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Preface

This report results from my graduation project(s) at the Department of Mathematics and
Computer Science of Eindhoven University of Technology.

As introduction, I have worked on a case study of a UPnP Power Management protocol, under
supervision of Judi Romijn. I have made various models of UPnP environments, and checked
certain properties using model checking techniques. Being a bit disappointed by the limits of
model checking, and being up for a new challenge, I decided to head a different direction after this
introduction.

The remaining nine months I have explored the wonderful world of theorem provers — which
was new to me — and worked on a project which was eventually titled “Automated verification
of Owicki/Gries proof outlines: comparing PVS and Isabelle”. This second project was under
supervision of Arjan Mooij and Wieger Wesselink.

This second (main) project is the subject of this report. The model checking case study has hardly
any relation to this subject, and its results are described in Appendix A.

I would like to thank a few people for their involvement and support. First, I would like to express
my gratitude to my father, Johan Koudijs Sr., and my mother, Cilia Koudijs-de Kok. I also thank
Arjan, Judi, and Wieger for their time, support, and (personal) interest.

Johan C. Koudijs
December, 2005
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Chapter 1

Introduction

Parallel programs have become increasingly popular and they have found their way into a large
number of systems and areas. Due to the complexity of parallel programs, they are difficult
to design and it is difficult to verify their correctness formally. The risk of failing to meet the
requirements is however often not an acceptable one.

State-space exploration methods like model checking are often used for the verification of
parallel programs. One of the advantages of model checking is that it can be automated. But,
model checking suffers from the so called state-space explosion problem and is therefore limited to
parallel programs that have a finite state-space that is not larger than resources allow. In practice,
state-spaces are often too large or infinite.

Another method for the verification of parallel programs is annotating the program with as-
sertions and prove the correctness of these assertions. The theory of Owicki/Gries [OG76] can
then be used to reduce the verification problem of the annotated program (i.e. proof outline) to
a limited number of proof obligations. An advantage of this method is that it enables proving
more general properties, and it does not suffer from the state-space explosion problem. The major
disadvantages are that inventing the appropriate annotation is a challenging task, and that in
general human effort is required to prove the theorems.

Typically even small parallel programs have a large number of proof obligations. It requires a
considerable amount of effort to prove the proof obligations manually. Many of them are trivial,
and their proof is often omitted in manual proofs. Humans tend to be sloppy, stubborn and
overconfident; this is often the cause of mistakes, errors, and ultimately, disasters.

Theorem provers are available to assist the user in proving the proof obligations. They can
check the proof of the user, and depending on the theorem prover used, they can automate (part of)
the proof of proof obligations. Theorem provers can reduce the amount of human effort required
for the proof of theorems considerably, and they increase the confidence in the results of the proofs.

Mooij and Wesselink have developed a tool [MW05] that, given an annotated parallel program,
generates the proof obligations in the specification language used by the PVS theorem prover
[ORS92]. Also, the tool generates default proof scripts for the proof obligations. Using these proof
scripts, large numbers of proof obligations can be proved completely automatically with PVS.
Applied to their real-life case study of a distributed spanning tree algorithm [MW03], which is a
complex algorithm, they were able to prove almost 90% of the proof obligations fully-automatically.
The remaining 10% of the proof obligation are proved interactively with PVS.

The PVS theorem prover was chosen as back-end of the tool because it is one of the most
popular theorem provers available. [GH98] suggests that the level of automation offered by the
interactive theorem provers PVS and Isabelle [Pau94] is comparable. The goals of the research
discussed in this report are to investigate how the Isabelle theorem prover performs on this kind
of automated verification and to determine how effective PVS and Isabelle are with respect to
automated verification. Thereto support for Isabelle as back-end of the tool has been added,
automatic proof strategies for Isabelle have been developed, and we have experimented with the
verification of several parallel programs.
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1.1 Owicki/Gries proof outlines

A parallel program consists of a number of sequential programs to be executed concurrently.
Execution of a sequential program (or component) results in a process that consists of a sequence
of atomic actions. Execution of the parallel program results in an interleaving of the processes.

The state of a parallel program consists of the values of the variables of the program. An
assertion is a predicate over this state, and is placed between two consecutive atomic actions in
the components. We denote assertion P as {P} . An assertion is correct if the state of the parallel
program satisfies the predicate whenever the component is at the point in the sequential program
where the assertion is located. An annotated program (or proof outline) is a program annotated
with assertions. The annotation of such a program is correct if all assertions are correct.

A Hoare-Triple [Hoa69] {P}S{Q} is a boolean that has the value true if each terminating
execution of statement S that starts from an initial state satisfying P is guaranteed to end
up in a final state satisfying Q . This only expresses partial correctness, because termination of
statements is not considered.

The theory of Owicki/Gries [OG76] is used to determine the correctness of assertions. This
theory states that an assertion is correct if it is both locally correct and globally correct. An
assertion P is locally correct if it is either

– an initial assertion of a component and is implied by the pre-condition of the program, or

– if P is established by the preceding atomic action S with pre-assertion Q (denoted as
{Q}S ), i.e. {Q}S{P} is true.

An assertion P is globally correct (or interference free) if for each atomic action {Q}S taken from
another component, {P ∧Q}S{P} is true.

1.2 Theorem proving

Theorem provers are computer programs that assist the user in proving theorems. They provide
a specification language to be used to specify proof obligations, and they define which inference
rules can be used to prove the proof obligations. Theorem provers are often categorised according
to their level of automation.

Proof checkers are theorem provers that check detailed proofs supplied by the user and offer no
automation. Automatic theorem provers prove theorems fully-automatically. The user specifies
the proof obligation, initiates the proving process and waits until the theorem prover concludes
with the answer “yes, this is correct”, “no, this is not correct”, or “I cannot decide whether
this is correct”. Interactive theorem provers combine automated reasoning with user interaction.
The user gives hints to the system to instruct which direction the proof attempt should head.
Depending on the theorem prover and the proof obligation, proofs can still be completely or
partly automated.

PVS and Isabelle are interactive theorem provers, and their proof process is comparable. The
user supplies a proof obligation (lemma), and the theorem prover maintains a proof state, which
consists of subgoals that are still to be proved. Initially this proof state consists of exactly one
subgoal: the original proof obligation. The theorem prover provides tactics that allow the user to
apply valid inference rules to the proof state. Tactics range from the application of basic inference
steps, to application of fully-automated proof strategies that attempt to finish the proof. Tactics
may split goals into (smaller) subgoals, subgoals that are trivially valid are removed from the
proof state, and the original proof obligation is proved to be valid once we arrive at a proof state
without any subgoals.

Prototype Verification System (PVS)

The interactive theorem prover PVS (Prototype Verification System) is being developed at SRI
Computer Science Laboratory. The specification language of PVS is highly expressive and is based
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on typed higher-order logic. PVS has been applied to many nontrivial problems. NASA Langley
is one of the main sponsors and users of PVS.

Goals in PVS are represented as sequents, which are of the form:

A1

...
Am

|—————————————–
C1

...
Cn

where 0 ≤ m and 0 ≤ n. We often use the linear representation:

A1 , . . . , Am ` C1 , . . . , Cn

This goal states that we have to prove that the conjunction of the antecedent formulas A1 . . . Am

implies the disjunction of the consequent formulas C1 . . . Cn. Thus the logical interpretation is:

A1 ∧ . . . ∧Am ⇒ C1 ∨ . . . ∨ Cn

PVS uses a sequent calculus as underlying logic. In addition to many basic inference steps available
to the user, there are tactics available that facilitate automated reasoning. This includes a term
rewriter, a BDD simplifier and powerful (arithmetic) decision procedures. We consider PVS version
3.2 in this report.

Isabelle

The interactive theorem prover Isabelle is being developed at the university of Cambridge and the
technical university of Munich. Isabelle is generic and flexible, different logics can be used and
users can add new logics and tactics. In this document we consider Isabelle 2004 in combination
with the logic HOL, the Higher Order Logic. When referring to Isabelle, from now on, we actually
refer to the combination Isabelle/HOL. The Archive of Formal Proofs [AFP] is a collection of
formalisations and verifications using Isabelle.

The specification language of Isabelle is based on functional programming languages. Isabelle
uses a meta language to represent goals. Goals are of the form:

[[A1 , . . . , An ]] =⇒ C

which states that C is to be proved using the assumptions A1 . . . An. The logical interpretation of
this goal is:

A1 ∧ . . . ∧An ⇒ C

Tactics in Isabelle are mostly based on term rewriting, unification and application of inference
rules like natural deduction. The automated tactics of Isabelle mostly combine these three and
add backtracking and tableaux methods to find a proof for subgoals. The user can add rules to
the set of default rules used by the automated tactics.

In Chapter 4 we give a much more extensive introduction to Isabelle.
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1.3 Related work

It is typically a challenging and time consuming task to invent the appropriate annotation, and
prove the annotation afterwards. [FvG99] shows that the theory of Owicki/Gries can be used
to design parallel programs (and their annotation) from their formal specification. This way the
resulting annotation is correct by construction.

We are not the first to use a theorem prover to verify Owicki/Gries proof outlines. The most-
related work is [PN02], in which a formalisation of Owicki/Gries in the theorem prover Isabelle is
introduced and discussed. The most significant differences between this formalisation and [MW05]
are that [MW05] focuses on the incremental verification of the annotation, and that [MW05] puts
more emphasis on fully automated verification.

We are also not the first to compare PVS and Isabelle/HOL. In [GH98], PVS and Isabelle/HOL
are compared. They give a consumers’ report, based on their experiences with the prover. One of
their conclusions is that the level of automation offered by PVS and Isabelle is comparable.

1.4 Overview

The remainder of this report is structured as follows. We use the tool described in [MW05] to
generate the proof obligations and their proof scripts. In Chapter 2 this tool is discussed.

In Chapter 3 we discuss how programs and their annotation can be modelled and verified with
the tool.
The tool is extended with support for the Isabelle theorem prover as back-end. In Chapter 4 we
give a short introduction to Isabelle and we discuss automated verification with Isabelle in detail.
We discuss the changes to the tool, the modelling of the programs and proof obligations in Isabelle,
the automated Isabelle proof strategies, and the results of experiments with Isabelle.
We have experimented with automated PVS and Isabelle verification of several relatively small
algorithms. The results of these experiments are discussed in Chapter 5.
Many proof obligations contain universal and existential quantifiers; Chapter 6 gives an overview
of the options we have in PVS and Isabelle proofs dealing with quantifications.
In Chapter 7 the verification of a larger algorithm is discussed: a Garbage Collection Algorithm
from [PN02].

Finally, in Chapter 8 we conclude this report.
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Chapter 2

Proof generator

2.1 Introduction

In [MW05] a tool is described which, given an annotated parallel program (proof outline), generates
input files for the PVS theorem prover. The output of the tool consists of the proof obligations
for the annotation. The theorem prover PVS can then be used to prove the proof obligations.
Many of them can be proved fully-automatically using default proof scripts generated by the tool,
and those that cannot be proved automatically can be proved interactively (manually) with the
theorem prover.

We use this tool to generate the proof obligations and proof scripts for our verifications. In
this chapter we give an overview of the relevant aspects and features of the tool. This overview is
strongly based on [MW05].

The tool is a Python script that reads an annotated parallel program, and generates the input
files for the theorem prover PVS. The environment of the tool is depicted in Figure 2.1.

Annotated Program

Tool PVSProof scripts

Proof obligations
Proof results

Proof Guidance

Figure 2.1: Environment of the tool

In Section 2.2 we discuss how annotated parallel programs are represented in the tool and which
language constructs are available. The generated proof obligations are discussed in Section 2.3 and
the default PVS proof script is discussed in Section 2.4. The proofs are executed in batch-mode.
Proof obligations that cannot be proved automatically, or that are aborted because they cannot be
proved within an acceptable period of time, require proof guidance from the user. In Section 2.5
we discuss how the user can influence the proof scripts generated by the tool.

2.2 Annotated program

As example program we use a parallel linear search algorithm from [MW05]. Given a number of
boolean functions on naturals, this algorithm searches for a value that is mapped to the value true
by one of these functions. The program is depicted in Figure 2.2. The upper part of the figure
consists of the declaration of the variables of the parallel program, and their types. The values of
the variables represent the state of the parallel program.

A parallel program consists of a (possibly dynamic) number of components. The type
component represents the set of component identifiers of the example program. For each of the
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var f : component → nat → bool,
x : component → nat,
b : bool

0: {inv: b ⇒ 〈∃c : f(c)(x(c)) 〉}
par (c : component):

1:
do ¬(b ∨ f(c)(x(c))) →

2: {¬f(c)(x(c))}
x(c) := x(c) + 1

od
3: ; {〈 ∃c : f(c)(x(c)) 〉}

b := true
4: {〈 ∃c : f(c)(x(c)) 〉}

rap
5: {〈 ∃(c : component) : true 〉 ⇒ 〈 ∃c : f(c)(x(c)) 〉}

Figure 2.2: Parallel linear search

functions on naturals, a component which is dedicated to this function is created. For each compo-
nent with identifier c , f(c) represents the corresponding function and x(c) is a private variable
of the component. Boolean variable b is shared by the components.

The lower part of the figure contains the annotated parallel program. Each assignment (:=)
is an atomic statement; other atomic statements that we will frequently encounter are:

– Multiple assignment: x, y := X,Y . X and Y are evaluated, and then their values are
assigned to variables x and y , respectively.

– skip . An empty statement, it does nothing.

Composite statements combine atomic actions into larger statements. The program consists
of a number of composite statements:

– Parallel composition over the elements of a type: par . In the example, executing the par
statement creates zero or more processes: for each element c of component a process is
created for the component with identifier c (the body of the par statement).

– Repetition of a statement: do

– Sequential composition of two statements: ;

One type of composite statement that is not used in this example is the Alternative construct or
if-statement. This statement introduces non-deterministic selection. It consists of one or more
guards (predicates over the state), and each guard is associated with a statement. The guards are
evaluated repeatedly by the component executing this statement, until one of the guards evaluates
to true. Once one of the guards evaluates to true, the corresponding statement is executed.

A control point is a location between two consecutive atomic actions of a component. The
numbers that are followed by a colon are labels that identify the control points. An assertion is a
predicate over the state of the system and is located at a control point. The assertion is correct
if, whenever a component is at this control point, the state of the system satisfies the predicate.
Multiple assertions can be placed at a control point; such a sequence of assertions denotes their
conjunction.

Invariant I, denoted as {inv: I}, is a predicate over the state of the system which can be placed
at a control point just before a parallel composition, and is an abbreviation of an assertion that
is also placed at every control point within the parallel composition. The control point with label
0 is a special control point: the assertions and invariants at this first control point also represent
the pre-condition of the program.
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Annotated programs are modelled using two files. One file defines the structure of the program.
This structure is completely independent of the theorem prover and is used to generate the proof
obligations in the language of the prover. Another file models the types, the annotation, the guards
and the atomic statements in the specification language of the theorem prover. The generated
proof obligations depend on this file.

Hoare-triples for atomic statements are defined using their weakest liberal pre-condition (wlp).
The weakest liberal pre-condition of an atomic statement S is a predicate transformer wlp.S. The
wlp.S of a predicate Q , denoted as wlp.S.Q , is the weakest condition P such that {P}S{Q} is
true, i.e.

{P}S{Q} ≡ [P ⇒ wlp.S.Q ]

where the square brackets are a shorthand notation for “for all states”. Atomic statements are
modelled as their wlp, and the (atomic) guards are modelled as predicates over the state of the
system.

2.3 Proof obligations

The theory of Owicki/Gries is used for the verification of the annotated parallel programs. Using
this theory, the problem of verifying the correctness of the annotation of the program is reduced to
verifying a number of proof obligations in the form of Hoare-triples. The proof obligations are only
concerned with the atomic actions; composite statements are decomposed into atomic actions.

[MW05] puts emphasis on incremental verification and construction of the annotation. We do
not focus on incremental verification, but the proof obligations are modelled in a special way to
facilitate this incremental verification. Before discussing an example of a proof obligation, we first
give some motivation behind the way the proof obligations are modelled. We restrict this to those
aspects that are relevant for this report, and we refer to [MW05] for additional information.

To facilitate incremental verification it is important that old successful proof scripts remain
successful after adding new assertions. This is achieved by ensuring that there are no textual
changes in the old proof obligations. To that end, the assertions are fully decoupled from each
other. Consider a proof obligation for local correctness, which is of the form:

[P ∧Q ⇒ Z ]

with predicates P, Q and Z. Using the principle of indirect inequality we can decompose this, and
obtain:

〈 ∀X : [X ⇒ P ∧Q ] ⇒ [X ⇒ Z ] 〉
and because implication is conjunctive in its consequent we obtain:

〈 ∀X : [X ⇒ P ] ∧ [X ⇒ Q ] ⇒ [X ⇒ Z ] 〉

This can be modelled as proof obligation [X ⇒ Z ] , after declaring a fresh dummy variable X
as a logical variable and introducing the two axioms [X ⇒ P ] and [X ⇒ Q ] . If, later on,
assertion R is added and the proof obligation is weakened into [P ∧Q ∧R ⇒ Z ] , then only an
additional axiom stating [X ⇒ R ] needs to be added, and the correctness of the old proof script
for [X ⇒ Z ] cannot be endangered as long as all used axioms are employed explicitly.

Instead of introducing new variables for each proof obligation, the structure of the theory of
Owicki/Gries is exploited. Namely, the antecedent of each proof obligation is the conjunction of
all assertions at one or two control points. For each control point with label i , a logical variable
lab i is introduced, which is related to the assertions and invariants that hold on control point i ,
using axioms. Similarly, for each control point with label i where a parallel composition starts,
a variable scp i is introduced, and an axiom relates the scp variable to the control points within
this parallel composition.

Scope lemmas are defined to prove the relation between the scp variables and invariants, much
like the relation between lab variables and assertions. They are used for the proof of the invariance
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of invariants. The proof of scope lemmas is trivial, and they can be proved automatically with
PVS using the introduced axioms.

The following is the proof obligation for local correctness of the assertion at control point 4 of
the example program, modelled in PVS:

loc ass 4a stat 3: lemma
forall (s : state):

forall (c : component): lab 3(c)(s) ⇒
wlp stat 3(c)(ass 4a(c))(s)

This proof obligation should be interpreted as:

– For each state s ,

– and for each component c that is at control point 3 ,

– executing the statement at control point 3 establishes ass 4a (first post-assertion).

The axiom that defines the relation between lab 3 and the assertions at control point 3 are available
(and are required) for the proof of this proof obligation. wlp stat 3 models the weakest liberal
pre-condition of the statement at control point 3, and ass 4a models the assertion at control point
4. Both are defined in PVS by the user, and all other definitions for this proof obligation are
generated by the tool.

2.4 Proof scripts

(skosimp* :preds? t)

(lemma “lab 2 ass 2a”)
(inst -1 “s!1” “c!1”)
... ...

(branch (grind :if-match nil)
((then (try (reduce) (fail) (skip))

(then (inst? :if-match all) (then (reduce :if-match all) (fail) ) ) )) )

Figure 2.3: Default PVS proof script

It is important to have a generic proof script that can prove as many proof obligations as
possible, with a minimum amount of manual interaction. Figure 2.3 shows the default proof script
for the proof obligations in PVS. This proof script is applied to each type of proof obligation by
default and relies heavily on the automation offered by the theorem prover. It consists of three
parts:

1. The first strategy decomposes the top-level structure of the proof obligation and introduces
skolem constants and type constraints for the bound variables, i.e. the state and the com-
ponent identifiers.

2. The axioms that define the relation between the lab variables and the assertions are employed,
and known constants are substituted.

3. Automated strategies are applied in an attempt to finish the proof. First “grind” without
quantifier instantiation is applied. “grind” is a catch-all strategy, it repeats strategies such
as simplification using decision procedures, term rewriting and BDD simplification. They
are repeated until all subgoals are proved or none of the strategies have any effect. “reduce”
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is the main workhorse of “grind”, and is applied to the subgoals that remain, using heuristic
quantifier instantiation. If this does not complete the proof, then repeatedly all instantiations
of a bound variable are substituted, and “reduce” is tried again.

2.5 Proof guidance

The proofs are executed in batch-mode with PVS. Proof obligations that cannot be proved au-
tomatically using the default proof script, or cannot be proved in a reasonable time period, need
guidance from the user. Obviously, we would like to limit this to a minimum.

There are two ways to influence the proof scripts of the proof obligations. The first is by
using proof hints. Proof hints are used by the user to specify which of the available assertions
are relevant for a proof obligation. This can reduce the search space of the tactics considerably.
Often, the developer of the algorithm can easily indicate which assertions are relevant for a proof,
while this can be very difficult to determine by a theorem prover.

If a proof obligation cannot be proved using the default proof script in combination with proof
hints from the user, then the user has no other choice but to prove it manually (interactively)
using the theorem prover. If the user succeeds at proving the proof obligation with the theorem
prover, the proof script used for this proof can be supplied to the tool, and the tool will use this
proof script for this proof obligation, from that point on.

9
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Chapter 3

Modelling parallel programs

3.1 Introduction

The goals of this chapter are to show how parallel programs and their annotation can be represented
in the tool, to demonstrate how the available language constructs can be used, and to show that the
success of automated verification can be influenced by the way the programs and their annotation
are modelled.

To this end, we discuss two annotated parallel algorithms from [FvG99]: “A Simple Election
Algorithm” and “The Initialization Protocol”. In Section 3.2 and Section 3.3 we discuss how the
algorithms, which are completely annotated in the style of [FvG99], can be translated to the
notation used by the tool and we discuss alternative variants and models of the algorithms.

The annotation of the algorithms has been verified using the tool in combination with the
theorem provers PVS and Isabelle. In Section 3.4 the results of the verifications are discussed.
The problems encountered are discussed, in combination with possible solutions.

3.2 A Simple Election Algorithm

In this section the modelling of “A Simple Election Algorithm” and its annotation (both from
[FvG99, Chapter 24]) is discussed. Every component c in this algorithm has a private boolean
variable y(c) and the only thing the component does is performing one assignment to this variable.
The goal of this algorithm is to synchronise the components in such a way that they all terminate
and leave the system in a final state satisfying:

〈#j : y(j) 〉 = 1

In Section 3.2.1 we show how the original version of [FvG99] can be represented in the tool.
For the correctness of (the annotation of) parallel programs it is important to know which

atomic actions are available. [FvG99] introduces the notion of “one-point statement”. These are
statements of which is assumed that they can be executed atomically. The original algorithm
contains a statement that is not one-point. In Section 3.2.2 the transformation of the original
algorithm into a finer-grained version that contains only one-point statements is discussed. Even
though we know from [FvG99] that this transformation is correctness-preserving, the correctness
of this version is also verified using the tool. In Section 3.2.3 the solutions are evaluated.

3.2.1 Original algorithm

Figure 3.1 shows a representation of the original algorithm and its annotation, in the format used
by the tool. There are two important differences between our representation of the algorithm and
the original in [FvG99].

11



var g : component → bool,
v : component,
y : component → bool

0: {〈 ∀c : g(c) 〉}
par (c : component):

1: {g(c)}
v := c

2: ;
g(c) := false

3: ;
if 〈 ∀j : j 6= c ⇒ ¬g(j) ∨ v 6= c 〉 →

4: {〈 ∀j : j 6= c ⇒ ¬g(j) ∨ v 6= c 〉}
skip

fi
5: ; {〈 ∀j : j 6= c ⇒ ¬g(j) ∨ v 6= c 〉}

y(c) := (v = c)
6: {y(c) ≡ (v = c)}{〈 ∀j : j 6= c ⇒ ¬g(j) ∨ v 6= c 〉}

rap
7: {〈 ∃j : y(j) 〉}{〈 ∀c, d : y(c) ∧ y(d) ⇒ c = d 〉}

Figure 3.1: Simple Election Algorithm

Slightly different post-condition Theorem provers often define the #-operator recursively,
therefore one is almost forced to use induction when proving lemmas involving this operator.
Proofs that require induction are difficult to automate. Therefore, we try to avoid it whenever
possible. The post-condition of the program is defined using the #-operator, but is logically
equivalent to the following condition:

〈 ∃j : y(j) 〉 ∧ 〈 ∀c, d : y(c) ∧ y(d) ⇒ c = d 〉

This condition does not contain the #-operator: induction is avoided by using this as post-
condition.

Difference in the interpretation of the if-statement For the design and the verification
of parallel programs it is important to know which statements are atomic (indivisible). The
interpretation of the if-statement of [FvG99] differs from the interpretation of the if-statement
used by the tool. In [FvG99] the evaluation of the guard and the execution of the body are part of
the same atomic action. This is not the case when using the tool. For the tool, the evaluation of
the guard is one atomic action and the execution of the statements of the body is not part of that
same atomic action. If, for the sake of clarity, angular brackets are used to denote the granularity
of actions, then the if-statement of [FvG99] can be written as:

{P} 〈 if B → S fi 〉 {Q}

with guard B, statement S, and assertions P and Q. Using the tool, this same fragment can be
written as:

{P} if 〈 B 〉 → {C} 〈S 〉 fi {Q}

provided the extra condition C is chosen such that:

• {C} S {Q} is a correct Hoare-triple,

• [P ∧B ⇒ C] , and

• {C} is a globally correct assertion.

12



Unfortunately it is not always possible to rewrite if-statements in the notation used by [FvG99]
to this format. Consider, for example, the following program fragment in the notation used by
[FvG99]:

〈 if a → b := a fi 〉{b}

where a and b are boolean variables. If the transformation above is used to rewrite this fragment
we get:

if 〈 a 〉 → {C} 〈b := a〉 fi {b}

and we would have to find a C such that:

• {C} b := a {a} is a correct Hoare-triple,

• [a⇒ C] , and

• {C} is a globally correct assertion.

To satisfy the first two requirements, we have no other choice but to choose a for C. Consequently,
we are presented with an impossible task: in order to satisfy the third requirement we have to
prove that assertion {a} is globally correct, which is not necessarily true.

Fortunately, in [FvG99] the statement S is almost exclusively a skip statement, a so-called
guarded skip. If statement S is a skip, then there always exists a translation to the notation
used by the tool: condition Q can be chosen for C . The two notations are then equivalent in
the sense that they are both correct, or they are both incorrect.

Recall that atomic statements are modelled in the tool as their wlp. It is up to the user to decide
how coarse-grained the atomic statements are allowed to be. Instead of using the if-statement of
the tool, the user could model if-statements of [FvG99] as atomic statements by defining the wlp
of the statement:

[wlp.〈 if B → S fi 〉.Q ]
≡

[B ⇒ wlp.S.Q ]

3.2.2 A finer-grained solution

One-point statements are statements that contain at most one reference to at most one shared or
private variable. They can be implemented by at most one memory access to at most one shared
or private variable and therefore they can be executed atomically. The guard of the guarded
statement in Figure 3.1 is not one-point. Next, we are going to transform the original solution to
a finer-grained solution with only one-point statements, as described in [FvG99].

[FvG99] mentions the “guard conjunction lemma”. This lemma states that if the guard of a
guarded skip is a conjunction, and one of the two conjuncts is globally correct, then the guarded
skip can be replaced by two (finer-grained) guarded skips, one for each conjunct, provided the
guarded skip with the globally correct guard is executed first.

The conjuncts of the guard of the guarded skip are globally correct. As described in [FvG99],
the guard conjunction lemma can be applied to replace the guarded skip with the following for-
statement:

for j : j 6= c do
if ¬g(j) ∨ v 6= c → skip fi

od
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Mohamed G. Gouda’s theorem, which states that a disjunction may be evaluated disjunct-wise
without impairing the total correctness of the algorithm if one of the disjuncts is globally correct,
is also mentioned in [FvG99]. Because disjunct ¬g(j) is globally correct, this theorem can be
used to rewrite the if-statement into:

for j : j 6= c do
if ¬g(j) → skip
[] v 6= c → skip
fi

od

Because the order in which the bodies are executed does not matter, and the body effectively
consists of a single atomic statement, the for-statement can be replaced by a parallel composition.
In this case, as often is the case, using a parallel construct instead of a loop makes the annotation
much clearer and shorter because, for one thing, we do not have to maintain a loop invariant.

The parallel composition is a composition over the elements of type component, but the original
for-statement ignores element c . Another guarded skip is added to the if-statement to ignore
this element:

par (k : component):
if c = k → skip
[] ¬g(k) → skip
[] v 6= c → skip
fi

rap

Note that, if the loop body of the original for-statement would not have been a guarded skip, then
the guard of the other two guarded skips would have been strengthened with conjunct c 6= k .
We have arrived at our goal, a finer-grained solution with only one-point statements, as shown in
Figure 3.2.

3.2.3 Evaluation

The tool generates 27 proof obligations for the original solution, and 60 proof obligations are
generated for the finer-grained solution. It was to be expected that the number of proof obligations
generated for the finer-grained solution is higher, but what is more important is the complexity
of the proof obligations. In this case the proof obligations do not become more complex, and the
finer-grained solution if preferred.

3.3 The Initialization Protocol

In this section the verification of “The Initialization Protocol” as described in [FvG99, Chapter
19] is discussed. The goal of this algorithm is to distribute the initialisation task of a system over
various components, and let the components start on their computation proper only after the total
initialisation task has been completed. Solutions for two and three components are discussed in
[FvG99].

In Section 3.2 we have seen the parallel composition over the elements of a type. “The Ini-
tialization Protocol” consists of two or three separate components which are executed in parallel
using a different type of parallel composition: binary parallel composition. This composition is
both commutative and associative.

Binary parallel composition was originally not supported by the tool, and we originally had
no other choice but to translate the original algorithms to alternative representations without this
binary parallel composition. Binary parallel composition can be translated to parallel composition

14



var g : component → bool,
v : component,
y : component → bool

0: {〈 ∀c : g(c) 〉}
par (c : component):

1: {g(c)}
v := c

2: ;
g(c) := false

3: ;
par (k : component):

4:
if ¬g(k) →

5: {k 6= c ⇒ ¬g(k) ∨ v 6= c}
skip

[] v 6= c →
6: {k 6= c ⇒ ¬g(k) ∨ v 6= c}

skip
[] k = c →

7: {k 6= c ⇒ ¬g(k) ∨ v 6= c}
skip

fi
8: {k 6= c ⇒ ¬g(k) ∨ v 6= c}

rap
9: ; {〈 ∀j : j 6= c ⇒ ¬g(j) ∨ v 6= c 〉}

y(c) := (v = c)
10: {y(c) ≡ (v = c)} {〈 ∀j : j 6= c ⇒ ¬g(j) ∨ v 6= c 〉}

rap
11: {〈 ∃j : y(j) 〉}{〈 ∀c, d : y(c) ∧ y(d) ⇒ c = d 〉}

Figure 3.2: Simple Election Algorithm (finer-grained)

over the elements of a type, but the resulting program requires more (admittedly mostly trivial)
proof obligations and is more difficult to read and understand. This translation is discussed in
Section 3.3.1.

During modelling and verification it became obvious that this translation of the parallel com-
position is awkward, that it results in a less readable algorithm, and that the resulting algorithm
requires a large number of extra proof obligations, even for an algorithm of this size. Fortunately,
the developers of the tool agreed that a binary parallel operator would be a valuable addition to
the tool, and they added it to the tool.

The solutions for two and three components are discussed in Section 3.3.2 and Section 3.3.3,
respectively. For both the two components and the three components solutions we first discuss
how the original solutions from [FvG99] can be translated to the notation used by the tool. Then
we discuss how the original solutions are translated to alternative representations that use parallel
composition over the elements of a type (Variant 1).

The components of the protocol are symmetric. This symmetry can be exploited, which re-
sults in a much shorter algorithm with fewer proof obligations, which is much easier to read and
understand. We work towards solutions that exploit this symmetry (Variant 2 and Variant 3).
They show that parallel composition over the elements of a type also has advantages.
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3.3.1 Translate the parallel statement

In this section we show how a parallel program using a binary parallel composition can be trans-
lated to a parallel program that uses a parallel composition over the elements of a type.

We consider a parallel program that executes two components in parallel, component X and
component Y , with pre-condition P and post-condition Q . The idea is to translate this program
to something like:

{P}
par (c : component):

{P}
if c = X →

X
[] c = Y →

Y
fi

rap
{Q}

where component is a type with exactly two elements: X and Y . The reader’s first impression
may be that this is a correct translation, but unfortunately it is not. To illustrate this we define
X as {x = 0}x := x+1 and we define Y as skip. If the pre-condition of the program is x = 0 ,
then it is obvious that the assertion in component X is both locally and globally correct. If we
apply the (naive) translation above, we get the program:

{x = 0}
par (c : comp):

{x = 0}
if c = X →

{x = 0}
x := x+ 1

[] c = Y →
skip

fi
rap

Recall that assertion {x = 0} in a component c is globally correct if, for each atomic action
{P}S 1 taken from another component c′ , {P ∧ x = 0}S{x = 0} is true. One of the proof
obligations for global correctness of assertion {x = 0} for program above would be:

〈 ∀c, c′ : c 6= c′ ∧ x = 0 ⇒ x+ 1 = 0 〉 (3.1)

which is obviously not valid. The problem is that we are required to prove that assertions are
globally correct under statements of their own (original) component. We can solve this problem
by adding assertions {c = X} and {c = Y } to the control points that represent the original
control points of component X and component Y , respectively. After adding these assertions we
get:

1atomic action S with pre-condition P
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{x = 0}
par (c : comp):

{x = 0}
if c = X →

{c = X}{x = 0}
x := x+ 1

[] c = Y →
{c = Y }
skip

fi
rap

The local correctness of the extra assertions is established by the guards. Global correctness
is guaranteed because variable c is not a program variable and cannot be modified. After the
change, proof obligation (3.1) is changed into:

〈 ∀c, c′ : c 6= c′ ∧ c = X ∧ c′ = X ∧ x = 0 ⇒ x+ 1 = 0 〉

which is valid because the antecedent is false. This is an application of the rule of disjointness as
described in [FvG99].

3.3.2 Two components

In this section we discuss multiple variants of “The Initialization Protocol” for two components.
We start with the original algorithm and then work towards a much shorter, fully parameterised
version.

Original algorithm The algorithm is shown on the left side of Figure 3.3. There are two
components: X and Y . We define a type component, the elements of this type represent the
components. Because we need two elements, the component type is defined as an alias for bool,
where X ≡ true and Y ≡ false .

The solution of [FvG99] uses RX and RY to model the termination of the initialisation
part of component Y and X , respectively. We introduce variable r(c) for this purpose, where
r(c) ≡ true if the initialisation part of component c has terminated.

As was the case for the “Simple Election Algorithm”, we have an extra control point (c.f. con-
trol point with label 5). This is caused by the different interpretation of the if-statement (see
Section 3.2.1).

Variant 1: Alternative parallel composition The translation described in Section 3.3.1 is
used to translate the original algorithm to a variant that uses a parallel composition over the
elements of type component. Variant 1 is shown on the right side of Figure 3.3.

When using the tool it is not allowed to put an assertion at the end of the body of an if-
statement. Because the original components have a post-condition, a skip has to be inserted
directly after this post-condition (c.f. control point 8). This does not influence the local or global
correctness of the original algorithm.

Variant 2: Parameterised Using parallel composition over the elements of the type
component, the symmetry of the components can be exploited. In the model the assertions,
guards and statements inside the parallel statement have an extra parameter that identifies the
component they are evaluated or executed in. This extra parameter can be used to determine the
correct statement, assertion or guard for the component, at every point in the program. Because
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type component = bool
const X ≡ true

Y ≡ false
var c, d : bool,

x, y : bool,
r : component → bool

0: {¬c}{¬d} {¬c}{¬d}
co par (b : component):
proc

1: {¬d} {b ⇒ ¬d}{¬b ⇒ ¬c}
r(X) := true if b →

2: ; {¬d}{r(X)} {b}{¬d}
y := false r(b) := true

3: ; {¬d}{r(X)}{¬y ∨ c} ; {b}{¬d}{r(b)}
x, d := true, true y := false

4: ; {r(X)}{¬y ∨ c}{y ⇒ r(Y )} ; {b}{r(b)}{¬y ∨ c}{y ⇒ r(¬b)}
if y → x, d := true, true

5: {r(X)}{c}{r(Y )} ; {b}{r(b)}{¬y ∨ c}{y ⇒ r(¬b)}
skip if y →

fi
6: ; {r(X)}{c}{r(Y )} {b}{r(b)}{c}{r(¬b)}

x, d := true, true skip
fi

7: {c}{r(Y )}{x} ; {b}{r(b)}{c}{r(¬b)}
corp x, d := true, true
proc

8: {¬c} ; {b}{c}{r(¬b)}{x}
r(Y ) := true skip

[] ¬b →
9: ; {¬c}{r(Y )} {¬b}{¬c}

x := false r(b) := true
10: ; {¬c}{r(Y )}{¬x ∨ d}{x ⇒ r(X)} ; {¬b}{¬c}{r(X)}

y, c := true, true x := false
11: ; {¬c}{r(Y )}{¬x ∨ d}{x ⇒ r(X)} ; {¬b}{r(X)}{¬x ∨ d}{x ⇒ r(¬b)}

if x → y, c := true, true
12: {r(Y )}{d}{r(X)} ; {¬b}{r(b)}{¬x ∨ d}{x ⇒ r(¬b)}

skip if x →
fi

13: ; {r(Y )}{d}{r(X)} {¬b}{r(b)}{d}{r(¬b)}
y, c := true, true skip

fi
14: {d}{r(X)}{y} ; {¬b}{r(b)}{d}{r(¬b)}

corp y, c := true, true
oc

15: ; {¬b}{d}{r(¬b)}{y}
skip

fi
16:

rap

Figure 3.3: Initialization Protocol for two components. Original left, alternative parallel compo-
sition right.

the structure of the two components is identical, we combine the different components, thereby
eliminating the if-statement.

The difference between the if-statements in [FvG99] and the if-statement of the tool has already
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been discussed in Section 3.2.1. Because of this difference, the original:

{B ⇒ C} 〈if B → skip fi〉 {C} S {D}

can be rewritten into:

{B ⇒ C} if B → {C} S fi {D}

when using the tool. This is used to put the assignments directly following the guarded skip inside
the (body of the) if-statement, thereby eliminating a statement (skip), a control point, and the
assertions on this control point.

This leads to the parameterised version as shown in Figure 3.4. In this figure, the body of
the parallel statement consists of two columns, representing the two different components at the
different points in the program. An assertion at control point 5 is for example:

λb : bool. (b⇒ c) ∧ (¬b⇒ d)

And the assignment after control point 2:

λb : bool. if b then (y := false) else (x := false)

type component = bool
var c, d : bool,

x, y : bool,
r : component → bool

0: {¬c}{¬d}
par (b : component):

1: b: {¬d} ¬b: {¬c}
r(b) := true r(b) := true

2: ; {¬d}{r(b)} ; {¬c}{r(b)}
y := false x := false

3: ; {¬y ∨ c}{r(b)}{y ⇒ r(¬b)} ; {¬x ∨ d}{r(b)}{x ⇒ r(¬b)}
x, d := true, true y, c := true, true

4: ; {¬y ∨ c}{r(b)}{y ⇒ r(¬b)} ; {¬x ∨ d}{r(b)}{x ⇒ r(¬b)}
if y → if x →

5: {c}{r(b)}{r(¬b)} {d}{r(b)}{r(¬b)}
x, d := true, true y, c := true, true

fi fi
6: {c}{x}{r(¬b)} {d}{y}{r(¬b)}

rap

Figure 3.4: Initialization Protocol for two components. Parameterised.

Variant 3: Fully parameterised We can even go one step further than the previous variant.
In this version we replace the variables c and d with function c : component → bool , and the
variables x and y are replaced with function: x : component → bool . Because the variables have
a symmetric role in the components, and every variable has a counterpart in the other component,
we can make even more use of the parameter we get from the parallel composition, see Figure 3.5.
This way we get rid of the if-then-else constructs and we arrive at a fully parameterised version.

Number of proof obligations The following table shows the number of generated proof obli-
gations for the different versions presented.
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type component = bool
var c : component → bool,

x : component → bool,
r : component → bool

0: {∀b : ¬c(b)}
par (b : component):

1: {¬c(b)}
r(b) := true

2: ; {¬c(b)}{r(b)}
x(¬b) := false

3: ; {¬(x(¬b)) ∨ (c(¬b))}{r(b)}{x(¬b) ⇒ r(¬b)}
x(b), c(b) := true, true

4: ; {¬(x(¬b)) ∨ (c(¬b))}{r(b)}{x(¬b) ⇒ r(¬b)}
if x(¬b) →

5: {c(¬b)}{r(b)}{r(¬b)}
x(b), c(b) := true, true

fi
6: {c(¬b)}{x(b)}{r(¬b)}

rap

Figure 3.5: Initialization Protocol for two components. Fully parameterised.

Solution Number of proof obligations
Original 216
Alternative parallel composition (Variant 1) 676
Parameterised (Variant 2) 75
Fully parameterised (Variant 3) 75

The parameterised versions (Variant 2 and Variant 3) are smaller, much clearer, require consider-
ably fewer proof obligations and the proof obligations should not be more difficult to prove. The
fully parameterised version is preferred.

3.3.3 Three components

In this section solutions for three components are discussed. The original algorithm from [FvG99]
and three variants are discussed. The variants are comparable with the variants used for the
solution for two components.

Original algorithm First we translate the algorithm from [FvG99] to the notation used by the
tool. This time we cannot get away with making component an alias for bool : we need a type with
three elements. We define component to be a so-called enumeration type with the elements: X,
Y and Z. Variable r(c) is again used to denote that the initialisation part of component c has
terminated. Because of the length of the algorithm, and the symmetry between the components,
we show only one component completely in Figure 3.6.

Variant 1: Alternative parallel composition The translation discussed in Section 3.3.1 is
used to translate the original algorithm to a variant that uses a parallel composition over the
elements of type component.

In the original version, the first thing every component does is setting two variables to false.
The order in which the components execute these two assignments does not matter at all, which
we illustrate by executing them in parallel.
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type component = {X, Y, Z}
var c, d, e : bool

x, y, z : bool,
r : component → bool

0: {¬c}{¬d}{¬e}
co
proc

1: {¬e}
r(X) := true

2: ; {¬e}{r(X)}
y := false

3: ; {¬e}{r(X)}{¬y ∨ c}{y ⇒ r(Y )}
z := false

4: ; {r(X)}{¬y ∨ c}{y ⇒ r(Y )}{¬z ∨ d}{z ⇒ r(Z)}
do ¬y →

5: {r(X)}{¬y ∨ c}{y ⇒ r(Y )}{¬z ∨ d}{z ⇒ r(Z)}
x, e := true, true

[] ¬z →
6: {r(X)}{¬y ∨ c}{y ⇒ r(Y )}{¬z ∨ d}{z ⇒ r(Z)}

x, e := true, true
od

7: ; {r(X)}{c}{d}{r(Y )}{r(Z)}
x, e := true, true

8: {r(Y )}{r(Z)}{x}{c}{d}
corp
proc

9: Symmetric with (X,Y,Z,x,y,z,c,d,e) = (Y,Z,X,y,z,x,d,e,c)
16: corp

proc
17: Symmetric with (X,Y,Z,x,y,z,c,d,e) = (Z,X,Y,z,x,y,e,c,d)
24: corp

oc

Figure 3.6: Initialization Protocol for three components.

Variant 2 and 3: Parameterised and Fully parameterised Using the symmetry as shown
for the solution for two components is more difficult here as there are three components. We have
(again) two alternatives:

1. Use functions like

λc : component. if (c = X) then x else (if (c = Y ) then y else z)

This is Variant 2.

2. Replace variables x , y and z with x: component → bool , and replace variables c , d and
e with c: component → bool (Variant 3). In the body of the parallel statement we then need
functions to refer to the other two components. We name these functions left and right .
Imagine the components form a circle, and that each component has a different component
on each side. The left and right functions give the left and right neighbour, respectively.

Variant 3 results in a much clearer annotation and is a much better way to use and highlight the
symmetry. Figure 3.7 shows the result when this variant is used; the implementation of the left
function and the right function is shown in the lower part of the figure.
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type component = {X, Y, Z}
var c : component → bool,

x : component → bool,
r : component → bool

0: {〈 ∀k : ¬c(k) 〉}
par (i : component):

1: {¬c(i)}
r(i) := true

2: ; {inv: ¬c(i)}{inv: r(i)}
co
proc

3:
x(left(i)) := false

4: {¬x(left(i)) ∨ c(left(i))}{x(left(i)) ⇒ r(left(i))}
corp
proc

5:
x(right(i)) := false

6: {¬x(right(i)) ∨ c(right(i))}{x(right(i)) ⇒ r(right(i))}
corp

oc
7: ; {r(i)}{¬x(left(i)) ∨ c(left(i))} {¬x(right(i)) ∨ c(right(i))}

{x(left(i)) ⇒ r(left(i))} {x(right(i)) ⇒ r(right(i))}
do ¬x(left(i)) →

8: {r(i)}{¬x(left(i)) ∨ c(left(i))} {x(¬right(i)) ∨ c(right(i))}
{x(left(i)) ⇒ r(left(i))} {x(right(i)) ⇒ r(right(i))}
x(i), c(i) := true, true

[] ¬x(right(i)) →
9: {r(i)}{¬x(left(i)) ∨ c(left(i))} {¬x(right(i)) ∨ c(right(i))}

{x(left(i)) ⇒ r(left(i))} {x(right(i)) ⇒ r(right(i))}
x(i), c(i) := true, true

od
10: ; {r(i)}{c(left(i))} {c(right(i))}{r(left(i))}{r(right(i))}

x(i), c(i) := true, true
11: {r(left(i))}{r(right(i))} {x(i)}{c(left(i))}{c(right(i))}

rap

left ≡ λc: component. if (c=X) then Y else (if (c=Y) then Z else X)
right ≡ left ◦ left ≡ λc: left(left(c))

Figure 3.7: Initialization Protocol for three components. Fully parameterised
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Number of proof obligations The following table shows the number of proof obligations for
the different versions.

Solution Number of proof obligations
Original from [FvG99] (Figure 3.6) 1278
Alternative parallel composition (Variant 1) 2619
Parameterised (Variant 2) 236
Fully parameterised (Variant 3, Figure 3.7) 236

3.4 Verification

In this section we discuss the automated verification of the algorithms mentioned in this report
using the theorem provers PVS and Isabelle.

3.4.1 Verification using PVS

In this section the verification of the various algorithms mentioned in this document, using PVS,
is discussed. The proof script of [MW05] is used for the automated verification.

A Simple Election Algorithm

The proof obligations of both solutions have been proved automatically, without any manual
interaction. Replaying the proofs takes only a few seconds in total.

Initialization Protocol

The original solutions of the “Initialization Protocol” for two and three components and their
variants have been verified automatically using PVS. The verification of the solutions for three
components revealed some peculiarities of PVS. Only after an addition to the proof script all the
proof obligations could be proved automatically, without requiring any interaction of the user.
First two additions to the proof script are discussed, followed by the runtime of the automated
proofs.

parallel statement One of the proof obligations for the parallel statement is that the post-
conditions of the bodies of the parallel statement together imply the post-condition of the parallel
statement. For the solutions for three components, some of these could not be proved automat-
ically. This problem occurred only in the initial versions, when binary parallel composition was
not yet supported by the tool and a parallel composition over component was used for the parallel
composition of the two assignments in the variants. The proof obligations that could not be proved
automatically are of the form:

〈 ∀(c :T ) : P(c) ⇒ Q(c) 〉
〈 ∀(c :T ) : P(c) 〉

|—————————————–
R

where T is the type of the variable used for the parallel composition. PVS fails to conclude that
for proof obligations of this form 〈 ∀(c :T ) : Q(c) 〉 holds, which is often required for the proof of
R. The tool is changed to instruct PVS to rewrite the proof obligations of this form to:

〈 ∀(c :T ) : Q(c) 〉
〈 ∀(c :T ) : P(c) 〉

|—————————————–
R

23



This is possible because this part of the structure of the proof obligation is known by the tool.
After this addition, the proof obligations of this type can be proved completely automatically.

Type predicates The component type for the solutions for three components was originally
defined in PVS as

component: TYPE = {X,Y,Z}

A few proof obligations of Variant 3, the fully parameterised variant, could not be proved au-
tomatically with the original proof script because PVS did not always use the fact that X , Y
and Z are the only possible values a variable of type component can have. By adding an extra
parameter to the skosimp* tactic ([SORSC01, Section 4.14.1]) we instruct PVS to automatically
add constraint information of introduced skolem variables to the antecedents. This does not work
when using the original definition of component , because it is not a predicate subtype. We change
the definition of component to a predicate subtype:

X: nat = 0
Y: nat = 1
Z: nat = 2
component: type = {x:nat | x=X OR x=Y OR x=Z}

Using this definition in combination with the extra argument for skosimp*, PVS generates an
assumption with the following type information

i = X ∨ i = Y ∨ i = Z

for every introduced skolem variable i of type component.
Using the new proof script, and the new definition of component, PVS is able to prove all the

proof obligations completely automatically.

Runtime The following table gives an indication of the time it takes to replay the proof2:

Algorithm Proof obligations Runtime (sec)
2 components

Original 216 12
Variant 1: Alternative parallel composition 676 73
Variant 2: Parameterised 75 7
Variant 3: Fully parameterised 75 7

3 components
Original 1278 118
Variant 1: Alternative parallel composition 2619 294
Variant 2: Parameterised 236 75
Variant 3: Fully parameterised 236 188

The time it takes to prove the proof obligations is more or less proportional to the number
of proof obligations for all but the third variant of the algorithm for three components. The
reason the verification of the third variant takes more than twice as long as the verification of
the second variant is that case distinction on the components is required for the verification of
the third variant. This is caused by the extra type information that is added to the assumptions
by skosimp. By changing the definition of left and right , we eliminate the need for these extra
assumptions and eliminate the need for the case distinctions. We discuss this slightly different
model.

2An Intel Xeon 2.8GHz processor is used. Only a small fragment of the 4GB memory available is actually used.
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The functions left and right are defined in PVS as follows:

left(c: component): component =
IF c = X THEN Y

ELSE IF c = Y THEN Z
ELSE X

ENDIF
ENDIF

right: [component -> component] =
(left o left)

Only two properties of left and right are actually needed for the proofs: the original specification
of right, and one property of left. We use an alternative specification of the left function, we
specify only the type and the required property of left :

left: { f: [component -> component] |

FORALL (c,d: component): c = d OR c = f(d) OR c = (f o f)(d) }

left now represents an arbitrary function satisfying the property:

〈 ∀c, d : c = d ∨ c = left(d) ∨ c = right(d) 〉

PVS generates a TCC (Type Correctness Condition) for this definition of left, which forces us to
prove that there exists at least one function instance of type left, that satisfies the correct property.
This can be proved by supplying a witness: the original definition of left.

Unfortunately the proof script does not use the type predicates for functions and variables that
are not skolem variables, and thus the property of left is not always used in the proofs. We need
a system invariant to explicitly state the property of left .

Using this alternative specification, and the extra system invariant, we don’t need the type
predicates of component anymore, and we can go back to the original definition of component:
component: TYPE = {X, Y, Z}.

Using the new specification of left, the new system invariant, and the original definition of
component, the proof script does not apply case analysis on skolem variables of type component
anymore, and the proof is much faster; the runtime of the verification is 71 seconds.

Although the verification turns out to be much faster when this slightly modified model is used,
using something similar for future projects is only advisable if the required properties are known
beforehand, if they are obvious. For this algorithm, it may be more than 100 seconds faster, but
it took a lot more time and effort to determine which properties are required. Our goal is not as
much to get the best possible runtime of the proof, but is to reduce the human effort.

3.4.2 Verification using Isabelle

In this section we focus on the influence the models of the algorithms (and their annotation)
have on the automated verification with Isabelle. We use Proof script A, which is described in
Section 4.4.2, for this automated verification. More detailed information about Isabelle and the
automated verification using Isabelle can be found in Chapter 4.

A Simple Election Algorithm

The proof obligations of both solutions have been proved automatically, without any manual
interaction. Replaying the proofs takes only a few seconds in total.
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Initialization Protocol

Initially not all of the parameterised versions could be verified completely automatically, but after
a few changes to the model of the algorithm in Isabelle, all proof obligations can be proved fully
automatically using the default proof script. First the changes to the model are discussed, and
then an indication of the time it takes Isabelle to replay the proofs is given.

Component type We have defined the component type for the solutions for three components
in Isabelle as

datatype component = X | Y | Z

The proof of some proof obligations for the parameterised variants need the fact that X , Y and
Z are the only possible values for a variable of type component. When defining the datatype one
of the theorems Isabelle automatically defines and proves is:

〈 ∀(c : component) : c = X ∨ c = Y ∨ c = Z 〉

But, the tactics of Isabelle do not automatically use this fact, and some proof obligations cannot
be proved automatically. After adding this theorem as a new system invariant, the problematic
lemmas can be proved automatically.

We have encountered the same problem with the verification of the proof obligations with
PVS. In PVS we were able to solve this problem by using type predicates, but type predicates are
not available in Isabelle. We have shown how an alternative PVS model can be used to reduce
the runtime. This option is not available in Isabelle because we are not able to prove all proof
obligations automatically in Isabelle, using only the one property of left, and not using the system
invariant above.

if-then-else construct For the parameterised variant (Variant 2) of the solution for two compo-
nents, the component type is just an alias for bool, and if-then-else constructs are used to select the
assertion matching the component. Several proof obligations using if-then-else constructs could
be proved automatically with Isabelle. The problem is that the if-then-else construct is not always
simplified when it appears in the assumptions of a goal. We have to add (and prove) a new rule
that states that

(if b then c else d) ≡ ((b ∧ c) ∨ (¬b ∧ d))

and instruct Isabelle to apply this rule automatically to rewrite the left hand side to the right
hand side. After this change all the lemmas can be proved automatically.

Runtime The following table gives an indication of the time it takes to replay the proof3:

Algorithm Proof obligations Runtime (sec)
2 components

Original 216 18
Variant 1: Alternative parallel composition 676 124
Variant 2: Parameterised 75 12
Variant 3: Fully parameterised 75 9

3 components
Original 1278 321
Variant 1: Alternative parallel composition 2619 2143
Variant 2: Parameterised 236 154
Variant 3: Fully parameterised 236 118

3An Intel Xeon 2.8GHz processor is used. Only a small fragment of the 4GB memory available is actually used.
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Isabelle is slower than PVS for the verification of all algorithms but the last variant of the
solution for three components. The verification of this algorithm was originally faster in Isabelle,
but after the changes to the model of the algorithm in PVS, as discussed in the end of the previous
section, the verification in PVS is also faster for this variant.

3.5 Conclusions

We have demonstrated how annotated parallel programs can be modelled in the tool, and we
have discussed the available language constructs. We have discussed different models and the
effect they have on the automated verification. We have discussed advantages of the two types of
parallel composition, and we have shown that binary parallel composition is a valuable addition
to the tool. Parallel composition over elements of a type has its advantages; we have shown how it
can be used to exploit symmetry between components, to create much shorter and more readable
programs.

27



28



Chapter 4

Automated verification using
Isabelle

4.1 Introduction

In this chapter the automated verification using Isabelle is discussed. A short introduction to
Isabelle is given in Section 4.2. We use the Proof Generator tool (see Chapter 2) for our verification
with Isabelle. Originally this tool only used PVS, but we have added support for Isabelle as back-
end of the tool. In Section 4.3 the Isabelle modelling of programs and annotation is discussed. It is
important to have an effective proof strategy; the proof scripts we have developed for Isabelle are
discussed in Section 4.4. The changes to the actual code of the tool are discussed in Section 4.5.
In Section 4.6 we discuss the results of our experiments with the automated verification of several
algorithms using our proof scripts. In Section 4.7 the problematic proofs are evaluated, and
possible solutions to the problems encountered are discussed.

4.2 Introduction to Isabelle

Isabelle [Pau94] is a theorem prover developed at Cambridge University and the TU Munich.
Isabelle is generic, different logics are available and users can add their own logic and tactics. In
this report we consider Isabelle 2004 in combination with the logic HOL, the Higher Order Logic.
When we refer to Isabelle, we are actually referring to the combination Isabelle/HOL. This section
is an introduction to the aspects of Isabelle that are relevant for this report.

The specification language of Isabelle is similar to functional programming languages like ML
and Haskell. Functions are curried, they are lambda abstractions and they are total, i.e. they are
defined for all possible input values.

Types Every term in Isabelle is typed. Types in Isabelle are non-empty. Function types in
Isabelle are denoted by the function type operator ⇒ . Function application is left associative and
the function type operator is right associative.

If M is a term of type τ1 ⇒ τ2 ⇒ τ3 (notation: M :: τ1 ⇒ τ2 ⇒ τ3 ) and N is a term of type
τ1 then the application of M to N (notation: M N ) is a term of type τ2 ⇒ τ3 . The term f x y
should be read as (f x) y , the application of f x to y .

Isabelle uses a system similar to Haskell’s to determine (“infer”) the type of a term using the
context. One of the advantage of this is that we do not need to specify the type of every term
explicitly.

29



Representation of goals Isabelle uses a meta-logic to represent theorems and goals. This
meta-logic is independent of the actual logic used (HOL in our case). Generalised Horn clauses
are used to represent the goals and theorems in this meta-logic; they are of the following form:

[[φ1 ; . . . ; φn]] =⇒ ψ

where 0 ≤ n . This states that under the assumption that the conjunction of φ1 . . . φn (the
assumptions or premises) holds, we have to prove that ψ (the conclusion) holds. If the sequence
of assumptions is empty, then both the brackets and the arrow are omitted. The brackets are also
omitted if there is only a single assumption. This goal is logically equivalent to:

〈 ∀i : 1 ≤ i ≤ n ⇒ φi 〉 ⇒ ψ

Variables Isabelle has three kinds of variables. In addition to the usual free and bound variables,
a third kind of variable is used: schematic or unknown variables. Schematic variables are defined
at the meta-logic, they are placeholders for terms and they can be substituted by a term of the
correct type during the proof process. Consider for example the following goal:

f ?x =⇒ f 15

The names of schematic variables start with a question mark: ?x is a schematic variable. The
goal can be proved by substituting the term 15 for ?x . Not every term with the correct type
can be substituted for a schematic variable: terms that depend on bound variables cannot be
substituted. In Section 6.3.5 an example is discussed that illustrates why this is not permitted.

