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Abstract

The development of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is of growing
importance for the detection and characterizations of tumors. Pharmacokinetic models and parameter
estimation have been introduced to quantify the microvascular properties of the tumor. System and
identification theory provides insights on experimental design. Using a frequency analysis and a "Monte
Carlo" simulation study. a theoretic investigation of the injection parameters on the predictability and
reliability of the pharmacokinetic parameters was performed to find the optimal experimental conditions. A
new tracer distribution model (TDM) was developed to describe the relation between the injection and the
arterial input function (AlF). Both the injection rate (in mUs) as the injection volume (in ml) have been
shown to be of great importance for reliable results. For optimal results. the injection rate and injection
volume should be as high as possible. both for a manual injection or the usage of an automated pump. Small
injection volumes « 15 ml) and small injection rates « 2 mUs) should be avoided. otherwise a large
inaccuracy must be expected. Multiple injections. when the volume is divided in multiple parts in time. did
not improve the reliability and therefore a single injection is favorable.
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The development of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has led to a non­
invasive technique for the characterization of tumors. The leakage rate of a low-molecular-weight
extracellular contrast agent (such as Gd-DTPA) into the tumor tissue gives insight in physiological properties
of the tumor. like the permeability and the relative volume of the interstitial space [1] [2]. DCE-MRI is
beginning to playa central role in the evaluation of novel therapies. for example anti-angiogenesis drugs and
gene and antibody therapies [1] [2]. For an oncologist it is of growing importance to have a reliable and
accurate assessment of the tumor angiogenesis. to get the proper information for a treatment plan and the
possibility to monitor the therapy effectively [8][11]. Pharmacokinetic models and parameter estimation have
been introduced to describe the concentration-vs.-time curves of the contrast agent to quantify these
microvascular properties [3] [4].

A pharmacokinetic model should have enough parameters to approach the complexity of the actual
physiology on the one hand. but also a limited number of parameters such that they are identifiable from the
measurement data. on the other hand. This trade-off between complexity and identifiability is often referred
to as "minimal modeling". A commonly used pharmacokinetic model is a two-compartment model [3][4][6].
which uses kinetic parameters to describe the exchange of contrast agent between two compartments: the
blood plasma and the extravascular extracellular space (EES). The concentration in the arterial blood plasma
is the input and the concentration in the tissue is the output of the model. When these concentration curves
are obtained from the DCE-MRI data. the kinetic parameters can be calculated with numerical methods.
Current standards in calculating these kinetic parameters in DCE-MRI show great variation in predictability
and reliability [7]. The explanation can be sought in the mathematical structure [21] and the experimental
conditions. where recent investigations have been focused on sample time. signal-to-noise ratio (SNR) and
experiment duration [21][ 10]. To build forward on this research an investigation about the influence of the
injection shape has been performed here.

For optimal identification of the kinetic parameters. all relevant frequencies of the system should be
observable in the output. the measured tissue concentration. This 'identifiability' ofthe parameters depends
on the excitation, the frequencies of the input. as well as on the frequency content of the system. which is
determined by the kinetic parameters. When the frequencies of the input are sufficient. such that the system
transfers all relevant frequencies for identification to the output. the model is said to be optimal excited.
Because in a DCE-MRI study only sampled versions of the true tracer concentration curves can be obtained.
only a limited band of frequencies can be studied. Here a tradeoff between temporal and spatial resolution
exists. The measured tracer concentration in the artery is (strictly) not the same as the inputs usually
considered in system theory and identification. because the input can not be shaped freely by the
experimentator, but can only be influenced indirectly by the injection. In this paper the influence of the
injection parameters on the arterial frequency content is investigated and. consequently. on the reliability of
the kinetic parameter estimation.



The tracer concentration in the blood plasma of the feeding artery (or arteries) of a tumor is often referred to
as the arterial input function (AlP). It is possible to measure the AlP in a major artery present in the DCE­
MRI measurements [23]. A gamma-variate function can be used to fit to this AlP measurement [15] [16], but
this method describes the subject specific relation between injection and arterial concentration insufficiently,
because the actual shape of the injection can not be used as input [7] [8]. Strikingly, often a measured AlP
cannot be obtained as input from the DCE-MRI measurements. Different methods have been introduced to
approximate the concentration curve in the artery, to construct an input necessary for parameter estimation.
The most common approach is the use of a fixed bi-exponential AIF model introduced by Tofts and Kennode
[6], which only describes the first pass peak of a contrast agent onwards and neglects any recirculation
effects. The large variation op the measured AlP between individuals made this fixed method unreliable,
because inter individual differences are not be corrected [22] [18].

A Tracer Distribution Model (TDM) was developed to give a more accurate and flexible description of the
relation between the injection and the concentration in the arteries. This model can now provide a
physiologic more realistic input for the pharmacokinetic model. Because the TDM uses the injection shape as
input and the measured arterial concentration as output, it can predict the arterial concentration curve for any
specific injection shape. Also delay times and recirculation effects are incorporated in the model.

Using a simulation study the influence of the injection shape in a DCE-MRI study was investigated. With the
help of the Tracer Distribution Model more insight in the relation between the injection shape and the arterial
concentration has been gained. Using a system theoretic approach the frequency contents of the concentration
curves were analyzed. Also with the help of "Monte Carlo" simulations the influence of the injection on the
accuracy of the calculated parameters has been further investigated. The injection was shaped for varying
Injection Rate (IR) and Injection Volume (IV) and also aspects like single injection (complete volume
injected in a single blow) and multiple injections (the volume divided in multiple parts in time) were
investigated. Here the pharmacokinetic parameters were varied within their physiological ranges as exists in
normal tissue, metastatic tumor tissue and necrotic tissue. These parameters values determine the dynamics
of the pharmacokinetic model.

