
 Eindhoven University of Technology

MASTER

Stability analysis of sampled-data systems with network delays

Hagenaars, H.L.

Award date:
2005

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/daf8415c-4872-4993-bdcc-cad261dc1217

Stability Analysis of Sampled-Data
Systems with Network Delays

H.L.Hagenaars

Master’s Thesis

Report No. DCT 2005.136

Supervisor: Prof. Dr. H. Nijmeijer
Coaches: Dr. Ir. N. v.d. Wouw

Ir. M.B.G. Cloosterman

Eindhoven University of Technology
Department of Mechanical Engineering
Dynamics and Control Group

Eindhoven, November 14, 2005

Preface

This report, “Stability Analysis of Sampled-Data Systems with Network Delays”, covers the
master’s thesis study of the author, which has been performed within the Dynamics and
Control Group of the faculty of Mechanical Engineering at the Eindhoven University of Tech-
nology, under the supervision of prof. dr. Henk Nijmeijer. Coaches during the work presented
in this thesis were dr. ir. Nathan van de Wouw and ir. Marieke Cloosterman, both members
of the Dynamics and Control Group.

The report is accompanied by a CD-ROM, which contains an electronic version of this report,
all the code-files listed in the appendix of this report and all files that can be used to conduct
experiments with the setup described in this report. Furthermore, a brief manual is included
on how to use the hardware and software developed during the research presented in this
thesis.

Eindhoven, November 14, 2005

i

ii

Abstract

As a result of the ongoing development and decreasing costs of embedded computing systems,
the application of embedded control systems increases. In such systems, resources are limited
and these limitations need to be taken into account during the design of such systems.
Also the use of data networks increased over the years. As a result, data networks also
made their entrance in control systems. Several devices in a control system can be attached
mutually using network connections, which increases the system flexibility and the ease of
maintenance of such systems. This thesis deals with the influence of the use of real-time data
networks to close a control loop on the stability of the controlled system. Such systems are
referred to as Networked Control Systems (NCSs).

Network transfers can be considered discrete events which makes a networked control system
a sampled data system. Network transfers introduce a delay in the control loop, which is
known to degrade the performance of a control system and to even affect its stability. The
characteristics of this network induced delay are dependent on the type of network. Network
induced delays can be time-varying or even non-deterministic.
The choice of the sample-rate plays an important role in an NCS. Whereas in sampled data
systems an increasing sample-rate leads to a better performance, increasing the sample rate in
an NCS leads to a higher network load which results in increasing delay in the loop. Therefore
a sensible choice of the sample-rate is crucial in NCS design.
The choice of the way of sampling of the various devices in an NCS also influence its charac-
teristics. When making use of event-driven devices, no extra delay is introduced in the loop,
but the sample-time is not constant which makes it hard to analyze such systems. The use of
time-driven devices introduces some extra delay on top of the delay induced by the network
but the sample-rate is fixed and the delay in the loop becomes constant. The introduction
of a time-skew between sampling instants of separate devices can be helpful to minimize the
extra delay introduced by the sampling process.

To analyze the influence of the sample-rate and the network delays on a feedback controlled
systems, a discrete-time model is derived of an NCS with a state feedback controller based on
several motivated assumptions. Using this model, the stability of the NCS is analyzed using
several analytic techniques as wel as numerical simulations. The analysis shows that for a
right choice of state feedback, the stability of the closed loop system not necessarily has to
suffer from a delay in the control loop. In some cases the controlled system performs better
with a certain amount of delay in the loop.

A mobile robot setup has been adapted to make it suitable to conduct experiments for this
research and control related experiments in general. Experiment done using this setup proof
that the results obtained numerically can be reproduced in practice.

iii

iv

Samenvatting

Door de constante ontwikkeling en dalende kosten van embedded reken-systemen, neemt de
toepassing van dit soort hardware in regel-systemen toe. Het gebruik hiervan introduceert
echter een aantal beperkingen waarmee rekening dient te worden gehouden tijdens het ontwerp
van embedded regel-systemen.
Ook het gebruik van data netwerken is de laatste jaren sterk toegenomen. Dientengevolge
hebben data netwerken ook hun intrede gedaan in regel-systemen. De verschillende delen
van een regel-systeem kunnen onderling worden verbonden met behulp van een data netwerk,
wat de flexibiliteit van het systeem verhoogd en het onderhoud ervan vergemakkelijkt. In
dit verslag wordt de invloed onderzocht van het gebruik van een netwerk om de regel-lus
te sluiten, op de stabiliteit van het geregelde systeem. Dit soort regel-systemen worden
Networked Control Systems (NCS) genoemd.

Netwerk overdrachten kunnen worden gezien als discrete gebeurtenissen en dat maakt een
NCS een discreet systeem. Netwerk overdrachten introduceren een tijdvertraging in de regel-
lus waarvan algemeen bekend is dat dit de prestaties en de stabiliteit van het geregelde systeem
negatief bëınvloedt. De karakteristieken van een tijdvertraging veroorzaakt door een netwerk
zijn afhankelijk van het gebruikte netwerk. Deze vertragingen kunnen variëren in de tijd of
zelfs niet-deterministisch zijn.
De keuze voor de bemonster-frequentie speelt een belangrijke rol in het ontwerp van een NCS.
Terwijl een hogere bemonster frequentie in discrete systemen doorgaans leidt tot een betere
prestatie van het geregelde system, leidt dit in een NCS tot een hogere belasting van het
netwerk en dat resulteert in grotere tijdvertraging in de regel-lus. Daarom is een verstandige
keuze voor de bemonster-frequentie cruciaal in het ontwerp van een NCS.
De keuze voor de methode van bemonsteren van de verschillende systemen binnen een NCS
heeft ook invloed op de karakteristieken van een NCS. Bij het gebruik van event-driven sys-
temen wordt er geen extra vertraging in de lus gëıntroduceerd, maar de bemonster-frequentie
is niet constant en dat maakt de analyse van event-driven systemen ingewikkeld. Het ge-
bruik van time-driven systemen introduceert extra tijdvertraging bovenop de vertraging als
gevolg van de netwerk overdracht, maar de bemonster-tijd en de vertraging in de lus zijn
constant in dit geval. Het introduceren van een tijdverschuiving tussen het moment van be-
monsteren van de verschillende systemen kan ervoor zorgen dat de extra vertraging door het
bemonster-proces geminimaliseerd wordt.

Om de invloed van de bemonster frequentie en de tijdvertraging als gevolg van de netwerk
overdracht op de stabiliteit van het geregelde systeem te onderzoeken, wordt er een discrete
tijd model van een NCS met toestand-terugkoppeling afgeleid onder een aantal gemotiveerde
aannamen. Met behulp van dit model wordt de stabiliteit van het geregelde systeem geanaly-
seerd, gebruik makend van verschillende analytische technieken en numerieke simulaties. Uit

v

de analyse blijkt dat voor een juiste keuze voor de toestand-terugkoppeling de stabiliteit van
het geregelde systeem niet noodzakelijkerwijs negatief wordt bëınvloed. In sommige gevallen
presteert het geregelde systeem zelfs beter met een zekere tijdvertraging in de regel-lus.

Tijdens dit onderzoek is een mobiele robot aangepast om deze geschikt te maken voor ex-
perimenten ten behoeve van dit onderzoek en regeltechniek gerelateerde experimenten in het
algemeen. Experimenten, uitgevoerd met behulp van deze opstelling, bewijzen dat de resul-
taten behaald met de analyse kunnen worden gereproduceerd in de praktijk.

vi

Contents

Preface i

Abstract ii

Samenvatting iv

1 Introduction 1

1.1 Research goals . 3

1.2 Thesis outline . 3

2 Networked Control Systems 5

2.1 General configuration of an NCS . 5

2.2 Shared communication networks . 6

2.2.1 Network traffic . 7

2.2.2 Random access and token passing networks 7

2.2.3 Network induced delays . 9

2.3 Sampling issues in NCSs . 10

2.3.1 Sample-rate selection . 10

2.3.2 Event-driven vs. time-driven . 11

2.3.3 Clock synchronization . 13

2.4 Focus of this research . 14

3 Modeling and stability analysis of an NCS 17

3.1 A Networked control system model . 17

3.1.1 Modeled NCS configuration . 17

3.1.2 Model assumptions . 18

3.1.3 The discrete-time NCS model . 19

3.2 Stability analysis of a 1-dimensional system 20

3.2.1 Eigenvalue analysis . 21

vii

CONTENTS

3.2.2 Frequency domain analysis . 23

3.2.3 An analytic stability bound . 25

3.3 Stability of a two dimensional model . 28

3.4 Discussion . 31

4 An experimental NCS setup 33

4.1 The Trilobot mobile robot . 33

4.1.1 NCS research using Trilobot . 35

4.1.2 Necessary adaptations . 36

4.2 The 8052 Microprocessor . 36

4.2.1 Basics of the 8052 microprocessor . 37

4.2.2 Timers . 39

4.2.3 Interrupts . 40

4.2.4 Serial communication . 40

4.2.5 Configuration on-board Trilobot . 40

4.3 Trilobot as remote system . 41

4.3.1 Drive-motor circuitry . 41

4.3.2 Drive-motor software . 43

4.3.3 Encoder readout . 46

4.3.4 Serial interfacing . 48

4.4 The desktop PC controller . 49

4.5 Experimental settings . 49

5 Experiments 53

5.1 Model of the setup . 53

5.2 Identification of the system parameters . 54

5.2.1 The Continuous Discrete Extended Kalman Filter 54

5.2.2 Estimation of the parameters . 56

5.3 Reconstruction of the velocity . 58

5.4 Numerical results using the estimated model 58

5.5 Experimental results . 60

5.6 Discussion . 62

viii

CONTENTS

6 Conclusions and recommendations 63

6.1 Conclusions . 63

6.1.1 Sampling and delay in an NCS . 63

6.1.2 Stability analysis of an NCS with constant network delays 64

6.1.3 Trilobot as experimental setup . 65

6.2 Recommendations . 66

Bibliography 69

A Experimental results 73

A.1 Results position feedback . 73

A.2 Results full state feedback . 77

B Proofs 81

C The Jury stability test 83

C.1 Jury’s test . 83

C.2 jury.m . 84

D Windows2000 DLL’s 85

D.1 Single wheel routines [triloSingle.dll] . 85

D.2 Double wheel routines [trilo.dll] . 90

E Trilobot C-MEX S-Functions 95

E.1 s single in.c . 95

E.2 s single out.c . 96

E.3 s trilo in.c . 98

E.4 s trilo out.c . 99

F Trilobot 8052 user-programs 103

F.1 Single wheel user program . 103

F.2 Two wheel user program . 107

ix

CONTENTS

x

Chapter 1

Introduction

Nowadays, the use of computers is widely accepted in everyday life. In this respect, the
personal computer, used for numerous different purposes, plays an important role. But, as
development of computers goes on and on, the costs of computing systems decrease, whereas
the possibilities and reliability increase. This makes the use of computers in domestic appli-
ances, cars and many other (mass-market) products a realistic option. Systems that include
a programmable computer but are not a general-purpose computer itself are called embedded
systems. Today such embedded computing systems by far outnumber desktop computers (see
Fig. 1.1). A top-level modern car, for example, contains more than 50 embedded processors
performing tasks of varying complexity. Embedded control systems constitute an important
sub-class of these embedded computing systems.

Figure 1.1: World-wide microprocessor sales of all types and all markets (source:
www.extremetech.com)

Because of the application of embedded control systems in mass-market products, the design
and production of such products is subject to hard economic constraints. Because of these eco-

1

1. INTRODUCTION

nomic constraints, low cost and general purpose computing components and other off-the-shelf
hardware are preferred above high capacity processors or specially designed components. For
the control engineer, these economic constraints give rise to constrained computing speed,
limited memory size and limited communication bandwidth. Because of these constraints,
sample-time and digital word-length are limited in these embedded control systems. To effec-
tively design such embedded control systems, the consequences of a digital implementation
using resource constrained hardware have to be taken into account in the design process be-
forehand. The term application aware design is often used in this respect.

With the increase of computer use, also the use of data networks increases. The first data
network protocols evolved over the last 30 to 40 years into modern network protocols such
as ethernet and TCP/IP, which are mainly used in general purpose communication networks
nowadays. Due to the continuous development and standardization of network communi-
cation, the use of network connections also made its entrance in control systems. In stead
of hard-wiring all parts of a control system together, networks are used to connect different
parts of a control system. For this purpose specialized industrial network protocols such as
Profibus, DeviceNet and CAN (Controller Area Network) were developed.
Connecting different parts of a control system using a real-time communication network has
several advantages. Because of the accepted standards, communication between different
parts or systems of different manufacturers is much easier which makes a modular construc-
tion of a control system possible. This increases the system flexibility, and as a result the
ease of maintenance, to a large extend. Furthermore existing infrastructures can be used to
control processes over a larger distance.
Unfortunately the introduction of a communication network in a control system also imposes
extra constraints on the system. One of the major drawbacks of using a network to close the
control loop is the introduction of delay in the control loop or even data loss due to network
transmissions. Furthermore, the delay induced by the network is strongly dependant on the
utilization of the network and therefore this delay is not deterministic in most cases, which
makes it very hard to guarantee a certain level of performance of the closed loop system.
Even the stability of the system can be affected, which can do serious damage to the system
and its environment.

As a result of the developments outlined in the foregoing, analysis and control of so called
Networked Control Systems is a field of research with increasing interest over the last ten to
fifteen years [5]. In this field of research mainly two different approaches can be distinguished.
The first approach is from a computer science point of view. The research in this field focusses
on development of network protocols and scheduling methods for network traffic to reduce
the negative effects of network transfers (see e.g. [6, 12, 28, 29]).
The second approach is more from a control engineering perspective. The network with
its unfavorable characteristics is treated as a given fact and the aim is to develop control
methodologies that are able to effectively cope with these characteristics.
The research covered in this report adheres to the control engineering point of view.

2

1. INTRODUCTION

1.1 Research goals

The purpose of the research dealt with in this thesis is to uncover the problems that arise in
the control of networked systems and give a theoretical as well as an experimental analysis
of the influence of network parameters on the performance and stability of the controlled
system. The goal of this research is summarized in the following main research question:

What are the effects of the use of a communication network to close a control loop
on the stability of the closed loop system and how can these effects be taken into
account in the design process of a control system with a communication network?

To answer this main research question, the following questions have to be answered respec-
tively:

• Which problems arise in the control of networked systems and what parameters play a
role when a communication network is integrated into a control system?

• What is the influence of these parameters on the stability of the controlled system?

• Can the influence of several parameters on the stability of a networked control system
be tested on a suitable experimental setup?

• Can one formulate relevant design rules that can serve as a guideline in designing a
networked control system?

In order to answers these research questions, the following approach has been followed. A
thorough study of the available literature on networked control systems has been performed
to identify which parameters play a role and which issues arise in the control of networked
systems. With this information, a mathematical model has been derived to analyze the
influence of those parameters on the stability of a networked control system, under motivated
assumptions, both analytically and using simulations. The validity of these results has been
tested by means of experiments on a specially designed setup. This leads to a thorough
understanding of the consequences of the use of communication networks in a control system.

1.2 Thesis outline

This thesis is outlined as follows. In chapter 2 an overview is given of the problems arising
in the control of networked systems and the parameters that play an important role in this
respect. Furthermore, a short summary of the research done in the field of networked control
systems and the focus of this research is given. In chapter 3 this information is used to
derive a discrete-time model of a networked control system in which the relevant parameters,
found in chapter 2, appear. The second part of this chapter presents the result of an analytic
analysis of the influence of the used parameters on the stability of the system. Chapter 4
describes the experimental setup that has been created during this research to validate the
analytic results experimentally. The identification of this setup and the experimental results
are discussed in chapter 5. This thesis will end with a concluding discussion on the design of
networked control systems and some recommendations for future research.

3

1. INTRODUCTION

4

Chapter 2

Networked Control Systems

A Networked Control System (NCS) is a control system in which at least a part of the control
loop is closed over a communication network. Connecting different parts of a control system
using a network has several advantages. Because of the modularity of such a setup, the system
is easier to maintain. Furthermore, because of the widespread use of data networks, standard
protocols (e.g. ethernet) can be used and a lot of relatively cheap commercial off-the-shelf
hardware is available.
Unfortunately, the use of a communication network in a control systems introduces some
negative effects. In this chapter, these negative effects will be discussed. Two different
purposes for which a network is used in a control system will be discussed in section 2.1.
Next, a brief explanation of the two most common types of communication networks is given
in section 2.2 to provide insight in the consequences of the use of such networks in a control
system. Sample-time selection and the way of sampling both play an important role in the
design of an NCS. Several sampling issues will therefore be discussed in section 2.3 of this
chapter. This chapter ends with a short summary of the research done in the field of NCSs
from a control engineering point of view and the focus of this research.

2.1 General configuration of an NCS

The major system components of a control system are a process to be controlled, a controller
and one or several sensors and actuators. Usually these components are hard-wired together.
In an NCS however, one or more of these components are connected using a communication
network. This network can also be shared with other control loops and other network re-
sources.
Mainly there are two different purposes of the use of a network in a control system. Con-
sequently, two configurations can be distinguished; the direct structure and the hierarchical
structure [27].
In the direct structure (Fig. 2.1), a remote system consisting of a physical plant with sensors
and actuators is connected to a main controller using a network. The control loop is closed
over the network. Sensor signals are sent to the controller via the network connection. The
controller will send the computed control signals to the actuator using either the same net-
work line or a different line. This configuration is used in situations where the computing

5

2. NETWORKED CONTROL SYSTEMS

hardware is physically separated from the process to be controlled or where one control unit
controls multiple processes.

N
et

w
or

k

Remote System

SemsorActuator PlantController

Figure 2.1: NCS with the direct structure.

In the hierarchical structure (Fig. 2.2), the remote system consists of a plant that is already
controlled in closed loop by a controller that is part of the remote system. A main controller
is connected to the remote system using a network. Typically the sample rate in the remote
control system is higher than the sample rate of the networked control loop. The remote
controller is used to accurately control the remote process. The main controller can then be
used to perform more sophisticated tasks or even to connect different remote control systems.
This type of control is often referred to as supervisory control.

N
et

w
or

k

Remote System

SemsorActuator PlantController
Main

+
−

Remote Controller

Figure 2.2: NCS with the hierarchical structure.

Which configuration is most suitable depends on the type of application and its requirements.
Research in the field of NCSs mainly focusses on the direct structure. The results however
can be applied to the hierarchical structure as well, because the remote control system can
be treated as a pure plant. Obviously many variants of the two basic configurations shown
in Fig. 2.1 and Fig. 2.2 exist.
The type of network used is also a key issue in the NCS configuration. Different types of
networks exist that each have their specific use and therefore specific characteristics. These
characteristics will be explained in more detail in the next section.

2.2 Shared communication networks

In order to understand what the influence of the use of a network in a control system is,
some knowledge of how a network works and what different types of networks can be used, is
required. All communication networks serve the same purpose; namely to transport informa-
tion between devices on the network. The main idea behind the network traffic is the same.

6

2. NETWORKED CONTROL SYSTEMS

There are some differences however in the way network traffic is controlled. Due to these
differences, the characteristics of a network in an NCS depend on the type of network used.

2.2.1 Network traffic

Fig. 2.3 shows a part of a network with four devices attached to it. In the figure these devices
are computers, but as mentioned before also many other different devices can be attached to
the network. The network serves as a communication medium for all of the devices connected
to it. The devices have to be equipped with special network interface hard- and software
called a network interface (NI). The NI manages the communications between devices on the
network.

A B C D

packet

Figure 2.3: Send packages over a network.

When one station wishes to send a message to another device over a shared communication
network, it uses the NI to split the message into packets. These packets consist of message
data surrounded by a header and trailer that carry special information. The header contains,
among other things, the address of the destination device.

When the NI transmits a packet, a stream of data bits, represented by changes in electrical
signals, travels along the shared cable. All of the devices attached to it see the packet as
it passes by. The NI of each device checks the destination address in the packet header to
determine wether the packet is addressed to it. When the packet passes the device it is
addressed to, the NI of that device copies the packet and then extracts the data from it so
the device can process these data.

Since each individual packet is small, it takes very little time to travel to the ends of the cable
where the electrical signal dissipates. So after a packet, carrying a message between one pair
of devices, passes along the cable, another device can transmit a packet to whatever device
it needs to send a message. In this way, many devices can share the same medium.
When several entities share the same communication medium, some mechanism, called an
access method, must be in place to control access to the network in a fair manner.

2.2.2 Random access and token passing networks

There are several access methods which all use a certain amount of the communication band-
width for the access control. Two of them are mostly used in general purpose communication
networks as well as in industrial networks. Based on these access methods, all communica-
tion networks can roughly be divided into two main categories, token passing networks and
random access networks.

In a random access network, any device can transmit whenever it needs to send information.
To avoid data collisions, specific random access protocols are developed requiring the device to
check the network line for availability before transmitting information. This process is called

7

2. NETWORKED CONTROL SYSTEMS

carrier sensing and therefore random access networks are also called Carrier Sense Multiple
Access (CSMA) networks. Even though each device on the network checks the network line
before it attempts to transmit, it remains possible for two transmissions to overlap on the
network. This overlap is called a collision. To overcome the problem of collision, collision
detection has been developed. When a NI detects a collision, it will try to resend the packet
after a random pause. Therefore, access to a random access network is unpredictable.

The benefits of random access networks are:

• The access method used in random access networks, does not increase the network load.
No extra data have to be sent over the network to control the network access.

• Data throughput is high at low traffic rates (i.e. limited number of network transitions
per time-unit) because the number of collisions is minimal in this case.

The disadvantages of random access networks are:

• At high traffic rates, data collisions and the resulting retransmissions diminish perfor-
mance dramatically. It is theoretically possible that collisions can be so frequent at
higher traffic levels that no device has a chance to transmit.

• Due to the retransmissions and the time it takes to sense collisions a delay is introduced.
This delay is non-deterministic because of the used access method.

Token passing networks use a different access method. A special authorizing packet is used
to inform devices that they can transmit data. This packet is called a token and it is passed
around the network in an orderly fashion from one device to the next. Devices can transmit
only if they have control of the token. This method distributes the access control among all
the devices evenly.
Token passing provides the following advantages:

• Token passing offers the highest data throughput possible under high traffic conditions.
Only one transmission can occur at a time and collisions cannot occur. Therefore, token
passing experiences less performance degradation at higher traffic levels.

• Token passing is deterministic. Each station is guaranteed an opportunity to transmit
each time the token travels around the network. Therefore the delay introduced due to
network transmissions is deterministic in token passing networks.

• As the traffic increases, data throughput also increases to a certain level and then
stabilizes.

The disadvantages of token passing are as follows:

• Token passing protocols introduce a higher bandwidth overhead then random access
networks because extra network traffic is necessary to pass around the token.

• All devices require complicated software that needs to be modified whenever a device
is added or removed.

8

2. NETWORKED CONTROL SYSTEMS

Random access and token passing networks have different performance characteristics. Fig 2.4(a)
shows the network throughput as a function of the network load for both network types. The
throughput of a random access network rises smoothly with increased traffic levels up to a
certain level. At that level, collisions begin to occur with greater frequency, resulting in a
gradual reduction in network throughput. At some point, the network throughput reaches an
unacceptably low level.
Token passing exhibits lower throughput at lower traffic levels. This is a result of the com-
munication bandwidth that has to be used for token passing. The throughput rises smoothly
until the network is fully utilized. At that point, the throughput stabilizes. The throughput
does not degrade because no collisions can occur. However, at this network load, all worksta-
tions are sharing a strictly limited communication bandwidth. Although the total throughput
remains stable, the communication bandwidth available to a given station diminishes as de-
mand increases.
In Fig 2.4(b), the throughput is given as a percentage of the load which gives a better view
of the performance of the network. It illustrates how throughput decreases as a percentage
of demand. Basically, as demand increases, a smaller percentage of the demand can be satis-
fied. With random access networks, the fall-off after a certain point is fairly rapid until the
number of collisions interferes with virtually all traffic on the network and almost no packets
are actually delivered.
The performance of a token passing network also declines, but never reaches zero. Each device
is guaranteed a deterministic share of the network’s bandwidth, although this share may, at
some point, be considered inadequate for the applications that make use of the network.

Network load

T
h
ro

u
gh

p
u
t

Random Access

Token passing

(a) Absolute network throughput

Network load

Random Access

Token passing

T
h
ro

u
gh

p
u
t

as
%

of
lo

ad

(b) Network throughput as perceived by a user

Figure 2.4: Absolute network throughput and as a percentage of the network load.

