal angle -
2. Saturation parameter -
X Dimensionless force ,g;—loT -
X00—501 Transition force between states 0/0 and 0/1 in the 0/1-model -
X00—502 Transition force between states 0/0 and 0/2 in the 0/2-model -

Continued on next page.



Table A — Continued from previous page.

Symbol Interpretation Dimension
X00—s11 Transition force between states 0/0 and 1/1 in the 3-state model -
X01 Transition force between states 0 and 1 in the 0/1-model -
X02 Transition force between states 0 and 2 in the 0/2-model -
X02—11 Transition force between states 0/2 and 1/1 in the 3-state model -
X11—22 Transition force between states 1/1 and 2/2 in the 3-state model -
X12 Transition force between states 1 and 2 in the 1/2-model -
Xover Force of the general overstretching transition -

)

Thermal average
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Appendix A

Derivations of force-extension
relations

In chapters 3 and 4 we present the force-extension relations for the 1-state, 2-state and 3-
state Kuhn models, and only outlines of the physics involved in calculating these relations, but
mathematical details were omitted. This Appendix gives the detailed derivations of the force-
extension relations of the 1-state (section A.1), 2-state (section A.2) and 3-state (section A.3)
Kuhn models.

A.1. The 1-state Kuhn model

The starting point of the force-extension calculation of the 1-state Kuhn model is given by
equations 3.1 and 3.2,

LN ;s
T T T Zz:ti-z, (A.1)

and

e[{#:}]
Z = e - . A2
Sen (<5 (A2
{t;}
Equation A.2 represents a summation over all possible microstates of the chain, where each
microstate is defined by the orientation of all N unit vectors fi. A summation over all states

of a single Kuhn segment is therefore represented by an integral over all orientations of the
corresponding unit vector. Using this, and substituting equation A.1 for the energy, gives

flo < . L
— n n n 0 A. .2 g A. 0 A. .5
Z = /dtl /dt2... /dtN exp (k‘BT ;1 t; z) lel /dtl exp </<:BT t; z> . (A.3)

The last step in equation A.3 shows that all unit vectors are independent and non-interacting,
which causes the partition function to factorize in the partition function of N individual Kuhn
segments. Since all unit vectors are identical, this leads to

Z = [/df exp (ljBlothﬂN (A.4)

The next step is evaluating the integral over all possible orientations of the unit vector ¢, which
gives all points on a unit sphere. The integral [ dt therefore represents an integral over the polar
angle ¢ and the azimuthal angle ¢. The polar angle 8 was defined in figure 3.1 as the angle
between ¢ and the z-direction. This allows us to express the inner product in equation A.4 in

XIIT



terms of 6, t - 2 = cos@. This gives

7 2 T fl N
Z = [/0 d(b/o sin(f)dé exp (kBOT cos&)] . (A.5)

The integral over # can be evaluated by substituting cosf = wu, whereas the integral over ¢
simply gives 27. This leads to the following steps:

B 1 £l N TamkgT 1o\ 1Y
7= [ R (k T ﬂ - [ fl, S <kﬁ”)] ’ (4.6)

where sinh 2 = J(exp x —exp(—z)) is the hyperbolic sine function. Now that we have calculated
the partition functlon we can continue with the steps already outlined in section 3.1.1. We use
equations 3.3 and 3.4, from which we obtain

Amck T b \1V
F = —kgTIn(Z) = kT In <[ ”ﬂ? sinh (152/’)] > (A7)

for the free energy, and

(2) = g? ng[ (lfBZ?p)—"j]?l?] (A.8)

for the expectation value of the extension. This result is also presented in equation 3.5.