Theory and Methods

A. Phannacokinetic Modeling

We use the pharmacokinetic model proposed by Tofts et al to describe the diffusion of an intravascular tracer
from the arterial blood plasma Cit) to the tumor tissue Ct.t) [3][4]:

K'roII6

, --(,-u)

C,(t)=vpCp(t)+K,ransfCp(u)e v, du
o

(1)

where Krans is the transfer constant (mL /min /g) of the tracer from the blood plasma to the extravascular
extracellular space (EES), Ve is the EES fractional volume (mL /g) and vp the blood plasma volume per unit
volume of tissue (mL /g). Krans can physically be interpreted as the product of FE, where F represents the
perfusion (or flow) of whole blood per unit mass of tissue and E the initial extraction fraction. Here, Krans, Ve
and vp are the tracer kinetic parameters that have to be determined by DCE-MRI measurements.

To inspect the frequency response of the model, equation 1 is transformed into the frequency domain,
resulting in:

C (w) K'rans
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P
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(2)

where iw is the imaginary frequency component (with w in radls), Cp(w) the input and C, (w) the output in

the frequency domain. This results in a first order system with one pole located at iw =- K'rans lv, ' one zero

located at iw = _(K'ranslv, + K'ransIvp) and a direct feedthrough of vp. To illustrate the influence of parameter

changes on the frequency spectrum, figure 1 shows the spectra for increasing and decreasing parameter
values. Here the modulus of H(w) (in dB) is displayed against the frequency w at a logarithmic scale (a so
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called bode plot). The modulus for the lower frequencies are completely determined by ve + vp and for the

higher frequencies by vp , because of the direct feedthrough of the system.
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Figure 1: Influence of the model parameters on the frequency spectrum for increasing /Crans (dashed), increasing Ve
(dash-dotted) and decreasing vp (dotted). (Modulus in dB and frequency in rad/sec).

For identification of the kinetic parameters Krans, Ve and vp ' the input signal Cp should contain the frequencies
relevant for the system dynamics. When such an input excites the system, all relevant frequencies belonging
to the system will be transferred to the output Ct. This situation is defined as optimal excitation. For the
pharmacokinetic system optimal excitation is a big problem because the input can not be influenced directly.
The actual input is the injection of contrast agent into the vascular system. When the bolus is injected, it gets
dispersed in the distribution through the vascular system, resulting in a decrease of the modulus of all the
frequencies. For this reason Cp can only be influenced indirectly by the injection shape. Also the sample
frequency determines the frequency content of the signals. The Nyquist theorem states that the maximum
frequency /max present in the sampled versions is equal to f max = fs/2, wherefs is the sample frequency. If

the signals Cp and C/ contain frequencies above/max these add to, and therefore contaminate, the values ofthe
frequencies below /max' This is known as aliasing.

The ratio K"ans lv, determines the cut-off frequency at which the modulus is 3 dB below the steady state gain

(gain at w=O). When Krans increases the cut-off frequency shifts to the right (see figure I), which makes the
relevant frequency band greater. Now first of all, the sample frequency must be higher to include all relevant
frequencies and second Cp must contain higher frequencies to optimal excite the system. These two aspects
can introduce an error. When Ve increases the cut-off frequency shifts to the left and the steady state gain
increases. Now a Cp signal with a less high frequency content could be sufficient to optimally excite the
system. Also the sample frequency could be lower to include all relevant frequencies. The increase of vp will
also increase the steady state gain, which enhances the response for lower frequencies [21].
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B. The Injection Shape

The injection can be varied with respect to the speed of injection, the injection rate (IR), and the volume of
the contrast agent, the injection volume (IV). These injection parameters determine the shape of the injection,
which should be within clinically acceptable limits to not damage the injection site (the antecubital vein). For
this reason a maximum for both for the injection rate and injection volume exists.

When the injection volume is not injected at once, but divided in different fractions in time, it is called
multiple injections. In figure 2 a single (2a) and a double (2b) injection are shown for the injection rate
against time. The injection has the shape of a trapezoid because an automated pump is used as injector for the
DCE-MRI measurements. The pump has an adjustable constant maximal injection rate, with a rising and a
falling slope. The total surface under the trapezoids corresponds to the injection volume, which is the same
for all the examples displayed in figure 2. Further with multiple injections, it is possible to vary the number
of injections and timing between these injections.

a) b)
'iii'T 'iii'T
::J ::J.s 5 r- IV = 30mL .s 5 ~
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iO iO CD: D:
c:: c::
0 0
~ .~..,

\
..,

£' B £'

-----+
t[sec]

IV = 30mL

c

-----+
t [sec]

Figure 2: Schematic Representations ofpossible injection shapes. Single Injection (a): Shape A with injection rate (IR)
of5mUs and B with ImUs, and multiple injections (b) with shape C with an injection rate of5mUs and is
divided in two separate injections. The injection volume (IV) is 30mL.

To optimize the shape of the injection the energy of the signal can be calculated. This can be obtained by
Parseval's theorem, which states that the total energy contained in a signalftt) across all time t is given by:

(3)

The theorem says that the energy of a time signal can be calculated not only in the time domain, but also in
the frequency domain, by integrating the magnitude squared spectrum [X]. The signal with the most energy
will contain the highest frequency content, and is expected to be optimal for excitation. To illustrate the
dependence of the injection shape on the energy of that signal, in figure 2 example injections are shown.

For the single injection (2a), both injection shape A and B use the same injection volume (30mL), so the area
under the curve is the same for both curves. However, shape A is injected with 5mUs and shape B with
ImUs. Using Parseval's theorem the energy of injection shape A is higher then shape B because the
amplitude is squared. In this example the energy of shape A is 142 and of shape B is 30, if the rising and
falling slope is set to 1sec. This is a big difference, which when transformed to the frequency spectrum will
result in a much higher frequency content of shape A then B, even a proximally 5 times as high. To optimally
shape the injection, so it contains the most energy, the largest rate with the largest volume is the optimum.

When multiple injections are used, the volume (also 30mL) is injected in multiple parts in time. illustrated in
figure 2b. The total surface under the trapezoids is the same as for the single injection. Again, using theorem
3 the energy of the signal can be calculated. Due to the extra rising and falling slope, the energy is less the
single injection case. Now the total sums up to 133, instead of the 142 of the single injection (shape A). This
loss of energy for multiple injections (at the same IR and IV) is increasingly for the number of injections. The
further illustrate this effect, a comparison of the rectangular situation (the ideal case) with the trapezium
shape is described in appendix A, where both the energy as the frequency spectrum is compared.
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C. Tracer Distribution Model

The distribution of a contrast medium through the vascular system is complex. The injected bolus travels
from the injection site (the antecubital vein) through the vena-cava to the heart's right atrium and ventricle.
Then the bolus will travel through the lungs back to the heart. The left ventricle will pump the bolus into the
aorta, from which it will split up into the various arteries. A part of the tracer molecules will pass through the
feeding artery (or arteries) of the tumor and will diffuse into the tumor tissue. Afterwards the bolus will
recirculate back to the heart. After a second pass through the vascular system, the contrast agent will be
homogeneously distributed throughout the vascular system and will slowly be excreted by the kidneys.

The Tracer Distribution Model (TDM) was developed to simulate the distribution of a tracer through the
vascular system. In figure 3 the model is shown, were the injection is the input of the model, indicated with u,
and the arterial blood plasma concentration the output, indicated with Cpo

Tracer Distribution Model

heart & lungs arteries

recirculation

Cp

Figure 3: The input-output Tracer Distribution Model, u is the injection shape and Cp the arterial blood plasma
concentration.

With the sub-models:

MI =
BOI (4)2

s +Alls+AOI
2

M2
B22S +B I2S+ B02 (5)= 2

s +A'2S+A02

M3
B

03 (6)= 2
s +A

13
s+A03

DI,D2 = Time Delays (7)
K2 = KI-I (KI,K2 are gains) (8)

The sub-models MI, M2 and M3 describe the smoothing the injection undergoes in the vascular system. The
smoothing at the injection site is modeled with M I, the heart and lungs with M2 and the recirculation with
M3. The delay time between injection and measurement location is described with DI and the recirculation
time with delay D2. Also a fraction of the tracer will pass around the measurement location through other
arteries, which is described with the gains KI and K2. The transfer function coefficients (parameters A and
B) of equation 3-5 have no physiologic meaning and are for that reason not important to classify. For our use
is only the predicted output of the TDM, the arterial blood plasma concentration, of interest, not the
individual parameters of the TDM.

D. Parameter Identification

Now the mathematical model structures have been defined, the estimation of the parameters of interest (Krans,
Ve and vp) can be investigated. The process to estimate the parameters of a model based on the observed input
and output data is called 'identification'. The 'identifiability' of the parameters depends on the model
structure, the spectral properties of the system and the experimental conditions, like sample time, signal-to-
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noise level and the experiment duration. The spectral properties, which reflect the dynamics of the system,
depend on the values of the kinetic parameters (see equation 2).

M is defined as the model-set of all models for the possible range of the parameters. When it is assumed that
the real system S exists in the model-set M, as defined (SE M), all dynamics of the real system S can be
described within the model-set M. When the input and output data have been acquired, the parameters can be
estimated. When the 'true' parameter values of the real system S are defined as O,ro. , the best estimates of

these values can be found by tuning the model parameters 0such that the model output optimally describes

the acquired measurement data. It is assumed that the model will equal the real system for 0 = otrue . In our

identification setup there are two parameters sets, the kinetic parameters indicated with 0". = (K'm>U •v,. vp) and

the parameters of the tracer distribution model, indicated with 0TDM • Notice that in our setup the parameters of

the TDM are not of importance, we are only interested in the kinetic parameters. Only the input-output
behavior of the TDM is of interest in our setup.

The standard least squares (LSQ) is a commonly used estimator for the calculation of the kinetic parameters

in a DCE-MRI measurement [X] [X]. The LSQ estimation for the parameters 0"., denoted by 0"., can be

found by minimizing the cost function VI:

(9)

with the cost function VI denoted by:

(10)

where C,m is the measured tumor tissue signal, G
E

, the standard deviation of the model residuals for C, (the

error e2) and N the number of samples. The output of the pharmacokinetic model is denoted by C, for the

tuned parameters 0/Cin and the corresponding Cpm• An optimization algorithm will try to find a minimum of

the cost function of equation 9. The standard deviation of the noise is not always known beforehand.
However, this does not influence the estimation because it is only a multiplication factor of equation 10 and
does not change the location of the minimum of the cost function.

The same standard least squares can be used to estimate the parameters 0TDM of the TDM, minimizing the cost

function V2:

(11)

where Cpm is the measured tumor tissue signal and GEl is the standard deviation of the model residual on Cpo

The injection shape is denoted by u. The best estimation of the TDM for the arterial plasma concentration

Cp can now be calculated with:

(12)

E. TDM Selection

The tracer distribution model was selected based on DCE-MRI measurements, also used in the study of De
Lussanet et al. [X]. DCE-MRI was performed on 17 patients with a conventional clinical MRI scanner at 1.5
Tesla (Intera, Philips, Best, The Netherlands), with a five-element cardiac phased array coil. DCE-MRI
included six precontrast Tl-weighted measurements (3D fast-field echo, TR 8.0 ms, echo time 3.9 ms, 10
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axial slices [slice thickness, 8 mm], field-of-view 290 _ 290 mm, matrix 128 _ 128) with different flip angles
(FAs) (2°,5°, 10°, 15°,25°, and 35°) to determine the T1 relaxation time in the blood and tissue before the
contrast agent arrives, on a pixel-by-pixel basis. This was followed by the dynamic contrast-enhanced series
using the same sequence but with an FA of 35° only (250 scans of 2.4 s), for a total duration of 10 min.
Gadopentetate dimeglumine (Schering AG, Berlin, Germany; 0.15 mmoVkg body weight) was injected
intravenously (3 mUs) and flushed with 15 mL saline (3 mUs) at the start of the eighth dynamic scan. Local
T 1 relaxation rates (in this case 4.1 [l/mMs]) of the precontrast time-averaged images and contrast-enhanced
image signal intensity time courses were used to determine the concentrations of contrast medium in the
blood plasma (common femoral arteries) and tumor. An experienced gastrointestinal radiologist has defined
the tumor volume region of interest on the T I-weighted images.

For the selection of this tracer distribution model, different model structures have been examined. Black box
models where tried, but with low-order models «20 order) the delays were hard to estimate, and for high
order models (>20 order) the noise was made part of the dynamics. For this reason a gray model structure
was selected, where the structure of the model (the layout of the sub-models) was based on knowledge of the
real physiology, the vascular system. The actual complexity of the sub models M J, M2 and M3 (the number
of A and B parameters of equation 4-6), were selected based on the white noise test of the residuals. This test
states that if the selected model corresponds with the "real system" (the vascular system), the residuals show
whiteness and a Gaussian distribution, and all the dynamics of the "real system" is sufficiently described.
Using equation II the cost-function V2 was minimized to find the best estimates for 0TDM parameters. Then,

using equation 12, the 'best' prediction of Cp of a single DCE-MRI measurement was generated.

Because the models MJ, M2 and M3 have multiple degrees of freedom the model is not identifiable giving
only Cp measurements, meaning that there exists no unique set of the parameters for a single Cp curve. For
this reason multiple solutions are possible which will result in the same input-output dynamics of the model.
This is not a problem because the A and B parameters are not of importance, only the input-output dynamics.
If a Pade approximation is used for the time delays, the TDM is linear [X]. Now the TDM will be a complex,
but passive linear filter, meaning that only energy is dissipated.

F. Simulation Setup

One, not selected in particular, DCE-MRI study was used for further analysis (see left figure 4). This study
was conducted with an injection volume of 45mL O.5M Gd-DTPA, injected with an automated pump at an
injection rate of 3mUs. The duration of the rising and falling slope of the injection shape was set to I sec,
corresponding with the specification of the pump. Using the injection u (as defined above), the 'best'

prediction for this measurement of Cp was calculated using equation 11-12 and resulted in the following

TDM parameters Or"" : AOl = 0.083, All = 0.265, BOl = 0.043, A02 = 1.451, A12 = 22.803, B02 = 0.535, B12 =

0.516, B22 = 0.726, A03 = 0.312, Au = 15.525, B03 = 0.642, DJ = 17.091, D2 = 13.730 and KJ = 0.390.

Now the TDM was 'fixed' with the parameters Or"" ' the arterial concentration Cp could be simulated for any

injection shape, using equation 12. This shape however, must be within the clinical ranges usable for
humans: the Injection Rate (IR) =0.5-5 mVs and the Injection Volume (IV) =5 - 45 ml ofO.5M Gd-DTPA.
Simulations were conducted to analyze the influence of the injection on the frequency spectrum of the arterial
concentration (to investigate optimal excitation) for both a single and multiple injections. The frequency
ranged from 10-3 to 103 Hz. To sufficiently include all the lower and higher freq uencies, the duration of the
experiment was set to 30 minutes with a sample rate of 100 Hz. A moving average filter was used to smooth
the resulting frequency spectra to make the spectrum figures more readable.

To investigate the influence of the injection shape on the accuracy of the parameters, "Monte Carlo"
simulations were performed to elucidate the conclusions from the spectrum analysis. With help of the
pharmacokinetic model (equation I and 2) the tissue concentration response of the arterial concentration can
be simulated. Here a large number of simulated (synthetic) tissue concentration datasets are added with a
random white Gaussian noise with zero mean. From these "synthetic data sets" the parameters were
estimated, which resulted in a distribution of parameter values. From this distribution the properties can be
examined. The "Monte Carlo" method delivers accurate results as long as a large number of simulations are
performed. The duration of the acquisition was set fixed to 10 minutes and sample rate was set fixed to I sec,
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this because these aspects are not under study. The signal-to-noise ratio (SNR) was set to 10, resulting in a
noise of 10% of the tissue concentration. The number of simulations was set to 1000 for each condition, the
injection shape and the [(rans value. The range ofthe parameters was set to: [(rans = 0.001 - 0.5 mL/min/g, ve=
0.01-0.5 mUg and vp= 0.01- 0.5 mL/g.

The parameter estimation was implemented in MATLAB©, where the function lsqnonlin was used as least
squares algorithm. SIMULINK© and lsim were used to generate the concentration curves. Both the
parameters of the TDM and of equation 1 where found with this method. The Levenberg-Marquart
optimalization was used, the relative and absolute tolerance were set to le-8 and the maximal number of
iterations for the TDM and the pharmacokinetic model were set to 500. There were no constraints set to the
parameters of equation 1, but only the lower constraints of the TDM were set to zero to ensure the model is
stable. By means ofthe "Monte Carlo" method the inaccuracy of the parameter estimation can be analyzed,

therefore the bias ((e -(), )/(}r ) , the estimated standard deviation (a(j ) and the estimated relative

error ( 0-. / §) of the parameters were calculated. Here the (), represents the true parameter value and ~ the

mean of the estimated parameter.

Results

A. Single Injection

To illustrate the fitting capacity of the TDM, in figure 4 two examples are shown of two different DCE-MRI
measurements. Left a common AlP curve without visible recirculation effects and right a less common, but
possible, AlP curve with clearly visible recirculation peak. These are measurements of different patients at
different locations. The second curve is shown to illustrate the recirculation capabilities of the tracer
distribution model. Here also D1 and D2 of the TDM are shown to illustrate the delay times in the model.
The first curve (left) will be used for further analysis.

Patient 1 - 45ml dose Gd-DTPA Patient 2·15 ml Dose GD-DTPA

-

60

Recirculation Peak
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Examples oftwo TDM fits ofDCE-MRI measurements, from different patients at different locations. The dots
represent the measurement points and the solid line the fitted curve ofthe TDM. Left: patient 1 measurement
without visible recirculation effects. Right: patient 2 measurement with a visible recirculation peak.

Figure 4:
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With the help of the fixed TDM model. the arterial concentration curves from different injection shapes can
be calculated. The results are shown in figure 5. where the injection shapes are displayed in the left figures
and the arterial response are shown in the right figures.
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Figure 5: Simulations with afued TDM for various injection shapes. Left: injection shape with the injection rate (IR)
against time, right: arterial concentration (Cp) against time for (a) varying injection volume, (b) varying
injection rate and injection volume and (c) varying injection rate.

In figure 5a the injection volume has been varied at a constant injection rate. which results in a longer
injection duration for a larger volume (left figure). An increase in volume results in a larger concentration
peak which is shifts towards the right. thus the maximum concentration will be reached in a later point in
time (right figure). The first part of the rising slope of the three curves is identical. In figure 5b both the
injection volume and the injection rate is varied. Because this is a linear multiplication ofthe input signal.
consequently the arterial concentration also increases linear. as can be expected by a linear model. The
arterial concentration peak is for all the inputs at the same point in time. Figure 5c shows the response of the
TDM when only the injection rate is varied and the injection volume is kept constant. This results in a shorter
injection duration for a faster rate. For increasing rate the concentration peak will shift to the left. earlier in
time. and will have a higher maximum.
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Next, the frequency spectra of the concentration curves can be investigated. The results are shown in figure 6,
where the subplot 6a shows the injection shape, 6b the arterial concentration curve and 6c the resulting
spectrum of the concentration curve at a logarithmic scale. Only the 15mL and 45mL injection volume (IV)
with an injection rate (IR) of 1 and 5mL/s are shown to keep the figure readable.
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Figure 6: Single injections with injection volumes of15ml and 45ml and injection rates of Iml/s and 5ml/s. a) the
injection rate, b) the arterial concentration and c) the spectra of the arterial concentration. These spectra are
smoothed to keep the figure readable. Arrows indicate the increase in volume and rate.

Figure 6c shows that the injection volume only affects the modulus of the lower frequencies (below 0.02 Hz)
for a maximum of 15 dB. The injection rate influences the modulus of the higher frequencies, the range from
0.01 Hz and higher, where the increase is maximal 15 dB. These spectra are smoothed to keep the figures
readable. Because the sample rate of a DCE-MRI measurement is always above 100 sec, the influence of the
injection rate is measurable. The influence of the injection volume is always measurable because the whole
lower spectrum is affected.

The influence of the injection volume on the excitation is for all possible system dynamics, determined by the
kinetic parameters, very relevant. Because the scales are plotted logarithmic, the illusion is created that the
IV influences a large range. This is false because this is actually a very small range of frequencies, but very
relevant for identification. For high values of Krans the location of the pole and the zero shifts to the right.
Now the influence of the injection rate is increasingly important, because higher frequencies are relevant for
identification.

One important aspect can be noticed. There is no tradeoff between one shape being optimal for the low
frequencies and another for the high frequencies, as one might expect. When the highest injection volume is
injected as fast as possible, this signal will contain the highest energy, and is the best excitation for the whole
frequency spectrum. Because of the dissipation of energy through the TDM, energy from the injection shape
will be lost in the transfer. But still, the injection with the highest energy will transfer the most energy to the
arterial concentration.
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B. Multiple Injections

To investigate multiple injections, the injection is divided into multiple parts in time. For fair comparison the
injection volume and injection rate are kept constant at 45mL and 3mUs respectively.
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Figure 7: Simulations with the TDM with multiple injections. Above: injection rate (IR)for a single, double and triple
injection. Below: corresponding simulated anerial concentratwn (ep) against time.

In figure 7 the different profiles are shown for a single, a double and a triple injection. Consequently, the
arterial concentration displayed multiple, but lower, peaks. To illustrate the effect of the number of injections
on the frequency spectrum, figure 8 is shown.
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Figure 8: Frequency Spectrum ofmultiple injections. Dashed single injection and colored multiple injections, red
double, green triple, blue four, pink five and yellow six injections. The figure is smoothed to keep it readable.
Arrows show the increasing number of injections.

For an increasing number of injections a decrease can be seen for the modulus of the lower frequencies, as
illustrated in figure 8. Here a maximum of 6 separate injections are shown. For an increase of the number of
injections, only small parts of the higher frequencies are affected, where the deviation with the single
injection is small. More than 6 injections do not change the spectrum much, and are for that reason not
shown.
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Important to notice, is that here a tradeoff exists, as proven with the Parseval's Theorem. The energy of a
single injection (with the same IV and IR) is a proximally the same as for the multiple injections (besides the
lost due to the rising and falling slope). The loss of the moduli of the lower frequencies will mean an increase
of the moduli of the higher frequencies. Because the lower frequencies are crucial for identification, multiple
injections will decrease the excitation of the pharmacokinetic model.

C. The "Monte Carlo" simulation study

The influence of the injection rate and the injection volume on the estimation of the parameters was analyzed
using a "Monte Carlo" simulation study. Table 1 and 2 show the results, where the bias and relative error of
Krwu is displayed for different system dynamics (varying Krnns true), where table 1 shows the results for
varying injection rate and table 2 for varying injection volume. All other conditions were kept constant, like
SNR, sample time and Ve and vp values.

Table J: Results/or varying Injection Rate (lR)
Krans

IR
(mils)

True Kram

(mVmin/g)
Bias (%) Relative Error

(%)

ve

Bias (%) Relative Error
(%)

Bias (%) Relative Error
(%)

om -0.0186 10.0809 1.8938 6.3437 -0.3565
0.1 0.3679 11.9851 0.2108 4.8917 -0.2097
0.5 12.2720 43.7780 4.1118 22.8445 -4.5733

3 0.01 0.2637 8.4218 0.7306 4.8062 -0.0094
0.1 -0.4756 8.2974 0.0290 3.1316 0.0235
0.5 2.2347 19.8882 0.2516 8.2853 -0.3170

5 0.01 -0.1416 6.8771 0.3310 5.4126 0.0957
0.1 0.6749 7.7131 -0.0385 3.1166 -0.1480
0.5 2.1156 14.8792 1.0339 6.5045 -1.0112

Results ofthe bias and relative errorform the computed kinetic parameters,jor varying Injection Rate (IR) and the true
Krans(mL/min /g). The true values ofparameters were kept constant at: ve=O.05 (mL/g) and vp=O.05 (mL/g). The
sample time and SNR were kept constant at I sec and 10 respectively. The Injection Volume (IV) was set to 15 mL

Table 2: Results/or varying Injection Volume (IV)
Krans

2.4597
5.1547

23.0704
2.0069
2.9081
8.6235
1.6857
2.8745
6.7767

IV
(mI)

True Krans

(mllmin/g)
Bias (%) Relative Error

(%)
Bias (%) Relative Error

(%)
Bias (%) Relative Error

(%)

15 om 5.3007 22.0116 3.8944 19.7187 -0.3339
0.1 7.1276 20.9125 0.1422 8.0851 -1.2733
0.5 5.3821 37.0824 0.3820 18.0493 0.1702

30 0.01 0.9912 13.4157 2.3202 9.3458 -0.0644
0.1 -1.0125 10.8810 0.0616 4.3661 0.2765
0.5 4.3179 23.5492 1.6051 10.7178 -1.6613

45 0.01 0.4207 8.0777 0.6257 5.4824 -0.0918
0.1 -0.4953 7.6944 0.2235 2.9060 0.2065
0.5 0.9944 19.0295 0.6585 8.9951 -0.6792

Results ofthe bias and relative error form the computed kinetic parameters,jor varying Injection Rate (IR) and the true
Krans (mL/min /g). The true values ofparameters were kept constant at: ve=O.05 (mL/g) and vp=O.05 (mL/ g). The
sample time and SNR were kept constant at I sec and 10 respectively. The Injection Rate (IR) was set to 3 mUs.

Both table 1 and 2 show for an increase of the true Krnn." an increase of the bias and relative error for all the
parameters. Table 1 shows that an increase of the injection rate improves the accuracy of the parameters. For
a high perfusion rate, a high Krans, a great improvement on the bias and relative error can be seen. The
injection volume has also a big influence on the accuracy, as shown in table 2. The bias and relative error of
Krans is higher, then for the Veand vp parameters, which indicates that the KrllJU is more difficult to accurately
determine, then the veand vp parameters. From table 1 can be seen that for high values of Krans true the
injection rate is increasingly important. For the low values this is much less and, a less high frequent arterial
signal is sufficient. The injection volume however (see table 2) is for all values of Krnns important, which
again shows the importance of the low frequencies.

To further illustrate the influence of the injection rate and injection volume, in figure 9 the bias and relative
error is shown for the parameter Krwu for varying injection rate and injection volume.

5.3408
7.2400
19.1215
3.0803
3.9118
11.1902
1.9151
3.0032
9.1923
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Figure 9: Influence ofInjection Rate and Injection volume ofa single injection on the accuracy of Krans: the absolute
bias (left figure in %) and the relative error (right figure in %). The true parameters were kept constant at:
Krans =0.5 (mUmin/g), v,=0.05 (mUg) and vp=0.05 (mUg). The sample rate and SNR were constant at I sec
and respectively 10.

As figure 9 shows, the bias and relative error is the smallest for the highest injection rate and the highest
injection volume. A large error can be expected when a small volume is used « 15 mL). Also a small rate
increases the error, below 2 mUs the accuracy decreases rapidly. When, clinically, a small dose must be
applied, the rate should be as high as possible. Also, when a small injection rate must be applied, the dose
should be as high as possible.

To investigate the influence of multiple injections, table 3 and 4 shows the bias and relative error of the
kinetic parameters for varying number of injections, for a 15mL volume (table3) and a 45mL volume (table
4).

vp
Relative Error

%
Bias %

v.
Relative Error

%
Bias %Bias %Number of

Injections

Table 3: Results/or Multiple Injections
Krans

Relative Error
%

I 5.5594 34.7513 2.1752 16.8122 -1.2871 17.3009
2 2.1574 46.9790 2.6819 25.7186 -1.0750 22.4965
4 -10.8459 69.2336 12.0699 38.4918 -9.1000 32.6263
6 -13.5481 77.2755 15.5764 43.5624 -11.2152 34.9923

Results for the computed bias and relative error of Krans, v", vp when estimated with multiple injections. The parameters

were set to: K'- =0.5. v, =0.05, v
p

=0.05. The sample time and SNR were kept constant at I sec and respectively 10.

The injection volume was set to 15 ml at an injection rate of3mUs.

vp
Relative Error

%
Bias %

v.
Relative Error

%
Bias %Bias %Number of

Injections

Table 4: Results/or Multiple Injections
Krans

Relative Error
%

I 6.8394 17.8921 2.8512 7.7429 -2.9471 8.6367
2 5.2357 18.9639 3.0562 7.5086 -3.0970 8.1907
4 4.3465 25.8062 2.6239 11.0531 -2.6999 11.9166
6 5.8269 30.7080 3.0289 12.9889 -2.8998 13.8742

Results for the computed bias and relative error of Krans when estimated with multiple injections. The parameters were

set to: K'- = 0.5, v, =0.05, v
p
=0.05. The sample time and SNR were kept constant at I sec and respectively 10. The

injection volume was set to 45 ml at an injection rate of3mUs.

For an increasing number of injections, an increase of the bias and relative error can be seen for all the
kinetic parameters. Here, again the importance of the lower frequencies are displayed. The reduction of the
moduli of the lower frequencies, as shown in figure 8, had a large influence on the accuracy. When the lower
frequencies are sufficiently represented, because of the injection volume of 45mL, the multiple injections
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have a smaller effect on the accuracy. But still is the single injection favorable. Also a large number of
injections were investigated (until 20), but again no improvement was gained, the results only became
increasingly worse. Also the timing between the injections had no effect (results not shown).
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Discussion

This study was performed to investigate the influence of the injection parameters on the reliability of the
estimation of the pharmacokinetic parameters representing endothelial permeability, and consequently, to
optimize the experimental settings for DCE-MRI. As could be expected, had the energy content of the signal,
which can be calculated with Parseval's Theorem, a large influence on the accuracy and reliability of the
kinetic parameters. Also the frequency analyses and the "Monte Carlo" simulations showed a large influence
of both the injection volume and injection rate on the bias and relative error of the kinetic parameter
estimates. A larger injection volume increased the modulus of the arterial concentration for lower frequencies
(see figure 6), but did not affect the higher frequencies. This improvement of the lower frequencies was, as
expected, of great importance for the identification (see table 1 and 2 and figure 9). The injection volume
should always be larger than 15mL, otherwise the arterial curve cannot be distinguished from the noise which
results in an inaccurate estimation (see figure 9). An increase of the injection rate had also a large influence
on the frequency spectrum, and now the modulus of the higher frequencies (above 0.01 Hz) had increased.
Table I, 2 and figure 10 show a large influence of the injection rate on the identifiability of the parameters.
Low injection rates (below 2 mUs) should be avoided, otherwise a large inaccuracy must be expected. From
figure 10 one might get the impression that the injection volume had a bigger influence than the injection
rate, which can be deceiving because of the chosen range because, very small injection rates (below 1 mlIs)
also showed a large increased of the bias and relative error. Therefore, for optimal results both the injection
rate and the injection volume should be as high as possible. Previous studies also indicated the best excitation
for the highest injection rate [10][21], but they did not thoroughly investigated the actual shape of the
injection (including also the volume).
Injecting the volume in multiple parts had also an effect on the spectrum. Here a significant tradeoff between
a decrease in the lower frequencies and an increase in the higher frequencies, but energy was lost due to the
extra rising and falling slope (see Parseval's Theorem). The lower frequency range is very essential for good
identification, therefore a multiple injection is not recommended, especially because there is no apparent
increase for the higher frequencies. Also the simulation study emphasized these findings (see table 3,4). For
this reason a single injection is favorable to yield the best arterial concentration input for the pharmacokinetic
model. Also other injection shapes, than the trapezium, where investigated. It was possible to increase
frequencies by pulsating the injection at a defined frequency, but this was only for a small region and did not
improve the results in the "Monte Carlo" study.
The injection shape used in this study resembled a trapezium shape, because this was the injection profile of
the automated pump used for our DCE-MRI experiments. Using this automated pump, it is clinically possible
to inject with different shapes, varying with respect to volume and injection rate. The injection rate however,
will have a more or less constant rate during the injection interval. With an injection by hand it is much more
difficult to predict the true shape, because the duration and rate can vary a lot. However, for optimal results
also a manual injection can be used, as long as the volume and rate is as high as possible.

The Tracer Distribution Model has been shown to be a useful tool to characterize the concentration curve in
the feeding arteries, depending on the actual injection shape. The selection of the structure of the TDM was
based on a DCE-MRI patient study. The DCE-MRI measurements of the AIF resembled the concentration
curves reported in literature [X] [X]. Other TDM structures have been investigated, more and less complex.
Also black box models were investigated, varying from 5 to 40 order models, but the results were poor due to
the fact that the delay times were hard to estimate. The developed model was a tradeoff between complexity
and fitting capability. The TDM model can also be used in other applications based on the distribution of a
tracer through the vascular system, e.g. for the use of CT or SPECT. Feng et al. also described a model of the
arterial time concentration curves with positron emission tomography (PET) [14]. However, this model did
not describe relation between the actual shape of the injection and the arterial concentration curve. Therefore
the model was insufficient for the usage in this paper.

The fitting of the TDM model and the identification of the pharmacokinetic model was done by means of the
standard LSQ method. In the case of the pharmacokinetic model both concentration measurements are
subjected to error because they are obtained by a measurement of the DCE·MRI. To not violate the
assumptions of the standard LSQ, and because this aspect was not under study, only noise was added to the
output, the concentration in the tumor tissue, and the noise on the input, the arterial concentration, has thus
been neglected.

The TDM was selected based on the previously described DCE-MRI measurement data. However, these
patient studies were conducted with the same injection parameters, i.e. with the same injection rate and
volume. For other injection profiles, the arterial curve is a prediction of the TDM and a clinical validation
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seems necessary. However, an experimental validation is complicated because various different injection
shapes, as also multiple injections, have to be conducted for each patient under the exact same conditions.
This results in a difficult clinical setup, because a lot of confusing factors can disturb the DCE-MRI, like the
measurement location of both the AIF and the tumor signal [18] and also variation in movement and cardiac
output of the patient. Using a simulation study only the factors under study can be analyzed, where the
influence of the confusing factors can be reduced. This can not be achieved in a clinical investigation, and for
this reason is chosen for a simulation study using synthetic data.

Conclusion

A theoretic study about the influence of the injection shape on the accuracy of the pharmacokinetic
parameters in DCE-MRI was performed. A new Tracer Distribution Model (TDM) was introduced to
describe the distribution of the tracer though the vascular system. The model seemed to be applicable for the
use of DCE-MRI. A spectral analysis and a "Monte Carlo" simulation study were performed. Both the
injection volume as the injection rate has shown a strong influence on the reliability of the calculation of the
pharmacokinetic parameters. For optimal experimental conditions, the injection volume and rate should be as
high as possible, of course within the clinical range. Small injection rates (below 2mL/s) and small injection
volumes (below 15mL) should be avoided, for both a manual injection as the use of an automated pump.
Multiple injections decreases the frequency content, because the modulus for the lower frequencies are
reduced. This reduction has a large influence on the reliability and a large error can be expected. For this
reason a normal single bolus injection is favorable.
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Appendix

A. The Rectangular Shape

When we assume, for the convenience, that the injection shape resembles a block, in stead of a trapezium
shape, from equation 3 follows:

- T

Ef = fIR 2dt= fIR2dt=IR2.r=IR.N
o

(13)

with t as the injection duration and IR as the injection rate. It is apparent that the injection with the highest
rate and highest volume will have the highest frequency content. To see how the energy (the frequency
content) is divided over the spectrum, the spectrum of the rectangular injection pulse can be calculated with:

F (w) = I:r si n ( 7) =IRr .sinc (;: ) =N .si nc ( ;:)

(14)

where IR is the injection rate (mLls) and t the injection duration (sec). The arterial concentration will be a
'smoothed' version of the injection shape, because of the low-pass filtering of the TDM.

In the figure 10 several rectangle shapes are displayed, and the corresponding frequency spectrum.
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Figure 10: Rectangular Shape in the time (left) andfrequency (right) domain.

The steady state gain (gain at!=OHz) is equal to the injection volume, and every spike is zero at !: [Hz],
r

with n=I,2, .... , and t the injection duration (sec). Form both figure 6c and 10 can be observed, that there
exits no tradeoff that one injection shape has the optimal frequency content for the lower spectrum and
another shape the optimum for the higher frequencies. The highest volume and the highest injection rate
always has the optimum frequency content for both the lower as the higher frequencies.

For the trapezium shape, this equation 13 is altered to:

1 2 2 1Ef =IR·IV--IR a=IR (r--a)
3 3

( 15)

where a is the duration of the rising and falling slope (sec). For each extra injection (with multiple injections)

an extra rising and falling slope is added, and energy equivalently to! lR2a is lost. To display the difference
3

of the rectangular shape with the trapezium shape, figure 11 shows the differences.
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15

Figure 11: Thefrequency spectrum of the rectangular shape (solid) and the trapezium shape with a rising andfailing
slope of I sec (dashed). Also the spectrum ofa trapezium shape is shown with a rising andfailing slope of
0.5 sec (dotted). Injection Volume is 45mL and Injection Rate 5mL.

The slopes decrease the higher frequencies, as can be seen from figure 11. The rectangular spectrum (solid) is
the most ideal, because no energy is lost in the slopes which yield the best excitation for the higher
frequencies. This is worst for the trapezium shape where a decrease of the higher frequencies can be seen.
Even no frequencies above 1Hz appear in the signal, when the slopes duration is 1 sec. When the rising and
falling slope duration is set to 0.5 sec, the decrease is much less, and a better excitation is the result.
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