
 Eindhoven University of Technology

MASTER

Increasing solver performance for circuit simulation problems

Vollebregt, A.J.

Award date:
2007

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/e0b1f04c-1da3-45d5-b464-c70b741b1bc4

TECHNISCHEUNIVERSITEIT EINDHOVEN

Department of Mathematics and Computer Science

MASTER’S THESIS

INCREASING SOLVER

PERFORMANCE FOR CIRCUIT

SIMULATION PROBLEMS

by

A.J. Vollebregt

Supervisors:
Prof. Dr. W.H.A. Schilders (TU/e)
Dr. ir. S.H.M.J. Houben (Magma)

Eindhoven, December 2005

Abstract

Since computer chips have become smaller and smaller over the years, their interior is getting more com-
plex. These chips suffer both dynamic and static dissipation, which result in power leakage and signal
delay. The magnitude of these effects (and thus the performance of a chip) can be determined by calcu-
lating the voltage drop, for which a linear system has to be solved. A common used technique to solve
increasingly growing SPD-matrices with origin in circuit simulation is the Preconditioned Conjugate Gra-
dient method with an incomplete Cholesky decomposition as preconditioner. A consequence of Cholesky
decomposition of sparse matrices is the occurrence of fill-in. Fill-in elements are additional nonzero matrix
elements, which increase the amount of memory. Reordering of the matrix is a widely used method to
reduce the appearance of fill-in. In addition to some methods to improve the iteration speed of the Precon-
ditioned Conjugate Gradient method, this thesis will also discuss several local and global ordering methods
such as the Minimum Degree ordering and the Nested Dissection ordering. These orderings are designed to
reduce the number of fill-in elements. We present the software package MADAND that reduces the number
of fill-in elements and the number of iteration steps of the PCG-method by approximately 50 percent in
comparison with the current ordering MINOLD, and can partition the matrix so it can be solved in parallel,
which may lead to a speedup factor of 4.

Contents

1 Introduction 7

2 Electronic circuits 11
2.1 Physical laws . 11
2.2 Nodal Analysis . 12
2.3 Linear systems . 13
2.4 Matrix properties . 14

3 Solution methods 17
3.1 Conjugate Gradient method . 17

3.1.1 Steepest Descent method . 17
3.1.2 Search Directions . 18

3.2 Cholesky Factorization . 21
3.3 Preconditioned Conjugate Gradient method . 24
3.4 Search for the right preconditioner . 25

3.4.1 Incomplete Cholesky factorization . 25
3.4.2 Standard incomplete Cholesky factorization . 26
3.4.3 Drop tolerance . 27

3.5 Solver problems . 28
3.6 Solution methods . 28

4 Matrix Ordering 31
4.1 The benefits of ordering . 31
4.2 Graph representation . 32

5 Local ordering algorithms 35
5.1 Minimizing fill-in; The Minimum Fill Ordering . 35
5.2 Minimum Degree Ordering . 35

5.2.1 Mass elimination . 36
5.2.2 Graph compression . 37
5.2.3 Incomplete degree update . 38
5.2.4 Remove redundant edges . 38
5.2.5 Element absorption . 38
5.2.6 Tie-breaking pre-ordering . 39
5.2.7 External degrees . 39
5.2.8 Multiple elimination . 39
5.2.9 Approximate degrees . 40
5.2.10 MADAND(AMD) . 41

5.3 Approximate Minimum Deficiency . 41
5.4 Minimum degree with drop tolerance prediction . 42
5.5 Reverse Cuthill-McKee ordering . 42

1

6 Global ordering algorithms 45
6.1 Nested Dissection ordering . 45
6.2 Multisection ordering . 46
6.3 Combining local and global ordering methods . 47
6.4 Basics of Dissection Orderings . 47
6.5 Domain decomposition . 48

6.5.1 Zecevic and Siljak . 48
6.5.2 Ashcraft and Liu . 48
6.5.3 MANDAND(NEST) . 49

7 Parallel Solution methods 51
7.1 Substitution in an iteration step . 51
7.2 Topology of the preconditioner matrix . 52
7.3 Efficient Dissection Verification . 54

8 Results 57
8.1 Ordering, Matrix decomposition . 58

8.1.1 One processor . 58
8.1.2 Multiple Processors . 59

8.2 Pre-Conjugate Gradient iterations . 65

9 Conclusions and Recommendations 69
Bibliography . 70

A MADAND(NEST) Example 74

B Pseudo code 78
B.1 MADAND(AMD) . 78
B.2 MADAND(NEST) . 78

C Results 85

2

List of Tables

4.1 Nonzero elements of the complete Cholesky factor of testcase3 for several orderings. . . . 32

8.1 Description of all testcases processed with MATLAB. 57
8.2 Description of all testcases processed with C++. 57
8.3 MNZ for several orderings. 58
8.4 Results of the MADAND(AMD) for Magma designs compared with MINOLD. 59
8.5 MNZ using MANDAND(AMD) for different pre-orderings. 59
8.6 Test configurations for testcase3. 61
8.7 MNZ for the MADAND(CON)-tests of testcase3 . 61
8.8 WLNZ for the MADAND(CON)-tests of testcase3 . 62
8.9 The MADAND(CON)-tests contest1 and contest2 for testcase5. 64
8.10 The MADAND(CON)-tests contest1 and contest2 for testcase6a. 64
8.11 The MADAND(CON)-tests contest1 and contest2 for testcase6b. 64
8.12 The MADAND(CON)-tests contest1 and contest2 for testcase7a. 65
8.13 The MADAND(CON)-tests contest1 and contest2 for testcase7b. 65
8.14 The number of iteration steps of the PCG-method for testcase3 for different values ofε and

different orderings. 66
8.15 Number of iteration steps for different methods. 67
8.16 Results for MADAND(AMD) withϑ = 1, scaled with the results of MADAND(AMD)

with ϑ = 0 . 68

3

List of Figures

1.1 Simple power design. 7
1.2 Magma’s voltage drop map. 8

2.1 A graph of a simple electrical circuit. 12

4.1 The elimination graphsF 0 . . . F 8 of a simple circuit. 33
4.2 Sparsity pattern of testcase1 and its Cholesky factor with a random ordering. 34
4.3 Sparsity pattern of testcase1 and its Cholesky factor with the ordering MINOLD. 34

5.1 The quotient graphsF 0 . . . F 5 of a simple circuit. 39
5.2 Sparsity pattern of testcase1 and its Cholesky factor ordered with symmmd. 40
5.3 Example of a quotient graph in whichd−k

4 > d4. 41
5.4 Sparsity pattern of testcase1 and its Cholesky factor ordered with symrcm. 43

6.1 Sparsity pattern of testcase1 and its Cholesky factor ordered with METIS (oemetis). 46
6.2 Sparsity pattern of testcase1 and its Cholesky factor ordered with siljak8.m. 47

7.1 Small graph of the example in Section 7.1. 52
7.2 Tree structure of the partition numbers. 54

8.1 MNZ of a MADAND(CON) test for several different amount of processors. 60
8.2 The MNZ for the 18 MADAND(CON) tests for 1, 2, 4, 8 and 16 processors in comparison

with METIS. 62
8.3 The WLNZ for the 18 MADAND(CON) tests for 1, 2, 4, 8 and 16 processors. 63
8.4 Convergence speed of the PCG-method for testcase3 for several methods. 66
8.5 Convergence speed of the PCG-method for testcase5 for several methods 67
8.6 Convergence speed of the PCG-method for testcase6a for several methods 68

A.1 MADAND(NEST) Example, Figure A.1.1 (left) and Figure A.1.2 (right). 74
A.2 MADAND(NEST) Example, Figure A.2.1 (left) and Figure A.2.2 (right). 75
A.3 MADAND(NEST) Example, Figure A.3.1 (left) and Figure A.3.2 (right). 75
A.4 MADAND(NEST) Example, Figure A.4.1 (left) and Figure A.4.2 (right). 76
A.5 MADAND(NEST) Example, Figure A.5.1 (left) and Figure A.5.2 (right). 77

4

List of Algorithms

1 Steepest Descent . 18
2 Conjugate Gradient . 20
3 Cholesky factorization (CF) . 21
4 Left-looking diagonal Cholesky factorization (LLDCF) 22
5 Right-looking Diagonal Cholesky Factorization (RLDCF) 24
6 Preconditioned Conjugate Gradient . 25
7 Incomplete Cholesky factorization (ICF) . 25
8 Right-looking standard incomplete Cholesky factorization (RLSICF) 26
9 Right-looking modified incomplete Cholesky factorization (RLMICF) 27
10 Right-looking modified incomplete Cholesky factorization (δ) (RLMICFD) 27
11 Right-looking diagonal Cholesky factorization with drop tolerance (FDCFDT) 27
12 Right-looking diagonal Cholesky factorization with drop tolerance (θ) (RLDCFDTT) . . . 28
13 MD with quotient graphs . 36
14 Hash-function initialization(vi) (in the second for loop) 37
15 Supernode detection (after the third for loop) . 37
16 Parallel Forward and Backward substitution . 52
17 MADAND(AMD) . 78
18 Edge manipulation(vp) . 79
19 Degree update(vp) . 79
20 Element creation(vp) . 79
21 Hash-function initialization(vi) . 79
22 Supernode detection . 80
23 Ashcraft and Liu (1997) . 80
24 Initialize Border . 80
25 Construct Blocks . 81
26 Remove Small Blocks . 81
27 Grow Remaining Blocks . 81
28 Construct Borderblocks . 82
29 Make Dissection . 82
30 Dissect-Partition(Ppart) . 83
31 Paint Block(bpaint) . 83
32 Improve Border . 84
33 Improve(source,target) . 84
34 Ready Nodes . 84

5

6

Chapter 1

Introduction

In the demanding age we live in, people do not only want new features for their electronic devices, they
also expect them to become smaller and more durable. For example, a mobile phone can have features like
a camera, internet, and games, while it has the size of a thumb and has a battery that lasts in standby mode
for a week without charging. So new technologies result not only in smaller designs of computer chips
(also called integrated circuits or IC’s), but the designs get also more complex. Therefore it becomes an
increasingly bigger challenge to design fast IC’s using low power.

Power Dissipation

We have to zoom to approximately 100nm to understand the difficulties of chip design. Computer chips
are build up out of millions of transistors. Assume a design has complementary metal oxide semiconductor
(CMOS) devices, the most common used semiconductor. Figure 1.1 shows a simple inverter design with
two transistors,T1 andT2, connected by a gate.T1 is connected to the power rail andT2 to the ground rail.
The transistors have a certain switching thresholdVt.

Figure 1.1: Simple power design.

If a input signal reached the inverter, the gate switches from one state to another, and both transistors are
turned on for a fraction of a second. This results into a short circuit between the power netVDD and the
ground netVSS . The time this circuit is active depends on the thresholds and the slope of the input signal.
The size of the transistors is very important for the effects that will occur. If the transistors are too large,
the gate is overpowered, which means that it consumes a great deal of power (case a). On the other hand,
if the transistors are too small, the circuit will be on for too long, therefore the inverter will consume a
considerable amount of power (case c). This is calledDynamic Power Dissipation. It can be calculated by
the following equation

Pdyn ≈ αf · C · V 2, (1.1)

7

with Pdyn is the dynamic power,f is the operating frequency,α is the switching activity factor of the gate,
C is the amount of capacitance being switched, andV is the supply voltage.

In addition to Dynamic Power Dissipation, a design may sufferStatic Power Dissipation. This happens
when the gates are not active. There is a certain leakage current (ILeakage) going through the transistors.

ILeakage ≈ e−qVt/kT , (1.2)

with q is charge of an electron,k is the Boltzman constant, andT is the temperature. Also there is a certain
delay (tdelay), the switching time, described by

tdelay ≈ VDD · (VDD − Vt)−α. (1.3)

The loss of power and especially the delay must be minimized to get an optimal working chip.

Voltage Drop

If a chip is designed theVt is known for every transistor. To acknowledge the dissipation effects the other
voltagesVDD andVSS must be calculated. These voltages suffer a phenomena that is calledvoltage drop.
Voltage drops are reduction of the voltage if a current goes through a resistance. Because both the dynamic
power and the delay depend on the supply voltage, it is important to calculate the voltage drop at each
segment of the design.

Current Situation

One of the products the company of Magma Design Automation develops is software to simulate IC-
designs.

Figure 1.2: Magma’s voltage drop map.

Figure 1.2 shows the voltage drop map of a chip design, and points out the problem ares. To calculate
the voltage drop some very basic - but enormously large - mathematical systems have to be solved, which

8

can be done using linear algebra. These systems are solved using the preconditioned conjugate gradient
method with an incomplete Cholesky factorization using a threshold as preconditioner.

Problem

The problem with this preconditioner is the occurrence of fill-in, new nonzero matrix elements which cost
extra memory. If the number of fill-in elements is to large, the memory will get swamped, which is lethal for
the performance of the solver. The fill-in can be reduced by tightening the threshold, but, as a consequence,
the convergence speed of the solver drops.

Goal

The goal of the thesis is:

• Increase the performance of the solver by either reduction of the fill-in or reduction of the number of
iteration steps

• Find a parallel solving method so multiple processors can be used to calculate the solution.

In this thesis we study several methods that may either reduce the occurrence of fill-in, reduce the num-
ber of iteration steps of the solving method or parallelize the problem. In chapter 2 the basics of circuit
simulation is described, and the mathematical system is modelled. In chapter 3 we discuss several solving
methods and preconditioner matrices, and the origin of the problem is formulated.

In chapters 4, 5, and 6 we describe several matrix ordering methods that may reduce the number of fill-in
elements and may partition the matrix. Chapter 5 contains several local ordering methods such as the Min-
imum Degree ordering and Minimum Fill ordering, and several improvements. In chapter 6 we describe
some global ordering methods such as the Nested Dissection ordering and Multisection ordering that par-
tition a matrix, and in chapter 7 is described how the system is solved for a partitioned matrix. Finally, the
results of all methods are given in chapter 8 .

I would like to finish this introduction with some acknowledgements. First of all, I would like to thank
my supervisors prof. dr. Wil Schilders and dr. ir. Stephan Houben for valuable suggestions and guidance
throughout the project. I am also very grateful for mr. Houbens help in mastering the necessary program-
ming skills. In addition, I would like to thank dr. Jos Maubach and dr. Rudi Pendavingh for participating
in my graduation committee. My gratitude also goes to the company of Magma Netherlands for giving me
the opportunity to fulfill my graduation project and giving me a great experience. Finally, I would like to
thank all my friends who gave me advice, especially regarding the C++ language.

Sander Vollebregt, December 2005

9

10

Chapter 2

Electronic circuits

2.1 Physical laws

Electrical systems consist of certain electrical devices, such as transistors, resistors, and capacitors, all con-
nected by a network. If a mathematical model of these devices and their interaction is made, computers can
be used to predict their behaviour. This procedure is calledcircuit simulation. A simple electrical circuit
has two main variables: thecurrenti, and thevoltage differencev. The circuit consists ofnodes, connected
by branches, which represent the electrical devices. However, in our model we only use resistors, so all
branches only have a certain resistivity (r).

There are two types of equations that can be used to describe an electrical circuit:branch equationsand
topological equations. A branch equation (BE) depends on the type of branch used (resistor), and describes
a relation between the circuit variables (in this case the current and the voltage difference). A topological
equation (TE) depends on the topology of the circuit, which means that it only depends on the manner the
nodes are connected. For our simple circuit there are three important physical laws that describe the circuit:

1. Ohm’s Law (BE)

vj = ijrj , (2.1)

for every branchj.

2. Kirchhoff’s Current Law (TE) ∑
ak∈a

iak
= 0, (2.2)

for every cutseta = {a1, . . . , an}.