A.2. The 2-state Kuhn model

We repeat the steps of Appendix A.1 for the 2-state Kuhn model. Starting point is the energy
functional of the 2-state Kuhn model and the recipe to calculate the partition function. They
are given by equations 3.9 and 3.10,

2state[{£z}7{5 1 N flo 14 Si (71 —1)]
oo = 5 | SRl

N-1
tAi - Z+ 515{| + )\(1 - 5Si,5'i+1)7 (AQ)
=1

i=1

and

£33, {5
- Zzexp <_W> : (A.10)

Again we substitute the energy functional in the partition function and replace the summation
over the unit vectors by integrals. This gives

Z_/dtl Z /dt2 Z /dtN >

Sn=0,1

exp (Z [flo [l —1—1532;71 —1)] ti-2—¢e ] + Z A (05,81 — )> ) (A.11)

i=1

In the derivation of the force-extension relation of the 1-state Kuhn model our next step was to
factorize the partition function in a product of the partition functions of N independent Kuhn
segments. Unfortunately, we cannot do that here. The last term in equation A.11 gives the
energy penalty for a 0/1-interface, and depends on both Kuhn segment i and Kuhn segment
i + 1. Therefore, neighboring Kuhn segments interact and are not independent: the partition

X1V



function does not factorize.

However, while the state parameters S; and S;41 interact, the unit vectors t; and £i+1 do
not. Therefore, we first carry out the integrals in equation A.11 for which the partition function
does factorize. We will leave the summations unaffected for now. We first evaluate the integral
over a single unit vector and leave the rest out of the equations. Later we substitute this result
back in equation A.11. We call the result of the integral I*,

_ /thZ exp <flo [1 +k5z'z<;)’1 - 1)] tAl . 2) ’ (A.12)
B

which was already evaluated in Appendix A.1 for the l-state Kuhn model (equations A.4 to
A.6). The only difference is that /y has been substituted with i, [1 4+ S; (y1 — 1)], allowing us to
immediately write down

I = am sinh (x [1 +Si(y—1) } ) (A.13)

X [14‘51'(71—1)}

where we have used the same definition for y as we did in equation 3.7 in section 3.1.1,

_ Sl
- i (A.14)

Now we can substitute this result in equation A.11 for the integrals over all N unit vectors. A
little rearranging yields

Z Z Z H in } sinh (X [1 + Si (1 — I)D exp (—&,5;)

—0,155=0,1  Sn=0,1i=1 X[1+Si(’Yl—1)
N-1

. H exp [)\ (08;,5,11 — 1)} . (A.15)
i=1

The last term of equation A.15 prevents the partition function to factorize, and therefore makes
the calculation more difficult than the calculation in Appendix A.1. To solve this problem, we
use the so called transfer matriz method [92]. This methods uses linear algebra to solve certain
partition functions that do not factorize because the particles do not behave independently. We
do not explain the transfer matrix method in a separate section, but we explain each step of the
method at the point in the calculation where we need it.

'In calculating the partition function we sum over all possible microstates, by integrating over the entire phase
space of the chain. The configurational part of this phase space is performed by integration over the angles 6;
and ¢; for all i, where 6; and ¢; correspond to the it Kuhn segment. We note that this integration would be
different if we would 1ntegrate over all possible positions of the end point of a Kuhn segment z, y and z with
the constraint that y/x2 +y2 + 22 = lo [1 + Si(y1 — 1)]. In that case more microstates would be assigned to a
long Kuhn segment (vy1lo) than to a short Kuhn segment (lp), because the corresponding spherical surface area
is larger. This leads to an effective entropy bonus for Kuhn segments in state 1 with respect to state 0. By
integration over the angles, however, the number of microstates for short and long Kuhn segments is equal, and
there is no entropy bonus for state 1. This difference in entropy causes a difference in the final expression for
the force-extension curve (equation A.36). We argue that integration of the angles is natural, because the angles
are the actual degrees of freedom; the influence of the length is already taken into account by summation over
the state parameter S;. Finally we note that the difference in the final results is only in the rescaling of the
phenomenological free energy penalty €1 (equation 3.17). Therefore, the choice of integration does not affect the
validity of the results and conclusions in this thesis.
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The transfer matrix method