2.2.3 Network induced delays

Due to the time it takes to code data into network packets and the used access method, a
network transmission introduces a delay. For random access networks this delay is clearly
non-deterministic because of the unpredictable occurrence of collisions and the way these
collisions are handled in random access networks. For token passing networks the delay can
be computed for a given network utilization and number of devices that share the network.
Furthermore, these delays increase as network utilization increases and even data-loss can be

9

2. NETWORKED CONTROL SYSTEMS

a consequence.
It is well known from control theory that delays can degrade the performance of a control
system considerably and they can even make a system unstable. The delays induced by a
network transfer can be quite large compared to e.g. computational delays. Therefore it is
important to take these network induced delays into account in the design and analysis of
NCSs. Designing a controller for a networked system under the assumption that no delays
are present would lead to poor results or even to an unstable control system.

2.3 Sampling issues in NCSs

The network transmissions can be regarded as discrete events which makes an NCS a sampled-
data system. Furthermore, when one wants to take the effects of a digital implementation into
account in the design process, a discrete-time approach is preferred over a continuous-time
approach. In the design of a digital control system, issues concerning sampling arise. Because
of the limited communication bandwidth of data networks, sampling issues play an even more
important role in NCSs. In this section these sampling issues will be discussed.

2.3.1 Sample-rate selection

The performance of sampled-data systems in general is strongly dependant on the sampling
time. Normally a sampling rate can be chosen depending on the desired bandwidth but within
the limitations of the used hardware. For the networked case however, there is another limiting
factor. As sampling periods get smaller, the network traffic load becomes heavier and long
time delays result as explained in the previous section [15]. These time delays degrade the
performance of the controlled system. In Fig. 2.5 this is depicted graphically.

Sample Time

P
er

fo
rm

an
ce

larger smaller

b
et

te
r

w
or

se

instability

Networked

Digital

Continuous

Figure 2.5: Comparison of performance in continuous, digital and networked control systems.

10

2. NETWORKED CONTROL SYSTEMS

Because the use of a network imposes a limit on the sample-rate, the selection of the sample
rate is a very important issue. Depending on the characteristics of the network, the length of
the data samples that have to be sent over the network and the number of devices transmitting
over the network an optimal sample rate exists. Due to the time-varying nature of the delay
or even the non-determinism of the delay in some cases, it is not easy to find this optimal
sample rate.

2.3.2 Event-driven vs. time-driven

Sensors, controllers and actuators can operate either in an event-driven or a time-driven
fashion. In a time-driven device, input reception or output transmission is controlled by a
fixed sample-time, which can be set using a clock signal. An event-driven device is triggered
by its input and starts processing immediately when the device receives an input.

δ
T1 T2S1 S2

Figure 2.6: Sensor and actuator connected using a communication channel with a constant
delay δ.

Consider for example Fig. 2.6. Two systems S1 and S2 are connected using a communica-
tion channel which introduces a delay of δ in the transfer of data between the two systems.
Suppose system S1 is a sensor that sends out data samples with a fixed sample-time T1 = h
to system S2 that can be regarded as an actuator that processes the data received from S1.
Also assume that the delay δ < h.
Suppose S2 is an event-driven device, i.e. the data sent by S1 will be processed as soon as
they arrive at S2.
Fig. 2.7(a) shows the timing of the signals in this case. The upper time-line shows the discrete
sampling instants of the sensor S1 at time instants t(kh) and t(kh + h). The data arrive at
S2 after a delay δ, where they will be processed immediately. The effective delay between S1

and S2 is δ in this case.
Suppose S2 is a time-driven actuator, i.e. S2 samples its input with a fixed sample-rate T2.
Under the assumption that T1 = T2 = h, three different cases can be distinguished.
In the first case, which is illustrated in Fig. 2.7(b), the sampling instant of S1 is exactly the
same as the sampling instant of S2. At t(kh) sensor S1 sends a sample to S2. This sample
is available at S2 at time instant t(kh + δ) but S2 starts to process the sample at t(kh + h).
The effective delay between S1 and S2 is h in this case.
The second and third possible case are illustrated in Figs. 2.7(c) and 2.7(d) respectively. In
both cases the sampling instant of S2 is shifted a time ∆s compared to the sampling instant
of S1. Fig. 2.7(c) illustrates the case where ∆s > δ. S2 can process the sample sent by S1 at
t(kh) at time t(kh + ∆s). The effective delay between S1 and S2 is in this case the time-skew
∆s, which is by definition always smaller than h.
If ∆s < δ however, the sample sent by S1 at t(kh) will be processed by S2 at t(kh + h + ∆s)
as illustrated in Fig. 2.7(d). This introduces an effective delay of h + ∆s, which is the worst
of all cases.

11

2. NETWORKED CONTROL SYSTEMS

δ

Sout
1

Sin
2

t

t(kh) t(kh + h)

(a) Event-driven.

Sout
1

Sin
2

t

t(kh) t(kh + h)

h

(b) Time-driven, ∆s = 0.

∆s

Sout
1

Sin
2

t

t(kh) t(kh + h)

(c) Time-driven, ∆s > δ.

h + ∆s

Sout
1

Sin
2

t

t(kh) t(kh + h)

(d) Time-driven, ∆s < δ.

Figure 2.7: Event-driven versus time-driven operation of actuators.

If the delay δ is not constant but a random variable, the two last cases can occur successively.
Suppose the sample sent to S2 at t(kh) is subject to a delay of δ > ∆s and the sample sent
to S2 at t(kh + h) is subject to a delay δ < ∆s. This situation is depicted in Fig. 2.8(a). The
first sample arrives at S2 after its sampling instant. The second sample arrives before its next
sampling instant. Two data samples arrive at S2 during the same sampling interval, so the
first sample will be rejected. This phenomenon is referred to as data rejection.
The opposite case can also occur. Suppose the sample sent to S2 at t(kh) is subject to a
delay of δ < ∆s and the sample sent to S2 at t(kh + h) experiences a delay δ > ∆s. In the
sampling interval of S2, between t(kh+∆s) and t(kh+h+∆s), no data arrive at the controller.
In this case the previous sample will be processed twice as illustrated in Fig. 2.8(b). This
phenomenon is referred to as vacant sampling [9, 10].
Note that when there is no time-skew between the sampling instants of S1 and S2, vacant
sampling and data rejection can also occur if the delay δ can get larger than the sample-period
h occasionally.

When the actuator is event-driven, the delay between the sensor and the actuator is exactly the
delay induced by the network. However, this delay is time-varying or even non-deterministic.
This makes the sample time of the actuator time-varying or non-deterministic which makes
it very hard to analyze such a configuration. Control strategies can be developed that com-
pute a control signal based on the delay of the current sample. For this type of approach
time-stamping is used. The time of generation is attached to every sample. Based on this
information the controller can determine how old the sample is and use this information
in the computation of the control signal. The main drawback of this approach is that this
time-stamp has to be sent, which introduces extra delay that degrades the performance. Fur-
thermore the clocks of both the controller and the remote system have to be synchronized
in order to compute the right value of the delay. Clock synchronization however, is not only

12

2. NETWORKED CONTROL SYSTEMS

Sout
1

Sin
2

t

t(kh) t(kh + h)

t(kh + ∆s)

t(kh + h + ∆s)

(a) Data rejection.

Sout
1

Sin
2

t

t(kh) t(kh + h)

t(kh + ∆s)

t(kh + h + ∆s)

(b) Vacant sampling.

Figure 2.8: Illustrations of vacant sampling and data rejection.

a problem in event-driven control strategies. It is a general problem in distributed systems.
The problem of clock synchronization will be discussed in the next sub-section.

In the time-driven case the effective delay is always larger than the delay induced by the
network. For a proper choice of the sample-rate and the time-skew ∆s however, the effective
delay is constant which makes it much more easy to analyze such a setup. A sample-rate
can be chosen that gives an optimal throughput and consequently minimal delay. If an upper
bound of the delay is known, an appropriate time-skew can be chosen to minimize the effective
delay in the system and prevent vacant samples or rejected data. To assure a certain time-
skew ∆s the clocks of both the controller and the remote system have to be synchronized as
well.

2.3.3 Clock synchronization

In distributed systems, different processors communicate by exchanging data over a network.
An NCS is an example of such a distributed system. Consider for example a setup like the
direct structure depicted in Fig. 2.1. Suppose the sensor of the remote system samples with
a fixed sample-rate. This sample rate is driven by a clock on board the remote system. The
controller samples with a fixed sample-rate driven by a clock on board the controller. If both
clocks are accurate, it will be no problem to run both the sensor and the controller using the
same sample rate. If one wants to guarantee a certain time-skew between the sample instant
of the sensor and the controller, the clocks of both devices have to be the same.
Assuming TS is the local time on-board the sensor device and TC the local time on-board the
controller, then

TS = TC + ξ,

where ξ is the clock mismatch between both devices. If ξ can be measured before the control
system is started, both clocks can be synchronized. Under the assumption that both clocks
are infinitely accurate, the clocks will always run the same time.
Unfortunately infinitely accurate clocks do not exist and a clock will drift over a certain period
of time. Therefore each period, depending on the time-scales of the control system and on
the actual clock drift, a re-synchronization has to be performed to keep an acceptable clock
synchronization.

13

2. NETWORKED CONTROL SYSTEMS

Clocks can be synchronized using synchronization algorithms which send time information
back and forth between devices to compensate for the clock mismatch. Hardware synchro-
nization can also be used. Special wiring can be used to connect all the devices that need to
run on the same clock to a global clock signal. This solution however is rather expensive and
clears away the advantages of the use of networks.
Clock synchronization is a research area itself, and it will not be discussed in greater detail
in this report.

2.4 Focus of this research

As mentioned before in the introduction this research will focuss on the control engineering
view on NCSs. From this control engineering point of view several research contributions can
be found in literature. This research can roughly be divided into three separate categories:

• Modeling of NCSs
The analysis of a networked control systems starts with an NCS model. Several different
approaches have been taken to model an NCS based on the different parameters of
interest. Mainly the discrete-time delayed system formulation is used [3, 8] but also
hybrid formulations [32] have been used. Based on the delay assumptions different
models have been derived varying from models for constant delays from less than a
sampling period up to several sampling periods and periodic delays [9, 10]. Also random
network delays have been modeled using the Poisson process and fluid flow models [27]
and delay models based on an underlying Markov chain [21] among other approaches.
Furthermore, attempts have been made to include packet loss into models [32].

• Analysis of NCSs
Performance and stability analysis plays an important role in NCS research. As ex-
plained in this chapter, the delays introduced by a network can degrade the performance
of an NCS and even can cause instability. Also sampling issues play an important role
as is pointed out in this chapter. Therefore, issues like sample rate selection, sampling
methods and network delay characteristics are addressed in literature [7, 15].
Stability analysis of NCSs also plays an important role. Analytic stability analysis using
Lyapunov stability theory and other techniques such as the Jury test have been used
to analyze stability of NCSs under different assumptions, using different models and
different control techniques [4, 9].

• Control of NCSs
Another focus within the NCS research is the design of control strategies that can
compensate for the network induced delays. The most common method used is LQG
[15, 21] optimal control, but also state feedback control using a state observer [20, 32],
fuzzy logic control, robust control [27] and control techniques for hybrid systems [32]
have been proposed . There is little experimental work performed to validate obtained
results.

The goal of this research is to uncover the issues involved in the design of NCSs. No com-
plicated control strategies are considered. Whereas a lot of work done in the field of NCS
research is based on more sophisticated control strategies, the goal in this thesis is not to

14

2. NETWORKED CONTROL SYSTEMS

develop control strategies that can compensate for the negative effects introduced by a net-
work, but to analyze the characteristics of an NCS with a standard state feedback controller.
The reason for this is that standard control strategies such as state feedback can easily be
implemented in an embedded setting. Furthermore the majority of all industrial controllers
consist of the standard three term PID controller because it is simple to implement, reliable
and adequate for the majority of control problems. Moreover the use of standard state feed-
back control gives some surprising results.
Another key issue in the research covered in this thesis is experimental validation of the ob-
tained results. Apart from the fact that it is valuable if numerically obtained results can be
reproduced in practice, experimental work also uncovers issues that arise in the implementa-
tion.

15

2. NETWORKED CONTROL SYSTEMS

16

Chapter 3

Modeling and stability analysis of
an NCS

In this chapter, the stability of an NCS will be analyzed analytically. For this purpose a
discrete time NCS model will be derived that includes several relevant parameters that were
identified in the previous chapter such as sample-time and network delays. This discrete-time
NCS model is used to analyze an NCS with one-dimensional plant dynamics. Time-domain
as well as frequency-domain analysis is performed to obtain a thorough understanding of
the phenomena that arise when the one-dimensional plant is controlled with a linear output
feedback controller. Next, simulations with a second-order plant will show that the observed
phenomena apply to the two-dimensional plant as well. At the end of this chapter a brief
discussion about the obtained results is included.

3.1 A Networked control system model

In this section a discrete-time NCS model will be derived. First, the studied configuration
is discussed. Next, a few assumptions on which the model is based are stated. At the end
of this section, the discrete-time NCS model is derived that is used in the remainder of this
chapter to analyze the performance and stability of a plant controlled over a network.

3.1.1 Modeled NCS configuration

Consider the NCS schematic, given in Fig. 3.1. A continuous-time plant H is controlled by
a controller C. The plant and the controller are connected using some kind of data network.
Note that the controller can be connected to the input and the output of H using the same
network line or a different network line. The continuous-time input of H is obtained via the
zero order hold D/A conversion of the discrete-time control signal computed by the controller.
y(kh) is the sampled continuous-time output y(t) with a constant sample-time h
The samples y(kh) are sent to the controller over the network which induces a sensor to
controller delay δsc as explained in the previous chapter.
To control the plant H, a discrete-time output feedback controller u(kh) = −Ky(kh − δsc)
will be used. y(kh − δsc) is the discrete plant output received over the network. u(kh − δsc)

17

3. MODELING AND STABILITY ANALYSIS OF AN NCS

HC D/A A/Dδca

δsc

n
et

w
or

k

y(kh− δsc)

u(kh− δsc) u(kh− δt) y(kh)u(t) y(t)

Figure 3.1: Networked Control System schematic.

is the discrete output of the controller during the kth sampling interval. K is a constant gain
matrix of appropriate dimensions.
The computed control signal is sent to the actuator over the network which induces a controller
to actuator delay δca. The discrete control input u(kh − δt) is the discrete control signal
received by the plant over the network.

3.1.2 Model assumptions

For the derivation of the NCS model, the following additional assumptions are made.

Assumption 1 The total network induced delay δt = δsc + δca < h.

High sample rates increase network load and therefore increase the network induced delays.
Therefore it is sensible to choose a sample-time such that the sample interval is larger than the
total network induced delay, i.e. h > δt. Deriving a model for other assumptions concerning
the total network induced delay δt however, is straightforward.

Assumption 2 The network induced delays δsc and δca are constant.

As explained in the previous chapter, this can always be obtained when a time-skew is in-
troduced between the sampling instant of the sensor and the actuator that is larger than
the upper-bound of the delay. Consequently, no assumption on the time-driven or the event-
driven operation of the controller and the actuator has to be made. Note however, that if a
time-driven actuator is considered, the moment of actuation is not necessarily the same as
the sampling instant of the sensor.

Assumption 3 There is no computational delay in the controller.

The computational delay of the controller is not taken into account as a separate parameter.
Mainly because the computational delay of a controller is typically much smaller than the
network induced delays. Furthermore, if one wishes to take the computational delay of the
controller into account, it can be included in δca [21].

Assumption 4 Data loss due to network transfers does not occur.

As explained in the previous chapter this is not always the case. As network traffic increases
data-loss will eventually occur. By choosing an appropriate sample-time, data loss can be
minimized or even prevented under strict conditions.

18

3. MODELING AND STABILITY ANALYSIS OF AN NCS

3.1.3 The discrete-time NCS model

The system to be controlled H in Fig. 3.1 is a continuous-time linear time-invariant system
of which the dynamics is given by:

ẋ(t) = Ax(t) + Bu(t) (3.1)
y(t) = Cx(t),

where x(t) is the continuous-time state of the system, u(t) is the continuous-time control
input, y(t) is the continuous-time output and A, B and C are system matrices of appropriate
dimensions.
The discrete-time model of the system given in (3.1), a standard result from digital control
theory [8], is given by:

x(kh + h) = eAhx(kh) +
∫ kh+h

kh
eA(kh+h−τ)Bu(τ)dτ (3.2)

y(kh) = Cx(kh),

where h is the used sampling interval.
In (3.2), y(kh) is the sampled output at the sampling instant t = kh. u(τ) is the continuous-
time history of the input of H over the sampling-interval [kh kh + h]. The continuous time
input over the sampling interval u(τ) is piecewise constant due to the zero order hold D/A
conversion of the delayed discrete control input u(kh− δt). Note that δt is the total network
induced delay δsc + δca.
Under assumptions stated in the previous sub-section, the discrete control input that arrives
at the actuator is given by:

u(kh− δt) = −Ky(kh− δt). (3.3)

Under assumption 1, the piecewise continuous control input u(τ) has two different values over
the sampling interval as illustrated in Fig. 3.2.{

u(τ) = −Ky(kh− h) for kh < τ < kh + δt

u(τ) = −Ky(kh) for kh + δt < τ < kh + h,
(3.4)

Accordingly, (3.2) can be rewritten as follows [8]:

x(kh + h) = eAhx(kh)−
∫ kh+δt

kh
eA(kh+h−τ)dτBKCx(kh− h) (3.5)

−
∫ kh+h

kh+δt

eA(kh+h−τ)dτBKCx(kh).

y(kh) = Cx(kh)

When the variables in the integral are changed according to η = kh+h−τ the following form
is obtained:

x(kh + h) = Φx(kh)− Λ0x(kh)− Λ1x(kh− h). (3.6)
y(kh) = Cx(kh)

19

3. MODELING AND STABILITY ANALYSIS OF AN NCS

Where Φ = eAh, Λ0 =
∫ h−δt

0 eAηdηBKC and Λ1 =
∫ h
h−δt

eAηdηBKC.
The closed loop dynamics of an NCS with output feedback as depicted in Fig. 3.1 under the
given assumptions can be formulated in state-space notation as:

z(k + 1) = Ψz(k) (3.7)

Where

z =
[

x(kh)
x(kh− h)

]
,Ψ =

[
Φ− Λ0 −Λ1

I 0

]
In the closed-loop system matrix Ψ, the controller gain matrix K, the sampling time h and
the total network induced delay δt are present as parameters. Using this closed loop system
matrix Ψ the influence of these parameters on the stability of the closed loop system can be
investigated

time

y(kh)
y(kh + h)

kh kh + h

kh + δt kh + h + δt

u(kh + δt) u(kh + h + δt)

y(t)

u(t)

y
(t

)
u
(t

)

Figure 3.2: Timing of the input and the output of H.

If the total network induced delay δt > h, the derivation of the model is straightforward.
Suppose for example that the following condition for the total delay holds: h < δt < 2h.
Then the piecewise continuous control input u(τ) has again two different values over the
sampling interval [kh kh + h].{

u(τ) = −Ky(kh− 2h) for kh < τ < kh + δt − h
u(τ) = −Ky(kh− h) for kh + δt − h < τ < kh + h.

(3.8)

The rest of the derivation can be done in the same manner. Note that in this case the dimen-
sion of the closed loop system matrix Ψ increases which makes the analysis of systems with
larger delays more complex and the computational effort to analyze such systems analytically
increases rapidly.

3.2 Stability analysis of a 1-dimensional system

With the model derived in the previous section, the influence of the delay δt, the sample-time
h and the feedback gain K on the stability of the NCS can be analyzed for a given continuous-

20

3. MODELING AND STABILITY ANALYSIS OF AN NCS

time system H. As a first step, the following one-dimensional continuous-time system will be
used for the sake of simplicity:

ẋ(t) = x(t) + u(t) (3.9)
y(t) = x(t).

Note that in open-loop this is an unstable system. If this continuous-time system is controlled
by an output feedback u(t) = −Kx(t) with no delay, it can be easily seen that the closed loop
continuous-time system is stable if K > 1.
Fig. 3.3(a) shows the response of the NCS of Fig. 3.1 with continuous-time plant dynamics
given by (3.9). The system has an initial state of x(0) = 10 and the state feedback controller
aims to stabilize the system at the origin. The figure shows three different responses for three
different values of the total network induced delay δt. Note that in these plots the continuous-
time output y(t) of H is given (see Fig. 3.1) and that a sample-time of h = 0.1 s is used.
As the time-delay increases, the settling time increases and therefore the performance of the
system degrades. Time delays in the control loop are well known to degrade the performance
of a control system [24], therefore this result is not surprising.
The other three sub-figures in Fig. 3.3 show a different phenomenon. In these figures, the
gain K = 30. For δt = 0 s, the system is unstable (Fig. 3.3(b)) as is the case for δt = 0.05 s
(Fig. 3.3(d)). For a delay of δt = 0.025 s (Fig. 3.3(c)) however, the system is stable.
Although Fig. 3.3(a) shows the expected degradation of the performance of the controlled
system due to the delay in the control loop, there is a situation where a certain amount
of delay results in a stable system, whereas the same closed-loop system without delay is
unstable.

3.2.1 Eigenvalue analysis

In order to understand the positive influence of a certain amount of delay on the stability
of the state-feedback controlled NCS as observed in the previous subsection, an analysis of
the eigenvalues of the closed loop system matrix Ψ in (3.7) can give more insight in the
encountered phenomenon. The matrix Ψ, subject to the system dynamics given in (3.9) is
given by:

Ψ =

[
eh −

(
eh−δt − 1

)
K

(
−eh + eh−δt

)
K

1 0

]
. (3.10)

In order for the system in (3.7) to be stable, the absolute value of the eigenvalues λi of Ψ
have to lie inside the complex unit-circle, |λi| < 1. The eigenvalues can be obtained, using
the characteristic equation det(λI −Ψ) = 0, see [8].

Fig. 3.4 to Fig. 3.7 show the eigenvalues for different total delay values δt and varying controller
gain K. In the left graph of these figures, the absolute value of both eigenvalues is given. In
the right graph, the eigenvalues are plotted in the complex plane. The start point (K = 0)
is marked by an asterisk and the endpoint (K = 30) is marked by a triangle. Note that in
Fig. 3.4 one eigenvalue is equal to zero for all K. Also note that both eigenvalues are zero
around K = 10. This is the dead-beat solution
As can be seen in the figures, the interval of K for which the system is stable, is the largest

21

3. MODELING AND STABILITY ANALYSIS OF AN NCS

i
i

“tempimage˙temp” — 2005/8/16 — 13:17 — page 1 — #1 i
i

i
i

i
i

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-6

-4

-2

0

2

4

6

8

10
δt = 0
δt = 0.025
δt = 0.05

y
(t

)

time [s]

(a) Responses for K = 10.

i
i

“tempimage˙temp” — 2005/8/16 — 13:21 — page 1 — #1 i
i

i
i

i
i

×1016

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

2

3

4

y
(t

)

time [s]

(b) Response for K = 30 and δt = 0 s.

i
i

“tempimage˙temp” — 2005/8/16 — 13:22 — page 1 — #1 i
i

i
i

i
i

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-30

-20

-10

0

10

20

30

40

y
(t

)

time [s]

(c) Response for K = 30 and δt =
0.025 s.

i
i

“tempimage˙temp” — 2005/8/16 — 13:23 — page 1 — #1 i
i

i
i

i
i

×106

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-3

-2

-1

0

1

2

3

y
(t

)

time [s]

(d) Response for K = 30 and δt =
0.05 s.

Figure 3.3: Response of the NCS with the system in (3.9) with an initial state of x(0) = 10.
h = 0.1 s.

22

3. MODELING AND STABILITY ANALYSIS OF AN NCS

for δt = 0.025 s in Fig. 3.5. The minimum value of |λi| however, increases with increasing
delay δt.
For increasing delay, the eigenvalues exhibit an imaginary part. For a delay of 0.025s this
results in a larger range of K for which the system is stable.
For δt = 0.05 s and δt = 0.075 s, which is 50 and 75 percent of the sample-time h, the
imaginary part becomes so large that the eigenvalues |λi| leave the unit circle faster and
therefore, as δt increases, the range of K for which the system is stable decreases.

i
i

“tempimage˙temp” — 2005/9/2 — 16:40 — page 1 — #1 i
i

i
i

i
i

-2 -1 0 1 2
-2

-1

0

1

2

0 10 20 30

0

0.5

1

1.5

2

2.5

im
a
g
(λ

i
)

real(λi)

|λ
i
|

K

Figure 3.4: Two eigenvalues of (3.10) for h = 0.1 s and δt = 0 s. λ1: solid, λ2: dashed.

i
i

“tempimage˙temp” — 2005/8/15 — 15:39 — page 1 — #1 i
i

i
i

i
i

-2 -1 0 1 2
-2

-1

0

1

2

0 10 20 30
0

0.5

1

1.5

im
a
g
(λ

i
)

real(λi)

|λ
i
|

K

Figure 3.5: Two eigenvalues of (3.10) for h = 0.1 s and δt = 0.025 s (25% of h). λ1: solid, λ2:
dashed.

In order to gain a more physical understanding of this phenomenon, a frequency-domain
analysis will be performed.

3.2.2 Frequency domain analysis

Recall from section 3.1 that the discrete difference equations that define the input/output
behavior of the remote system (indicated by the dashed lines in Fig. 3.1) are given by:

x(k) = Φx(k − 1) + Γ0u(k − 1) + Γ1u(k − 2) (3.11)
y(k) = Cx(k).

23

3. MODELING AND STABILITY ANALYSIS OF AN NCS
i

i
“tempimage˙temp” — 2005/8/15 — 15:31 — page 1 — #1 i

i

i
i

i
i

-2 -1 0 1 2
-2

-1

0

1

2

0 10 20 30
0

0.5

1

1.5

im
a
g
(λ

i
)

real(λi)

|λ
i
|

K

Figure 3.6: Two eigenvalues of (3.10) for h = 0.1 s and δt = 0.05 s (50% of h). λ1: solid, λ2:
dashed.

i
i

“tempimage˙temp” — 2005/8/15 — 15:44 — page 1 — #1 i
i

i
i

i
i

-2 -1 0 1 2
-2

-1

0

1

2

0 10 20 30
0

0.5

1

1.5

2
im

a
g
(λ

i
)

real(λi)

|λ
i
|

K

Figure 3.7: Two eigenvalues of (3.10) h = 0.1 s and δt = 0.075 s (75% of h). λ1: solid, λ2:
dashed.

Here Φ = eAh, Γ0 =
∫ h−δt

0 eAηdηB and Γ1 =
∫ h
h−δt

eAηdηB. Using the Z-transform, this
difference equation can be written in the Z-domain as follows:

X(Z) = ΦZ−1X(Z) + Γ0Z−1U(Z) + Γ1Z−2U(Z) (3.12)
Y (Z) = CX(Z).

From (3.12), the discrete-time transferfunction of the sampled plant can be calculated:

Y (Z)
U(Z)

= Hk(Z) = C(Z2I −ZΦ)−1(ZΓ0 + Γ1). (3.13)

Again the one-dimensional system given in (3.9) is considered. The resulting discrete trans-
ferfunction of the sampled plant is given by:

H∗
δ (Z) =

(eh−δt − 1)Z + eh − eh−δt

Z2 − ehZ
. (3.14)

Note that when the delay δt = 0, the transferfunction reduces in order and the resulting
transfer-function (3.15) is the same as would be obtained by discretizing the one dimensional

24

3. MODELING AND STABILITY ANALYSIS OF AN NCS

i
i

“tempimage˙temp” — 2005/8/24 — 13:22 — page 1 — #1 i
i

i
i

i
i

10−1 100 101 102
-200
-180
-160
-140
-120
-100

10−1 100 101 102
-10

0

10

20

30

Frequency [Hz]

P
h
as

e
[d

eg
]

no delay
delay 0.025s

M
ag

n
it
u
d
e

[d
B

]

(a) Bode plot

i
i

“tempimage˙temp” — 2005/8/24 — 13:22 — page 1 — #1 i
i

i
i

i
i

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
delay 0.025s
No delay

im
a
g

real

(b) Nyquist plot

Figure 3.8: Bode and Nyquist plots for K = 25 and h = 0.1 s.

continuous-time system (3.9) with a zero-order hold discretization method:

H∗
δ (Z) =

eh−δt − 1
Z − eh

. (3.15)

Again the controller C consists of an output feedback with gain K and the open-loop trans-
ferfunction is given by:

KH∗
δ = K

(eh−δt − 1)Z + eh − eh−δt

Z2 − ehZ
. (3.16)

Fig. 3.8 and Fig. 3.9 show the Bode plots and Nyquist plots of the open-loop system (3.16)
with a gain K = 25 and a sample-time h = 0.1. Three different delay values are considered.
In both figures the transferfunction for δt = 0 is plotted. Fig. 3.8 also gives the transfer-
function of the system with δt = 0.025 (which is 25 % of the sample-time). In Fig. 3.9 the
transfer-function of the system with δt = 0.05 is drawn.
As observed in the previous section, the system with δt = 0 is unstable. This also can be seen
in the Bode and Nyquist plots in Fig. 3.8. In the same figure, the open-loop transfer function
for δt = 0.025 is drawn. As can be seen in the figure the system is stable. Although the delay
introduces a phase lag, the gain is lower compared to the no-delay case. Therefore, there is
still some phase margin at the zero dB crossing of the gain.
For the case where δt = 0.05 depicted in Fig. 3.9, the gain is also lower than in the no-delay
case. The phase lag due to the delay however is so large that the system is unstable.

3.2.3 An analytic stability bound

Due to a slight amount of delay in the control loop, the open-loop gain of the discrete time NCS
as formulated in (3.7) appears to be lower than that of the system without delay. Although
the delay introduces a phase lag, the system is stable for a limited amount of delay.
In order to determine the stability region for the considered first order system, an analytic
stability bound can be obtained. With the so-called Jury test, the discrete equivalent of the

25

3. MODELING AND STABILITY ANALYSIS OF AN NCS

i
i

“tempimage˙temp” — 2005/8/24 — 13:31 — page 1 — #1 i
i

i
i

i
i

10−1 100 101 102
-400

-300

-200

-100

10−1 100 101 102
-40

-20

0

20

40

Frequency [Hz]

P
h
as

e
[d

eg
]

no delay
delay 0.05s

M
ag

n
it
u
d
e

[d
B

]

(a) Bode plot

i
i

“tempimage˙temp” — 2005/8/24 — 13:32 — page 1 — #1 i
i

i
i

i
i

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
delay 0.05s
No delay

im
a
g

real

(b) Nyquist plot

Figure 3.9: Bode and Nyquist plots for K = 25 and h = 0.1 s.

Routh/Hurwitz criterium, an analytic expression for the stability bound of the NCS can be
found1.
The Jury test provides two stability conditions:

 1−
(
Keh −Keh−δ

)2
> 0

1−
(
Keh −Keh−δ

)2 − (Keh−δ−K−eh−(Keh−Keh−δ)(Keh−δ−K−eh))2

1−(Keh−Keh−δ)2 > 0.
(3.17)

From (3.17) a stability bound for δt can be computed as a function of the controller gain K
and the sample time h. The matrix Ψ in (3.10) has all eigenvalues inside the unit circle if the
following relation holds:

h + log
[

2K

Keh + eh + K + 1

]
< δt < h + log

[
K

Keh − 1

]
. (3.18)

1More information of the Jury test and an implementation in a MATLAB m-file can be found in appendix C.

26

3. MODELING AND STABILITY ANALYSIS OF AN NCS

i
i

“tempimage˙temp” — 2005/10/13 — 11:10 — page 1 — #1 i
i

i
i

i
i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

δ t
/h

[p
er

ce
n
t]

h[s]

δ t
/h

[p
er

ce
n
t]

K

Figure 3.10: Stability region for varying h and K and δt. Upper figure h = 0.1 s, lower figure
K = 5. The shaded area indicates the stable region.

i
i

“tempimage˙temp” — 2005/9/14 — 9:31 — page 1 — #1 i
i

i
i

i
i

10−5 10−4 10−3 10−2 10−1 100
0

0.5

1

1.5

2

2.5

10−5 10−4 10−3 10−2 10−1 100
0

0.1

0.2

α

h[s]

δ∗ t
/h

Figure 3.11: δ∗t and α as a function of the sample time h.

Fig. 3.10 shows the stability of the system for varying gain, sample-time and network delay.
The area for which the system is stable is shaded. As can be seen in the figure, there is a value
for δt for which the set of K values which give a stable system is maximal (the intersection
point of the two stability boundaries in the upper figure of Fig. 3.10). This value, which will
be called δ∗t can be computed by equating both boundaries given in (3.18):

δ∗t = h + log
(

3 + eh

2eh + 1 + e2h

)
. (3.19)

The upper graph of Fig. 3.11 shows δ∗t /h as a function of h. The figure indicates that for
decreasing sample time h, δ∗t /h converges to a constant value. For h → 0 the delay value δ∗t /h

27

3. MODELING AND STABILITY ANALYSIS OF AN NCS

can be computed using (3.19):

lim
h→0

[
δ∗t
h

]
=

1
4
. (3.20)

Appendix B gives the derivation of this limit.

Let Kmax be the maximum gain for which the system is still stable. Obviously, Kmax is a
function of δt and h. For Kmax evaluated for δt = 0 and δt = δ∗t the following relation holds:

Kmax|δt=δ∗t
=

3e−h + 1
1 + e−h

Kmax|δt=0 = α Kmax|δt=0 . (3.21)

The lower graph of Fig. 3.11 shows the parameter α as a function of h. For h → 0 the value
of α converges to a constant value:

lim
h→0

[α] = 2 (3.22)

When the system has a delay δt of 25 percent of the sample-time h, the gain K can be doubled
to reach the stability boundary compared to the same system with no delay in the considered
case.

3.3 Stability of a two dimensional model

In the previous section, the stability of an NCS has been investigated using the model derived
in section 3.1. For the sake of simplicity, a simple one-dimensional model has been used. The
use of a one-dimensional model allows us to use several techniques to analyze the stability of
the closed-loop system, because the limited dimension of the state of the NCS model confines
the computational cost required to apply these techniques. The physical relevance of the used
system however is limited.
Therefore, a stability analysis will be performed using a system that can directly be related
to a motion system.

m
b

F

x

Figure 3.12: An actuated moving mass with viscous damping.

Consider the cart given in Fig. 3.12. The cart with mass m experiences a linear viscous
damping force bẋ in opposite direction of the applied force F , where b is the viscous damping
coefficient. This type of system, a moving mass which can be positioned by applying a force

28

3. MODELING AND STABILITY ANALYSIS OF AN NCS

F , is a common example of a motion control system.
Suppose that both the position x as well as the velocity ẋ of the cart can be measured. The
dynamics of the moving cart in state space notation is then given by:[

ẋ
ẍ

]
=

[
0 1
0 − b

m

] [
x
ẋ

]
+

[
0
1
m

]
u (3.23)

y =
[

1 0
0 1

] [
x
ẋ

]
,

where the input u is the force F applied to the mass in x-direction.
Suppose b = m = 1, and this system is controlled over a network by a proportional output
feedback controller u = −Ky, where K is given by [K1 K2]. Note that in the continuous-time
case with no delay, the closed loop system can only be stabilized if K1 > 0.
When K2 = 0, the closed-loop system matrix Ψ from (3.7) of the NCS with the dynamics of
the plant given by (3.23), is given by:

Ψ =

 1−K1

(
e−h+δt + h− δt − 1

)
−e−h + 1 K1

(
−e−h + e−h+δt − δt

)
0

−K1

(
−e−h+δt + 1

)
e−h K1

(
e−h − e−h+δt

)
0

1 0 0 0
0 1 0 0

 . (3.24)

Due to the fact that the dimension of the discrete-time system equations increases with
an order two, the computation of the stability borders using the Jury test becomes too
complex. Therefore, the stability region is obtained by calculating the eigenvalues for a grid
of points, characterizing combinations of K1 and δt. The stable region for this case is drawn
in Fig. 3.13(a), the used sample-time is h = 0.1 s.
As can be seen in Fig. 3.13(a), the system can be stabilized for a gain K1 > 0 up to K1 = 20
for the situation where δt = 0. As the network induced delay increases, the region for K1 for
which a stable system results, narrows. Fig.3.14 shows the root loci for this system for several
values of the delay (δt = {0, 0.005 . . . 0.1}). The root loci are computed for varying gain K1

(K1 = {0, 0.1 . . . 25}) and all for a sample-time h = 0.1 s. An asterisk marks the start of the
root locus where K1 = 0, the end of each root locus (K1 = 25) is marked with a triangle .
Note that the x-axis and y-axis as well as the unit circle are indicated by the dotted lines.
The left figure shows the loci of the first two roots λ1 and λ2. These roots are real and lie
inside the unit circle for all considered combinations of K1 and δt.
The right figure shows the loci of the other two roots. Both roots are real for K1 = 0, λ3 = 0
and λ4 = 1. For K1 > 0 both roots lie inside the unit circle and for K1 > 1, λ3 and λ4

are complex conjugates. The two arrows give the direction of increasing delay δt. The stable
region given in Fig. 3.13(a) is completely determined by λ3 and λ4.

Now suppose K1 = 1 and the system is controlled by a state-feedback controller u = −x−K2ẋ.
The closed loop NCS matrix Ψ is then given by:[

2− h + δt − e−h+δt −e−h + 1− (h − δt + e−h+δt − 1)K2 −e−h − δt + e−h+δt (−e−h − δt + e−h+δt)K2
e−h+δt − 1 e−h − (−e−h+δt + 1)K2 e−h − e−h+δt (e−h − e−h+δt)K2

1 0 0 0
0 1 0 0

]
(3.25)

The stability region for this case is given in Fig. 3.13(b) also for a sample-time of h = 0.1s. As
can be seen, the same phenomenon in the stability region can be observed as was the case with
the one-dimensional example. There is a region where the system is only stable for a certain
amount of delay δt. Fig. 3.15 shows the root loci for this case subject to K2 = {0, 0.1 . . . 45}
and δt = {0, 0.005 . . . 0.1}. Again the arrows indicate the directions of increasing delay δt.

29

3. MODELING AND STABILITY ANALYSIS OF AN NCS

i
i

“tempimage˙temp” — 2005/10/13 — 11:06 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

δ t
/h

[p
er

ce
n
t]

K1

(a)

i
i

“tempimage˙temp” — 2005/10/13 — 11:05 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

δ t
/h

[p
er

ce
n
t]

K2

(b)

Figure 3.13: Stability of the NCS subject to the 2-D system. The shaded area indicates the
stable region for h = 0.1 s.

i
i

“tempimage˙temp” — 2005/10/13 — 10:08 — page 1 — #1 i
i

i
i

i
i

-0.2 0 0.2 0.4 0.6 0.8

-0.1

-0.05

0

0.05

0.1

im
ag

(λ
i
)

real(λi)

(a)

i
i

“tempimage˙temp” — 2005/10/24 — 16:16 — page 1 — #1 i
i

i
i

i
i

replacemen

0.85 0.9 0.95 1 1.05

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

K1

K1

δt

δt

im
ag

(λ
i
)

real(λi)

(b)

Figure 3.14: The root loci for the position u(k) = −K1x(k) feedback for varying K1 and
increasing delay value δt. K2 = 0 and h = 0.1 s.

30

3. MODELING AND STABILITY ANALYSIS OF AN NCS

i
i

“tempimage˙temp” — 2005/10/12 — 21:51 — page 1 — #1 i
i

i
i

i
i

-4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

im
ag

(λ
i
)

real(λi)

(a)

i
i

“tempimage˙temp” — 2005/10/24 — 14:38 — page 1 — #1 i
i

i
i

i
i

-1 -0.5 0 0.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

K2

K2

δt

δt

im
ag

(λ
i
)

real(λi)

(b)

Figure 3.15: The root loci for the full state feedback u(k) = −K1x−K2ẋ for varying K2 and
increasing delay value δt. K1 = 1 and h = 0.1 s

3.4 Discussion

In this chapter, a discrete-time model of an NCS with output feedback has been derived under
the assumption that the network induced delays are constant and the total network induced
delay δt is smaller than the sampling interval h.
By means of this model, the stability of an NCS is investigated. As a first step, a one-
dimensional model is used to analyze the stability of the closed-loop system through eigenvalue
analysis and frequency domain techniques. Using the Jury test, also an analytic stability
bound is obtained.
To add some more physical meaning to the analysis, a two-dimensional system is introduced
and, although the NCS model considerably increases in complexity for this two-dimensional
case, an eigenvalue analysis can be used to analyze the stability of this system.
Delay in a control loop is well known to degrade the system performance which can also
be seen when considering the poles of the closed-loop system. An interesting observation
however is, that a certain amount of delay in the control-loop can have a positive effect on
the stability of the closed-loop system. In the one-dimensional case this phenomenon appeared
with a feedback u = −Kx. In the two dimensional system this phenomenon appeared when
using a state feedback u = −Kẋ.
In general, an n-dimensional system controlled using a feedback u = −Kx(n−1) translates in
the discrete-time formulation with a delay dt < h into the encountered phenomenon. Note
that x(n−1) is the (n− 1)th time derivative of x.
To test wether or not this phenomenon can be reproduced in practice, an experimental setup
has been created to validate the obtained results. In the next chapter, the created setup will
be discussed. In chapter 5 the conducted experiments will be covered.

31

3. MODELING AND STABILITY ANALYSIS OF AN NCS

32

Chapter 4

An experimental NCS setup

In this chapter, the experimental setup used in this research will be discussed. The setup is
a mobile robot that can be purchased as an easy-to-use robotics platform for education and
research. The standard configuration of this robot has some major drawbacks which make it
not directly applicable for the research in this report or control related research in general.
Some customization of the standard configuration, however, can solve these drawbacks. In
this chapter, the work done to fit the mobile robot to our needs is discussed. In section 4.1, the
mobile robot will be introduced. The features of the standard configuration will be discussed
briefly as well as the reason why this setup can be suitable for NCS experiments. Further-
more, the main drawbacks of the standard configuration and the necessary adaptations to
overcome these drawbacks are discussed.
In section 4.2, the operation of the microcontroller on-board the robot is discussed to pro-
vide some insight in the possibilities offered by the used microcontroller. In section 4.3 the
implementation of the required adaptations is discussed. Two different configurations are
developed, one configuration for control experiments (i.e. trajectory tracking) in general and
one configuration with some specific options, tailored to this research.
In section 4.4, the implementation of the main controller on the desktop PC is discussed
as well as some time-keeping issues involved in this implementation. In the last section of
this chapter, some specific issues that are of concern for the experiments covered in the next
chapter are discussed.

4.1 The Trilobot mobile robot

The experimental setup used in this research is the Trilobot mobile Robot from Arrick
Robotics shown in Fig. 4.1 [2]. Trilobot is a mobile robot that consists of a base with two
wheels driven by DC motors (drive-wheels) and a castor wheel. There is an optical encoder
attached to each driven wheel. The Trilobot is normally powered by a battery pack but in the
setup used for this research, the battery pack is replaced by a rechargeable one. A controllable
gripper is mounted between the two drive-wheels. Furthermore, the base is equipped with
eight independently readable whiskers and a water sensor.
The top of Trilobot is called the mast and there are several sensors and controllable features
mounted on the mast, including:

33

4. AN EXPERIMENTAL NCS SETUP

Figure 4.1: The Trilobot mobile robot.

• Electronic Compass;

• 4 light level sensors;

• Temperature sensor;

• Tilt sensors;

• IR communication transmitter;

• Green and red LED.

In front of the mast, a controllable head is mounted, driven by three servos. The features
mounted on this head are:

• IR communication receiver;

• Sonar range finder;

• Passive infrared motion detector;

• Headlight;

• Sound detection;

• Laser pointer.

All the features of Trilobot are controlled via a controller board with a main microcontroller
that runs Trilobot’s operating software. Two microcontrollers are used as intelligent co-
processors and are connected to the main processor using serial connections. There is a

34

4. AN EXPERIMENTAL NCS SETUP

display and a keypad available to interface the software.
The software that runs on Trilobot’s main controller has several operating modes. The first
mode, the joystick control mode, can be used to control the drive-wheels, the head and the
gripper functions using a joystick that can be connected to the joystick port on the main
control board.
The second mode, the IR control mode, can be used to control the robot with the Infra-Red
remote control that comes with Trilobot. Many of Trilobot’s functions can be controlled using
the remote control when Trilobot is in IR control mode.
The third mode, the console command mode, can be used to control Trilobot from a desktop
PC using a serial connection. Making use of a high level programming language, simple ASCII
commands can be sent to Trilobot from the desktop PC using the serial communication (RS-
232) protocol. The serial connection between Trilobot and the desktop PC can be established
using a cable or a wireless serial link. The response of Trilobot to various commands is sent
back to the desktop PC using the same serial connection. There is a wide range of commands
available that can be used to control the drive-wheels, gripper and head and to request data
of all the sensors on board Trilobot.
Another very powerful function of Trilobot is to run programs written by the user that can
be uploaded to Trilobot’s microprocessor and run directly from the available memory of
Trilobot’s processor. Using a user program, Trilobot can operate autonomously without any
communication with an external PC. Furthermore, a custom control mode can be developed to
communicate with an external PC. User programs can be written in C or Assembly language
and have to be compiled and assembled to an Intel hex file. When programming in Assembly,
it is easy to call several routines readily available in the system software [2].

Previous research pointed out that by using the user programs, the effectiveness concerning
speed and accuracy in the operation of Trilobot can be improved to a large extent as opposed
to making use of the console command mode [11]. Avoiding the use of the predefined func-
tions, which cause a lot of overhead, can improve the performance even more. Suggestions
for improvement are pointed out in the next section.
The user programs discussed in this report are written in Assembly and are listed in Ap-
pendix F.

4.1.1 NCS research using Trilobot

To validate the results obtained in the previous chapter experimentally, a setup has to be
created that consists of a plant and a separate controller connected using some kind of data
network that induces a delay. The sample-rate of the controller and the plant have to be
manually adjustable.
It is possible to communicate with Trilobot using a desktop PC with serial connection to
Trilobots main processor. Software that runs on the main processor can interface the actuators
and sensors on-board Trilobot. The PC can be regarded as a controller and Trilobot as the
remote system. The serial connection is a type of network connection where the data transfer
rate can be set manually. In brief, Trilobot could be a suitable setup for NCS experiments.

Trilobot has many sensors and actuators, but the most appealing ones are the two drive-
motors with encoders. Controlling the angle or the angular velocity of a DC motor is a
common example in control engineering. So when the two drive-motors can be controlled
separately, a useful setup results for control related research. With this setup, trajectory

35

4. AN EXPERIMENTAL NCS SETUP

planning experiments and other mobile robotics experiments can be performed. The drive-
motor controller can run on an external PC connected to Trilobot using the serial connection,
which makes the setup suitable for NCS experiments. Furthermore, the drive-motor controller
can run on the on-board embedded microcontroller which makes the setup an embedded
control system, which is suitable for embedded motion control research and education.

4.1.2 Necessary adaptations

Although all the features that are necessary to qualify Trilobot, in combination with a desk-
top PC, as an NCS are available, it can be pointed out that there are some major drawbacks
in the standard configuration of Trilobot. Trilobot’s standard configuration is depicted in
Fig. 4.2(a). The two drive-motors can only be driven by sending commands from the main
processor to one of Trilobot’s coprocessors. With these predefined commands Trilobot can
drive forward for a specified distance with a fixed speed or turn a number of degrees with
a specified radius, again with a fixed speed. The low-level controllers used to control the
drive-motors run on the coprocessor. The coprocessor keeps track of the traveled distance of
each drive-motor by counting the pulses generated by the encoder circuitry and based on this
information the motors are driven to perform the requested action. The software (i.e. the
low-level controllers) that runs on the coprocessor cannot be changed. The encoder data can
be requested from the coprocessor by the main processor, but the returned data are the sum
of the counts of both encoders.
To make the Trilobot setup suitable for NCS research or control related research in general,
it should be possible for the user to close the control loop either on-board Trilobot or over
the serial line. This means that the drive-motor controllers have to reside on Trilobot’s mi-
croprocessor or on the desktop PC. In order to achieve such a configuration, the data of
both encoders have to be imported into the main microcontroller separately. Furthermore, it
must be possible to control the input voltage of both drive-motors separately from the main
processor.
In order to achieve such a setup, the drive-motors and the encoders have to be disconnected
from the coprocessor in order to connect them directly to the main processor, creating a
configuration as given in Fig. 4.2(b). In order to understand how to carry out the necessary
adaptations, a brief explanation of the operation and special features of the main microcon-
troller on-board Trilobot is given in the next section.

4.2 The 8052 Microprocessor

In order to be able to interface the drive-motors and encoders using the main processor, some
knowledge on the operation and features of the microcontroller on-board Trilobot is required.
First, the basic operation of the microcontroller will be discussed. After that some special
on-board features are discussed. This section ends with a brief explanation of the specific
configuration of the microcontroller on-board Trilobot and the ports available to the user.

36

4. AN EXPERIMENTAL NCS SETUP

Trilobot

TRILOBOT

Computer

Desktop

serial connection
Hardware Driven

serial connection
Software Driven

Encoders

Drivemotors

Coprocessor

CPU

Main

(a) Standard drive-motor configuration.

Trilobot

TRILOBOT

Computer

Desktop

serial connection
Hardware Driven

Encoders

Drivemotors

CPU

Main

(b) Desired drive-motor configuration.

Figure 4.2: Necessary adaptation in the drive-motor configuration.

4.2.1 Basics of the 8052 microprocessor

The main processor of Trilobot is a Winbond W78E52B micro-controller unit (MCU) [30].
This MCU is based on the 8052 core licensed from Intel. The core refers to the instruction set
and special function registers (SFRs), special data registers that can be used to control the
on-chip features of the MCU. The 8052 core MCU is frequently used in commercial products
and consequently many other manufacturers produce 8052 compatible MCUs, e.g. Philips,
Atmel, Dallas Semiconductors and of course Intel [25, 31].

The 8052 core MCU (which will be referred to in the remainder of this thesis as ‘the 8052’) is an
8-bit MCU. Consequently it has an instruction set that defines 256 instructions. Instructions
are operations that can be carried out by the processor, such as addressing memory and
performing mathematical operations.
The 8052 operates based on an external crystal. This crystal is an electronic device that emits
pulses at a fixed frequency when power is applied. The crystal frequency of the 8052 used on-
board Trilobot is 11.059 MHz. This seems to be a strange frequency, but it is very convenient
to set standard serial port Baud-rates, as will be discussed in section 4.3. The 8052 uses the
crystal to synchronize its operations. Effectively, the 8052 uses so-called machine cycles. A
single machine cycle is the minimum amount of time in which a single 8052 instruction can
be executed. Many instructions however take multiple cycles. In the 8052, a machine cycle
takes 12 crystal pulses. The memory of the 8052 can be accessed by 8-bit addresses which
can be quickly stored and manipulated by the 8-bit processor.

The 8052 has 4 8-bit I/O ports, numbered P0 to P3, which means that there are 32 I/O
pins. Every port has a dedicated SFR. Changing the status of the output pins comes down
to writing an 8-bit value to the dedicated SFR address. All the bits of a port SFR are also
bit addressable, so it is possible to set or clear only one bit of a port. Some of the output bits

37

4. AN EXPERIMENTAL NCS SETUP

8052

IRAM
External

External
SFR’s

RAM

CODE

(a) Memory configuration of the 8052.

00h

20h

30h

FFh

Register
banks

Bit
register

General

IRAM

(b) Internal RAM of the 8052.

Figure 4.3: Internal and external memory configuration of the 8052.

can have a special function. They can for example be used to address external memory or
they serve as I/O lines of the serial port. If no external memory or serial port is connected,
these ports can be used as general purpose I/O ports.

The 8052 can address three types of memory, i.e. internal RAM (Random Access Memory)
which resides on-chip, referred to as IRAM, external RAM and external code memory. The
IRAM consists of 256 bytes and another 128 bytes of the so-called special function registers
(SFRs) which can be used to configure all features of the 8052. To effectively program the
8052 it is necessary to have a basic understanding of these memory types. Fig. 4.3(a) gives a
schematic representation of the memory configuration of the 8052.

Internal RAM The 8052 has 256 bytes of IRAM that can be found on-chip; so it is the
fastest RAM available and it is very flexible in terms of reading, writing and modifying
its content. Internal RAM is volatile, so it will be cleared when the MCU is reset. A
schematic representation of internal RAM is given in Fig. 4.3(b). The first 32 bytes
(00h-1Fh in hexadecimal representation) are reserved for four register banks each of
8 bytes. The next 16 bytes (20h-2F) are reserved as bit memory containing 128 bits.
The 208 bytes of internal RAM remaining (30h-FFh) can be used to store data that have
to be accessed frequently or at high speed. This area is also utilized by the processor
to store the operating stack.

128 bytes of the on-chip memory of the 8052 microcontroller are used as SFRs (see
Fig. 4.3(a)). These SFRs are registers in memory that control specific functionality of
the 8052 processor. It is important that during program execution this area of RAM is
not used to store data because the settings of the MCU will be changed during operation,
which leads to unexpected results.

The 8052 uses eight 8-bit R-registers that are used in many of the instructions that
can be performed, e.g. manipulating values and moving data. These R-registers are
numbered from 0 up to 7 and together they form a register bank. There are four of
these register banks. On startup of the processor, register bank 0 (00h-07h) is used
by default. One can instruct the processor to use another register bank. The register
banks that are not in use can be used as extra internal RAM. It is important to know
which register bank the processor uses. If variables are stored in the addresses of the

38

4. AN EXPERIMENTAL NCS SETUP

register bank in use, those variables will be overwritten while the processor carries out
instructions.

Bit memory provides 128 bits that can be accessed separately using special instructions.
These 128 bits can also be used as another 16 bytes of memory.

External code memory The 8052 allows up to 64K of external code memory. On these
64K of external code memory only read operations can be performed. Usually the
external code memory is provided in the form of EPROM (electrically programmable
read only memory) which implies that this memory is read only. To change the code in
the EPROM, a special device called a ROM burner is required. Code memory is mostly
used to hold the actual program that has to be run.

External RAM The 8052 also supports external RAM. External RAM has a read/write
functionality. Accessing external RAM costs more machine cycles than accessing inter-
nal RAM. This makes external RAM slower. The capacity however is much larger than
the capacity of internal RAM. While internal RAM is limited to 256 bytes, the 8052
supports external RAM up to 64K.

4.2.2 Timers

The 8052 is equipped with three timers. These three timers can be configured and read
separately using the SFRs dedicated to a timer. All three timers can perform three different
types of actions:

Keeping time The most obvious function of a timer is keeping time. When configured for
this purpose, the timer increments every machine cycle. With an 11.059 MHz crystal
and machine cycles of 12 crystal pulses the timer increments with a frequency of 0.9216
MHz.
The timer can be configured as 8-bit timer, 13-bit timer or 16-bit timer. In 8-bit timer
mode, the timer counts up from 0 to 255 and then it overflows back to zero. A special
flag is set on overflow and even an interrupt can be triggered on overflow. Furthermore
an auto reload value can be set. This means that when the timer overflows it will not
be set back to zero, but to a value specified in the program. This functionality of a
timer can be used to effectively obtain a fixed sample-rate.

Count events Another way a timer can be configured is to count events on an external
processor pin. Processor pin P3.4 (bit 4 of port 3) and P3.5 can be monitored by
timer 0 and timer 1, respectively. When configured as event counter, the timer will not
increment every machine cycle, but it will increment if it detects a high to low transition
on the corresponding pin.

Serial port Baud-rate generation The 8052 also has an integrated serial port. To set the
Baud-rate (i.e. the communication speed) of this serial port, also a timer can be used.
When no Baud-rate is set, the serial port uses the crystal frequency to clock out each
bit with a fixed rate. This rate can also be set using one of the timers. As mentioned
before, a crystal rate of 11.059MHz is suitable to set standard Baud-rates often used in
serial communication [25, 31].

39

4. AN EXPERIMENTAL NCS SETUP

4.2.3 Interrupts

An interrupt is a special event that interrupts the normal program flow. There are three
types of events that can trigger an interrupt:

1. Timer overflow;

2. Reception/transmission of data over the serial line;

3. External event on a specific processor pin.

When an interrupt occurs, the normal program flow is put on hold and the program jumps
to a specific address in memory. At this specific address, a subroutine can be placed that
executes a function related to the occurred event. After this so called interrupt service routine
(ISR) is finished, the program resumes where is was interrupted.
The ability to interrupt normal program execution when certain events occur makes it much
easier and much more efficient to handle certain conditions. Suppose for example that in
every program loop the serial port has to be checked in order to detect incoming data. A lot
of machine cycles would be waisted to check for an event that does not happen that often.

4.2.4 Serial communication

One of the most powerful features of the 8052 is the integrated UART (Universal Asyn-
chronous Receiver/Transmitter), or serial port. The integrated serial port makes it very easy
to read values from and write values to the serial port. If it were not for the integrated serial
port, writing a byte to a serial line would be a tedious process requiring turning on and off
one of the I/O lines in rapid succession to properly clock out each individual bit. With the
integrated UART one does not have to worry about this low level transmission, which saves
a lot of processor time and code.
Using the serial SFR, the operation mode and Baud-rate can be configured. Once configured
data can be written to an SFR, which is used as a serial buffer. The UART converts the
data bytes to a binary stream that is suitable to send over the serial connection. Incoming
data will be transformed into bytes by the UART and loaded in the serial SFR. Therefore,
reading an incoming value comes down to reading the same SFR. The 8052 will set a flag and
generate an interrupt (if configured to do so) when it has finished sending a byte and when
it receives a byte. In that manner, the received data can be processed as soon as they arrive
at the serial port.

4.2.5 Configuration on-board Trilobot

Fig. 4.4 shows a schematic of the external memory of Trilobot. The upper 32K of code memory
holds the system software. On startup this code is executed. The bottom part of the EPROM
also hold the interrupt vectors, according to the standard addresses for the interrupt routines
[30]. In the rest of code space some speech data that are used by the speech processor, another
on-board expansion, reside. The upper part of RAM is used for some hardware I/O buffers.
The lower 32K of RAM can be used by the user. The system software offers functionality to
upload user programs to this free 32K of RAM. The user program can then be executed from

40

4. AN EXPERIMENTAL NCS SETUP

system software
Predefined
Routines

EPROM (64K) RAM (64K)

Speech data Free RAM (32K)

Interrupt vectors

FFFFh

8000h

0080h

0000h

Figure 4.4: Memory map of Trilobot’s controller.

a RAM address that can be specified after the upload.
It is important to note that the interrupt vectors then correspond to addresses in external
RAM. The interrupt vectors are copied from code space to external RAM upon startup. This
means that the interrupt routines of Trilobot’s standard software are executed whenever an
interrupt occurs. So it is important to change the code in the interrupt routines after the
startup of the user program.
Most processor pins are in use to interface all the on-board devices. There are two processor
pins, P3.4 and P3.5, which are not in use and they can be used for expansion.

4.3 Trilobot as remote system

As explained in section 4.1, the drive-motors have to be connected to the main controller
in order to be able to control both motors separately. The same holds for the encoders. In
this section, the new configuration will be discussed. First, the new circuitry for the drive-
motors will be discussed together with the software required to drive the motors. Next, the
changes in the encoder circuitry will be discussed and how the circuitry can be interfaced in
the software. At the end of this section, the software required to send data to the desktop
PC and to receive data from the desktop PC using the serial port will be discussed.

4.3.1 Drive-motor circuitry

The two drive-motors of Trilobot are permanent magnet DC motors (see table 4.1). The speed
of the motors can be varied by changing the input voltage. One of the easiest ways to generate
an analog output voltage from a digital value is by pulse-width modulation (PWM). In PWM
a high frequency square wave is generated by a digital output by continuously switching the
digital output bit on and off. This digital signal is often a CMOS or TTL level signal. In
order to obtain a suitable input signal for the analog electronics to be driven (in this case a
DC motor), the digital output is fed through some additional circuitry called an H-bridge,
which is powered by an external power source. H-bridge circuits are readily available as IC’s

41

4. AN EXPERIMENTAL NCS SETUP

Table 4.1: Characteristics of Trilobot’s drive-motors.

Type Permanent magnet DC motor
Supply Voltage 12V
Current 0.5A no load, 1.5A full load
Torque 0.79 Nm
Speed 73 rpm full load

and some of them are specially designed for motion control applications. The output voltage

0V

5V

0V

5V

50% Duty Cycle

20% Duty Cycle

Figure 4.5: 20% and 50% duty cycle PWM signals.

of the H-bridge circuit can be altered by changing the duty cycle of the PWM signal. The
duty cycle is the period the square wave stays high during one cycle. Fig. 4.5 shows two
PWM signals, one with a 20% duty cycle and one with a 50% duty cycle. In case of the 50%
duty cycle, the output of the H-bridge circuit is 50% of the input power. The H-bridge IC
used for Trilobot’s drive-motors is the LMD18200 by National Semiconductors. It is a device
specially designed for DC motor and stepper motor control.

The used circuit is given in Fig. 4.6, where M1 and M2 are the two drive-motors. The PWM
input is translated to a positive input voltage for the DC motor. A zero duty cycle generates
a zero input voltage and a 100% duty cycle generates a 12V input voltage. Note that the
motor can only turn in one direction. The used IC can also be configured to generate a
zero input voltage at a duty cycle of 50% and a positive input voltage for higher duty cycles
and a negative input voltage for lower duty cycles. However, as will be explained later, it is
difficult to keep track of the traveled distance when the wheels can turn both ways, therefore
Trilobot’s wheels are configured to travel only in positive direction.
The circuitry given in Fig. 4.6 is mounted on Trilobot to be able to control each drive-motor.
The circuit is fed with the 12V power supply from the battery pack. An additional switch
and power LED are included in the circuitry to be able to switch the power on and off since
it is not connected to the main power switch of Trilobot.
In order to drive the motors, a PWM signal has to be generated on both the PWM inputs
(PWM1 and PWM2 in Fig. 4.6) of the motor circuitry. Both PWM signals can be generated
on a pin of the processor.

42

4. AN EXPERIMENTAL NCS SETUP

M1

M2

0.1µF

10µF

10µF

+

- 5
6

7
4

11

10

2

1
LMD18200

0.1µF

10µF

10µF

5
6

7
4

11

10

2

1
LMD18200

PWM2

PWM1

12V =

0V

5K6

+

-

Figure 4.6: Pulse Width Modulation circuit for Trilobot’s DC motor.

4.3.2 Drive-motor software

To drive the motors, two PWM signals have to be generated on two of the processor output
pins. It is required that the duty-cycles of these two PWM signals can be varied indepen-
dently. Preferably, the frequency of both signals has to be equal, to ensure both drive-motors
react in the same way to a given duty-cycle.
Nowadays many microcontrollers have one or more configurable PWM outputs. Such micro-
controllers exhibit a special data register that holds the value of the duty cycle, which can
be altered during program execution. Unfortunately, the microcontroller on-board Trilobot
does not have this feature, so both PWM signals have to be generated using software.
As mentioned before, a timer can be used to set a fixed frequency. For the generation of a
PWM signal on an available port of the microcontroller, one of the timers is used in 8-bit
auto reload mode. The timer counts from zero to 255 and then overflows back to zero in
approximately 0.28ms and this time interval will be used to set the frequency of the PWM
signal (which will be around 3.6kHz). The duty cycle will be stored somewhere in memory
as an 8-bit value. In order to generate a PWM signal with the given frequency, a port bit
has to be high for a number of machine cycles equal to the duty-cycle stored in memory.
Subsequently, the same bit has to be set low for a number of machine cycles complementary
to the value of the duty cycle stored in memory. For this purpose, the auto-reload function
of the timer can be used.
Consider for example the generation of a 25% duty-cycle PWM signal. The value of the duty-
cycle is stored in memory as 64 (which is 25% of the maximum of 256 of an 8-bit integer) as
well as the 8-bit complement of that value (256-64=192). The reload value of the timer and
the value of the timer itself are loaded with the complement of the duty-cycle and the port on
which the PWM signal has to be generated, is set high. The counter will count from 192 to
255 and then overflows. When the timer overflows, the timer will be stopped and the reload
value and the timer value will be loaded with the value of the duty cycle. Furthermore, the
PWM port is set low and the timer will be started again. On the next overflow (in this case
after 192 cycles) the port will be set high again and the timer value and the reload value will
be loaded with the complement of the duty cycle, and so on. Fig. 4.7 shows the value of the

43

4. AN EXPERIMENTAL NCS SETUP

timer and the signal generated on the PWM port in case of a 25% duty-cycle.

255

192

64

0V

5V

P
W

M
T

im
er

Figure 4.7: The PWM output and the value of the timer for a 25% duty-cycle PWM signal

Recall from section 4.1 that an interrupt can be triggered on timer overflow. Therefore the
routine described above can easily be implemented as an interrupt routine and the generation
of the PWM signal can be done completely in an interrupt based fashion. No operations in
the main program loop are required.
Furthermore, the value of the duty-cycle can be changed in memory during operation and
on the next timer overflow this value will be used instead of the old value. Fig. 4.8 shows
two PWM signals generated on a processor pin using the routine described in the foregoing;
one with a 25% duty-cycle and one with a 75% duty cycle. The interrupt routine written to
perform this task is listed at address 1000h in the code listed in Appendix F.1.

In order to generate two PWM signals, two processor pins have to be available and also
two timers have to be used. On Trilobots expansion connector, two processor pins (P3.4
and P3.5) are available. These pins are not used to interface the other hardware on-board
Trilobot. Furthermore, there are three timers available. However, one timer is needed to
set the serial port Baud-rate as discussed before. Moreover, a timer is needed to count the
encoder transitions and for this purpose also one of the free processor pins is needed. Finding
another pin to generate a PWM signal on will not be a problem. The laser-pointer and the
headlight mounted on the mast of Trilobot for example can be turned on and off using simple
commands. Therefore, it is possible to generate PWM signals on the lines connected to these
devices. Even though the output of these lines can be altered with one simple predefined
command, it takes considerably more machine cycles to complete these commands than set-
ting or clearing a processor pin directly.
With some extra code, two PWM signals can be generated using one timer. There are some
issues, however, that have to be taken into account. Three different reload values have to be
computed based on the two duty-cycles. This is illustrated in Fig. 4.9 where two different
PWM signals, one with a 25% duty-cycle and one with a 50% duty-cycle and the correspond-
ing value of the timer are drawn. The figure shows that three timer reloads are required to
generate two PWM signals. It is straightforward to compute these reload values with some
additional code. Another important issue is to keep track of which line has to be set low
after the first and the second reload, because this order may vary when the duty-cycle of both
PWM signals changes.
Another issue that plays a role is the frequency of the PWM signal. The generation of two

44

4. AN EXPERIMENTAL NCS SETUP

i
i

“tempimage˙temp” — 2005/9/8 — 12:59 — page 1 — #1 i
i

i
i

i
i

16.9 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8
-5

0

5

10

P
W

M
si

gn
al

[V
]

time [ms]

(a) 25 % duty cycle PWM signal.

i
i

“tempimage˙temp” — 2005/9/8 — 12:59 — page 1 — #1 i
i

i
i

i
i

16.9 17 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8
-5

0

5

10

P
W

M
si

gn
al

[V
]

time [ms]

(b) 75 % duty cycle PWM signal.

Figure 4.8: PWM signal generated using software with two different duty cycles.

0V

5V

P
W

M
1

0V

5V

P
W

M
2

T
im

er

192

128

255

Figure 4.9: Two generated PWM outputs with one timer.

PWM signals with one timer introduces some extra computation effort, which translates into
a considerable amount of extra machine cycles. Therefore, the PWM frequency discussed
previously, based on a sample-time of 256 machine cycles, is too high. If all the extra instruc-
tions take for example 50 extra machine cycles, the duty cycle of the generated PWM signals
could diverge about 20% from the desired duty-cycle. One of the timers however can be used
in 16-bit auto-reload mode and using this timer, it is possible to raise the frequency of the
PWM signals and in that way decrease the relative error in the duty-cycles due to the extra
calculations. Fig. 4.10 shows a 25% and a 50% duty-cycle PWM signal generated using only
one timer. Note that the frequency of the generated signal is considerably higher than that
in Fig. 4.8. The interrupt routine written to generate these signals can be found in the code
in Appendix F.2 at address 1000h.

45

4. AN EXPERIMENTAL NCS SETUP

i
i

“tempimage˙temp” — 2005/9/8 — 12:57 — page 1 — #1 i
i

i
i

i
i

10 12 14 16 18 20 22 24 26 28
-5

0

5

10

P
W

M
si

gn
al

[V
]

time [ms]

(a) 25 % duty cycle PWM signal.

i
i

“tempimage˙temp” — 2005/9/8 — 12:58 — page 1 — #1 i
i

i
i

i
i

10 12 14 16 18 20 22 24 26 28
-5

0

5

10

P
W

M
si

gn
al

[V
]

time [ms]

(b) 50 % duty cycle PWM signal.

Figure 4.10: PWM signal generated using software with two different duty cycles.

4.3.3 Encoder readout

The encoders connected to the drive-motors are single channel incremental encoders consisting
of an encoder disk and a sensor. The used encoder disks have 22 slots. The used sensor
is the H21A1 optical interrupter switch by Fairchild semiconductor, which consists of an
infrared emitting diode and a phototransistor. If the phototransistor detects the light source,
it outputs a high signal (5V in this case). If the encoder disc interrupts the light-source,
the phototransistor outputs a low (0V) signal. The coprocessor can detect these high to low
transitions and in this way the displacement of the wheels can be counted with a resolution
of 22 counts per revolution.
The data of the encoders can be requested from the coprocessor using a predefined command.
The result, however, is the sum of the counted pulses of both encoders. These data are useless
because there is no way to find out what the number of counts is for each encoder separately,
which is what is required to control both drive-motors. If one encoder is disconnected from
Trilobot’s standard hardware, the coprocessor will return the counts of only one encoder.
Using some custom software and circuitry, the disconnected encoder can be connected to the
available processor pin P3.4. One of the timers can be used as an event counter to count high
to low transitions on the P3.4 pin as explained in section 4.2.

H21A1

M74HC14

4K7

390R

P3.4

5V

0V

14

2

1

7
*

Figure 4.11: Encoder circuitry for Trilobot’s encoders.

46

4. AN EXPERIMENTAL NCS SETUP

i
i

“tempimage˙temp” — 2005/10/5 — 13:13 — page 1 — #1 i
i

i
i

i
i

replacemen

0 20 40 60 80 100 120 140 160 180
-5

0

5

10
input
output

E
n
co

d
er

si
gn

al
[V

]

time [ms]

(a) Schmitt trigger input and output.

i
i

“tempimage˙temp” — 2005/10/5 — 13:11 — page 1 — #1 i
i

i
i

i
i

68 70 72 74 76 78 80

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
input
output

E
n
co

d
er

si
gn

al
[V

]

time [ms]

(b) Zoomed part of the left figure.

Figure 4.12: Encoder output filtered by a Schmitt inverter. The right figure shows a zoomed
in part of the left figure.

The circuitry used to connect the encoder to pin P3.4 is depicted in Fig. 4.11. The H21A1 is
the optical interrupter switch that is already mounted on Trilobot. The square-wave signal
generated by the optical interrupter could be connected to the processor port P3.4 directly.
However, the signal generated by the H21A1 is not a perfect square wave signal. The rise and
fall times of the signal are considerably high and not very smooth. If it would be connected
to P3.4 directly, the processor would detect these small variations in the signal as encoder
counts. Therefore the device named M74HC14 in Fig. 4.6 is used. This device, called a
Schmitt inverter, converts the input signal to a perfect CMOS signal. Furthermore, it inverts
the input signal. When the input-signal raises above a certain threshold the Schmitt inverter
outputs 0V, if the signal comes below another threshold level, it outputs 5V. Fig. 4.12 shows
an output signal of the interrupter switch before filtered by the Schmitt inverter and after
filtering by the Schmitt inverter which illustrates the effect of the Schmitt inverter.
The circuitry given in Fig. 4.11 is mounted to one of the encoders on-board Trilobot. There-
fore, it is now possible to obtain the counts of both encoders separately.

In the software, timer 1 is configured as an event counter for port P3.4. The number of encoder
counts is stored in a special register and the processor increments that register whenever a
high to low transition is detected at port P3.4. The processor checks this line every instruction
cycle (so with a frequency just above 900kHz). The maximum speed of the drive-wheels is
73rpm, which brings about 27 encoder counts per second, so the processor can easily count
all the pulses generated by the encoder circuitry. In fact, new encoder disks with a much
higher resolution could be mounted on Trilobot without effort to improve the accuracy of the
position measurement. When timer 1 is used as an event counter, it can hold a 16-bit value.
Note that an overflow of timer 1 occurs after 65536 counts which is after 268m. To be able to
calculate the number of encoder counts effectively beyond this point, this overflow has to be
registered. This can be done on-board Trilobot, but also on the external PC when it is used
to control Trilobot’s drive-motors.

47

4. AN EXPERIMENTAL NCS SETUP

4.3.4 Serial interfacing

The 8052 microcontroller has an on-board serial port as explained in section 4.1. The serial
port makes use of an 8-bit register to store incoming bytes. As soon as a byte arrives, an
interrupt can be triggered to process the incoming byte.
The Baud-rate of the serial port is the data transfer rate over the line in bits per second [11].
If no Baud-rate is configured, the UART uses the crystal frequency to clock out a data bit
every machine cycle, which results in a Baud-rate of 921583 Baud.
If two devices have to communicate using a serial connection, however, both end points have
to use the same connection settings and Baud-rate. Therefore, a set of standard Baud-rates
is used normally in serial communication such as 1200, 2400, 9600 and 19200 Baud. To set
such standard Baud-rates on the 8052, a timer can be used. A Baud-rate of 9600 for example
means that 9600 bits have to be clocked out per second. If the Baud-rate is set using a timer,
the Baud-rate is equal to the frequency of the timer overflow, i.e. every time a timer overflows
a bit will be clocked out. In order to achieve a desired Baud-rate, the reload value of the
timer can be set. The following formula can be used to compute the right reload value:

reload value = 256− ((crystal frequency / 384)/Baud-rate). (4.1)

When a Baud-rate of 9600 is required, the reload value of the timer that determines the Baud-
rate has to be set to 253 when a 11.059MHz crystal is used. If for example a 12 MHz crystal is
used, the resulting reload value to obtain a Baud-rate of 9600 would be approximately 252.75,
which cannot be set. Therefore the initially strange frequency of 11.059MHz is used.

When the drive-motors have to be controlled over the serial line, duty-cycle information has
to be sent to Trilobot. If only one motor has to be controlled, an 8-bit unsigned integer
(0-255) can be used to alter the duty cycle. When the 8-bit integer arrives at the serial port,
the duty cycle can be adapted according to the incoming value.
When two motors have to be driven, it has to be clear for which motor the duty-cycle infor-
mation is destined. This could be solved by sending two bytes of data, one with information
on the motor for which the data are meant and one byte with duty-cycle information. The
latter, however, doubles the serial data traffic.
Another way to solve this problem is to use signed integers (from -128 to 127). The most
significant bit of a signed 8-bit integer determines the sign of the integer given by the other
7 bits. In this way, the sign of a value determines its destination. Note that the duty-cycle
was stored as an 8-bit unsigned integer. Therefore, the absolute value of the incoming data
will be doubled to obtain an unsigned integer. Note that this solution divides the resolution
of the PWM signal into half.
In appendix F, the user-programs written to drive both wheels and to drive one wheel are
listed. In these programs the Baud-rate can be set using the dip switch on the main board
of Trilobot. The following Baud-rates can be set: 1200, 2400 9600 and 19200 Baud.

When two motors have to be controlled, all the timers are in use because a timer has to be
dedicated to the registration of encoder counts. In that case there is no timer available to set
a fixed rate with which the microcontroller sends data to the serial port. The frequency of the
PWM signals can be used to set a fixed sample rate. The only drawback of this approach is
that the sample frequency can not be set to an arbitrary value but is a fraction of the PWM
frequency.

48

4. AN EXPERIMENTAL NCS SETUP

In the case in which only one wheel has to be driven, an extra timer is available. Using the
auto-reload option, a fixed rate can be set to send encoder data to the serial port.

4.4 The desktop PC controller

With the user-programs discussed in the foregoing section, the drive-motors of Trilobot can
be controlled from a desktop PC. Encoder information can be imported via the serial port
and duty-cycle information can be sent over the same line to Trilobot to effectively change
the supply voltage of the drive-motors.
The desktop PC used for this setup runs MATLAB/Simulink under Windows 2000. A Win-
dows 2000 DLL has been written that defines a number of routines to setup the serial con-
nection with Trilobot and to send and receive information to and from Trilobot. The DLL
has been written in C++ using the Win32 Application Programming Interfaces (APIs) [19].
These routines can be invoked in Simulink using an S-function [18].
One important issue that has to be addressed in the context of this research is the timing
of events such as sending and receiving data. In order to be able to measure the exact de-
lay between the reception of data and the sending of data, a global time is necessary. In
Windows, the system time can be obtained using the GetSystemTime API which returns the
system time with a resolution of milliseconds or the GetSystemTimeAsFileTime API which
even returns the system time with a 100 nanoseconds resolution [19]. Unfortunately, the clock
interval of the windows NT family of operating systems (of which Windows2000 is part), is
10 milliseconds. So although the discussed APIs return a time with a resolution up to mil-
liseconds, the Windows NT clock will only be updated every ten milliseconds. To obtain
timing with a higher resolution, performance counters can be used. A performance counter is
a high resolution hardware counter which can be used to measure brief periods of time with
high precision [22]. A high resolution timer which makes use of the performance counter is
included in the routines in the DLL to register the time at which sampling events occur.

The result of the approach described in this section are two Simulink blocks that can be used
to control Trilobot in combination with one of the user-programs using a serial connection.
One block for the single wheel case and one block for the case where both wheels have to
be controlled. The user can select a desired Baud-rate and sample-time. Also, real-time
information on the exact sampling instants of the controller and the instant new encoder
data arrive can be gathered optionally. The code of the two DLL’s and the S-functions used
within Simulink is listed in Appendix D and Appendix E.

4.5 Experimental settings

For the experiments discussed in the next chapter, the single wheel setup is used. The sample
rate of Trilobot is set to 10Hz. Every 0.1s the position information of the encoder of the
considered wheel is sent to the desktop PC over the serial line. The used Baud-rate is 19200
bits per second. The encoder data consist of one 8-bit value. These eight bits have to be
sent to the desktop PC with one start bit and two stop bits that have to be added to transfer
the data using the RS-232 protocol [11]. With the used Baud-rate it takes approximately
0.57 milliseconds to transfer the eleven bits, which is 0.57 percent of the used sample-rate.

49

4. AN EXPERIMENTAL NCS SETUP

i
i

“tempimage˙temp” — 2005/10/14 — 17:20 — page 1 — #1 i
i

i
i

i
i

98.5 99 99.5 100 100.5 101 101.5
0

500

×104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

120

#
in

te
rv

al
s

Time elapsed between samples [ms]

time [ms]

in
p
u
t

(a) Input of Trilobot.

i
i

“tempimage˙temp” — 2005/10/14 — 17:19 — page 1 — #1 i
i

i
i

i
i

98.5 99 99.5 100 100.5 101 101.5
0

500

×104

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

500

#
in

te
rv

al
s

Time elapsed between samples [ms]

time [ms]

ou
tp

u
t

(b) Output of Trilobot.

Figure 4.13: A constant input of 100 applied to the discussed setup. The sample rate is set
to 0.1 s.

Transferring PWM data back to Trilobot takes the same amount of time. In order to be able
to set the delay to an arbitrary value, the time-keeping routines described in the previous
section are used to wait a specified number of milliseconds before the input computed by the
controller is sent to Trilobot. When these data arrive at Trilobot, they will be processed im-
mediately due to the event-driven nature of the actuation. The communication delays due to
the serial communication can be neglected compared to the extra added delay and therefore
the timing of the sampling instant and the actuation instant can be done on the desktop PC.
Of course, also a smaller sample rate could be used and then the delay introduced by the
serial communication is a significant percentage of the sample-time. In that case, however,
it is much more difficult to control the delay in the system and setup the desired conditions.
Furthermore, some type of clock synchronization is necessary to obtain a global time regis-
tration of the actions on-board Trilobot and on-board the desktop PC.
Fig. 4.13 shows the results of applying a constant input to the motor of Trilobot’s drive-wheel.
The left figure shows the input to Trilobot which is a constant value of 100. The lower graph
gives a histogram of the elapsed time between the actuation instants. The actuation takes
place when a sample is received from Trilobot after a fixed (manually set) delay. So the actu-
ation rate is the same as the sampling-rate set on board Trilobot. The right figure shows the
output of Trilobot. The lower figure again illustrates the sampling-rate set on-board Trilobot
which is very accurate.

Fig. 4.14 shows the timing of the sampling instant and the actuation instant for a delay of
30ms and 60ms. As can be seen in the figure, the delay between sampling and actuation can
be set very accurately in the used setup. The zero delay case cannot exactly be set because
there is always a small delay due to the serial communication. Furthermore, the control input
is computed within Simulink. Simulink runs at a sample-rate of 1KHz and it samples the
data obtained by the routines in the DLL. Although the sample-rate of Simulink is 100 times
higher than the sample-rate of Trilobot, the sampling behavior of Simulink can introduce an
extra delay up to one sampling-interval, which is 1ms for a 1KHz sample-rate.

50

4. AN EXPERIMENTAL NCS SETUP

i
i

“tempimage˙temp” — 2005/10/13 — 14:27 — page 1 — #1 i
i

i
i

i
i

0 30 100 130 200 230 300

sampling instant
actuation instant

time [ms]

(a) 30% delay.

i
i

“tempimage˙temp” — 2005/10/13 — 14:23 — page 1 — #1 i
i

i
i

i
i

0 60 100 160 200 260 300

sampling instant
actuation instant

time [ms]

(b) 60% delay.

Figure 4.14: Timing of the sampling and actuation instant for a 30% and a 60% delay value.

51

4. AN EXPERIMENTAL NCS SETUP

52

Chapter 5

Experiments

In this chapter, the experiments done to validate the results obtained in chapter 3 are dis-
cussed. First, a linear continuous-time model will be derived for the used single wheel setup.
Next, a Continuous Discrete Extended Kalman Filter is used to estimate parameters that
arise in the model. A brief explanation of the used filter is given and the estimation process
using measurements of the setup is discussed. The velocity of the wheel is obtained using a
state estimator during the experiments and a brief explanation of the used estimator is given.
Next, the numerical results as obtained in chapter 3 will be given for the derived model of
the setup in terms of a stability bound for a position feedback and a full state feedback.
Both cases are validated using experiments. This chapter ends with a brief discussion on the
obtained results.

5.1 Model of the setup

The experiments to validate the theoretical results discussed in chapter 3 will be conducted
using the single wheel configuration of Trilobot discussed in chapter 4. In order to compare
the experimental results to the results obtained analytically, a linear continuous-time model
of the setup has to be derived that can be used to perform the analysis carried out in chapter
3.
A schematic representation of one of Trilobot’s wheels is given in Fig. 5.1. The following
equations describe the dynamics of the wheel:

Ĵ θ̈ + b̂θ̇ = T = cmu, (5.1)

where Ĵ is the inertia of the wheel, b̂ is a viscous damping parameter, T is the applied torque
and cm is the motor-constant. θ is the rotation of the wheel expressed in encoder counts and
u is the input (i.e. PWM information sent to Trilobot). The input lies between 0 and 255
which corresponds to an input voltage between 0 and 12V.
In state-space notation (5.1) can be written as:[

θ̇

θ̈

]
=

[
0 1
0 −b

J

] [
θ

θ̇

]
+

[
0
1
J

]
u. (5.2)

53

5. EXPERIMENTS

Ĵ b̂θ̇

θ

T

Figure 5.1: Schematic representation of Trilobot’s wheel.

Note that in this notation J = Ĵ
cm

and b = b̂
cm

.
In order to be able to compare the experimental results to the analytical results, accurate
values for the parameters J and b have to be identified or estimated.

5.2 Identification of the system parameters

The parameters arising in the state-space system equation in (5.2) will be estimated using a
Continuous Discrete Extended Kalman Filter. In general, a Kalman filter is an estimator that
can be used to reconstruct the states of a system, minimizing the variance of the difference
between the actual state and the estimated state.
An Extended Kalman Filter can be used if the process to be estimated and/or the measure-
ment relation to the process is nonlinear. The Jacobians of the process to be estimated and
the measurement function are used to linearize around the current estimate.
Because of the limited sample-time that can be obtained with the used setup, a Continuous-
Discrete Extended Kalman filter (CDEKF) is used. With a CDEKF, a continuous-time
process can be estimated using discrete time measurements.
In the following sub-section, a brief survey of the CDEKF will be given. An extensive discus-
sion on the CDEKF can be found in [26].

5.2.1 The Continuous Discrete Extended Kalman Filter

The continuous-time system of which the state has to be estimated can be described by the
following differential equation:

ẋ(t) = f(x(t), t) + w(t) w(t) ∼ N(0, Q(t)). (5.3)

In this equation f is a non-linear function of the continuous-time state x(t). w(t) is a zero-
mean Gaussian white noise with spectral density Q(t) which represents the errors introduced
by the imperfect model of the physical system that is considered.
The state x(t) will be estimated using discrete measurements of the continuous-time system
output. The measurement equation is given by:

zk = hk(x(tk)) + vk vk ∼ N(0, Rk), (5.4)

54

5. EXPERIMENTS

where zk is the kth discrete measurement. The time t at the kth sampling instant is denoted
by tk. hk depends on the state x(tk) at each sampling time. The sequence {vk} is a white
random sequence of zero-mean Gaussian random variables with associated covariance matrices
{Rk} which represents measurement errors. The expected value E[w(t) vT

k] = 0 which means
that w(t) and vk are uncorrelated.
For the initial condition x(0) ∼ N(x̂0, P0), where x̂0 is the initial condition of the discrete
estimated state x̂k and P0 is the initial condition of the error covariance Pk, the propagation
of the state estimate x̂(t) is given by:

ˆ̇x(t) = f(x̂(t), t). (5.5)

As mentioned before, the filter is based on minimizing the covariance of the estimated state.
The error covariance matrix of the estimate P (t) is defined as:

P (t) , E
[
[x̂(t)− x(t)][x̂(t)− x(t)]T

]
. (5.6)

An approximation of the propagation of the error covariance in the time intervals between the
discrete measurements based on the Jacobian matrix of f in (5.3), is given by the following
Ricatti equation:

Ṗ (t) = F (x̂(t), t)P (t) + P (t)F T (x̂(t), t) + Q(t), (5.7)

in which the Jacobian F (x̂(t), t) of f in (5.3) is given by:

F (x̂(t), t) =
∂f(x(t), t)

∂x(t)

∣∣∣∣
x(t)=x̂(t)

. (5.8)

Using the measurements, an update for the state estimate can be calculated as follows:

x̂k(+) = x̂k(−) + Kk[zk − hk(x̂k(−))]. (5.9)

In this equation x̂k(−) is the state estimate prior to the update and x̂k(+) is the state estimate
after the update. The matrix Kk is the Kalman gain matrix at time tk which is given by:

Kk = Pk(−)HT
k (x̂k(−))

[
Hk(x̂k(−))Pk(−)HT

k (x̂k(−)) + Rk

]−1
. (5.10)

The update of the error covariance matrix Pk at time tk is given by:

Pk(+) = [I −KkHk(x̂k(−))]Pk(−), (5.11)

where Pk(−) and Pk(+) denote the error covariance matrix Pk at time tk before and after the
update, respectively. Hk(x̂k(−)) is the Jacobian matrix of hk in (5.4) which is given by:

Hk(x̂k(−)) =
∂hk(x(tk))

∂x(tk)

∣∣∣∣
x(tk)=x̂k(−)

. (5.12)

55

5. EXPERIMENTS

5.2.2 Estimation of the parameters

The CDEKF is used to estimate the states and the parameters b and J−1 of the system in
(5.2). The augmented state in (5.3) is therefore given by x(t) = [θ θ̇ J−1 b]T . The system
equation given in (5.3) applied to the wheel model is given by:

ẋ(t) =

θ̇

θ̈

J̇−1

ḃ

 =

θ̇

−bJ−1θ̇ + J−1u
0
0

 + w(t). (5.13)

The measurement equation in (5.4) for the wheel model is given by:

zk = θ(tk) = [1 0 0 0]x(tk) + vk. (5.14)

Using these system equations, the Jacobian matrices given in (5.8) and (5.12) can be com-
puted, which leads to the following Jacobian matrices:

F (x̂(t), t) =

0 1 0 0
0 −bJ−1 −bθ̇ + u −J−1θ̇
0 0 0 0
0 0 0 0

 (5.15)

Hk(x̂k(−)) = [1 0 0 0] . (5.16)

The estimation process is performed off-line. This means that first an input will be applied
to the system and the output data will be measured. These data will be used to do the actual
estimation afterwards.
Initial values have to be ascribed to the state vector x(t), the error covariance matrix P (t),
the spectral density matrix Q(t) and the measurement covariance Rk. The initial value of
θ and θ̇ are known a priori because the estimation process is performed off-line. The initial
values of the parameter b and J−1 are difficult to predict and therefore an initial condition
has to be chosen based on engineering insights: b0 = 5 N(counts)s = 8.26 ∗ 10−4 Nms and
J−1 = 0.5 (kg(counts)2)−1 this corresponds to a inertia of J = 3.3 ∗ 10−4 kgm2. Note that
in the used setup, the measured output is the number of encoder counts. One encoder count
corresponds to a traveled distance of approximately 12.85 mm.
The initial error covariance matrix P0 characterizes the uncertainty on the initial states x0.
The matrix P0 is taken to be:

P0 =

1e-12 0 0 0

0 1e-12 0 0
0 0 1 0
0 0 0 1e-1

 . (5.17)

The states are assumed to be mutually independent, so the covariances in P0 (i.e. the non-
diagonal elements) are taken zero. The variance on θ and θ̇ can be very small because the
initial value of these states is known exactly, therefore these variances are taken to be 1e−12.
The initial value of the two remaining states b and J−1 are not very accurate and therefore
an initial variance of about 20 percent of the initial guess is ascribed to these parameters.

56

5. EXPERIMENTS

The spectral density matrix Q(t) is used to define model uncertainties. The modeling errors
in the model equation given in (5.13) are also assumed to be mutually independent, so also
Q0 is a diagonal matrix. Q0 is taken to be:

Q0 =

1e-12 0 0 0

0 1e-5 0 0
0 0 1e-12 0
0 0 0 1e-12

 . (5.18)

To model the drive-wheel, a simple linear model is used. Nonlinearities such as dry friction
are omitted which makes the model inaccurate. The modeling errors appear in the second
equation in (5.13), therefore the second diagonal element of Q0 is set to 1e − 5. Under the
reasonable assumption that the parameters b and J−1 are constant in time, the other three
diagonal terms are set to 1e− 12.
Because the considered system has only one output, the number of encoder counts, the mea-
surement variance is a scalar. The maximum error in the measurement that can occur is one
encoder count. Therefore R0 = 1.

The input signal used to capture output data is the sum of two sine-waves. It is important to
notice that the input signal is chosen such that the wheel constantly moves in order to avoid
sticking due to (nonlinear) dry friction.
Fig. 5.2(a) shows the convergence of the parameters b and J−1. The viscous damping param-
eter b converges to a value of 6.5 N(counts)s, which corresponds to 1.1 ∗ 10−3 Nms and the
inverse of the inertia, J−1, converges to 0.35 (kg(counts)2)−1 which corresponds to an inertia
of J = 4.76 ∗ 10−4 kgm2.
Fig. 5.2(b) shows the error between the measured output and the estimated output. Around
180 s, an enlargement of the error between the estimated and the measured output can be
seen due to a disturbance in the serial communication. However, this does not have a large
influence on the estimation of the parameters b and J−1.

i
i

“tempimage˙temp” — 2005/10/25 — 13:04 — page 1 — #1 i
i

i
i

i
i

0 20 40 60 80 100 120 140 160 180 200
4.5

5

5.5

6

6.5

7

0 20 40 60 80 100 120 140 160 180 200
-0.2

0

0.2

0.4

0.6

time[s]

b
[N

(c
ou

n
ts

)s
]

J
−

1
[(
k
g
(c

ou
n
ts

)2
)−

1
]

(a) Convergence of b and J−1.

i
i

“tempimage˙temp” — 2005/10/25 — 13:02 — page 1 — #1 i
i

i
i

i
i

0 20 40 60 80 100 120 140 160 180 200
-5

-4

-3

-2

-1

0

1

2

3

4

(θ
−

θ̂
)

[c
ou

n
ts

]

time [s]

(b) Difference between the estimated and mea-
sured output (θ − θ̂).

Figure 5.2: Results of the estimation process.

57

5. EXPERIMENTS

5.3 Reconstruction of the velocity

To apply a full state feedback, the velocity has to be known. Because only the position of
the wheel can be measured using the encoders, the velocity of the wheel has to be computed
using the encoder information. The analysis in chapter 3 is based on the assumption that the
continuous-time state is measured and sampled. In order to provide a smooth velocity signal,
a discrete state estimator is used. The equation of the estimator is given by [8]:

x̂(k + 1) = Φx̂(k) + Γu(k) + L[y(k)− Cx̂(k)], (5.19)

where Φ and Γ are the result of the zero-order-hold discretization of the continuous-time
model of the single wheel setup. The difference equation that describes the dynamics of the
error e(k) = (x(k)− x̂(k)) is given by:

e(k + 1) = [Φ− LC] e(k). (5.20)

If the error dynamics represents an asymptotically stable system, the error will converge to
zero. The speed of convergence can be influenced by choosing the roots of [Φ− LC] sufficiently
fast.
Because of errors in the model and measurement disturbances, x̂(k) will not exactly be equal
to x(k). However, the estimator gains L = [L1 L2]T can be used to tune the estimator so
that the estimator is stable and the error is acceptably small. If L = [1 0.5]T the roots of
[Φ− LC] are approximately [0.06 0.74] and this leads to a satisfying estimation of the state.

5.4 Numerical results using the estimated model

Fig. 5.3(a) shows the result of the numerical stability analysis as discussed in chapter 3 using
the wheel model given in (5.2) and a feedback u = −K1θ. The used sample-time is h = 0.1 s.
The root loci for this case are depicted in Fig. 5.4. Note that the x-axis, the y-axis and the
unit-circle are represented by the dotted lines.
In these plots K1 is varied between 0 and 145 and the delay δt is varied between 0 and 100
percent of the sample-time. In the left figure, the first two of the four root loci are plotted.
The start of each root locus is marked with an asterisk and the end is marked with a triangle.
As can be seen in the figure, the first two roots do not have an effect on the stability of
the system since they lie in the unit-circle for all values of K1. In the right figure, the root
locus of the other two roots is shown. The arrows indicate the directions of increasing δt and
K1. An asterisk marks the start of the root locus. One of the two roots always starts on
the unit-circle. This is the first point of the root locus where K1 = 0 and also in this case
the system can only be stabilized for K1 > 0. The stable region in Fig. 5.3(a) is completely
determined by the two roots shown in the right figure of Fig. 5.4.
Due to the large damping in the system, the system can be stabilized using only position
feedback with a gain up to 140. As expected for the position feedback, the region of K1 for
which the system is stable decreases with increasing delay δt.

58

5. EXPERIMENTS

i
i

“tempimage˙temp” — 2005/10/13 — 15:51 — page 1 — #1 i
i

i
i

i
i

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

δ t
/h

[p
er

ce
n
t]

K1

(a)

i
i

“tempimage˙temp” — 2005/10/13 — 15:58 — page 1 — #1 i
i

i
i

i
i

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

δ t
/h

[p
er

ce
n
t]

K2

(b)

Figure 5.3: Stability of the NCS when using the model of the wheel of Trilobot. The shaded
area indicates the stable region. h = 0.1 s.

i
i

“tempimage˙temp” — 2005/10/13 — 15:55 — page 1 — #1 i
i

i
i

i
i

-0.2 -0.1 0 0.1 0.2
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

im
ag

(λ
i
)

real(λi)

(a)

i
i

“tempimage˙temp” — 2005/10/27 — 11:12 — page 1 — #1 i
i

i
i

i
i

0.75 0.8 0.85 0.9 0.95 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

K1

K1

δt

δt

im
ag

(λ
i
)

real(λi)

(b)

Figure 5.4: The root loci for the position u(k) = −K1x(k) feedback for varying K1 and
increasing delay value δt. K2 = 0 and h = 0.1 s.

Fig. 5.3(b) gives the stable region for the full state feedback u = −K1θ − K2θ̇ with K1 = 1
and K2 varying between 0 and 145.
As expected the same phenomenon occurs when applying a velocity feedback to the two
dimensional system, see section 3.3. For a delay of approximately 30%, the set of K2 values
for which the system is stable, is the largest. Fig. 5.5 shows the root loci for this case. In the
left figure again the start of each root locus is marked with an asterisk and the end with a
triangle. In the right figure, the arrows indicate the direction of increasing K2 and δt. The
same pattern can be recognized as in the two-dimensional example in section 3.3 that results

59

5. EXPERIMENTS

in the stable area given in Fig. 5.3(b).

i
i

“tempimage˙temp” — 2005/10/18 — 15:58 — page 1 — #1 i
i

i
i

i
i

0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

im
ag

(λ
i
)

real(λi)

(a)

i
i

“tempimage˙temp” — 2005/10/24 — 16:39 — page 1 — #1 i
i

i
i

i
i

-4 -3 -2 -1 0 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

K2

K2

δt

δt

im
ag

(λ
i
)

real(λi)

(b)

Figure 5.5: The root loci for the full state feedback u(k) = −K1x−K2ẋ for varying K2 and
increasing delay value δt. K1 = 1 and h = 0.1 s.

5.5 Experimental results

To validate the analytical and numerical results obtained in the foregoing, some tracking ex-
periments will be performed using the single wheel setup discussed in chapter 4 and of which
the numerical results are given in the previous section.
One drawback is that the control input is only defined between 0 and 255, where an input of
255 corresponds to a 12V input. If the control input exceeds these limits, the input saturates
and the experiments are not useful to validate the obtained results. As a consequence, a posi-
tion feedback controller u(k) = −Kθ(k) would saturate if θ(k) > 0, i.e. positive errors cannot
be compensated because the wheel can only turn in one direction. Therefore a stabilization
around a reference velocity θ̇ref is performed. The position reference θref (t) is therefore a
linear increasing displacement. The following controller is used:

u(k) = uref + K(θref (k)− θ(k)), (5.21)

where K = [K1 K2], θref = [θref θ̇ref]T and θ = [θ θ̇]T . The reference input uref = bθ̇ref

in order to shift the equilibrium point to θ = θref . uref is fixed to 100 which gives a reference
velocity θ̇ref ≈ 15 counts/s. The sampling-time is fixed to h = 0.1 s and the total delay in
the system can be varied from 0.005 s to 0.09 s as explained in chapter 4.
In order to validate the numerical results in Fig. 5.3, the experiment described above is
performed for several delay values δt, trying to find the stability border of the controlled
system by increasing the gain K1 or K2.
Obviously, the exact stability border is not easy to pinpoint. The first reason for that is that
the control input cannot blow up because the input saturates at 255.

60

5. EXPERIMENTS

i
i

“tempimage˙temp” — 2005/10/12 — 12:31 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

50

100

150

200

250

0 5 10 15 20 25 30
0

2

4

6

8

in
p
u
t

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) δt = 0.04 s, K1 = 20.

i
i

“tempimage˙temp” — 2005/10/12 — 12:30 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) δt = 0.04 s, K1 = 100.

Figure 5.6: Experimental results for δt = 0.04s.The upper figure gives the tracking error, the
lower figure gives the control input. K2 = 1 and h = 0.1 s.

Consider for example Fig. 5.6. The upper graph of both figures shows the tracking error
θref (k)− θ(k) in encoder count and the lower graphs show the control input u(k). In the left
figure, the feedback gain K1 = 20 and in the right figure K1 = 100. K2 = 0, δt = 0.04 s and
h = 0.1 s for both figures. After ten seconds, a step in the reference velocity θ̇ref is applied.
As can be seen in the right figure, the control input saturates as soon as the change in the
reference signal occurs. The control input switches from zero to 255 and back. Although this
type of on/off control does not lead to an ever increasing tracking error, as can be seen in the
upper graph of the right figure, this behavior can be considered unstable.

Fig. 5.7 shows the ranges where the control input starts to saturate and constantly switches
between zero and 255 for varying δt. The results are plotted over the numerically obtained
stability border. Fig. 5.7(a) gives the results for the position feedback for varying K1. In
appendix A.1 the tracking error and the input sent to Trilobot is given for three experiments
for settings of K1 before and after the stability border. As can be seen the experimentally
obtained stable ranges for different values of δt resemble the computed stability bound. The
range of K1 for which the controlled system is stable, decreases as the delay in the loop
increases. The maximum value of K1 for each delay value is slightly below the computed
values. This can be attributed to the inaccuracy of the model and disturbances on the system
and measurements during the experiments and the saturation of the controller. Fig. 5.7(b)
shows the regions where the input starts to saturate and constantly switches between zero
and full input for the full state feedback case for varying values of δt. Note that K1 = 1 for
all experiments. To get a better resolution, measurements with a 15% delay are added. The
experiments do not quite resemble the numerically obtained results. However, the same trend
can clearly be seen in the experimental and numerical results. Several reasons can be given
why the experimental results deviate from the numerically obtained results. The limited
accuracy of the velocity obtained by the state observer plays a role in this. Furthermore,
model errors and measurement disturbances again contribute to the fact that measurements
and numerical results differ.
The largest set of K2 for which the system is stable however, is measured when δt = 0.02.

61

5. EXPERIMENTS

i
i

“tempimage˙temp” — 2005/10/26 — 13:52 — page 1 — #1 i
i

i
i

i
i

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

δ t
/h

[p
er

ce
n
t]

K1

(a)

i
i

“tempimage˙temp” — 2005/10/18 — 16:10 — page 1 — #1 i
i

i
i

i
i

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

δ t
/h

[p
er

ce
n
t]

K2

(b)

Figure 5.7: Results of the experiments. The lines indicate the region where the system starts
to get unstable in the experiments. The shaded area indicates the stable region obtained
numerically.

And although the value of δ∗t (the delay value that gives the largest set of K2 for which the
system is stable) is shifted down a bit, the phenomenon that a small amount of delay yields
a larger stable region can be clearly observed.

5.6 Discussion

In this chapter, the validation of the numerically obtained results using experiments is dis-
cussed. A Continuous-Discrete Extended Kalman Filter is used to identify the parameters
that arise in the linear continuous-time model of the single wheel setup. Because negative
inputs are not defined in the used setup a stabilization around a constant reference velocity
has been performed to analyze the stability of the controlled system for varying control gains
and varying delay in the control loop. Although the numerical results and the experimental
results do not match perfectly, the phenomena observed during the theoretical analysis can
clearly be identified in the experiments.

62

Chapter 6

Conclusions and recommendations

In this chapter, conclusions will be drawn as a result of the study presented in this thesis. At
the end of this chapter, recommendations for future research will be given.

6.1 Conclusions

In this thesis, the issues arising in the control of networked systems have been explored. At
first, the parameters that play a role in the control of networked systems are identified. Sec-
ondly, the influence of these parameters on the stability of an NCS under certain assumptions
is investigated. A third and last topic discussed in this thesis is the Trilobot mobile robot.
This has been adapted such that it can be used in this research and for use in control related
research in general. Conclusions will be drawn concerning these three main topics in this
section consecutively.

6.1.1 Sampling and delay in an NCS

Although the advantages of the use of networks in control systems are clearly present (e.g. the
increased flexibility and ease of maintenance of such setups), there are some major drawbacks
that have to be dealt with, when using network connections to mutually attach different parts
of a control system.
A delay is introduced in the control-loop which is generally undesirable. The characteristics
of this delay are strongly dependent on the type of network and the number of nodes that
make use of this network. Furthermore, these network delays are often non-deterministic due
to the access methods used to control the network traffic.

Due to network transfers, the sample-rate of an NCS is limited. In a digital control system
normally a sample-rate can be chosen based on the desired bandwidth of the closed loop
system and the limitations of the hardware. Generally, a higher sample-rate leads to a better
performance of the controlled system. When the sample-rate increases in an NCS, the network
load increases and as a consequence the delay in the control loop increases. Therefore a
sensible choice for the used sample-rate has to be made within the limitations imposed by the
network.

63

6. CONCLUSIONS AND RECOMMENDATIONS

The characteristics of the delay in the control-loop can be influenced by the choice of the
sample-rate, but also by the choice of sampling-type of the devices in an NCS. A distinction
can be made between event-driven and time-driven devices.
Event-driven devices process incoming data immediately and therefore no extra delay is in-
troduced by the sampling process itself. The disadvantage of event-driven devices is that
the sample-time is not fixed but can vary every sampling-instant. Therefore, it is difficult
to analyze systems with event-driven devices. It is possible to make use of time-stamps of
signals to compute the actual delay of a sample and reckon with the delay in the used control
strategy. This however, requires extra time-stamp data to be sent over the network which
again induces an increase in the delay. Furthermore, some clock synchronization between the
devices connected via the network is required.
When making use of time-driven devices, extra delay is introduced in the control loop. If the
upper-bound of the network delay is known, however, a sensible choice for the sample-rate
and the sampling strategy can result in a constant delay in the control loop. Although this
delay is larger than the delay induced by the network, it makes the analysis of the system
much more straightforward.
The introduction of a time-skew between sampling instants can be helpful to minimize the
extra delay introduced by the sampling process. To assure such a time-skew also some type
of clock synchronization is required.

6.1.2 Stability analysis of an NCS with constant network delays

A discrete-time NCS model for constant network delays has been derived under the assump-
tion that the total delay in the loop is smaller than the sample-time. In this model, the
sample-time and the network delay arise as parameters. The model provides a mathematical
basis to analyze the influence of delay and sample-time on the stability of an NCS. The anal-
ysis of an example with one-dimensional continuous-time plant dynamics provided insight in
the influence of sample-time and delay on the controlled system. The one-dimensional case
allows the use of several analytic techniques to perform stability analysis such as Jury’s test
and frequency domain techniques.
When using a system with two dimensional continuous-time plant dynamics, which has more
physical meaning, the discrete-time NCS model becomes more complex and the analytic tech-
niques mentioned previously cannot be used. Eigenvalue analysis however proved to be helpful
to analyze the stability in this case and encountered phenomena can also be identified in the
two dimensional case.

Delay in a control loop is well known for degrading the performance of a control system
and affect its stability. Furthermore, an increase of the sample-time results in decreasing
performance and smaller stability regions. An interesting observation however is that, when
applying a feedback u = −Kx(n−1) to an n-dimensional system, the region of K for which the
system is stable increases with increasing delay up to a certain delay value where the stable
region is the largest. Note that x(n−1) is the (n− 1)th time derivative of x.

An experimental rotating wheel setup has been modified to make it suitable to conduct
experiments to validate the results obtained analytically and through simulation. The delay
in the control loop and the sample-time can be set very accurately. A linear continuous-time
model of the setup has been stated and the model parameters have been successfully obtained
using a Continuous-Discrete Extended Kalman Filter. Using this setup, several experiments

64

6. CONCLUSIONS AND RECOMMENDATIONS

have been performed to validate the result obtained by means of simulation. During the
experiments, a state estimator has been used to effectively estimate the angular velocity of
the rotating wheel.
Although the experimental results do not match perfectly with the numerical results, the
trends that can be observed are the same in both cases. Several reasons can be pointed
out why the experiments do not exactly match the result obtained numerically, e.g. model
and measurement errors, saturation of the control input and inaccuracies in the estimation
of the velocity. The obtained experimental results however, illustrate that the phenomena
encountered during the theoretical analysis can be reproduced in an experimental setting.

6.1.3 Trilobot as experimental setup

The Trilobot mobile robot has been adapted to make it suitable to conduct experiments in
favor of the research covered in this thesis. Moreover, the resulting setup can be used for
numerous other types of experiments such as tracking experiments and embedded control.
The drive-motors of Trilobot can be controlled separately from a desktop PC using a wired or
wireless serial connection. Although the setup can be very useful, it has some disadvantages
that are inherent to the way of operation of Trilobot and the limitations of the on-board
hardware. The following list gives a few disadvantages that need to be considered when one
wants to use Trilobot as an experimental setup:

• Due to hardware limitations, the sample-rate that can be achieved with the setup is
limited to about 50Hz.

• If both drive-motors have to be controlled, the sample-rate cannot be set as accurately
as in the single-wheel setup because there is no timer available anymore to generate an
accurate sampling-time.

• Modifying the software of the setup requires knowledge of the 8052 core microprocessor
and the Assembly language to program it. Although the instruction set is not very
extensive, it can be a time-consuming task to get the experience required to effectively
write user programs.

• Other sensors can be used, but that increases the loop-time of the user-program and
consequently the maximum sample-rate that can be obtained decreases.

Although these disadvantages can be discouraging to use Trilobot for experiments, there also
are some advantages that makes Trilobot a very instructive setup:

• Because of the embedded controller on-board Trilobot it is very useful to get a thorough
understanding of the consequences and limitations of an embedded implementation of
control related tasks. After all, numerous examples of such embedded control systems
can be found in industry.

• Trilobot can be controlled via a desktop PC using MATLAB/Simulink and a wireless
serial connection that is readily available. And although this comes at the cost of a
limited sample-rate, it can be very useful to be not dependent on the length of cables
when conducting experiments.

65

6. CONCLUSIONS AND RECOMMENDATIONS

• Trilobot offers much more features than the two drive-motor/encoder combinations.
So also numerous kinds of Artificial Intelligence experiments can be performed using
for example the sonar and light sensors. Note that for these kinds of experiments a
sample-rate between 10 and 50Hz is usually sufficient.

6.2 Recommendations

In this thesis the basics of the field of NCSs have been explored, and the stability of an
NCS with a basic state feedback has been analyzed under certain assumption. The field of
Networked Control Systems stretches far beyond the scope of this thesis. An endless list of
other interesting research topics concerning NCSs can be given, for example:

• Different delay models can be used, for example stochastic delay models, and also dif-
ferent assumptions concerning the delay can be used such as delays longer than the
sample-time. Furthermore it can be useful to investigate the influence of data-loss on
the stability of the controlled system.

• In this thesis a linear discrete-time model has been used to analyze the stability of
an NCS. Many other modeling techniques are available to model an NCS, such as non-
linear and hybrid techniques. The use of such modeling techniques can lead to improved
control of NCSs.

• In this thesis only basic state feedback has been addressed, but one can think of many
control strategies to cope with the network delays in an NCS, such as optimal control
or control techniques for hybrid systems.

Furthermore, the results obtained in this thesis using numerical analysis have been validated
using a setup where all parameters can be set very accurately, which creates a close to ideal
environment. It would be interesting to conduct experiments with some system controlled over
a real random access network connection that is shared by several other devices, especially
because such experimental validation of obtained results is rare in NCS research literature.
Using such a setup, it would be of interest to answer the following research questions:

• If an upper-bound of the delay that occurs due to the network transfer can be found, is it
possible in practice to make this delay constant by an appropriate choice of sample-rate
and time-skew?

• Can the phenomenon observed in the analysis as well as in the experiments be used in
practice to improve the characteristics in a real networked setting as described above?

The expansions made on the robot during the research covered in this thesis are suitable to
conduct experiments using both drive-motors. However, for this research it is only used to
drive one of the two motors. Therefore, the following recommendations concerning Trilobot
can be given:

• With the two drive-motors and all the other sensors on-board, Trilobot can be used for
tracking experiments. As mentioned in the previous section, there are some restrictions
to the use of the robot. It would be interesting, however, to explore the possibilities to
use Trilobot for tracking experiments.

66

6. CONCLUSIONS AND RECOMMENDATIONS

• To improve the performance of the robot, encoder disk with a higher resolution can be
mounted onto Trilobot. As explained in chapter 4 the hardware on-board Trilobot can
keep track of the traveled distance with a much higher resolution using different encoder
disks, without effort.

67

6. CONCLUSIONS AND RECOMMENDATIONS

68

Bibliography

[1] Robert A. Adams. Calculus: a complete course. Addison-Wesley, 1995.

[2] Roger Arrick. Trilobot, Mobile Robot for Research and Education: User Guide. Arrick
robotics, Hurst, Texas, USA, September 1998.

[3] Karl J. Åström and Bjorn Wittenmark. Computer Controlled Systems: Theory and
Design. Prentice Hall, 1990. ISBN 0-13-172784-2.

[4] Michael S. Branicky, Stephen M. Philips, and Wei Zhang. Stability of networked control
systems: Explicit analysis of delay. American Control Conference, pp 2352–2357, June
2000.

[5] Michael S. Branicky and Stephen M. Phillips. Networked control systems repository.
Website. http://home.cwru.edu/ncs/index.htm Consulted: October 2004.

[6] Michael S. Branicky, Stephen M. Phillips, and Wei Zhang. Scheduling and feed-
back co-design for networked control systems. 41st IEEE Conference on Decision and
Control,pp.1211–1217, December 2002.

[7] Mo-Yuen Chow and Yodyium Tipsuwan. Network-based control systems: A tutorial.
27th Annual Conference of the IEEE Industrial Electronics Society, pp.1593–1602, 2001.

[8] Gene F. Franklin, J. David Powell, and Michael L. Workman. Digital Control of Dynamic
Systems. Addison-Wesley, 1990. ISBN 0-201-11398-2.

[9] Y. Halevi and A. Ray. Integrated communications and control systems part i - analysis.
Journal of Dynamic Systems, Measurements and Control, 110 ,pp.367–373, 1988.

[10] Y. Halevi and A. Ray. Integrated communications and control systems part ii - design
considerations. Journal of Dynamic Systems, Measurements and Control, 110 ,pp.374–
381, 1988.

[11] H.L.Hagenaars. A trilobot interface in matlab/simulink. Technical Report DCT 2004-64,
University of Technology Eindhoven, July 2004.

[12] S.H. Hong and W.-H. Kim. Bandwidth allocation scheme in can protocol. IEE Proc.
Control Theory Appl. Vol. 147, No. 1, pp.37–44, Januari 2000.

[13] Eliahu I. Jury. Inners and Stability of Dynamic Systems. Wiley-Interscience London,
1974. ISBN 0-471-45335-8.

69

http://home.cwru.edu/ncs/index.htm

BIBLIOGRAPHY

[14] Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Prentice
Hall, 1988. ISBN 0-13-110370-9.

[15] Feng-Li Lian, James Moyne, and Dawn Tilbury. Time delay modelling and sample
time selection for networked control systems. 2001 International Mechanical Engineering
Congres and Exposition, November 2001.

[16] Luen-Woei Liou and Asok Ray. A stochastic regulator for integrated communication
and control systems: Part i - formulation of control law. Journal of Dynamic Systems,
Measurement and Control, Vol. 113 ,pp.604–611, December 1991.

[17] Luen-Woei Liou and Asok Ray. A stochastic regulator for integrated communication
and control systems: Part ii - numerical analysis and simulation. Journal of Dynamic
Systems, Measurement and Control, Vol. 113 ,pp.612–619, December 1991.

[18] The Mathworks. SIMULINK Model-Based and System-Based Design: Writing S-
functions. The Mathworks, Inc., 3 Apple Hill Drive Natick, MA 01760-2098, June 2001.

[19] Microsoft. Microsoft Devellopers Network Library. http://msdn.microsoft.com Con-
sulted: April 2005.

[20] Luis A. Montestruque and Panos J. Antsaklis. On the model-based control of networked
systems. Automatica, (39):1837 – 1843, May 2003.

[21] Johan Nilsson. Real-Time Control Systems with Delays. PhD thesis, Department of
Automatic Control, Lund Institute of Technology, Sweden, January 1998.

[22] Johan Nilsson. Implement a continuously updating, high resolution time provider for
windows. MSDN Magazine, March 2004.

[23] Raisonance. Getting started: 80C52 and XA Development Tools, January 2000.

[24] Jean-Pierre Richard. Time-delay systems: an overview of some recent advances and open
problems. Automatica 39 (2003), pp.1667–1694, April 2003.

[25] Craig Steiner. 8051 Tutorial. http://www.8052.com/tut8051.phtml Consulted: May
2004.

[26] The Analytic Sciences Corporation Technical Staff. Applied Optimal Estimation. The
M.I.T. Press, 1974.

[27] Yodyium Tipsuwan and Mo-Yuen Chow. Control methodologies in networked control
systems. Control Engineering Practice 11, pp.1099–1111, February 2003.

[28] Gregory C. Walsh and Hong Ye. Scheduling of networked control systems. IEEE Control
Systems Magazine, pp.57–65, February 2001.

[29] Gregory C. Walsh, Hong Ye, and Linda G. Bushnell. Stability analysis of networked
control systems. IEEE Transactions on Control Systems Technology, Vol.10, No.3, May
2002.

[30] Winbond Electronics Corp. W78E52B Data Sheet, June 11 2004.

70

http://msdn.microsoft.com
http://www.8052.com/tut8051.phtml

BIBLIOGRAPHY

[31] Sencer Yeralan and Ashutosh Ahluwalia. Programming and Interfacing the 8051 Micro-
controller. Addison-Wesley, 1993. ISBN 0-201-63365-5.

[32] Wei Zhang, Michael S. Branicky, and Stephen M. Phillips. Stability of networked control
systems. IEEE Control Systems Magazine, pp.84–99, February 2001.

71

BIBLIOGRAPHY

72

Appendix A

Experimental results

A.1 Results position feedbacki
i

“tempimage˙temp” — 2005/10/25 — 14:17 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K1 = 80, δt = 0.005s

i
i

“tempimage˙temp” — 2005/10/25 — 14:18 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K1 = 90, δt = 0.005s

i
i

“tempimage˙temp” — 2005/10/25 — 14:12 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-2

0

2

4

6
in

p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K1 = 100, δt = 0.005s

Figure A.1: Experimental results for δt = 5%.
i

i
“tempimage˙temp” — 2005/10/25 — 14:16 — page 1 — #1 i

i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K1 = 70, δt = 0.01s

i
i

“tempimage˙temp” — 2005/10/25 — 14:17 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-4

-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K1 = 80, δt = 0.01s

i
i

“tempimage˙temp” — 2005/10/25 — 14:17 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K1 = 90, δt = 0.01s

Figure A.2: Experimental results for δt = 10%.

73

A. EXPERIMENTAL RESULTSi
i

“tempimage˙temp” — 2005/10/25 — 14:15 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K1 = 60, δt = 0.02s

i
i

“tempimage˙temp” — 2005/10/25 — 14:16 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-4

-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K1 = 70, δt = 0.02s

i
i

“tempimage˙temp” — 2005/10/25 — 14:17 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K1 = 80, δt = 0.02s

Figure A.3: Experimental results for δt = 20%.

i
i

“tempimage˙temp” — 2005/10/25 — 14:13 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K1 = 40, δt = 0.03s

i
i

“tempimage˙temp” — 2005/10/25 — 14:14 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K1 = 50, δt = 0.03s

i
i

“tempimage˙temp” — 2005/10/25 — 14:15 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K1 = 60, δt = 0.03s

Figure A.4: Experimental results for δt = 30%.

i
i

“tempimage˙temp” — 2005/10/25 — 14:14 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K1 = 50, δt = 0.04s

i
i

“tempimage˙temp” — 2005/10/25 — 14:15 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K1 = 60, δt = 0.04s

i
i

“tempimage˙temp” — 2005/10/25 — 14:17 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K1 = 70, δt = 0.04s

Figure A.5: Experimental results for δt = 40%.

74

A. EXPERIMENTAL RESULTSi
i

“tempimage˙temp” — 2005/10/25 — 14:13 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K1 = 40, δt = 0.05s

i
i

“tempimage˙temp” — 2005/10/25 — 14:14 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K1 = 50, δt = 0.05s

i
i

“tempimage˙temp” — 2005/10/25 — 14:16 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K1 = 60, δt = 0.05s

Figure A.6: Experimental results for δt = 50%.

i
i

“tempimage˙temp” — 2005/10/25 — 14:13 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K1 = 40, δt = 0.06s

i
i

“tempimage˙temp” — 2005/10/25 — 14:15 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-4

-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K1 = 50, δt = 0.06s

i
i

“tempimage˙temp” — 2005/10/25 — 14:16 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K1 = 60, δt = 0.06s

Figure A.7: Experimental results for δt = 60%.

i
i

“tempimage˙temp” — 2005/10/25 — 14:12 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K1 = 30, δt = 0.07s

i
i

“tempimage˙temp” — 2005/10/25 — 14:13 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K1 = 40, δt = 0.07s

i
i

“tempimage˙temp” — 2005/10/25 — 14:15 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K1 = 50, δt = 0.07s

Figure A.8: Experimental results for δt = 70%.

75

A. EXPERIMENTAL RESULTSi
i

“tempimage˙temp” — 2005/10/25 — 14:12 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

50

100

150

200

250

0 5 10 15 20 25 30
-4

-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K1 = 30, δt = 0.08s

i
i

“tempimage˙temp” — 2005/10/25 — 14:13 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K1 = 40, δt = 0.08s

i
i

“tempimage˙temp” — 2005/10/25 — 14:15 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K1 = 50, δt = 0.08s

Figure A.9: Experimental results for δt = 80%.i
i

“tempimage˙temp” — 2005/10/25 — 14:12 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

50

100

150

200

0 5 10 15 20 25 30
-4

-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K1 = 20, δt = 0.09s

i
i

“tempimage˙temp” — 2005/10/25 — 14:12 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K1 = 30, δt = 0.09s

i
i

“tempimage˙temp” — 2005/10/25 — 14:14 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K1 = 40, δt = 0.09s

Figure A.10: Experimental results for δt = 90%.

76

A. EXPERIMENTAL RESULTS

A.2 Results full state feedback
i

i
“tempimage˙temp” — 2005/10/25 — 14:01 — page 1 — #1 i

i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-4

-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 30, δt = 0.005s

i
i

“tempimage˙temp” — 2005/10/25 — 14:02 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 40, δt = 0.005s

i
i

“tempimage˙temp” — 2005/10/25 — 14:04 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-20

-10

0

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 50, δt = 0.005s

Figure A.11: Experimental results for δt = 5%.

i
i

“tempimage˙temp” — 2005/10/25 — 14:02 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 40, δt = 0.01s

i
i

“tempimage˙temp” — 2005/10/25 — 14:03 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 50, δt = 0.01s

i
i

“tempimage˙temp” — 2005/10/25 — 14:05 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-15

-10

-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 60, δt = 0.01s

Figure A.12: Experimental results for δt = 10%.

i
i

“tempimage˙temp” — 2005/10/25 — 14:05 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

15

20

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 60, δt = 0.015s

i
i

“tempimage˙temp” — 2005/10/25 — 14:07 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-15

-10

-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 70, δt = 0.015s

i
i

“tempimage˙temp” — 2005/10/25 — 14:08 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-30

-20

-10

0

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 80, δt = 0.015s

Figure A.13: Experimental results for δt = 15%.

77

A. EXPERIMENTAL RESULTSi
i

“tempimage˙temp” — 2005/10/25 — 14:00 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-40

-30

-20

-10

0

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 110, δt = 0.02s

i
i

“tempimage˙temp” — 2005/10/25 — 14:01 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-40

-30

-20

-10

0

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 120, δt = 0.02s

i
i

“tempimage˙temp” — 2005/10/25 — 14:01 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-40

-30

-20

-10

0

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 130, δt = 0.02s

Figure A.14: Experimental results for δt = 20%.

i
i

“tempimage˙temp” — 2005/10/25 — 14:10 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-40

-30

-20

-10

0

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 90, δt = 0.03s

i
i

“tempimage˙temp” — 2005/10/25 — 14:00 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-40

-30

-20

-10

0

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 100, δt = 0.03s

i
i

“tempimage˙temp” — 2005/10/25 — 14:00 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-40

-30

-20

-10

0

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 110, δt = 0.03s

Figure A.15: Experimental results for δt = 30%.

i
i

“tempimage˙temp” — 2005/10/25 — 14:03 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 50, δt = 0.04s

i
i

“tempimage˙temp” — 2005/10/25 — 14:05 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 60, δt = 0.04s

i
i

“tempimage˙temp” — 2005/10/25 — 14:08 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-30

-20

-10

0

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 70, δt = 0.04s

Figure A.16: Experimental results for δt = 40%.

78

A. EXPERIMENTAL RESULTSi
i

“tempimage˙temp” — 2005/10/25 — 14:04 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 50, δt = 0.05s

i
i

“tempimage˙temp” — 2005/10/25 — 14:06 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 60, δt = 0.05s

i
i

“tempimage˙temp” — 2005/10/25 — 14:08 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
0

5

10

15

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 70, δt = 0.05s

Figure A.17: Experimental results for δt = 50%.

i
i

“tempimage˙temp” — 2005/10/25 — 14:04 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-4

-2

0

2

4

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 50, δt = 0.06s

i
i

“tempimage˙temp” — 2005/10/25 — 14:06 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 60, δt = 0.06s

i
i

“tempimage˙temp” — 2005/10/25 — 14:08 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
0

5

10

15

20

25

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 70, δt = 0.06s

Figure A.18: Experimental results for δt = 60%.

i
i

“tempimage˙temp” — 2005/10/25 — 14:02 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-4

-2

0

2

4

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 40, δt = 0.07s

i
i

“tempimage˙temp” — 2005/10/25 — 14:04 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-5

0

5

10

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 50, δt = 0.07s

i
i

“tempimage˙temp” — 2005/10/25 — 14:06 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 60, δt = 0.07s

Figure A.19: Experimental results for δt = 70%.

79

A. EXPERIMENTAL RESULTSi
i

“tempimage˙temp” — 2005/10/25 — 14:02 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-4

-2

0

2

4

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 30, δt = 0.08s

i
i

“tempimage˙temp” — 2005/10/25 — 14:03 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-4

-2

0

2

4

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 40, δt = 0.08s

i
i

“tempimage˙temp” — 2005/10/25 — 14:04 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 50, δt = 0.08s

Figure A.20: Experimental results for δt = 80%.i
i

“tempimage˙temp” — 2005/10/25 — 14:03 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-4

-2

0

2

4

6

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(a) K2 = 40, δt = 0.09s

i
i

“tempimage˙temp” — 2005/10/25 — 14:04 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
0

5

10

15

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(b) K2 = 50, δt = 0.09s

i
i

“tempimage˙temp” — 2005/10/25 — 14:06 — page 1 — #1 i
i

i
i

i
i

0 5 10 15 20 25 30
0

100

200

300

0 5 10 15 20 25 30
-10

-5

0

5

10

15

in
p
u
t

[-
]

time [s]

er
ro

r
[c

ou
n
ts

]

time [s]

(c) K2 = 60, δt = 0.09s

Figure A.21: Experimental results for δt = 90%.

80

Appendix B

Proofs

lim
h→0

1 +
log

(
3+eh

2eh+1+e2h

)
h

 =
1
4
. (B.1)

Proof:

lim
h→0

1 +
log

(
3+eh

2eh+1+e2h

)
h

 = 1 + lim
h→0

 log
(

3+eh

2eh+1+e2h

)
h

 (B.2)

Applying l’Hôpital’s rule [1]:

lim
h→0

 log
(

3+eh

2eh+1+e2h

)
h

 =
d

dh

[
log

(
3 + eh

2eh + 1 + e2h

)]∣∣∣∣
h=0

(B.3)

Applying the chain rule:

d

dh

[
log

(
3 + eh

2eh + 1 + e2h

)∣∣∣∣
h=0

=
2eh + 1 + e2h

3 + eh

d

dh

[
3 + eh

2eh + 1 + e2h

]∣∣∣∣
h=0

(B.4)

=
d

dh

[
3 + eh

2eh + 1 + e2h

]∣∣∣∣
h=0

Applying the quotient rule:

d

dh

[
3 + eh

2eh + 1 + e2h

]∣∣∣∣
h=0

=
(2eh + 1 + e2h)eh − (3 + eh)(2eh + 2eh)

(2eh + 1 + e2h)2

∣∣∣∣
h=0

= −3
4

(B.5)

Substituting this result back in (B.2) gives:

lim
h→0

[
1 +

log 3+eh

2eh+1+e2h

h

]
=

1
4

�. (B.6)

81

B. PROOFS

82

Appendix C

The Jury stability test

C.1 Jury’s test

A discrete-time system is stable if al the roots of its characteristic polynomial lie inside the
unit-circle. To test this condition without calculating the roots, Jury’s test can be used. In
this appendix the use of the Jury test will be illustrated. The mathematical background of
the Jury test can be found in [13].
Let a(z) = a0z

n + a1z
n−1 + · · · + an be the characteristic polynomial of some discrete-time

system. To apply Jury’s test, first make sure a0 is positive by multiplying a(z) by −1 if
necessary. Then form rows of the coefficients as follows:

a0 a1 · · · an

an an−1 · · · a0

b0 b1 · · · ·
bn−1 bn−2 · · · ·

Each even row is equal to its preceding odd row in reverse order. The entries in the third row
are formed from the second-order determinants using the first column of the first two rows
with each of the other columns from these rows, starting from the right and dividing by a0.
The third row can be computed using the following formulas:

b0 = a0 −
an

a0
an,

b1 = a1 −
an

a0
an−1,

bk = ak −
an

a0
an−k.

The fourth row is equal to the third row in reverse order.
The computation of the elements of the fifth row is straightforward. They can be computed
as follows:

ck = bk −
bn−1

b0
bn−1−k.

The resulting array is called the Jury array. The original polynomial is stable if all the terms
in the first column of the odd rows of the Jury array are positive, i.e. a0 > 0, b0 > 0, c0 > 0, . . .

83

C. THE JURY STABILITY TEST

[8]
Because MATLAB does not provide an implementation of the Jury test, a function is written
to compute the Jury array either numerically or using a symbolic expression of the charac-
teristic polynomial. The code is listed in the following section.

C.2 jury.m

function RA=jury(poli)

if(nargin > 2),
fprintf(’\nError: Too many input arguments given. ...

... \nType "help jury" for more information.’);
return

end

dim=size(poli);

coeff=dim(2);
RA=sym(zeros(2*coeff-1,coeff));

for i=1:coeff,
RA(1,i)=poli(i);
RA(2,i)=poli(coeff+1-i);

end

for i=3:2*coeff-1,

if rem(i,2)
for j=1:(coeff-ceil((i-2)/2))

RA(i,j)=RA(i-2,j)-(RA(i-2,coeff-floor((i-2)/2))/ ...
... RA(i-2,1))*RA(i-2,coeff-floor((i-2)/2)-j+1);

end
end

if ~rem(i,2)
for j=1:(coeff-ceil((i-2)/2))

RA(i,j)= RA(i-1,coeff-(i/2-1));
end

end
end

if isempty(findsym(RA))
RA = double(RA);

end

84

Appendix D

Windows2000 DLL’s

In this appendix a code-listing is given of the two DLL’s in which the routines to communicate with
Trilobot are defined. These DLL’s are written for and tested under the Windows2000 operating system
[19, 14, 22].

D.1 Single wheel routines [triloSingle.dll]

#define STRICT

#define MAX 1024;

#include <assert.h>

#include <memory.h>

#include <process.h>

#include <tchar.h>

#include <dos.h>

#include <conio.h>

#include <windows.h>

#include <stdio.h>

#include <string.h>

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

static double LEFT, LEFTDOT;

static int TERM, COMWRITE, READLEFT, LOG, DELAY;

char *port = "com1";

int Left[10], iterator;

double freq, time1, time2, time3, time4;

long start;

signed int WriteLeft[10];

unsigned long n_in, n_out;

HANDLE hPort;

HANDLE hThread;

DCB dcb;

FILE *fidin, *fidout;

struct reference_point

{

FILETIME file_time;

LARGE_INTEGER counter;

};

LARGE_INTEGER frequency;

reference_point ref_point;

85

D. WINDOWS2000 DLL’S

FILETIME file_time1;

SYSTEMTIME system_time1;

FILETIME file_time2;

SYSTEMTIME system_time2;

void Synchronize(reference_point& ref_point)

{

FILETIME ft0 = { 0, 0 },

ft1 = { 0, 0 };

LARGE_INTEGER li;

::GetSystemTimeAsFileTime(&ft0);

do

{

::GetSystemTimeAsFileTime(&ft1);

::QueryPerformanceCounter(&li);

}

while ((ft0.dwHighDateTime == ft1.dwHighDateTime) &&

(ft0.dwLowDateTime == ft1.dwLowDateTime));

ref_point.file_time = ft1;

ref_point.counter = li;

}

void get_time(LARGE_INTEGER frequency, const reference_point& reference, FILETIME& current_time)

{

LARGE_INTEGER li;

::QueryPerformanceCounter(&li);

LARGE_INTEGER ticks_elapsed;

ticks_elapsed.QuadPart = li.QuadPart -

reference.counter.QuadPart;

ULARGE_INTEGER filetime_ticks,

filetime_ref_as_ul;

filetime_ticks.QuadPart =

(ULONGLONG)((((double)ticks_elapsed.QuadPart/(double)

frequency.QuadPart)*10000000.0)+0.5);

filetime_ref_as_ul.HighPart = reference.file_time.dwHighDateTime;

filetime_ref_as_ul.LowPart = reference.file_time.dwLowDateTime;

filetime_ref_as_ul.QuadPart += filetime_ticks.QuadPart;

current_time.dwHighDateTime = filetime_ref_as_ul.HighPart;

current_time.dwLowDateTime = filetime_ref_as_ul.LowPart;

}

void sec_init(void)

{

LARGE_INTEGER lFreq, lCnt;

QueryPerformanceFrequency(&lFreq);

freq = (double)lFreq.LowPart;

QueryPerformanceCounter(&lCnt);

start = lCnt.LowPart;

}

double sec(void)

{

LARGE_INTEGER lCnt;

long tcnt;

QueryPerformanceCounter(&lCnt);

86

D. WINDOWS2000 DLL’S

tcnt = lCnt.LowPart - start;

return ((double)tcnt) / freq;

}

void delay(int delay_time)

{

double begin_time, end_time;

begin_time = 1000*sec();

end_time = begin_time + (double)delay_time;

while(begin_time < end_time)

{

begin_time = 1000*sec();

}

return;

}

BOOL APIENTRY DllMain(HANDLE hModule,

DWORD ul_reason_for_call,

LPVOID lpReserved

)

{

switch (ul_reason_for_call)

{

case DLL_PROCESS_ATTACH:

case DLL_THREAD_ATTACH:

case DLL_THREAD_DETACH:

case DLL_PROCESS_DETACH:

break;

}

return TRUE;

}

static DWORD single_TRILOThreadID;

DWORD single_TRILOThread(LPVOID);

extern "C" _declspec(dllexport) void single_TRILOStart(void)

{

hThread = CreateThread(NULL,0,(LPTHREAD_START_ROUTINE) single_TRILOThread,

(LPVOID) NULL,0,&single_TRILOThreadID);

}

extern "C" _declspec(dllexport) void single_TRILOOpen(int Baud, int PortID, int Log, int Delay)

{

LOG = Log;

DELAY = (Delay-1)*10;

iterator = 0;

if(PortID == 1){port = "com1";}

if(PortID == 2){port = "com2";}

else{port = "com1";}

hPort = CreateFile(port, GENERIC_READ|GENERIC_WRITE,

0,

NULL,

TRUNCATE_EXISTING,

FILE_ATTRIBUTE_NORMAL,

NULL);

if (hPort == INVALID_HANDLE_VALUE)

{

printf ("CreateFile failed with error %d.\n", GetLastError());

}

87

D. WINDOWS2000 DLL’S

if (!GetCommState(hPort, &dcb))

{

printf ("GetCommState failed with error %d.\n", GetLastError());

}

dcb.BaudRate = CBR_9600;

if(Baud == 1) {dcb.BaudRate = CBR_1200;}

if(Baud == 2) {dcb.BaudRate = CBR_4800;}

if(Baud == 3) {dcb.BaudRate = CBR_9600;}

if(Baud == 4) {dcb.BaudRate = CBR_19200;}

dcb.ByteSize = 8;

dcb.Parity = NOPARITY;

dcb.StopBits = ONESTOPBIT;

COMMTIMEOUTS timeouts;

timeouts.ReadIntervalTimeout = 0;

timeouts.ReadTotalTimeoutMultiplier = 0;

timeouts.ReadTotalTimeoutConstant = 0;

timeouts.WriteTotalTimeoutMultiplier = 0;

timeouts.WriteTotalTimeoutConstant = 0;

if (!SetCommState(hPort, &dcb))

{

printf ("SetCommState failed with error %d.\n", GetLastError());

}

else

{

printf("Serial port %s (re)configured: BaudRate %d, ByteSize %d, Parity %d.\n",

port,dcb.BaudRate,dcb.ByteSize,dcb.Parity);

}

if (!SetCommTimeouts(hPort, &timeouts))

{

printf ("SetCommTimeouts failed with error %d.\n", GetLastError());

}

if(LOG)

{

fidin = fopen("D:\\data\\input.txt","w");

fidout = fopen("D:\\data\\output.txt","w");

if(!fidin)

{

printf("Could not open input.txt for data logging \n");

}

if(!fidout)

{

printf("Could not open output.txt for data logging\n");

}

if(!fidsample)

{

printf("Could not open sample.txt for data logging\n");

}

else {printf("Files openend for data logging.\n");}

}

WriteLeft[0] = 0;

LEFT = 0.0;

::QueryPerformanceFrequency(&frequency);

Synchronize(ref_point);

sec_init();

}

88

D. WINDOWS2000 DLL’S

DWORD single_TRILOThread(LPVOID param)

{

TERM = 0;

double prevleft, overflowLeft, prevleftdot, leftestim, prevleftestim;

prevleft = overflowLeft = prevleftdot = leftestim = prevleftestim = 0.0;

Left[0] = 0;

while (TERM==0)

{

n_in=0;

n_out=0;

READLEFT = ReadFile(hPort, Left , 1, &n_out, NULL);

if(prevleft > (double) Left[0]) overflowLeft = overflowLeft + 1.0;

LEFT = overflowLeft*255 + (double) Left[0];

prevleft = (double) Left[0];

leftestim = prevleftestim + 0.08944*prevleftdot + 0.001612*WriteLeft[0] +1*(LEFT - prevleftestim);

LEFTDOT = 0.7966*prevleftdot+0.03106*WriteLeft[0] + 0.5*(LEFT-prevleftestim);

prevleftdot = LEFTDOT;

prevleftestim = leftestim;

get_time(frequency, ref_point, file_time1);

::FileTimeToSystemTime(&file_time1, &system_time1);

time2 = time1;

time1 = system_time1.wMinute*60*1000 + system_time1.wSecond*1000 + system_time1.wMilliseconds;

if(LOG){fprintf(fidout,"%f \t %f \t %f\n",LEFT,time1,time1-time2);}

delay(DELAY);

COMWRITE = WriteFile(hPort, WriteLeft, 1, &n_out, NULL);

get_time(frequency, ref_point, file_time2);

::FileTimeToSystemTime(&file_time2, &system_time2);

time4 = time3;

time3 = system_time2.wMinute*60*1000 + system_time2.wSecond*1000 + system_time2.wMilliseconds;

if(LOG)

{

fprintf(fidin,"%i \t %f \t %f\n",WriteLeft[0],time3,time3-time4);

}

}

if (LOG)

{

fclose(fidin);

fclose(fidout);

}

if (!CloseHandle(hPort))

{

printf ("CloseHandle failed with error %d.\n", GetLastError());

}

else

89

D. WINDOWS2000 DLL’S

{

printf ("The serial communication has been stopped");

}

Sleep(500);

return 0;

}

extern "C" _declspec(dllexport) void single_TRILOLeft(double* Get_Left)

{

Get_Left[0]=LEFT;

}

extern "C" _declspec(dllexport) void single_TRILOLeftDot(double* Get_Left_Dot)

{

Get_Left_Dot[0]=LEFTDOT;

}

extern "C" _declspec(dllexport) void single_TRILOSend(int Lft)

{

WriteLeft[0] = Lft;

}

extern "C" _declspec(dllexport) void single_TRILOTerm(void)

{

WriteLeft[0] = 0;

printf("\nStopping the drivemotor...\n");

COMWRITE = WriteFile(hPort, WriteLeft, 1, &n_out, NULL);

Sleep(1000);

printf("\nStopping the read operations...\n");

TERM = 1;

}

D.2 Double wheel routines [trilo.dll]

#define STRICT

#define MAX 1024;

#include <assert.h>

#include <memory.h>

#include <process.h>

#include <tchar.h>

#include <dos.h>

#include <conio.h>

#include <windows.h>

#include <stdio.h>

#include <string.h>

#include <iostream.h>

#include <stdlib.h>

#include <time.h>

static double LEFT, RIGHT;

static int TERM, COMWRITE, READLEFT, READRIGHT, LOG, DELAY;

char *port = "com1";

int Left[10];

int Right[10];

double freq;

long start;

signed int WriteLeft[10];

signed int WriteRight[10];

unsigned long n_in, n_out;

HANDLE hPort;

DCB dcb;

FILE *fidin, *fidout;

90

D. WINDOWS2000 DLL’S

void sec_init(void)

{

LARGE_INTEGER lFreq, lCnt;

QueryPerformanceFrequency(&lFreq);

freq = (double)lFreq.LowPart;

QueryPerformanceCounter(&lCnt);

start = lCnt.LowPart;

}

double sec(void)

{

LARGE_INTEGER lCnt;

long tcnt;

QueryPerformanceCounter(&lCnt);

tcnt = lCnt.LowPart - start;

return ((double)tcnt) / freq;

}

void delay(int delay_time)

{

double begin_time, end_time;

begin_time = 1000*sec();

end_time = begin_time + (double)delay_time;

while(begin_time < end_time)

{

begin_time = 1000*sec();

}

return;

}

BOOL APIENTRY DllMain(HANDLE hModule,

DWORD ul_reason_for_call,

LPVOID lpReserved

)

{

switch (ul_reason_for_call)

{

case DLL_PROCESS_ATTACH:

case DLL_THREAD_ATTACH:

case DLL_THREAD_DETACH:

case DLL_PROCESS_DETACH:

break;

}

return TRUE;

}

static DWORD TRILOThreadID;

DWORD TRILOThread(LPVOID);

extern "C" _declspec(dllexport) void TRILOStart(void)

{

CreateThread(NULL,0,(LPTHREAD_START_ROUTINE) TRILOThread,

(LPVOID) NULL,0,&TRILOThreadID);

}

extern "C" _declspec(dllexport) void TRILOOpen(int Baud, int PortID, int Log, int Delay)

{

sec_init();

LOG = Log;

DELAY = Delay;

if(PortID == 1){port = "com1";}

if(PortID == 2){port = "com2";}

else{port = "com1";}

91

D. WINDOWS2000 DLL’S

hPort = CreateFile(port, GENERIC_READ|GENERIC_WRITE,

0,

NULL,

TRUNCATE_EXISTING,

FILE_ATTRIBUTE_NORMAL,

NULL);

if (hPort == INVALID_HANDLE_VALUE)

{

printf ("CreateFile failed with error %d.\n", GetLastError());

}

if (!GetCommState(hPort, &dcb))

{

printf ("GetCommState failed with error %d.\n", GetLastError());

}

dcb.BaudRate = CBR_9600;

if(Baud == 1) {dcb.BaudRate = CBR_1200;}

if(Baud == 2) {dcb.BaudRate = CBR_4800;}

if(Baud == 3) {dcb.BaudRate = CBR_9600;}

if(Baud == 4) {dcb.BaudRate = CBR_19200;}

dcb.ByteSize = 8;

dcb.Parity = NOPARITY;

dcb.StopBits = ONESTOPBIT;

COMMTIMEOUTS timeouts;

timeouts.ReadIntervalTimeout = 0;

timeouts.ReadTotalTimeoutMultiplier = 0;

timeouts.ReadTotalTimeoutConstant = 0;

timeouts.WriteTotalTimeoutMultiplier = 0;

timeouts.WriteTotalTimeoutConstant = 0;

if (!SetCommState(hPort, &dcb))

{

printf ("SetCommState failed with error %d.\n", GetLastError());

}

else

{

printf("Serial port %s (re)configured: BaudRate %d, ByteSize %d, Parity %d.\n",

port,dcb.BaudRate,dcb.ByteSize,dcb.Parity);

}

if (!SetCommTimeouts(hPort, &timeouts))

{

printf ("SetCommTimeouts failed with error %d.\n", GetLastError());

}

if(LOG)

{

fidin = fopen("input.txt","w");

fidout = fopen("output.txt","w");

if(!fidin)

{

printf("Could not open input.txt for data logging \n");

}

if(!fidout)

{

printf("Could not open output.txt for data logging\n");

}

else {printf("Files openend for data logging.\n");}

92

D. WINDOWS2000 DLL’S

}

WriteLeft[0] = 0;

WriteRight[0] = -1;

LEFT = 0.0;

RIGHT = 0.0;

}

DWORD TRILOThread(LPVOID param)

{

TERM = 0;

double prevleft, prevright, overflowLeft, overflowRight;

prevleft = prevright = overflowLeft = overflowRight = 0.0;

Left[0] = 0;

Right[0] = 0;

while (TERM==0)

{

double time1, time2;

time1 = sec();

n_in=0;

n_out=0;

READRIGHT = ReadFile(hPort, Right, 1, &n_out, NULL);

READLEFT = ReadFile(hPort, Left , 1, &n_out, NULL);;

if(prevleft > (double) Left[0]) overflowLeft = overflowLeft + 1.0;

if(prevright > (double) Right[0]) overflowRight= overflowRight+ 1.0;

LEFT = overflowLeft*255 + (double) Left[0];

RIGHT = overflowRight*255 + (double) Right[0];

prevleft = (double) Left[0];

prevright = (double) Right[0];

time2 = sec();

if(LOG){fprintf(fidout,"%f \t %f \t %f\n",LEFT,RIGHT,1000*(time2-time1));}

}

if (LOG)

{

fclose(fidin);

fclose(fidout);

}

if (!CloseHandle(hPort))

{

printf ("CloseHandle failed with error %d.\n", GetLastError());

}

else

{

printf ("The serial communication has been stopped");

}

Sleep(500);

return 0;

}

extern "C" _declspec(dllexport) void TRILOLeft(double* Get_Left)

{

Get_Left[0]=LEFT;

93

D. WINDOWS2000 DLL’S

}

extern "C" _declspec(dllexport) void TRILORight(double* Get_Right)

{

Get_Right[0]=RIGHT;

}

extern "C" _declspec(dllexport) void TRILOSend(int Lft, int Rgt)

{

double time1, time2;

time1 = sec();

delay(DELAY);

WriteLeft[0] = Lft;

WriteRight[0] = Rgt;

COMWRITE = WriteFile(hPort, WriteLeft, 1, &n_out, NULL);

COMWRITE = WriteFile(hPort, WriteRight, 1, &n_out, NULL);

time2 = sec();

if(LOG)

{

fprintf(fidin,"%i \t %i \t %f\n",WriteLeft[0],WriteRight[0],1000*(time2-time1));

}

}

extern "C" _declspec(dllexport) void TRILOTerm(void)

{

WriteLeft[0] = 0;

WriteRight[0] = -1;

printf("\nStopping the drivemotors...\n");

COMWRITE = WriteFile(hPort, WriteLeft, 1, &n_out, NULL);

Sleep(1000);

COMWRITE = WriteFile(hPort, WriteRight, 1, &n_out, NULL);

Sleep(1000);

printf("\nStopping the read operations...\n");

TERM = 1;

}

94

Appendix E

Trilobot C-MEX S-Functions

In this appendix a code listing is given of the four C-MEX S-functions [18] written for the
Simulink interface for the single-wheel setup as well as the two-wheel setup. In these S-
functions the routines defined in triloSingle.dll and trilo.dll (see appendix D) are
invoked.

E.1 s single in.c

#define S_FUNCTION_NAME s_single_in

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define TS2 ssGetSFcnParam(S, 0)

#define NSTATES 0

#define NINPUTS 1

#define NOUTPUTS 0

#define NPARAMS 1

#include <math.h>

extern void single_TRILOSend(uint8_T);

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, NPARAMS);

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))return;

ssSetNumContStates(S,0);

ssSetNumDiscStates(S,0);

if (!ssSetNumInputPorts(S,1)) return;

ssSetInputPortWidth(S,0,1);

ssSetInputPortDirectFeedThrough(S,0,0);

if (!ssSetNumOutputPorts(S,0)) return;

ssSetInputPortDataType(S, 0, SS_UINT8);

ssSetNumSampleTimes(S,1);

ssSetNumRWork(S,0);

95

E. TRILOBOT C-MEX S-FUNCTIONS

ssSetNumIWork(S,0);

ssSetNumPWork(S,0);

ssSetNumModes(S,0);

ssSetNumNonsampledZCs(S,0);

}

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S,0, (real_T) (*(mxGetPr(TS2))));

ssSetOffsetTime(S,0,0.0);

}

static void mdlOutputs(SimStruct *S, int_T tid)

{

InputPtrsType uLeft = ssGetInputPortSignalPtrs(S,0);

InputInt8PtrsType uLeftInt8 = (InputInt8PtrsType)uLeft;

#ifndef MATLAB_MEX_FILE

single_TRILOSend(*uLeftInt8[0]);

#endif

}

static void mdlTerminate(SimStruct *S)

{

return;

}

#ifdef MATLAB_MEX_FILE

#include "simulink.c"

#else

#include "cg_sfun.h"

#endif

E.2 s single out.c

#define S_FUNCTION_LEVEL 2

#define S_FUNCTION_NAME s_single_out

#include "simstruc.h"

#include <string.h>

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#define BAUD ssGetSFcnParam(S, 0)

#define TS ssGetSFcnParam(S, 1)

#define LOG ssGetSFcnParam(S, 2)

#define COM ssGetSFcnParam(S, 3)

#define DELAY ssGetSFcnParam(S, 4)

#define NSTATES 0

#define NINPUTS 0

#define NOUTPUTS 2

#define NPARAMS 5

extern void single_TRILOStart(void);

extern void single_TRILOOpen(int_T, int_T, int_T, int_T);

extern void single_TRILOLeft(double*);

extern void single_TRILOLeftDot(double*);

extern void single_TRILORight(double*);

extern void single_TRILOTerm(void);

static void mdlInitializeSizes(SimStruct *S)

{

96

E. TRILOBOT C-MEX S-FUNCTIONS

#ifndef MATLAB_MEX_FILE

int_T Baud, Log, Com, Delay;

real_T Ts;

int_T Baud_Range[4]={1200,4800,9600,19200};

Baud = (int_T) (*(mxGetPr(BAUD)));

Log = (int_T) (*(mxGetPr(LOG)));

Com = (int_T) (*(mxGetPr(COM)));

Ts = (real_T) (*(mxGetPr(TS)));

Delay= (int_T) (*(mxGetPr(DELAY)));

printf("\n\n##\n");

printf("Trilobot Interface Configuration Settings\t:\n\n");

printf("Selected Communication port\t:\tCOM%i\n",Com);

printf("Selected Console BaudRate\t:\t%i Baud\n",Baud_Range[Baud-1]);

printf("Selected block sample-time\t:\t%.4f [%.0f Hz]\n",Ts,1/Ts);

printf("Selected additional delay\t:\t%i percent of sample time\n",(Delay-1)*10);

if(Log == 1)

{

printf("Real-time data logging\t\t:\tenabled\n");

}

else{printf("Real-time data logging\t\t:\tdisabled\n");}

printf("Make sure Trilobot runs at 10Hz\n");

printf("\n\n##\n");

Sleep(1000);

printf("\nInitializing communication with Trilobot\n");

single_TRILOOpen(Baud,Com,Log,Delay);

printf("Ready to experiment !!!\n");

single_TRILOStart();

#endif

ssSetNumSFcnParams(S, NPARAMS);

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))return;

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 0)) return;

if (!ssSetNumOutputPorts(S, 2)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetOutputPortWidth(S, 1, 1);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, (real_T) (*(mxGetPr(TS))));

97

E. TRILOBOT C-MEX S-FUNCTIONS

ssSetOffsetTime(S, 0, 0.0);

}

static void mdlOutputs(SimStruct *S, int_T tid)

{

double left, leftdot;

real_T *leftlong = ssGetOutputPortRealSignal(S,0);

real_T *leftdotlong = ssGetOutputPortRealSignal(S,1);

#ifndef MATLAB_MEX_FILE

single_TRILOLeft(&left);

leftlong[0] = left;

single_TRILOLeftDot(&leftdot);

leftdotlong[0] = leftdot;

#endif

}

static void mdlTerminate(SimStruct *S)

{

#ifndef MATLAB_MEX_FILE

single_TRILOTerm();

sleep(1000);

printf("\nTRILO system disconnected.\n");

#endif

}

#ifdef MATLAB_MEX_FILE

#include "simulink.c"

#else

#include "cg_sfun.h"

#endif

E.3 s trilo in.c

#define S_FUNCTION_NAME s_trilo_in

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define TS2 ssGetSFcnParam(S, 0)

#define NSTATES 0

#define NINPUTS 1

#define NOUTPUTS 0

#define NPARAMS 1

#include <math.h>

extern void TRILOSend(int8_T,int8_T);

static void mdlInitializeSizes(SimStruct *S)

{

ssSetNumSFcnParams(S, NPARAMS);

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))return;

ssSetNumContStates(S,0);

ssSetNumDiscStates(S,0);

if (!ssSetNumInputPorts(S,2)) return;

ssSetInputPortWidth(S,0,1);

ssSetInputPortWidth(S,1,1);

ssSetInputPortDirectFeedThrough(S,0,0);

98

E. TRILOBOT C-MEX S-FUNCTIONS

ssSetInputPortDirectFeedThrough(S,1,0);

if (!ssSetNumOutputPorts(S,0)) return;

ssSetInputPortDataType(S, 0, SS_INT8);

ssSetInputPortDataType(S, 1, SS_INT8);

ssSetNumSampleTimes(S,1);

ssSetNumRWork(S,0);

ssSetNumIWork(S,0);

ssSetNumPWork(S,0);

ssSetNumModes(S,0);

ssSetNumNonsampledZCs(S,0);

}

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S,0, (real_T) (*(mxGetPr(TS2))));

ssSetOffsetTime(S,0,0.0);

}

static void mdlOutputs(SimStruct *S, int_T tid)

{

InputPtrsType uLeft = ssGetInputPortSignalPtrs(S,0);

InputPtrsType uRight = ssGetInputPortSignalPtrs(S,1);

InputInt8PtrsType uLeftInt8 = (InputInt8PtrsType)uLeft;

InputInt8PtrsType uRightInt8 = (InputInt8PtrsType)uRight;

#ifndef MATLAB_MEX_FILE

TRILOSend(*uLeftInt8[0],*uRightInt8[0]);

#endif

}

#ifdef MATLAB_MEX_FILE

#include "simulink.c"

#else

#include "cg_sfun.h"

#endif

E.4 s trilo out.c

#define S_FUNCTION_LEVEL 2

#define S_FUNCTION_NAME s_trilo_out

#include "simstruc.h"

#include <string.h>

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#define BAUD ssGetSFcnParam(S, 0)

#define TS ssGetSFcnParam(S, 1)

#define LOG ssGetSFcnParam(S, 2)

#define COM ssGetSFcnParam(S, 3)

#define DELAY ssGetSFcnParam(S, 4)

#define NSTATES 0

#define NINPUTS 0

#define NOUTPUTS 2

#define NPARAMS 5

extern void TRILOStart(void);

extern void TRILOOpen(int_T, int_T, int_T, int_T);

extern void TRILOLeft(double*);

99

E. TRILOBOT C-MEX S-FUNCTIONS

extern void TRILORight(double*);

extern void TRILOTerm(void);

static void mdlInitializeSizes(SimStruct *S)

{

#ifndef MATLAB_MEX_FILE

int_T Baud, Log, Com, Delay;

real_T Ts;

int_T Baud_Range[4]={1200,4800,9600,19200};

Baud = (int_T) (*(mxGetPr(BAUD)));

Log = (int_T) (*(mxGetPr(LOG)));

Com = (int_T) (*(mxGetPr(COM)));

Ts = (real_T) (*(mxGetPr(TS)));

Delay= (int_T) (*(mxGetPr(DELAY)));

printf("\n\n##\n");

printf("Trilobot Configuration Settings\t:\n\n");

printf("Selected Communication port\t:\tCOM%i\n",Com);

printf("Selected Console BaudRate\t:\t%i Baud\n",Baud_Range[Baud-1]);

printf("Selected block sample-time\t:\t%.4f [%.0f Hz]\n",Ts,1/Ts);

printf("Selected additional delay\t:\t%i msecs [%.0f percent of sample time]\n",

Delay,(((double)Delay/1000)/Ts)*100);

if(Log == 1)

{

printf("Real-time data logging\t\t:\tenabled\n");

}

else{printf("Real-time data logging\t\t:\tdisabled\n");}

printf("\n\n##\n");

Sleep(1000);

printf("\nInitializing communication with Trilobot\n");

TRILOOpen(Baud,Com,Log,Delay);

printf("Ready to experiment !!!\n");

TRILOStart();

#endif

ssSetNumSFcnParams(S, NPARAMS);

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))return;

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 0)) return;

if (!ssSetNumOutputPorts(S, 2)) return;

ssSetOutputPortWidth(S, 0, 1);

ssSetOutputPortWidth(S, 1, 1);

ssSetNumSampleTimes(S, 1);

ssSetNumRWork(S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork(S, 0);

ssSetNumModes(S, 0);

ssSetNumNonsampledZCs(S, 0);

ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

100

E. TRILOBOT C-MEX S-FUNCTIONS

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime(S, 0, (real_T) (*(mxGetPr(TS))));

ssSetOffsetTime(S, 0, 0.0);

}

static void mdlOutputs(SimStruct *S, int_T tid)

{

double left;

real_T *leftlong = ssGetOutputPortRealSignal(S,0);

double right;

real_T *rightlong = ssGetOutputPortRealSignal(S,1);

#ifndef MATLAB_MEX_FILE

TRILOLeft(&left);

leftlong[0] = left;

TRILORight(&right);

rightlong[0] = right;

#endif

}

static void mdlTerminate(SimStruct *S)

{

#ifndef MATLAB_MEX_FILE

TRILOTerm();

sleep(1000);

printf("\nTRILO system disconnected.\n");

#endif

}

#ifdef MATLAB_MEX_FILE

#include "simulink.c"

#else

#include "cg_sfun.h"

#endif

101

E. TRILOBOT C-MEX S-FUNCTIONS

102

Appendix F

Trilobot 8052 user-programs

In this appendix the code-listing is given of the two user-programs discussed in chapter 4. Both
user-programs are written in Assembly language for the 8052 core instruction-set [25, 11, 31].
In these user-programs, some of the standard routines available in the standard software of
Trilobot are invoked. These routines are listed in the jump-table given in trilodef.asm [2].
These programs are assembled using the Raisonance assembler available in the Raisonance
Integrated Development Environment [23].

F.1 Single wheel user program

$include(trilodef.a51)

$include(REG51.inc)

dCycle equ 30h

dCycleC equ 31h

Flag equ 32h

SendStat equ 33h

baud_config equ 38h

baud_double equ 39h

org 0100h

check_ser : push acc

clr TR0

jnb RI, ex_ser

clr RI

mov A, SBUF

mov dCycleC, A

cpl A

mov dCycle, A

pop acc

setb TR0

reti

ex_ser: pop acc

setb TR0

;setb TR2

reti

org 1000h

clr TR0

push ACC

jb Flag, motoroff

setb P3.4

103

F. TRILOBOT 8052 USER-PROGRAMS

mov TH0, dCycle

mov TL0, dCycle

setb Flag

pop ACC

setb TR0

reti

motoroff: clr P3.4

mov TH0, dCycleC

mov TL0, dCycleC

clr Flag

pop ACC

setb TR0

reti

org 3000h

lcall trmclr

clr P3.4

lcall check_baud

lcall baud_key

pause: clr TR2

lcall utlhloff

lcall LCD_start

lcall wait_key

lcall init

lcall trmclr

setb EA

setb TR0

setb TR2

ljmp start

start: lcall check_key

jnb TF2,loop

jb SendStat, send

clr TF2

setb SendStat

jmp start

send: lcall utlgod

mov SBUF, DPL

jnb TI,$

clr SendStat

clr TI

clr TF2

loop: jmp start

init: mov dptr, #0024h

mov A, #01h

movx @dptr, A

mov dptr, #0025h

mov A, #00h

movx @dptr, A

mov SCON, #01010000b

mov PCON, baud_double

mov TMOD, #00100010b

mov TL1, baud_config

mov TH1, baud_config

setb ES

setb TR1

mov dCycle, #0F8h

mov A, dCycle

cpl A

mov dCycleC, A

clr Flag

mov dptr, #000Bh

104

F. TRILOBOT 8052 USER-PROGRAMS

mov A, #02h

movx @dptr, A

mov dptr, #000Ch

mov A, #10h

movx @dptr, A

mov dptr, #000Dh

mov A, #00h

movx @dptr, A

mov TH0, dCycle

mov TL0, dCycle

setb ET0

mov IP, #00000000b

setb PT0

mov RCAP2H, #4Ch

mov RCAP2L, #01h

mov TH2, #4Ch

mov TL2, #01h

clr SendStat

mov T2CON, #00h

clr IE.5

ret

wait_key: lcall trmgs

wait_Ykey: cjne A,#’Y’,wait_key

ret

LCD_start: lcall trmclr

lcall trmpsi

db 0

db ’Trilobot Single’

db 0

lcall trmpsi

db 40h

db ’Press Y to Start’

db 0

ret

check_baud: lcall utlgd

baud_1: cjne A, #00000001b, baud_2

mov baud_config, #-24

mov baud_double, #00000000b

lcall trmclr

lcall trmpsi

db 0

db ’Baudrate 1200’

db 0

lcall trmpsi

db 40h

db ’N=reset Y=GO’

db 0

jmp ex_baud

baud_2: cjne A, #00000010b, baud_3

mov baud_config, #-6

mov baud_double, #00000000b

lcall trmclr

lcall trmpsi

db 0

db ’Baudrate 4800’

db 0

105

F. TRILOBOT 8052 USER-PROGRAMS

lcall trmpsi

db 40h

db ’N=reset Y=GO’

db 0

jmp ex_baud

baud_3: cjne A, #00000100b, baud_4

mov baud_config, #-3

mov baud_double, #00000000b

lcall trmclr

lcall trmpsi

db 0

db ’Baudrate 9600’

db 0

lcall trmpsi

db 40h

db ’N=reset Y=GO’

db 0

jmp ex_baud

baud_4: cjne A, #00001000b, baud_s

mov baud_config, #-3

mov baud_double, #10000000b

lcall trmclr

lcall trmpsi

db 0

db ’Baudrate 19200’

db 0

lcall trmpsi

db 40h

db ’N=reset Y=GO’

db 0

jmp ex_baud

buad_s: mov baud_config, #-3

mov baud_double, #00000000b

lcall trmclr

lcall trmpsi

db 0

db ’Baudrate 9600D’

db 0

lcall trmpsi

db 40h

db ’N=reset Y=GO’

db 0

ex_baud: ret

check_key: lcall trmgs

jnc ex_keys

check_N: cjne A,#’N’,check_Y

lcall trmclr

lcall sysres

check_Y: cjne A,#’Y’,ex_keys

ljmp pause

lcall trmclr

ex_keys: ret

baud_key: lcall trmgs

jnc baud_key

baud_N: cjne A,#’N’,baud_Y

lcall check_baud

baud_Y: cjne A,#’Y’,baud_key

ex_bkeys: ret

end

106

F. TRILOBOT 8052 USER-PROGRAMS

F.2 Two wheel user program

$include(trilodef.a51)

$include(REG51.inc)

dCycle1 equ 30h

dCycle2 equ 31h

Cycle1 equ 32h

Cycle2 equ 33h

Cycle3 equ 34h

snddef equ 35h

sndstat equ 36h

status equ 37h

baud_config equ 38h

baud_double equ 39h

org 0100h

check_ser : clr TR2

push acc

jnb RI, check_TIn

clr RI

mov A, SBUF

jb acc.7, is_neg

mov dCycle2, A

jmp recomp

is_neg: mov dCycle1, A

recomp: mov A, dCycle2

add A, dCycle1

jb acc.7, neg_sign

clr sign

mov Cycle2, A

mov A, dCycle1

cpl A

inc A

mov Cycle1, A

mov A, dCycle2

cpl A

mov Cycle3,A

pop acc

setb TR2

reti

neg_sign: setb sign

cpl A

inc A

mov Cycle2, A

mov A, dCycle2

mov Cycle1, A

mov A, dCycle1

cpl A

inc A

cpl A

mov Cycle3, A

pop acc

setb TR2

reti

check_TIn: jnb TI, ex_ser

ex_ser : pop acc

setb TR2

reti

org 1000h

clr TR2

push ACC

mov A, status

state1: cjne A, #00h, state2

lcall utlhlon

107

F. TRILOBOT 8052 USER-PROGRAMS

lcall utllaon

mov A, Cycle1

mov B, #02h

mul AB

cpl A

mov B, #10h

mul AB

mov TL2, A

mov A, B

add A, #0F0h

mov TH2, A

mov status, #01h

clr TF2

pop ACC

setb TR2

reti

state2: cjne A, #01h, state3

jb sign, clr_m2

lcall utlhloff

jmp exit2

clr_m2: lcall utllaoff

exit2: mov A, Cycle2

mov B, #02h

mul AB

cpl A

mov B, #10h

mul AB

mov TL2, A

mov A, B

add A, #0F0h

mov TH2, A

mov status, #02h

clr TF2

pop ACC

setb TR2

reti

state3: cjne A, #02h, return

jb sign, clr_m1

lcall utllaoff

jmp exit3

clr_m1: lcall utlhloff

exit3: mov A, Cycle3

mov B, #02h

mul AB

cpl A

mov B, #10h

mul AB

mov TL2, A

mov A, B

add A, #0F0h

mov TH2, A

mov status, #00h

clr TF2

djnz sndstat, nosample

setb sndtrig

mov sndstat, snddef

nosample: pop ACC

setb TR2

reti

return: pop ACC

setb TR2

reti

org 3000h

lcall trmclr

lcall check_baud

108

F. TRILOBOT 8052 USER-PROGRAMS

lcall baud_key

pause: clr TR2

lcall utllaoff

lcall utlhloff

lcall LCD_start

lcall wait_key

lcall init

lcall init_enc

lcall trmclr

ljmp start

start: lcall check_key

jnb sndtrig, loop

lcall get_enc

clr sndtrig

loop: jmp start

get_enc: mov A, TL0

lcall sndchar

lcall utlgod

mov A, DPL

lcall sndchar

ret

wait_key: lcall trmgs

wait_Ykey: cjne A,#’Y’,wait_key

ret

LCD_start: lcall trmclr

lcall trmpsi

db 0

db ’TU/e Trilobot’

db 0

lcall trmpsi

db 40h

db ’Press Y to Start’

db 0

ret

init: mov dptr, #0024h

mov A, #01h

movx @dptr, A

mov dptr, #0025h

mov A, #00h

movx @dptr, A

mov SCON, #01010000b

mov PCON, baud_double

mov TMOD, #00100101b

mov TL1, baud_config

mov TH1, baud_config

setb ES

setb TR1

mov dCycle1, #-1

mov dCycle2, #2h

mov Cycle1, #1h

mov Cycle2, #1h

mov Cycle3, #7Dh

mov status, #00h

mov snddef, #18

mov sndstat, snddef

clr sign

mov dptr, #002Bh

mov A, #02h

movx @dptr, A

mov dptr, #002Ch

mov A, #10h

109

F. TRILOBOT 8052 USER-PROGRAMS

movx @dptr, A

mov dptr, #002Dh

mov A, #00h

movx @dptr, A

clr RCLK

clr TCLK

clr EXEN2

clr RL2

setb IE.5

mov RCAP2H, #0FFh

mov RCAP2L, #000h

setb TR2

setb EA

mov IP, 00000000b

ret

init_enc: mov TH0, #0

mov TL0, #0

clr ET0

clr P3.4

ret

sndchar: clr TI

mov SBUF, A

txloop: jnb TI, txloop

clr TI

ret

check_baud: lcall utlgd

baud_1: cjne A, #00000001b, baud_2

mov baud_config, #-24

mov baud_double, #00000000b

lcall trmclr

lcall trmpsi

db 0

db ’Baudrate 1200’

db 0

lcall trmpsi

db 40h

db ’N=reset Y=GO’

db 0

jmp ex_baud

baud_2: cjne A, #00000010b, baud_3

mov baud_config, #-6

mov baud_double, #00000000b

lcall trmclr

lcall trmpsi

db 0

db ’Baudrate 4800’

db 0

lcall trmpsi

db 40h

db ’N=reset Y=GO’

db 0

jmp ex_baud

baud_3: cjne A, #00000100b, baud_4

mov baud_config, #-3

mov baud_double, #00000000b

lcall trmclr

lcall trmpsi

db 0

db ’Baudrate 9600’

db 0

lcall trmpsi

db 40h

db ’N=reset Y=GO’

110

F. TRILOBOT 8052 USER-PROGRAMS

db 0

jmp ex_baud

baud_4: cjne A, #00001000b, baud_s

mov baud_config, #-3

mov baud_double, #10000000b

lcall trmclr

lcall trmpsi

db 0

db ’Baudrate 19200’

db 0

lcall trmpsi

db 40h

db ’N=reset Y=GO’

db 0

jmp ex_baud

baud_s: mov baud_config, #-3

mov baud_double, #00000000b

lcall trmclr

lcall trmpsi

db 0

db ’Baudrate 9600D’

db 0

lcall trmpsi

db 40h

db ’N=reset Y=GO’

db 0

ex_baud: ret

check_key: lcall trmgs

jnc ex_keys

check_N: cjne A,#’N’,check_Y

lcall trmclr

lcall sysres

check_Y: cjne A,#’Y’,ex_keys

ljmp pause

lcall trmclr

ex_keys: ret

baud_key: lcall trmgs

jnc baud_key

baud_N: cjne A,#’N’,baud_Y

call check_baud

baud_Y: cjne A,#’Y’,baud_key

ex_bkeys: ret

end

111

F. TRILOBOT 8052 USER-PROGRAMS

112

	Contents
	Preface
	Abstract
	Samenvatting
	Introduction
	Research goals
	Thesis outline

	Networked Control Systems
	General configuration of an NCS
	Shared communication networks
	Network traffic
	Random access and token passing networks
	Network induced delays

	Sampling issues in NCSs
	Sample-rate selection
	Event-driven vs. time-driven
	Clock synchronization

	Focus of this research

	Modeling and stability analysis of an NCS
	A Networked control system model
	Modeled NCS configuration
	Model assumptions
	The discrete-time NCS model

	Stability analysis of a 1-dimensional system
	Eigenvalue analysis
	Frequency domain analysis
	An analytic stability bound

	Stability of a two dimensional model
	Discussion

	An experimental NCS setup
	The Trilobot mobile robot
	NCS research using Trilobot
	Necessary adaptations

	The 8052 Microprocessor
	Basics of the 8052 microprocessor
	Timers
	Interrupts
	Serial communication
	Configuration on-board Trilobot

	Trilobot as remote system
	Drive-motor circuitry
	Drive-motor software
	Encoder readout
	Serial interfacing

	The desktop PC controller
	Experimental settings

	Experiments
	Model of the setup
	Identification of the system parameters
	The Continuous Discrete Extended Kalman Filter
	Estimation of the parameters

	Reconstruction of the velocity
	Numerical results using the estimated model
	Experimental results
	Discussion

	Conclusions and recommendations
	Conclusions
	Sampling and delay in an NCS
	Stability analysis of an NCS with constant network delays
	Trilobot as experimental setup

	Recommendations

	Bibliography
	Experimental results
	Results position feedback
	Results full state feedback

	Proofs
	The Jury stability test
	Jury's test
	jury.m

	Windows2000 DLL's
	Single wheel routines [triloSingle.dll]
	Double wheel routines [trilo.dll]

	Trilobot C-MEX S-Functions
	s_single_in.c
	s_single_out.c
	s_trilo_in.c
	s_trilo_out.c

	Trilobot 8052 user-programs
	Single wheel user program
	Two wheel user program