3. Kirchhoff’s Voltage Law (TE) ∑
bk∈b

vbk
= 0, (2.3)

for every loopb = {b1, . . . , bn}.

A cutsetis a minimal set of branches that divides the circuit into two separate parts if one would remove
them. A loop is a path that starts and finishes in the same node. The circuit is directed, which means that
the sign of the variable depends on the direction. If branchk connects nodep with nodeq, thenik andvk

are positive in thep− q direction and negative in theq − p direction.

Ohm’s law (2.1) can also be written in terms of conductances

ij = γjvj , (2.4)

11

with the conductanceγj = 1
rj

. This relation can be written in matrix form

Γv = i, (2.5)

with Γ = diag(γ1, . . . , γb),Γ ∈ Rb×b, i = {i1, . . . , ib}, i ∈ Rb andv = {v1, . . . , vb},v ∈ Rb.

2.2 Nodal Analysis

A classic method to construct electrical circuit equations isNodal Analysis. For this method, the electrical
circuit is represented as a simple, directed graph. The information found in the graph is used in thenodal
incidence matrixA ∈ Rn×b, with n the number of nodes andb the number of branches in the circuit.A is
defined by

A(i, j) :=

 1 if branchj finishes in nodei;
−1 if branchj starts in nodei;
0 if branchj has no connection with nodei.

(2.6)

3 4 5d f

1 2

b

a

c e
g

Figure 2.1: A graph of a simple electrical circuit.

An example of an electrical circuit graph can be found in Figure 2.1. This graph has the following incidence
matrix

A =

a b c d e f g
1
2
3
4
5

1 −1 0 0 0 0 0
−1 0 1 0 1 0 −1
0 1 −1 1 0 0 0
0 0 0 −1 −1 1 0
0 0 0 0 0 −1 1

 .

Using Nodal Analysis as a framework we can make a connection between the physical laws from section
2.1. The Kirchhoff’s Current Law (KCL) says that the sum of the current over every cutseta should be
equal to zero. For every node the set of adjacent edges is a cutset, which means that for every node the
incoming current should equal the outgoing current. If, for example, we look at node 2 in Figure 2.1, we
find using the KCL

−ia + ic + ie − ig = 0.

This equation is also found by calculatingA(2, j)i = 0. We can generalize this for every node, which
results into

Ai = 0. (2.7)

This system is only valid if there are no current sources. More generally, we have

Ai = s, (2.8)

12

with s the vector of the source terms.

It is also possible to find a similar relation in matrix form for the KVL. The Kirchhoff’s Voltage Law
says that the sum of the voltage difference over a loop should be equal to zero. This means that if we take
two arbitrary points the voltage difference between those two points is always the same, independent of
the path we choose to get from one point to the other. Take two arbitrary nodesq1 andq2, and two disjoint
paths fromq1 to q2, p1 andp2. Then the KVL says thatvp1 + (−vp2) = 0, sovp1 = vp2 . Now giveq1 a
certain potentialw1. Then the potential ofq2 , w2, can be calculated, since every path toq2 has the same
voltage difference. And becauseq1 andq2 are arbitrary, all nodes have a potential, which we will refer to
aswi. The connection between the node potential and the voltage difference is

vj = wi+ − wi−,

with vj the voltage difference over branchj, wi+ the potential of the node in which branchj finishes and
wi− the potential of the node in which branchj starts. Looking at Figure 2.1 gives for brancha

va = w1 − w2.

This can be generalized for the entire circuit, which results into the following relation

AT w = v, (2.9)

with w = {w1, . . . , wb},w ∈ Rb. It is important to realize thatw is a potential, i.e. for givenw we will
need a reference value to solve this system uniquely.

2.3 Linear systems

In the previous subsections three linear systems were derived

Γv = i, (2.10)

Ai = s, (2.11)

AT w = v. (2.12)

Our aim is to solve these systems and determine the value of the variablesi,v andw. Many of the circuits
Magma analyzes are extremely large, so the matrices in these linear systems are similarly large. Therefore
numerical methods must be used for solving the systems. One way of simplifying these equations is the
substitution of (2.12) into (2.10)

ΓAT w = i. (2.13)

Multiplying both sides of (2.13) withA makes it possible to substitute (2.11) into (2.13)

AΓAT w = s =⇒ Gw = s, (2.14)

with G = AΓAT . This matrixG can also be determined in a direct way.

Theorem 2.3.1. Every matrixG of the formG = AΓAT , with A an incidence matrix andΓ a positive
diagonal matrix, can be constructed as

G(i, i) =
∑
jq

γjq
for jq ∈ {jp | ∃k, k 6= i, jp ∈ J(i, k)}, (2.15)

G(i, k) =
∑
jq

−γjq
for jq ∈ J(i, k), i 6= k, (2.16)

with J(i,k) the set of branches connecting nodei and nodek.

13

Proof. G is ann × n matrix, so that suggests that its information in thei-th row and thek-th column is
related to the interaction between nodei and nodek. We can calculateG(i, k)

G(i, k) =
b∑

p=1

b∑
q=1

aipγpqaqk
T

=
b∑

p=1

aipγppakp.

If nodei is not directly connected to nodek, i.e. if J(i, k) = ∅, we knowaipakp = 0, because ifaipakp 6= 0
would imply aip = ±1 andakp = ±1. By definition, nodei would then be connected to nodek. So we
haveG(i, k) = 0 if node i and nodek are not directly connected. Next, assume nodei is connected
to nodek in the graph by branchesjq ∈ J(i, k). Thenaipakp = −1 if jp ∈ J(i, k) andaipakp = 0
otherwise. Hence,G(i, k) =

∑
jq
−γj for jq ∈ J(i, k), i 6= k. We know thatG(i, i) =

∑b
p=1 a2

ipγpp,

anda2
ip is either equal to 0 or equal to 1, sinceA only contains the numbers 0, 1 and -1. Soa2

iqγqq = γqq

if aiq = ±1, or in other words, if there exists ak such thatjq ∈ J(i, k). So G(i, i) =
∑

jq
γjq

for
jq ∈ {jp | ∃k, k 6= i, jp ∈ J(i, k)}.

As an example, we show matrixG for the circuit in Figure 2.1

G =

γa + γb −γa −γb 0 0
−γa γa + γc + γe + γg −γc −γe −γg

−γb −γc γb + γc + γd −γd 0
0 −γe −γd γd + γe + γf −γf

0 −γg 0 −γf γf + γg

 .

2.4 Matrix properties

In this section some properties of matrixG will be discussed. Matrix properties such as being symmetric,
positive definite and diagonally dominant are important for choosing the appropriate solving method. First,
we will give some definitions.

Definition 2.4.1. An n× n matrixB is symmetricif and only if

B = BT . (2.17)

Definition 2.4.2. A realn×n symmetric matrixB is positive semi-definiteif for all nonzerox ∈ Rn holds
thatxT Bx ≥ 0. B is positive definiteif the inequality strictly holds.

Clearly, matrixG is symmetric. If we takex ∈ Rn,x 6= 0 we see that

xT Gx = (Gx,x) = (AΓAT x,x) = (ΓAT x, AT x) = (Γy,y) = yT Γy ≥ 0, (2.18)

becauseΓ is a diagonal matrix with positive nonzero entries on the diagonal. SoG is positive semi-definite.
However, sinceKer(A) 6= ∅, G is not positive definite (Ge = 0 for e = {1, 1, . . . , 1}) . The rank ofA
is n − p, with p the number of disjoint parts of the graph. We assume that the graph is connected, i.e. the
rank ofA equalsn− 1. If we remove one row, say rowi, from A and call the new matrix̃A, then the rank
of Ã is alson − 1, soÃ is non-singular. This means thatAx 6= 0 for all x ∈ Rn−1,x 6= 0 . Clearly, the
i-th row andi-th column ofΓ have to be removed to keep consistency withA. TakeΓ̃ the modified matrix
Γ, thenG̃ = ÃΓ̃ÃT and we have forx ∈ Rn−1,x 6= 0

xT G̃x = (Γ̃ÃT x, ÃT x) = yT Γ̃y > 0,

sinceΓ̃ is positive definite andy = Ãx 6= 0. The new system is

G̃w̃ = s̃. (2.19)

14

A physical interpretation of removing thei-th row and thei-th column is grounding nodei, sowi = si = 0.

A general matrixB can be represented by agraph. A connection from pointi to j is a nonzero entry
for B(i, j). We call a graphconnectedif there is a path from an arbitrary point to every other point.

Definition 2.4.3. A matrix B is reducibleif its graph is not connected, andirreducibleotherwise [29].

Definition 2.4.4. A matrix B is diagonally dominantif

|B(i, i)| ≥
n∑

j=1,j 6=i

|B(i, j)|, (2.20)

B is strictly diagonally dominantif the inequality is strict, i.e. if the≥ is replaced by>. B is irreducibly
diagonally dominantif B is irreducible and diagonally dominant, with a strict inequality for at least onei.

We will now define some special types of matrices.

Definition 2.4.5. An n × n matrix B is an L-matrix if bii > 0, i = 1, . . . , n, and bij ≤ 0, i, j =
1, . . . , n, i 6= j.

Definition 2.4.6. An n×n matrixB is anM-matrix if B is a non-singular L-matrix and all elements ofB−1

are non-negative.

The fact thatG̃ is an L-matrix is quite clear, but just by using Definition 2.4.6 we will not be able to show
thatG̃ is an M-matrix. We will need the following Theorem

Theorem 2.4.7.An irreducibly, diagonally dominant L-matrix is an M-matrix [29].

Using this theorem, we can now conclude thatG̃ is an M-matrix. This property will be of importance in
the next section. In the remaining part of this thesis we will omit the superscript of (2.19).

15

16

Chapter 3

Solution methods

The linear system that has to be solved (2.19) was constructed in the previous section, now we will discuss
some solution methods. The matrixG is symmetric positive definite and the most common used method
for these matrices is the Conjugate Gradient method or a variant of it. This method and its variants will be
discussed in this section.

3.1 Conjugate Gradient method

3.1.1 Steepest Descent method

The Conjugate Gradient method(CGM) is actually a “smart” way of formulatingthe Steepest Descent
method(SDM), but before we will discuss these methods we take another look at the problem

Gw = s. (3.1)

This is equivalent to finding the minimum ofϕ(w) for

ϕ(w) =
1
2
wT Gw −wT s, (3.2)

sinceϕ is a convex functional and∇ϕ(w) = Gw− s. Hence, solving∇ϕ(w) = 0 is equivalent to solving
(3.1). SDM uses the fact thatϕ changes fastest in a direction that is opposite to its gradient. This suggests
the following iteration

wk+1 = wk − αk∇ϕ(wk),

for a smart chosenαk. We can define the residualrk of approximationwk by

rk = s−Gw.

By taking

αk =
rT

k rk

rT
k Grk

,

we minimizeϕ(wk + αkrk).

Lemma 3.1.1.

rT
k rk+1 = 0 for all k ≥ 0. (3.3)

17

Proof. Proof: Takek ≥ 0. Then

rT
k rk+1 = rT

k s− rT
k Gwk − αkrkArk

= rT
k s− rT

k Gwk −
rT

k rk

rT
k Grk

rkGrk

= rT
k s− rT

k Gwk − rT
k (s−Gwk)

= 0.

Algorithm 1 Steepest Descent
w0 = 0
r0 = s
for k = 0, 1, . . . do

αk = (rk, rk)/(rk, Grk)
wk+1 = wk + αkrk

rk+1 = s−Gwk+1

if rk+1 < ε then
break

end if
end for

We can now formulate the Steepest Descent method in Algorithm 1. The SDM leads to convergence for
any non-singular symmetric positive definite matrix, but the convergence speed can be rather slow. The
search direction is equal to the direction of the negative gradient. The algorithm doesn’t use all previous
search directions, only the last one, so it is possible that two different search direction are taken over and
over again. If the information of all preceding search directions is stored the efficiency of the algorithm is
improved. This is the basis of the CGM.

3.1.2 Search Directions

To store all previous search directions we introduce the vectorpk, defined by

pk = rk +
k−1∑
i=0

ηk,iri. (3.4)

This gives a new iterative relation forwk

wk+1 = wk + αkpk.

We can findα by minimizing the search direction in one dimension, giving

αk =
pT

k rk

pT
k Gpk

.

We find for the residual

rk+1 = rk − αkGpk.

If we now use the property of (3.3) for (3.4) we get

pT
k rk+1 = pkrk − αkpT

k Gpk = 0. (3.5)

18

If now rirk+1 = 0 for all 0 ≤ i ≤ k − 1 we see that

rT
k rk+1 = pT

k rk+1 −
k−1∑
i=0

ηk,irT
i rk+1 = 0.

So all residuals are mutually orthogonal if we find a set{ηk,0, . . . , ηk,k−1} such thatrT
i rk + 1 = 0 for all

0 ≤ i ≤ k − 1. Now we will prove that there is such a set. Take

rT
j rk+1 = rT

j rT
k − αkrT

j Gpk = −αkrT
j Grk − αk

k−1∑
i=0

ηk,irT
j Gri.

Now compose the matrixRk−1 by usingr0 to rk−1 as its columns. Then

rT
j rk+1 = 0, 0 ≤ j ≤ k − 1,

is equivalent to

RT
k−1GRk−1(ηk,0, . . . , ηk,k−1, 1)T = −RT

k−1Grk. (3.6)

This last condition requiresαk to be nonzero. We know G is positive definite and non-singular, so
RT

k−1GRk−1 has the same properties. Therefore, (3.6) has an unique solution. Now we have to find
the coefficientsηk,i. To accomplish this we are going to need some lemma’s.

Lemma 3.1.2. If G is symmetric, then

rT
j Grk = 0. (3.7)

Proof.

rT
j Grk = rT

k Grj = rT
k G(pj −

j−1∑
i=0

ηj,iri)

=
1
αj

rT
k (rj − rj+1)−

j−1∑
i=0

ηj,irT
k Gri

= −
j−1∑
i=0

ηj,irT
i Grk.

Induction completes the proof.

Using this Lemma we can formulate a recurrent relation forηk,i. Takek ≥ 2 and0 ≤ j ≤ k − 2, then we
get

k−2∑
i=0

ηk−1,irT
j Gri + rT

j Grk−1 = 0.

Now multiplication of this equation by any nonzeroδ and substitution of (3.7) results into

k−2∑
i=0

δηk−1,irT
j Gri + δrT

j Grk−1 + rT
j Grk = 0.

If we takeδ = ηk,k−1 we find the recurrence relation

ηk,i = ηk,k−1ηk−1,i 0 ≤ i ≤ k − 2.

19

Lemma 3.1.3. If G is symmetric, the search directions satisfy

pk = rk + ηk,k−1pk−1. (3.8)

Proof.

pk = rk +
k−1∑
i=0

ηk,iri = rk + ηk,k−1(rk−1 +
k−2∑
i=0

ηk−1,iri) = rk + ηk,k−1pk−1.

So the recent search directions can be found using only the previous search directions. This saves a lot of
computing time. We can determine parameterηk,k−1 by requiring thatpT

k−1rk+1 = 0. This gives

γk,k−1 = −
pT

k−1Grk

pT
k−1Gpk−1

.

Lemma 3.1.4. The search directions satisfy

pT
j Gpi = 0, i 6= j. (3.9)

Proof.

pT
j ri+1 = pT

j ri − αkpT
j Gpi.

We see thatpT
j ri+1 = pT

j ri = 0. This completes the proof.

This lemma explains why this method is called the Conjugate Gradient method: the search directions are
perpendicular with respect to the inner product

[pj ,pi]G = pT
j Gpi. (3.10)

To improve the computation speed, we can reformulate the expressions forαk andηk,k−1 by

αk =
rT

k rk

pT
k Gpk

,

ηk,k−1 =
rT

k rk

rT
k−1rk−1

.

Since the algorithm doesn’t useηk,0, . . . , ηk,k−2 we can defineβk−1 = ηk,k−1. Algorithm 2 uses the
theory above to solve (3.1)

Algorithm 2 Conjugate Gradient
w0 = 0
r0 = s
for k = 1, 2, . . . do

ρk−1 = (rk−1, rk−1)
if k = 1 then

pk = r0

else
βk−1 = ρk−1/ρk−2

pk = rk−1 + βk−1pk−1

end if
qk = Gpk

αk = ρk−1/(pk, qk)
wk = wk−1 + αkpk

rk = rk−1 − αkqk

if ||rk||2 < ε then
break

end if
end for

20

3.2 Cholesky Factorization

Another way of solving the system (3.1) is to solve it directly using aCholesky decomposition, which is
the symmetric version of the LU-decomposition. BecauseG is a symmetric M-matrix the decomposition

G = LLT , (3.11)

with L a lower triangular matrix, is always possible and unique with positive diagonal elements ([6]). The
system can then be solved by calculating consecutively

Ly = s,

LT z = y.

The algorithm to calculate the elements ofL is described in Algorithm 3.

Algorithm 3 Cholesky factorization (CF)
for j = 1, . . . , n do

`jj =

√√√√gjj −
j−1∑
k=1

(ljk)2

for i = j + 1, . . . , n do

`ij = 1
`jj

√√√√gij −
j−1∑
k=1

likljk

end for
end for

For complete Cholesky factorization the sparsity pattern of theL matrix is generally not equal to that of the
lower diagonal matrix of G. We see that`ij 6= 0 if gij 6= 0 or `ik`jk 6= 0 for somek < i, j. The nonzero
elements̀ ij are calledfill-in if gij = 0.

The physical dimension ofG is siemens, so the dimension ofL is
√

siemens, which is unsuitable for
we want a dimensionlessL (the reason is discussed later in this chapter). A good alternative is to use the
factorizationG = LDLT , which can be derived quite simply. If we demandL to be a lower triangular
matrix with the unity vector on the diagonal andD to be a diagonal matrix we get

G = LDLT .

gij =
n∑

k=1

n∑
p=1

`ikdkp`
T
pj

=
n∑

k=1

`ikdkk`T
kj

=
j∑

k=1

`ikdkk`jk,

21

for i ≥ j, becausèij = dij = 0 by definition if j > i. We get

gjj =
j∑

k=1

`jkdkk`jk

= `2jjdjj

j−1∑
k=1

`2jkdkk

= djj

j−1∑
k=1

`2jkdkk

=⇒ djj = gjj −
j−1∑
k=1

(`jk)2dkk,

and

gij =
j∑

k=1

`ikdkk`jk

=
j−1∑
k=1

(`ikdkk`jk) + `ijdjj`jj

=
j−1∑
k=1

(`ikdkk`jk) + `ijdjj

=⇒ `ij =
1

djj
(gij −

j−1∑
k=1

`ikdkk`jk).

Algorithm 4 Left-looking diagonal Cholesky factorization (LLDCF)
for j = 1, . . . , n do

`jj = 1

djj = gjj −
j−1∑
k=1

(`jk)2dkk

for i = j + 1, . . . , n do

`ij = 1
djj

(gij −
j−1∑
k=1

`ikdkk`jk)

end for
end for

Algorithm 4 is a backward factorization, because it uses elements in the matrix that are already processed.
This algorithm is correct, but the construction of the matricesL and D can be done using much less
computer time. Consider Algorithm 4; we need to do a summation of some previous found entries for
every new entry. If we look, for example, at the off-diagonal elements, then for every new element we need
to look back at the values of`1i and`1j . So it is more efficient to put the information of`1i and`1j inside
the entries of̀ ij , i, j > 1 at the moment̀1i and`1j are determined. Algorithm 5 is based on this, it stores
almost all the information needed to determine a certain entry before the entry is in fact determined. Take
a[i, j] to be an array, with initiallya[i, j] = gij for all i, j = 1 . . . n.

Theorem 3.2.1.The output of Algorithm 5 isa[j, j] = djj anda[i, j] = `ij for all i, j = 1 . . . n, i > j.

Proof. We use the invariantP (p) ≡ P1(p, p) ∧ P2(p, p) ∧Q1(p) ∧Q2(p), with

22

• P1(p, q) ≡ {∀i∀j, p ≤ j < i : a[i, j] = gij −
q−1∑
k=1

`ikdkk`jk}.

• P2(p, q) ≡ {∀i, i ≥ p : a[j, j] = gjj −
q−1∑
k=1

`2jkdkk}.

• Q1(p) ≡ {∀i∀j, j < p, j < i : a[i, j] = `ij}.

• Q2(p) ≡ {∀j, j < p : a[j, j] = dij}.

If we now prove thatP (1) holds and that ifP (p) holds alsoP (p + 1) holds we can use induction to proof
thatP (n) holds.

P (1):

• P1(1, 1) : {∀i∀j, 1 ≤ j < i : a[i, j] = gij} holds.

• P2(1, 1) : {∀j, j ≥ 1 : a[j, j] = gjj } holds.

• Q1(1) : { true}

• Q2(1) : { true}

So we haveP (1). Say we haveP (p):

• P1(p, p) ≡ {∀i∀j, p ≤ j < i : a[i, j] = gij −
p−1∑
k=1

`ikdkk`jk}.

• P2(p, p) ≡ {∀i, i ≥ p : a[j, j] = gjj −
p−1∑
k=1

`2jkdkk}.

• Q1(p) ≡ {∀i∀j, j < p, j < i : a[i, j] = `ij}.

• Q2(p) ≡ {∀j, j < p : a[j, j] = dij}.

Then

• Q2(p + 1) ≡ {∀i∀j, j < p + 1, j < i : a[i, j] = `ij}. SinceQ2(p) before iterating we only need

a[p, p] = dpp. We haveP2(p, p), soa[p, p] = gpp −
p−1∑
k=1

`2pkdkk = dpp.

• Q1(p + 1) ≡ {∀i∀j, j < p + 1, j < i : a[i, j] = `ij}. SinceQ1(p) before iterating we only need

a[i, p] = `ip. We haveP1(p, p) soa[i, p] =
a[i, p]
a[p, p]

=
1

dpp
(gip −

p−1∑
k=1

`ikdkk`pk) = `ip

• P1(p + 1, p) andP2(p + 1, p) follow directly fromP1(p, p) andP2(p, p), respectively.

• P2(p + 1, p + 1) ≡ {∀j, j ≥ p + 1 : a[j, j] = gjj −
p∑

k=1

`2jkdkk}. We knowP2(p + 1, p) halfway,

so ∀j, j ≥ p + 1 : a[j, j] = gjj −
p−1∑
k=1

`2jkdkk. Thena[j, j] = a[j, j] − a[j, p]2a[p, p] = gjj −

p−1∑
k=1

(`2jkdkk)− `2jndpp = gjj −
p∑

k=1

`2jkdkk. This is true for allj ≥ p + 1, soP2(p + 1, p + 1) holds.

23

• P1(p + 1, p + 1){≡ ∀i∀j, p + 1 ≤ j < i : a[i, j] = gij −
p∑

k=1

`ikdkk`jk}. We knowP1(p +

1, p) halfway, so∀i∀j, p + 1 ≤ j < i : a[i, j] = gij −
p−1∑
k=1

`ikdkk`jk. Thena[i, j] = a[i, j] −

a[i, p]a[p, p]a[j, p] = gij −
p−1∑
k=1

(`ikdkk`jk) − `ipdpp`jp = gij −
p∑

k=1

`ikdkk`jk. This is true for all

i, j, p + 1 ≤ j < i, soP1(p + 1, p + 1) holds.

So givenP (p) we haveP (p + 1). This concludes the proof.

Algorithm 5 Right-looking Diagonal Cholesky Factorization (RLDCF)

{P (0)}
for p = 1, . . . , n do
{P (p)}
for i = p + 1, . . . , n do

a[i, p] =
a[i, p]
a[p, p]

end for
{Q1(p + 1) ∧Q2(p + 1) ∧ P1(p + 1, p) ∧ P2(p + 1, p)}
for j = p + 1, . . . , n do

a[j, j] = a[j, j]− a[j, p]2a[p, p]
for i = j + 1, . . . , n do

a[i, j] = a[i, j]− a[i, p]a[p, p]a[j, p]
end for

end for
{Q1(p + 1) ∧Q2(p + 1) ∧ P1(p + 1, p + 1) ∧ P2(p + 1, p + 1)} =
{P (p + 1)}

end for
{P (n)}

Now the factorization is forward, since the information is of the current element is put in elements that are
not visited yet. We haveG = K = LDLT , so solvingKz = r can be done by solving successively

Lx = r,

Dy = x,

LT z = y.

3.3 Preconditioned Conjugate Gradient method

The CGM converges fast for matrices that are well conditioned or have a few distinct eigenvalues. How-
ever, this is not generally the case. Using the Cholesky decomposition, the system will be solved directly
without iteration steps, but the number of nonzero element might be too big to be used in the memory of a
computer. The solution is to combine both methods, by means of transformation of the linear system. The
transformed system has the same solution, but is easier to solve using an iterative solver. This process is
calledpreconditioning.

Preconditioning techniques for the CGM involve a preconditioner matrixK. What we basically do is
find a K such thatKw = s is easier to solve.K is symmetric positive definite, so we can define the
K-inner product

[x,y]K ≡ (Kx,y) = (x,Ky). (3.12)

24

If we rewrite the algorithm of the CGM for this inner product, and we use the new residualKzj = rj we
find the Preconditioned Conjugate Gradient method.

Algorithm 6 Preconditioned Conjugate Gradient
w0 = 0
r0 = s
for k = 1, 2, . . . do

SolveKzk−1 = rk−1

ρk−1 = (rk−1, zk−1)
if k = 1 then

pk = z0

else
βk−1 = ρk−1/ρk−2

pk = zk−1 + βk−1pk−1

end if
qk = Gpk

αk = ρk−1/(pk, qk)
wk = wk−1 + αkpk

rk = rk−1 − αkqk

if ||rk||2 < ε then
break

end if
end for

3.4 Search for the right preconditioner

The Preconditioned Conjugate Gradient algorithm is formulated above, but we still lack a preconditioner
matrix. Several suitable matrices will be discussed in this section.

3.4.1 Incomplete Cholesky factorization

In Algorithm 3 the complete Cholesky factorization is shown. We can get anincomplete Cholesky factor-
izationby neglecting all values outside the sparsity pattern. This is shown in Algorithm 7.

Algorithm 7 Incomplete Cholesky factorization (ICF)
for j = 1, . . . , n do

`jj =

√√√√gjj −
j−1∑
k=1

(ljk)2

for i = j + 1, . . . , n do
if gij = 0 then

`ij = 0
else

`ij = 1
`jj

√√√√gij −
j−1∑
k=1

likljk

end if
end for

end for

All fill-in is neglected, so the memory needed for the preconditioner matrix is equal to the memory needed
for the original matrix.

25

3.4.2 Standard incomplete Cholesky factorization

Van der Vorst ([23],[30]) suggested the use of the standard incomplete Cholesky factorization. TakeG =
L + diag(G) + LT , for which L is now a strictly lower triangular matrix. Then we are looking for the
preconditioner

K = (L + D)D−1(D + LT). (3.13)

The diagonal matrixD can be found using the condition

diag(G) = diag(K). (3.14)

TakeL + D = C, then

kij =
n∑

p=1

n∑
q=1

cip
1

dpq
cT
qj

=
i∑

p=1

cipcjp
1

dpp
,

=⇒ kii =
i∑

p=1

c2
ii

1
dpp

= c2
ii

1
dii

+
i−1∑
p=1

c2
ii

1
dpp

.

Sincecii = dii, cij = gij for i > j, andkij = gij we find the following relation to determinedii

dii = gii −
i−1∑
p=1

a2
ip

dpp
. (3.15)

If we now use the same strategy we did to find Algorithm 5, we get Algorithm 8.

Algorithm 8 Right-looking standard incomplete Cholesky factorization (RLSICF)
for p = 1, . . . , n do

for j = p + 1, . . . , n do

a[j, j] = a[j, j]− a[j, p]2

a[p, p]
end for

end for

Gustafsson ([13]) came up with the modified incomplete Cholesky factorization, which is the standard
factorization we used just before, but with the additional condition

Rowsum(G) = Rowsum(K). (3.16)

Using similar techniques as for (3.14) we find

dii = gii −
i−1∑
p=1

n∑
j=p+1

aipajp

dpp
.

Using the forward method we get Algorithm 9.

26

Algorithm 9 Right-looking modified incomplete Cholesky factorization (RLMICF)
for p = 1, . . . , n do

for j = p + 1, . . . , n do
for i = p + 1, . . . , n do

a[j, j] = a[j, j]− a[j, p]a[i, p]
a[p, p]

end for
end for

end for

In response to Gustafssons modified method, Van der Vorst ([30]) saw the coherence between the two
previous factorizations and introduced a parameterδ. If δ = 0, we have the standard factorization, and if
δ = 1 we have the modified factorization. Basically this means that for Algorithm 9 we multiply the term
a[j,p]a[i,p]

a[p,p] with δ if j 6= i. This is implemented in Algorithm 10.

Algorithm 10 Right-looking modified incomplete Cholesky factorization (δ) (RLMICFD)
for p = 1, . . . , n do

for j = p + 1, . . . , n do
for i = p + 1, . . . , n do

if i = j then

a[j, j] = a[j, j]− a[j, p]a[i, p]
a[p, p]

else

a[j, j] = a[j, j]− δ
a[j, p]a[i, p]

a[p, p]
end if

end for
end for

end for

3.4.3 Drop tolerance

Currently, Magma is working with the factorization ofG described in Algorithm 5, with a certain adjust-
ment to reduce amount of fill-in, which is calleddrop tolerance. Drop tolerance means that we choose a
certain thresholdε, and we only update a value ofa[i, j] if a[i, j] 6= 0 or if the update is larger thanε.

Algorithm 11 Right-looking diagonal Cholesky factorization with drop tolerance (FDCFDT)
for p = 1, . . . , n do

a[p, p] = a[p, p]
for i = p + 1, . . . , n do

a[i, p] =
a[i, p]
a[p, p]

end for
for j = p + 1, . . . , n do

a[j, j] = a[j, j]− a[j, p]2a[p, p]
for i = j + 1, . . . , n do

if a[i, j] 6= 0 or a[i, p]a[p, p]a[j, p] > ε then
a[i, j] = a[i, j]− a[i, p]a[p, p]a[j, p]

end if
end for

end for
end for

27

Since we wantε to be dimensionless it is important that the values ofL are also dimensionless.

3.5 Solver problems

The Algorithms 6 and 11 form the basis of the current solver. The variableε represents a connection be-
tween the number of iteration steps and the number of fill-in elements. A smallε results in a small amount
of iteration steps, but almost complete fill-in, while a largeε results in little fill-in, but many iteration steps.
For the current, already quite large threshold the number of fill-in elements can swamp the memory if a
very large design is analyzed. This is fatal for the performance of the solver. Therefore Magma needs a
method that either reduces the number of iterations (so a largeε can be chosen) or reduces the number
of fill-in elements (so a smallerε can be chosen), or does both. A third option is to exploit parallelism.
Parallelism means that the system is solved using multiple processors. This can only be done if the data
that is solved by one processor is independent of the data solved by all other processors at that time.

In the next section and coming chapters several methods will be discussed that may have one of the follow-
ing results:

• Reduction of the number of fill-in elements.

• Reduction of the number of iteration steps.

• Parallelism.