As a first step towards using the transfer matrix method, we rearrange the terms in equation
A.15, for reasons to become clear below, to give

Z = <47T> Z VSl Z VS1VSQ exp [)\ (551752 - 1)] Z VS2V53 exp /\(552753 - 1) ’

X =0,1 S2=0,1 S3=0,1
- Z Va1V exp [A (Fs .5 — 1)] Vn, (A.16)
Sn=0,1

where we defined Vg, as

Vs, = 1—1-51(1’)/1—1) \/sinh (X [1 +Si(m — 1)}) exp (—;61SZ~> , (A.17)

and Vg, is a vector element of the vector 17', given by

7 _ |:V0:| _ : | sinh () 1 (A18)
Vi \/% V/sinh (71x) exp (—3¢;)

We would like to emphasize that equation A.16 contains the same terms as A.15, only written in
a more convenient way. Now we define a 2 x 2 transfer matriz T, with matrix elements defined
as N

Ts,s; = Vs, Vs, exp [)\ (ds,,8;, — 1)], (A.19)

such that the transfer matrix T becomes

Too Tor
T —
= |:T10 Tn]
sinh(y) \/ % V/sinh(x) sinh (71x) exp (—3e1 — A)
\/ 7%\/sinh (x)sinh (y1x) exp (—3e1 — ) 7% sinh (y1x) exp (—¢1)

(A.20)

We now formulate the partition function of equation A.16 in terms of the elements of the transfer
matrix T,

Z = (M) Z Vs, Z Ts,s, Z Tsusy o 2 T aswVax: (A4.21)
=0,1

X Sn=0,1

We further simplify this expression by using the rules for matrix-vector multiplication: a matrix
times a vector yields a new vector. The elements of the new vector are calculated from the
elements of the matrix and the old vector according to

= M7 = w =Y My, (A.22)

which we can apply to equation A.21. This gives as a first step

47
7 = <x> Z Vs, Z Ts, s, Z Topss - O Tsy sy, (TV)g, ., (A23)
=0,1 =

S Sny-1=0,1
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where (T'V)g, | is a vector element of the vector TV, which was obtained by the summation over
Sy according to the multiplication rules in A.22. To continue, we use that matrix multiplication
is associative, in other words we use the property

L(zV) = @DV = 1°V. (A.24)

We invoke equation A.24 to eliminate the summations in equation A.23 one by one, which leads

to

4 N

Z = <7T> S Vs (TV 1Y) (A.25)
X S1=0,1

—
The summation that is left is just the inner product of the vectors 7 and TN~V , which gives
the partition function in equation A.26. Note that the result is a scalar, as it should be, and

Aam\N o Nvoin
z=(7) v (A.26)

Eigenvectors and eigenvalues

The final steps of the calculation involve evaluating the inner product in equation A.26. In
principle we could simply carry out the calculation since we know both V and T , but for a
significantly large number of Kuhn segments, N, this calculation is very costly. We will there-
fore perform these calculations using eigenvectors and eigenvalues. Equation A.27 shows the
definition of both the eigenvector and the eigenvalue of a matrix: if a matrix M multiplies a
non-zero vector €, and the result is a constant multiple of that vector &, then € is an eigenvector
of matrix M. The resulting multiplier is called the eigenvalue, and usually denoted as A,

Mé = e (A.27)

For reasons that become clear soon, we expand our vector V in the basis that is spanned by the
eigenvectors of T,

V = vé +v é, (A.28)

where vyey and v_é_ are the projections of the vector V onto the two distinct eigenvectors of
T. Strictly speaking, we should prove that the eigenvectors of T span R?, before we assume
that we can expand any vector in R? in the eigenvectors of 7. We omit the formal proof here,
but we refer to the textbook of Anton and Rorres [107]. They prove in section 7.2 of their book
that if a n X n matrix has n distinct eigenvalues, then it has n linearly independent eigenvectors
and therefore the eigenvectors span RY. As we will see in a moment, our 2 x 2 matrix T has
2 distinct eigenvalues, so we can safely use equation A.28. We do that by substituting it in
equation A.26:

A\ N
Z = <W> (viey +v_é ) - TNV (e, +v_é)
X =
am\ Y . R N—1 N-1-
= (— ) (vp@y+v_é) (v TV e +ov_T" e, (A.29)

X

We now use the definition of eigenvectors and eigenvalues, equation A.27, to completely eliminate
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the matrix 2 from the calculations:

N -
Z = (4;) (vi€y +v_é ) |vy TN (Tey) +v_ TN 2 (ge*_)]

4r\ N -
- < W) (048 +0-8) - o TV 2 (08 +0- TV 2 (0|

4 N -
= < 7T> (U+€+ + ’Ufé),) . U+)\+ ;N_2€+ + Uf)\f ;N_2é;:|

4 N -
— < 7T> (U+g+ =+ U,é’,) . U+)\f_15+ + Uf)\iv_lé;:|, (A30)

where Ay and A_ are the eigenvalues corresponding to eigenvectors €4 and é_ respectively. By
definition, Ay is the largest of the two eigenvalues. Finally, we use the fact that a symmetric
n X n matrix has an orthogonal set of n eigenvectors (section 7.3 in Anton and Rorres [107]),

and 7' is symmetric, hence €y - €_ = 0. This gives as a result for the partition function,
N
_ (A4r 2 5 S NAN—=1, .2 /5 = \y\N—1
Z = Uil (ARG D WA SVl (RN D Wit (A.31)
X

At this point we seek to simplify A.31 by assuming that we have a very large number of Kuhn
segments. We therefore now assume the thermodynamic limit, or ground-state approximation,
to hold: N — oo. In Appendix B we give the complete calculation without this assumption, and
show that the thermodynamic limit is a very reasonable assumption for the number of Kuhn
segments, N, that we are dealing with in this thesis. This allows us to simplify equation A.31,

4\ N A\ VL
lim Z = lim <> A [vi (@ - &)+ (@) (A—> ]
+

N—o00 N—oo \ X
ar\ N
. N-1,2 (> >
= ]\}E}(lx) <X> AL T (e - ey), (A.32)

where in the last step we used the fact that one of our eigenvalues (A;) is larger than the other
(A_). However, the calculation is robust and includes the case that the two eigenvalues are
equal, because this leads effectively to a renormalization of v} (€} - €}). As we shall see, in the
thermodynamic limit v3 (&} - €;) will drop out anyway.

From here on we can follow the same steps as in section A.1 for the 1-state Kuhn model. First,
we calculate the free energy F' and then we calculate the expectation value of the end-to-end
length z. For the former we get

lim F = —kgT In(Z) = —kgT [Nln <47r> + (N —1)log (A\+) +2log(vy)]| . (A.33)
N—oo X

Finally, we calculate z, the end-to-end length of the chain. Following our calculation for the 1-
state Kuhn model in Appendix A.1, we normalize the end-to-end length by Lo = Nly. We stress
that while Lg is the contour length of the 1-state Kuhn model, it is not the contour length of
the 2-state Kuhn model as it does not take into account elongation of individual Kuhn segments
to state 1, the overstretched state. This allows for a relative extension to be larger than 1. The
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calculation is given by

fim (2 = qim L 9F
Ngnoo LQ _Ngnoo Nloaf

. kT O 47 N -1 2
= lim lBTaif |:h’l () + N In ()\4_) + N In (U+):|

N—o0 X

kgT O 47 1
L) o3

0 1

The only step left is the calculation of the largest eigenvalue of the transfer matrix T' (equation
A.20). Calculating the eigenvalues is straightforward, so we will omit the intermediate steps,
and immediately present the result,

exp (—¢ : i
A = xp2(%1) [exp (e1) y1 sinh (x) + sinh (1))

2
+ \/ 4exp (e1) y1 sinh (x) sinh (v1x) exp (—2A) + ( — exp (1) 71 sinh (x) + sinh (y1x) ) ] :
(A-35)

Note that A+ gives the two eigenvalues of transfer matrix ', while A is the cooperativity param-
eter that penalizes an interface between Kuhn segments in different states.

In the final step, the expression for A, in equation A.35 is substituted in equation A.34. The
differentiation is straightforward, so the intermediate steps are not given here. Performing the
calculations and rearranging terms gives the final result of our calculation,

N—oo

. z 1 2
lim <Lo> =3 < Y + coth (x) + 1 coth(’yﬁ())

2% [cosh (m1x) + exp(er) (cosh(x) — 71 coth(y1x) sinh(;@)] — coth(x) sinh(v1x)
_|_

2\/ 4exp (g1) 1 sinh (x) sinh (y1x) exp (=2A) + ( — exp (1) v1 sinh (x) + sinh (y1x) )2
(A.36)

A.3. The 3-state Kuhn model

The derivation of the force-extension curve of the 3-state Kuhn model follows exactly the same
steps as the 2-state derivation in Appendix A.2, including the use of the transfer matrix method.
However, this time we deal with three different states of the Kuhn segments instead of two. Also,
instead of one cooperativity parameter (\), we now have three cooperativity parameters (A, §
and 7). This causes the intermediate and final results to be much more complicated expressions
than the corresponding expressions for the 2-state model. In other words, the derivation of the
3-state force-extension relation is conceptually equally difficult as the 2-state derivation, but
algebraically much more cumbersome. For this reason we do not present the derivation in the
same detail as we did in Appendix A.2. Instead, we present the most important intermediate
results. In line with this, we do not present the final expression for the force-extension relation
of the 3-state Kuhn model, because the expression is quite unwieldy. The plots of the 3-state
Kuhn model that are presented in chapter 4, however, are produced with the exact expression.

XIX



The free energy of our 3-state model reads

gd—state[ ({1 {G;1] _ i\]: flo (85,0 +710s,,1 + ’Y25Sz,2)
T

k‘ T Z+El(55 1+( ,u) 551‘,2]

o~

B i=1
—1

=2

_l’_

(2

A (08,008,411 + 08,,108,,1,0) + 1 (08,,108,,1,2 + 05,,208,,1.1) + 6 (5,205, .2 )]
1
(A.37)

We now repeat the steps of Appendix A.2. First, we calculate the partition function according
to equation A.10, which leads to an equation analogous to equation A.11 but with the 2-state
energy replaced by the 3-state energy and with the 2-state summations ) s,—0.1 replaced by
summations over the three possible states: 5,=0.1,2- We then proceed completely analogously
to the treatment of 2-state model: we integrate over the unit vectors and use the transfer matrix
method to solve the partition function that is left after integration. We end up with the same
expression that we saw before in equation A.34, for the relative extension as a function of the
largest eigenvalue of the transfer matrix,

. z 0 1

However, this time Ay is the largest eigenvalue of a 3 x 3 matrix. This 3-state transfer matrix
is given by

Too Tor To2
T = |Two T T2, (A.39)
Thy To1 T2

where the matrix elements are given by

Too = sinh(x)

1
Tor = Tip = 1/ \/smh sinh(~;x) exp (—251 )\)

1
Tos = Toy = ﬁ/ \/smh sinh(~2x) exp < 5 (g9 — ,u)) ,

1
T = *Slnh (71x) exp(—e1),

1
Tig = Ty = \/ \/smh (m1x) sinh(72x) exp <—2(51 +e2—p) — 77)

Ty = % sinh ('ygx) exp(—(e2 — p) — 9). (A.40)

Now calculating the force-extension relation is just a matter of calculating the eigenvalues of
this 3-state transfer matrix and substituting the result in equation A.38. This is the point
where the calculations become cumbersome. In Appendix A.2 we calculated the eigenvalues
of a 2 x 2 matrix with symbolic elements, which is equivalent to solving a quadratic equation
with symbolic coefficients. Now we deal with a 3 x 3 matrix, so calculating the eigenvalues is
equivalent to solving a cubic equation with symbolic coefficients. This cubic equation is solved
with Cardano’s formula which generates an unwieldy solution for the eigenvalues, in contrast to
the compact solutions of the quadratic formula. The expression for the force-extension curve,
obtained by equation A.38 from this eigenvalue, is even more unwieldy. Therefore, we do not
present it here, but the interested reader can easily obtain it by using equations A.40 and A.38.
In our calculations we assume the thermodynamic limit to hold, as we did for the 2-state model.
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Appendix B

A justification of the thermodynamic
limit

In our derivations of the force-extension relations of the 2-state (Appendix A.2) and 3-state (Ap-
pendix A.3) Kuhn models, we assumed the thermodynamic limit or ground-state approximation
to hold. In other words, we assumed the number of Kuhn segments to be infinite, N — oco. This
appendix justifies this approximation. First we outline the necessary steps for calculating the
force-extension relation of the 2-state Kuhn model for arbitrary NV in section B.1. In section B.2
the obtained result is shown graphically for several values of N and compared with the thermo-
dynamic limit result. We show that the difference between those curves and the thermodynamic
limit curve is only significant at small N (< 50).

B.1. Calculating the 2-state force-extension relation for arbi-
trary N

We start this section at the point in the derivation of the 2-state force-extension relation (Ap-
pendix A.2) where we introduced the thermodynamic limit. This point is equation A.31, that
expresses the partition function in terms of the eigenvalues and eigenvectors of the transfer
matrix, Ay, A_, €4 and e_, and the coefficients v and v_,

4 N
7 = (;) [Ui (@@ ) A 402 (et-et)AJ_V*l]. (B.1)

The coefficients vy and v_ were defined in equation A.28,

—

V = vyeel +v_e_. (B.2)

The transfer matrix is defined in equation A.20, while the vector V is defined in equation A.18.
In the derivation in Appendix A.2 we took the limit N — oo at this point, which enabled us
to neglect the A_-term and the factor v2 (€4 - ;). So for calculating the exact expression for
arbitrary N we need to calculate v, v_, € and €_. Note that A\_ was already given in equation
A .35 together with A\;. The coefficients vy and v_ can be calculated according to equation B.3,
while the eigenvectors €, and €_ can be obtained from the transfer matrix by standard linear
algebra [107],

V.é Ve
vy = S j, Vo = o——. (B.3)
€+'€+ €_ - €E_

After calculating the eigenvectors and using equation B.3, obtaining the force-extension relation
is just a matter of calculating the free energy and the relative extension according to equations
3.11 and 3.12. We will not present a detailed derivation of this calculation, but the interested
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reader can perform the derivation by following the steps described above.

Also, we do not present the final result of the calculation in the from of an equation. We will,
however, present it in graphical form: we plot the exact expression for several N and compare
those curves to the thermodynamic limit curve. We do so because the force-extension relation
becomes unwieldy for arbitrary N and showing it is therefore little instructive. Moreover, we
will see in the next section that the plots show that the thermodynamic limit is a very decent
approximation for all N = 50, so the exact force-extension relation for arbitrary N is of little
interest for our research.

Finally, note that the calculation of the 3-state Kuhn model for arbitrary N goes completely
analogous to this derivation, only in that case we deal with three eigenvalues, three eigenvectors
and three coeflicients instead of two.

B.2. The force-extension relation for arbitrary N in graphical
form

For analyzing the influence of the number of Kuhn segments N on the force-extension curve, we
distinguish three cases depending on the value of the cooperativity parameter \: the cooperative
transition (A > 0), the anti-cooperative transition (A < 0) and the non-cooperative transition
(A =0). The latter is the most simple, since the thermodynamic limit is exact in that case. For
A = 0 there is no cooperativity between neighboring Kuhn segments, so the partition function
factorizes. This leads to a result independent of N. In the other two cases the thermodynamic
limit is not exact, so we will consider them here.
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Figure B.1: Cooperative (A = 2) 2-state force-extension curves for varying number of particles N from
1 to 50, with ¢ = 10 and ~; = 1.7. The thermodynamic limit result (black) and freely jointed chains
with all segments in state 0 and state 1 respectively are plotted as well. The exact curves converge
quickly towards the thermodynamic limit approximation, and the N = 50 is hardly distinguishable from
the thermodynamic limit curve. This shows that the thermodynamic limit is a good approximation if
N 2 50. The dsDNA used in this data is bacteriophage lambda DNA, which contains about 48.500 base
pairs. Since we take the segment length to be the distance between two base pairs, this means that we
deal with 48.500 Kuhn segments. We conclude that this justifies the use of the thermodynamic limit.
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Figure B.1 shows a number of cooperative (A > 0) 2-state force-extension curves for a varying
number of N Kuhn segments, from N =1 to N = 50, as well as the thermodynamic limit result
(equations 3.13 and A.36). The figure also shows force-extension curves of two freely jointed
chains, where all segments are in state 0 and state 1 respectively. All curves were obtained with
A=2,¢1 =10 and y; = 1.7. The values of A and &1 are not representative for dsDNA, but they
are chosen because they show a clear force-extension curve.

Figure B.1 shows that the curves converge very quickly towards the thermodynamic limit
curve (black). The curve with N =1 is equal to the non-cooperative case (A = 0), and deviates
most from the thermodynamic limit. The N = 10 curve (dark green) already closely resembles
the thermodynamic limit curve and the N = 50 curve (purple) is hardly distinguishable from
the thermodynamic limit. This shows that the thermodynamic limit, as anticipated in section
3.3, is indeed a very decent approximation for N 2 50 in the cooperative case. Recall that the
dsDNA that we are studying contains about 48.500 base pairs (section 2.1), and that we take
the segment length to be the distance between two base pairs (section 3.2), and therefore our
chain amply satisfies this condition. We now need to check whether the same conclusion applies
for the anticooperative case A < 0. Figure B.2 shows anti-cooperative force-extension curves for
the same values of N as figure B.1.
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Figure B.2: Anti-cooperative (A = —6) 2-state force-extension curves for varying number of particles

N from 1 to 50, with e; = 30 and 73 = 1.7. The thermodynamic limit result (black) and freely jointed
chains with all segments in state 0 and state 1 respectively are plotted as well. The exact curves differ
substantially from the thermodynamic limit approximation for small N, but the N = 50 is hardly
distinguishable from the thermodynamic limit curve. This shows that the thermodynamic limit is a good
approximation if N 2 50 for the anti-cooperative case as well.

Figure B.2 again shows the force-extension curves of freely jointed chains where all segments
are in state 0 or in state 1. The other curves are plotted with A = —6, ¢; = 30 and ~; = 1.7,
which are again chosen because they clearly illustrate the anti-cooperative transition. The N =1
curve is, as it is in figure B.1, identical to the non-cooperative case. An important difference
with figure B.1, however, is the change in qualitative behavior for the curves with low values
of N. In the cooperative case a small number of Kuhn segments simply leads to an effective
cooperativity A\ that is smaller than the actual value (figure B.1). It is clear from figure B.2
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that for A < 0 the qualitative behavior changes as well. The reason for this can probably be
found in the fact that the average number of neighbors is smaller than two, which changes the
force at which Kuhn segments are excited towards state 1. Regardless of the reason, the NV = 50
curve (purple) is hard to distinguish from the thermodynamic limit curve (black), as it was for
positive X\. This means that for any A the thermodynamic limit is a valid approximation for
N = 50, so we can safely use the results obtained with the thermodynamic limit in this thesis.
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