Proof process Theorem provers are used to prove lemmas or theorems. At any point in the
proof process the proof state consists of zero or more subgoals. The initial proof state has one
subgoal, the lemma that has to be proved. Tactics, or theorem proving functions, are used to
transform a proof state into another proof state: they can change subgoals into subgoals that
are logically equivalent or stronger, split them into multiple (smaller) subgoals, or discharge them
when they have been proved to be valid. Subgoals are valid when it is trivial they are equivalent
to true.

To keep proofs sound, tactics are built on top of a small kernel that offers only a very limited
number of functions to manipulate the proof state. The following categories of available tactics
are of our interest:

• Unification

Unification is used by most tactics. It is used to find instantiations for schematic variables.
The assumption tactic, for example, attempts to unify the conclusion with the assumptions,
in an attempt to find instantiations for schematic variables to prove the goal. Two terms t
and u are unifiable if there exists a substitution σ such that tσ = uσ , where the application
of substitution to a term is written as a suffix.

Consider for example the term f a ?x and the term f ?y b . The two terms are unifiable
because with σ = {?x 7→ b, ?y 7→ a} , both (f a ?x)σ and (f ?y b)σ are equal to f a b .
Unification in Isabelle is more complicated than this example as it has to take types into
account, higher order unification is used and there are restrictions to the terms the schematic
variables can be instantiated with. See [NPW02, Section 5.8] for more information about
unification in Isabelle.

• Natural deduction

Natural deduction forms the basis for reasoning in Isabelle. Natural deduction in Isabelle
involves unifying a goal with an inference rule, and replacing the goal with one or more
goals based on the rule. Such an inference rule in Isabelle is in essence nothing more than a
previously proved theorem in the right form.
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Natural deduction rules are categorised according to how they are most likely to be used. The
categories are: introduction, elimination, and destruction. The standard introduction and
elimination rules for the logical connectives and quantifiers as we know them from natural
deduction calculus are available. New rules can be defined, and added to the set of default
rules, provided they have been proved first. Next, examples are used to demonstrate the
three categories of rules.

An example of an introduction rule is
?P ?Q
?P ∧ ?Q

(conjI)

This rule states (justifies) that if we have proved ?P , and we have proved ?Q , that we then
can conclude (infer) ?P ∧ ?Q . In Isabelle, this rule is written as:

[[ ?P ; ?Q ]] =⇒ ?P ∧ ?Q (conjI)

The rule tactic applies introduction rules such as conjI to a goal. The rules are applied
backwards. If the tactic apply(rule conjI) is applied to the goal

[[φ1 ; . . . ; φn ]] =⇒ ψ1 ∧ ψ2

then the conclusion of the goal is unified with the conclusion of the rule. They unify with
the mapping: σ = {?P 7→ ψ1, ?Q 7→ ψ2} . This mapping is applied to the premises of the
rule (i.e. conjI ), and it can be concluded that ψ1 ∧ ψ2 can be proved by proving that both
(?P )σ and (?Q)σ hold (ψ1 and ψ2 ).

The goal is replaced by the following two subgoals:

– [[φ1 ; . . . ; φn ]] =⇒ ψ1

– [[φ1 ; . . . ; φn ]] =⇒ ψ2

An example of an elimination rule is:
?P ∨ ?Q

[?P ]....
?R

[?Q]....
?R

?R
(disjE)

In Isabelle, this rule is written as:

[[ ?P ∨ ?Q ; ?P =⇒ ?R ; ?Q =⇒ ?R ]] =⇒ ?R (disjE)

This elimination rule should be read as:

If we have to prove ?R and we have already established that ?P ∨ ?Q holds, then
it suffices to show that ?R can be proved using the extra assumption ?P , and
that ?R can be proved using the extra assumption ?Q .

The erule tactic applies elimination rules to a goal. If apply(erule disjE) is applied to
the goal

[[ δ1 ∨ δ2 ; φ1 ; . . . ; φn ]] =⇒ ψ

then the first premise of the rule is unified with one of the assumptions of the goal, and the
conclusion of the rule is unified with the conclusion of the goal. Applied to our example, the
first assumption is used as it matches the first premise of the rule. This gives the mapping:
σ = {?P 7→ δ1, ?Q 7→ δ2, ?R 7→ ψ} . The substitution σ is applied to the elimination rule,
and from the theorem that results from the substitution it can be concluded that it suffices
to prove δ1 =⇒ ψ and δ2 =⇒ ψ :

– [[φ1 ; . . . ; φn ]] =⇒ δ1 =⇒ ψ

– [[φ1 ; . . . ; φn ]] =⇒ δ2 =⇒ ψ

These goals are the same as:
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– [[φ1 ; . . . ; φn ; δ1 ]] =⇒ ψ

– [[φ1 ; . . . ; φn ; δ2 ]] =⇒ ψ

since [[P ; Q ]] =⇒ R is nothing more than a shorthand notation for P =⇒ Q =⇒ R .

Destruction rules are rules that transform one of the assumptions of a goal into a weaker
assumption. A relevant example of a destruction rule is:

ALL x. ?P x =⇒ ?P ?x (spec)

This destruction rule is applied using apply(drule spec). The spec destruction rule justifies
the transformation of an assumption matching ∀x. ?P x into the weaker assumption ?P ?x .

When a rule is applied, it is possible to supply substitutions for the schematic variables
of the rule. For example apply(drule tac x="x1" in spec) applies the destruction rule
spec, and substitutes x1 for the schematic variable ?x in the spec rule. The effect of this
application is that a universal quantifier in the assumptions is instantiated with the term x1 .
If an elimination rule or a destruction rule can be matched with more than one assumption,
then the first match in the list of assumption is used. Visually, this is the one most to the
left. If the first match in the list is not the assumption that should be used, the rotate tac
tactic can be used to change the position of the assumptions in the list. For more information
about inference rules in Isabelle, see [NPW02, Section 5].

• Simplification

The simp tactic uses conditional rewrite rules of the form

[[φ1 ; . . . ; φn ]] =⇒ (lhs = rhs)

This rule states that if the premises φ1 . . . φn hold in the context of a goal, then lhs is
equivalent to rhs in the goal. This rule justifies rewriting lhs to rhs in the current goal if
the premises of the rule are valid for the current goal. In addition to the large number of
simplification rules standardly available in Isabelle, the user can add new rewrite rules to
the set of default rewrite rules, and can choose which ones to apply, or not to apply, each
time the simplifier is invoked. Not every theorem of the correct form is suitable as rewrite
rule. Namely, rhs should be smaller than lhs, according to some well-founded order, to
prevent endless loops; especially for rules that are applied by default. This is not enforced
by Isabelle, it is possible for the user to create a rewrite system that doesn’t terminate.
The simp tactic also creates rewrites rules from the assumptions. Apart from rewriting,
the simp tactic can also solve simple arithmetic expressions. For more information about
simplification and rewriting in Isabelle, see [NPW02, Section 2.5.1].

• Classical reasoning Classical reasoning uses a set of inference rules (natural deduction
rules) and backtracking to search for a proof. Different tactics are available that use classical
reasoning. The following tactics in this category are of interest:

– safe and clarify. The safe tactic applies all safe rules. These are rules that cannot
render a goal unprovable. When safe rules are applied to a goal, the goal is transformed
into a logically equivalent goal. Rules that can render a goal unprovable are unsafe.
The difference between the tactics safe and clarify is that clarify is restricted to safe
reasoning steps that do not split the goal into subgoals.

– auto and force combine classical reasoning with simplification. While auto is applied
to all subgoals, force is applied to only a single goal, the first subgoal by default. The
force tactic “tries harder” to prove the goal and therefore it can take longer to terminate
[NPW02, Section 5.13]. force either proves the goal, or fails if it is not able to prove
the goal. auto tries to prove as much as possible, and only fails if it did not make any
changes. auto terminates in a proof state where for each of the subgoals that could not
be proved completely, only safe rules and simplification have been applied.
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– blast, fast and best. blast uses a built-in first order reasoner. fast and best use standard
Isabelle inference. The tutorial [NPW02, Section 5.13] describes the fast tactic and the
best tactic as “legacy methods that work well with rules involving unusual features.”
For more information about classical reasoning and the tableau method used by blast
we refer to [Pau99].

• Arithmetic The arith tactic uses linear algebra to prove a goal.

• Case distinction The case tactic implements case distinction. If apply(case tac "P x")
is applied to the goal

[[φ1 ; . . . ; φn ]] =⇒ ψ

then the goal is split into the following two subgoals:

[[φ1 ; . . . ; φn ; P x ]] =⇒ ψ

[[φ1 ; . . . ; φn ; ¬P x ]] =⇒ ψ

The first assumes that P x holds, the second assumes that P x does not hold.

• Use other theorems The insert tactic adds axioms and theorems to the assumptions of
a goal. Theorems can only be added if they have been proved first.

The subgoal tactic introduces assumptions to a goal. If apply(subgoal tac "P x") is ap-
plied to the goal

[[φ1 ; . . . ; φn ]] =⇒ ψ

then the goal is split into the following two subgoals:

[[φ1 ; . . . ; φn ; P x ]] =⇒ ψ

[[φ1 ; . . . ; φn ]] =⇒ P x

The first subgoal is the original subgoal with the extra assumption added and the second
subgoal forces the user to prove that the assumption is actually valid.

The subgoal tactic is very similar to the case tactic. The difference is that the second subgoal
is weaker when case distinction is used.

Tactics are applied to the proof state using the apply or the by function. The difference between
the two is that the by function not only applies the tactic, but also tries to finish the proof, using
the assumption tactic and backtracking if needed. The application of a tactic fails, unless it makes
changes to the proof state. Tactics that are applied to a single subgoal, are applied to the first
subgoal by default. A proof is considered to be finished (lemma is proved) if the original proof
state is transformed into a proof state without any subgoals.

Tacticals can be used to combine tactics and to provide control structures. The following
tacticals are of interest:

Repetition: T+ Repeat tactic T for as long as T is successful, but at least once. If the first
application of T fails, then T+ fails.

Optional: T? The application of tactic T is optional. T is applied and T? is successful, even
if the application failed.

Choice: T|U T is applied. Only if this application fails, then is tactic U applied.
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type component = bool
var c, x, r : component → bool,

0: {〈 ∀b : ¬c(b) 〉} {inv: 〈 ∀b : c(b) ⇒ r(b) 〉}
par (b : component):

1: {¬c(b)}
r(b) := true

2: ; {¬c(b)}{r(b)}
x(¬b) := false

3: ; {¬x(¬b) ∨ c(¬b)}{r(b)}
x(b), c(b) := true, true

4: ; {¬x(¬b) ∨ c(¬b)}{r(b)}
if x(¬b) →

5: {c(¬b)}{r(b)}
x(b), c(b) := true, true

fi
6: {c(¬b)}{x(b)}{r(¬b)}

rap

Figure 4.1: Initialization Protocol for two components.

4.3 Modelling of programs and proof obligations

In this section we focus on the Isabelle representation of programs and proof obligations. A variant
of “The initialization protocol” for two components (Figure 4.1, discussed in Section 3.3) is used
as an example to show how the various aspects can be modelled in Isabelle.

The tool accepts an input file that defines the structure of the annotated program, and contains
the name of the file containing the Isabelle model of the statements, guards and assertions. The
structure of the program is completely independent of the theorem prover used, and is not modelled
in Isabelle.

The file that defines the guards, statements and assertions is called the import file. This file
contains the part of the model that is specific for the theorem prover, in this case Isabelle. This
import file is discussed first (Section 4.3.1).

The structure of the program, as defined in the input file, is used by the tool to construct the
proof obligations, in this case for Isabelle, using the guards, statements and assertions defined in
the import file. The proof obligations are part of the output of the tool. The modelling of the
proof obligations in Isabelle is discussed in Section 4.3.2.

4.3.1 Model of the program

The user is responsible for modelling the types, guards, assertions and the atomic statements in
Isabelle. The modelling of the example program is discussed in this section.

Data types In addition to the elementary types like bool and nat, which are standardly available
in Isabelle, extra types are needed. The example program uses a type component to identify
processes. For our example there are exactly two components and we define component to be an
alias for the type bool.

types
component = “bool ”

The data type state is used by the tool to denote a state of the program. We define the state type
as a record type, with a field for each variable of the program.
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record state =
c :: “ component ⇒ bool ”
x :: “ component ⇒ bool ”
r :: “ component ⇒ bool ”

For every field of the record, Isabelle creates a function which, given a state instance, delivers the
value of the field. For example the function c :: state ⇒ component ⇒ bool is introduced for the
state record type. This function takes an instance of a state, and delivers the value of the c field
of the state instance, which represents the variable c of the program.

types
predicate = “ state ⇒ bool ”

Because a predicate over state (state ⇒ bool) is used frequently, a short hand notation (predicate)
is created for this type. This alias is also used by the proof obligations generated by the tool.
Internally, Isabelle automatically translates the type predicate to its definition above.

Annotation Assertions and invariants are modelled as predicates over a state.

constdefs
ass 0a :: “ predicate ”
“ass 0a == %s. ALL b. ∼ c s b ”

inv 0a :: “ predicate ”
“inv 0a == %s. ALL b. c s b −→ r s b ”

ass 3a :: “ component ⇒ predicate ”
“ass 3a == %b s. ∼ x s (∼ b) | c s (∼ b) ”

Functions have a type (const) and a definition (def). The symbol % is used for λ-abstraction and
is followed by bound variables. In this case the type of the bound variables can be omitted because
they are determined (uniquely) from the environment. Bound variable b in ass 3a represents the
component identifier and bound variable s represents the state.

Atomic actions Guards are modelled as predicates over a state. Atomic statements are mod-
elled as their wlp, their weakest liberal precondition.

constdefs
guard 4a :: “ component ⇒ predicate ”
“guard 4a == %b s. x s (∼ b)”

wlp stat 1 :: “ component ⇒ predicate ⇒ predicate ”
“wlp stat 1 == %b p s. p ( s (| r := (r s)(b := True) |) )”

Recall that proof obligations are of the form [P ⇒ wlp.S.Q ]. Given a state s , a component b
and a post-assertion p , wlp stat 1 defines wlp.〈 r(b) := true 〉.p . In wlp stat 1 field r of the
state record is updated. (r s)(b := True) is a function update, which results in the function

λ d. if (d = b) then True else (r s d)

This function represents variable r after the assignment r(b) := true at control point 1.

Unfolding definitions Definitions in Isabelle are not automatically unfolded. To automatically
unfold our definitions in the proof, the definitions are added as default simplification (rewrite) rules.
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declare
inv 0a def [simp]
ass 3a def [simp]
guard 4a def [simp]
wlp stat 1 def [simp]

It is the user’s responsibility to add the relevant definitions to the set of default simplifier rules. In
theory it is possible to let the tool add them automatically, and this is usually preferred. But there
may be situations where you know beforehand that it is better not to unfold certain definitions.
There is a trade-off between convenience and flexibility. We value flexibility and have decided to
leave it to the user to decide which definitions to unfold automatically.

4.3.2 Modelling of the proof obligations

In this section the modelling of the proof obligations, which is part of the output of the tool, is
discussed. More information about the various aspects that have to be modelled can be found in
Section 2.3.

Control points The type of the lab variables is defined. Axioms are used to specify which
assertions and invariants are located at which control points.

consts
lab 3 :: “ bool ⇒ predicate ”

axioms
lab 3 inv 0a : “ ALL (s :: state)(b :: component). lab 3 b s −→ inv 0a s ”

lab 3 ass 3a : “ ALL (s :: state)(b :: component). lab 3 b s −→ ass 3a b s ”

Scope lemmas scp variables and the scope lemmas that define the relation between scp variables
and invariants are defined.

consts
scp 0 :: “ predicate ”

axioms
def scp 0 : “

ALL (s :: state).
scp 0 s =

( lab 0 s
| (EX (b :: component). lab 1 b s)
. . .

| (EX (b :: component). lab 6 b s)
)

”

lemma scp 0 inv 0a: “
ALL (s :: state). scp 0 s −→ inv 0a s ”

Proof obligations There are different types of proof obligations, each has a slightly different
format. We give an example of a proof obligation for local correctness, and we give an example of
a proof obligation for global correctness.
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lemma loc ass 3a stat 2 : “ lemma glob ass 3a stat 1 : “
ALL (s :: state). ALL (s :: state).

ALL (b :: component). ALL (b :: component).
lab 2 b s −→ ALL (b0 :: component).

wlp stat 2 b (ass 3a b) s ” (lab 3 b0 s & lab 1 b s) −→
(b ∼= b0) −→

wlp stat 1 b (ass 3a b0) s ”

4.4 Proof strategy

It is vital to have a generic proof script that is able to prove as many proof obligations as possible,
with a minimum amount of manual interaction. We distinguish two types of lemmas: scope lemmas
and proof obligations. First, the proof strategy for the scope lemmas is discussed in Section 4.4.1.
Finally, the proof strategy for the proof obligations is discussed in Section 4.4.2.

4.4.1 Scope lemmas

Scope lemmas are of the form:

ALL (s :: state). scp 0 s −→ inv 0a s (scp 0 inv 0a)

scp variables equal a disjunction of lab variables (the labels within the scope of the parallel
statement), this is defined using an axiom (c.f. def scp 0 ). For each of the lab variables there is an
axiom (c.f. lab 3 inv 0a) that states that the invariant (c.f. inv 0a) is located at a control point
(c.f. control point 3). Scope lemmas define the relation between scp variables and invariants, and
because of the definition of the scope variables (c.f. scp 0 ), they are valid by construction.

lemma scp 0 inv 0a: “
ALL (s :: state). scp 0 s −→ inv 0a s ”

apply(clarify)
apply(insert def scp 0, rotate tac -1)
apply(erule tac x = “s” in allE, rotate tac -1)
apply(safe)
apply(tactic {* cut facts tac [thm “lab 0 inv 0a”] 1 *}, simp only:)
apply(tactic {* cut facts tac [thm “lab 1 inv 0a”] 1 *}, simp only:)
. . .
apply(tactic {* cut facts tac [thm “lab 6 inv 0a”] 1 *}, simp only:)
done

Here we see the proof obligation and proof script of scope lemma scp 0 inv 0a. The outline of
the proof of a scope lemma is as follows: first the universal quantifier and the implication are
eliminated, using the clarify tactic.

Then the axiom defining the scope lemma is introduced (insert) and the universal quantifier
of the axiom is instantiated (erule tac). The rotate tac moves the introduced assumption to the
head of the list to ensure that the erule tac is applied to the right assumption. The safe tactic
follows, this tactic splits the goal into subgoals – one for each disjunction in the premises.

For each subgoal the axiom that defines the relation between the label and the invariant is
introduced using cut facts tac. Usually the insert tactic is used to strengthen the assumptions
with axioms, but here we use the lower level ML function cut facts tac instead. The reason for this
is that the insert tactic adds the axiom to the assumptions of every subgoal, while the cut facts tac
function gives us the choice to add axioms to the assumptions of a single subgoal. Adding the
axioms to the assumptions of each of the subgoals makes the proof unnecessary complicated, and
the time to prove the lemma increases dramatically if there are several invariants.
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Finally, the simp tactic proves all the subgoals. The only: part of the simplification tactic
instructs the tactic to use only the simplification rules that follow, in this case none. In this way,
only the rewrites rules derived from the assumptions and conclusion are used. This ensures that
the definitions are not unfolded, which is not required in this case, and would make the proof more
complicated.

4.4.2 Proof obligations

In this section the proof strategy for the proof obligations is discussed. We have experimented
with various proof scripts. First we discuss the most successful proof scripts: “Proof script A”
and “Proof script B”. Finally, various alternatives to the two proof scripts are discussed.

Proof script A

First Proof script A is given, and then the proof script is discussed. Afterwards, we discuss the
most important decisions using examples.

lemma loc ass 3a stat 2 : “
ALL (s :: state).

ALL (b :: component).
lab 2 b s −→

wlp stat 2 b (ass 3a b) s ”
apply(clarify)?
apply(insert lab 2 inv 0a, rotate tac -1)?
apply(erule tac x = ”s” in allE, rotate tac -1)?
apply(erule tac x = ”b” in allE, rotate tac -1)?
apply(insert lab 2 ass 2a, rotate tac -1)?
apply(erule tac x = ”s” in allE, rotate tac -1)?
apply(erule tac x = ”b” in allE, rotate tac -1)?
apply(insert lab 2 ass 2b, rotate tac -1)?
apply(erule tac x = ”s” in allE, rotate tac -1)?
apply(erule tac x = ”b” in allE, rotate tac -1)?
apply(clarsimp)?
apply(safe)?
by((auto | rule exI)+)?

The first part of the proof script is similar to the proof script for scope lemmas: clarify is
used to perform all the obvious reasoning steps, the universal quantifiers and the implications are
eliminated from the conclusion, and the appropriate axioms are introduced and their universal
quantifiers are instantiated with constants that represent the states and components. The ?
tactical indicates that the tactic is optional. Without this tactical the application of the tactic,
and thus the proof script, fails if it doesn’t change the proof state. For our proof script, it is
perfectly acceptable that tactics do not always change the proof state.

Next, clarsimp is used. This tactic applies simp and clarify. The simp tactic unfolds the
definitions used and applies other simplifications. clarify performs all the safe steps that do not
split the goals into subgoals.

If the goal is still not proved after clarsimp, the safe tactic is applied. This tactic applies all
safe rules, including those that split the goal. From this point on it is possible that there is more
than one subgoal in the proof state.

If there are still subgoals left after safe, then we have to resort to tactics that perform both
safe and unsafe steps. The auto tactic is used for this. In some situations, the auto tactic cannot
prove the goal if there is an existential quantifier on the top-level of the conclusion, but is able to
prove the goal if the existential quantifier is first replaced by a schematic variable. To prove even
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those goals, the choice tactical is used (auto | rule exI). This states that in the event that auto
fails, the elimination of the existential quantifier from the conclusion (rule exI) should be tried,
before giving auto another chance. If both fail, then auto | rule exI fails.

The + tactical indicates that the tactic should be repeated. It is used in combination with the
? tactical to apply the tactic zero or more times, as long as there is progress.

The by command does not only apply tactics, but also applies the assumption tactic afterwards
and uses backtracking to try to prove the goal.

Next, two examples are discussed. The first example shows a situation where auto is not able
to prove the goal without the extra rule exI. The second example demonstrates the importance
of backtracking and demonstrates that the order in which auto and rule exI are applied does
matter in some situations.

auto and rule exI Consider the following goal:∧
a b. [[ a ∼= b ; f b ]] =⇒ EX c. ( (c = a −→ f a) ∧ (c ∼= a −→ f c) )

Until now, we have only dealt with goals without any bound variables on the top-level of the goal,
but variables a and b of this goal are bound by a universal quantification at the top-level. The
assumptions and the conclusion are both within the scope of this universal quantifier.

The goal is valid, this can be proved by instantiating the existential quantifier with b . The
force tactic can prove this goal, but the auto tactic cannot. If the existential quantifier is replaced
by a schematic variable (rule exI), then we arrive at:∧

a b. [[ a ∼= b ; f b ]] =⇒ ((?c a b) = a −→ f a) ∧ ((?c a b) ∼= a −→ f (?c a b))

This goal is still valid, but now auto can prove this. Because the exI rule is in the set of rules
of default introduction rules, we suspect that auto fails to prove the original goal because of the
order in which rules are applied.

In most of our examples it makes no difference whether variables are free, or bound at the
outer level of the goal. But for this goal, it does make a difference for the auto tactic. If a and
b are free variables instead of bound variables, then the auto tactic is able to prove the goal
without having to apply the exI rule first. Unfortunately we cannot provide an explanation for
this behaviour.

backtracking Consider the following goal:

[[ f (3 ::nat) ; f 4 ]] =⇒ EX x. f x & f (x− 1)

f is a function from nat to bool. Because we have explicitly stated the type of term 3 , Isabelle
is able to infer the type of f and 4 . The auto tactic can prove this goal, auto is apparently able
to somehow determine a correct instantiation for the existential quantification, hence the goal can
be proved using the proof script. If instead of auto, rule exI is applied to the original goal, 3 is
substituted for ?x , and we arrive at:

[[ f (3 :: nat) ; f 4 ]] =⇒ f ?x & f (?x− 1) (4.1)

The existential quantifier has been eliminated, and the bound variable has become a schematic
variable. This goal is still valid, and can be proved by substituting the term 4 for the schematic
variable ?x . If we supply term 4 to be substituted for the schematic variable in exI, then the
simplifier can do the rest: apply(rule tac x = 4 in exI, simp). But, obviously, this is not a
viable option for the automated proof script, because the proof script has to prove arbitrary goals.
If auto is applied to the goal with the schematic variables (4.1), we arrive at:

[[ f (3 :: nat) ; f 4 ]] =⇒ f 2
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This obviously unprovable. To illustrate what goes wrong we will show, in small steps, what auto
does behind the scenes.

First the conjunction in the conclusion is eliminated: apply(rule conjI), the goal is split
into the following two new subgoals:

[[ f (3 :: nat) ; f 4 ]] =⇒ f ?x (4.2)
[[ f (3 :: nat) ; f 4 ]] =⇒ f (?x− 1) (4.3)

The first subgoal is proved using the assumption tactic (apply(assumption)); 3 is substituted for
?x , which changes the second subgoal to:

[[ f (3 :: nat) ; f 4 ]] =⇒ f (3− 1)

And this is where it goes wrong. Unification finds more than one candidate for the substitution
for the schematic variable, the tactic has to choose one, and picks the first by default. In this
case, an unfortunate choice was made, one that proved the first subgoal but rendered the second
subgoal unprovable. Even though the assumption tactic is applied to only the first goal, this
example illustrates that it can still effect other subgoals. Luckily, backtracking is available in
Isabelle. If the command back is used at this point, Isabelle tries the next candidate for ?x in
(4.2), which is 4. Using this substitution, both goals can be proved.

The by command uses backtracking automatically if the goal cannot be proved. So, if by(auto)
is used instead of apply(auto), then goal (4.1) can be proved automatically.

Proof script B

lemma loc ass 3a stat 2 : “
ALL (s :: state).

ALL (b :: component).
lab 2 b s −→

wlp stat 2 b (ass 3a b) s ”
apply(clarify)?
apply(insert lab 2 inv 0a, rotate tac -1)?
apply(erule tac x = “s” in allE, rotate tac -1)?
apply(erule tac x = “b” in allE, rotate tac -1)?
apply(insert lab 2 ass 2a, rotate tac -1)?
apply(erule tac x = “s” in allE, rotate tac -1)?
apply(erule tac x = “b” in allE, rotate tac -1)?
apply(insert lab 2 ass 2b, rotate tac -1)?
apply(erule tac x = “s” in allE, rotate tac -1)?
apply(erule tac x = “b” in allE, rotate tac -1)?
by( (clarify | simp | rule conjI | force)+ )?

The script starts the same way as Proof script A: the clarify tactic performs the obvious
reasoning steps. Implication and universal quantification are removed from the conclusion and the
relevant axioms are introduced and instantiated.

The relevant difference between the two proof scripts is that Proof script B applies the intro-
duction rule conjI earlier in the proof than Proof script A does. The conjI rule is a safe rule that
splits the goal into subgoals, one for each conjunct on the top-level of the conclusion. By applying
the conjI rule before other safe rules that split the goal, we achieve that clarify and simp can work
with less complex conclusions, which works better for many goals with conjunctive conclusions.

Furthermore, the force tactic is used instead of auto because we’d like to treat the goals
separately: in contrast to auto, the force tactic is only applied to a single subgoal. The tactics rule
conjI, clarify, and simp are also applied only to the first subgoal. Each time a subgoal is proved,
the next subgoal moves up in the list.
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This last combination of tactics has the following effect on the proof state:

1. Apply clarify and simp to the first subgoal. Then go to 2.

2. Apply rule conjI to the first subgoal. If this succeeds (the proof state has changed) then go
to 1. If not, then go to 3.

3. Apply force to the first subgoal. If this succeeds then the subgoal is proved and removed.
If there are no more subgoals left, then the original proof obligation is proved, if not, then
it goes back to 1 (another subgoal moved to the head of the list). If the subgoal cannot be
proved by force, then the proof obligation cannot be proved automatically with this proof
script.

Alternatives

Automated tactics There are various tactics available in Isabelle that do automated reasoning.
The tactics that do the main work in the proof scripts are auto and force. We have experimented
with alternatives like blast, best, fast, and even arith, but it turned out that none of them were as
effective as auto and force, at least not for our current set of examples.

Elimination of implication and universal quantification in the conclusion The first step
in the proof scripts is the elimination of the implications and universal quantifiers in the conclusion.
Initially the tactic apply(intro impI allI) was used for this. This tactic applies the rules
impI (introduction rule for implication) and allI (introduction rule for universal quantification)
repeatedly, as long as there is progress.

There are proof obligations where false is in the antecedent of an implication and thus in the
assumptions of the goal after the elimination of implication and universal quantification. Because
false is stronger than any arbitrary term, there is no need to introduce and instantiate axioms if
false is in the premises. If apply(clarify) is used instead of apply(intro impI allI), then a
goal with false in the antecedent is proved by this first step, because clarify also applies other safe
rules and one of them is able to prove goals with false in the assumptions/antecedent. In such
case, the axioms are never employed, and the definitions of assumptions, statements and guards
are never unfolded. This approach speeds up the proof considerably if there are a large number
of proof obligations with false in an antecedent of an implication; this is one of the reasons why
we adjusted the scripts.

Order clarify and simp The tactics clarsimp, auto, and force internally use the tactics simp
and clarify. It turned out that the order in which simp and clarify are applied can make a
significant difference.

The Isabelle/HOL tutorial [NPW02] describes the clarsimp tactic as: “a method that inter-
leaves clarify and simp”. Reading this description, one might expect that the clarify tactic is
applied before the simp tactic, but it is actually the other way around, simp is applied first. Ex-
periments have taught us that the performance of Proof script A is better if simp is applied first
and that the performance of Proof script B is better if clarify is applied first. Originally, clarsimp
was used for both proof scripts, but we have changed it to clarify | simp in Proof script B.

Both the time it takes to prove the proof obligations, and the number of proof obligations that
can be proved automatically, is influenced by this order. We have run into goals that can only be
proved automatically if clarify is applied first, before unfolding the definitions. By applying clarify
as the very first step in the proof, we have solved this problem for our current set of examples.

Next, we discuss an example of a goal that can be proved automatically if clarify is applied
first, but cannot be proved automatically if simp is applied first. Consider the following goal:

[[∼ b ; ∼ ( (if a then ∼ b else ∼ c) | c ) ]] =⇒ false
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If simp is applied to this goal then we arrive at goal (4.4), and if clarify is applied to this goal
then we arrive at goal (4.5).

[[∼ b ; ∼ (if a then ∼ b else ∼ c) & ∼ c ]] =⇒ false (4.4)
[[∼ b ; ∼ c ]] =⇒ if a then ∼ b else ∼ c (4.5)

Both goals are still valid, but the first goal cannot be proved by auto, nor by force. The second
goal can be proved by both auto and force.

The original goal cannot be proved by auto, but can be proved by force. The example above
shows why: the auto tactic starts by applying simp, and the force tactic applies clarify first.

4.5 Adding Isabelle support to the tool

Initially, the tool only generated proof obligations and their automatic proof scripts for PVS.
Support for Isabelle has been added to the tool. In Section 4.3 we have discussed how programs,
annotation and proof obligations can be modelled in Isabelle. In Section 4.4 we have discussed the
default proof strategy for the Isabelle proofs. In this section we give an overview of the changes
made to the tool in order to add support for Isabelle.

The tool reads a file that defines the structure of the program, this file is parsed and an internal
representation of the program and the proof obligations is created. The tool then uses this internal
representation to generate the proof obligations and the proof scripts for a theorem prover.

The internal representation uses separate classes for the representation of each type of proof
obligation. The following fragment of Python code of the tool shows the class that is used to rep-
resent the proof obligation for the local correctness of {P}S{Q} , where S is an atomic statement.

class SimpleLocalCorrectnessProof(LocalCorrectnessProof):

def to_pvs(self):

P = self.P

S = self.statement

Q = self.assertion

lines = self.pvs_proof_start()

lemma_dependencies = S.dependent_declarations

lines.append(pvs.forall(lemma_dependencies))

lines.append(’%s =>’ % P.to_pvs())

lines.append(’%s(%s)(s)’ % (S.to_pvs(), Q.to_pvs_no_state()))

return indent_lines(lines)

def to_isabelle(self):

P = self.P

S = self.statement

Q = self.assertion

lines = self.isabelle_proof_start()

lemma_dependencies = S.dependent_declarations

lines.append(isabelle.forall(lemma_dependencies))

lines.append(’%s -->’ %P.to_isabelle())

lines.append(’%s (%s) s"’ % (S.to_isabelle(), Q.to_isabelle_no_state()))

return indent_lines(lines)

The function to isabelle() has been added to translate this particular type of proof obligation
to an Isabelle representation. A similar function is added to each of the classes that represents
a type of proof obligation. The representation of axioms, definitions and the proof scripts are
handled in a similar way.
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A notable difference between Isabelle and PVS is the way proof obligations are related to their
proofs. In Isabelle, proof obligations and their proofs are combined: in the Isabelle theory, a
proof obligation is directly followed by the proof. An Isabelle theory is read from top to bottom,
and definitions and theorems can only be used if they have already been declared and proved
previously. In PVS, the proof obligations are separated from their proofs. Every theory consists
of a file containing the definitions and the proof obligations, and another file containing the proofs
of the proof obligations.

Only minor changes to the tool were required to combine the proof obligations and proofs for
the Isabelle.

4.6 Experiments

We have experimented with various, mostly small, annotated algorithms. Correctness of some
algorithms can be verified completely automatically using the tool and Isabelle, others need in-
teraction with the user – the user has to prove some of the proof obligations manually. In this
section a summary of the outcome of the experiments is given.

The following algorithms have been modelled and verified with Isabelle:

– a coarse-grained and a finer-grained solution of a simple election protocol [FvG99] (see also
Section 3.2);

– several variants of “The Initialization Protocol” for two and three components [FvG99] (see
also Section 3.3);

– monitored phase synchronization [FvG99];

– mutual exclusion using a ticket algorithm [PN02];

– mutual exclusion using Peterson’s algorithm for two processes [FvG99];

– mutual exclusion using semaphores [PN02];

– parallel linear search [FvG99];

– wait-free consensus protocol [Moo02];

– wait-free handshake register [Hes98].

The results are shown in Table 4.1 1. For each of the algorithms the number of proof obligations
generated, the number of proof obligations that can be proved automatically and an indication
of the time it takes to replay the complete proof using Proof script A or Proof script B is given.
The proofs that could not be proved automatically are proved manually, and the failed attempts
to prove them automatically are not included in the runtime.

The cases where manual proofs are required are displayed in bold. For all these cases, with the
exception of the second variant of “The Initialization Protocol” for three components, the set of
proof obligations that require manually proofs is the same for both proof scripts. For the second
variant of “The Initialization Protocol” for three components, there are six proof obligations that
can be proved with Proof script A, but cannot be proved using Proof script B.

Even though more can be proved using Proof script A, Proof script B is faster for some
algorithms. This difference is most noticeable for the proof of the “Wait-free handshake register”
algorithm.

4.7 Evaluation of the Isabelle proofs

In this section the Isabelle proofs of the various algorithms discussed in the previous section are
evaluated. The problematic lemmas are discussed; for each problematic lemma we attempt to
determine why it is problematic and what can possibly be done about it.

1An Intel Xeon 2.8GHz processor is used. Only a small fragment of the 4GB memory available is actually used.
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# Auto Time (sec)
Algorithm # Obligations A B A B
A simple election protocol (coarse-grained) 27 27 27 5 2
A simple election protocol (finer-grained) 60 60 60 5 5
Init. protocol for two components (Original) 216 216 216 18 16
Init. protocol for two components (Variant 1) 676 676 676 124 114
Init. protocol for two components (Variant 2) 75 75 75 12 12
Init. protocol for two components (Variant 3) 75 75 75 9 6
Init. protocol for three components (Original) 1278 1278 1278 321 288
Init. protocol for three components (Variant 1) 2619 2619 2619 2143 1947
Init. protocol for three components (Variant 2) 236 236 230 154 146
Init. protocol for three components (variant 3) 236 236 236 118 100
Monitored phase synchronization 93 69 69 11 10
Mutual exclusion using a ticket algorithm 71 59 59 12 11
Mutual exclusion using Peterson’s algorithm 51 51 51 4 4
Mutual exclusion using semaphores 13 13 13 1 1
Wait-free consensus protocol 26 26 26 1 1
Wait-free handshake register 178 172 172 1664 572
Parallel linear search 17 17 17 1 1

Table 4.1: Results of the experiments

4.7.1 Mutual exclusion using a ticket algorithm

In this section we address the problems encountered when verifying “Mutual exclusion using a
ticket algorithm”. We discuss several (generalised) problems we encountered when trying to prove
the proof obligations.

Consider the following goal:

[[ ALL c. turn s c < num s ; turn s c1 = num s ]] =⇒ num s = 0

where turn is of type: component⇒ state⇒ nat. This goal is obviously valid as the conjunction
of the assumptions is equivalent to false. We can prove this by instantiating the universal quantifier
with term c1 , and applying simplification afterwards: by(erule tac x = "c1" in allE, simp).
Unfortunately the automated tactics (tactics that do automated reasoning, using the default
settings and rules), and thus the proof scripts, cannot prove this goal. Each tactic that does
automated reasoning fails on this goal. The problem is that the quantifier is not instantiated or
simplified. There are various ways to use the universal quantifier in the assumptions. We first
discuss various options, and a more detailed explanation follows. The options are:

1. Instantiate the quantifier.

2. Weaken ALL x. P x to P ?x . The unsafe (destruction) rule spec can do this strengthening
of the goal. This is possible because types are non-empty.

3. Move the quantifier from the assumptions to the conclusion. To this end we define the
(elimination) rule:

[[ ALL x. ?P x ; (∼?Q =⇒ EX x. ∼ ?P x) ]] =⇒ ?Q

This rule states that ALL x. ?P x in the assumptions can be moved to the conclusion as
EX x. ∼ ?P x , if the negation of the original conclusion is added as an assumption. Even
though this transformation is safe, the existential quantification in the conclusion may be
treated different from the universal quantification in the assumptions.
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Re 1 There are no tactics available to automatically instantiate the quantifier with terms, using
some heuristics or simply using brute force to find candidates for the instantiation. When
we’re proving the goal interactively, the instantiation with c1 is obvious, but this is very
specific for this goal; we cannot use this in a proof script.

Re 2 After applying the elimination rule we arrive at:

[[ turn s ?c < num s ; turn s c1 = num s ]] =⇒ num s = 0 (4.6)

The automated tactics cannot prove this goal. We expected this to be a typical goal for the
arith tactic, but this tactic is also not able to prove this goal.

Next we experiment with different tactics to try to prove this goal. First we apply the tactic
apply(subgoal tac "∼ turn s c1 < num s"). This transforms (4.6) into the following
two subgoals:

[[ turn s ?c < num s ; turn s c1 = num s ; ∼ turn s c1 < num s ]] =⇒ num s = 0
(4.7)

[[ turn s ?c < num s ; turn s c1 = num s ]] =⇒ ∼ turn s c1 < num s (4.8)

If auto is used at this point, the second subgoal (4.8) is proved, but the first subgoal (4.7) is
transformed back to its original (4.6) — removing the additional assumption. The simplifier
is to blame for this; each tactic that uses the simplifier has this as result. Part of the
simplifier trace is:

SIMPLIFIER INVOKED ON THE FOLLOWING TERM:
[| ALL c. turn s c < num s; turn s c1 = num s;

˜ turn s c1 < num s |] ==> num s = 0
Applying instance of rewrite rule:
turn s c1 == num s
Rewriting:
turn s c1 == num s
Applying instance of rewrite rule "HOL.order_less_irrefl":
?x1 < ?x1 == False
Rewriting:
num s < num s == False
Applying instance of rewrite rule "HOL.simp_thms_8":
˜ False == True
Rewriting:
˜ False == True
Adding rewrite rule:
turn s ?x1 < num s == True

Blast does not use the simplifier and is able to prove the first subgoal (4.7). The ?c variable
in the second subgoal (4.7) is then bound to c1 , and the simplifier can prove this last
subgoal.

Unfortunately, this cannot be used in the default proof script, as it is too specific for this
goal (the subgoal tac, that is).

Re 3 After the quantifier has been moved from the assumptions to the conclusion, we arrive at:

[[ turn s c1 = num s ; num s ∼= 0 ]] =⇒ EX c. ∼ turn s c < num s

This goal cannot be proved using the tactics that do automated reasoning, using the default
settings. After applying the obvious steps (apply(clarify, rule exI)) we arrive at:

[[ turn s c1 = num s ; 0 < num s ]] =⇒ ∼ turn s ?c < num s
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When clarify (or any tactic that uses clarify) is applied to this goal, then turn s ?c < num s
is moved to the assumptions, leaving false in the conclusion. This new goal can still not be
proved automatically.

We use the fact that ∼ a < b is equivalent to (a ∼= b) −→ b < a and define and prove
the introduction rule:

(?P ∼= ?Q =⇒ ?Q < ?P ) =⇒ ∼ ?P < ?Q (LT CONC)

After applying this rule (apply(rule LT CONC)) we arrive at the goal:

[[ turn s c1 = num s ; 0 < num s ; turn s ?c ∼= num s ]] =⇒ num s < turn s ?c

This goal can be proved by substituting c1 for ?c , and this is exactly what the automated
tactics do. The reason the instantiation for this goal is found automatically, in contrast to
the original, is that unification succeeds here.

Unfortunately, this solution is too specific for this goal. Note that even if the rule LT CONC
would be added to set of default introduction, then in order to prove this goal we would
still have to ensure that it is applied before the rule that moves the negated formula in the
conclusion to the assumptions.

In conclusion, we have no other choice but to prove the proof obligations of this form manually.

Consider the following goal:

(f :: nat ⇒ nat) a = g b =⇒ g b = f ?a

For the sake of readability, type information is left out from this point on. This goal is valid with
?a := a , but this cannot be proved using the automated tactics. It can be proved automatically
after applying symmetry of = : apply(rule sym)

f a = g b =⇒ f ?a = g b

The assumption tactic proves this resulting goal: the tactic unifies the conclusion with the as-
sumption and finds a correct instantiation that proves the goal. The sym rule cannot be a default
introduction rule because it would result in situations where the left and right hand side of an
equation are swapped indefinitely.

Next we try some variations of the goal. First the left and right hand side of both equations
are swapped:

g b = f a =⇒ f ?a = g b

The auto tactic can prove this goal, which was a bit of a surprise at first. It is actually the
simplifier that proves the goal, the output of the simplifier trace is:

SIMPLIFIER INVOKED ON THE FOLLOWING TERM:
(g::nat => nat) (b::nat) = (f::nat => nat) a ==> f (?a::nat) = g b
Adding rewrite rule:
(g::nat => nat) (b::nat) == (f::nat => nat) a
Applying instance of rewrite rule:
(g::nat => nat) (b::nat) == (f::nat => nat) a
Rewriting:
(g::nat => nat) (b::nat) == (f::nat => nat) a
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The simplifier creates a rewrite rule that states that g b can be rewritten into f a , which is then
applied and we arrive at a goal with f ?a = f a in the conclusion, which is trivially true. We
did not get a similar result for the original goal because the assumption of the original goal was
f a = g b , and a rewrite rule that rewrites f a into g b was added, but there was no f a in
the conclusion.

Next, consider the following goal:

f a = q =⇒ q = f ?a (4.9)

The only difference between this goal and the original goal is that the term g b is replaced by
the variable q ; both terms are of type nat. This resulting goal can be proved automatically using
the simplifier. The reason that this goal can be proved, in contrast to the original, is that for this
goal a rewrite rule is added that rewrites q into f a . Apparently a distinction is made between
terms that are just variables, and terms that are not variables.

4.7.2 Initialization protocol

We have encountered three types of problems when verifying the variants of the initialization
protocol for two and three components:

1. Isabelle’s automated tactics do not use the fact that X, Y and Z are the only possible values
a term of type component can have, for the solutions for three components.

2. Isabelle’s automated tactics do not always simplify (and use) if-then-else constructs.

3. There are proof obligations that can be proved using Proof script A, but cannot be proved
with Proof script B.

Next, these three problems are discussed.

component enumeration type The component type for the solutions for three components is
defined as datatype component = X | Y | Z. The only three possible values for a term of type
component are X, Y and Z. Even though Isabelle automatically defines a theorem stating just this,
the automated tactics of Isabelle do not use this fact. As a consequence, several proof obligations
cannot be proved automatically without adding this fact to the assumptions of the proofs. Those
proof obligations are of the form:

[[ (i :: component) ∼= X ; i ∼= Y ; r i ]] =⇒ r Z

The proof of this goal needs the fact that, because i is not equal to X , and is not equal to Y ,
Z is the only possible value for i . The following theorem is added as a system invariant of the
program:

ALL (c :: component). c = X | c = Y | c = Z

Using this extra invariant, the proof obligations can be proved automatically using the proof
scripts.

If-then-else construct The second variant of the solution for two components uses if-then-else
constructs to select the correct assertion, assignment or guard for the specific component. Several
proof obligations using this if-then-else construct could not be proved automatically.

Consider the following goal:

[[ if b then c else d ; ∼ c ]] =⇒ d
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As c is false , b can only be false , hence d is true. This goal cannot be proved using the
automated tactics. To prove this goal we’d like to rewrite the if-then-else construct on booleans.
The following equalities can be used:

if b then c else d ≡ (b −→ c) ∧ (∼ b −→ d) (4.10)
if b then c else d ≡ (b ∧ c) ∨ (∼ b ∧ d) (4.11)

While equation (4.10) is most efficient for if-then-else constructs in the conclusion, equation (4.11)
is most efficient for if-then-else constructs in the assumptions. An introduction rule that uses equa-
tion (4.10) to replace if-then-else constructs in the conclusion is in the set of default introduction
rules.

if-then-else constructs in the assumptions are not simplified in this way. This is most likely
because it could lead to a large number of disjunctions and implications in the assumptions.
Disjunctions and implications in the assumptions can lead to a large number of subgoals as the
safe tactic tends to split every goal into two subgoals, for each implication and disjunction in
the assumptions. (4.11) is more efficient for if-then-else constructs in the assumptions because we
only get one disjunction in the assumptions, where (4.10) would add two implications: the number
of possible splits is linear in the number of if-then-else constructs in the assumptions, instead of
exponential.

We add the following destruction rule to the set of default rules:

(if a then b else c) =⇒ (a & b) | (∼ a & c) (split disj)

With this extra rule, all the problematic proof obligations can be proved automatically. Note that
even though this rule is used as a destruction rule (it transforms one of the assumptions), it is
actually safe, as it transforms the assumption into a logically equivalent assumption.

We were surprised that even the following goal could not be proved automatically without this
rule:

[[∼ p ; ∼ q ; if b then p else q ]] =⇒ false

The simplifier should be able to prove this: both p and q in the if-then-else construct can be
simplified to false, and if b then false else false can be rewritten to false, using the rewrite rule
split cancel, which is in the set of default simplifier rules. Even though the simplifier adds rewrite
rules from p and q to false, they are not automatically applied to the assumption. In [NPW02,
Section 3.1.9] it is indeed mentioned that the simplifier only simplifies the if condition, and does
not simplify the then part and the else part.

Proof script A versus Proof script B After the changes mentioned above, all proof obliga-
tions can be proved automatically using Proof script A, but there are a few proof obligations of
the second variant of the solution for three components that cannot be proved with Proof script
B. Next these proof obligations are discussed.

After simplification the goals are of the form:

[[ ALL c. c = X | c = Y | c = Z ; i ∼= i0 ; i ∼= Y ; i ∼= X ; i0 ∼= Y ]]
=⇒ i0 = X

This goal is valid because i can only be Z , hence i0 can only be X . auto and blast, and thus
Proof script A, can prove this goal. But, force, and thus Proof script B, cannot. Only after the
universal quantification is copied and instantiated with i , or case analysis is applied on both i
and i0 , force is able to prove this goal. Both solutions are too specific for this goal and cannot
be used in a generic proof script.

In conclusion, if we use Proof script B as default proof script for this algorithm, then we have
to prove the proof obligations of this form manually.
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4.7.3 Monitored phase synchronization

24 of the proof obligations generated for this algorithm cannot be proved automatically using
Isabelle, using either Proof script A or Proof script B. Next we discuss the problems encountered.

Consider the following goal:

[[ ALL d. (x d ≤ m) = (d = f) ; c0 = f ; ALL d. m ≤ x d ]] =⇒ x c0 ≤ x d0

If the first universal quantifier is instantiated with c0 , and the second quantifier is instantiated
with d0 , then we get (x c0) ≤ m ≤ (x d0) in the assumptions. The conclusion is then trivially
true because of the transitivity of ≤ . This can be proved using the simp or arith tactic. Even
though the number of candidates for the instantiation the quantifiers is very limited, none of the
automated tactics can prove the original goal. Since the proof requires only a single instantiation
of both quantifiers, we can try to weaken the quantifiers to schematic variables using apply(drule
spec)+. The resulting goal is:

[[ (x ?d ≤ m) = (?d = f) ; c0 = f ; m ≤ x ?d2 ]] =⇒ x c0 ≤ x d0

This goal is still valid with ?d := c0 and ?d2 := d0 . Isabelle uses only unification to find candi-
dates for the substitution of schematic variables, but unification is not able to find any candidates
for ?d and ?d2 , and the goal can still not be proved automatically. We have no other choice but
to prove the proof obligations of this form manually.

Next we give another example of a goal that could not be proved using the proof scripts.
Consider the following goal:

ALL d. x < f d =⇒ Suc x ≤ f d0

Where Suc is the successor function for naturals. This goal can be proved by instantiating the
quantifier with term d0 and applying simp afterwards, but cannot be proved automatically.

Suc x ≤ f d0 is equivalent to x < f d0 . The lemma Suc le eq, which is available (and
proved) in the HOL library, states this. The simplifier can prove the goal when this lemma is
added to the set of default rewrite rules, we give the relevant part of the simplifier trace:

Adding rewrite rule "Nat.Suc_le_eq":
Suc ?m1 <= ?n1 == ?m1 < ?n1
SIMPLIFIER INVOKED ON THE FOLLOWING TERM:
ALL d. x < f d ==> Suc x <= f d0
Adding rewrite rule:
x < f ?d1 == True
Applying instance of rewrite rule "Nat.Suc_le_eq":
Suc ?m <= ?n1 == ?m1 < ?n1
Rewriting:
Suc x <= f d0 == x < f d0
Applying instance of rewrite rule:
x < f ?x1 == True
Rewriting:
x < f d0 == True

Not only is the simplifier able to rewrite the conclusion, it is also able to finish the proof using
rewrite rules derived from the assumptions. Because both auto and force use the simplifier, both
proof scripts are able to prove this goal if the lemma Suc le eq is added to the set of default rewrite
rules.

If we apply the simplifier, but disallow it from using rewrite rules derived from the assumptions,
then we get:

ALL d. x < f d =⇒ x < f d0
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If this quantifier is weakened to a schematic variable we get the following goal:

x < f ?d =⇒ x < f d0

This goal can be proved using the assumption tactic. This time unification finds the required
substitution for ?d : ?d := d0 .

Unfortunately the discussed solutions for the problematic proof obligations for this algorithm
are too specific for a general purpose proof script, and we have no choice but to prove the 24
problematic proof obligations manually.

4.7.4 Wait-free handshake register

Six proof obligations of the wait-free handshake register algorithm cannot be proved automatically
using Proof script A and Proof script B because relatively complex instantiations of universal
quantifiers are required for their proofs, which are not found by unification. We have no other
choice but to prove the six lemmas manually.

It takes a relatively long time to verify the proof obligations using Proof script A because
there are a large number of implications and disjunctions in the assumptions. This was the initial
reason for creating Proof script B. First, we explain why it takes Proof script A such a long time to
prove proof obligations with a large number of implications and disjunctions in the assumptions.
Afterwards, we discuss why Proof script B is much faster for this algorithm, and we give an
example that illustrates this difference.

Both auto and force start by applying simp and clarify and then, if the goal is still not proved,
safe is applied. The safe tactic removes implications and disjunctions from the assumptions by
splitting the goal into two subgoals, for each implication and disjunction in the assumptions, as
long as the goal cannot be proved using other safe rules.

So if there are n assumptions with implications or disjunctions after simplification, then the
goal is split into 2n subgoals, unless other safe rules can prove the goal before splitting.

The conclusion of many of the proof obligations of this algorithm is conjunctive and the safe
tactic eventually splits the goals into subgoals, one for each conjunction in the conclusion. Proof
script B splits the conjunctions earlier in the proof than Proof script A does and applies clarify
and simp repeatedly to every subgoal as long as they have an effect on the subgoals. The effect
is that in many cases, the implications and disjunctions in the assumptions do not have to be
removed, so the goal does not have to be split into 2n subgoals, which makes the proof much
faster. The goal does not have to be split into many subgoals in these cases because simp and
clarify are applied to simpler conclusions, the conjuncts of the original conclusion, before other
rules that split the goal are applied. This way they can be proved, before the rules that split the
rules are applied.

Next, we use an example to illustrate this. Consider the following goal:

[[ a −→ b ; c −→ d ; e −→ i ; k −→ l ; m −→ p ; q −→ r ; s −→ t ; v −→ w ;
x −→ y −→ z ; u ≤ f (g n) ]] =⇒

(g n = h n −→ u ≤ f (h n)) & (g n = j n −→ u ≤ f (j n))
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If we apply Proof script A to this subgoal, we get the following scenario:

• clarsimp has no effect;

• safe needs 350 seconds and splits the goal into 768 subgoals;

• auto proves all 768 subgoals in about 10 seconds. It is actually the simplifier that proves
them.

And Proof script B has the following effect:

• clarify and simp have no effect;

• rule conjI splits the goal into two subgoals, one for each of the conjuncts in the conclusion;

• for each of the two subgoals:

– clarify eliminates the implication in the conclusion (ex. g n = h n is moved to the
assumptions) ;

– simp proves the subgoal. simp uses the equality that was just added to the assumptions
as rewrite rule, i.e. g n 7→ h n .

Proof script B needs less than a second for the complete proof.

If we use the symmetry of = and swap the left hand side and the right hand side of the
equation in the conclusion, then simp can actually prove this goal without ever splitting the goal
into subgoals. If simp is applied to the goal

[[ a −→ b ; c −→ d ; e −→ i ; k −→ l ; m −→ p ; q −→ r ; s −→ t ; v −→ w ;
x −→ y −→ z ; u ≤ f (g n) ]] =⇒

(h n = g n −→ u ≤ f (h n)) & (j n = g n −→ u ≤ f (j n))

then a congruence rule of implication is used, and h n and j n in the conclusion are rewritten
to g n , and simp simplifies the conclusion to true. This is another example that illustrates that
symmetry can be problematic.

There is often a trade-off between effort and time, in this case between the number of proof
obligations that can be proved automatically and the runtime of the proof script. There are
situations where there user has to choose between waiting for the proof script to terminate (possibly
successful) and the time and effort required to prove the proof obligation manually. In this section
we have focused on the difference in the amount of time that both proof scripts need to prove the
proof obligations of this algorithm. The proof scripts can prove the same proof obligations for this
algorithm, but Proof script B can prove many of them much faster.

The reader may get the impression that the difference is marginal, that the user should just
be a little more patient when using Proof script A. But, it is important to realise that both the
time and the number of subgoals increases exponentially with the number of implications and
disjunctions in the assumptions. Adding one extra implication to the assumptions of the goal
above, increases the runtime of Proof script A with about 2000 seconds, while Proof script B can
still prove the goal in less than a second.

4.8 Conclusions

In this chapter we have given a short introduction to Isabelle and (automated) verification with
Isabelle. We have discussed how programs, annotation and proof obligations can be modelled in
Isabelle, and we have discussed a generic automated proof strategy for proof obligations. We have

51



experimented with various relatively small algorithms and many of the proof obligations can be
proved completely automatically using the automated proof strategy.

However, not all the programs can be verified completely automatically; a number of proof
obligations have to be proved interactively (manually). We have analysed these problematic proof
obligations, and we have discussed solutions to the problems.

The main reason why some proof obligations cannot be proved automatically is that Isabelle
can not always find the required instantiations of quantifiers. The automated tactics of Isabelle
use unification to find required instantiations, and we have seen that this is not effective enough
for our examples. There are no other heuristics available in Isabelle to find candidates for the
instantiation for quantifiers.

This is a substantial problem; quantifiers appear in the annotation of most non-trivial parallel
programs.
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Chapter 5

Verifying various small algorithms

We have experimented with the automated verification of the annotation of various relatively small
algorithms. In this chapter we discuss the verification of these algorithms with PVS and Isabelle.

In [MW05] the verification of several relatively small algorithms is discussed, using the tool in
combination with PVS. The following algorithms are discussed in [MW05]:

– monitored phase synchronization [FvG99];

– mutual exclusion using a ticket algorithm [PN02];

– mutual exclusion using Peterson’s algorithm for two processes [FvG99];

– mutual exclusion using semaphores [PN02];

– parallel linear search [FvG99];

– wait-free consensus protocol [Moo02];

– wait-free handshake register [Hes98].

We have used the same fully-annotated algorithms for our experiments. While most algorithms
are relatively small, the “Wait-free handshake register” is a somewhat larger algorithm, and a
mechanical proof of the annotation of the algorithm is discussed in [Hes98], where the NQTHM
theorem prover is used. The annotation of this algorithm consists of a large number of system
invariants.

The translation of the original PVS models of the programs and their annotation from [MW05]
to Isabelle was mostly straightforward. But, some of the algorithms differ slightly when modelled
in Isabelle. In PVS, types may be empty, but types in Isabelle are non-empty by definition: every
type in Isabelle has at least one instance. In most of the algorithms a parallel composition over
a type is used, and in some cases this type may be empty, which can be modelled in PVS, but
cannot be modelled in Isabelle. This is not a significant restriction, parallel programs without any
components are not very useful.

We have also experimented with two other algorithms from [FvG99]: “A Simple Election
Protocol” and “The Initialization Protocol”. We have discussed these in detail in Chapter 3.

Table 5.1 gives an overview of the results of the experiments. Proof script A (see Section 4.4.2)
was used for the automated Isabelle proofs and the proof script of [MW05] was used for the
automated PVS proofs. Proof script A was used because it can prove slightly more than Proof
script B (see Section 4.4.2) can, for our set of algorithms.

The Isabelle verification is discussed in detail in Section 4.6 and Section 4.7. Some of the
algorithms cannot be verified completely automatically with Isabelle, these cases are marked bold
in the table. Proof obligations that cannot be proved automatically require an interactive proof.
These problematic proof obligations are discussed in Section 4.7. They have one and the same
problem: Isabelle cannot automatically find the required instantiations of the quantifiers. After
the manual instantiation of the quantifiers, the rest of their proof is automated.
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The algorithms discussed in this chapter can all be verified automatically with the PVS proof
script. Next a generalisation of one of the problematic proof obligations of Isabelle is discussed
to illustrate why these proof obligations can be proved automatically with the PVS proof script.
Consider the following goal (lemma):

〈 ∀d : x(d) ≤ m 〉 ∧ 〈 ∀d : m ≤ x(d) 〉 ⇒ x(c0) ≤ x(d0)

This goal is valid because if the first quantifier is instantiated with c0 , and the second quantifier is
instantiated with d0 , then we have x(c0) ≤ m ≤ x(d0) in the antecedent, and thus x(c0) ≤ x(d0)
in the consequent because ≤ is transitive. Isabelle cannot prove this goal automatically, because
unification cannot find the required instantiations. Next we discuss the strategy of the PVS proof
script. PVS uses pattern matching of subterms of quantified formulas with subterms of formulas
in the goal, to find candidates for the instantiation. First, the PVS proof script instantiates the
quantifiers with the first candidate found, which is c0 :

x(c0) ≤ m ∧ m ≤ x(c0) ⇒ x(c0) ≤ x(d0)

this goal is unprovable and backtracking is used. Next, the proof script instantiates the quantifiers
with every possible candidate found (eager instantiation), which are c0 and d0 . This results in
the following goal:

x(c0) ≤ m ∧ m ≤ x(c0) ∧ x(d0) ≤ m ∧ m ≤ x(d0) ⇒ x(c0) ≤ x(d0)

This goal can be proved by PVS using the remainder of the proof script. This goal after instan-
tiation can also be proved by the Isabelle proof script.

For interactive proofs, most time is spent by the user thinking about the construction of the
proof, and the runtime of the proof is then rather insignificant. The runtime of automated proofs
is usually longer than the runtime of interactive proofs, but the amount of required human effort
decreases dramatically. The last two columns of the table show the runtime of the automated
PVS and Isabelle proofs. This is the time it takes to replay the complete proof of the algorithms.
Manual proofs are used for the proof obligations that could not be proved completely automatically
with Isabelle, and the automated proof attempts that fail are not included in the runtime. An
Intel Xeon 2.80 Ghz CPU is used for the verification. The computer has 4GB of memory, but only
a small fragment of this is actually used and required. The default settings of PVS and Isabelle
are used.

In general, PVS is faster than Isabelle, at least for the algorithms discussed here. There are
however a few exceptions. Some of the Isabelle verifications of the very small algorithms are faster
than the corresponding PVS verifications. Also, the Isabelle verifications of two of the algorithms
that require manual interaction are faster than the corresponding automated PVS verifications.
Manual proofs are usually more efficient than automated proofs. The PVS verification of the
“Wait-free handshake register” [Hes98] is much faster than the Isabelle verification of this same
algorithm.

Evaluation

The most significant problem we have encountered with the automated verification with Isabelle
is how Isabelle deals with quantifiers; Isabelle can often not find the required instantiations au-
tomatically. We have not encountered this problem with PVS; various automatic instantiation
strategies are available in PVS, and they have turned out to be sufficiently effective for the exper-
iments. We have experimented with only a small set of algorithms, but quantifications appear in
most non-trivial parallel programs, so it is a significant problem.

The automated proof scripts for PVS and Isabelle do not support induction. Induction is very
difficult to automate, and the automated tactics of PVS and Isabelle do not support induction.
We did not need induction for the verification of the algorithms discussed in this chapter. As
noted in [MW05], recursion is often not required as it is often encoded in a repetition.
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Auto Runtime (sec)
Algorithm Proof Oblig . PVS Isabelle PVS Isabelle

Simple Election Protocol (coarse-grained) 27 27 27 3 5

Simple Election protocol (finer-grained) 60 60 60 5 5

Initialization protocol for two components 216 216 216 12 18

Initialization protocol for two components
(Variant 1)

676 676 676 73 124

Initialization protocol for two components
(Variant 2)

75 75 75 7 12

Initialization protocol for two components
(Variant 3)

75 75 75 7 9

Initialization protocol for three components 1278 1278 1278 118 321

Initialization protocol for three components
(Variant 1)

2619 2619 2619 294 2143

Initialization protocol for three components
(Variant 2)

236 236 236 75 154

Initialization protocol for three components
(Variant 3)

236 236 236 71 118

Monitored phase synchronization 93 93 69 55 11

Mutual exclusion using a ticket algorithm 71 71 59 28 12

Mutual exclusion using Peterson’s algorithm
for two processes

51 51 51 9 4

Mutual exclusion using semaphores 13 13 13 2 1

Parallel linear search 17 17 17 3 1

Wait-free consensus protocol 26 26 26 2 1

Wait-free handshake register 178 178 172 138 1664

Table 5.1: Overview of the results of the experiments

The runtime of the PVS verifications is in general shorter than the runtime of the Isabelle
verifications. Even for these reasonably small algorithms we can see that, depending on the
algorithm, the difference can be significant. The difference is most significant for “Wait-free
handshake register”. Even though a part the Isabelle verification is done manually, it is still more
than 12 times slower than the fully automated PVS verification of this algorithm. The Isabelle
proof script “Proof script B” reduces the runtime of our Isabelle verification of this algorithm
considerably, but is sill 4 times slower than the fully automated PVS proof. See Section 4.7.4 for
more details.
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Chapter 6

Proofs with universal and
existential quantifications

6.1 Introduction

One of the main problems we have encountered with our automated Isabelle proofs, is that required
instantiations of quantifiers are often not found. This chapter gives an overview of the available
options for proofs with universal and existential quantification in PVS and Isabelle.

Tactics (or strategies) transform proof states into logically equivalent or stronger proof states.
We discuss which tactics are available in which situations, and we show how various transforma-
tions of the proof states are justified logically, and why others are not allowed.

6.2 PVS

A proof state in PVS consists of zero or more subgoals to be proved. Each subgoal is a sequent
formula of the form:

A1 , . . . , An ` C1 , . . . , Cm

where 0 ≤ n and 0 ≤ m . A1 . . . An are formulas called antecedents and C1 . . . Cm are formulas
called consequents. The logical interpretation of the sequent is:

A1 ∧ . . . ∧ An ⇒ C1 ∨ . . . ∨ Cm

Subgoals in the proof state are independent of each other, i.e. they do not share bound variables.
This allows us to treat the subgoals in isolation. The subsections that follow discuss the options
available when dealing with existential and universal quantification in PVS proofs.

6.2.1 Universal quantification in the consequents

There are two ways to deal with a universal quantifier (∀) in the consequents: apply induction, or
replace the bound variable with a skolem variable, which is treated as a constant in the sequent.
Different types of induction are available, depending on the type of the bound variable.

In the remainder of this section we discuss the effect of skolemization on universal quantifiers
in the consequents and we show how this is justified logically. Consider a sequent (goal) of the
following form:

A(s!1) ` FORALL (t : T ) : P (t, s!1) , C(s!1)

where the skolem variable s!1 is of type S , and S and T are arbitrary types. A skolem variable
is a variable that is universally bound at the top-level of the sequent; the antecedents and the
consequents of the sequent are within the scope of the universal quantifier. To distinguish skolem
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variables from other variables, it is common to add an exclamation mark and an index to the
name of the variable that is replaced. Many PVS tactics use this convention by default. We adopt
this notation in this report: s!1 is a skolem variable, i.e. a constant in this sequent.

The skolem tactic can eliminate the quantifier from the goal by replacing it with a skolem
variable (t!1). We show why this is allowed:

A(s!1) ` FORALL (t : T ) : P (t, s!1) , C(s!1)
≡ { definition of `, translated }

〈 ∀(s!1 : S) : A(s!1) ⇒ 〈 ∀(t : T ) : P (t, s!1) 〉 ∨ C(s!1) 〉
≡ { ∨ distributes over ∀ }

〈 ∀(s!1 : S) : A(s!1) ⇒ 〈 ∀(t : T ) : P (t, s!1) ∨ C(s!1) 〉 〉
≡ { ⇒ distributes over ∀, rename t into t!1 }

〈 ∀(s!1 : S, t!1 : T ) : A(s!1) ⇒ P (t!1, s!1) ∨ C1(s!1) 〉
≡ { definition of `, translated back }

A(s!1) ` P (t!1, s!1) , C(s!1)

From this we conclude that universal quantifiers can be eliminated from the consequents by re-
placing their bound variable with a skolem variable. Because both the original goal and the goal
after skolem are logically equivalent, it is still possible to transform the resulting goal back to the
original. The generalize tactic does just that.

6.2.2 Existential quantification in the antecedents

There is only one practical way to deal with an existential quantifier (∃) in the antecedents:
applying skolemization. An existential quantifier in the antecedents is very similar to a universal
quantifier in the consequents, and can also be replaced by a skolem variable. The following
illustrates this:

EXISTS (t : T ) : P (t, s!1) , A(s!1) ` C(s!1)
≡ { Trading }

A(s!1) ` C(s!1) , NOT(EXISTS (t : T ) : P (t, s!1))
≡ { De Morgan }

A(s!1) ` C(s!1) , FORALL (t : T ) : NOT(P (t, s!1))
≡ { See Section 6.2.1: t becomes a skolem variable t!1 }

A(s!1) ` C(s!1) , NOT(P (t!1, s!1))
≡ { Trading }

P (t!1, s!1) , A(s!1) ` C(s!1)

where Trading denotes:
P , Q ` R ≡ Q ` R , ¬P

From this we conclude that existential quantifiers can be eliminated from the antecedents by
replacing their bound variables with skolem variables. The resulting goal is logically equivalent to
the original. The skolem tactic can be used for this transformation.

Remark. PVS automatically moves negated formulas in the antecedents to the consequents,
and moves negated formulas in the consequents to the antecedents. This way the antecedent and
consequent formulas never have a negation at the top level. So, some of the intermediate sequents
in the derivation above are never presented to the user in this form. They are automatically
normalised to a form without negation on the top level. The right hand side of the Trading
equivalence is always automatically translated to the left hand side by PVS.

Induction cannot be applied directly to existential quantifiers in the antecedents. However,
induction can be applied indirectly by first replacing the quantifier with a skolem variable, and
then using the generalize tactic. This results in a universal quantifier that binds the variable, in
the consequent.
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6.2.3 Universal quantification in the antecedents

There are no tactics available to replace a universal quantifier in the antecedents with a skolem
variable. The reason for this is that this is only possible if the type of the bound variable is
non-empty, and even in these situations it is hardly ever useful as it generally strengthens the
goal. The only practical way to use a universal quantifier in the antecedents is to instantiate the
quantifier.

In the remainder of this section we first discuss why, and in which situations, a skolem variable
could, in theory, be replaced by a skolem variable, and finally we discuss how quantifiers can be
instantiated.

Consider a sequent (goal) of the following form:

FORALL (t : T ) : P (t, s!1) , A(s!1) ` C(s!1))

where skolem variable s!1 is of type S , and S and T are arbitrary types. We have seen in
previous sections that the quantifier can in theory be replaced by a skolem variable if we manage
to move the quantifier to the top level of the goal. This is only possible if ∧ distributes over the
universal quantifier, which is not the case if T can be empty, as this could weaken the goal.

If T is non-empty, i.e. ∃(t :T ) : true , then ∧ does distribute over the universal quantifier. In
that case, the quantifier could, in theory, be replaced by a skolem variable:

FORALL (t : T ) : P (t, s!1) , A(s!1) ` C(s!1)
≡ { Definition of `, translated }

〈 ∀(s!1 : S) : 〈 ∀(t : T ) : P (t, s!1) 〉 ∧ A(s!1) ⇒ C(s!1) 〉
≡ { Because 〈 ∃(t : T ) : true 〉 , ∧ distributes over ∀}

〈 ∀(s!1 : S) : 〈 ∀(t : T ) : P (t, s!1) ∧ A(s!1)〉 ⇒ C(s!1) 〉
≡ {〈 ∃(t : T ) : true 〉 , [ 〈 ∀(t : T ) : P (t) 〉 ⇒ Q ≡ 〈 ∃(t :T ) : P (t) ⇒ Q 〉 ] }

〈 ∀(s!1 : S) : 〈 ∃(t : T ) : P (t, s!1) ∧ A(s!1) ⇒ C(s!1) 〉 〉
⇐ {〈 ∃(t : T ) : true 〉 , [ 〈 ∀(t : T ) : P (t) 〉 ⇒ 〈 ∃(t : T ) : P (t) 〉 ] ,

rename t to t!1 }
〈 ∀(s!1 : S, t!1 : T ) : P (t!1, s!1) ∧ A(s!1) ⇒ C(s!1) 〉

≡ { Definition of `, translated back }
P (t!1) , A(s!1) ` C(s!1)

The universal quantifier in the antecedents is effectively weakened to an existential quantifier (see
Section 6.2.2), and weakening an antecedent formula strengthens the goal. This strengthening of
the goal most likely renders the goal unprovable, and is therefore not very practical. There are no
tactics available to do this transformation directly, but can be done manually.

We do not have much choice but to instantiate the quantifier, possibly after copying the as-
sumption first to ensure that the goal is not strengthened. We can either instantiate the quantifier
ourselves, with a term of the correct type, or use the inst? tactic (or a tactic that uses inst? indi-
rectly) and let PVS automatically choose terms to instantiate the quantifier with. PVS matches
subterms of quantified formulas with subterms of other formulas in the goal in order to find can-
didates for instantiation. The most important automatic instantiation strategies are:

1. Use the first candidate found (inst? :if-match first).

2. Use the candidate that generates the fewest TCCs (inst? :if-match best).

3. Instantiate all quantifiers at the top level of the formula, using all candidates found
(inst? :if-match all). I.e., if applied to 〈 ∀x, y : Q(x, y) 〉 , then both x and y are
instantiated, and only subterms that contain instantiations for both bound variables are
considered to be candidates.

There is also an option that limits automatic instantiations to those that do not result in TCCs.
This option can be used in combination with each of the strategies above.
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6.2.4 Existential quantification in the consequents

An existential quantifier in the consequents in similar to a universal quantifier in the antecedents:

A(s!1) ` EXISTS (t : T ) : P (t, s!1) , C(s!1)
≡ { Trading }

A(s!1) , NOT(EXISTS (t : T ) : P (t, s!1)) ` C(s!1)
≡ { De Morgan }

A(s!1) , FORALL (t : T ) : NOT(P (t, s!1)) ` C(s!1)

Exactly the same options as those for the universal quantification in the antecedents are available.

6.3 Isabelle

A proof state in Isabelle consists of zero or more subgoals. A subgoal is presented as:∧
p1 . . . pm . [[A1 ; . . . ; An ]] =⇒ C

where 0 ≤ m and 0 ≤ n .
∧

is omitted if m = 0 (no bound variables), both brackets are omitted
if n = 1 (only one assumption), and brackets and arrow are omitted if n = 0 (no assumptions).
p1 . . . pm are (universally) bound variables at Isabelle’s meta-level. They are local to a goal and
they are treated as constants. A1 . . . An are assumptions and C is the conclusion. The goal is
logically interpreted as:

〈 ∀(p1 , . . . , pm) : A1 ∧ . . . ∧ An ⇒ C 〉

where bound variables p1 . . . pm can occur in A1 . . . An and C . Schematic variables (or unknown
variables or meta variables) are variables defined at the meta-level, they are placeholders and they
can be replaced by arbitrary terms of the correct type that do not depend on the bound variables
(including p1 . . . pm ). The names of schematic variables start with a question mark. Logically, a
schematic variable is a variable existentially bound at the top level of the proof state; subgoals
share schematic variables. Consider for example the following proof state:

1.
∧
p . [[A1(p) ; A2(p) ]] =⇒ C1(p, ?x)

2. A3(?x) =⇒ C2

The proof state consists of two subgoals, and they share the schematic variable ?x . The logical
interpretation of this proof state is:〈

∃x : 〈 ∀p : A1(p) ∧ A2(p) ⇒ C1(p, x) 〉︸ ︷︷ ︸
subgoal 1

∧ (A3(x) ⇒ C2)︸ ︷︷ ︸
subgoal 2

〉

The subsections that follow discuss the possibilities of using universal quantifiers, existential quan-
tifiers and schematic variables in Isabelle proofs.

Remark. Schematic variables are defined at the meta-level and their logical interpretation de-
pends on where they appear:

– Schematic variables in subgoals of the proof state are logically equivalent to existential
quantification at the top level of the proof state, as we have seen in this section.

– When a lemma is proved and stored, the free variables in the lemma are replaced by schematic
variables. Consider for example the theorem ?P =⇒ ?P ∨ ?Q (the disjI1 introduction
rule). When this theorem is used in a proof, the schematic variables can be instantiated and
the resulting theorem appears in the assumptions of a goal. The proved theorem should be
interpreted as the fact: 〈 ∀P,Q : P ⇒ P ∨ Q 〉.

60



– Schematic variables can be used in the body of a theorem to prove, for example:
lemma X: "1 + 2 = ?P". This states that we are trying to prove that there exists a term
that is logically equivalent to 1 + 2 . When the proof is completed, the witness that is found
is substituted for ?P; the schematic variable does not appear in the theorem that is stored.
In this case terms like 3 or 1 + 2 can be substituted for ?P. If the first is used, the stored
theorem (with the name X) states the fact: 1 + 2 = 3.

6.3.1 Universal quantification in the conclusion

There is only one practical way to deal with a universal quantifier (∀) in the conclusion, and that
is replacing the quantifier with a bound variable at the meta-level:∧

p . A(p) =⇒ ALL x. C(p, x)
≡ { Translated }

〈 ∀p : A(p) ⇒ 〈 ∀x : C(p, x) 〉 〉
≡ { ⇒ distributes over ∀ }

〈 ∀p, x : A(p) ⇒ C(p, x) 〉
≡ { Translate back to Isabelle notation }∧

p x . A(p) =⇒ C(p, x)

The introduction rule allI can be used to do this transformation: apply(rule allI). PVS goals
and Isabelle goals are represented differently. Because of this difference, the goal discussed here is
slightly different from the discussed goal for PVS in Section 6.2.1. Also, we did not need to specify
the types of the variables in Isabelle. Isabelle supports polymorphic typing, similar to Haskell and
ML, and is able to infer the most general type of each term.

Induction cannot directly be applied to a universal quantifier in the conclusion. Induction can
only be applied to bound variables that appear only in the conclusion: the universal quantifier
must first be transformed to a bound variable at the meta-level (as described above).

6.3.2 Existential quantification in the assumptions

An existential quantifier in the assumptions is very similar to a universal quantifier in the con-
clusion, and the only practical way to deal with an existential quantifier in the assumptions is to
replace it with a bound variable at the meta-level:

∧
p . [[ (EX x. A1(p, x)) ; A2(p) ]] =⇒ C(p)

≡ { Translated }
〈 ∀p : 〈 ∃x : A1(p, x) 〉 ∧ A2(p) ⇒ C(p) 〉

≡ { Trading, De Morgan }
〈 ∀p : A2(p) ⇒ C(p) ∨ 〈 ∀x : ¬A1(p, x) 〉 〉

≡ { ∨ distributes over ∀ }
〈 ∀p : A2(p) ⇒ 〈 ∀x : C(p) ∨ ¬A1(p, x) 〉 〉

≡ { ⇒ distributes over ∀ }
〈 ∀p, x : A2(p) ⇒ C(p) ∨ ¬A1(p, x) 〉

≡ { Trading }
〈 ∀p, x : A1(p, x) ∧ A2(p) ⇒ C(p) 〉

≡ { Translate back to Isabelle notation }∧
p x . [[A1(p, x) ; A2(p) ]] =⇒ C(p)

The elimination rule exE can be used for this transformation: apply(erule exE).
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6.3.3 Universal quantification in the assumptions

In an interactive proof the user usually instantiates the universal quantifiers in the assumptions
manually, using either the elimination rule allE or the destruction rule spec. Instantiation of a
universal quantifier in the assumptions is allowed because it weakens the assumptions and thus
strengthens the goal. The Automated tactics do not instantiate quantifiers directly, they replace
the quantifier with a schematic variable and use unification to find candidates for the instantiation
of the schematic variable. We use a proof state with two subgoals to show the effect of the
transformation on a proof state and we show its logical interpretation:

1.
∧
p . ALL x. A(p, x) =⇒ C1(p)

2. C2

≡ { Translated }
〈 ∀p : 〈 ∀x : A(p, x) 〉 ⇒ C1(p) 〉 ∧ C2

≡ { contraposition, De Morgan }
〈 ∀p : ¬C1(p) ⇒ 〈 ∃x : ¬A(p, x) 〉 〉 ∧ C2

≡ { Types in Isabelle are non-empty, ∨ distributes over ∃, definition ⇒ }
〈 ∀p : 〈 ∃x : A(p, x) ⇒ C1(p) 〉 〉 ∧ C2

⇐ { ? 〈 ∀x : 〈 ∃y : P (x, y) 〉 〉 ⇐ 〈 ∃z : 〈 ∀x : P (x, z(x)) 〉 〉 }
〈 ∃x : 〈 ∀p : A(p, x(p)) ⇒ C1(p) 〉 〉 ∧ C2

≡ { ∧ distributes over ∃ }
〈 ∃x : 〈 ∀p : A(p, x(p)) ⇒ C1(p) 〉 ∧ C2 〉

≡ { Translate back to Isabelle notation }
1.

∧
p . A(p, ?x(p)) =⇒ C1(p)

2. C2

And the proof of ? using Isabelle’s proof style:

〈 ∀x : 〈 ∃y : P (x, y) 〉 〉 ⇐ 〈 ∃z : 〈 ∀x : P (x, z(x)) 〉 〉
≡ { Definition =⇒ }

〈 ∃z : 〈 ∀x : P (x, z(x)) 〉 〉 =⇒ 〈 ∀x : 〈 ∃y : P (x, y) 〉 〉
≡ { Eliminate ∃ from assumption (see Section 6.3.2) }∧

z . 〈 ∀x : P (x, z(x)) 〉 =⇒ 〈 ∀x : 〈 ∃y : P (x, y) 〉 〉
≡ { eliminate ∀ from conclusion (see Section 6.3.1), rename x to x′ }∧

z x′ . 〈 ∀x : P (x, z(x)) 〉 =⇒ 〈∃y : P (x′, y) 〉
≡ { Instantiate ∀ in assumption with x′, instantiate ∃ in assumption with z(x′) }∧

z x′ . P (x′, z(x′)) =⇒ P (x′, z(x′))
≡ { Trivial }

true

If we accept the validity of the (somewhat controversial) axiom of choice, the result is actually
logically equivalent to the original. However, in Isabelle the allE elimination rule – which is used
for the translation above – is defined as an unsafe rule. It is strongly advised to apply safe rules
before applying unsafe rules. Even if a goal is still provable after the application of this unsafe
rule allE, the proof may now require an application of the axiom of choice (or a related axiom),
which is not used by the automated tactics. In Section 6.3.5 is discussed how schematic variables
can be used.

Universal quantifications in the assumptions are also used by the simplifier. The simplifier uses
universal quantifiers in the assumptions to create rewrite rules. If the simplifier is applied to a
goal with assumption 〈 ∀x : f(x) 〉 , then the rewrite rule f(?x) = true is applied to the goal and
conclusions such as f(x1) can be proved automatically.

6.3.4 Existential quantification in the conclusion

An existential quantifier in the conclusion is very similar to a universal quantifier in the premises;
the same options are available. The existential quantifier can again be replaced by a schematic
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variable:∧
p . A(p) =⇒ EX x. C(p, x)

≡ { Trading, De Morgan }∧
p . [[A(p) ; ALL x. ¬C(p, x) ]] =⇒ False

⇐ { Universal quantification is removed from the assumptions: see section 6.3.3 }∧
p . [[A(p) ; ¬C(p, ?x(p)) ]] =⇒ False

≡ { trading }∧
p . A(p) =⇒ C(p, ?x(p))

The exI introduction rule can be used for this transformation.

6.3.5 Using schematic variables

Variables bound by quantifiers are often translated to schematic variables. In this section we dis-
cuss how schematic variables can be used in proofs. We illustrate the possibilities using examples.

The first example shows how schematic variables can be instantiated, discusses one of the
consequences of sharing schematic variables among subgoals, and illustrates the importance of
backtracking:

EX (x :: int). f(x) ∧ f(x− 1) =⇒ EX y. f(y) ∧ f(y + 1)
≡ { Translated, omitting type information }

〈 ∃x : f(x) ∧ f(x− 1) 〉 ⇒ 〈 ∃y : f(y) ∧ f(y + 1) 〉
≡ { Eliminate existential quantifier from the assumptions, see Section 6.3.2 }

〈 ∀x : f(x) ∧ f(x− 1) ⇒ 〈 ∃y : f(y) ∧ f(y + 1) 〉 〉
⇐ { Eliminate existential quantifier from the conclusion, see Section 6.3.4 }

〈 ∃y : 〈 ∀x : f(x) ∧ f(x− 1) ⇒ f(y(x)) ∧ f(y(x) + 1) 〉 〉
≡ { Eliminating ∧ in conclusion, tactic: apply(rule conjI), this yields two

subgoals }
〈 ∃y :

〈 ∀x : f(x) ∧ f(x− 1) ⇒ f(y(x)) 〉 ∧
〈 ∀z : f(z) ∧ f(z − 1) ⇒ f(y(z) + 1) 〉

〉
⇐ { Generalise/instantiate schematic variable: y := λx. x− 1 , β-reduction }

〈 ∀x : f(x) ∧ f(x− 1) ⇒ f(x− 1) 〉
∧ 〈 ∀z : f(z) ∧ f(z − 1) ⇒ f(z − 1 + 1) 〉

≡ { Trivially true, proved using the simplifier }
true

Schematic variables are usually not instantiated manually in interactive proofs; the user usu-
ally instantiates the existential or universal quantification directly, without transforming it to a
schematic variable first, or lets Isabelle find them. Schematic variables can however be instantiated
manually using the instantiate tac tactic.

Instantiation for the schematic variable can often be found automatically using unification of
the conclusion with the assumptions, using the assumption tactic, which is applied to a single
subgoal. Before the instantiation of the schematic variable in the proof above, the first application
of assumption to the first subgoal (the first conjunct) yields the instantiation λx. x . Using this
instantiation the first subgoal can be proved (the first conjunct is equal to true) but the second
subgoal (second conjunct) cannot be proved using this instantiation. When backtracking (the back
command) is used at this point, then the second candidate for the instantiation is used, which is
λx. x−1 . Using this instantiation, both goals can be proved, as we have seen in the proof above.
Application of assumption to the second subgoal before instantiation fails; no candidates can be
found in the second subgoal.
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Unification is the only mechanism available in Isabelle to automatically find instantiations
for schematic variables. If unification fails, then we have no other choice but to instantiate the
schematic variable manually, or better: instantiate the original quantifier directly.

In [NPW02, Section 5.11] an example of an unsuccessful proof is given that illustrates why
schematic variables cannot be instantiated with terms that depend on bound variables. We discuss
the same example and proof, and present the goals in (predicate) logic, as we are used to. Note
that the goal is not provable, not without additional information about f .

ALL x. f(x, x) =⇒ EX y. ALL z. f(y, z)
≡ { Translated }

〈 ∀x : f(x, x) 〉 ⇒ 〈 ∃y : 〈 ∀z : f(y, z) 〉 〉
⇐ { Eliminate existential quantifier from the conclusion, see Section 6.3.4 }

〈 ∃y : 〈 ∀x : f(x, x) 〉 ⇒ 〈 ∀z : f(y, z) 〉 〉
≡ { Eliminate universal quantifier from the conclusion, see Section 6.3.1 }

〈 ∃y : 〈 ∀z : 〈 ∀x : f(x, x) 〉 ⇒ f(y, z) 〉 〉
⇐ { Eliminate universal quantifier from the assumption, see Section 6.3.3 }

〈 ∃x, y : 〈 ∀z : f(x(z), x(z)) ⇒ f(y, z) 〉 〉
≡ { Translate back to Isabelle notation }∧

z . f(?x(z), ?x(z)) =⇒ f(?y, z)

The goal can only be proved if ?y can be instantiated with z, but this is obviously not possible as
it is bound at a deeper level of the formula. Compare this with the following goal and (successful)
proof:

ALL x. f(x, x) =⇒ ALL z. EX y. f(y, z)
≡ { Translated }

〈 ∀x : f(x, x) 〉 ⇒ 〈 ∀z : 〈 ∃y : f(y, z) 〉 〉
≡ { Eliminate universal quantifier from the conclusion, see Section 6.3.1 }

〈 ∀z : 〈 ∀x : f(x, x) 〉 ⇒ 〈 ∃y : f(y, z) 〉 〉
⇐ { Eliminate universal quantifier from the assumption, see Section 6.3.3 }

〈 ∃x : 〈 ∀z : f(x(z), x(z)) ⇒ 〈∃y : f(y, z) 〉 〉 〉
⇐ { Eliminate existential quantifier from the conclusion, see Section 6.3.4 }

〈 ∃x, y : 〈 ∀z : f(x(z), x(z)) ⇒ f(y(z), z) 〉 〉
⇐ { Instantiate variables: x := λz. z , y := λz. z , β-reduction }

〈 ∀z : f(z, z) ⇒ f(z, z) 〉
≡ { Trivial }

true

The instantiations of the schematic variables are found by the assumption tactic: f(?x(z), ?x(z))
unifies with f(?y(z), z) with σ = {?x 7→ λz. z , ?y 7→ λz. z}.

6.4 Conclusions

PVS and Isabelle handle universal quantifications in the consequent/conclusion and existential
quantification in the antecedent/assumptions in a similar way: induction can be applied (directly
or indirectly) or the quantifier can be eliminated by replacing the bound variable with a parameter
(or skolem variable) that is local to the goal.

However, PVS and Isabelle use a different approach to dealing with universal quantifiers in
the antecedents/assumptions and to existential quantifiers in the consequents/conclusion. In in-
teractive proofs with PVS and Isabelle, the user usually instantiates the quantifiers with the
desired terms, but in automated proofs we rely on the facilities of PVS and Isabelle to provide the
instantiations that are needed.
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PVS uses pattern matching of subterms of the quantified formula with subterms of the an-
tecedent and consequent formulas, to find candidate instantiations. The user can choose between
a number of automatic instantiation strategies to be used, ranging from instantiation with the first
candidate found to instantiation with every possible candidate found (eager instantiation). The
quantified formula is usually removed after is has been instantiated, this can strengthen the goal;
extra candidates may appear later in the proof, after the quantifier has already been instantiated
and removed. So, the decision at which point in the proof process a quantifier is instantiated, can
have a considerable influence on the success of finding the appropriate instantiations. The user
can choose which of the instantiation strategies is to be used by the automated tactics.

In Isabelle, the automated tactics do not instantiate the quantifiers directly: the quantifiers
are translated to schematic variables, which delays the instantiation. It is important that safe
rules are applied first (especially the allI and exE rule) before the quantifiers are replaced by
schematic variables. This is because bound variables at the meta level are not available for
the instantiation of the schematic variable (see Section 6.3.5). Only the bound variables that
have been introduced before introducing the schematic variable are available through parameters
of the schematic variables. Isabelle uses unification of the conclusion with the assumptions to
find candidates for the instantiation of the schematic variables. If the conclusion can be unified
with an assumption, then the goal can be proved by using the candidate found by unification.
Unfortunately, this may render the subgoals that share the schematic variable unprovable. When
unification finds more than one possible candidate, then one is chosen and backtracking is available
to use the other candidates, if the goals cannot be proved using the first candidate. The automated
tactics use unification in combination with backtracking.
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Chapter 7

Verification of a Garbage
Collection Algorithm

7.1 Introduction

In this chapter the verification of the annotation of a larger algorithm is discussed: a garbage
collection algorithm from [PN02].

In [PN02], the annotation of this garbage collection algorithm is mechanically proved in Isabelle,
using her formalisation of Owicki/Gries in Isabelle. This formalisation is also discussed in [PN02].
We have proved the same annotation using the tool in combination with PVS. The results of our
verification are compared with the results of the original in [PN02].

Our verification serves two main purposes: First, to explore the limits of PVS and the standard
proof script of [MW05]. Second, to make a comparison between PVS and Isabelle. The amount
of human effort required to prove the correctness of the annotation with the theorem provers
is compared. Also, the specification of the algorithm and its annotation in Isabelle and PVS is
compared.

Problem description

A memory location is called garbage if it has been allocated by an application but can never
be accessed again by this application. The collector is responsible for identifying and collecting
memory locations that are garbage, and making them available again. This memory location can
then be claimed by applications. The mutator represents such an application that uses memory
and can ‘produce’ garbage. [PN02] discusses a single-mutator variant and a multi-mutator variant.
We discuss the single-mutator variant.

The specification of the collector is as follows:

do true →
Identify garbage
{x is garbage}
Append x to the list of free memory

od

The task of the collector is to continuously search for locations that are not accessible, identify
the garbage and then append this garbage to the list of free memory. The property that is verified
is a safety property, and states that every location that is appended to the list of free memory is
indeed garbage.
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7.2 Model

In this section the model of the algorithm, and its formalisation in PVS are discussed. We do not
focus on the design of the algorithm, nor on the design decisions. For a detailed description of the
algorithm, the annotation and the correctness of the annotation, we refer to [PN02]. We focus on
the automated verification of the annotation using the tool.

7.2.1 Memory

The memory is modelled as a finite directed graph with a fixed number of nodes and a fixed
number of edges. A predetermined, non-empty, subset of nodes called roots is always accessible.
A node is reachable, or accessible, if it is a root or there is at least one (directed) path from one
of the roots to this node. Nodes that are not reachable are garbage.

Every node has a colour: black or white. The type color is defined accordingly; it has exactly
two elements and is defined as an alias for bool, where true represents black and false represents
white.

PVS
black: bool = true
white: bool = false
color: TYPE = bool

nEdges: posnat
nNodes: posnat

nodeIdx: TYPE = below(nNodes)
edgeIdx: TYPE = below(nEdges)

nodes: TYPE = [ nodeIdx -> color ]
edge: TYPE = [# src: nodeIdx,

dest: nodeIdx
#]

edges: TYPE = [ edgeIdx -> edge ]
Roots: (nonempty?[nodeIdx])

Reach(e: edges): setof[nodeIdx] =
{i:nodeIdx |

Roots(i) OR
EXISTS (path: [nat -> edgeIdx]):

EXISTS (r: nodeIdx): Roots(r) AND
EXISTS (len: nat): len > 0 AND

e(path(0))‘src = r AND
e(path(len-1))‘dest = i AND
FORALL (j: nat): j < len - 1 IMPLIES

e(path(j))‘dest = e(path(j+1))‘src
}

The function BtoW expresses whether an edge points from a black node to a white node and
Blacks returns the set of black nodes. The memory is in a safe state if all reachable nodes are
black. The function Safe expresses whether a state is safe.

PVS
BtoW (e:edge)(m:nodes): bool =

m(e‘src) = black AND m(e‘dest) = white

Blacks(m:nodes): setof[nodeIdx] =
{i: nodeIdx | m(i) = black}
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PVS
Safe(m:nodes, e:edges): bool =

FORALL (x: nodeIdx): Reach(e)(x) IMPLIES Blacks(m)(x)

7.2.2 Algorithm

A (record) type state is defined to denote a state of the system:

PVS
state: TYPE = [# M: nodes,

E: edges,
bc: setof[nodeIdx],
obc: setof[nodeIdx],
Ma: nodes,
ind: nat,
k: nodeIdx,
z: bool

#]

The mutator component and the collector component are executed in parallel.

0: {z} {T ∈ Reach(E)} {inv: Roots 6= ∅}
co
proc

1: {z} {T ∈ Reach(E)}
Mutator-Component

4:
corp
proc

5:
Collector-Component

37:
corp

oc

Even though it is already encoded in the type that root is a non-empty set, PVS does not always
automatically use this fact in proofs. We need a system invariant to state this fact explicitly. T
is an arbitrary node and R is an arbitrary edge. Both are defined as constants.

PVS
R: edgeIdx
T: nodeIdx

Mutator component The mutator component redirects the edge R to the reachable node T
and then colours node T black. This is repeated forever.

Mutator-Component =

1: {z} {T ∈ Reach(E)}
do true →

2: {z} {T ∈ Reach(E)}
dest(E(R)), z := T, ¬z

3: ; {¬z} {T ∈ Reach(E)}
M(T), z := black, ¬z

od
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Collector-Component =

5:
do true →

Blacken-roots
12: ; {Roots ⊆ Blacks(M)}

obc := ∅
13: ; {Roots ⊆ Blacks(M)} {obc = ∅}

bc := Roots
14: ; {Roots ⊆ Blacks(M)} {obc = ∅} {bc = Roots}

Ma := λn. if n ∈ Roots then black else white
15: ; {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(Ma)}{Blacks(Ma) ⊆ bc}

{bc ⊆ Blacks(M)} {obc ⊂ Blacks(Ma) ∨ Safe(M, E)}
do obc 6= bc →

16: {Roots ⊆ Blacks(M)} {bc ⊆ Blacks(M)}
obc := bc
Propagate-Black

23: ; {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(M)} {bc ⊆ Blacks(M)}
{obc ⊂ Blacks(M) ∨ Safe(M, E)}

Ma := M
24: ; {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(Ma)} {Blacks(Ma) ⊆ Blacks(M)}

{bc ⊆ Blacks(M)} {obc ⊂ Blacks(Ma) ∨ Safe(M, E)}
bc := ∅

25: Count-Blacks
od

31: Append
od

Collector component The collector component consists of four different parts. The first part
is labelled blacken roots, in this part the roots are coloured black. Observe that the roots are
reachable by definition. The second part is labelled propagate black. During this phase every
white node n , for which there is an edge e from a black node to this node, is coloured black. The
third part is labelled Count blacks. In this part the component determines whether it should stop
colouring, this is when no new nodes have been coloured black during the last iteration. The last
part is labelled append, at this point we are certain that all reachable nodes are black, and the
white nodes are not reachable and thus garbage. Note that because of the possible interference of
the mutator, it is not guaranteed that all black nodes are reachable. The garbage is appended to
the list of free memory.

Append to free is used to add nodes to the free list. Analogous to [PN02], it is defined as an
uninterpreted function, and an axiom defines the necessary property.

PVS
Append_to_free: [nodeIdx -> [edges -> edges]]
append_to_free_def: AXIOM

FORALL (n: nodeIdx, e: edges, n2: nodeIdx):
NOT(Reach(e)(n)) IMPLIES

(Reach(Append_to_free(n)(e))(n2)) = (n2 = n OR Reach(e)(n2))

At control point 35 we see how the original specification is translated: the statement at control
point 35 is the only place in the algorithm where a node is added to the list of free nodes, and the
pre-condition {ind < nNodes ∧ ind /∈ Reach(E)} guarantees that this node is not reachable, and
thus garbage.

7.2.3 Partial definitions

[PN02] uses lists to represent the collection of nodes and edges. Variables of type nat are used
to refer to nodes and edges in the lists. The lists are finite and the length of the lists (which is
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Blacken-roots =

6:
ind := 0

7: ; {ind ≤ nNodes ∧ BRInv(ind)}
do ind < nNodes →

8: {ind < nNodes ∧ BRInv(ind)}
if ind ∈ Roots →

9: {ind < nNodes ∧ BRInv(ind)} {ind ∈ Roots}
M(ind) := black

[] ind /∈ Roots →
10: {ind < nNodes ∧ BRInv(ind)} {ind /∈ Roots}

skip
fi

11: ; {ind < nNodes ∧ BRInv(ind + 1)}
ind := ind + 1

od
12: {Roots ⊆ Blacks(M)}
BRInv ≡ λidx. ({ i | i < idx } ∩ Roots) ⊆ Blacks(M)

Propagate-Black =

17: {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(M)} {bc ⊆ Blacks(M)}
ind := 0

18: ; {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(M)}
{bc ⊆ Blacks(M)} {PBInv(ind)} {ind ≤ nEdges}

do ind < nEdges →
19: {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(M)}

{bc ⊆ Blacks(M)} {PBInv(ind)} {ind < nEdges}
if M(src(E(ind))) = black →

20: {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(M)}
{bc ⊆ Blacks(M)} {PBInv(ind)} {ind < nEdges ∧ M(src(E(ind))) = black}

k := dest(E(ind))
21: ; {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(M)} {bc ⊆ Blacks(M)}

{PBInv(ind)} {ind < nEdges ∧ M(src(E(ind))) = black} {Auxk}
M(k), ind := black, ind + 1

[] M(src(E(ind))) 6= black →
22: {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(M)}

{bc ⊆ Blacks(M)} {PBInv(ind)} {ind < nEdges}
〈 if M(src(E(ind))) = black →

skip
[] M(src(E(ind))) 6= black →

ind := ind + 1
fi 〉

fi
od

23: {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(M)}
{bc ⊆ Blacks(M)} {obc ⊂ Blacks(M) ∨ Safe(M, E)}

PBInv ≡ λidx. obc ⊂ Blacks(M) ∨
〈 ∀i : i < idx ⇒ ¬BtoW(E(i), M) ∨

(¬z ∧ i = R ∧ dest(E(R)) = T ∧
〈 ∃r : idx ≤ r ∧ BtoW(E(r), M) 〉 ) 〉

Auxk ≡ M(k) 6= black ∨ ¬BtoW(ind, M) ∨ obc ⊂ Blacks(M) ∨
(¬z ∧ ind = R ∧ dest(E(R)) = T ∧ 〈 ∃r : ind < r ∧ BtoW(E(r), M) 〉)
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Count-Blacks =

25: {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(Ma)} {Blacks(Ma) ⊆ Blacks(M)}
{bc ⊆ Blacks(M)} {obc ⊂ Blacks(Ma) ∨ Safe(M, E)} {bc = ∅}

ind := 0
26: ; {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(Ma)} {Blacks(Ma) ⊆ Blacks(M)}

{bc ⊆ Blacks(M)} {obc ⊂ Blacks(Ma) ∨ Safe(M, E)} {CountInv(ind)} {ind ≤ nNodes}
do ind < nNodes →

27: {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(Ma)}
{Blacks(Ma) ⊆ Blacks(M)} {bc ⊆ Blacks(M)} {obc ⊂ Blacks(Ma) ∨ Safe(M, E)}
{CountInv(ind)} {ind < nNodes}

if M(ind) = black →
28: {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(Ma)}

{Blacks(Ma) ⊆ Blacks(M)} {bc ⊆ Blacks(M)} {obc ⊂ Blacks(Ma) ∨ Safe(M, E)}
{CountInv(ind)} {ind < nNodes ∧ M(ind) = black}

bc := bc ∪ {ind}
[] M(ind) 6= black →

29: {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(Ma)}
{Blacks(Ma) ⊆ Blacks(M)} {bc ⊆ Blacks(M)} {obc ⊂ Blacks(Ma) ∨ Safe(M, E)}
{CountInv(ind + 1)} {ind < nNodes}

skip
fi

30: ; {Roots ⊆ Blacks(M)} {obc ⊆ Blacks(Ma)}
{Blacks(Ma) ⊆ Blacks(M)} {bc ⊆ Blacks(M)} {obc ⊂ Blacks(Ma) ∨ Safe(M, E)}
{CountInv(ind + 1)} {ind < nNodes}

ind := ind + 1
od

CountInv ≡ λidx. ({ i | i < idx } ∩ Blacks(Ma)) ⊆ bc

Append =

31: {Roots ⊆ Blacks(M)} {Safe(M, E)}
ind := 0

32: ; {AppendInv(ind)} {ind ≤ nNodes}
do ind < nNodes →

33: {AppendInv(ind)} {ind < nNodes}
if M(ind) = black →

34: {AppendInv(ind)} {ind < nNodes ∧ M(ind) = black}
M(ind) := white

[] M(ind) 6= black →
35: {AppendInv(ind)} {ind < nNodes ∧ ind /∈ Reach(E))}

E := Append to free(ind, E)
fi

36: ; {AppendInv(ind + 1)} {ind < nNodes}
ind := ind + 1

od

AppendInv ≡ λidx. ({ i | idx ≤ i } ∩ Reach(E)) ⊆ Blacks(M)
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constant) has to be stated explicitly at every point in the annotation.

In PVS predicate subtypes are available to create subtypes of existing types by including only
the elements of an existing type that satisfy a certain predicate. We declare the types nodeIdx and
edgeIdx to be subsets of the naturals. For example we have defined the type nodeIdx to contain
only the natural numbers below nNodes:

PVS
nodeIdx: TYPE = {i:nat | i < nNodes}

Instead of lists, we use functions over nodeIdx and edgeIdx to represent the collection of nodes
and edges, respectively. The collector iterates over the nodes and edges in a fixed order (ascending).
As is often the case, the loop terminates when the loop variable is outside a range; this variable
can therefore not be of type nodeIdx or edgeIdx. Like [PN02], we use a loop variable of type nat
to iterate over the nodes and edges; this introduces a number of complications.

Type checking in PVS is often not decidable, TCCs (Type Correctness Condition) are generated
to force the user to prove that the types of the terms are correct. Most TCCs are trivial and are
automatically proved by PVS. Everywhere in the specification where a term t of type nat is used
where a term of a subtype of nat (i.e. nodeIdx ) is expected, a TCC is generated that forces us to
prove that the term is a member of the subset (i.e. t < nNodes ).

In the remainder of this section we discuss how the PVS model of the algorithm and the model
of its annotation is influenced by the decision to use predicate subtypes.

Statements

Because the weakest liberal preconditions are modelled in PVS in isolation from the model of the
annotation, there are some complications. Assume the wlp of the statement M(ind) := black at
control point 9 is modelled as:

PVS
wlp_stat_9(p: predicate): predicate =

lambda (s:state): p (s WITH [‘M(s‘ind) := black])

The type of s‘ind is nat and the type of s‘M is nodeIdx ⇒ color . The typechecker generates the
following TCC for this fragment:

PVS
wlp_stat_9_TCC1: OBLIGATION FORALL (s: state): s‘ind < nNodes

We are forced to prove that every natural number is smaller than nNodes, which is obviously not
true. There are three possible solutions to this problem: The first and most obvious solution is
to not use predicate subtypes for the model. The second solution is quite drastic, we could model
the proof obligations differently. By combining the model of the wlp and the model of the relevant
annotation, it can be concluded that ind < nNodes is true, as it is one of the pre-conditions of
that statement. The third option is to change the definition and the PVS model of the wlp of the
statement.

Predicate subtypes increase the readability, and generated TCCs that cannot be proved au-
tomatically are a sign of inconsistencies and errors, detected at an early stage. Combining the
definitions would be a very drastic change and the definition of wlp and annotation are decoupled
for a reason: it facilitates incremental verification. The third solution is preferred.

We introduce a notion of partial statements. A partial statement is an atomic statement
S , accompanied by a condition C . The partial statement states that S is executed, but that
no guarantees can be given regarding the state after executing the statement S , unless it is
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guaranteed that the state before executing statement S satisfies condition C . The weakest liberal
precondition of a partial statement S!C , with post-condition Q is:

wlp.(S!C).Q
≡ {definition wlp partial statement}

[C ⇒ wlp.S.Q ∧ ¬C ⇒ false]
≡ {Definition ⇒ and ¬}

[C ⇒ wlp.S.Q ∧ C]
≡ {Modus ponens}

[C ∧ wlp.S.Q]

Each statement S that is only defined for states that satisfy C is changed to the partial
statement S!C , where C is the TCC generated by PVS. Applied to the example, the statement
at control point 9 is changed to:

(ind := black)!(ind < nNodes)

and the new model of the wlp becomes:
PVS

wlp_stat_9(p: predicate): predicate =
LAMBDA (s:state):

(s‘ind < nNodes) AND p (s WITH [‘M(s‘ind) := black])

The following TCC is generated by PVS:
PVS

wlp_stat_9_TCC1: OBLIGATION FORALL (s: state):
s‘ind < nNodes IMPLIES s‘ind < nNodes

This resulting TCC is trivially true and is proved automatically by PVS.

Remark. The type checker appears to evaluate the conjunction in the formula (wlp stat 9 )
from left to right. Even though conjunction is commutative (logically), if the positions of the two
conjuncts are interchanged, then we are still presented with the original, invalid TCC.

An alternative model of the wlp of the partial statement is:
PVS

wlp_stat_9(p: predicate): predicate =
LAMBDA (s: {x:state | x‘ind < nNodes}):

p (s WITH [‘M(s‘ind) := black])

Using this model of the wlp of the partial statement, the type of the function is still state⇒ bool ,
but when the function is applied to a state s in a proof, an extra subgoal is created that forces
us to prove that s‘ind < nNodes (the condition C ) is true in the context of the lemma/proof
obligation.

Guards

The if-statements used by [PN02] are different from the if-statements used by the tool. An if-
statement of [PN02] behaves like a selection statement used by most popular programming lan-
guages. The if-statement used by the tool is a blocking statement, the component blocks until one
of the guards evaluates to true. The if-statement of [PN02] is of the form:

if G then {P} S1

else {Q} S2

fi
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where the else clause is optional. This is translated to the if-statement used by the tool:

if G → {P} S1

[] ¬G → {Q} S2

fi

Because either G or ¬G evaluates to true, the statement cannot possibly block, thereby progress is
guaranteed. Some guards G are only defined for states that satisfy a condition C and unprovable
TCCs are generated for their models. In such cases we strengthen guard G with the required
condition C into C ∧ G . For the second guard the negation ¬(C ∧ G) is then used. Because
C ∧ G is defined, the second guard is defined. The second guard is logically equivalent to:

¬(C ∧ G)
≡ { De Morgan }

¬C ∨ ¬G
≡ { Definition ⇒ }

C ⇒ ¬G

In these cases C is implied by the pre-conditions of the statement, in fact: for each guard, the
conjunction of the pre-conditions of the statement and the original guard are logically equivalent
to the conjunction of the same pre-conditions and the new guard. Therefore the correctness of the
annotation is not influenced by this transformation.

Assertions

Usually we split conjunctive assertions into co-assertions, one for each conjunct, and prove the
correctness of the assertions separately. This transformation is valid because of the following
equivalence

{P}S{Q ∧R} ≡ {P}S{Q} ∧ {P}S{R}

The conjunctive assertion cannot be split this way if R is only defined for states that satisfy Q
because the assertions are modelled separately from their co-assertions. For example the assertion

{ind < nNodes ∧ M(ind) = black}

at control point 34 cannot be split this way because M(ind) is only defined when ind < nNodes .
They can however be split using

{P}S{Q ∧R} ≡ {P}S{Q} ∧ {P}S{Q ⇒ R}

We don’t split such assertions if R is only defined when Q is true; we only split the conjunctive
assertions if the conjuncts are defined in isolation.

7.3 Proving the correctness of the annotation

We have worked with two slightly different models of the algorithm.

Model 1: Parallel composition over elements of a type Initially, the tool did not support
binary parallel composition and we had to translate the binary parallel composition as used in
[PN02] to a parallel composition over the elements of a type (see Section 3.3.1 for more informa-
tion).
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Model 2: Binary parallel composition Later, after support for binary parallel composition
had been added to the tool, we created a model using this operator. The resulting model is more
like the original model in [PN02] and this is the model discussed in this report.

The only difference between the proof obligations generated for the first model and those
generated for the second model is that a large number of extra proof obligations are required for
the proof of the first. They result from the translation of the parallel construct, and their proof is
trivial. All other proof obligations are comparable, they are in fact almost identical.

Initially, a considerable amount of effort was required to prove the proof obligations. We have
investigated why this has been the case, and our second attempt to prove the proof obligations
automatically has turned out to be more effective.

7.3.1 First attempt

The first model has been used for our first attempt. 59 out of the total of 3972 proof obligations
generated for this model could not be proved automatically, at least not within the 30 minutes we
were willing to wait for each proof obligation. 9 of them could be proved using proof hints and 50
proof obligations required a manual proof.

Five non-trivial lemmas about graphs and the Reach function were used for the manual proofs.
These lemmas require manual proofs, which is not surprising as their proofs require induction and
clever case analysis.

Graph1: LEMMA
FORALL (t: nodeIdx):

FORALL (e: edges):
FORALL (r: edgeIdx):

Reach(e)(t) IMPLIES
Reach(e WITH [‘r‘dest := t])(t)

Graph2: LEMMA
FORALL (M: nodes):

FORALL (E:edges):
(FORALL (e: edgeIdx):

NOT(BtoW(E(e))(M))) AND subset?(Roots,Blacks(M))
IMPLIES

Safe(M,E)

Graph3: LEMMA
FORALL (E: edges, r: nodeIdx):

Reach(E)(r) IMPLIES
FORALL (n: nodeIdx, e: edgeIdx):

Reach(E WITH [(e)‘dest := r])(n) IMPLIES
Reach(E)(n)

Graph4: LEMMA
FORALL (E: edges, M: nodes, index: {i: nat | i <= nEdges}):

( Reach(E)(T) AND
subset?(Roots,Blacks(M)) AND
(FORALL (i:edgeIdx): i < index IMPLIES NOT(BtoW(E(i))(M))) AND

R < index AND
M(E(R)‘src) = black AND
M(T) /= black

) IMPLIES
EXISTS (r: edgeIdx):

index <= r AND BtoW((E WITH [‘R‘dest := T])(r))(M)
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Graph5: LEMMA
FORALL (E: edges, M: nodes):

( Reach(E)(T) AND
subset(Roots,Blacks(M)) AND
(FORALL (i:edgeIdx): i < R IMPLIES NOT(BtoW(E(i))(M))) AND
M(E(R)‘src) = black AND
M(E(R)‘dest) = black AND
M(T) /= black

) IMPLIES
EXISTS (r: edgeIdx):

R < r AND BtoW((E WITH [‘R‘dest := T])(r))(M)

In addition to the five non-trivial lemmas about graphs, the proof of the problematic proof
obligations still required extensive manual interaction. Most noticeable, because PVS constantly
tried to use definitions in superfluous assumptions, and the proof script attempted to instantiate
large numbers of quantifiers with a large number of terms, the proof state often became too
complex. The proof script typically did not terminate within the set time. In these situations we
had to resort to manual proofs and had to constantly remove assumptions that were not required
for the proof, and we had to instantiate quantifiers manually.

The proof of five proof obligations needed the append to free def axiom; they had to be proved
manually for this reason. The append to free def axiom was used as a rewrite rule for these proofs.

7.3.2 Second attempt

The second model has been used for the second attempt. 533 proof obligations are generated for
this model.

Reach function We observe that every single proof obligation with a proof that requires the
definition of the Reach function had to be proved manually. To prevent the automatic expansion
of the Reach function we define Reach as an uninterpreted function and specify the definition with
an axiom:
Reach: [edges -> setof[nodeIdx]]

Reach_def: AXIOM
FORALL (e:edges)(i: nodeIdx):

Reach(e)(i) =
( Roots(i) OR

EXISTS (path: [nat -> edgeIdx]):
EXISTS (r: nodeIdx): Roots(r) AND

EXISTS (len: nat): len > 0 AND
e(path(0))‘src = r AND
e(path(len-1))‘dest = i AND
FORALL (j: nat): j < len - 1 IMPLIES

e(path(j))‘dest = e(path(j+1))‘src
)

If this new definition has any influence on our automatic proofs, then it can only be a positive
influence because we already have to prove each proof obligation with a proof that requires the
definition of the Reach function manually. Not only can more proof obligations be proved auto-
matically using this specification of Reach, the runtime of the proof of many other proof obligations
is also reduced considerably. There are indeed no proof obligations that could be proved automat-
ically using the old definition, but could not be proved automatically using the new specification.

Instantiation of quantifiers over predicate subtypes The proof scripts use PVS’ capabil-
ities of finding instantiations for quantifiers. Quantifiers over a predicate subtype of a supertype
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T are instantiated with terms of type T and terms of (predicate) subtypes of T . TCCs are
generated to prove that the types are compatible. Consider for example the following goal:

A1(t,v)
FORALL (x:V): A2(x)

|———————————–
C

where t is of type T , v is of type V , and V is a subtype of T that contains the elements of T
that satisfy a predicate P , i.e. V = {t :T | P (t)} . The application of inst? :if-match all to
this goal results in the following two subgoals:

A1(t,v) TCC:
A2(t) A1(t,v)
A2(v) A2(v)

|————————– |————————–
C C

P(t)

The left subgoal is the original subgoal after instantiating the quantifier with the terms t and v .
The right subgoal is the TCC that is generated for the instantiation with t . It has to be proved
that either t is indeed an element of V (i.e. P (t) ) or that C can be proved without using the
instantiation with t .

We make extensive use of predicate subtypes and many quantifiers are instantiated with many
terms with incompatible types. This results in many goals that are essentially equivalent (P (t)
cannot be proved) that have many assumptions and consequents. The goals become so large
that the automated tactics cannot prove the goal. The bddsimp tactic, which is used by all the
automated tactics, has to be manually interrupted in these cases because it does not terminate
when applied to such large goals, at least not within the 30 minutes we were willing to wait.

Even though it is not documented in the PVS Prover Guide [SORSC01], the tactic inst? ,
which is used as instantiator, has the option to allow or disallow automatic instantiations that
yield TCCs that do not simplify to true (see also suggestion 293 on the PVS suggestion list [SUG]).
We change the main part of the default proof script to disallow instantiations that yield TCCs
that cannot be proved automatically by simplification:

(branch (grind :if-match nil)
((then (try (reduce) (fail) (skip))

(then (inst? :if-match all :tcc? nil) (then
(reduce :if-match all :instantiator m inst?$) (fail) ) ) )) )

We have created a PVS strategy (LISP function) m inst, which is a wrapper function for the
instantiator strategy inst?. The only difference between the two is that m inst? by default
disallows instantiations that yield TCCs that do not simplify true. We need this strategy because
reduce does not have an option to control this directly, we can however supply an alternative
instantiator function:

(defstep m_inst? (&optional (fnums *) subst (where *)

copy? if-match polarity? (tcc? nil))

(inst? fnums subst where :copy? copy? :if-match if-match

:polarity? polarity? :tcc? tcc?)

""

"")

This function belongs in the file pvs-strategies in the working directory, which is automatically
loaded by PVS.

This new proof script is successful for the proof obligations of this algorithm because every
instantiation that yields a nontrivial TCC that cannot be proved by the simplifier, is unnecessary
and unwanted. This may very well not be the case for other algorithms.
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After the changes there are 29 proof obligations left that cannot be proved automatically. One
of them can be proved using proof hints and the proof of each the remaining 28 requires either
one of the five lemmas about graphs or the append to free def rewrite rule. In contrary to the first
attempt, the proof of the 29 proof obligations do not require extensive manual interaction, they
can all be proved by only introducing the required lemmas, and limiting the assumptions being
used, in combination with the standard proof script. The amount of effort required for the proof
is reduced considerably by these changes.

The runtime of the proofs is roughly about ten minutes for each attempt, if the large number
of extra (trivial) proof obligations generated for the first model are disregarded.

7.3.3 Experiences manual proofs

Quantifier instantiation The strategy inst? :if-match all is used to instantiate quantifiers
with multiple terms of the correct type. Based on the manual, our first impression was that all
terms of the correct type would be considered as candidate for the instantiations, but, this is not
in line with our experiences.

What happens is the following. To find candidate terms for the instantiation, PVS (pattern)
matches subterms of quantified formulas with subterms of other formulas in the sequent. Each
successful match delivers candidates for the bound variables of the quantified formula. Only the
subterms that contain all variables bound at the most outer level of the formula are used. Consider
for example the quantified formula

FORALL (x:X): FORALL (y:Y): P(x) OR Q(y)

The term P(x) OR Q(y) is the only term that is matched with subterms of formulas in the
sequent. This term matches with, for example, P(x1) OR Q(y1) , but does not match with P(x1)
or Q(y1) OR P(x1) , in another formula. If candidate instantiations are found for a quantifier,
then the quantifier is instantiated with every candidate and the original quantified formula is
removed. If for all quantified formulas not a single candidate is found, then PVS tries option:
if-match nil. Using this option, even subterms that contain only some of the variables bound
on the outer level are matched with subterms of formulas in the sequent. If there is a subterm
P(x1) in the goal, then x1 is a candidate for instantiation. The quantifiers are instantiated with
the first candidate found, before being removed from the goal.

The behaviour of if-match all is often desired, and is successful for the automated proof
of the proof obligations of this algorithm. Using pattern matching, instantiations can often be
limited to the ones that are most likely to succeed. But for some of the manual proofs of the first
attempt, there were cases in which the correct instantiations could not be found, and we had to
resort to manual instantiation. Consider for example the following goal:

FORALL (i:T): FORALL (j:T): F(i)
F(t1)
F(t2) IMPLIES G(t2)

|—————————————–
G(t2)

This goal is valid; we would like to find instantiation t2 for the outermost quantifier. If
if-match all is used, then no instantiation is found, since there is no term that contains both
bound variables. Next, PVS tries if-match nil. Using this option, the term F(i) is matched
with subterms of other formulas: matches F(t1) and F(t2) are found. The quantifier is instan-
tiated with the first candidate: t1, and the quantified formula is removed. This renders the goal
unprovable. In this case we prefer instantiation of every possible term with the correct type.

Other instantiation strategies are available in PVS. One of them is if-match first*. Based
on the manual, we considered this to be a serious candidate for the default proof script: the goal
above can be proved automatically using the strategy because quantifiers are instantiated with
every term possible. We did some experiments with this option, and the results show that it does
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not work as described in the manual [SORSC01]. We were not able to determine what it does
exactly.

Extensionality Determining the equality of functions appears to be problematic for the auto-
mated proof strategies. The principle of extensionality states that two functions P and Q are
equal if 〈 ∀x : P (x) = Q(x) 〉 . Unfortunately, the automated proof strategies do not use this fact
and we have to apply the tactic apply-extensionality explicitly, when extensionality is required.
Consider the following goal:

M(k) = black
|—————————————–

M = M WITH [k := black]

Even though this is trivially valid, the automated proof strategies are not able to prove this unless
apply-extensionality is applied first.

The function strict_subset?(P,Q) is defined in the prelude (standard library) as:

strict_subset?(P, Q): bool = subset?(P, Q) & P /= Q

The automated tactics are in many cases not able to prove goals with this function in the conse-
quent, as the proof of P 6= Q requires extensionality. For this reason we use an alternative (but
equivalent) definition:

subset?(P, Q) AND NOT(subset(Q, P))

which is logically equivalent to:

〈 ∀x : P (x) ⇒ Q(x) 〉 ∧ 〈 ∃x : Q(x) ∧ ¬P (x) 〉

Using this definition, extensionality is not required.

Last minute note In this section we have claimed that the automated tactics of PVS do not
use extensionality at all. Unfortunately, this is not completely accurate. Even though this cannot
be found in the PVS manuals (i.e. the prover guide [SORSC01]), we have learned from the release
notes of PVS that there are versions of the automated tactics available that do apply extensionality
at some points in the proof. The goal which we used as an example in this section, can be proved
automatically using these tactics, but we did not carry out any further experiments and we can
therefore not tell wether this would be more effective for automated proofs.

The current documentation of PVS is from november 2001, and is thus four years old. Several
PVS versions have been released in these four years.

7.4 Evaluation

7.4.1 Specification

The PVS specification is very similar to the original Isabelle specification in [PN02]. There are two
notable differences. First, lists are used in the original specification. The specification language of
Isabelle is based on functional programming, and many functions on list are available in Isabelle,
together with many theorems on lists, which can be very useful for manual proofs. In PVS not
as many theorems about lists are available and the inductive character of the list datatype makes
automated verification difficult; induction is not supported by the proof script and the automated
tactics.

Instead of lists of elements of some type T , we use functions from a subset of the naturals to
T . The functions are used like arrays; the subset of naturals represents the indices of the array,
and T is the type of the elements in the array. For this algorithm, arrays can be used instead of
lists because in [PN02] the lists have a constant size and their elements are accessed exclusively
through their index.
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Second, Isabelle does not support predicate subtyping. In [PN02] edges and nodes are of type
nat. Extra conditions stating the acceptable ranges of the naturals are required in the annotation
as there are a limited and constant number of nodes and edges. For example, a node must be a
natural smaller than the size of the list representing the collection of nodes. In our specification this
information is stated implicitly in the type definition. This is more readable and less error-prone.

7.4.2 Proofs

Both the original verification in [PN02] and our verification are based on the Owicki/Gries theory.
The proof obligations are essentially the same for both formalisations, albeit in a slightly different
form.

Isabelle proof of [PN02]

Five nontrivial lemmas are used for the verification in Isabelle. They are similar to the five
nontrivial lemmas we use in PVS, and their proofs also require extensive manual interaction. The
results of the verification are summarised and concluded in [PN02] as follows:

The Owicki-Gries method splits the proof into a large number of simple interference
freedom subproofs. These are very tedious to prove by hand, and so avoided by humans,
who prefer to concentrate on the few difficult cases. By applying the formalized Owicki-
Gries system most of the interference freedom proofs for the final annotations where
carried out by Isabelle/HOL. For the remaining cases, five non-trivial lemmas about
graphs had to be supplied. The proofs of these lemmas, however, were very interactive.

Reading this we got the impression that the proof was completely automated, apart from the five
lemmas that had to be supplied and proved interactively. Studying the Isabelle proofs of [PN02],
which are publicly available from [PNG], we discovered that this is not the case. The majority
of proofs are indeed trivial and can be proved using simp or force, but still there are many that
are not trivial and are long. They include, among other things, case distinction, instantiation of
quantifiers and the application of rules from the standard library.

We have carried out some experiments with the Isabelle specification and proof of [PN02]. The
experiments indicate that if arrays are used instead of lists, more can be proved automatically
with Isabelle.

Our automated PVS proof

Our proof is almost completely automated, apart from the five nontrivial lemmas. The proof
obligations that cannot be proved completely automatically using the default proof script only
require the introduction of one of the five nontrivial lemmas or the append to free def lemma, in
addition to the default proof script.

Comparison

It is difficult to make a meaningful and honest comparison between our automated PVS proof and
the mechanised Isabelle proof in [PN02], because of differences in the specification. Also, [PN02]
does not put as much emphasis on fully automated verification as we do. In the remainder of this
section we discuss some of our findings.

The five non-trivial lemmas about graphs, which are used for the manual proofs, are almost
the same for both our verification and the verification of [PN02], which is no coincidence. The
outline of the proofs are comparable, but in the Isabelle proofs case distinction is frequently used
at places where in our proof the automated proof strategies can prove the goal directly.
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There are goals in the Isabelle proof of [PN02] that cannot be proved automatically with
Isabelle, but can be proved automatically with PVS. We have identified two reasons why they
could be proved with PVS: instantiation of quantifiers and the decision procedures of PVS. We
use a proof obligation to illustrate this. Consider the Hoare-triple:

{〈 ∀i : i < n ⇒ I(i) 〉 ∧ I(n)} n := n+ 1 {〈 ∀i : i < n ⇒ I(i) 〉}

with proof obligation:

〈 ∀i : i < n ⇒ I(i) 〉 ∧ I(n) ⇒ 〈∀i : i < (n+ 1) ⇒ I(i) 〉

where n is of type nat. This type of proof obligation occurs frequently in the verification of
programs, particulary in situations where an invariant has to be re-established at the end of a
repetition. Both in PVS and in Isabelle we first eliminate the quantifier and implication from the
consequent:

〈 ∀i : i < n ⇒ I(i) 〉 ∧ I(n) ∧ i′ < (n+ 1) ⇒ I(i′)

where i′ is a constant. This goal can be proved by instantiating the quantifier with i′

i′ < n ⇒ I(i′) ∧ I(n) ∧ i′ < (n+ 1) ⇒ I(i′)

and then use case distinction on i′ < n , after which the goals are trivially valid. In PVS, both
the instantiation and the case distinction are applied by the automated strategies. In Isabelle, the
automated tactics do not find the required instantiation, and even if we instantiate the quantifier
manually, the goal can still not be proved automatically. In fact, the following goal cannot be
proved automatically in Isabelle:

[[ I(n) ; i′ ≤ n ; n ≤ i′ ]] =⇒ I(i′)

but can be proved using the decision procedures of PVS.

Automatic instantiation of quantifiers is crucial for our PVS verification. In the proof of
[PN02], many instantiations are not found automatically, but instantiation is often avoided in the
interactive proof by using additional lemmas on sets.

7.5 Conclusions

In this chapter we have shown the verification of a larger algorithm with PVS; a large part of the
verification of the algorithm is completely automated. The instantiation strategies of PVS and
the proof script have proved to be very effective, but they are not perfect.

This case study has shown that for the automated verification it is crucial to choose the
datatypes carefully. The choice to use predicate subtypes turned out to be a good one: not only is
the specification much clearer, but after a change to the proof script we were also able to prevent
many unwanted instantiations. This would not have been possible if the approach of [PN02] would
have been used. Using lists instead of arrays decreases the amount of possible automation of the
proofs, both in PVS and Isabelle.

This case study revealed two problems with automated verification in Isabelle: First, the
needed instantiations of quantifiers are often not found; the quantifiers have to be instantiated
manually. Second, many goals that can be proved automatically by using the decision procedures
of PVS, cannot be proved automatically in Isabelle.
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Chapter 8

Conclusions

The aim of the project was to determine and compare the effectiveness of the interactive theorem
provers PVS and Isabelle with respect to automated verification of Owiki/Gries outlines. Support
for Isabelle has been successfully added to the proof generator tool and we have experimented
with the automated verification of a number of parallel algorithms. We have verified a number of
relatively small algorithms, and a larger garbage collection algorithm. Almost 95% of the proof
obligations of this garbage collection algorithm can be proved automatically with PVS. In this
section the most important findings and conclusions of our experiments are discussed.

Specification Language

The specification language of the theorem provers is important as programs, annotations and
proof obligations have to be modelled efficiently. [MW05] shows how the proof obligations can be
modelled in PVS. The translation of the models of the proof obligations to Isabelle turned out to
be straightforward.

The complexity of the models of programs and annotation varies, depending on the program
being verified. We have encountered only a few problems with the modelling of the programs we
experimented with.

In contrast to PVS, types in Isabelle are always non-empty. This restricts the parallel com-
position over the elements of a type, as used by the tool, to a non-empty set of processes when
Isabelle is used for the verification.

In PVS predicate subtypes are available to create subtypes of existing types. Predicate subtypes
allow natural specification of subtypes and unproved TCCs generated by the type checker are an
indication of inconsistencies, detected at an early stage. There is no equivalence of predicate
subtypes in Isabelle.

Automated verification

Both PVS and Isabelle can reduce the human effort required to verify parallel programs consider-
ably. Many proof obligations can be proved completely automatically using PVS or Isabelle. The
proof obligations that cannot be proved completely automatically have to be proved interactively
with the theorem provers, but even those proofs can largely be automated.

Quantifiers The validity problem of formulas in higher-order predicate logic is undecidable; fully
automated theorem proving is not always possible. We have found automated proving of proof
obligations with quantifiers to be problematic in PVS and Isabelle. The required instantiations of
quantifiers are usually obvious in interactive proofs, but it is difficult to find them automatically.

PVS and Isabelle use different strategies to find the required instantiations of quantifiers.
Isabelle uses unification of the conclusion with the assumptions to find instantiations. PVS uses
pattern matching of subterms of quantified formulas with other subterms in the goal, to find
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candidates for the instantiation. The user can choose between the various automatic instantiation
strategies of PVS, ranging from instantiation with the first candidate found to instantiation with
every candidate found (eager instantiation). The advantages of Isabelle’s strategy are that the
instantiation is delayed as much as possible, and that only serious candidates are considered for
the instantiation. But, many of the required instantiations are not found automatically.

The advantage of PVS’ eager instantiation strategy is that more instantiations are found. But,
many of the instantiations are unnecessary and complicate the goal. Another disadvantage is that
the instantiation of the quantifiers strengthens the goal because the original quantified formula is
removed; this may render the goal unprovable.

We have found PVS’ instantiation strategies to be more effective than the strategy of Isabelle;
more proof obligations can be proved completely automatically. The relatively small programs
we have experimented with can all be verified completely automatically with PVS in combination
with the generic proof script. Some of the programs can however not be verified completely
automatically with Isabelle because the needed instantiations for quantifiers are not always found.
This is a significant problem, as the annotation of most non-trivial parallel programs contain
quantifiers.

Decision procedures The comparison of the mechanised Isabelle verification of the garbage
collection algorithm of [PN02] with our automated PVS verification of the same algorithm revealed
that the decision procedures of PVS succeed at proving certain goals that cannot be proved auto-
matically with Isabelle. More specifically, we have found the PVS decision procedures concerning
naturals to be more effective than those of Isabelle. These proofs require extra human interaction
in Isabelle, such as case distinction.

Types The choice of types used for the specification of programs and their annotation can have
a significant influence on the efficiency of the automated verification. Because automated proving
with induction is difficult to automate, and is not supported by the proof scripts, inductively
defined types should for example be avoided as much as possible. In the mechanised Isabelle
verifications of [PN02], lists are often used where array-like types would me more suitable for
automated verification. In our PVS verification of the garbage collection algorithm we make
extensive use of predicate subtypes. This has turned out to be a good choice as it enables us to
prevent many unwanted instantiations in PVS, using just a slightly modified proof script. More
proof obligations of this algorithm could be proved automatically using this modified proof script.

Runtime The runtime of highly interactive proofs is usually shorter than those of automated
proofs, but more human effort is required for the interactive proofs. The runtime of most of the
PVS verifications we have experimented with is shorter than the runtime of the corresponding
Isabelle verification. For most of the verifications this difference was marginal, but we have also
seen an exception where the PVS verification is more than ten times faster.

Our conclusions are not completely in line with those of [GH98]. In [GH98], it is concluded
that the automation offered by PVS and Isabelle is comparable. Our experience is that PVS offers
more automation. The reason for this difference is most likely that the conclusions of [GH98] are
mostly based on experiences with rewriting [Hui01].

Despite the fact that many non-trivial proof obligations can be proved fully automatically, we
have also encountered proof obligations that are trivially valid but cannot be proved automatically
using the theorem provers. Provers are powerful, but the power of human intelligence and creativity
should not be underestimated.
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Recommendations for further work

We have been working with the theorem prover in the role of user. We have tried to develop
effective and generic proof scripts, using the tactics and rules available. We expect that there is
not much more to gain from this perspective; we do not think it is useful to continue tuning the
generic proof scripts.

Our advise for further work is to change to the role of developer, and try to improve the provers.
The most prominent problem is how the theorem provers deal with quantifiers. Automated proofs
with quantifiers are not trivial, but the instantiation heuristics used by PVS and Isabelle are rather
primitive. We think it is worthwhile to investigate the possibilities of more intelligent instantiation
heuristics.

The decision procedures of the provers are not perfect (this is especially true for Isabelle). De-
cision procedures are used to automatically decide which direction an automated proof (attempt)
should head. We think it may be worthwhile to try to develop more effective decision procedures.
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Appendix A

UPnP Power Management
modelled in µCRL

A.1 Introduction

Universal Plug and Play (UPnP) technology [UPn03] defines an architecture for peer-to-peer
network connectivity of devices. It is designed to bring easy to use, flexible, standards based
connectivity to managed and ad-hoc or unmanaged networks. It is also designed to support zero-
configuration, “invisible” networking and automatic discovery for a breadth of device categories
from a wide range of vendors. In the UPnP forum, the technical committee is working on a
specification of a UPnP power management standard [Con04] that allows devices to enter various
power saving modes.

There are various proposals for proxy functionality for devices in sleep mode. We consider an
attempt by Philips: the Deep Sleep Proxy, which is described in [Hee04a].

We are interested in various properties of UPnP power management and the Deep Sleep Proxy.
To this end we have created models of various environments, using the modelling language µCRL
[GP95]. µCRL is a process algebraic language and the µCRL toolset includes a simulator and an
instantiator which generates the state-spaces of models (i.e. enumerate all possible states), which
can then be analysed. In this report the models and the evaluation of the properties are discussed.

A.2 UPnP

The architecture document [UPn03] describes the possibility for (physical) devices and root devices
to contain sub-devices and services. We limit our models to the following two logical entities:

Control point: A control point (or CP) functions in the role of client. A control point requests
services from a controlled device, and can initiate searches for devices and services.

Controlled device: A controlled device (or simply device) functions in the role of server. A
device offers and advertises a service. The device responds to search and service requests
from the control points.

We abstract from physical devices; we do not specify how the logical entities are mapped to
physical devices and we do not define how they are connected, what media connects them. Each
device and control point is identified by a unique id, and it is assumed that they are all able to
communicate with each other.

The following messaging services are of interest:
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UDP Unicast/Multicast: UDP is an asynchronous, unreliable protocol. Messages are not ac-
knowledged; they can get lost without being detected. Also, messages do not necessarily
arrive in the same order they were sent. Both unicast and multicast messages are supported
by UDP. A device can join multicast groups. Messages addressed to such a group can be
received by the members of the group. In order to prevent an explosion of the state-space,
a multicast message is either delivered to each entity but the sender, or gets completely lost
and is not received by any entity. Note that without this restriction, there are O(2n) pos-
sible outcomes for every multicast message, with n being the number of possible receivers.
UDP is modelled as a separate message queue for each entity, with each queue having a
bounded size. Messages are read from the queue in a random order and can get lost. Sent
messages are discarded if the queue of the receiver is full or if the receiver is offline.

TCP: TCP is a reliable protocol. We only use TCP unicast, which is used to request services and
to send service results. It is modelled like RPC: the initiator makes a request, this either
succeeds or fails (cannot connect or the receiver cannot accept the request). The receiver of a
request either replies, or cannot reply for some reason, and the request remains unanswered.
The initiator always knows whether the request is received, but there is no guarantee that
it is ever processed or answered. For the sake of simplicity, the devices process requests
in the order they were received and there can be at most one pending request per service,
per control point. The reason for these simplifications is that we do not aspire modelling a
complete tcp stack. The device does not ‘block’ while processing a request; it is able to do
other things in the mean time.

We are especially interested in the discoverability of the devices and we limit our models accord-
ingly. For UPnP (legacy) devices and control points we consider the following messages:

message from to using
SSDP discovery messages

alive device CPs UDP Multicast
byebye device CPs UDP Multicast
msearch CP devices UDP Multicast
msearch response device CP UDP Unicast

Control actions
service request CP device TCP
service result device CP TCP

A device announces its presence with alive messages, and announces its departure with a
byebye message. The msearch message is used by a control point to actively search for devices
that offer a certain service. The msearch response message is a response to this: it is used by
a device to report that it offers the service. A service request message is used to request a
service, note that this is communicated synchronously. The service result message represents
the result of the service, which is sent after the service has been delivered.

A.3 UPnP Power Management

In this section we discuss the specification of devices and control points that implement, or are
aware of, power management.

We consider the following additional power modes for controlled devices, as mentioned in
[Con04]: Deep Sleep Online and Deep Sleep Offline. In the Deep Sleep Offline mode and in the
Disconnected mode there is no IP connectivity. In Deep Sleep Online mode, the functionality of
a device is limited.
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power mode discoverable controllable
Active Yes Yes
Deep Sleep Online Yes only power mode changes
Deep Sleep Offline No No
Disconnected No No

In addition to the messages listed in the previous section, we need additional messages to announce
transitions to the new power modes. We introduce the following messages:

message from to using
SSDP discovery messages

byebyehello device CPs UDP Multicast
byebyebye device CPs UDP Multicast
msearchsleep CP devices UDP Multicast
msearchsleep result device CP UDP Unicast

Control actions
wake-up CP device TCP

A device that goes into Deep Sleep Online mode announces this by sending a byebyehello mes-
sage. A device that goes into Deep Sleep Offline mode announces this by sending a byebyebye
message. Legacy UPnP devices interpret the byebyehello messages and the byebyebye messages
as byebye messages. Devices in Deep Sleep Online mode do not respond to msearch messages;
they respond to msearchsleep messages instead [Hee04a]. The msearchsleep result message
is used to respond to the control point. Devices in other states do not respond to msearchsleep
messages. This way, from the point of view of a legacy control point, a device and its service
simply do not exist (or are considered to be Disconnected) when they are in one of the sleep
modes. This ensures compatibility.
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Figure A.1: Transition diagram of a device that implements power management

Figure A.1 shows the transition diagram of a power aware controlled device, and Table A.1
shows the corresponding triggers and responses. Several transitions have multiple triggers and
multiple responses. Messages received in states where there is no corresponding transition in the
transition diagram are discarded. Internal denotes an internal decision of the device to go to
a certain state. Every device maintains a variable named BootID. The value of this variable is
incremented each time a device is reconnected [Con04]. The last column shows which transitions
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must increment the value of BootID before sending the response (see [Con04]). This device is able
to go to sleep and wake up periodically, which is considered to be optional behaviour.

# Trigger Response Inc BootID?
1 (Internal) Multicast alive No

Receive relevant msearch Unicast msearch response No
Receive relevant service request Send service result No

2 (Internal) (no response) No
(Internal) Multicast byebye No

3 (Internal) Multicast alive Yes
4 (Internal) Multicast byebyehello Yes
5 (Internal) Multicast byebye-hello No
6 (Internal) Multicast alive Yes

Receive wake-up Multicast alive Yes
7 Receive relevant msearchsleep Unicast msearchsleep result No
8 (Internal) Multicast byebyebye No
9 (Internal) Multicast byebyebye No
10 (Internal) (nothing is sent) No

Table A.1: Transitions of Figure A.1

A.4 Environment: One CP and one Device

In this section we discuss a model of an environment with one power aware device and one power
aware control point. The device offers one service: service1, and the control point searches
continuously for devices that offer this service and requests this service from available devices it
has located. When the control point has located a device that offers the service, but the device is
in Deep Sleep Online mode, it can attempt to wake-up the sleeping device. The device can decide
(internal decision) to change states as described in Figure A.1. In Section A.4.1 a µCRL model of
the environment is discussed. In Section A.4.2 the BootID variable is discussed.

A.4.1 µCRL model

Table A.2 shows the µCRL datatypes used and Table A.3 shows the (atomic) actions. Note that
s: devID denotes a variable s with datatype devID and that the variable name is often omit-
ted. The first column shows for each action whether it results from synchronised communication
between processes.

Actions that are the result of communication have a sender action (prefix s ) and a re-
ceiver action (prefix r ) in the µCRL specification. This synchronised communication is shown in
Figure A.2. The arrows show the direction (sender and receiver). The actions in the transitions
are atomic.

The following processes are used:

comm1(qsUDP: IMQList, areOnline: devSet) This process models the UDP communica-
tion between devices and control points. The communication channel accepts UDP messages
and delivers them to the receiver, unless they get lost. qsUDP is a list of message queues,
one for each device and each control point. The process maintains a list of online devices
(areOnline). Multicast messages, and the disconnect action, are used to maintain this
list. Messages addressed to devices that are not online are discarded.

dev1(id: devID, state: devState, serviceQ: ISEQueue) This process models a device that
implements all the states and transitions shown in Figure A.1. id is the unique identifier
for this device, and state is the current state of the device. Received messages that do not
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Datatype Description Possible values
Bool Booleans {T,F}
Nat Natural numbers 0. . .
service Services offered {service1}
messageType Message type {alive, byebye, byebyehello, byebyebye,

msearch, msearchres, msearchsleep,
msearchsleepres}

devID Unique ID for a device or
CP

{CP1,DEV1}

message UDP message (devID, messageType, service)
devState States a device can be in {disconnected, deepsleeponline,

deepsleepoffline, active}
tIS Tuple of devID and

devState
(devID, devState)

tIMQ Tuple of devID and
mMulti

(devID, mMulti)

tISE Tuple of devID and
service

(devID, service)

mMulti Multiset of messages Ordered list of messages with a maximum size.
Same messages can appear more than once in the
set. An ordered list is used so that there is a
unique representation for every possible
combination.

IMQList List of tIMQ [(devID, mMulti)]
ISSet Set of tIS Ordered list of tIS. Every device is at most once

in the list.
ISEQueue FIFO queue of tISE The (devID, service) combination is unique in

the queue (appears at most once).
devSet Set of devID Every device is at most once in the list. The list

is ordered to get a unique representation.

Table A.2: µCRL abstract data types

correspond to a transition in the current state are read but discarded. A device can only be
woken up when it is Deep Sleep Online mode. In any other state, a control point’s attempt
to wake up the device will fail. serviceQ is a queue of control points that are still waiting
for a reply to a certain service. Each combination of control point and service appears at
most once in the list. The device can only accept service requests when it is in state Active.
Accepted service requests are put in the queue and requests are processed in FIFO order.
When the device changes states, the serviceQ is cleared and pending service requests remain
unanswered. The state of the device is initially Disconnected and the serviceQ is initially
empty.

cp1(id: devID, serviceQ: ISSet) This process models a control point whose sole purpose is
requesting service service1 from devices that offers it. id is the unique identifier for this
control point and serviceQ is a list of devices of which is known that they offer service1,
together with their current state. Devices that are in state disconnected are not in the list.
Messages that are not related to service1 are received but discarded. Received multicast
messages are used to maintain serviceQ. The control point can try to request the service
from devices that are online and are offering the service. If there are no devices online that
offer service1, then the control point can multicast a msearch message or a msearchsleep
message to search for devices that do. The control point can attempt to wake-up devices
that offer service1, but are in Deep Sleep Online.
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comm? Action Description
No incBootID(devID) The device increases its BootID
Yes sendUC(s: devID, r: devID,

messageType, service)
Sender s sends an Unicast UDP
message to r.

Yes sendMC(devID, messageType,
service)

The device or CP sends a multicast
message.

Yes read(r: devID, s: devID,
messageType, service)

r receives a message which is sent by s.

Yes wakeup(devID,Bool) The device is asked to wake up. Bool
indicates success (T) or failure (F).

No serviceTimeout(s: devID,
r: devID, service)

Device s was not able to fulfill the
service request of r. Reply is never
sent. This action models the loss of the
request.

Yes disconnected(devID) Internal decision of the device to go to
disconnected.

Yes serviceReq(s: devID, r: devID,
service, Bool)

CP s requests a service of r. Bool
indicates whether r was able to accept
the request.

Yes serviceRep(s: devID, r: devID,
service)

Device s sends a reply to the request of
a service by CP r.

Table A.3: µCRL actions
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Figure A.2: Communication between processes

State-spaces

The size of the state-spaces that are generated depends heavily on the maximum size of the queues
used for the UDP communication. We have experimented with different queue sizes to determine
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up to what size we can generate and reduce the state-spaces. For the instantiation and reduction
of the state-space we made use of a server running Linux with a Intel Xeon 2.8GHZ CPU (5500
bogomips). A maximum of 4GB of RAM is available on this server. Table A.4 shows the number
of states and transitions before and after reduction (branching bisimulation). Table A.5 gives an
impression of the amount of the CPU time, and maximum memory usage, for the instantiation
and reduction. More combinations are discussed in Appendix B. We were not able to produce
and reduce the state-space of models with a queue size above 7.

Original Reduced
Queue size States Transitions States Transitions
1 547 3K 383 2K
2 5K 32K 3K 22K
3 24K 201K 17K 127K
4 91K 889K 67K 531K
5 284K 3.1M 212K 1.8M
6 777K 9.4M 574K 5.0M
7 1.9M 24.9M 1.4M 12.5M

Table A.4: Sizes of the state-spaces

Instantiation Reduction
Model CPU Mem CPU Mem (KB)
1 6s 6MB 0s 8MB
2 14s 7MB 1s 9MB
3 1m11s 12MB 5s 17MB
4 5m8s 26MB 25s 47MB
5 20m1s 68MB 2m24s 136MB
6 1h5m 180MB 8m54s 354MB
7 3h1m 427MB 26m37s 878MB

Table A.5: Resources used for generation and reduction

A.4.2 BootID

Every device maintains a variable BootID. This variable is incremented each time a device re-
connects to the network [Con04]. Different interpretations of the desired property of the BootID
variable are possible, depending on how the states of the devices are classified. In this section we
examine the different interpretations.

Different interpretations

1. The state of a device is classified as either online or offline. Transitions between states in
the same category do not have any influence on BootID. After a transition from a state in
the category online to a state in the category offline, there must be an incBootID action
before the next transition to a state in online. It then depends on which states belong to
online and which states belong to offline:

(a) We classify online and offline as:
online = {Active, Deep Sleep Online}
offline = {Deep Sleep Offline, Disconnected}
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The actions that indicate a transition from online to offline are (transitions 2, 8 and 9
in Figure A.1):

• sendMC(DEV1,byebye,service1)

• sendMC(DEV1,byebyebye,service1)

• disconnected(DEV1)

And the actions that indicate a transition from offline to online are (transitions 3 and
4 in Figure A.1):

• sendMC(DEV1,alive,service1)

• sendMC(DEV1,byebyehello,service1)

(b) We classify online and offline as:
online = {Active}
offline = {Deep Sleep Online, Deep Sleep Offline, Disconnected}

The actions that indicate a transition from offline to online are (transition 3 and 6 in
Figure A.1):

• sendMC(DEV1,alive,service1)

The actions that indicate a transition from online to offline are (transitions 2, 5 and 8
in Figure A.1):

• sendMC(DEV1,byebye,service1)

• sendMC(DEV1,byebyebye,service1)

• sendMC(DEV1,byebyehello,service1)

• disconnected(DEV1)

2. The state of a device belongs to one of the following categories:
online = {Active}
limited-online = {Deep Sleep Online}
offline = {Disconnected, Deep Sleep Offline}

See Figure A.3 and Table A.6. There must be an incBootID action before each up-arrow
(4,5,6). More specifically, after an action in
{sendMC(DEV1,t,service1), disconnected(DEV1)} with t ∈ {byebye, byebyebye,
byebyehello}, there must be an incBootID(DEV1) before the next action in
{sendMC(DEV1,t′,service1)} with t′ ∈ {alive, byebyehello}.

# Action
1 sendMC(DEV1,byebyehello,service1)
2 sendMC(DEV1,byebye,service1)

disconnected(DEV1)
3 sendMC(DEV1,byebyebye,service1)

disconnected(DEV1)
4 sendMC(DEV1,byebyehello,service1)
5 sendMC(DEV1,alive,service1)
6 sendMC(DEV1,alive,service1)

Table A.6: Transitions of Figure A.3

Options examined

CADP’s evaluator has been used to check the different properties.
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Figure A.3: BootID option 2

Option 1a This option can be described as: for every possible path it is not allowed that there
is an action in {sendMC(DEV1,byebye,service1), sendMC(DEV1, byebyebye, service1),
disconnected(DEV1)} on this path after which there is no incBootID(DEV1) before the
next multicast of this device. This gives the following formula:

[true* . ( "sendMC(DEV1,byebye,service1)"

| "sendMC(DEV1,byebyebye,service1)"

| "disconnected(DEV1)"

) . (not("incBootID(DEV1)"))* . ’sendMC(DEV1,.*)’ ] false

The BootID variable is used by both legacy and power aware devices. Since legacy CPs do
not distinguish the deep sleep modes from the Disconnected mode, option 1a is too weak for
legacy CPs. For example, when the device goes from Active to Deep Sleep Online (from the
point of view of the legacy control point the device is disconnected) and then goes back to
Active, the legacy control point expects an increment of BootID in between the actions, but
option 1a does not enforce this. In other words, the sequence

sendMC(DEV1,byebyehello,service1).sendMC(DEV1,alive,service1)
is not forbidden by this option, but this path should not be allowed.

Option 1b This option can be described as: for every possible path it is not allowed that there
is an action in {sendMC(DEV1, byebye, service1), sendMC(DEV1,byebyebye,service1),
disconnected(DEV1)} on this path after which there is no incBootID(DEV1) before the
next sendMC(DEV1, alive, service1). This gives the following formula:

[true* . ( ’sendMC(DEV1,byebye,service1)’

| ’sendMC(DEV1,byebyebye,service1)’

| ’sendMC(DEV1,byebyehello,service1)’

| "disconnected(DEV1)"

) . (not("incBootID(DEV1)"))* . ’sendMC(DEV1,alive,service1)’ ] false

This option would work for the legacy CPs as it treats all states but Active as offline.
However, this option is too weak for the power aware CPs. For example, a device in Deep
Sleep Online changes states to Disconnected, and later it changes back to Deep Sleep Online.
This gives the sequence:

sendMC(DEV1,byebye,service1).sendMC(DEV1,byebyehello,service1)
There is no incBootID(DEV1) action in between these two actions. This is not forbidden
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by option 1b, because both states belong to offline. But this should be forbidden, since the
device has re-entered the network. See also [Con04, Section 1.2].

Option 2 This option can be described as: for every possible path it is not allowed that there is
an action in {sendMC(DEV1, byebye, service1), sendMC(DEV1, byebyebye, service1),
sendMC(DEV1, byebyehello, service1), disconnected(DEV1)} on this path after which
there is no incBootID(DEV1) before the next action in {sendMC(DEV1, alive, service1),
sendMC(DEV1, byebyehello, service1)}. This gives the following formula:

[true* . ( ’sendMC(DEV1,byebye,service1)’

| ’sendMC(DEV1,byebyebye,service1)’

| ’sendMC(DEV1,byebyehello,service1)’

| "disconnected(DEV1)"

)

. (not("incBootID(DEV1)"))* . ( ’sendMC(DEV1,alive,service1)’

| ’sendMC(DEV1,byebyehello,service1)’) ] false

This option seems to be consistent with the second table of [Con04, Section 1.2]. We examine
the offending sequences of the other two options:

1. sendMC(DEV1,byebyehello,service1).sendMC(DEV1,alive,service1)
This sequence is forbidden if option two is used, since there is no incBootID(DEV1) in
between: between transition 1 and the next 5 in Figure A.3 there must be at least one
incBootID(DEV1).

2. sendMC(DEV1,byebye,service1).sendMC(DEV1,byebyehello,service1)
This sequence is forbidden if option two is used, since there is no incBootID(DEV1) in
between: between transition 3 and the next transition 4 in Figure A.3 there must be
at least one incBootID(DEV1).

All paths that are allowed by option 2 are also allowed by option 1a and option 1b. Option
2 is stricter than option 1a and 1b.

We believe option two is the correct interpretation. We have checked the formulas of the different
options for this model, they are all satisfied.

A.5 Including Deep Sleep Proxy functionality

An attempt at proxy functionality is given by Philips in [Hee04a]. The Deep Sleep Proxy they
propose basically has two interesting functions: First, the proxy keeps track of all the devices on
the network, together with the services they offer and the (power) states they are in. A CP (both
power aware and legacy) can send search requests to the proxy, requesting a list of devices or
services available, and the state they are in. Second, the proxy can be used to wake-up devices
in Deep Sleep Offline mode. This is only possible if the specific proxy has some mechanism to
wake-up the specific device. The method used by the proxy for the actual wake-up of the device
is not specified and could be anything. From now on we refer to this wake-up as a “link-layer
wake-up”.

We introduce the following UPnP messages:

message from to using
Control actions

search request CP Proxy TCP
search response Proxy CP TCP
link-layer wake-up request CP Proxy TCP
link-layer wake-up Proxy Device Unspecified

Note that there is no response to a link-layer wake-up request. This is because [Hee04b]
states that some link-layer wake-up methods do not support acknowledgements. The CP should
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wait for discovery messages. We limit our search requests to requests for services, i.e. asking the
question: “Which devices offer service X and what is their state?” The Proxy has two power
modes: on and off. See Figure A.4 and Table A.7 for the behaviour of the proxy.

3

2

1

On

Off

Figure A.4: Transition diagram of a deep sleep proxy

# Trigger Response
1 (Internal) Multicast alive
2 (Internal) Multicast byebye
3 (Internal) Multicast alive

Receive msearch for proxy service Unicast msearch response
Receive link-layer wake-up request Wakeup device
Receive search request Send search response
Receive alive Device is in Active, update internal table
Receive byebye Device is in Disconnected, update internal table
Receive byebyehello Device is in Deep Sleep Online, update internal table
Receive byebyebye Device is in Deep Sleep Offline, update internal table

Table A.7: Transitions of Figure A.4

Figure A.5 and Table A.8 show the behaviour of a device that supports link-layer wake-up.
The changes are in bold in both the figure and the table.
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Figure A.5: Transition diagram of a device that supports link-layer wake-up

# Trigger Response Inc BootID?
1 (Internal) Multicast alive No

Receive relevant msearch Unicast msearch response No
Receive relevant service request Send service result No

2 (Internal) (no response) No
(Internal) Multicast byebye No

3 (Internal) Multicast alive Yes
4 (Internal) Multicast byebyehello Yes
5 (Internal) Multicast byebyehello No
6 (Internal) Multicast alive Yes

Receive wake-up Multicast alive Yes
Receive link-layer wake-up Multicast alive Yes

7 Receive relevant msearchsleep Unicast msearchsleep result No
8 (Internal) Multicast byebyebye No
9 (Internal) Multicast byebyebye No
10 (Internal) (nothing sent) No
11 (Internal) Multicast alive Yes

Receive link-layer wake-up Multicast alive Yes

Table A.8: Transitions of Figure A.5

The following µCRL datatypes are modified:
Datatype Description Possible values
service Various services offered {service1, proxyserv}
devID Unique ID for every

device, CP or proxy
{CP1,CP2,DEV1,DEV2,PROXY1,PROXY2}

Table A.9 shows the µCRL actions that have been added in order to support and implement
Deep Sleep Proxy functionality.

The dev1 process has been modified slightly:

dev1 (id: devID, state: devState, serviceQ: ISEQueue, offers: service)
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comm? Action Description
No searchTimeout(s: devID, r: devID,

service)
Proxy s could not send a reply to
search request of r in time. Reply is
never sent.

No llwakeupTimeout(s: devID,
r: devID)

Proxy s was not able to wake-up
(link-layer) device r in time.

Yes llwakeupReq(s: devID, r: devID,
d: devID, Bool)

Device s sends a request to proxy r to
wake-up (link-layer) device d. Bool
indicates success or failure of the
request.

Yes connected(s: devID) CP s is connected.
Yes searchReq(s: devID, r: devID,

service, Bool)
Device s requests the list of devices
that offer the service and their states
from proxy r.

Yes searchRep(s: devID, r: devID,
service, ISSet)

Proxy s sends the list of devices (ISSet)
that offer service and their states to CP
r.

Table A.9: µCRL actions for deep sleep proxy

Offers is the service offered by this device. It has been introduced to minimise the effort
required to add devices that offer different services. Link-layer wake-up has been added, as
shown in Table A.8.

The following processes have been added to the µCRL specification:

comm2 (qsUDP: IMQList, areOnline: devSet)
The behaviour of comm2 is almost identical to that of comm1. The only difference is that we
lifted the restriction that multicast messages either reach all subscribed entities, or none.
Multicast messages are delivered to a subset of areOnline.

cp2 (id: devID, serviceQ: ISSet, proxyQ: devSet, online: Bool)
The behaviour of this process is similar to that of cp1. There are two important additions:
First, this control point is not always online, it is either online or offline. The process informs
the communication channel when it changes states. When a control point goes offline the
administration of available devices is cleared: serviceQ and proxyQ are cleared. Second,
this control point is able to use proxies to search for devices and their power state, and to
wake-up sleeping devices. proxyQ is a list of all known online proxies. If both the serviceQ
and the proxyQ are empty, then the CP can send an msearch multicast message to search
for proxies. If the serviceQ is empty, but there are proxies online, then the CP can send
search requests to one of the online proxies. When the control point receives a reply to a
search request from a proxy, it assumes that the newly required information is accurate and
uses this information for it’s internal administration (serviceQ).

When there are proxies online, but all devices known to offer service1 are in Deep Sleep
Offline, then one of the online proxies can be used to wake-up the device (link-layer wake-up
request).

proxy1 (id: devID, serviceQ: ISSet, online: Bool, searchRequests: devSet, wakeupRequests:
devSet)
This process models a Deep Sleep Proxy. id is a unique identifier for this proxy. serviceQ
is a list of devices that offer service1, and their state. A proxy can be either online
or offline. online is the current state. When the proxy goes offline, the internal tables
searchRequests and wakeupRequests are cleared. The proxy offers the proxy service,
named proxyser. An alive message is sent when going online, and a byebye message is sent
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when going offline. Also, like any other service, alive message are sent periodically while
being online. searchRequests is a list of devices waiting for a reply to a search request.
The search requests are handled in random order, and every control point has at most one
pending request for service1. Officially the proxy should keep a list of all services and the
devices that offer them together with their state. But, to keep it manageable, we only keep
track of service1 and only support search requests for this service. wakeupRequests is a
list of devices to wake-up. Wake-up requests are handled in a random order. See Figure A.4
for the behaviour of this process.

A.5.1 Model: Including a proxy

In this section we discuss a model that includes a Deep Sleep Proxy. Figure A.6 shows
processes and the communication between the processes. The cp2 process is used for CP1
because it supports proxies. Table A.10 lists the transitions of Figure A.6. Transition 11
has 2 receivers, this means that three processes have to synchronise. Three-way synchronised
communication is not natively supported by µCRL, but it can be simulated: Imagine we
have three parallel processes: P , Q and R. P sends something that is to be received by Q
and R at the same time; it has to be one atomic action. P uses the action send and Q and
R use the action recv. As usual, send and recv communicate to, say c. We then use something like:

act send, recv, c, d
proc P = send.P
proc Q = recv.Q
proc R = recv.d.R
comm send | recv = c
init ∂{send,recv}(ρ{c→send}(∂{send,recv}(P ‖ Q)) ‖ R)

Which does exactly what we need. Note that this initial process is equivalent to the process Z:

proc Z = c.d.Z

11

PROXY1

COMM1 DEV1

3 4

52

1

8

6

9

10

7

CP1

Figure A.6: Communication with proxy

State-spaces

We have tried different combinations of processes and queue sizes, see Appendix B for details.
State-spaces can only be generated for simple environments, with few processes and small queue
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# Action
1 sendMC(CP1,msearch,service )

connected(CP1)
disconnected(CP1)

2 read(CP1,devID,messageType,service1)
3 serviceReq(CP1,DEV1,Bool )

wakeup(DEV1,Bool )
4 serviceRep(CP1,DEV1,service1,Bool )
5 read(DEV1,devID,messageType,service1)
6 sendMC(DEV1,messageType,service1)

sendUC(DEV1,CP1,messageType,service1)
disconnected(DEV1)

7 read(PROXY1,devID,messageType,service )
8 sendMC(PROXY1,alive,proxyser)

sendUC(PROXY1,CP1,msearchres,proxyser)
9 searchReq(CP1,PROXY1,service1)

llwakeupReq(CP1,PROXY1,DEV1,Bool )
10 searchRep(PROXY1,CP1,service1,ISSet )
11 llwakeup(PROXY1,DEV1,Bool )

Table A.10: Transitions of Figure A.6

sizes. We are, for instance, not able to generate a state-space for models with more than one device
in combination with a proxy. Even a model with one device and one proxy can only be generated
if a queue size of one is used, which is not very representative for real network environments.

A.5.2 Evaluation of the Deep Sleep Proxy

In this section we examine the Deep Sleep Proxy more closely. We are especially interested in
finding out in which situations the proxy has the correct information regarding the state of devices
and – even more importantly – what the consequences are of having the wrong information; what
it takes for the proxy to reflect the right state of a device again.

To this end, we use a model with one control point (cp2), one device (dev1), one Deep Sleep
Proxy (proxy1) and a communication channel where messages can get lost arbitrarily (comm2).
UDP messages sent arrive at a subset of the available devices, including the empty set, which
reflects the situation where a message is completely lost. We use a queue size of 1 and remove the
incBootID transitions.

We divide the states of the state-space of the model into equivalence classes where two states
belong to the same class if, and only if, the state of the device is equal for both states, the state
the proxy thinks the device is in is equal for both states, and the state (online/offline) of the proxy
is the same for both states. It’s trivial that every state belongs to exactly one class. In order
to be able to identify the class for each state, we add a self loop (transition) to every state with
information about the state.

The first thing we’d like to know is how many states belong to the different equivalence classes.
To determine this we translate the state-space to a plain text representation, filter out the transi-
tions that supply the state information and then use basic unix utilities (grep and wc) to count the
number of occurrences for the different combinations. 3373 states out of the total of 451282 states
belong to one of the equivalence classes where the proxy if offline. We are especially interested in
states where the proxy is online. The following table shows the number of states of the different
classes where the proxy is online.
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Actual state of device
proxy thinks Active DS Online DS Offline Disconnected Total
Active 54327 32717 5680 18214 110938
DS Online 54893 32893 5682 18556 112024
DS Offline 55490 33307 5778 18656 113231
Disconnected 55258 32068 5678 18712 111716
Total 219968 130985 22818 74138 447909

There are 111710 states where the proxy has the correct information regarding the device.
That is 24.9% out of the 447909 states where the proxy is online. This obviously does not imply
that the proxy has the correct information 24.9% of the time as we did not take the transitions
into account. In each state each transition leaving that state has an equal probability of being
selected. This obviously does not reflect the real situation.

From now on we’ll call a state a “wrong state” if the state the proxy thinks the device is in
does not equal the actual state of the device, and a “right” state otherwise. When in a wrong
state, what does it take to get to a right state?

We replace the state information labels in the state-space with the labels ”OK” and ”NOK”
for right (resp. wrong) states. The following formula is used to verify that it is always possible to
go from a wrong state to a right state with a maximum of two steps:

[true* . "NOK"] ( (<true . "OK"> true) or (<true . true . "OK"> true))

This formula is satisfied – which may surprise the reader – because a device can always change
to any power state within a few steps. So, it gets to a right state because the state of the device
changes and not because the proxy is informed about the actual state of the device. If we only
consider paths where the device does not change its state, then there are wrong states where there
is no possibility of ever getting to a right state. The most obvious situation where this occurs is
when the following happens:

– The device is offline, the proxy is offline, the CP is offline.

– The device comes online.

– The device goes into Deep Sleep Offline.

– The proxy comes online.

– The CP comes online.

After this scenario the device is in Deep Sleep Offline mode and neither the control point, nor the
proxy knows about the device. As long as the device does not change states it wont be discoverable.

We are interested in finding, for each class, a number n for which from each wrong state in the
class a right state can be reached, with a path without state changes of the device, with a length
of at most n. Obviously there are classes for which there is no such n. We ignore the classes where
the proxy is offline. The following table shows this n for every class.

Actual state of device
proxy thinks Active DS Online DS Offline Disconnected
Active 0 ∞ ∞ 3
DS Online 6 0 ∞ 3
DS Offline 6 ∞ 0 3
Disconnected 6 ∞ ∞ 0

The only reason the proxy gets to a right state when the device is disconnected is because the
proxy can go offline and get back online again. When the proxy gets back it starts in a state where
every device is considered to be disconnected. When the device is active the proxy discovers this
when the device sends an alive multicast. The reason it still takes 6 steps to get to a right state,
is that both the device and the proxy can be in a state where they are forced to do something else
first before sending or receiving the message. Consider for example the following scenario:
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– The proxy has just read a msearch request of the CP.

– The device has just read a msearch request of the CP.

– The CP sends another msearch request to the device and proxy (both arrive in the corre-
sponding message queue).

Consider the state we are now in. The proxy has to do (at least) the following actions (in this
order) to end up in a right state:

1. Reply to the msearch request of the CP.

2. Read the msearch request of CP.

3. Reply to the msearch request of CP.

4. Read the alive message of device.

The first action is a consequence of the way the proxy is modelled. After receiving a msearch,
a reply is sent first, before reading the next message. This is not dictated by the standard so
this step could be eliminated. The device has to do at least the following actions to get an alive
message to the proxy:

1. Reply to msearch request of the CP

2. Send alive message

Again, the first action is a consequence of the way the replies to msearches are modelled. The
reason there are states where the proxy cannot discover the device in Deep Sleep Online mode is
that a device does not periodically send alive messages in Deep Sleep Online mode and the proxy
does not actively search for devices in Deep Sleep Online mode.

We change the model of the proxy and add the possibility to actively search for devices in
Active and Deep Sleep Online mode (sending msearch and msearchsleep requests). Also, we add
the following behaviour to the proxy: if the proxy thinks the device is in Active mode, but does
not receive an alive message in time (we don’t specify the actual time), it internally changes the
state of the device to Disconnected. After the changes we get the following results:

Actual state of device
proxy thinks Active DS Online DS Offline Disconnected
Active 0 10 ∞ 2
DS Online 6 0 ∞ 3
DS Offline 6 10 0 3
Disconnected 6 10 ∞ 0

After the changes the device is also discoverable by the proxy when it’s in Deep Sleep Online mode.
The longest paths, which require 10 actions, are similar to the ones mentioned for Active mode.
The difference is that an extra request is required, and when the message queue of the proxy is
full, an extra read and reply to the control point is required before the msearchsleep request can
be received.

A.6 Conclusions and further work

We chose µCRL as modelling language because of its simplicity. The language turned out to be
powerful; it is expressive enough for our models. However, each abstract datatype has to created
from scratch by the user, even the representation of naturals and booleans. We have used various
datatypes that represent lists and sets. It is likely it could have saved a lot of work if such
common types were available standardly. Build-in types and operations for lists and sets would
most likely also reduce the time needed to generate the state-space, because build-in types, and
build-in operations on these types, are likely to be more efficient than those we created, using the
equation rewrite system.
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Model checking can be very useful. It is often more desirable to abstract from a real system,
and use a model to reason about properties of the system. Properties of the system can be verified
completely automatically, provided the model is accurate. But, as we have seen in the report, it
also has its limits. Most notably is the well-known state-space explosion problem. In general a
state-space is generated and properties are checked on this state-space. But, for many models the
state-space cannot be generated because the state-space is too large, or infinite. Unfortunately,
this problem often occurs with models of communication standards.

The desired properties of BootID were not clear, and were multi-interpretable. We have checked
different interpretations and we have shown what we believe is the correct interpretation, and why
we believe others to be incorrect. This helped in understanding the BootID.

We have evaluated the Deep Sleep Proxy and have highlighted some weaknesses of the proposal.
Most notably, there are situations where even the proxy can’t discover a device that is in Deep
Sleep Offline mode.

Further work could be in the direction of quantitative analysis of environments. This way ques-
tions can be answered about the probability certain (undesired) events occur or about the length
of time it takes before a proxy gets into a correct state. However, more statistical information
about the used UPnP environments is required.
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Appendix B

State-spaces of UPnP Power
Management models

Table B.1 shows the number of states and transitions of the state-spaces of the different models.
Queuesize is the maximum size of the message queues for the devices. Table B.2 shows how much
CPU time and memory is used for the generation and reduction of the state-space. The server
“poema.win.tue.nl” has been used for the generation and reduction of the state-spaces. This server
has a Intel Xeon CPU 2.8ghz cpu (5500 bogomips) and has 4GB of memory.

Original Reduced (strong bis)
Model States Transitions States Transitions

cp1, dev1, comm1, qs 1 547 3069 383 2077

cp1, dev1, comm1, qs 2 4541 32453 3301 21551

cp1, dev1, comm1, qs 3 23562 200592 17396 126940

cp1, dev1, comm1, qs 4 90645 888612 67405 531176

cp1, dev1, comm1, qs 5 284183 3139944 212111 1770008

cp1, dev1, comm1, qs 6 767585 9415285 574133 5009569

cp1, dev1, comm1, qs 7 1850484 24913120 1385904 12534364

cp1, dev1, comm2, qs 3 23562 200592 17396 126940

cp1, dev1, comm2, qs 4 90645 888612 67405 531176

cp1, dev1, comm2, qs 5 284183 3139944 212111 1770008

cp2, dev1, comm1, qs 1 673 4250 673 4225

cp2, dev1, comm1, qs 2 6824 54425 6824 54425

cp2, dev1, comm1, qs 3 43374 406184 43374 371448

cp2, dev1, comm1, qs 4 198358 2113831 198358 1822403

cp2, dev1, comm1, qs 5 720560 8578214 720560 6968944

2x cp2, dev1, comm1, qs 1 112944 1104463 47824 452896

cp2, dev1, comm2, qs 1 925 5860 925 5860

cp2, dev1, comm2, qs 2 8032 63411 8032 61009

cp2, dev1, comm2, qs 3 47386 440029 47386 401152

cp2, dev1, comm2, qs 4 208928 2213351 208928 1903188

cp2, dev1, comm2, qs 5 744348 8825293 744348 7154812

cp1, 2x dev1, comm1, qs 1 96471 803688 48343 397988

cp1, 2x dev1, comm1, qs 2 2923505 29607918 1555727 14818004

cp1, 2x dev1, comm2, qs 1 96847 816240 48443 401144

cp2, 2x dev1, comm1, qs 1 120879 1107229 118327 1087975

cp2, 2x dev1, comm2, qs 1 156956 1441222 154404 1421968

cp2, dev1, proxy1, comm1, qs 1 425342 4004498 425342 4004498

cp2, dev1, proxy1, comm2, qs 1 581806 5528779 573046 5447236

Table B.1: Size state-spaces
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Instantiation Reduction
Model CPU (sec) Mem (KB) CPU (sec) Mem (KB)

cp1, dev1, comm1, qs 1 5.24 6520 0.09 7848

cp1, dev1, comm1, qs 2 14.22 7380 0.57 9196

cp1, dev1, comm1, qs 3 71.10 11996 5.48 16556

cp1, dev1, comm1, qs 4 308.51 26776 24.95 47312

cp1, dev1, comm1, qs 5 1200.94 68720 144.49 136428

cp1, dev1, comm1, qs 6 3949.84 180360 476.81 353512

cp1, dev1, comm1, qs 7 10914.61 427776 1597.98 878340

cp1, dev1, comm2, qs 3 76.50 11940 5.35 16556

cp1, dev1, comm2, qs 4 324.49 26796 33.85 46821

cp1, dev1, comm2, qs 5 1240.43 68676 142.03 132512

cp2, dev1, comm1, qs 1 6.01 6576 0.11 6268

cp2, dev1, comm1, qs 2 21.73 8036 1.08 9408

cp2, dev1, comm1, qs 3 146.01 16220 14.42 30256

cp2, dev1, comm1, qs 4 818.60 54936 92.89 119068

cp2, dev1, comm1, qs 5 3570.85 180752 616.54 393868

2x cp2, dev1, comm1, qs 1 370.9 30060 34.75 48432

cp2, dev1, comm2, qs 1 6.03 6532 0.14 6256

cp2, dev1, comm2, qs 2 24.47 8112 1.28 11328

cp2, dev1, comm2, qs 3 158.24 16420 15.79 32948

cp2, dev1, comm2, qs 4 863.76 57316 113.40 122976

cp2, dev1, comm2, qs 5 3750.30 182780 618.42 401892

cp1, 2x dev1, comm1, qs 1 258.51 27128 25.57 41000

cp1, 2x dev1, comm1, qs 2 11530.97 698196 1828.88 1220556

cp1, 2x dev1, comm2, qs 1 278.65 27080 25.45 39180

cp2, 2x dev1, comm1, qs 1 348.26 32804 41.43 72640

cp2, 2x dev1, comm2, qs 1 461.53 38900 59.65 86820

cp2, dev1, proxy1, comm1, qs 1 1596.58 105336 257.86 251360

cp2, dev1, proxy1, comm2, qs 1 2229.77 123204 401.80 336036

Table B.2: Generation of state-spaces
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