3.6 Solution methods

Inspired by the factorizations of Van der Vorst and Gustafsson, we made a factorization with drop tolerance
using a combination of the properties (3.14) and (3.16).

Algorithm 12 Right-looking diagonal Cholesky factorization with drop tolerance (θ) (RLDCFDTT)
for p = 1, . . . , n do

a[p, p] = a[p, p]
for i = p + 1, . . . , n do

a[i, p] =
a[i, p]
a[p, p]

end for
for j = p + 1, . . . , n do

a[j, j] = a[j, j]− a[j, p]2a[p, p]
for i = j + 1, . . . , n do

if a[i, j] 6= 0 or a[i, p]a[p, p]a[j, p] > ε then
a[i, j] = a[i, j]− a[i, p]a[p, p]a[j, p]

else
a[i, i] = a[i, i]− θa[i, p]a[p, p]a[j, p]
a[j, j] = a[j, j]− θa[i, p]a[p, p]a[j, p]

end if
end for

end for
end for

These ideas might also give one of the three results described in the previous section

• Saad’s idea to allow only theµ biggest nonzero entries per row. This can be used without or in
combination with the drop tolerance.

28

• Instead of adjustingD so that thediag(K) = diag(G) during the factorization, adjust them after
the process.

• Find a permutation of matrixG. This process is called matrix ordering .

The first two ideas gave rather disappointing results. The third however appeared to be a lively and widely
studied topic during the last decades. We will discuss matrix ordering during the next three chapters.

29

30

Chapter 4

Matrix Ordering

In the previous section we discussed some factorization methods to generate a suitable preconditioner ma-
trix for the PCG-method. Now we look for methods to reduce the numbers of nonzero elements in matrix
L. This can be achieved by reordering the matrixG.

Our aim is to find a permutation matrixP such thatPGP = L̃D̃L̃T and the number of nonzero elements
of L̃ is minimized. Unfortunately, finding such a permutation matrixP is NP-complete [8]. Therefore
we need to use heuristics. The best known heuristics are the Minimum Degree ordering, the indexReverse
Cuthill-McKee ordering Reverse Cuthill-McKee ordering, and the Nested Dissection ordering. These or-
dering methods will be discussed in the following chapters.

4.1 The benefits of ordering

We will underline the importance of ordering by using an example: in Algorithm 5 we see thata[i, j]
changes if botha[i, p] anda[j, p] are nonzero elements. So ifa[i, j] was initially zero, we now have to
store an extra element. We called those new nonzero elementsfill-in . However, for almost every matrix it
is possible to reduce most fill-in by reorganizing the matrix. As an example, look at the following (arrow)
matrix (in which thex represent a nonzero matrix value) and its Choleskey factor below.

G =

x x x x x
x x 0 0 0
x 0 x 0 0
x 0 0 x 0
x 0 0 0 x

 , L =

x 0 0 0 0
x x 0 0 0
x x x 0 0
x x x x 0
x x x x x

 .

The matrixL has maximum fill-in. If we now use a permutation that switches row and column 1 with row
and column 5 and row and column 2 with row and column 4 we see that there is no fill-in created at all.

G =

x 0 0 0 x
0 x 0 0 x
0 0 x 0 x
0 0 0 x x
x x x x x

 , L =

x 0 0 0 0
0 x 0 0 0
0 0 x 0 0
0 0 0 x 0
x x x x x

 .

This example shows that an ordering can reduce the number of nonzero elements that need to be stored
significantly. However, since most circuit matrices are very large and quite strongly connected we have to
come up with algorithms to order them. The table below gives an idea of the impact of ordering and shows
the importance to choose an appropriate ordering algorithm.

31

Table 4.1: Nonzero elements of the complete Cholesky factor of testcase3 for several orderings.

Ordering Nonzero elements ofL

MINOLD 1,657,581
Matlab AMD 196,738

METIS oemetis 244,233
Matlab RCM 746,314

MINOLD is the current ordering Magma is using. AMD stands for Approximate Minimum Degree and
RCM stands for Reverse Cuthill-McGee. METIS ([18]) is a software package of the University of Min-
nesota. These algorithms are mainly based on the graph representation of the matrix, so this representation
will be discussed in the next section.

4.2 Graph representation

Symmetric matrices have perfectly clear graph representations. AssumeF is the graph of matrixG, F =
(V,E), with nodevi ∈ V represents thei-th column/row, and edgeeij ∈ E represents a nonzero value in
row i and columnj. We define the nodes adjacent tovi by

Adj(vi) := {vj ∈ V | eij ∈ E}, (4.1)

and the adjacent set of a setX by

Adj(X) := {vj ∈ V \X | eij ∈ E for some vi ∈ X}. (4.2)

The degree of a node, denoted bydi, is defined by

di := |Adj(vi)|. (4.3)

Another useful set is the reach of a nodevi through a setX, denoted byReach(vi, X)

Reach(vi, X) := {vj /∈ X | vj , vi ∈ Adj(X), vj 6= vi}. (4.4)

Our goal is to find a permutationπ = {π1, π2, . . . , πn}, so first we label nodevπ1 , thenvπ2 etc. The
creation of fill-in goes analogously to the matrix problem; if nodevi is connected to the nodesvk and
vj with no connection between the last two nodes, an edge is created betweenvk andvj if vi is labelled
first. We can useelimination graphsto describe the nonzero pattern of the submatrix after the labelling of
thek-th node. The initial elimination graphF 0 = (V 0, E0) is the original graph. After stepk we have
F k = (V k, Ek), and to constructF k+1 we choose a nodevi to label, and then remove it and all adjacent
edges from the graph. Next, all nodes adjacent to the eliminated node are fully connected with each other,
so, in other words, they form aclique. In Figure 4.1 a small circuit is shown as an elimination graph. The
figure also contains the elimination graphs after eliminating the nodes in the current order of labelling.

32

3

2

7

8

1

4

5

6

9

3

2

7

8
4

5

6

9

3

7

8
4

5

6

9

7 8
4

5

6

9 7 8

5

6

9 7 8

6

9

7

8

9

8

9

9

Figure 4.1: The elimination graphsF 0 . . . F 8 of a simple circuit.

The setAdj(vi)F k represent the adjacent nodes ofvi in the elimination graphF k. Each node has ascore
function, a valuescore(vi). A possible way to determine the node to be eliminated next is a node with
score(vi) ≤ score(vj), vj ∈ V k.

There are two types of ordering algorithms: local ordering algorithms and global ordering algorithms.
Local ordering algorithms use graphs like elimination graphs, the nodes are chosen one at the time and
after each elimination the next node is chosen by some metric, in most cases the score function. Global
ordering methods use the structure of the graph and try to minimize the interaction between the nodes by
separating them.

Before we discuss the different ordering methods we look at the structure of a matrix before ordering,
and the same matrix ordered with the current ordering method MINOLD. Such a matrix, testcase1, and its
L matrix are shown in Figures 4.2 and 4.3. All nonzero elements are coloured and all elements that are
zero are blank.

33

Figure 4.2: Sparsity pattern of testcase1 and its Cholesky factor with a random ordering.

Figure 4.3: Sparsity pattern of testcase1 and its Cholesky factor with the ordering MINOLD.

The problems with fill-in are in the bottom right corner of the matrix. The figures of the MINOLD ordering
show the problem with elimination graphs. If a node is eliminated, all his neighbours form a clique.
Consequently, removingdi edges can lead to adding(d2

i − di)/2 edges in the worst case. So handling
nodes with large degree is very consuming for both time and memory. Therefore MINOLD only handles
nodes below a certain degree, as you can see in Figure 4.3. How the problem with elimination graphs can
be solved is described in the next chapter.

34

Chapter 5

Local ordering algorithms

In this chapter we will discuss several local ordering methods that are known for reducing fill-in. With an
historical overview we highlight the most important improvements of the past decades that lead to efficient
local orderings.

5.1 Minimizing fill-in; The Minimum Fill Ordering

Our objective is to find a labelling of the graph that results in the least fill-in for the (incomplete) Cholesky
factorL. The most intuitive way to get such a labelling is to calculate for every node exactly how much
fill-in will appear if the node is eliminated next. This is a local approach, since minimum fill-in per step
does not guaranty total minimum fill-in. The amount of fill-in is equal to the number of possible edges
between the adjacent nodes of the node we eliminate minus the number of edges already present between
the adjacent nodes. Mathematically this means

score(vi) = (d2
i − di)/2− |Υ| (5.1)

with

Υ = {ej` ∈ E | v` ∈ Adj(vi) ∧ vj ∈ Adj(vi)}

The method for which the fill-in is explicitly calculated is calledMinimum Deficiency orderingor Minimum
Fill ordering (MF). This method is very time-consuming, for comparisons have to be made for every
possible pairvj , v` ∈ Adj(vi) during every update. However, if we neglectΥ, we get an upper bound for
the amount of fill-in, since . This upper bound (ubscore) is

score(vi) = (d2
i − di)/2− |Υ| ≤ (d2

i − di)
2

= ubscore.

Since this is a monotonic function for positive integers we can also use justdi as an upper bound. The
method that uses the degree as a score function is calledMinimum Degree(MD).

5.2 Minimum Degree Ordering

The Minimum Degree ordering algorithm has been a very popular ordering algorithm for over 30 years.
There have also been multiple enhancements to speed up the algorithm ([10]), which will be discussed
later in this chapter. The algorithm simply chooses a nodevi in the graph for whichdi is the smallest
degree, and eliminates it from the elimination graph. Next, the elimination graph is updated and a new
node is chosen. This procedure is repeated until all nodes are eliminated. This version of MD is already
much faster than MF, but the elimination graphs still have a big drawback. In the previous section we
discussed that the upper bound of fill-in is calculated by(d2

i − di)/2, and that eliminating a node could

35

result (in the worst case scenario) into removingdi edges and adding(d2
i − di)/2. This means that during

the first part of the algorithm the number of edges can increase dramatically, which leads to unacceptable
high use of memory. A much more efficient way to model the elimination process is to usequotient graphs.

Quotient graphs consist of two kinds of nodes: unlabelled nodes (also referred to as supernodes) and
eliminated nodes (also referred to as elements). When a node should be labelled next it becomes an elim-
inated node, which remains in the graph. Two unlabelled nodes are adjacent if they are connected with an
edge or if they can reach each other through their eliminated neighbours. This way, no extra edges will be
formed, so there will be no need for extra memory.

The initial quotient graphF 0 = (V 0, V̄ 0, E0, Ē0) is the same as the initial elimination graph, because
V 0 = V andE0 = E, andV̄ 0 andĒ0 are empty.V k is the set of supernodes and̄V k is the set of elimi-
nated nodes after stepk. Ek is the set of edgesV k × V k andĒk is the set of edgesV k × V̄ k. For each
node, there are two extra interesting sets we should distinguish: all adjacent supernodes to nodevi (Ai),
and all adjacent eliminated nodes to nodevi (Ei). The basic MD algorithm with quotient graphs is given in
Algorithm 13.

Algorithm 13 MD with quotient graphs

1: V = {v1, . . . , vn}, N = |V |
2: E = {e1, . . . , em}, M = |E|
3: for i = 1 . . .M do
4: Pickei = (vj , vk). Aj = Aj ∪ vk, Ak = Ak ∪ vj .
5: end for
6: for i = 1 . . . N do
7: di = |Ai|
8: end for
9: while V 6= ∅ do

10: Pickvp with dp ≤ dj , vj ∈ V
11: Ap = (Ap ∪

⋃
vj∈Ep

Aj)\vp

12: for vj ∈ Ap do
13: Aj = Aj\vp

14: Ej = Ek ∪ vp ∪ Ep

15: dj = |Aj ∪
⋃

vk∈Ej
Ak|

16: end for
17: V = V \vp

18: end while

A visual example of quotient graphs is given later in this section in Figure 5.1. In addition to the use of
quotient graphs several methods have been thought of during the years to improve the runtime of MD. These
include mass elimination, graph compression, incomplete degree update, remove redundant edges, element
absorption, multiple elimination, tie-breaking pre-ordering, external degrees and approximate degrees. We
will discuss these enhancements next.

5.2.1 Mass elimination

George and McIntyre [11] observed that when a node is eliminated there is often a subset of nodes that can
be eliminated in the same elimination step. Ifvi is eliminated in stepk and we look at the subset

U = {vj ∈ Adj(vi)F k |(di)F k−1 = (dj)F k−1−1}, (5.2)

36

then all elements ofU can be eliminated right aftervi. These nodes appeared to beindistinguishablewith
respect tovi. Two nodesvi andvj ∈ V \X are indistinguishable if

Reach(vi, X) ∪ {vi} = Reach(vj , X) ∪ {vj}. (5.3)

In other words, a set of indistinguishable nodes form a clique. Since removing one node from a clique does
not generate any fill-in at all (all adjacent nodes are also adjacent to one another), all these nodes can be
eliminated right after each other in any order. If we merge indistinguishable nodes in one node, which we
will call a supernode, we encounter two advantages: we eliminate multiple nodes in one step, and we have
less nodes for which we need to calculate new degrees. Mass elimination means that after eliminating a
node we check its adjacency set for indistinguishable nodes, and each couple nodes are merged if they are
indistinguishable. The identification of supernodes can be done using the hash function

hashi =
∑

Ai +
∑

Ei mod N. (5.4)

If two nodes have the same hash value their adjacency list should be compared, and if they are the same they
should be merged. We choose one node as the source and one as the target. The source node is removed
from the graph and becomes a child of the target node, which we will write aschtarget = chtarget∪vsource.
We also define the cardinality of a nodevi as

|vi| = 1 + |chi|. (5.5)

The MD algorithm can be expanded with the supernode detection after the degree update

Algorithm 14 Hash-function initialization(vi) (in the second for loop)

hashi =
∑
Ai +

∑
Ei mod N

H(hashi) = H(hashi) ∪ vi

Algorithm 15 Supernode detection (after the third for loop)
for j = 0 . . . N − 1 do

if |H(j)| > 1 then
for eachvi ∈ H(j) do

for eachvk ∈ H(j), vk 6= vi do
if Ai ∪ vi == Ak ∪ vk then

chi = chi ∪ vk ∪ chk

V = V \vk,H(j) = H(j)\vk

Ak = ∅, Ek = ∅
end if

end for
end for

end if
end for
for j = 0 . . . N − 1 do

H(j) = ∅
end for

SinceN is very large for matrices that cause memory problems, the chance that we have a hash collision
for two neighbouring nodes is very small, and since we know they are neighbours and have at least one
element in common, the amount of extra fill-in generated by a bad collision is not that big. However,
skipping the second-if statement of Algorithm 15 will save quite some computing time.

5.2.2 Graph compression

In addition to mass elimination we look for indistinguishable nodes prior to the elimination process. This
addition works especially good for discretized problems with more then one solution component per grid
point. Because this is not the case for our problem we will not use compression in our implementation.

37

5.2.3 Incomplete degree update

Some nodes have high degree, it is not their turn to be eliminated by far, so we would like to skip their
degree updating, but how does the algorithm know when they come back in the field? The solution is the
outmatchingof nodes. A nodevj is outmatched byvi if

Reach(vi) ∪ {vi} j Reach(vj) ∪ {vj}. (5.6)

It is clear thatvj will never have a lower degree thenvi, so we don’t have to update the degree ofvj until
vi is eliminated.

5.2.4 Remove redundant edges

Some edges in the quotient graph are redundant, and therefore it would improve the performance of the
algorithm if they were removed. Take three nodes,vi, vj andvk, which are fully connected with each other.
If vk is eliminated,vi andvj are connected throughvk and with a direct connection. This direct connection
is redundant and can be removed. So instead of line 13 of Algorithm 13 we get

Aj = (Aj\Ap)\vp

5.2.5 Element absorption

Eliminated nodes are used to represent a clique between some of the nodes inV . But if all elements
remain part of the graph it is expensive to find all the reachable sets for those nodes. It is more efficient to
absorb adjacent elements, for the new adjacent element span the same adjacency list as the union of the old
adjacency list, so no information is lost. This method is calledelement absorption. We can replace line 14
of Algorithm 13 with

Ej = (Ej\Ep) ∪ vp

An extension of element absorption isaggressive element absorption, for which all elementsve, including
the ones not directly adjacent tovp, for which holds that

Ae\Ap = ∅, (5.7)

are merged intovp.

As an example, look in Figure 5.1 at the simple circuit from the previous chapter, shown as an quotient
graph. The figure also contains the quotient graphs after eliminating the nodes in the current order of la-
belling, using mass elimination, (aggressive) element absorption, and removal of redundant edges. The
large open circles represent elements.

38

3

2

7

8

1

4

5

6

9

3

2

7

8

1

4

5

6

9

3

2

7

8

1

4

5

6

9

3

2

7

8

1

4

5

6

9

7

8
4

5

6

9

7

8

5

6 9

Figure 5.1: The quotient graphsF 0 . . . F 5 of a simple circuit.

In the third picture, after the elimination ofv2, the edge between nodesv4 andv7 is redundant and should
be removed. Whenv4 is eliminated the adjacent elements (nodesv2 andv3) must be absorbed. However,
althoughv1 is not adjacent to nodev4, it does not give any additional information and should therefore
also be absorbed. This is an example of aggressive element absorption. Nodesv5, v7 andv8 form a clique
now, but we only check for supernodes inA4, so we merge nodesv5 andv7. After eliminating nodev5 the
remaining quotient graph is a clique, this will become one supernode and is the last node that is eliminated.

5.2.6 Tie-breaking pre-ordering

Large graphs imply many nodes with the same degree. Since the first node to be eliminated is the node
of the lowest degree with the lowest initial labelling it might be of importance how the matrix is ordered
prior to the elimination process. Two possible pre-ordering are random ordering and the Reversed Cuthill-
McKee ordering, which will be discussed later in this chapter.

5.2.7 External degrees

Liu came up with the idea to use external degrees instead of true degrees. External degrees of supernodes
are equal to the true degree minus the number of nodes merged into the supernode. Since supernodes form
a clique, no internal fill-in will be created, so external degrees form a tighter bound than true degrees.
Therefore, the degree update should be

dj = |Aj\vp|+ |
⋃

vk∈Ej

Ak\vp|. (5.8)

and we should add to the supernode routine in Algorithm 15

dj = dj − |vk|. (5.9)

5.2.8 Multiple elimination

If we eliminate a nodevi we need to calculate the degree of its neighbours. But if we find another node with
the same minimal degree to eliminate that is not a neighbour ofvi we can postpone updating the degrees.
So, in general we do

39

Gi = (Vi, Ei)
W = Vi

Eliminatevj ∈ W with score(vj) ≤ score(vk), vk ∈ W .
W = W (vj

⋃
Adj(vj))

while (∃vk ∈ W with score(vk) = score(vj)) do
Eliminatevk

W = W (vk

⋃
Adj(vk))

end while
This enhancement is known as multiple elimination, and the method, very popular between 1985 and 2000,
is known asMultiple Minimum Degree(MMD). Figure 5.2 shows the multiple minimum degree ordering
of the matrix testcase1 using the Matlab-orderingsymmmd. This figure shows that using the minimum
degree ordering leads to significant reduction of fill-in.

Figure 5.2: Sparsity pattern of testcase1 and its Cholesky factor ordered with symmmd.

5.2.9 Approximate degrees

Since the term degree is already a somehow loose upper bound for the amount of fill-in, it is not unlikely
to think that an approximation of the degree will give similar results but a better performance. This is what
Amestoy, Davis and Duff thought when they came up with theApproximate Minimum Degree ordering
algorithm (AMD) [1]. Instead of calculating the exact degreedi the approximate degreed−k

i is calculated.
We takep to be the node that is eliminated next and|vi| to be the weight of the current supernode. This
approximate degree is the minimum of three upper bounds for the degree. The first upper bound,ub1 =
n − k, is quite obvious. It is equal to the number of nodes left in the graph. The second bound,ub2 =
dk−1

i + |Ap\|vi||, is equal to the old degree plus the worst case fill-in. Clearly, ifd−k−1
i is an upper bound,

ub2 is also an upper bound. For the third bound,ub3 = |Ai\|vi|| + |Ap\|vi|| +
∑

e∈Ei\p |Ae\Ap|, we
calculate the number of directly adjacent nodes, the number of adjacent nodes through the new element,
and the number of nodes through other elements that are not present in the current element. All nodes
adjacent to the current node are counted, soub3 is an upper bound. This gives the approximate degree

d−k
i = min

n− k,

d−k−1
i + |Ap\|vi||,
|Ai\|vi||+ |Ap\|vi||+

∑
e∈Ei\p |Ae\Ap|.

(5.10)

The calculation of the term|Ae\Ap| can be done in an efficient way. Every element has a certainw-value,
that is -1 at the start of each iteration step. After the formation ofAi all nodes in this set are visited (vj),

40

and for all these neighbours all adjacent elements are visited. If such an elemente has awe of −1, the
value is set towe = |Ae|. Thenwe = we − |vj |. After all neighbouring nodes are visited we have

we = |Ae\Ap| (5.11)

Clearly,wp = 0. If we = −1 the element is not visited, so we will not need it for the degree update.

Theorem 5.2.1.The approximate degreed−k
i is equal todi if —Ei| ≤ 2.

Proof. Initially, if — Ei| = 0 for all i, d0
i = di. Assume we update the degree of a nodevi with |Ei| = 1.

Then the only possible adjacent element is the current eliminated nodevp and
∑

e∈Ei\p |Ae\Ap| = 0, so

d−k
i = di. Assume now we update the degree of a nodevi with |Ei| = 2. Then there is one additional

element besidesvp in Ei, sayvq. The degree ofvi is equal to the number of nodes adjacent to it plus the
number of nodes that can be reached throughvp plus the number of nodes that can be reached throughvq

without the nodes adjacent tovp. This is exactlyd−k
i , sod−k

i = di.

The following example (Figure 5.3) shows that the equationd−k
i = di is no longer always valid if|Ei| > 2.

3

2

78

1

4

5

6
9

10

11
12

Figure 5.3: Example of a quotient graph in whichd−k
4 > d4.

Nodev3 is the node that is just eliminated. If we want to calculated−3
4 we needd−2

4 , sayd−2
4 = 5 (the

minimum value possible). We find thatd4 = 6, since the adjacent nodes arev5, v6, v7, v8, v10 andv12.
ub1 = 12 − 3 = 9 andub2 = 5 + 2 = 7. Forub3 we need all adjacent nodes (v12), all nodes reachable
throughv3 (v8 and v10), all nodes reachable troughv1 that are not adjacent tov3 (v5 and v6) and all
nodes reachable troughv2 that are not adjacent tov3 (v6 andv7). Note that nodev6 is counted twice. So
ub3 = 1 + 2 + 2 + 2 = 7 andd−3

4 = min(9, 7, 7) = 7 > 6 = d4.

5.2.10 MADAND(AMD)

AMD is considerably faster than MMD, and a combination is not very suitable due to the method of calcu-
lating the approximate degree ([1]). For the same reason we do not use incomplete degree update. We had
already ruled out graph compression. With the use of the other enhancements we get our MADAND(AMD)
algorithm. The pseudo code of this algorithm can be found in the appendix.

5.3 Approximate Minimum Deficiency

The AMD algorithm handles the problem of updating degrees very well, but there might still be room for
improvement concerning the score function. Rothberg and Eisenstat ([25]) recognized the degree as an

41

upper bound of fill-in, which could be fit tighter. TakeAe for some eliminated nodee. Then all supernodes
in Ae form a clique, so there will no new edges occur between these nodes. Now take a supernodevi and
assumêe is the last eliminated neighbour ofvi. Thenci = |Aê\|vi|| is the number of nodes in the clique
(without the current nodevi), so(c2

i − ci)/2 is the number of edges already present in the clique that we
can subtract from the upper bound. This gives a new score function:

score(vi) = (d2
i − di)/2− (c2

i − ci)/2. (5.12)

The method using this score function is calledApproximate Minimum Local Fill ordering(AMF). In the
same paper they also discussed theApproximate Minimum Mean Local Fill ordering(AMMF) with score
function

score(vi) =
scoreAMF

|vi|
, (5.13)

andApproximate Minimum Increase in Neighbour Degree ordering(AMIND) with score function

score(vi) = scoreAMF − (di × |vi|). (5.14)

The implementations are called MADAND(AMF), MADAND(AMMF) and MADAND(AMIND), respec-
tively.

5.4 Minimum degree with drop tolerance prediction

Eliminating nodes from the graph can result into new edges which represent fill-in in the matrix. However,
during the creation of theL matrix we neglect some fill-in using the drop tolerance. So perhaps if we can
predict which edge will be neglected we can save some computing time.

Initially, each edge has a value (γe), the negative value of the capacitance. Recall that if nodevi is con-
nected to the nodesvk andvj with no connection between the last two, an edge is created betweenvk and
vj if vi is labelled first. Assume we knowa[i, k] = −gik, a[i, j] = −gij , a[k, j] = 0 and the node to be
eliminated is nodei. Thena[i, k] = −gik/gii anda[i, j] = −gij/gii, and we havea[k, j] = −gijgik/gii.

Now assumei or j is the first node to eliminate. Then ifγij � gii AND γij � gjj , the edge between
i andj will not likely create fill-in, so removing the edge from the graph may have little influence on the
total fill-in of the matrix, while less edges are present in the graph.

This clearly only holds initially, since eliminating nodes not only creates new edges, but also adjusts the
values of the old edges. However, if we assume that these adjustments are small and if we only remove
edges for which hold

| γij

min(γii, γjj)
| < η, (5.15)

for some smallη > 0, the amount of fill-in should not increase substantially. The drop tolerance prediction
can be used for every MADAND variant.

5.5 Reverse Cuthill-McKee ordering

The reverse Cuthill-McKee ordering turned out to be superior over the original Cuthill-McKee ordering
from 1969. The principle of the algorithm is to find an appropriate starting node and number all his
neighbours in increasing order of degree, and then reverse the ordering. In [9] is described how the starting
node is found. Figure 5.4 shows the Reverse Cuthill-McKee ordering of the matrix testcase1 using the
Matlab-orderingsymrcm . This Figure shows that this method does not really reduce the fill-in for this
matrix.

42

Figure 5.4: Sparsity pattern of testcase1 and its Cholesky factor ordered with symrcm.

43

44

Chapter 6

Global ordering algorithms

Global ordering methods try to separate the nodes so their interaction (and thus the occurrence of fill-in)
is minimal. The aim is to find aseparator(also calledborder) that cuts the graph into multiple disjoint
partitions. This is usually done either recursive as in the Nested Dissection ordering, or at once as in the
Multisection ordering. We will discuss both methods in this chapter.

6.1 Nested Dissection ordering

The aim of the Nested Dissection ordering to find a separator in the form of a bisector, a set of vertices
whose removal would cut the graph into two parts, approximately of the same length. These parts can be
cut again and again, until the parts have an appropriate length. A matrix ordered with a Nested Dissection
can be used for parallel computing, since we can calculate each part on a different processor, and only the
columns of the separators depend on the parts they separate. This is a hierarchical structure

PGPT =

 A 0 ST
A

0 B ST
B

SA SB S

 =

AA 0 ST
AA 0 0 0 ST

A

0 AB ST
AB 0 0 0

...
SAA SAB SA 0 0 0 ST

A

0 0 0 BA 0 ST
BA ST

B

0 0 0 0 BB ST
BB

...
0 0 0 SBA SBB SB ST

B

SA · · · SA SB · · · SB S

. (6.1)

Packages such as METIS [18] and CHACO [15] can calculate such orderings, as shown in Figure 6.1. In
addition to the parallel structure of the matrixL the ordering method also reduces the fill-in significantly,
but not as good as the MD and its variants.

45

Figure 6.1: Sparsity pattern of testcase1 and its Cholesky factor ordered with METIS (oemetis).

6.2 Multisection ordering

Multisection ordering uses, unlike the Nested Dissection ordering, only one separator. The graph is cut into
more than two parts, sayM parts. TheseM parts can be processed parallel, with finally a integral process
using the separator.

PGPT =

A 0 · · · 0 ST

A

0 B
...

... ST
B

...
...

... 0
...

0 · · · 0 M ST
M

SA SB · · · SM S

 . (6.2)

An example of a Multisection ordering is the ordering of Zecevic and Siljak ([31]), which will be discussed
in section 6.4. In Figure 6.2 the results of the algorithm are shown.

46

Figure 6.2: Sparsity pattern of testcase1 and its Cholesky factor ordered with siljak8.m.

6.3 Combining local and global ordering methods

For most of our test-matrices the local ordering will lead to less fill-in compared to the global orderings.
But we need to use global orderings to parallel solving methods, so it is of course possible to use the local
ordering as a pre- or a post-ordering. Which should we use first? When we use the local first we might
consider impossible fill-in, because most nodes will be separated, and when we use the global method first
we neglect the fill-in produced in the separator. Liu ([20]) suggested to connect the MD and its variants
with the different dissection methods. His constrained version of the minimal degree algorithm is simply
the MD, but adding the separator to the graph. Those nodes can not be chosen to be eliminated, but they
will appear in the adjacency lists. This way the fill-in in the separator will also be minimized. We will refer
to the constrained version of MADAND as MADAND(CON).

6.4 Basics of Dissection Orderings

The basics for most Nested Dissection and Multisection ordering algorithms are the same. They consist of
three steps, but before we discuss these steps we need to give some definitions.

Definition 6.4.1. A matchingis a set of edges, no two of which are incident on the same node.

Definition 6.4.2. A matching ismaximalif the edges that are not in the matching contain at least one node
that has been matched.

An efficient greedy algorithm to find a maximal matching israndom matching, which walks through the
nodes and matches all unmatched nodes. A graph can becoarsenedusing a random matching by merging
the nodes in the matching and giving the nodes and edges a weight number. TheKernighan-Lin algorithm
[19] uses a certain initial configuration of the graph, a bisection, and then exchanges two nodes, one from
each part, such that the new edge cut (the number of edges connecting both parts) is minimized. The tree
basic steps are:

1. Coarsen the graph with a maximal matching, for a coarsened graph needs far less operations with
respect to the original graph.

2. Find a certain initial configuration and swap nodes using a Kernighan-Lin alike algorithm.

47

3. While uncoarsening the graph try to improve the configuration. Then label the nodes by partition,
with the separator at the end.

In this thesis we especially focus on the second step.

6.5 Domain decomposition

In this subsection we will highlight two ordering algorithms based on domain decomposition. The first
is constructed by Zecevic and Siljak ([31]) and is a Multisection ordering algorithm, and the second is
constructed by Ashcraft and Liu ([3]) and is a Nested Dissection algorithm. The main step is to form blocks
of adjacent nodes, separated by a small set of nodes, which we already defined as separator. Obviously, the
intersection of two blocks is always empty. It is important to keep track of all adjacent blocks, this will be
notated withNBi for nodevi of NBbt

for block bt. The method to form the blocks is described below:

• Chooseωmax, ωmin anddmax.

• Put all nodesvi with di ≥ dmax in the separatorΨ.

• Pick a random node inV \Ψ and grow it into a block in a breath first fashion.

• If the size of this block isωmax it is full and all adjacent nodes go intoΨ.

6.5.1 Zecevic and Siljak

After the blocks are formed, Z&S continue with:

• Determine for every nodevi the status of its neigbours.qi is the number of neighbours ofvi that are
contained inΨ andSi is the total size of all adjacent blocks.

• As long as min(Si) ≤ |Ψ|, takevi out ofΨ. This may lead to several (small) partitions.

• If min(Si) > |Ψ| we start the algorithm over again, but only usingΨ, and before starting we already
create the fill-in that may occur during the factorization process.

This last step turned out to be a bottleneck. Essentially they perform a minimum fill algorithm, which we
already pointed out as very slow in the previous chapter. In addition, multisection gives more connection
between nodes in the separator, which may lead to more fill-in. Multisection appears to be useful for spe-
cific problems like rectangular grids of the formh×k with h � k, but not for general unstructured matrices.

Zecevic and Siljak handled their bottleneck by adjusting their algorithm so it became a Nested Dissec-
tion ordering [32]. Instead of multiple blocks the growing procedure continued until there are only few
blocks left. These blocks can be dissected again, and this results into a nested algorithm, which we will
call impZ&S.

6.5.2 Ashcraft and Liu

Ashcraft and Liu came up with a block version of the Kernigan-Linn algorithm:

• For all blocks with a number of nodes less thanωmin, put every node inΨ and destroy the blocks.

• Check for all nodes inΨ that are adjacent to only one block if there is room for them. If so, put them
in the block (lowest degree first).

• Combine all adjacent nodes inΨ that have no adjacent block in common.

• Combine all adjacent sets of nodes that cut exactly the same block. These two steps make blocks of
the separator-nodes in a way such that two different coloured blocks will always be separated.

48

• We want two parts,W andB, that are balanced andG ⊆ Ψ to be as small as possible. Therefore we
useγ(G, W, B) = |G|(1 + αmax(|B|,|W |)

min(|B|,|W |)) as a cost function.

• Begin with an initialB, W andG and swap all partitions one by one, the one that leads to the
smallestG first. Choose the configuration with the smallest cost en continue, until we find no better
configuration.

• All three sets form a separate partition. The partitions ofB andW can be dissected again, which
will lead to the nested structure.

It is also possible to improve the separator with the use of theDulmage-Mendelsohn decomposition. This
method is based on the following scenario: assume there are two partitions,part1 andpart2, separated by
sep. Say there are sets of nodes, one insep , sep(vi), and one inpart1, part1(vj), such thatpart1(vj)
contains all nodes inpart1 adjacent to the nodessep(vi). If part1(vj) is put in the separator andsep(vi) in
the other partition, we still have a legal separator. In addition, if|sep(vi)| > |part1(vj)|, the new separator
is smaller then the old one. Clearly, the new configuration should also result into a smaller value of the cost
function, otherwise the balance of the blocks could become disturbed. The complete pseudo code of the
border-improving method using the Dulmage-Mendelsohn decomposition can be found in the appendix, as
well as an example on which the algorithm is applied.

6.5.3 MANDAND(NEST)

The impZ&S-algorithm appears to be a simple version of theA&L-algorithm. However, the blocks are
merged with a local search algorithm, and there is no room for improvement after a bad (local) choice.
Therefore the implemented nested dissection for the MADAND-software is the algorithm of Ashcraft and
Liu, which we will refer to as MADAND(NEST).

49

50

Chapter 7

Parallel Solution methods

A Nested Dissection ordering or Multisection ordering gives a structured matrix. In this chapter we discuss
how we can benefit from these structures.

7.1 Substitution in an iteration step

For the (incomplete) Cholesky decomposition we can solve our system with the use of Forward-Backward
substitution. If we have a structured matrix we are able to do this step on multiple processors. If the matrix
G has a block bordered form, a result of a Multisection ordering, parallel processing is possible. The matrix
below has a block bordered structure

Ĝ =

G11 0 · · · 0 G1m

0 G22
...

... G2m

...
...

... 0
...

0 · · · 0 Gm−1m−1

...
Gm1 Gm2 · · · · · · Gmm

. (7.1)

One method of solving this system is using theSchur complementS with

S = Gmm −
m−1∑
i=1

GmiG
−1
ii Gim. (7.2)

Using the Schur complement we can construct algorithm 16. With a little adjustment, the Schur comple-
ment can also be used for matrices with a nested structure. For two levels, this structure looks like

Ĝ =

G11 0 G121 0 0 0 G15

0 G22 G122 0 0 0 G25

G112 G212 G12 0 0 0 G125

0 0 0 G33 0 G343 G35

0 0 0 0 G44 G344 G45

0 0 0 G334 G434 G34 G345

G51 G52 G512 G53 G54 G534 G55

. (7.3)

We can calculate the Schur complement of the separate blocks 1-2 and 3-4 and then use the results to
calculate the Schur complement of the entire system. Clearly, this is possible for multiple levels.

51

Algorithm 16 Parallel Forward and Backward substitution
for i = 1, . . . ,m− 1 do

Gii = LiiDiiL
T
ii

Lmi = Gmi(LT
ii)

−1D−1
ii

yi = L−1
ii bi

S(i) = LmiDiiL
T
mi

z(i) = Lmiyi

end for

S = Gmm −
m−1∑
i=1

S(i)

ym = bm −
m−1∑
i=1

z(i)

SolveSxm = ym

for i = 1, . . . ,m− 1 do
xi = (LT

ii)
−1D−1

ii (yi −DiiL
T
mixm)

end for

7.2 Topology of the preconditioner matrix

One of the additional research questions was to think of a manner to recalculateL fast if some nonzero
values ofG are changed in other nonzero values. Almost all ordering algorithms are based on the topology
of the matrix, so changing branch values will not change the order of the nodes. This is important, because
we only have to determine the order once, this order is still valid after adjustments of branch-values.

In the construction ofL we already noticed that it goes in a forward fashion: Nodev1 adjusts matrix
entries for nodesv2 to vn, Nodev2 adjusts matrix entries for nodesv3 to vn etc. Assume we have cal-
culatedL andD and say we adjust branchese1 . . . em connecting nodesv1 . . . vk for which v1 has the
smallest label. Then for all nodes labelled beforevi nothing changes, so the decomposition of the nodes
beforevi remains the same. This way we only need a new decomposition of the matrix entries starting at
v1.

32

7

8

1

4

5

6

9

10

1

2

3

4

5

6

7

8

9

10

11

12
13

Figure 7.1: Small graph of the example in Section 7.1.

52

For a matrix that has a nested form, there is more room for improvement. Assume we adjust branche1

connecting nodesv1 andv2, v1 labelled first. Thenv1 andv2 are in the same block, orv2 or both nodes are
in a separator of the block. So we must make a new decomposition of the blockv1 is in, starting atv1, and
of all separators of this block. This is probably less work than in the normal case. As an example, look at
Figure 7.1. TheT matrix, with

T = L + D − I, (7.4)

ordered with a minimum degree ordering of this graph is given below.

2 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0
0 −0.6 5.2 0 0 0 0 0 0 0

−0.5 −0.4 −1 11.5 0 0 0 0 0 0
0 0 0 −0.43478 17.826 0 0 0 0 0
0 0 0 −0.52174 −0.53902 13.69 0 0 0 0
0 0 0 0 −0.44878 −0.97239 21.465 0 0 0
0 0 0 0 0 0 −0.46587 17.341 0 0
0 0 0 0 0 0 −0.51246 −0.29551 16.849 0
0 0 0 0 0 0 0 −0.69199 −0.98205 0.44695

.

If the branch between nodev4 andv5 would be changed in 40 theT matrix becomes

2 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0
0 −0.6 5.2 0 0 0 0 0 0 0

−0.5 −0.4 −1 46.5 0 0 0 0 0 0
0 0 0 −0.86022 20.591 0 0 0 0 0
0 0 0 −0.12903 −0.5906 14.043 0 0 0 0
0 0 0 0 −0.38851 −0.97732 21.478 0 0 0
0 0 0 0 0 0 −0.46558 17.344 0 0
0 0 0 0 0 0 −0.51214 −0.29528 16.854 0
0 0 0 0 0 0 0 −0.69188 −0.98156 0.45695

.

So, in column the columnsv1 to v3 nothing changes, so we can skip30% of the factorization. Now assume
we use a new (nested) ordering (1,2,3,4,10,9,8,7,6,5). TheT matrix is (with the original edges)

2 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0
0 −0.6 5.2 0 0 0 0 0 0 0

−0.5 −0.4 −1 11.5 0 0 0 0 0 0
0 0 0 0 25 0 0 0 0 0
0 0 0 0 −0.52 17.24 0 0 0 0
0 0 0 0 −0.48 −0.36195 13.981 0 0 0
0 0 0 0 0 −0.63805 −1 17 0 0
0 0 0 −0.52174 0 0 0 −0.52941 14.105 0
0 0 0 −0.43478 0 0 0 −0.47059 −0.9815 0.47344

.

53

Again, if the (original) branch betweenv4 andv5 would be changed in 40 theT matrix becomes

2 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0
0 −0.6 5.2 0 0 0 0 0 0 0

−0.5 −0.4 −1 46.5 0 0 0 0 0 0
0 0 0 0 25 0 0 0 0 0
0 0 0 0 −0.52 17.24 0 0 0 0
0 0 0 0 −0.48 −0.36195 13.981 0 0 0
0 0 0 0 0 −0.63805 −1 17 0 0
0 0 0 −0.12903 0 0 0 −0.52941 16.461 0
0 0 0 −0.86022 0 0 0 −0.47059 −0.99609 0.49437

.

Now only columns 4, 9 and 10 change, so we can skip70% of the factorization. Clearly, this is only
relevant if the preconditioner matrix is stored.

7.3 Efficient Dissection Verification

A Nested Dissection ordering algorithm can be rather complicated, so an efficient method to test its validity
can be very useful. Assume a certain nested dissection is given, and assume all nodes have a certain
partition, generated by the tree structure given in Figure 7.2.

3

2

7 8

1

4 5 6

9 10

0

11 12 13 14

Figure 7.2: Tree structure of the partition numbers.

So the partitions have the following nested structure:

• M + 1 is the number of partitions, the first partition is 0.

• For the first(M/2− 1) partitions holds: partitionk has two leaves, partition2 ∗ k + 1 and partition
2 ∗ k + 2.

• PartitionsM/2 to M have no leaves.

• A subtreeτk is the union of partitionk and the subtrees of partitions2 ∗ k + 1 and2 ∗ k + 2 if
k < M/2, and the union of partitionk and its leaves ifk ≥ M/2.

We traverse the tree depth-first, every time considering the left branch before the right one.

54

Theorem 7.3.1. If the partitions of a nested structure are labelled as in Figure 7.2 and traversed as
described above, a dissection is valid if and only if during the constrained ordering for every eliminated
nodevp holds that

part(vp) ≤ part(vj),∀vj ∈ Ap (7.5)

Proof. =⇒ is trivial. ⇐= Consider the case that for every eliminated nodevp 7.5 holds. Assume that
the dissection is not valid. Then there is a separator for which the two subtrees (τ1 andτ2, τ1 < τ2) are
separated. Say nodev1 is part of subtreeτ1 and nodev2 is part of subtreeτ2, and takev1 andv2 connected.
If v1 is part of partitionτ1 we have a contradiction. So assumev1 is part of partitionτ3 with τ3 > τ1.
But then if all partitions in the subtreeτ1 exceptτ1 itself are eliminated, there is a nodev3 with partition
τ1 such that it is connected withv2, because the connection betweenv1 andv2 can not be removed, only
passed on to another node. So we have a contradiction. This concludes the proof.

With the use of this theorem we can simply check - during the local ordering - whether the dissection is
valid or not.

55

56

Chapter 8

Results

There are two main steps of the solving method that we can manipulate and are therefore suitable for
testing:

• Ordering, matrix decomposition, and fill-in reduction.

• Pre-Conjugate Gradient iterations and forward-backward substitution.

The analyzed testcases used are described in Tables 8.1 and 8.2.

Table 8.1: Description of all testcases processed with MATLAB.

Testcase N d̄

testcase1 1,858 4.64
testcase2 1,964 4.61
testcase3 10,574 5.00

Table 8.2: Description of all testcases processed with C++.

Testcase N d̄ N/H d̄H

testcase4 291,306 3.40 0.32 5.54
testcase5 14,503,944 2.78 0.28 5.20
testcase6a 3,349,110 3.28 0.28 5.58
testcase6b 2,964,285 3.31 0.25 5.72
testcase7a 3,007,889 3.45 0.42 4.72
testcase7b 3,485,738 3.71 0.40 5.28

We haveN to be the number of nodes, and̄d is the average degree. Before the matrix is generated we do a
certain preprocessing step. All nodes with degree 3 or less are eliminated with an elimination graph using
the local ordering. Note that elimination graphs are no worse than quotient graphs for nodes of degree three
or lower. These low degree nodes are solved using a direct method. All other nodes go in a matrix which
is solved using the PCG-method. Testcase1 to testcase3 are already pre-processed, the others are not, so
for each case the approximate size of the matrix is given, since this depends on the ordering method. The
approximate size of the matrix isH, andd̄H is the average degree of the nodes in this matrix. However,
the difference in sizes of the matrix between MINOLD and MADAND are less than 0.5 percent for any
testcase.

57

Other notations that will be used often:

• MNZ is the number of nonzero elements of the Cholesky factor.

• WLNZ is the number of nonzero elements the busiest processor has to process. This is explained in
section 8.1.2.

• PART is the current partition.

• NOP is the percentage nodes in the current partition.

• NZP is the percentage nonzero elements in the current part of the rows of Cholesky factor.

• OT is the ordering time.

• CT is the computing time.

• RT is the overall runtime.

8.1 Ordering, Matrix decomposition

8.1.1 One processor

The MADAND local ordering method, discussed in section 5.2.10, is implemented in C++ and the results
are shown below.

Table 8.3: MNZ for several orderings.

Ordering testcase1 testcase2 testcase3

Random Ordering 20,231 21,982 287,211
MINOLD 15,363 14,148 237,278

Matlab AMD 11,725 12,215 144,281
METIS oemetis 13,179 14,048 161,219

MADAND(AMD) 12,058 12,647 146,200
MADAND(AMD) (mass elim.) 11,735 12,221 145,611
MADAND(AMF) (mass elim.) 11,721 13,105 144,588

MADAND(AMMF) (mass elim.) 11,846 13,090 162,267
MADAND(AMIND) (mass elim.) 14,219 18,154 145,611

MADAND(AMD) with DT-pred. (1e-4) 11,891 12,473 147,124
MADAND(AMD) with DT-pred. (1e-2) 16,951 15,715 245,832

MADAND(AMD) with DT-pred. (1e-4) (mass e.) 11,589 12,215 145,823

For the random ordering the mean of three tests is taken. The implemented versions of MADAND(AMF)
give similar results as Matlab’s AMD-ordering. The ordering of METIS is an improvement compared to
the old ordering, but it appears that local orderings give Cholesky factors with lower fill-in then global
orderings. The results of the AMMF and AMIND variants seem to be highly matrix dependant. The drop
tolerance prediction seems to work for very small values ofη. However, because this gives a edge reduction
of less then 4 percent it will probably not have a great influence on the performance of the ordering software.

Since the test-results of MADAND(AMF) and MADAND(AMD) are similar, and MADAND(AMF) is
a bit more complex, we choose to use MADAND(AMD) in the Magma-software. In Table 8.4 the ordering
time, compute time and total runtime of the MADAND(AMD) software is given, scaled with the results of
the MINOLD ordering.

58

• SOT = OT(MADAND(AMD)) / OT(MINOLD).

• SCT = CT(MADAND(AMD)) / CT(MINOLD).

• SRT = RT(MADAND(AMD)) / RT(MINOLD).

• SMNZ = MNZ(MADAND(AMD)) / MNZ(MINOLD).

Table 8.4: Results of the MADAND(AMD) for Magma designs compared with MINOLD.

Testcase SOT SCT SRT SMNZ

testcase4 1.43 0.82 1.05 0.64
testcase5 1.45 0.63 0.83 0.59
testcase6a 1.59 0.41 0.59 0.38
testcase6b 1.65 0.51 0.72 0.45
testcase7a 2.01 0.76 0.86 0.66
testcase7b 1.88 0.65 0.73 0.64

An important note is that the time values may fluctuate a bit, since the tests are done on a communal server.
However, compute time is significantly reduced for all testcases, and the overall runtime is smaller for the
MADAND(AMD) software than for the MINOLD software for all large cases. In addition, the fill-in is
approximately halved for every case.

Tie-Breaking Pre-ordering

In section 5.2.6 the tie-breaking pre-ordering was discussed. We tested three different pre-orderings for
MADAND(AMD). The results are shown in Table 8.5.

Table 8.5: MNZ using MANDAND(AMD) for different pre-orderings.

Testcase MINOLD Random ordering Matlab RCM

testcase1 12,058 12,600 12,092
testcase2 12,647 12,889 12,790

These results show that pre-ordering has some influence on the amount of fill-in. However, none of the
orderings is significant better than any other, so we chose not to implement a special pre-ordering for in the
Magma-software.

8.1.2 Multiple Processors

In this section we test the MADAND(CON) software for several variable configurations and up to four lev-
els of dissection, which means that we ordered the matrix so we can solve it with 2, 4, 8 or 16 processors.

In the previous subsection we already saw that a nested dissection method like METIS gave consider-
ably more fill-in than the local method AMD. This also holds for MADAND(CON), as shown in Figure
8.1. This is of course only one case, but the results later on in this section will support the fact that the
number op partitions should be minimized.

59

10
0

10
1

10
2

1.45

1.5

1.55

1.6

1.65

1.7
x 10

5

Number of partitions

M
em

or
y

el
em

en
ts

A&L test − cost1 − 7−40−20 − greedy

Figure 8.1: MNZ of a MADAND(CON) test for several different amount of processors.

The tested version of MADAND(CON) includes:

• Improved border (with use of the DM-decomposition).

• Constrained AMD.

• No mass elimination.

The parameters for the tests are described below:

• Cost function: we tested three different cost functions

– cost1 = |G|(1 + max(|B|,|W |)
min(|B|,|W |)), the original cost function of A and L.

– cost2 = |G|+ max(|B|, |W |), to secure the balance.

– modcost1 = cost1 if max(|B|,|W |)
min(|B|,|W |) < ζ, and∞ otherwise. For these testsζ = 1.15.

• Block creation variables: the valuesdmax, ωmin andωmax should be chosen properly, since they
have influence on the performance of our implementation. Experience shows that the value ofdmax

should imply that approximately10% of the nodes are put in the border, and thatωmax

ωmin
= 2 is the

best choice to get blocks of similar sizes.

• Block creation: if a block is full and a new block is started, we can choose the first available node
with the lowest index, or we can choose the an available node with a random index. Similarly, if
we grow the blocks, we could start with low indexes first, or randomize. This is a form of greedy
selection in contrast to random selection. We expect that random selection gives more balanced
blocks and thus better results.

Table 8.6 shows the configurations for the 18 tests.

60

Table 8.6: Test configurations for testcase3.

7-40-20 greedy random

cost1 test 1 test 4
cost2 test 2 test 5

modcost1 test 3 test 6

7-80-40 greedy random

cost1 test 7 test 10
cost2 test 8 test 11

modcost1 test 9 test 12

7-60-30 greedy random

cost1 test 13 test 16
cost2 test 14 test 17

modcost1 test 15 test 18

For each test there are two interesting output variables. The first one is the MNZ, because this is the
number of elements that should be stored in the memory. The second one WLNZ, the amount of nonzero
elements the busiest processor is handling, since this workload should give an indication how long the
forward-backward substitution of the PCG-method will take. The results are shown in the tables en graphs
below.

Table 8.7: MNZ for the MADAND(CON)-tests of testcase3

Ordering 2 proc. 4 proc. 8 proc. 16 proc.

MINOLD 237,278 237,278 237,278 237,278
Matlab AMD 144,281 144,281 144,281 144,281

test 1 146,574 154,098 156,713 160,836
test 2 146,681 155,662 159,516 164,572
test 3 146,843 154,883 157,527 160,482
test 4 146,574 153,249 156,326 158,427
test 5 146,433 154,990 160,404 166,097
test 6 146,485 152,870 156,973 158,490
test 7 146,396 152,431 157,076 unbalanced
test 8 146,466 154,745 159,710 164,812
test 9 146,396 155,278 159,387 no feasible cost
test 10 146,396 151,474 157,027 unbalanced
test 11 153,966 157,863 163,831 168,893
test 12 146,396 152,860 158,069 no feasible cost
test 13 146,652 155,377 157,433 unbalanced
test 14 154,349 156,576 160,798 165,680
test 15 151,482 157,179 161,000 163,894
test 16 146,680 153,182 155,576 157,062
test 17 153,431 155,949 161,560 167,513
test 18 146,680 153,182 155,576 158,514

61

Table 8.8: WLNZ for the MADAND(CON)-tests of testcase3

Ordering 2 proc. 4 proc. 8 proc. 16 proc.

MINOLD 237,278 237,278 237,278 237,278
Matlab AMD 144,281 144,281 144,281 144,281

test 1 84,268 52,363 38,156 31,106
test 2 76,410 49,701 38,312 33,787
test 3 76,541 49,475 36,011 33,151
test 4 84,268 52,162 38,327 31,107
test 5 76,334 50,293 36,884 33,398
test 6 75,733 49,027 34,334 29,104
test 7 78,178 52,914 38,038 unbalanced
test 8 76,122 49,919 38,103 34,076
test 9 78,178 49,740 37,709 no feasible cost
test 10 78,178 53,266 37,148 unbalanced
test 11 84,343 54,029 42,163 38,010
test 12 78,178 49,586 37,644 no feasible cost
test 13 75,523 58,943 40,731 unbalanced
test 14 84,140 52,697 41,649 37,713
test 15 82,194 53,738 38,534 34,204
test 16 75,630 50,877 35,879 30,055
test 17 83,203 52,114 42,309 39,390
test 18 75,630 50,877 35,879 29,961

0 2 4 6 8 10 12 14 16 18
1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8
x 10

5

Test number

M
em

or
y

el
em

en
ts

Memory test

Metis
16 procs
8 procs
4 procs
2 procs
1 proc

Figure 8.2: The MNZ for the 18 MADAND(CON) tests for 1, 2, 4, 8 and 16 processors in comparison with
METIS.

62

0 2 4 6 8 10 12 14 16 18
0

5

10

15
x 10

4

Test number

M
ax

. W
or

kl
oa

d

Workload test

1 proc
2 procs
4 procs
8 procs
16 procs

Figure 8.3: The WLNZ for the 18 MADAND(CON) tests for 1, 2, 4, 8 and 16 processors.

Note that the values of MNZ in Figure 8.2 start at approximately 140,000.

There are two possible problems with the dissection.

• The dissection is unbalanced. This means that a partition of levelk is larger than a partition of level
k − 1.

• There is no feasible cost. Formodcost1 there is a constraint for the balance between the two parti-
tions. If the algorithm finds no configuration for which these constraints are satisfied it stops.

The results show that the number of processors has the greatest influence on the WLNZ, and in almost
every case 16 processors is the best choice. Cost1 had difficulties with balance, and cost2 gives quite large
separators. Modcost1 is a good alternative. However, we should think of a way to deal with cases for which
there is no feasible cost. We could, for example, dissect that certain partition again with a looser bound.
We also see that random block growing works best for cost1 and modcost1, and that greedy growing works
best for cost2.

A very interesting observation is the minor increase in memory needed for 2 processors and the major
increase for 4 processors This could be explained with the following conjecture: at the end of the minimum
degree algorithm there are few nodes left which all form one clique. In a nested dissection algorithm with
2 partitions the separator consists also of few nodes that form a clique. But if there are 4 partitions, the 2
non-main separators form also a clique, and they are connected to all nodes in the main separator. So there
will be an increasing amount of fill-in in the rows of the main separator.

We did also some tests of the MADAND(CON)-software for large Magma designs. For contest1, the
chosen parameters aredmax = 10, ωmax = N/400, ωmin = N/800 andmodcost1 with ζ = 1.3. For
contest2, the chosen parameters aredmax = 10, ωmax = N/200, ωmin = N/400 andmodcost1 with
ζ = 1.3. The implemented block growth goes in a greedy fashion. The depth of the dissection is 3, so there
are 1 + 2 + 4 = 7 partitions. We introduce:

• AMNZ = MNZ(MADAND(CON)) / MNZ(MADAND(AMD)).

• AWLNZ = WLNZ(MANDAND(CON)) / MNZ(MADAND(AMD)).

• AOT = OT(MANDAND(CON)) / OT(MADAND(AMD)).

63

Table 8.9: The MADAND(CON)-tests contest1 and contest2 for testcase5.

AMNZ AWLNZ AOT
1.00 0.30 1.15

AMNZ AWLNZ AOT
1.00 0.30 1.10

PART NOP NZP
3 22.29 21.81
4 25.44 24.99
1 0.09 0.66
5 22.85 22.75
6 29.20 28.71
2 0.07 0.55
0 0.06 0.54

PART NOP NZP
3 29.23 28.94
4 23.22 22.81
1 0.07 0.62
5 23.57 23.44
6 23.75 22.90
2 0.08 0.68
0 0.07 0.61

Table 8.10: The MADAND(CON)-tests contest1 and contest2 for testcase6a.

AMNZ AWLNZ AOT
1.01 0.39 1.40

AMNZ AWLNZ AOT
1.01 0.36 1.19

PART NOP NZP
3 24.75 14.04
4 19.05 12.61
1 0.28 2.26
5 24.23 32.10
6 31.43 35.70
2 0.05 0.82
0 0.19 2.46

PART NOP NZP
3 20.59 12.92
4 23.44 27.41
1 0.06 0.83
5 25.66 31.66
6 29.86 22.27
2 0.15 1.76
0 0.24 3.14

Table 8.11: The MADAND(CON)-tests contest1 and contest2 for testcase6b.

AMNZ AWLNZ AOT
1.01 0.31 1.16

AMNZ AWLNZ AOT
1.01 0.31 1.11

PART NOP NZP
3 28.01 26.90
4 21.61 20.41
1 0.25 2.29
5 25.59 24.10
6 24.24 22.36
2 0.17 1.97
0 0.14 1.97

PART NOP NZP
3 26.51 26.77
4 23.36 19.65
1 0.21 2.18
5 24.08 22.29
6 25.59 26.07
2 0.10 1.10
0 0.15 1.94

64

Table 8.12: The MADAND(CON)-tests contest1 and contest2 for testcase7a.

AMNZ AWLNZ AOT
1.01 0.30 1.22

AMNZ AWLNZ AOT
1.01 0.31 1.13

PART NOP NZP
3 27.52 25.74
4 23.00 21.91
1 0.18 1.64
5 24.43 23.08
6 24.57 24.50
2 0.08 0.80
0 0.23 2.32

PART NOP NZP
3 24.88 23.18
4 25.41 23.12
1 0.19 1.69
5 27.76 28.08
6 21.43 20.69
2 0.12 1.14
0 0.21 2.11

Table 8.13: The MADAND(CON)-tests contest1 and contest2 for testcase7b.

AMNZ AWLNZ AOT
1.02 0.30 1.24

AMNZ AWLNZ AOT
1.01 0.32 1.10

PART NOP NZP
3 27.27 25.33
4 22.20 21.33
1 0.25 2.11
5 25.18 24.17
6 24.67 22.90
2 0.17 1.54
0 0.27 2.62

PART NOP NZP
3 24.06 22.40
4 28.40 27.64
1 0.24 2.20
5 24.05 23.06
6 22.92 21.34
2 0.13 1.32
0 0.20 2.03

These results show that for large matrices MADAND(CON) generates an ordering that gives almost the
same MNZ but a very small WLNZ compared to MADAND(AMD). Since the ordering time is often a
small part of the total runtime (see also Table 8.4) and does not increase much for the MADAND(CON)
case, it is very likely that using MADAND(CON) with a parallel solver will reduce the overall runtime
substantially. The results for testcase6a are remarkable, partitions 3 and 5 have the same magnitude, but
partition 5 has more than two times as much nonzero elements. So apparently the number of nodes in a
partition is not always a good measure for the amount of fill-in.

8.2 Pre-Conjugate Gradient iterations

The results of ordering a matrix can be great considering fill-in, but what does ordering do with the number
of iterations of the preconditioned conjugate gradient method?

In the table below, Table 8.14 we show for testcase3 that the number of iteration steps corresponds with the
level of fill reducing of the ordering method (however, certainly not with the total amount of fill-in). The
less fill-in, the less iteration steps.

65

Table 8.14: The number of iteration steps of the PCG-method for testcase3 for different values ofε and
different orderings.

Ordering ε = 0.01 ε = 0.1 ε = 1

MINOLD 5 7 11
Matlab AMD 4 6 10

METIS 4 6 11

As discussed in chapter 3 we can instead of choosing for equal rowsums ofG andK also choose for equal
diagonals ofG andK. We tested Algorithm 12 withε = 0.1 for three different ordering methods with
ϑ = 0 andϑ = 1. The results are shown in Figure 8.6.

0 1 2 3 4 5 6 7
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of iterations

R
es

id
ua

l

Convergence speeds for PCG with dt, epsilon = 0.1, testmatrix3

MINOLD, theta=0
MINOLD, theta=1
METIS, theta=0
METIS, theta=1
Matlab AMD, theta=0
Matlab AMD, theta=1

Figure 8.4: Convergence speed of the PCG-method for testcase3 for several methods.

The most interesting result is the difference in the first iteration step betweenϑ = 0 andϑ = 1. For all
orderings, the results forϑ = 1 are significantly better than forϑ = 0 in the first step. After that, the fill-in
of the matrix determines the convergence speed. So usingϑ = 1 for ε = 0.1 can save an iteration step,
which is about 20 percent.

We looked at the number of iteration steps for large Magma-designs and the results are shown in Ta-
ble 8.15. The methods that are compared are MINOLD, MADAND(AMD) and MADAND(AMD) with
ϑ = 1.

66

Table 8.15: Number of iteration steps for different methods.

Testcase MINOLD MADAND, ϑ = 0 MADAND, ϑ = 1
testcase5 21 17 10
testcase6a 65 37 19
testcase6b 56 35 18
testcase7a 91 82 46

0 2 4 6 8 10 12 14 16 18 20
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of iterations

R
es

id
ua

l

Convergence speeds for PCG with dt, epsilon = 0.1, testmatrix5

MINOLD, theta = 0
MADAND(AMD), theta = 0
MADAND(AMD), theta = 1

Figure 8.5: Convergence speed of the PCG-method for testcase5 for several methods

67

0 10 20 30 40 50 60 70
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of iterations

R
es

id
ua

l

Convergence speeds for PCG with dt, epsilon = 0.1, testmatrix6a

MINOLD, theta = 0
MADAND(AMD), theta = 0
MADAND(AMD), theta = 1

Figure 8.6: Convergence speed of the PCG-method for testcase6a for several methods

The value ofε has influence on the amount of fill-in and on the computing time. This is shown in Table
8.16.

• TCT = CT(MADAND(AMD,ϑ = 0)) / CT(MADAND(AMD,ϑ = 1))

• TMNZ = MNZ(MADAND(AMD, ϑ = 0)) / MNZ(MADAND(AMD, ϑ = 1))

Table 8.16: Results for MADAND(AMD) withϑ = 1, scaled with the results of MADAND(AMD) with
ϑ = 0

Testcase TCT TMNZ

testcase5 0.86 1.01
testcase6a 0.89 1.02
testcase6b 0.91 1.02
testcase7a 0.81 1.05

These results show that choosingϑ = 1 increases the amount of fill-in slightly, while the compute time of
the solver is reduced considerably. Therefore takingϑ = 1 is a good addition for the MADAND-software.

68

Chapter 9

Conclusions and Recommendations

In this thesis we present the package MADAND, which consists out of two parts: the local ordering method
MADAND(AMD) and the constrained ordering method MADAND(CON). MANDAND successfully im-
proves the performance of the preconditioned conjugate gradient solver the company of Magma is currently
using in comparison with the current ordering MINOLD. In addition, the amount of memory needed for
the preconditioner matrix is reduced by 40 to 60 percent in comparison with the current ordering MINOLD.

. For general designs with an origin in circuit simulation local ordering methods appear to generate ma-
trices who’s Cholesky factor has less nonzero elements than with the use of global ordering methods. For
non-parallel solving the MADAND(AMD) gives both little fill-in and fast ordering. In addition we have
shown that equalizing the diagonal values of the original matrix and the preconditioner matrix can reduce
the number of iteration steps considerably.

Global ordering methods can be used to solve a linear system parallel. The MADAND(CON)-software
generates a nested dissection ordering for a small price considering fill-in and ordering time. However, the
theory shows that using a parallel solver and the MADAND(CON)-software will lead to a faster runtime
in comparison with MADAND(AMD).

The calculation time of the solver is reduced with the use of MADAND, but the ordering time may be
done faster. First of all, the local ordering MADAND(AMD) can be done in parallel. If the partitions are
found using the Nested Dissection ordering, all leaves can be processed independently. Since the AMD
algorithm is the most time consuming part of the ordering, parallel ordering can reduce the total ordering
time.

In addition, coarsening will lead to a smaller graph, which reduces the ordering time, since there are
less nodes to eliminate and less edges. However, this coarsening is not trivial, since the AMD algorithm
is local, and coarsening might interfere with this local search. Therefore a coarsening based on a local
ordering [28] may result into both little fill-in and fast ordering.

69

Bibliography

[1] Amestoy, P., Davis, T., Duff, I.,An approximate minimum degree ordering algorithm, SIAM J. Matrix
anal. appl., Vol 17, no 4, pp. 886-905, 1996.

[2] Anis, M., Elmasry, M.,Multi-Threshold CMOS Digital Circuits, Managing Leakage Power, Kluwer,
Norwell, 2003.

[3] Ashcraft, C., Liu, J.W.H.,Using Domain Decomposition to find Graph Bisectors, BIT, vol 37. pp.
506-534, 1997.

[4] Ashcraft, C., Liu, J.W.H.,Applications of the Dulmage-Mendelsohn Decomposition and Network Flow
to Graph Bisection Improvement, SIAM J. Matrix anal. appl., Vol 19, no 2, pp. 325-354, 1998.

[5] Barret, R., Berry, M., Chan, F.,Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods, SIAM, Philidelphia, 1994.

[6] Ciarlet, P.G.,Introduction to Numerical Linear Algebra and Optimisation, Cambidge University Press,
Cambridge, 1989.

[7] Duff, I.S., Van der Vorst, H.A.,Developments and Trends in the Parallel Solution of Linear Systems, j.
of Parallel Computing, vol 25, no 13-14, pp. 1931-1970, 1999.

[8] Garey, M., Johnson, D. Stockmeyer, L.,Some Simplified NP-complete Graph Problems, Theoratical
Computer Science, Vol. 1, pp. 237-267, 1976.

[9] George, A., Liu, W.L.,Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall,
Englewood Cliffs, N.J., 1981.

[10] George, A., Liu, W.L.,The evolution of the minimum degree ordering algorithmSIAM Rev., 31, pp.
1-19, 1989.

[11] George, A., McIntyre, D.,On the application of the minimum degree algorithm to finite element
systems, SINUM, vol 15, pp. 90-112, 1978.

[12] Golub, G.H., Van Loan, C.F.,Matrix Computations, Johns Hopkins University Press, London, 1996.

[13] Gustafsson, I.,A class of 1st order factorization methods, BIT, vol. 18, pp. 142-156, 1978.

[14] Heggernes, P., Eisenstat, S.C., Kumfert, G., Pothen, A.,The Computational Complexity of the Min-
imum Degree Algorithm, Proceedings of 14th Norwegian Computer Science Conference, University of
Troms, Norway, 2001.

[15] Hendrikson, B., Rothberg, E.,The CHACO User Guide. Version 2.0, Technical Report SAND96-
0868J, Sandia National Laboratories, Albuquerque, 1996.

[16] Houben, S.H.M.J.,Algorithms for Periodic Steady State Analysis on Electric Circuits, Philips Elec-
tronics, Eindhoven, 1999.

[17] Houben, S.H.M.J.,Circuits in Motion: The numerical simulation of electrical oscillators, Eindhoven
University of Technology, Eindhoven, 2003.

70

[18] Karypis, G., Kumar, V.,A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs,
Technical Report TR 95-035, Department of Computer Science, University of Minnesota, 1995.

[19] Kernighan, B.W., Lin, S.,An efficient heuristic procedure for partitioning graphs, Bell System Tech-
nical Journal, vol. 49, pp 291-307, 1970.

[20] Liu, W.L., The minimum degree ordering with constraints, SIAM J. Sci. Stat. Comp., Vol. 10, No. 6,
pp. 1136-1145, 1989.

[21] Magma design automation, inc.,Enabling Low Power Design Within an RTL-to-GDSII Implementa-
tion Flow, white paper, 2003.

[22] Mattheij, R.M.M.,Numerieke lineaire algebra, Syllabus, Eindhoven University of Technology, Eind-
hoven.

[23] Meijerink, J.A., van der Vorst, H.A.,An iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix, ACC, Utrecht, 1976.

[24] Ogrodzki, J.,Circuit Simulation Methods and Algorithms, CRC Press Inc, Boca Raton, Florida, 1994.

[25] Rothberg, R., Eisenstat, C.,Node selection strategies for bottom-up sparse matrix ordering, SIAM J.
Matrix anal. appl. Vol 19, no. 3, pp 682-695, 1998.

[26] Saad, Y.,Iterative Methods for Sparse Linear Systems, PWS Publishing Co., Boston, MA, 1996.

[27] Schilders, W.H.A.,Numerical methods in electromagnetics, Eindhoven University of Technology,
Eindhoven, 2004.

[28] Schulze, J.,Towards a Tighter Coupling of Bottem-Up and Top-Down Sparse Matrix Ordering Meth-
ods, BIT, vol 41, pp 800-841, 2001.

[29] Varga, R.S.,Matrix Iterative Analysis, Prentice-Hall Inc. New Jersey, 1962.

[30] Van der Vorst, H.A.,High performance preconditioning, SIAM J. Sci. Stat. Comp. Vol 10, No 6, pp.
1174-1185, 1989.

[31] Zecevic, A.I., Siljak, D.D.,Balanced Decompositions of Sparse Systems for Multilevel Parallel Pro-
cessing, IEEE, Trans on circuits and systems 41, 1994.

[32] Zecevic, A.I., Siljak, D.D.,a Nested Decomposition Algorithm for Parallel Computations of very
large Sparse Systems, MPE, volume 1, pp 41-57, 1995.

71

Index

aggressive element absorption, 34
approximate degree, 36
Approximate Minimum Deficiency ordering, 37
Approximate Minimum Degree ordering, 28, 36
Approximate Minimum Increase in Neighbour De-

gree ordering, 38
Approximate Minimum Local Fill ordering, 38
Approximate Minimum Mean Local Fill order-

ing, 38
Ashcraft and Liu, 43

border, 40
branch, 9
branch equations, 9

CHACO, 40
Cholesky decomposition, 18
circuit simulation, 9
clique, 30
coarsening, 42
Conjugate Gradient method, 14, 17
connected graph, 13
constrained ordering, 42
current, 9
cutset, 9

diagonally dominant, 13
dissection verification, 48
domain decomposition, 43
drop tolerance, 24
drop tolerance prediction, 38
Dulmage-Mendelsohn decomposition, 44
Dynamic Power Dissipation, 6

element, 32
element absorption, 34
elimination graph, 28, 29
external degree, 35

fill-in, 27

global ordering, 29, 40
graph, 13
graph compression, 33

incomplete Cholesky factorization, 22

incomplete degree update, 34
indistinguishable node, 33

Kernighan-Lin algorithm, 42
Kirchhoff’s Current Law, 9, 10
Kirchhoff’s Voltage Law, 9, 11

L-matrix, 13
local ordering, 29, 31
loop, 9

M-matrix, 13
MADAND(AMD), 37, 51
MADAND(CON), 42, 52
MADAND(NEST), 44
mass elimination, 32
matching, 42
maximal matching, 42
METIS, 28, 40
Minimum Degree ordering, 31
Minimum Fill ordering, 31
Mininmum Degree ordering, 27
MINOLD, 28
MNZ, 51
multiple elimination, 35
Multiple Minimum Degree ordering, 36
Multisection ordering, 40, 41, 45

Nested Dissection ordering, 27, 40, 43, 45, 48
Nodal Analysis, 10
nodal incidence matrix, 10
node, 9

Ohm’s Law, 9
ordering, 26, 27
outmatched nodes, 34

parallel computing, 40
parallel solving, 45
positive definite, 12
positive semi-definite, 12
Preconditioned Conjugate Gradient method, 21
preconditioning, 21

quotient graph, 32

random matching, 42

72

random ordering, 35
reducible, 13
redundant edges, 34
Reverse Cuthill-McGee ordering, 28
Reverse Cuthill-McKee, 38
Reversed Cuthill-McKee ordering, 35

Schur complement, 45
separator, 40
Static Power Dissipation, 7
Steepest Descent method, 14, 15
subtree, 48
supernode, 32, 33, 35
symmetric, 12

tie-breaking pre-ordering, 35
topological equations, 9

voltage difference, 9
voltage drop, 7

WLNZ, 51

Zecevic and Siljak, 41, 43

73

Appendix A

MADAND(NEST) Example

Consider the example in Figure A.1. The left figure shows a graph of 26 nodes. We choose the parameters
dmax = 5, ωmax = 3, ωmin = 2. For this example we usecost1 as the cost function.

32

7 8

1 4 5

6
9 10

11 12

13 14 15 16

17 19
18

20
21 22

24

23

25
26

32

7 8

1 4 5

6
9 10

11 12

13 14 15 16

17 19
18

20
21 22

24

23

25
26

Figure A.1: MADAND(NEST) Example, Figure A.1.1 (left) and Figure A.1.2 (right).

Sincedmax = 5, all nodes with degree 5 or higher go in the border, soΨ = {v7, v8, v11, v12, v18, v19}.
Nodes in the border are represented with a large circle and a dot inside. The next phase is to construct
blocks in a breath-first way. So put nodev1 in block b1. TheReach becomes{v2, v6}. Now put nodev2

in b1, theReach becomes{v6, v3}, and put nodev6 in b1, theReach becomes{v3, v13}. Since|b1| = 3,
there is no room left in the block, so all nodes in the reach go into the border. This block-creation process
is continued until all nodes are either in a block or in the border. This is described in Figure A.2.1. The
result is of the block creation is

• b1 = {v1, v2, v6}

• b2 = {v4, v5, v9}

• b3 = {v14}

• b4 = {v15, v23, v26}

• b5 = {v20, v21, v24}

74

32

7 8

1 4 5

6
9 10

11 12

13 14 15 16

17 19
18

20
21 22

24

23

25
26

32

7 8

1 4 5

6
9 10

11 12

13 14 15 16

17 19
18

20
21 22

24

23

25
26

Figure A.2: MADAND(NEST) Example, Figure A.2.1 (left) and Figure A.2.2 (right).

Now all blocks with|bj | < 2 are discarded, so blockb3 with b3 = {v14} is discarded andv14 is added to
the border. The remaining blocks can now grow. All nodes in the border with exactly one blockneighbour
are considered, and the nodes with the smallest degree go first. The nodes with exactly one blockneighbour
areA = {v7, v8, v13, v17, v18}. Nodev13 is picked, for it has degree 4, which is the lowest. After node
v13 is added tob1, nodesv17 and v18 are no longer considered, and there are no new nodes with one
blockneighbour. Nowv8 is added tob2, and the are no nodes left inA. The result is drawn in Figure A.2.2.
The blocks are ready, but now the borderblocks must be formed. To make sure the dissection will be valid
all adjacent nodes with no blockneighbours in common must be placed in the same borderblock. Nodev11

has no blockneighbours in common with nodev14 (since nodev14 has no blockneighbours at all) so they
are put inb6. This b6 has no blockneighbours in common with nodev19, sov19 is added tob6. This is
described in Figure A.3.1.

32

7 8

1 4 5

6
9 10

11 12

13 14
15 16

17 19
18

20
21 22

24

23

25
26

32

7
8

1 4 5

6
9 10

11 12

13 14
15 16

17 1918

20
21 22

24

23

25 26

Figure A.3: MADAND(NEST) Example, Figure A.3.1 (left) and Figure A.3.2 (right).

The next step (Figure A.3.2) is to check if nodes that are not in a block yet can be added to an existing
borderblock. They can be added if they have exactly the same blockneighbours. Node 3 dividesb1 andb2,
and sinceb6 is the only borderblock that exists and dividesb1, b2, b4 andb5 this node is put inb7. Then
nodev7 is also added tob7. This is continued until all nodes are put in a (border)block. The configuration
of the blocks is now

• b1 = {v1, v2, v6, v13}

75

• b2 = {v4, v5, v8, v9}

• b4 = {v15, v23, v26}

• b5 = {v20, v21, v24}

• b6 = {v11, v14, v19}

• b7 = {v3, v7}

• b8 = {v10, v12, v16}

• b9 = {v17, v18}

• b10 = {v22, v25}

32

7
8

1 4 5

6
9 10

11 12

13 14
15 16

17 1918

20
21 22

24

23

25 26

32

7
8

1 4 5

6
9 10

11 12

13 14
15 16

17 1918

20
21 22

24

23

25 26

Figure A.4: MADAND(NEST) Example, Figure A.4.1 (left) and Figure A.4.2 (right).

All blocks are finished, it is time to paint them. Initially, all blocks are white andmincost = ∞. Take
ba, na an block. For all blocksbi(i < 6) that are not painted yet we calculate bordersize in the case the
block would be painted, and minimum of these bordersizes is chosen. Ifb1 is painted the bordersize is 7,
which happens to be the minimum. After paintingb1, mincost = 33.25, sincecost = 7 ∗ (1 + 15/4) =
33.25. The next block that is painted isb5, for which the bordersize is maintained. Nowmincost = 14.78.
See also Figure A.4. Now eitherb4 or b2 can be painted, butcost will be higher thenmincost. So the
algorithm starts again with the configurationb1 andb5 black andb2 andb4 white, but this will not give a
smallermincost. The dissection of Figure A.4.2 gavemincost and is therefore chosen.

76

32

7

8

1 4 5

6
9 10

11 12

13 14
15 16

17 1918

20
21 22

24

23

25 26

32

7
8

1 4 5

6
9 10

11 12

13 14
15 16

17 1918

20
21 22

24

23

25 26

Figure A.5: MADAND(NEST) Example, Figure A.5.1 (left) and Figure A.5.2 (right).

A given dissection might become smaller using the Dulmage-Mendelsohn decomposition. The algorithm
uses the border and the nodes adjacent to the border. Since White is the largest partition we try to move the
border a bit to the white side. Consider all grey nodesGn, Gn = {v3, v7, v11, v14, v19, v22, v25}, and all ad-
jacent white nodesWG, WG = {v4, v8, v12, v15, v23, v26}. