
 Eindhoven University of Technology

MASTER

Performance analysis of distributed real-time embedded systems

de Hoon, M.M.C.M.

Award date:
2006

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/01892428-11e6-4f3c-95ac-c2d449085944

TU/e technische universiteit eindhoven

Faculty of Electrical Engineering
Section Design Technology For Electronic Systems (ICS/ES)

ICS-ES 866

Master's Thesis

PERFORMANCE ANALYSIS OF DISTRIBUTED
REAL-TIME EMBEDDED SYSTEMS.

M.M.C.M. de Hoon

Supervisor:
Coach:

Date:

prof.dr.ir. R.H.J.M. Otten
dr.ir. J.P.M. Voeten
O. Florescu M.Sc.
Januari 2006

The Faculty of Electrical Engineering of the Eindhoven University of Technology does not
accept any responsibility regarding the contents of Master's Theses

Performance Analysis of Distributed Real-Time Embedded System
M.M.C.M. de Hoon

Final report for Master of science project
conducted from December 2004 - December 2005

Department of Electrical Engineering
Information and Communication Systems/Electronic Systems

(ICS/ES)
Technische Universiteit Eindhoven

This work is being carried out as part of the Boderc project under
the responsibility of the Embedded Systems Institute. This project is
partially supported by the Netherlands Ministry of Economic Affairs

under the Senter TS program.

Professor:
Prof.dr.ir. R.H.J.M. Otten (TU/e)

Supervisors:
Dr. ir. J.P.M. Voeten (TUIe)

M.Sc. O. Florescu (TU/e)

Abstract

The design of a distributed real-time embedded system is a difficult job. The
hardware and software parts are often designed sequentially, leading to over
conservative and expensive systems. A more reliable and optimal system is
obtained by introducing performance analysis in the early design phases. This
analysis is performed with models designed in an ad-hoc way.
We propose a method which uses models to analyse distributed real-time em
bedded systems that capture both functional and timing properties, in an early
design phase. The models are based on SHE (Software/Hardware Engineering), a
system-level design methodology based on the formal modelling language POOSL
(Parallel Object-Oriented Specification Language), and on the fast execution en
gine Rotalumis. The modelling method is based on the Y-chart scheme concepts
and involves specification of the environment, the application, the architecture
and the mapping between them. This thesis presents modelling patterns for com
mon input/output devices, real-time tasks and platform resources. With these
patterns a model of a distributed real-time embedded system can be build conve
niently.
The patterns are validated by means of a realistic case study which is an in-car
navigation system. The outcome of the performance analysis is compared with the
outcome of Modular Performance Analysis (MPA), a method based on worst-case
execution time analysis. The comparison shows that the proposed method pro
duces performance numbers that approximate the worst case execution times as
opposed to MPA which calculates the WCET and is sometimes over-conservative.
The proposed method effectively captures the behaviour of both soft and firm
real-time embedded systems.

ii

Acknowledgements

I hereby thank the people from the TU Ie ICS/ES department for giving me the
opportunity of making this thesis. I would like to thank Jeroen Voeten, my
supervisor, for giving me the opportunity to develop my own ideas. My special
thanks go to Oana Florescu for coaching me during my research work. From the
early stages until the final version, she was always able to help me in structuring
my thesis and gave me helpful feedback to improve my work. I also want to thank
Marcel Verhoef, a member of the Boderc project carried out at Embedded System
Institute for providing me with the In-Car navigation system case study.

Finally, I wish to express my thanks to my family and friends, who have
supported me during my time at TU/e and my graduation. Special thanks go to
my parents for giving me the chance to continue my studies at the university and
their support in reaching this goal.

Eindhoven, December 2005
Menno de Hoon

iii

Contents

Abstract

Acknowledgements

List of Figures

1 Introduction
1.1 Problem Definition
1.2 Objectives
1.3 Main Contributions.

2 Modelling approach
2.1 Introduction .
2.2 Software/Hardware Engineering (SHE) .
2.3 Parallel Object Oriented Specification Language
2.4 Tools .

2.4.1 SHEsim ..
2.4.2 Rotalumis.

2.5 Modelling Method
2.6 Report Structure .

3 Modelling of Functional Characteristics
3.1 Introduction .
3.2 Environment Modelling

3.2.1 Registering of Timing Properties
3.2.2 Modelling Sporadic Event Streams
3.2.3 Modelling Periodic Event Streams
3.2.4 Modelling Periodic Event Streams with Jitter
3.2.5 Receiving Event Streams

3.3 Application Modelling .
3.3.1 Software Tasks .
3.3.2 Communication Tasks

4 Modelling of Architecture Characteristics
4.1 Introduction .
4.2 Modelling of Computation

4.2.1 Static Time Slicing Scheduling
4.2.2 Priority Based Scheduling ...
4.2.3 Earliest Deadline First Scheduling

4.3 Modelling of Communication Resources

5 Mapping

iv

iii

iv

vii

1
1
2
2

5
5
6
6
7
7
7
7
8

11
11
12
12
14
14
15
16
17
17
18

21
21
22
23
24
25
26

29

6 A Case Study: Distributed In-car Radio Navigation System 33
6.1 Introduction................... 33
6.2 Distributed In-Car Radio Navigation System 33
6.3 POOSL Model 36

6.3.1 Worst Case Performance Analysis 37
6.4 Modular Performance Analyse. 39
6.5 POOSL and MPA Comparison 42
6.6 Average Performance Analysis 43

6.6.1 Reduction of Resource Performance 46
6.6.2 Approximation of Worst Case Performance 48

7 Conclusions and Recommendations 49
7.1 Realised Objectives and Conclusions 49
7.2 Recommendations and Future Research 50

A Simulation Results of the Distributed In-car Navigation System 51
A.l Performance Results of Architecture A 51
A.2 Performance Results of Architecture B 51
A.3 Performance Results of Architecture C 52
A.4 Performance Results of Architecture D 52
A.5 Performance Results of Architecture E 52

A Real-time Calculus Definitions 53
A.l Min-plus Convolution and Deconvolution 53
A.2 Max-plus Convolution and Deconvolution 53

References 55

v

List of Figures

2.1 Two execution phases of a POOSL model. ..
2.2 The V-chart design approach .
2.3 Structure of the report based on the V-chart.

7
8
9

3.1 Simple view of a real-time embedded system in an environment. . 11
3.2 Timing properties of events. 12
3.3 POOSL specification of the EventProperties data class . . 13
3.4 Sporadic event stream generated by an event component. 14
3.5 POOSL specification of a sporadic event stream. 14
3.6 Periodic event stream generated by an event component. . 15
3.7 POOSL specification of a periodic event stream 15
3.8 Periodic event stream with jitter generated by an event component. 15
3.9 POOSL specification of the jitter generator class 16
3.10 POOSL specification of a periodic event stream with jitter. 16
3.11 POOSL specification of a receiving event model. 16
3.12 Application model represented as a directed task graph 18
3.13 POOSL specification of a periodic event stream 18
3.14 Application model consisting of application and communication

components .. 19
3.15 Communication interpretation of a distributed real-time embedded

system. The communication is specified as a communication task
executed on a resource model. The incoming event represent the
head of the message and the outgoing event represents the tail of
the message.. 19

3.16 POOSL specification of a functional communication component 20

4.1 Architecture modelled as decoupled SHE components. 21
4.2 An example of a specification of an architecture which consists of

three processor cores and one shared bus. 22
4.3 An example of a specification of an architecture which consists of

two processor cores and one shared bus. 22
4.4 POOSL specification of a computation component without scheduler 23
4.5 Task queue of a time line scheduling algorithm. 23
4.6 POOSL specification of a preemptive computation resource based

on the static time slicing scheduler " 24
4.7 POOSL specification of computation with priority scheduling policy 25
4.8 This POOSL specification is needed in figure 4.7 to model an ear-

liest deadline first scheduler. .. 26
4.9 General communication networks, 26
4.10 POOSL specification of a direct point-to-point communication re-

source 26

5.1 Mapping phase.

vii

29

5.2 Mapping of application and architecture models where the commu
nication channels defines the hardware structure of the system. .. 30

5.3 Sequence diagram of communication for execution demand in the
mapping phase. 30

6.1 High-level of a distributed radio navigation system 34
6.2 Annotated Sequence Diagram for "Change Volume" 34
6.3 Annotated Sequence Diagram for" Address Look-up" 35
6.4 Annotated Sequence Diagram for "TMC Message Handling" . 36
6.5 Alternative system architecture to explore 36
6.6 SHEsim model of architecture A 37
6.7 Occurrence of ADDR delays when ADDR and TMC are executed

in parallel on architecture A .. 38
6.8 A basic performance component with abstract models as input and

output and Real-Time Calculus to process internal transformations. 39
6.9 MPA model for system architecture A of figure 6.5 . . . 40
6.10 MPA model of two event streams sharing one resource. 40
6.11 Event stream A and B in milliseconds 40
6.12 Arrival curves of Stream A, (a) number of events against ~, (b)

number of resource against ~ 41
6.13 (a) Resource curves of,8 and,8' 41
6.14 Arrival and serve curve of event stream B 42
6.15 Maximum delay and maximum buffer space obtained from arrival

and service curves 42
6.16 Timing diagram which visualise the domain of POOSL and MPA

analysis .. 43
6.17 Delay frequency functions of scenario VOL, ADDR and TMC . .. 45
6.18 Frequency delay functions of scenarios VOL-TMC, ADDR-TMC

and TMC-VOL when instruction load has a uniform distribution . 47

viii

Chapter 1

Introduction

The real-time embedded systems industry today must realise its product ideas
even quicker than in the past. To be competitive, these new real-time embedded
systems must support more functionality, make use of latest technical innovations
and, of course, must be low cost. Real-time embedded systems that support much
functionality are complex and difficult to design. The industry usually uses meth
ods to specify hardware and software separately, often leading to over-conservative
systems. Over-conservative systems largely contribute to the product cost. One
of the reasons is the lack of a proper modelling methodology to give insight in
the behaviour of the system, which would help in finding the optimal hardware
and software combination. A modelling methodology enables modelling of com
plex real-time embedded systems and provides insight in the behaviour of the
system in the early design phases. Such modelling methodologies must take both
the software and the hardware parts of the system into account. This eventually
must result in a reliable and optimal dimensioning of the system, designed in less
time.

1.1 Problem Definition

Existing design methods, for instance object-oriented design methods, focus on
reusing and maintaining large systems. These design methods have proven their
benefit especially for traditional software development. However, these methods
are not adequate for designing real-time embedded systems. An appropriate de
sign method for real-time system should provide a modelling technique that can
capture both functional and timing properties. A design method called Soft
ware/Hardware Engineering (SHE) is presented in [1]. SHE is a system-level
design methodology based on the formal modelling language POOSL (Parallel
Object-Oriented Specification Language), and on the fast execution engine ROo
talumis. The POOSL models can be specified with the graphical tool SHESim.
The methodology allows specification and analysis of real-time discrete-event con
trol systems, such as a high-speed packet-switch, a network processor, a printer
controller and a wafer-stepper controller. The specification of these systems is
done ad-hoc. A suitable way to model and analyse these kinds of systems is nec
essary. Therefore a modelling method should provide an approach to model a
system in an adequate way. To speed up the design process, the method should
be supported by a library that contains components with common characteristics
of a real-time embedded systems. To simplify the design space exploration, these
components must be modular (plug-and-play).

1

Chapter 1. Introduction

1.2 Objectives

The objectives in this thesis to cope with the problem definition are given in the
following enumeration:

1. Develop a modelling method which is suitable for performance
analysis and design space exploration of distributed real-time em
bedded systems. A modelling method should be defined to help the de
sign of a real-time embedded system. The model needs to capture both
the functional and timing behaviour and should be suitable for performance
analysis. This method should be supported with a library which consists
of a basic set of components that capture common characteristics of a real
time embedded system. This components are called patterns. The use of
these patterns should speeds up the modelling process. A modular design
approach should simplify the design space exploration.

2. Show applicability of the modelling method. The applicability of the
method should be demonstrated by an industrial case study. A performance
analysis should be used to validate the components of the modelling method.

1.3 Main Contributions

During the project we developed a method for modelling distributed real-time em
bedded systems. This modelling method describes how to capture both functional
and timing behaviour. The method is based on the Y-chart. The Y-chart scheme
structure a system for design space exploration. For each part of the Y-chart
scheme, we present patterns for modelling common characteristics of real-time
embedded systems. The following list presents the parts of the Y-chart scheme.

• Environment: In the environment section components characterise com
mon input and output devices of a real-time embedded system by generating
event patterns.

• Application: The application section defines the functional behaviour of
a real-time embedded system.

• Architecture: The architecture components characterises processor and
communication resources. The processor components model the computa
tion with rate monotonic, earliest deadline first or time sliced scheduling.
The communication components model data exchange with a first come first
serve discipline.

• Mapping: In the mapping section, we have specified how an application is
mapped on an architecture in a modular way.

• Performance analysis: By analysing the combined model the perfor
mance properties (throughput, occupation, delay, etc.) can be deduced.

All these components are specified in a modular way (plug-and-play) which
simplifies the exploration of the design space. The method was validated by means
of a realistic industrial case study. The outcome of the performance analysis
is compared with the outcome of a Modular Performance Analysis (MPA), a
method based on worst-case execution time analysis. The comparison showed
that POOSL performance numbers approximate the worst case execution and
MPA is sometimes overly conservative. As the POOSL analysis technique relies
on simulation; the discovery of the worst case execution can not be claimed.

2

1.3. Main Contributions

Moreover, the accuracy of the performance results depends on the simulation
length. However the advantage is that the realistic behaviour of the system can
be captured using distributions.

3

Chapter 2

Modelling approach

2.1 Introduction

Real-time embedded systems are difficult to design. They consist of both hard
ware and software components. The technological advance and the demand for
more functionality make these systems more complex. The software behaviour
in a real-time embedded system depends on the system hardware (architecture).
Typically, software and hardware design methodologies are applied in isolation,
which, after the combination of their results, result in an over-dimensioned or
even non-working system. Some of the classical design methodologies are:

• Structured analysis and design methods (Ward and Mellor [2], Hatley and
Pribhai [3])

• Object-oriented and object-based analysis and design methods (UML [4],
ROOM [5], etc.)

• Formal description methods (SDL [6], Estelle [7])

For a complete comparison of these methodologies see [1] and [8]. These classical
design methodologies do not often adequately help the design process in consider
ing design alternatives for realising the desired functionality. Early in the design
process, the choice for a specific design alternative may have a deep impact on,
for example, the performance of the final implementation. To assist the designer
in taking well-founded design decisions, system-level design methodologies can be
applied. A system-level methodology which supports the construction of models
that allow the analysis of the system in the early design phase is very helpful.

A suitable modelling methodology which can be used for modelling real-time
embedded systems is the Software/Hardware Engineering (SHE) introduced in
[1] and briefly described in section 2.2. This methodology has proven its use
fulness in modelling several kinds of real-time embedded systems, like [9], [10]
and [11]. The designer experienced several disadvantages during the modelling
process, such as: a long modelling time, the low degree of reusability and that
each model is complex. A reason for this is that these models are modelled with
out applying a method. The advantages of applying a method for modelling a
real-time embedded system are:

• Reducing the modelling time. The construction of a real-time embed
ded system is done by the use of components. The modelling time can be
reduced when the designer is able to re-use earlier designed components. To
overcome inconsistency these components must comply with the (interface)
specifications described in the upcoming chapters.

5

Chapter 2. Modelling approach

• Understandability. A predefined subdivision of how to model a real-time
embedded system will increase readability.

• Analysability. A method is taking care of the possibility to perform a
system analysis, for example, for performance or occupation.

• Assist the designer in taking well-founded design decisions. Ap
plying a method that uses components and predefined system subdivision
allows Design Space Exploration (DSE). DSE helps the designer to take
well-founded design decisions.

In this thesis a modelling method is described to improve the modelling process.
The method is extended with several examples of components which can be used
for modelling (distributed) real-time embedded systems. These components are
specified in the expressive modelling language POOSL, formalised in [1]. A short
description of POOSL is given in section 2.3. The tools used for specification and
execution of the POOSL models, namely SHEsim and Rotalumis, are briefly dis
cussed in section 2.4. Sections 2.5 and 2.6 provide the guidelines of the modelling
method, which is the content of this thesis.

2.2 Software/Hardware Engineering (SHE)

SHE is a system-level design methodology, as defined in [12]' that allows analysis
of both correctness and performance properties of design alternatives based on
models. To construct such models, SHE uses Parallel Object-Oriented Specifica
tion Language (POOSL) to formulate and formalise the behaviour of a system.
The actual evaluation is based on the application of several techniques for formal
verification of correctness properties and performance analysis. A key feature of
the SHE methodology is that it is based on formal methods which ensures that
the obtained analysis results are unambiguous.

2.3 Parallel Object Oriented Specification Lan
guage

In this section, we present a brief overview of the POOSL (Parallel Object Ori
ented Specification Language) language, which was developed at Eindhoven Uni
versity of Technology. POOSL is a very expressive modelling language with a
small set of powerful primitives whose semantics are defined with mathematical
axioms and rules. POOSL can describe concurrency, distribution, communica
tion, timing and functional features of a system in a single executable model.
POOSL consists of a process part and a data part. The process part (processes
and clusters) is based on a real-time extension of the process algebra CCS [13].
This part is specified in components which performs certain functionality of a
system. The data part are passive components that specify the information that
is generated, exchanged, interpreted or modified by the system. The data part
is based upon the concepts of traditional sequential object-oriented programming
languages like Smalltalk and C++. The execution of a POOSL model is based on
a two phases execution model [14], as shown in figure 2.1. The state of a model
can either change by asynchronously executing atomic (communication or data
processing) actions (taking no time) or by letting the time pass (synchronously).

The formal semantics of POOSL enable the application of model checking tech
niques for formal verification of correctness properties and Markov-chain based
performance analysis techniques. Furthermore, it serves as basis for a timing
property-preserving approach for real-time software synthesis.

6

2.4. Tools

I
I
I
I
I
I
I
I

Asynchronous : Synchronous
Execution of Actions: Passage of Time

Figure 2.1: Two execution phases of a POOSL model.

2.4 Tools

2.4.1 SHEsim

SHESim is an interactive modelling and simulation tool, which enables the con
struction of complex concurrent systems in accordance with the SHE methodol
ogy. It is used to incrementally specify and modify POOSL data classes, process
classes and cluster classes. SHESim allows the (graphical) entry of POOSL mod
els and their interactive simulation. The messages and parameters that are passed
between the different processes and clusters are indicated on the appropriate
channels. To inspect the history of messages that have been exchanged between
different entities, interaction diagrams can be generated automatically during a
simulation. For more information see [15].

2.4.2 Rotalumis

Rotalumis is a high-speed execution engine which allows fast simulation of POOSL
models. In comparison with the execution speed of the SHEsim tool where the
execution takes place in an interpretive way, the execution speed is improved by a
factor of 100. Rotalumis compiles the POOSL model into an intermediate format
that is executed on a virtual machine implemented in C++. For more information
see [16]. This academic tool was used for the simulation of all models presented
in this thesis. In general, the models are validated in the SHEsim tool and then
executed in Rotalumis.

2.5 Modelling Method

The guideline of the modelling method is based on the Y-chart scheme structure.
As described in [17], the Y-chart with one extension involves the following:

• Environment: Specify the environment behaviour capturing the charac
teristics of the surroundings, such as input and output devices connected to
the real-time embedded system.

• Application: An abstraction of the software is defined in the application
section. The environment is linked to a set of tasks in the application section.
The environment triggers this set of tasks.

• Architecture: The model describes a particular architecture of the real
time embedded system.

7

Chapter 2. Modelling approach

• Mapping: In this section the application is mapped on the architecture.

• Performance analysis: The mapped architecture and application model
are used for performance analysis.

• Performance numbers: This analysis yields performance numbers which
can propose improvements in the architecture, application and/or mapping.
This process is indicted in figure 2.2 by the light bulbs.

I
I

~
\

-...... /

Figure 2.2: The Y-chart design approach.

This procedure can be repeated in an iterative way until a satisfactory architec
ture, set of application and mapping is found. To be able to use the Y-chart
approach, the following modelling steps must be followed:

1. Specify the environment components.

2. Specify the application.

3. Specify the architecture components.

4. Map the application components onto the architectural components.

5. Analyse the performance.

The specification of the functional part of the real-time embedded system is de
scribed in steps 1 and 2, where the specification of the environment and applica
tion models are made. The functional part is "independent" of the architecture
specified in step 3. Step 4 is to map the application to the architectural compo
nents. After applying the performance analysis, steps 2 till 4 can be reconsidered
for optimisation of the system. This modelling process gives the engineer a struc
tured framework to explore the design space of a computational intensive real-time
embedded system.

2.6 Report Structure

The structure of this report follows the earlier presented Y-chart scheme, see fig
ure 2.3. The functional model which specifies the environment and application
components, is described in chapter 3. The application components require ar
chitectural components for execution. The architectural modelling is described
in chapter 4. The mapping of the application components onto the architectural
components is discussed in chapter 5. Chapter 6 shows the utilisation of the de
scribed design approach in a case study. Chapter 7 provides the conclusions and
future work related to this thesis.

8

2.6. Report Structure

Figure 2.3: Structure of the report based on the V-chart.

9

Chapter 3

Modelling of Functional
Characteristics

3.1 Introduction

A real-time embedded system performs software tasks that are executed on proces
sors. These software tasks are activated by the working environment of the system.
The software tasks and the working environment belong to the functional part of
a real-time embedded system model. Figure 3.1 visualises an example of a real
time embedded system in a working environment which helps engineers reason
about the total system behaviour. Note: These graphical representations are

-......--- - .,.----..-.....

/ "
/ Spook.' "-

I
I -rt1 \
~ Environment \

\ I 2 t (Actors) \

\ 0utpu1 I
':i"'-~R=-e-a"':"I.~tirne-'"'--=E""'m""'b-ed""'d""'e~d""'-' J1..fL /Go /System -

c#o
~~~ /

Molor /

.....
-'---

Figure 3.1: Simple view of a real-time embedded system in an environment.

not restricted by drawing rules; their purpose is to clarify the system and working
environment.

To model the functional characteristics of a real-time embedded system, the
design consists of environment and application components. The environment
components model the characteristics of the environment given by input and
output devices. Some examples of such devices are sensors, knobs, antennas,
motors, speakers and displays. The application components model the software
parts of a real-time embedded system which are presented as a directed graph
of tasks. Event activation patterns generated by the environment components
are used for modelling the behaviour of input devices connected to the real-time
embedded system.

This chapter is organised as follows:

11



Chapter 3. Modelling of Functional Characteristics

• Subsection 3.2 describes an approach to model the environment of a real
time embedded system, by use of several kinds of event patterns.

• Subsection 3.3 presents a pattern to model an application, which reflects
the software part of the system.

3.2 Environment Modelling

The functional characteristics of the environment are specified in environment
components. Environment component models the generation or consumption of
event streams. In an event stream each event has a specific time at which it
must occur. These event streams are specified as having periodic or sporadic
patterns. [18] and [19] define a set of such general event patterns. Important
patterns for analysing performance of a real-time embedded system are events
that occur sporadically, periodically (with jitter) or within a burst. Our modelling
approach uses a data object to exchange event-related information such as timing
variables. This event-related information can be updated during simulation. The
specification of this data class is described in section 3.2.1. Sections 3.2.2, 3.2.3
and 3.2.4 describe possible event patterns which commonly occur in real-time
embedded system and are suitable for modelling. Finally, section 3.2.5 describes
a modelling component which consumes the event stream passed through the
system model.

3.2.1 Registering of Timing Properties

The complete model is used to predict the performance of a real-time embedded
system. A data class which registers performance properties is used in this mod
elling method. A new data object is initialised each time when an environment
component generates an event. At this moment, the release time of the event
is registered in this data object. When the environment component triggers the
application model (described later on) by an event, the start time is registered in
the data object. During the execution of the application model the data object is
exchanged between tasks. Each task register changes in the communication or in
the computation attribute when it is involved with, respectively, communication
or computation. Finally, the data object will reach a consuming environment
component which register the finish time.
POOSL allows the creation of data objects, which are instances of data classes,
for modelling passive components (see [20] for more details). Each time when an
environment component generates an event, it exchanges this data by sending the
data object (making a Deepcopy) along with a message to another component. A
characterisation of the timing properties is given in figure 3.2. In this illustration,

e;---------+.I" slack L
f; d

j
t

Figure 3.2: Timing properties of events.

i stands for the identification number of the event. A description of the illustrated
properties are given below:

Release time 1"i: is the time at which an event is able to triggers a task;

12



3.2. Environment Modelling

Start time 8i: is the time at which the task start its execution (triggered by the
event);

End of release Ii: Ii = Ti + L is the time when the event is not able to trigger
the task anymore;

Event Lifetime L: is the amount of time an event is active and able to trigger
the task;

Finish time k is the time at which an task finishes its execution;

Communication time Ci: is the time used by the communication link;

Computation time ei: is the time necessary to the processor for executing the
task;

Deadline di : is the moment before which a task should be completed to avoid
damage to the system;

Slack : Xi: Xi = di - f; is the maximum time a task can be delayed on its
release to complete within its deadline;

Note that such a data object is exchang~d by several tasks in the application
model. Every time the data object is in a new task component, the current val
ues of the communication and computation time are accumulated with the new
communication or computation time.
The timing properties are defined in the EventProperties data class which mod
ifies and registers the above presented timing properties. Figure 3.3 presents
the EventProperties data class specified in POOSL. Methods SetReleaseTime,

« data class »
EventProperties: Object
----«iMtuce;ui~~s»----

Id: Integer
RelativeDeadline: Real
ReleaseTime: Real
StartTime: Real
FinishTime: Real
ComputationTime: Real
CommunicationTime: Real

<< methods >>
Ini(t: Real): Object
SetReleaseTime(t: Real) : Object
SetStartTime(t: Real) : Object
SetFinishTime(t: Real): Object
AddComputationTime(t: Real) : Object
AddCommunicationTime(t: Real) : Object

1 Ini(t: Real) : Object
2 RelativeDeadline:· t;
3 return self.

4 SetReleaseTime(t Real) Object
5 ReleaseTime:· t;
6 return self.

7 SetStartTime(t: Real) Object
8 StartTime:· t;
9 return self.

10 SetFinishTime(t: Real) Object
11 FinishTime:· t;
12 return self.

13 AddComputationTime
14 (t: Real) : Object
15 ComputionTime:·
16 ComputionTime + t;
17 return self.
18 AddCommunicationTime
19 (t: Real): Object
20 CommunicationTime:.
21 CommunicationTime + t;
22 return self.

Figure 3.3: POOSL specification of the EventProperties data class

SetStartTime and SetFinishTime specify the release, start and finish time re
spectively of an event captured in an EventProperties data object. When the
event data object travels through the application model and reaches a consum
ing environment component, the timing properties are used for analysis pur
pose. Methods AddComputationTime and AddCommunicationTime add repeti
tively computation and communication time in the data object. The following

13



Chapter 3. ModelJing of Functional Characteristics

sections describe several components which generate event patterns that use the
EventProperties data class.

3.2.2 Modelling Sporadic Event Streams

Sporadic event stream components model the activation of an input device con
nected to the real-time embedded system. This component is used for modelling
devices that are activated irregularly, such as a knob or a remote control. An
example of a sporadic event stream is given in figure 3.4. At every r in figure 3.4

~
1. 1

t I t I ) I
r; I ri+1 li+i Ti+2 li+2

.-
L

Figure 3.4: Sporadic event stream generated by an event component.

an event is released; l denotes the end time of the event lifetime. A task can
be triggered by the event between the r and its corresponding l. The triggering
of tasks is only done when the application (the tasks) is capable to serve a new
event (the system could be busy). In this way, event misses can be analysed and
event releases do not overlap. The specification of a component which produces a
sporadic event stream is given in figure 3.5. In this figure, eventLifetime is an

« process »
SporadicEventModel
<< instantiation parameters >>
eventLifetime: real;
--«~rt~~~u~~~»--

t: RandomGenerator;
<< methods >>

IniOO
SporadicEventStream()()
- -«-initial-method call-»- 

IniO ()
« messages »

out!event

1 ini () ()
2 t:- new(Distribution);
3 SporadicEventStream()().

4 SporadicEventStream()()
5 IE: EventProperties I
6 E:- new(EventProperties)
7 SetReleaseTime(currentTime);
8 par
9 abort out!event(E) with
10 delay eventLifetime
11 and
12 delay (t random + eventLiftime):
13 SporadicEventStream()()
14 rap.

Figure 3.5: POOSL specification of a sporadic event stream

instantiation parameter of the SporadicEventModel which specifies the life of an
event. The instance t is of a distribution type, and used for generating different
time between event actuation. In this example a random distribution is used. To
guarantee that the occurrences of events do not overlap other events, the specified
eventLifetime is added to the period of the next released event at line 12.

3.2.3 Modelling Periodic Event Streams

Devices connected to an embedded system that have periodic characteristics, like
radio antennas and sensors, are modelled as components that generate events
periodically. An example of a periodic event pattern is given in figure 3.6, where
r, land T denote respectively the release time, the end of the event actuation
lifetime and the period of the event release. A component which generates a
periodic event pattern can be specified in POOSL as described in figure 3.7. As
the specification in figure 3.6 describes, eventLifetime and period are instance

14



3.2. Environment Modelling

Sensor
(periodic)

t I t I ~t
Ti+1 li+l ri+2 li+2 r i+3 li+3

• T •

Figure 3.6: Periodic event stream generated by an event component.

<< process >>
PeriodicEventModel
« instantiation parameters »
eventLifetime: Real;
period: Real;
--«~~~~~u~~~-»--

<< methods >>
PeriodicEventStream()()
- -«-initial-method call-»-
PeriodicEventStream()()

« messages »
out!event

1 PeriodicEventStream()()
2 IE: EventProperties I
3 E:= new(EventProperties)
4 SetReleaseTime(currentTime);
5 par
6 abort out!event(E) with
7 delay eventLifetime
8 and
9 delay period;
10 PeriodicEventStream()()
11 rap.

Figure 3.7: POOSL specification of a periodic event stream

parameters that characterise the event activation pattern. To guarantee that
every event is activated at the specified time instances, the PeriodEventStream
is specified as a parallel method. In line 5, an event is offered during the specified
eventLifetime. When the amount of time specified in eventLifetime is elapsed
the offering of the event is stopped (an event miss).

3.2.4 Modelling Periodic Event Streams with Jitter

In common distributed real-time embedded systems, input devices produce a fixed
number of events in a certain time unit. The exact period between these events
is often hard to specify. A component which produces events each period with a
jitter is therefore useful. This component is also useful for performance analysis
of distributed real-time embedded systems where several input devices produce
events in different periods. Modelling these input devices with components which
generate events periodically will not cover all the states of the system, because
combining of periodicaJ events patterns will result in a repetitive occurrence of
events. A periodic event pattern with jitter is represented in figure 3.8. In figure

Figure 3.8: Periodic event stream with jitter generated by an event component.

3.10 T, J, rand l denote the period, jitter, release time and end of the release time
of an event. The event actuation is between [iT - ~J, iT + ~J]. To guarantee no
event overlap, the abstract environment model must comply with T > ~J+d. The
environment component which generates jittery events uses the specially defined
JitterGenerator data class, which is specified in figure 3.9. The next method in
JitterGenerator data class returns a value between -~J and +~J, which eases
the specification in an environment component. This JitterGenerator data

15



Chapter 3. Modelling of Functional Characteristics

ObjectReal)

n :- 0;

SetJitter(i :
jitter := i;
return self.

1
2
3

4 next() : Real In: Real I
5 if jitter> 0 then
6 n := (r random. jitter) - (0.5 • jitter)
7 else
8
9 fi;
10 return n.

<< data class >>
JitterGenerator: Object-« in~t"iuice- variables » 
jitter: Real
r: RandomGenerator

« methods »
SetJitter(i: Real) : Object
nextO: Real

Figure 3.9: POOSL specification of the jitter generator class

class is specified with the use of a distribution (see the instance variables). In
this example a random distribution (RandomGenerator) is used. An environment
component that generates the periodic event stream with jitter is specified in
POOSL and shown in figure 3.10. As figure 3.8 shows, the jitter is centralised at

« process »
PeriodicJitterEventModel
« instantiation parameters »
duration : Real;
period : Real;
j: Real;
- - «- ins"tMce -variabl;s ->->- -
jitter : JitterGenerator;

« methods »
IniOO
PeriodicJitterEventStream()()
- -«-initial-method call-»- -
IniOO

« messages »
out!event

1 IniO 0
2 jitter:= new(JitterGenerator)
3 SetJitter(j);
4 PeriodicJitterEventStream()().

5 PeriodicJitterEventStream()()
6 IE: EventProperties I
7 par
8 delay period + jitter next;
9 abort out!event(E) with delay duration
10 and
11 delay (period);
12 PeriodicJitterEventStream()()
13 rap.

Figure 3.10: POOSL specification of a periodic event stream with jitter

each period. This means that the first event can occur at negative time. An event
which occur in negative time can not be modelled. The limitation of this process
is that the release time of the first event is equal to or bigger than T - !J.

3.2.5 Receiving Event Streams

Each event stream that passes through the application model will be received by
the environment model. This environment model reflects the actuator devices
connected to a real-time embedded system, like motors, displays, speakers, etc. A
simple event consuming component is specified in figure 3.11. This tail-recursive

« process »
EventReceiverModel
« instantiation parameters »
--«~~M~VU~~~»--

« methods »
ReceiveEvent()()
- -«-initial-method call-»- -
ReceiveEvent()()

« messages »
in?event

1 ReceiveEvent()()
2 IE: EventProperties
3 in?event(E);
4 ReceiveEvent()();

Figure 3.11: POOSL specification of a receiving event model

specification of an event consumer component receives event streams from the

16



3.3. Application Modelling

application model without any restriction. The received event data object E is
used especially for analysis purposes.

3.3 Application Modelling

In the V-chart scheme, presented in figure 2.2, the environment components trig
ger the application model. The software behaviour of a real-time embedded sys
tem is specified in the application model. The application model consists of nodes
which represent tasks of the software. During the modelling phase, the actual be
haviour of a task does not need to be specified. Finding a good abstraction of
a task is difficult and typically done by experienced engineers/designers. Char
acteristics and methods to determine the proper abstractions of a software task
is outside the scope of this thesis. The application model is a directed graph
where nodes represent tasks and edges represent activation channels. Note that
the edges are not necessary infinite FIFO queues as in the case of Kahn Process
Networks, introduced in [21]. A task in this model can also block other tasks.
Real-time embedded systems consist not only of processors but also of communi
cation resources. The communication taking place in these resources can be seen
as tasks, therefore the application model contains also components which model
the communication in the system. Task components used for modelling the soft
ware are described in section 3.3.1. In section 3.3.2 the communication tasks are
described.

3.3.1 Software Tasks

In the early design phases, where this modelling approach is used, the software of
the embedded system is typically not known in detail. To speedup the modelling
process, task components model the main functionality of the software. Repre
senting the application model as a directed graph makes it possible to execute
tasks in parallel. When a task is triggered by an event, it performs an abstracted
software task. These active tasks will trigger new task components to model the
complete software. Parameters that involve computation behaviour are defined
in the task component, however some general parameters are:

Computation load: each task is specified with a computation load, which can
be specified as the amount of cycles or instructions (depending on the type
of processor architecture used in the system). When specifying an instruc
tion name it is possible to retrieve the computation load out of a predefined
computation table specified in the resource component (described in chap
ter 4);

Task identifier: a unique identifier in the application graph, which can be a
name or a number. The identifier is used to follow the order in which
computations are carried out;

Priority / relative deadline [optional]: this number is used for scheduling the
computations of tasks;

Note that these parameters depend on the resources of the system. Specifying
these parameters at the resource components (see chapter 4) will make the model
less suitable for exploration of design alternatives (each task must be known by
the resource). Figure 3.12 represents a directed task graph which is part of the
application model. Note: For reasons of simplification, the communication com
ponents are not displayed in this graph. A POOSL specification example of a task
component is given in figure 3.13. The described HandleEvent method (line 1 to

17



Chapter 3. Modelling of Functional Characteristics

Task
1

Task
2

Task
5

Task
3

Figure 3,12: Application model represented as a directed task graph

« process »
Task
« instantiation parameters »
TaskName: String;
ComputationLoad: Real;
Priority: Integer;
--«~rt~~v~~~~»--

TaskId: Integer;
<< methods >>

HandleEvent () ()
Execute () ()
- -«-i;itial-m;;thod call-»- 
HandleEvent () ()

« messages »
in! event
out?event
task! execute
task?executed

1 HandleEvent()()
2 IE: Event I
3 in?event(E);
4 par
5 HandleEvent()()
6 and
7 Execute()();
8 out!event(E)
9 rap.

10 Execute () ()
11 task! execute (TaskId, ComputationLoad,
12 Priority);
13 task?executed(TaskServed
14 I TaskServed ~ TaskId).

Figure 3.13: POOSL specification of a periodic event stream

9) is tail recursive, which allows the task component to serve any incoming event.
Each incoming event is served by the Execute method, which sends (as a message)
an execution request to the architecture components. The parameters involved
in the computation behaviour are also passed through in the message. When the
request of a task execution is granted and served at the architecture level (as
described in chapter 4), the task component is returned a message executed and
will generate a new event for a new task component. At line 13 and 14 the task
receives an acknowledgement (task?executed) when the computation is executed
in the architectural level. TaskServed is an identifier which is used to check if
the right task is executed.
This specification specifies a task component with one input and one output. Task
components with for example multiple inputs and/or output can be specified in
the same way. Specifying these kinds of tasks must comply with the message
protocol used in this method, which are: the in?event and out! event ports
which sends and receive an Event data object; communication with the architec
ture level is done with the parameters TaskID, ComputationLoad, Priority and
TaskServed over the task! execute and task?executed port.

3.3.2 Communication Tasks

As earlier described, distributed real-time embedded systems commonly consist
of communication links. The communication itself depends on the used link (for
example bandwidth) and involves the behaviour of the application. Therefore, in
this method, the communication taking place over these links is specified in the
tasks and resource components. The advantage of this approach is that it improves
the exploration of the design space (explore alternative architectures). In this way

18



3.3. Application Modelling

communication load can easily be mapped on resource component. Each task in
the application model exchanges data through communication components, as
shown in figure 3.14. From the application point of view, the communication

Task
1

Task
2

Figure 3.14: Application model consisting of application and communication components

tasks are not specific about the operation of the hardware, with respect to block
ing, non-blocking or bandwidth limitation. These communication tasks hold the
communication parameters which involve the application behaviour. Some com
munication parameters which are specified in the communication tasks are:

Message ID : a unique value used for identification;

Message size : specified in the amount of bytes needed to transfer; other unities
are also allowed.

The incoming event in the communication task represents the head of the mes
sage. The outgoing event of the communication task represents the tail of the
transferred message through the link, see figure 3.15. The advantage of this

,//,0._._-_.__.__......_.._.._._-_."
/

1

'[APPlication mOde~ :=J--I J
I Bus J
I resource I

Resource model L J--------------
I 'Pysical hardware'L-=.._.. _

Head of message Tail 01 the message

tH

Figure 3.15: Communication interpretation of a distributed real-time embedded system. The
communication is specified as a communication task executed on a resource model. The incoming
event represent the head of the message and the outgoing event represents the tail of the message.

approach is that processor resource components are not involved with the com
munication, which simplifies the modelling process. A disadvantage is that this
approach models complete buffering of data, which is not always wanted, for ex
ample with multimedia streams. A solution would be to transfer long data stream
in segments. On the other hand, specifying a communication bridge takes less
effort (an extra software and communication task are needed to be specified). A
POOSL specification of a communication task component is given in figure 3.16.
The method HandleEvent is initially called when the model is executed. This re
cursive method receives all incoming events (seen as the head of the message) and
will model information exchange on a resource component, see the TransferMsg
method.

19



Chapter 3. Modelling of Functional Characteristics

« process »
CommunicationTask
« instantiation parameters »
MessageId: Integer;
MessageSize: Real;- -«- instanc-;' -variables ->->- -

<< methods >>
HandleEvent 0 0
TransferMsgO 0
- -«-initiar-method call-=» 
HandleEvent 0 0

« messages »
in! event
out?event
msgltransfer
msg?transferred

1 HandleEvent()() I E EventProperties I
2 in?event(E);
3 par
4 HandleEvent()()
5 and
6 TransferMsg()();
7 out I event(E)
B rap.

9 TransferMsg()()
10 msg!transfer(MsgId, MessageSize);
11 msg?transferred(MsgTransferred
12 I MsgTransferred = MsgId).

Figure 3.16: POOSL specification of a functional communication component

20



Chapter 4

Modelling of Architecture
Characteristics

4.1 Introduction

This chapter describes a method to model the hardware of a real-time embedded
system. The hardware model encapsulates the hardware properties. As archi
tectures are so diverse and complex, it is not possible to provide components
that cover all possible system architectures. Therefore, this chapter presents
a set of basic components to model generic hardware structures, which can be
used for specification of common (distributed) real-time embedded systems. In
this section, all physical architectural devices are specified as decoupled resource
components as shown in figure 4.1. The interconnections of the architecture are

'--------0--1 --------------------1
I I I
I I
I I I I
I I I 1
1 I I I
I 1 I 1
1 1 1 I
1 I I I
I I I I
I I I 1

I
~r~t~~ I ~H~~s~r~~od~ J

Figure 4.1: Architecture modelled as decoupled SHE components

implemented in the mapping section of this modelling approach. This technique
provides a modular modelling approach which allows exploration of alternative
architectures. Replacing architecture components is possible without changing
the specification of other components. Figure 4.2 shows an example of specifying
different architectures on a application model. In this example, an architecture
which consists of three processors and one shared bus is specified. Figure 4.2
shows an application graph which is mapped on resource components. The chan
nels between the application model and resources model map each task on a
resource component. Task 1,2 and 3 are computed on processor core A, Band C
respectively. The communication between these tasks is performed over the bus
resource component.
A design exploration of a system which consists of two processors and one com-

21



Chapter 4. Modelling of Architecture Characteristics

Figure 4.2: An example of a specification of an architecture which consists of three processor
cores and one shared bus.

munication link can easily be established. By removing processor core Band
inserting a channel between task 1 and processor core C defines a real-time em
bedded system which consists of two processors and one shared bus. Figure 4.3
visualises the specification of the application performed on two processor cores
and a shared bus.

Figure 4.3: An example of a specification of an architecture which consists of two processor
cores and one shared bus.

This chapter is organised as follows:

• Section 4.2 describes several components to model the computational part
of the hardware in a real-time embedded system.

• Section 4.3 describes how to model communication behaviour of the hard
ware.

4.2 Modelling of Computation

In this thesis, the processor component models the computation behaviour of the
architecture. A simple processor component is given in figure 4.4. This computa
tion component models task executions using a First Come First Served (FCFS)
discipline. When a task is received (line 3) the component models a computation
using the delay procedure (see line 4). When the computation terminates, a
message is returned to the application model (line 5).

To be able to model basic computation behaviour, it is useful to capture the
commonly used scheduling policies. A commonly used scheduling policy is based
on an off-line table-driven approach (time-slice scheduling), where the time line is

22



4.2. Mode11ing of Computation

« process »
Computation
« instantiation parameters »
MIPS : Real;
- -<"<-i~st~ce -v';-riables - >->- -

« methods »
ComputeTask() ()
- -«-i~itial-method call-»- -
ComputeTask() ()

« messages »
execute?task
execute!task

1 ComputeTask()()
2 ITask: TaskElement, ComputationLoad:Reall
3 execute?task(Task, ComputationLoad);
4 delay ComputationLoad / MIPS;
5 executed!task(Task);
6 ComputeTask()().

Figure 4.4: POOSL specification of a computation component without scheduler

divided into fixed-sized slices. Tasks are statically allocated to slots based on their
rates (periods of execution) and execution requirements. A scheduling approach
based on priorities is also commonly used. In this policy a priority is assigned
(statically or dynamically) to each task and the execution order is generated on
line based on the current priority value. Two main scheduling algorithms based
on priorities are Rate Monotonic (RM) and Earliest Deadline First (EDF). In the
RM approach, tasks are assigned with fixed priorities according to their period.
The task which needs to be executed at the highest rate receives the highest pri
ority. Once the execution is started, the task can be preempted at any time by a
task with a higher priority. With the EDF algorithm priorities are dynamically
assigned to tasks, depending on their absolute deadline. EDF is harder to im
plement but may perform better results, see [22]. The next sections discuss the
implementation of a processor model using an off-line table-driven, a RM and an
EDF approach.

4.2.1 Static Time Slicing Scheduling

Time slice schedulers assign a time slot to each task for computation. When the
computation of a task is not able to be finished in time, the computation will
be preempted and placed in a buffer. Afterwards, this the scheduler activates
the next process, see figure 4.5. This technique is comparable to Round Robin

Processor
Core f---- Task done

Figure 4.5: Task queue of a time line scheduling algorithm.

(RR) scheduling, see [23J. Both scheduling policies assign a fixed computation
time to each task. The RR scheduler is always (during execution) able to accept
new tasks in the task queue (as First Come First Serve), where in static time
slicing scheduling the order of process execution is fixed and assigned to a time
slot by the engineer. The advantage of this approach is that the computation
order is fixed when each process is dedicated to a time slot which is large enough
to finish the computation. Assigning an execution (task) to multiple slots is
allowed. When a process is not able to be finished in the assigned time slot(s),
the process will be preempted which consumes time. On the other hand this
scheduling approach is not suitable for execution of unknown processes, each task
must be assigned to a slot before execution. Figure 4.6 shows the preemptive static

23



Chapter 4. Modelling of Architecture Characteristics

time slicing scheduling algorithm specified in POOSL. The ContextSwitch and

1 ini () ()
2 par
3 ContextSwitch()();
4 and
5 HandleTaskQueue(1)();
6 rap.

« process »
Computation
« instantiation parameters »
MIPS: Real;
SliceTime: Real;
TaskQueue: Dictionary;
- - .(<- i;'stuCe -vuiables - >->- -

<< methods >>
ini () ()
ContextSwitch()()
HandleTask () ()
HandleTaskQueue()()
- -«-i';-itial-method call-»- 
ini () ()

« messages »
task?execute
task?executed

7 ContextSwitch()()
8 Ii: Integer I i := 1;
9 while i <- TaskQueue occupation do
10 activeTask := TaskQueue at(i);
11 delay SliceTime;
12 i := i + 1
13 od;
14 ContextSwitch()().

15 HandleTask(SliceId: Integer)()
16 ITaskId, ServingTask Integer,
17 ComputationLoad: Reali
18 ServingTask:= TaskQueue at(SliceId);
19 task?execute(TaskId I TaskId =
20 ServingTask);
21 [activeTask = TaskId]
22 delay ComputationLoad / MIPS;
23 tasklexecuted(TaskId);
24 HandleTask(SliceId)().

25 HandleTaskQueue(SliceId: Integer)()
26 if TaskQueue occupation > SliceId then
27 par
28 HandleTask(SliceId)()
29 and
30 HandleTaskQueue(SliceId + 1)()
31 rap
32 fio

Figure 4.6: POOSL specification of a preemptive computation resource based on the static time
slicing scheduler

HandleTaskQueue methods described in figure 4.6 at line 3 and 5 are executed in
parallel. The tail-recursive ContextSwitch method changes the activeTask when
a predefined time slice period has elapsed. The activeTask guard represents the
identification of a task that is allowed to be executed. The method HandleTask
is executed several times depending on the number of scheduled tasks. The most
important issue in time slice scheduling is the size of a slice. When the time slice
is set small, tasks with a short execution time are finished fast whereas tasks with
large execution time are finished late. When task have a short deadline this must
be avoided.

4.2.2 Priority Based Scheduling

Most priority based algorithms, such as the Rate Monotonic (RM) approach, are
pre-emptive scheduling policies. This means that a context switch will take place
when a task of a higher priority is received. In this method (see section 3.3.1)
the priorities are assigned in the task at the application level. The priorities
are assigned to tasks before execution and do not change over time. To comply
to the RM approach tasks with shorter periods (higher request rates) will have
higher priorities. Moreover, the following condition must be met: for every task i
(i = 1,2,3, ... ), Ci < Ti , where Ci and Ti denote the computation time and period
of task i. To comply with RM scheduling, each task must be independent and have
a zero offset (for more details see [24]). In figure 4.7, the POOSL specification of a

24



task?execute(ReqTask, ReqComputationLoad, ReqPriority
ReqPriority > ServingPriority);

ComputeTask(ReqTask, ReqComputationLoad. ReqPriority)()
) ;
task!executed(ServingTask).

4.2. Modelling of Computation

computation resource with priority based scheduling is presented, which also can
be used for RM based scheduling. Note: For complying to the RM scheduling

« process »
PriorityBasedComputation
« instantiation parameters »
MIPS: Real;
--«~~~~vu~~~»--

<< methods >>
HandleTask 0 0
ComputeTaskO 0
- -<<: -initiiil-method call-;;>- 
HandleTask 0 0

« messages »
task?execute
task?executed

1 HandleTask()()
2 task?execute(Task, ComputationLoad. Priority);
3 Computetask(Task, ComputationLoad, Priority)();
4 HandleTask()().

5 ComputeTask(ServingTask: Integer. ServingComputationLoad: Real,
6 ServingPriority: Integer)()
7 ReqTask, ReqPriority: Integer. ReqComputationLoad: Real I
B interrupt delay ServingComputationLoad / MIPS with
9 (
10
11
12
13
14

Figure 4.7: POOSL specification of computation with priority scheduling policy

approach, the priorities must be assigned with respect to tasks periods.

The initialisation method HandleTask is tail-recursive which becomes an end
less running process. This procedure guarantees the handling of a computation
request of a task. After receiving a task, which has a specific priority and com
putation load, the computeTask method is started. The computation is then
preformed on line 8 with the delay statement. During the computation, this
process can be preempted with the interrupt statement. The computation will
be preempted when a new task is received with a higher priority (see line 10
and 11). When a task is preempted the ComputeTask method is started again
(recursive). When a computation is finished, the ComputeTask method returns
a task! executed message to the application level. When the ComputeTask is
finished, the tail-recursive procedure HandleTask is restarted.

4.2.3 Earliest Deadline First Scheduling

The Earliest Deadline First (EDF) scheduling algorithm dynamically assigns pri
orities with respect to the absolute deadline of each task. As described in [22],
EDF can results in less runtime overhead than RM, when context switches are
taken into account. (It is commonly believed that EDF introduces a larger run
time overhead than RM, because in EDF absolute deadlines need to be updated
from one task to the other. It is true that this needs extra computation time, but
it reduces the costly context switches.) Replacing line 10 and 11 of figure 4.7 by
the one given in figure 4.8 results in an EDF based computation model.

25



Chapter 4. Modelling of Architecture Characteristics

10 task?execute(ReqTask. ReqComputat ionLoad, ReqDeadline
11 I ReqDeadline > ServingDeadline);

Figure 4.8: This POOSL specification is needed in figure 4.7 to model an earliest deadline first
scheduler.

4.3 Modelling of Communication Resources

A communication resource is a facility to exchange data between processors (ap
plications). Today many real-time embedded systems support more functionality
by use of multiple processors. To exchange data these systems contain com
munication resources. [25] discusses several kinds of communication networks
used in real-time embedded systems. As existing communication networks are
so diverse and complex, it is not possible to provide components that cover all
possible communication networks. In general, communication networks can be
divided in point-to-point and broadcast networks as shown in figure 4.9. In sim-

(a) Point-to-point network

Bus

(b) Broadcast network

Figure 4.9: General communication networks

pIe point-to-point communication networks, a task sends a message to another
one by using a communication resource that is a direct connection between two
processors. In commonly used point-to-point switched networks, where several
switches are used, there is no direct connection. In this thesis, a simple example
of a point-to-point resource used for a direct connection between two proces
sors is specified. Figure 4.10 specifies a (simple) point-to-point communication
component, which models message passing between tasks through the communi
cation resource. This point-to-point resource exchanges data based on First Come

« process »
Point2PointCommunication
« instantiation parameters »
Bandwidth: Integer:
--«~rt~~vu~~~-»--

« methods »
HandleMsgO 0
TransferingMsg()()
- -«-initial-method call-»- 
HandleMsgO 0

<< messages >>
msg?transfer
msg?transferred

1 HandleMsgO 0
2 I MessageId, MessageSize Integer I
3 msg?transfer(MessageId, MessageSize):
4 TransferingMsg(MessageSize)();
5 msg!transferred(MessageId):
6 HandleMsg()().

7 TransferingMsg(MessageSize: Integer)()
8 delay MessageSize / Bandwidth;

Figure 4.10: POOSL specification of a direct point-to-point communication resource

First Serve (FCFS) algorithm. Method HandleMsg sequentially receives requests
through the msg?transfer messages from the communication task model. When
receiving a communication request, method TransferingMsg models a data ex
change through the communication resource. The transfer time in this resource
depends on the data (MessageSize) and the bandwidth (see line 8).

Nowadays communication through a broadcasted network (shared medium)

26



4.3. Modelling of Communication Resources

is often used in embedded systems consisting of multiprocessors. A task sends a
message through the network to another task running on a different processor.
The presented example is able to model the basic behaviour of such networks.
For example a central arbiter is neglected. As existing broadcast networks are so
diverse and complex it is difficult to model each behaviour and therefore out of
the scope of this thesis.

27



Chapter 4. Modelling of Architecture Characteristics

28



Chapter 5

Mapping

When the application and the architecture models have been defined as described
in chapters 3 and 4, the system design can be continued using the Y-chart ap
proach (fig 2.2). Mapping is the next section of the Y-chart. In this phase, the
application components are dedicated to resource components. The task in the
application graph will be executed on the resource components. In other words,
the workload of the application is assigned to resource components in the architec
ture model. Figure 5.1 shows the mapping phase of the modelling methodology.
This modelling method uses communication channels provided by the POOSL lan-

I I
I Processor I
\ Core I

\ I I
\ I I I
( Bus J()
\ I IJ
\ I

Processor Processor
Core Core

Figure 5.1: Mapping phase.

guage to map application components to resource components. Figure 5.2 shows
an application model mapped on an architecture model specified using the earlier
described modelling approach. The figure shows three sections of the Y-chart,
namely the application, the mapping and the architecture(resource models). Cre
ating a mapping channel in SHEsim is done by creating a message channel between
the task and the resource components. In this figure (software) tasks 1 to 4 and
communication tasks 1 and 2 are defined in the application model. (Software)
Tasks 1 and 2 are mapped on processor A (a resource component). Task 1 will be
executed, with respect to the scheduling policy, on processor A when an event has
triggered the application model. When processor A has finished the execution of
task 1, it sends a message back to task 1 (consuming no time). When task 1 re-

29



Chapter 5. Mapping

Application model

Mapping

Resource model

i-; I_I~

Figure 5.2: Mapping of application and architecture models where the communication channels
defines the hardware structure of the system.

ceives this message, it triggers task 2 and communication task 1. Task 2 will then
be executed on processor A and communication task 1 on the bus resource. This
process will continue till task 4 is executed on processor B. The outgoing event
at task 4 can be used for analysis purposes. Figure 5.3 shows a possible sequence
diagram of the communication which takes place between the application and
the resource components. This sequence diagram visualises the communication

:Application

task

:Resource

Application

I Application I I Resource I
execute(..)

~
«delay»

- ComputationLoad

executed(.. )

Architecture

task lexecute (TaskId, Computat1onLoad, priority);

task?executed (TaskServed I TaskServed • TaskId);

task?execute (TaskId, ComputationLoad. Priority);

delay ComputationLoad

task! executed (TaskId)

Figure 5.3: Sequence diagram of communication for execution demand in the mapping phase.

between a task in the application level and a processor in the resource level. A
task component sends the message task! execute to a resource component. The
resource component receives this message with a task identification, computation
load and a priority. This exchange of data consumes no time. The resource com
ponent will execute (with respect to a scheduling policy) the computation load
with the delay statement. This execution will consume time. When the exe
cution is finished the resource component sends a task! executed with the task
identification back. The application will only accept messages where the identi
fication is identical of the original. This must be checked because multiple tasks

30



can be mapped on one resource.
A possible extension of this work is to define a dynamic mapping approach.

This is possible because this model is specified modular. The dynamic mapping
approach must use the same message protocol used between the application com
ponents and resource components. This extension is out of the scope of this thesis
and therefore proposed as future work.

31



Chapter 6

A Case Study: Distributed
In-car Radio Navigation
System

6.1 Introduction

This chapter describes the application of the modelling approach proposed through
a case study. This case study, an in-car distributed radio navigation system, is pre
sented in [26]. This is a realistic and well defined system and therefore interesting
for performance analysis. In [26] the system is evaluated using Modular Perfor
mance Analysis (MPA). MPA is an alternative, analytical performance analysis
approach based on the Real-Time Calculus developed at ETH Zurich.

The first section gives a description of the case study. Next, the POOSL im
plementation using the modelling approach defined in chapters 3 to 5. Section 6.3
presents the performance results obtained from the POOSL model. The MPA
analysis of the case study is discussed in section 6.4 and followed by a compari
son between POOSL and MPA results (section 6.5). The final section discusses
average performance analysis.

6.2 Distributed In-Car Radio Navigation System

The case study presented in [26] is inspired by a system architecture definition for
a distributed in-car navigation system. An overview of the system is presented in
figure 6.1. It is composed of three main clusters of functionality:

• The Man-Machine Interface (MMI) which takes care of all interaction with
the user, such as handling key inputs and graphical display output.

• The navigation functionality (NAV) which is responsible for destination
entry, route planning and turn-by-turn route guidance giving the driver
both audible and visual advices. The navigation functionality relies on
the availability of a map database, typically stored on a CD or DVD, and
positioning information, e.g. speed and Global Positioning System (GPS).
The latter is not shown here.

• The radio functionality (RAD) which is responsible for basic tuner and
volume control as well as handling of traffic information services such as
Radio Data System (RDS) / Traffic Message Channel (TMC). RDS TMC
is broadcasted along with the audio signal of radio channel.

33



Chapter 6. A Case Study: Distributed In-car Radio Navigation System

------------------1

"--~--.---"

,

Figure 6.1: High-level of a distributed radio navigation system

The key question that is investigated in [26] is how to distribute the functionality
over the available resources, such that we meet our global timing requirements.
The functionality is specified with Use-Cases and their associated sequence di
agrams. The three selected distinctive scenarios that are used for performance
analysis are:

1. " Change Volume" - The user turns the rotary button and expects instanta
neous audible feedback from the system. Furthermore, the visual feedback
(volume setting on the screen) should be timely and synchronised with the
audible feedback. This seemingly trivial Use-Case is actually quite complex
because many components are affected. Changing volume might involve
commanding a digital signal processor (DSP) and an amplifier in such a
way that the quality of the audio signal is maintained while changing the
volume. This scenario is shown in detail in figure 6.2. Note that three op
erations are identified, HandleKeyPress, Adjust Volume and UpdateScreen.
Execution times, event rates and message sizes are estimated and anno
tated in the Sequence Diagram together with the main timing requirements
applicable to this scenario.

J2ewnl.
per ••~orMI
(lltmoal)

NollttVllluIlCl'llnll'(J.-_ - - -_.

Handl.Kt¥f'rell(J

BlfoIolllmeO

~: J:,F,,:·,..·,,·m.
o

-"m.o-ll
UDdateStreln()

E..cU!lDn 11m, .stImat8$
Handl,Keyf'lIs,O 1E51nllNtlloni
AclJuIMllumeO 1E51ns1ndons
Upd.NSc,..nO 5E51nl\r'ut1Ioni

Figure 6.2: Annotated Sequence Diagram for" Change Volume"

34



NlIbCllVllluIIClMlnge()

6.2. Distributed In-Car Radio Navigation System

2. "Address Look-up" - The destination entry is supported by a smart "type
writer" style interface. By turning a knob the user can move from letter
to letter. The map database is searched for each letter that is selected and
only those letters in the on-screen alphabet are enabled that are potential
next letters in the list. This scenario is shown in detail in figure 6.3. Note
that the DatabaseLookup operation is expensive compared to the other op
erations and that the size of the output value of operation is 16 times larger
than the input message.

Figure 6.3: Annotated Sequence Diagram for" Address Look-up"

3. "TMC Message Handling" - Digital traffic information is very important
for in-car radio navigation systems. It enables features such as automatic
replanning of the planned route in case a traffic jam occurs ahead. It is also
increasingly important to enhance road safety by warning the driver, for
example when a ghost driver is spotted on the planned route. RDS RMC is
such a digital traffic information service. TMC messages are broadcast by
radio stations together with stereo audio sound. RDS TMC message types
are transmitted. The map database is accessed to translate these identifiers
and to construct human readable text. The TMC message handling scenario
is shown in figure 6.4.

The above presented scenarios can occur in parallel, which means that the
system receives TMC messages while a user is pressing the rotary knob. The ar
chitectures shown in figure 6.1 suggest to assign the three clusters of functionality
each to its own processing unit. Figure 6.5 proposes more potential architectures
that might be applicable. Those architectures are specified from datasheets of
several commercially available automotive CPUs.

35



Chapter 6. A Case Study: Distributed In-car Radio Navigation System

EdtUUon ame .,llm...
Iolltldl,TWCO 1E6 tnl1rUclo1l6
OKode'TMCO !lE5 tnl1rudlo".
UpdlIISCf.lnO 5ES InllJUe1lollll

OICodlTIllCO

pomeslall'S
iper 15 minutes
184b~I.lch

, ,

t
' :

Updal,SCfHh{ l :

~4
Figure 6.4: Annotated Sequence Diagram for "TMC Message Handling"

(A)

(e) (0)

(B)

(E)

260 MIPS

CNAV~ 1;;';;;::1 <iCJ~}l

~,

260 MIPS

~',

~.

C§D'

Figure 6.5: Alternative system architecture to explore

6.3 POOSL Model

The SHESim tool, which supports modelling and specification of complex concur
rent systems in accordance with the SHE methodology, is used for modelling the
distributed in-car radio navigation system. The approach described in chapter 2 is
followed to model the in-car radio navigation system. Figure 6.6 shows the system
on architecture A (see figure 6.5 for the structure of architecture A). As shown in
the figure, the KnobVol, KnopAddr and Radio are models of input devices which
trigger the application of the distributed in-car navigation system. The trigger
ing is done by events which are messages in POOSL. The KnopVol and KnopAddr
component generate event streams which models volume change and inserting an
address by the user respectively. The Radio component generates events which
model TMC messages coming from a radio station. These components are speci
fied as described in section 3.2. The Speaker and Display component are models
of output devices. These components register events (messages) produced by the
application. This registration is used for analysis purposes. These components
are specified as a consuming event component described in section 3.2.5. The
components in the centre of the figure represent the application of the system.
The components are task components or communication components as specified
in 3.3. The task components and communication components are mapped on a

36



6.3. POOSL Model

Figure 6.6: SHEsim model of architecture A

processor component (P1MMI, P2NAV or P3RAD) or on a communication compo
nent (BUS1). The mapping is done by using POOSL communication channels (see
chapter 5 for more information). The processor resources are implemented with
a priority scheduler as described in section 4.2.2. The resource components l do
not know other resources.

6.3.1 Worst Case Performance Analysis

The model described in the previous section is used for analysing the performance
of the system. The models of the input devices generate events (messages) pe
riodically as specified in the sequence diagrams in figures 6.2, 6.3 and 6.4. The
system performance is analysed with all possible architectures when each sce
nario is executed individually and when scenarios" Change Volume" or "Address
Lookup" are executed in parallel with the "TMC Message Handling" scenario2 .

Note that "Change Volume" and" Address Lookup" are generated from the same
knob which means that these scenarios cannot be executed in the same time. The
execution of the model is done with the high-speed execution engine Rotalumis
which improves the execution speed by a factor of 100. The execution is stopped
when no higher WCET is received in half an hour. The results of this analysis are
presented in appendix A. Table 6.1 shows the performance numbers of system ex
ecuted on architecture A. Tasks executed on this architecture are more distributed
then other architectures (with an exception of architecture B) and it uses a shared
communication link. These properties deliver the most interesting performance
results. The tables in appendix A showed that all possible architectures meet the

1In this chapter the following abbreviation of resources functionalities are used:
MMI = Man-Machine Interface, NAV = Navigation, and RAD = Radio.

2For clarity the following abbreviations are used: VOL = " Change Volume" scenario, ADDR
= "Address Lookup" scenario and TMC = "TMC Message Handling" scenario.

37



Chapter 6. A Case Study: Distributed In-car Radio Navigation System

Table 6.1: POOSL performance results of architecture A
Measured Active Worst case Slack Idle time ['Po]

scenario scenarios delay [ms] [ms] CPU(MMI) CPU(NAV) CPU(RAD)
VOL VOL 41.80 158.20 12.73 100.00 70.91

ADDR ADDR 79.08 120.92 97.27 95.58 100.00
TMC TMC 249.20 750.80 99.24 98.53 96.97
VOL VOL and TMC 75.72 124.28 11.98 98.53 67.88
TMC VOL and TMC 266.94 733.06 11.98 98.53 67.88

ADDR ADDRand TMC 86.19 113.81 96.52 94.10 98.77
TMC ADDR and TMC 244.26 755.74 96.52 94.10 98.77

application requirements (the requirements (deadlines) are given in section 6.2).
The performance analysis showed that for all architectures the slack time is high
and that most processors have a long idle time. For example, for architecture A,
the minimal idle time for the NAV processor is 94.10%. Further analysis of the
performance numbers visualises the obtained worst case delays occurring sporadi
cally. This observation can be shown in a graph, where the horizontal axis denote
the measured delay of the event and the vertical axis the occurrence. An example
of such a graph is given in figure 6.7 where the ADDR delays are obtained when
ADDR and TMC are executed in parallel on architecture A. The circle in the

Delay occurrence
x 10·

2

1.8

1.6

~ 1.4
III
c:
ell 1.20
II

~

0.8

0.6

0.4

0.2

0
80 90 100 110

x " End-to-end delay [ms)

Figure 6.7: Occurrence of ADDR delays when ADDR and TMC are executed in parallel on
architecture A

graph displays that the worst case delay occurs sporadically (the occurrence of a
delay is presented with a bar, which accumulates when a delay is in the bounds
of the bar).
A performance analysis is also done in [26]. In [26] the system is evaluated using
Modular Performance analysis (MPA). MPA is an alternative, analytical per
formance analysis approach based on the Real-time Calculus developed at ETH
Zurich. To make a comparison of the performance values obtained form the
POOSL model and MPA method, the following section gives a brief description
of the MPA method.

38



6.4. Modular Performance Analyse

6.4 Modular Performance Analyse

Modular Performance Analyse (MPA) uses performance components as basic
building blocks to construct a performance model. They define how application
tasks are executed on architectural elements and they are the basis for analysis.
MPA describes and analyses such a component using real-time calculus. Such a
component is given in figure 6.8. An incoming event stream, represented as a

:~i,i i [11,111

10- I

Figure 6.8; A basic performance component with abstract models as input and output and
Real-Time Calculus to process internal transformations.

set of upper and lower arrival curves are offered to a FIFO buffer in front of the
performance component. The component is triggered by these events and will
process them while being restricted by the availability of resources, which are a
set of upper and lower service curves. On its output, the component generates
an outgoing event stream, represented as a set of upper and lower arrival curves.
Resources that are not consumed by the component will be made available again
on the resource output of the performance component, again represented as a set
of upper and lower service curves. These components are described and analysed
using Real-Time Calculus, see [27]. A performance component often computes
the convolution and deconvolution defined in min-plus and max-plus calculus.
The min-plus convolution and deconvolution definitions are given in appendix A.
The performance component uses the following set of equations that describes the
processing of abstract event streams and resources:

aU' = min{ (aU @ {3U) 0 {31, {3U}

001' = min{(al 0 {3U) @ {31, {31}

{3u' = ({3u - 001)0"0

{31' = ({31 - aU)"~O

(6.4.1)

(6.4.2)

(6.4.3)

(6.4.4)

For an extensive discussion about these formulas see [28], [27] and [29]. Per
formance components can be connected into a network according to the model
of a system architecture. Event flows that exit performance components from an
event flow output can be connected to an event flow input of another performance
component; this will result in horizontal connections. Similarly, resource capac
ity that is not consumed by a performance component and exits from a resource
output can be connected to a resource input of another component; this will re
sult in vertical connections. Together with the models of system resources, i.e.,

39



Chapter 6. A Case Study: Distributed In-car Radio Navigation System

the service curves, and with the incoming event streams from the environment,
i.e., the arrival curves, can obtain a performance model of a complete system
that can be used for performance analysis. An example of specifying the in-car
navigation system with architecture A is given in figure 6.9. For better under-

Figure 6.9: MPA model for system architecture A of figure 6.5

standing, this performance method is applied on an example where two event
streams are generated in parallel. These two event streams are executed on one
resource (processor). The construction of the MPA performance model is given
in figure 6.10 The two independent (strictly periodic) event streams A and Bare

Event stream A ~

Figure 6.10: MPA model of two event streams sharing one resource.

depicted in figure 6.11a and 6.11b respectively. The figure represents the number
of events in time. It is assumed that each event requires 1000 resource cycles (the
computation). The MPA performance model describes event streams in terms

e-t-----+--t------t--I_
0'34

(a) Event stream A

----.
I [ms]

>--1--+---t-----+-I-L ----.
o 2 3 4 5 I [ms]

(b) Event stream B

Figure 6.11: Event stream A and B in milliseconds

40



6.4. Modular Performance Analyse

of the mlllimum and maximum number of events that arrive in a certain time
interval (for more details see [27]). From figure 6.11a the arrival curve of event
stream A is derived.
Figure 6.12a shows the representation of the number of events against a time
window of size t... t.. denotes the size of time (windows) when events occur be
tween a and 5 milliseconds. The figure shows the minimum (Q~) and maximum
(QA) number of events that occur in time window (t..). Figure 6.12b shows the

,,~

0

I ,,~

0

4000

100

4

3

o~

2

I-I"A, I

-

i..

• [mol

(a) Arrival curve of stream A

• [mal

(b) Arrival curve against the number of re
sources of stream A

Figure 6.12: Arrival curves of Stream A, (a) number of events against 6" (b) number of resource
against L:l.

representation of the number of resources (minimum and maximum) against t...
The QA curve represents the upper bound of the required resources (cycles) and
Q~ curve represents the lower bound of the amount of required resources (cycles).
The service curve of a resource that carries out 1000 cycles each millisecond is
given in figure 6.13a. In this case the upper and lower resource service curves
are equal. The service curves are linear because of the fixed served cycles of the
resource. To calculate the output resource curve 13~, formulas 6.4.3 and 6.4.4 are
used. The result is given in figure 6.13b. From event stream B, given in figure

5000 4000

4000
300

3000
~" = ~'

!2000
~".

2000
..

100
~I'

1000

00
• ,mal • ,mal

(a) Resource service curve of {3 (available re-(b) Resource service curve of {3' (remaining re-
sources) sources)

Figure 6.13: (a) Resource curves of {3 and {3'

6.11b, the arrival curve is derived and shown in figure 6.14. This figure shows
the representation of the arrival curve, where the number of events (minimum
and maximum) are depicted against time (t..). When event stream B with arrival
curve QB is processed by the second performance component with service curve
13', then the maximum delay dmax experienced by event B on the event stream is
bounded (horizontal) by the upper event curve and the available resources out of

41



Chapter 6. A Case Study: Distributed In-car Radio Navigation System

5000',----~--~-~--~-____,

4000

Ia~
f-----+---------!

~3000

~
"2000

1000

~lmlIJ
4 5

(a) Arrival curve against the number of re
sources of stream B

(b) Serve curve of {3"

Figure 6.14: Arrival and serve curve of event stream B

the performance component, see dmax in figure 6.15. The maximum buffer space
bmax that is required to buffer event stream B with arrival curve aB in the input
queue of the second performance component on a resource with service curve 13'
is bounded (vertical) by the upper event curve and the available resources out
of the performance component, see bmax in figure 6.15. Figure 6.15 shows the
relations between a'B, j3~' ,dmax and bmax . With the chosen event streams and

5000,-----~--~--~--~--___,

4000

buffer space b_ \

\ a~

I \:
1000~---_--l--~···_·__······t···········

delayd_ 0
OQ';-----;----;:------;,------'4!"----;!

'" 3000
"
~
.. 2000

A [ms)

Figure 6.15: Maximum delay and maximum buffer space obtained from arrival and service curves

resource model a delay (time between of releasing and finishing of an event) of
only 1 millisecond occurs. The maximum delay derived form the MPA model is
5 milliseconds. This example visualises that MPA can be too conservative. The
MPA performance model describes an event stream as a minimum and maximum
number of events that arrive in a certain time interval. So these streams do not
contain information about when events occur. This is a reason why MPA can
result in being too conservative. Creating MPA models is a relatively simple
task that require little effort. The advantage of MPA is that the performance
calculation is very fast.

6.5 POOSL and MPA Comparison

The case study described in this thesis was used for comparison of different analy
sis techniques. This and other performance analysis case studies are therefore
made public on [30]. In this section the performance results from the POOSL

42



6.6. A verage Performance Analysis

model are compared with the MPA model. For clarity, this section only describes
the comparison of the use case executed on architecture A. The conclusion of
this comparison are the same as for the other configurations of the system. A
comparison of the worst case performance numbers obtained from the POOSL
and MPA analysis is given in table 6.2. The MPA worst case performance num-

Table 6.2: POOSL and MPA performance results of architecture A

Measured Active Worst case delay [ms]
scenario scenarios POOSL MPA

VOL VOL 41.80 40.91
ADDR ADDR 79.08 76.07

TMC TMC 249.20 -
VOL VOL and TMC 75.72 398.29
TMC VOL and TMC 266.94 398.29

ADDR ADDR and TMC 86.19 276.74
TMC ADDR and TMC 244.26 276.74

bers of scenario TMC were not available at the time of writing this thesis. Note
that the MPA analysis only provided the maximum execution time that occur
when two scenarios are running in parallel. Noticeable, as expected (MPA can
be overconservative because it does not contain information about when events
occur) the MPA analysis produces higher worst execution delays when two sce
narios are executed in parallel. Comparing the performance numbers obtained
when one scenario is executed we see (in the table) that MPA and POOSL are
almost equal. The difference between these analysis methods is that MPA is an
analytical approach whereas POOSL is based on simulation. This means that
POOSL approximates the worst case situation during simulation and MPA de
rives the upper bound of the worst case execution time. Figure 6.16 shows the
domain of these analysis techniques. Figure 6.16 shows a timing diagram where

BCET

POOSL-
'Real' WCET

MPA-
t~

Figure 6.16: Timing diagram which visualise the domain of POOSL and MPA analysis

the best case execution time and the worst case execution time are reflected on a
time line. The figure visualises that the POOSL analysis results approximate the
'Real' WCET where the MPA analysis provides upper bound results.

6.6 Average Performance Analysis

In this case study the load of the application is specified in number of instructions.
The number of instructions specified in each task denotes the worst case amount
needed to execute a task. Using worst case values for performance analysis of hard
real-time embedded system is useful. System damage occurs when the system will
not fulfil the requirements (e.g deadlines). However, the case study described in
this thesis is a soft real-time embedded system, deadline misses will not result
in system damage. Therefore performance analysis with worst case values can
lead to an over-conservative dimensioning of the system. Specifying the system
load (number of instructions) between bounds will provide a more realistic per
formance result.

43



Chapter 6. A Case Study: Distributed In-car Radio Navigation System

POOSL is able to specify the load of a system as an distribution. In this thesis
the number of instructions is specified as a uniform distribution (Note: Finding
a suitable(realistic) load distribution is out of the scope of this thesis and there
fore proposed as future work). In this analysis, the number of instruction varies
50% around the worst case value. For example, the amount of instructions of
TaskVolume (original specified with 1E5 instructions) varies uniformly between
5E4 and 15E4 instructions. Figure 6.17 shows the occurrences of the delays when
scenarios YOL-TMC, ADDR-TMC, and TMC-YOL are executed in parallel.

44



6.6. Average Performance Analysis

Delay frequency of scenario VOL·TMC
45c----r------,------'---..,-----------,-------,-----,-------::J

40

35

30

15

Deadline

....~+~~-------;:S;----~
100 200 300 400 500 600

x = End·tl>end delay [msl

(a) scenarios VOL-TMC

Delay frequency of lcenario ADDR·TMC
25

20

'" 15

~
"
~10

3.5

~2.5
!
£: 2

1.5

0.5

200 400

100 120 140
End-T()-fmd delay (ms]

(b) scenarios ADDR-TMC

Delay frequency of scenario TMC-VOL

(c) scenarios TMC-VOL

160

Deadline

1000

180

1200

Deadline

200

Figure 6.17: Delay frequency functions of scenario VOL, ADDR and TMC

45



Chapter 6. A Case Study: Distributed In-car Radio Navigation System

These graphs provide us more insight in the performance of the system. The
delay frequency curve shows that most of the delays are close to the end-to-end
delay of the scenarios executed separately and obtained by the simulation with
fixed load. Table 6.3 presents the average and the worst case delays obtained
from the model with uniform load. The results given in table 6.3 show that the

Table 6.3: Average and WCET obtained from modelling the system with uniform load.

Measured Average worst case Req. deadline Deadline misses
scenario delay [ms] delay [ms] [ms] [%]

VOL-TMC 42.3 638.3 200.0 0.0036
ADDR-TMC 77.2 181.5 200.0 0
TMC-VOL 361.6 1305.7 1000.0 0.0010

average delays meet the requirements. On the other hand the worst case delay
does not meet the requirements, but the deadlines are missed sporadically which
is seen from the delay frequency curve and in the right column of the table. Note:
these results are obtained from 7.962.000 samples.

6.6.1 Reduction of Resource Performance

The performance of the architecture will be discussed in this section. The relative
low deadline misses and the low processor utilisation shows that this architecture
(in this example architecture A) is over-dimensioned. An optimal soft real-time
system may have a few deadline misses (depending of the type of system) and
high processor occupations. Increasing processor occupation is done by reducing
processor speed. The following performance reductions are explored:

• MMI - The utilisation of this processor is 88.02%. Simulation has demon
strated that deadlines are already missed. The processor receives 32 VOL
events each second, which means that this processor is loaded with high ex
ecution demands. The period and load of the tasks on this processor limit
the possibility to reduce the processor speed.

• NAV - This processor is involved with the execution of scenario ADDR
and TMC. The processor is utilised only for 5.80%. The frequency delay
functions of scenario ADDR and TMC (figures 6.17b and 6.17c) show a
slack of 80 and 200 milliseconds respectively between the obtained delays
and the deadline. Analysis has demonstrated that speed reduction of this
processor is feasible without great deadline misses.

• RAD - The utilisation of this processor is 32.12%. This processor is involved
with the execution of scenarios VOL and TMC, where the VOL scenario has
a high rate of execution demands and TMC has a high computation load.
The analysis showed a slack time of 100 and 200 milliseconds for ADDR
and TMC respectively.

Figures 6.18a, 6.18c and 6.18e show the delay frequency functions of scenarios
VOL-TMC, ADDR-TMC and TMC-VOL. These frequency delaying are obtained
with half of the initial speed of processors 2(NAV) and 3(RAD).

46



6.6. Average Performance Analysis

\.

(a) Frequency delay of scenario VOL-TMC

(c) Frequency delay of scenario ADDR-TMC

(b) Fitted normal distribution of scenario VOL-TMC

(d) Fitted normal distribution of scenario ADDR-TMC

11'
II
!

!r,

(e) Frequency delay of scenario TMC-VOL (f) Fitted normal distribution of scenario TMC-VOL

Figure 6.18: Frequency delay functions of scenarios VOL-TMC, ADDR-TMC and TMC-VOL
when instruction load has a uniform distribution

47



Chapter 6. A Case Study: Distributed In-car Radio Navigation System

Table 6.4 shows that the average end-to-end delay meets the requirements
(deadlines). The maximum obtained end-to-end delay of the analysis does not
meet the requirements. Evaluation of the delay frequency curves show that the
deadlines are missed only sporadically.

Table 6.4: Obtained average and maximum delays from the analysis of the POOSL model with
a uniform instruction load and reduced resources.

Measured Average end-to-end Max. end-to-end Req. deadline Deadline
scenario delay [ms] delay [ms] [ms] misses [%]

VOL-TMC 53.6 724.7 200.0 0.0077
ADDR-TMC 120.8 311.2 200.0 0.3618
TMC-VOL 688.1 1731.2 1000.0 0.0155

6.6.2 Approximation of Worst Case Performance

The obtained end-to-end delays from the analysis (based on simulation) of the
POOSL model dOBs not always find the worst case delays. A distribution curve
which fits over the obtained delays provide us values about the worst case delay
and the absolute deadline miss. The graphs on the righthand of figure 6.18 vi
sualises the end-to-end probability density function fitted on the analysis results.
Figure 6.18b, 6.18d and 6.18f are normal distributions. A normal distribution
results if the end-to-end delays are the sum of a large number of independent,
identically-distributed executions of tasks. This distributions helps to approxi
mate the WCET and to determine the percentage of deadline misses. Table 6.5

Table 6.5: Calculated deadline misses gathered from the fitted distribution curves

Measured deadline P(Event> deadline) 95% Confidence bound
scenario [ms] [%] Lower [%] Upper [%]

VOL-TMC 200.0 ""0.0 - -
ADDR-TMC 200.0 3.988 3.984 3.993
TMC-VOL 1000.0 5.726 5.464 5.998

shows the probability of deadline misses obtained from the fitted distribution
curves. Note that scenario VOL almost never miss the deadline. Applying a
distribution curve on the obtained performance results (delays) will help to de
termine the worst case delay of the system. The benefit of this approach is that
the simulation time can be reduced and an approximation of the worst case delay
can (still) be given.

48



Chapter 7

Conclusions and
Recommendations

This chapter describes the realised goals, conclusions and gives recommendations
for future developments.

7.1 Realised Objectives and Conclusions

In the following enumeration, the numbers relate to the objectives stated in sec
tion 1.2.

1. In this thesis we provide a modelling method based on patterns to model
and analyse distributed real-time embedded systems. The patterns describe
common components of real-time embedded systems like input/output de
vices, real-time tasks and platform resources. These components are used to
specify distributed real-time embedded system model in a modular fashion
(plug-and-play). These patterns act as templates that can be applied in
other situations by setting the right values of their parameters.

2. The modelling method proposed in this thesis is applied to a realistic case
study. The model could be constructed rapidly and in a modular fashion
making it suitable for design space exploration. A performance analysis was
carried out on this model.

The developed patterns of distributed real-time embedded systems are validated
by a performance analysis. The results are compared with another performance
analysis technique (MPA). This comparison shows that the model of the proposed
method approximates worst-case values during simulation and MPA derives upper
bounds of the worst case execution time. The comparison shows that the pro
posed method produces performance numbers that approximate the worst case
execution as opposed to MPA which is sometimes over-conservative. The pro
posed method effectively captures the behaviour of both soft and firm real-time
embedded systems by use of distributions. As the POOSL analysis technique
relies on simulation, the accuracy of the performance results depends on the sim
ulation length. However, we are able to provide deadline miss probabilities by
fitting a distribution on the performance analysis results which lead to a less
costly platform.

49



Chapter 7. Conclusions and Recommendations

7.2 Recommendations and Future Research

During the thesis some interesting observations were made to extend the modelling
method and to improve the comparison of analysis techniques. The following
enumeration describes recommendations and future research.

• In this thesis a method to model distributed real-time embedded systems
is described. This method is supported with processor and communication
resource components. Specifying memory models increases the modelling of
real-time embedded systems domain.

• A static mapping in a modular fashion is applied in this thesis. To decrease
the design space exploration time, a dynamic mapping approach can be
implemented.

• The analysis results are compared based on a single case study. By de
scribing several case studies, each capturing a different analysis problem, a
comparison can be made in a systematic way, by considering their pros and
cons. Some benchmark issues could be set up based on average performance
analysis, worst case performance analysis, the accuracy, the amount of time
needed to specify a model, the time needed for performance analysis and
the readability of the technique.

50



Appendix A

Simulation Results of the
Distributed In-car
Navigation System

A.I Performance Results of Architecture A

End-to-end Slack OccupationJ#] Idle timeJ%] Blocktime
Scenario Reaction delay [ms) [ms] PI P2 P3 PI P2 P3 BUS [ms]

1 VisualChangeVOL 41.80 158.20 2 0 1 12.73 100.00 70.91 97.16 4.55
1 AudibleChangeVOL 14.08 35.92 2 0 1 12.73 100.00 70.91 97.16 4.55
2 VisualChangeADDR 79.08 120.92 1 1 0 97.27 95.58 100.00 99.24 0.00
3 VisualChangeTMC 249.20 750.80 1 1 1 99.24 98.53 96.97 99.53 77.09

1 and 3 VisualChangeVOL 75.72 124.28 2 1 2 11.98 98.53 67.88 96.68 38.46
1 and 3 AudibleChangeVOL 14.08 35.92 2 1 2 11.98 98.53 67.88 96.68 0.00
1 and 3 VisualChangeTMC 266.94 733.06 2 1 2 11.98 98.53 67.88 96.68 94.83
2 and 3 VisuaiChangeADDR 86.19 113.81 2 2 1 96.52 94.10 98.77 98.77 7.11
2 and 3 VisualChangeTMC 244.26 755.74 2 2 1 96.52 94.10 98.77 98.77 72.15

A.2 Performance Results of Architecture B

End-to-end Slack OccupationJ#] Idle time %j Blocktime
cenario Reaction delay [ms] [ms] PI P2 P3 PI P2 P3 BUSI BUS2 [ms]

1 VisualChangeVOL 42.03 157.97 0 1 1 100.00 83.01 70.91 100.00 96.41 0.00
1 AudibleChangeVOL 14.20 35.80 0 1 1 100.00 83.01 70.91 100.00 96.41 0.00
2 VisualChangeADDR 79.08 120.92 1 1 0 77.27 99.47 100.00 99.24 100.00 0.00
3 VisualChangeTMC 270.57 729.43 1 1 1 92.43 99.85 96.97 99.76 99.40 199.77

1 and 3 VisualChangeVOL 70.33 129.67 1 2 2 92.43 82.86 67.85 99.76 95.80 8.8483
1 and 3 AudibleChangeVOL 14.20 35.80 1 2 2 92.43 82.86 67.85 99.76 95.80 0.00
1 and 3 VisualChangeTMC 367.67 632.33 1 2 2 92.43 82.86 67.85 99.76 95.80 47.958
2 and 3 VisualChangeADDR 86.18 113.82 2 2 1 69.69 99.32 96.97 99.01 99.40 6.7056
2 and 3 VisualChangeTMC 270.29 729.71 2 2 1 69.69 99.32 96.97 99.01 99.40 332.67

51



Chapter A. Simulation Results of the Distributed In-car Navigation System

A.3 Performance Results of Architecture C
End-to-end Slack Occupation l#l Idle time [%] Blocktime

Scenario Reaction delay [ms] [ms] PI P2 PI P2 BUS [ms]
1 VisualChangeVOL 28.55 171.45 1 1 98.77 12.73 97.16 0.00
1 AudibleChangeVOL 5.37 44.63 1 1 98.77 12.73 97.16 0.00
2 VisualChangeADDR 54.06 145.94 1 1 98.08 97.27 99.24 0.00
3 VisualChangeTMC 68.30 931.70 2 1 99.17 99.24 99.53 8.27

1 and 3 VisualChangeVOL 62.10 137.90 2 2 98.00 11.97 96.68 33.55
1 and 3 AudibleChangeVOL 5.37 44.63 2 2 98.00 11.97 96.68 0.00
1 and 3 VisualChangeTMC 80.96 919.04 2 2 98.00 11.97 96.68 20.93
2 and 3 VisualChangeADDR 61.04 138.96 2 2 97.31 96.52 98.77 6.98
2 and 3 VisualChangeTMC 101.28 898.72 2 2 97.31 96.52 98.77 41.26

AA Performance Results of Architecture D
End-to-end Slack Occupation [#] Idle time [% J Blocktime

Scenario Reaction delay [ms] [ms] PI P2 PI P2 BUS [ms]
1 VisualChangeVOL 6.27 193.73 0 1 100.00% 82.77% 100.00% 0.00
1 AudibleChangeVOL 1.98 48.02 0 1 100.00% 82.77% 100.00% 0.00
2 VisualChangeADDR 56.42 143.58 1 1 95.58% 99.54% 99.24% 0.00
3 VisualChangeTMC 70.01 929.99 1 1 98.53% 99.62% 99.53% 0.00

1 and 3 Visual ChangeVOL 16.77 183.23 1 2 98.53% 82.38% 96.68% 10.50
1 and 3 AudibleChangeVOL 1.98 48.02 1 2 98.53% 82.38% 96.68% 0.00
1 and 3 VisualChangeTMC 76.16 923.84 1 2 98.53% 82.38% 96.68% 6.15
2 and 3 VisualChangeADDR 63.43 136.57 2 2 94.10% 99.15% 98.77% 7.01
2 and 3 VisualChangeTMC 120.72 879.28 2 2 94.10% 99.15% 98.77% 50.71

A.5 Performance Results of Architecture E
End-to-end Slack Occupation [#} Idle time [%; Blocktime

Scenario Reaction delay [ms} [ms} PI PI [ms}
1 VisualChangeVOL 2.69 197.31 1 91.38'70 0.00
1 AudibleChangeVOL 0.77 49.23 1 91.38% 0.00
2 VisualChangeADDR 21.54 178.46 1 97.85% 0.00
3 VisualChangeTMC 25.00 975.00 2 99.17% 0.00

1 and 3 VisualChangeVOL 4.60 195.40 2 90.55% 1.91
1 and 3 AudibleChangeVOL 0.77 49.23 2 90.55% 0.00
1 and 3 VisualChangeTMC 27.69 972.31 2 90.55% 2.69
2 and 3 VisualChangeADDR 25.38 174.62 3 97.01% 3.85
2 and 3 VisualChangeTMC 6.54 953.46 3 97.01% 21.54

52



Appendix A

Real-time Calculus
Definitions

In this appendix the definitions of the Min-plus and the Max-plus convolution
and deconvolution are given. These definitions are used in the MPA performance
components described in section 6.4. For an extensive discussion about these
formulas see [28] l [27] and [29].
The denoted F function in the definition refers to a catalog of functions: Peak
rate function, burst-delay function, rate-latency function, affine function, staircase
function and step function. For more information see [27].

A.I Min-plus Convolution and Deconvolution

Definition A.I.I. (MIN-PLUS CONVOLUTION) Let f and 9 be two functions
or sequences of F. The min-plus convolution of f and 9 is the function

(J Q9 g)(ll) = inf {f(ll - A) + g(A)}
O$>'$b.

If II < 0, (J Q9 g)(ll) = O.

Similarly manner, the deconvolution is defined as:

Definition A.I.2. (MIN-PLUS DECONVOLUTION) Let f and 9 be two func
tions or sequences of F. The min-plus deconvolution of f and 9 is the function

(J 0 g)(ll) = sup{f(ll + A) - g(A)}
>'~O

A.2 Max-plus Convolution and Deconvolution

When replacing the infimum (or minimum, if it exists) by a supremum (or maxi
mum, if it exists) similar definition can be derived. For the max-plus convolution
'0 and the max-plus deconvolution '0 of two functions f and 9 are defined as:

Definition A.2.3. (MAX-PLUS CONVOLUTION) Let f and 9 be two functions
or sequences of F. The max-plus convolution of f and 9 is the function

(J'0g)(Il) = sup {f(ll- A) + g(A)}
O$>.$b.

53



Chapter A. Real-time Calculus Definitions

If ~ < 0, (f0g)(~) = o.

Definition A.2.4. [MAX-PLUS DECONVELUTIONj Let f and 9 be two func
tions or sequences of Y. The max-plus deconvolution of f and 9 is the function

(f0g)(~) = inf U(~ + >') - g(>.)}
A2:0

54



References

[1] P.H.A. van der Putten and J.P.M. Voeten. Specification of reactive hard
ware/software systems: the method software/hardware engineering (SHE).
PhD thesis, Eindhoven University of Technology, Eindhoven (The Nether
lands), 1997.

[2] S.J. Mellor and P.T. Ward. Structured Development for Real-Time Systems.
Yourdon Press, 1985.

[3] D.J. Hartley and A.I. Pirbhai. Strategies for Real-Time System Specification.
Dorset House Publishing Co., 1987.

[4J Object management group: Unified model language, www.omg.org/, 2005.

[5] Rational rose realtime. http://www.rational.com/. 2005.

[6] Cinderella sdl 1.3. http://www.cinderella.dk/. 2005.

[7J K.J. Turner. Using formal description techniques: an introduction to Estelle.
Chichester, 1993.

[8] J. Huang, J.P. M. Voeten, A. Ventevogel, and L. van Bokhoven. Platform
independent design for embedded real-time systems. Languages for system
specification FDL '03, pages 35-50, 2004.

[9J Z. Huang, J.P.M. Voeten, and B.D. Theelen. Modelling and simulation of a
packet switch system using poosl. In PROGRESS, 2002.

[lOJ J. Huang, J. Voeten, P. van der Putten, A. Ventevogel, R. Niesten, and
W. van der Maaden. Performance evaluation of complex real-time systems:
A case study. In PROGRESS '02. STW Technology Foundation, October
2002.

[11] B. D. Theelen, J. P. M. Voeten, and R. D. J. Kramer. Performance modelling
of a network processor using poosl. Comput. Networks, 41(5):667-684, 2003.

[12J J.P.M. Voeten. Poosl: An object-oriented specification language for the
analysis and design of hardware/software systems. EUT 95-E-290, Tech
nische Universiteit Eindhoven, may 1995.

[13] R. Milner. Communication and Concurrency. Prentice Hall International
Series in Computer Science, 1989.

[14] X. Nicollin and J. Sifakis. An overview and synthesis on timed process alge
bras. In Proceedings of the Real-Time: Theory in Practice, REX Workshop,
pages 526-548, London, UK, 1992. Springer-Verlag.

55



REFERENCES

[15] M.C.W. Geilen, J.P.M. Voeten, P.H.A. van der Putten, L.J. van Bokhoven,
and M.P.J. Stevens. Object-oriented modelling and specification using she.
Journal of Computer Languages, 27(2):19-38, December 2001.

[16] L.J. van Bokhoven. Constructive Tool Design for Fo.,..,.,."al Languages: Prom
semantics to Executing Models. PhD thesis, Eindhiven University of Tech
nology, Eindhoven (The Netherlands), 2002.

[17] B.A.C.J. Kienhuis. Design Space Exploration of Stream-based Dataflow Ar
chitectures: Methods and Tools. PhD thesis, Delft University of Technology,
The Netherlands, January 1999. Explains the Y-chart approach in great
detail.

[18] K. Richter, D. Ziegenbein, M. Jersak, and R. Ernst. Model composition for
scheduling analysis in platform design. In DAC '02: Proceedings of the 39th
conference on Design automation, pages 287-292, New York, NY, USA, 2002.
ACM Press.

[19] L. Thiele and E. Wandeler. Performance analysis of embedded systems. In
The Embedded Systems Handbook. CRC Press, 2004.

[20] B.D. Theelen. Perfo.,..,.,."ance modelling for system-level design. PhD thesis,
Eindhoven: Technische Universiteit Eindhoven, 2004.

[21] G. Kahn. The semantics of a simple language for parallel programming. In
IFIP 74, volume IFIP, pages 471-475, 1974.

[22] G.C. Buttazzo. Rate monotonic vs. edf: judgment day. Real-Time Syst.,
29(1):5-26, 2005.

[23] W. Stallings. Operating Systems: Internals and Design Principles. Prentice
Hall inc., third edition, 1998.

[24] G.C. Buttazzo. Hard real-time computing systems: predictable scheduling
algorithms and applications. Dordrecht : Kluwer Academic Publishers, 1st
edition, 1997.

[25] P.J. Koopman B.P. Upender. Communication protocols for embedded sys
tems. Embedded Systems Programming, 11(7):46-58, November 1994.

[26] E. Wandeler, L. Thiele, M. H. G. Verhoef, and P. Lieverse. System archi
tecture evaluation using modular performance analysis - a case study. In In
1st International Symposium on Leveraging Applications of Fo.,..,.,."al Method
(ISoLA), volume 1, Paphos Cyprus, October 2004.

[27] J. Le Boudec and P. Thiran. Network calculus: a theory of dete.,..,.,."inistic
queuing systems for the internet. Springer-Verlag New York, Inc., New York,
NY, USA, 2001.

[28] S. Chakraborty, S. Kunzli, and L. Thiele. A general framework for analysing
system properties in platform-based embedded system designs. In DATE '03:
Proceedings of the conference on Design, Automation and Test in Europe,
page 10190, Washington, DC, USA, 2003. IEEE Computer Society.

[29] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling
hard real-time systems. International Symposium on Circuits and Systems
ISCAS 2000, Geneva, Switzerland, 4:101-104, March 2000.

[30] http://people.ee.ethz.ch/ leiden05j.

56


	Titlepage
	Abstract
	Acknowledgements
	Contents
	List of figures
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix A
	Appendix A
	References

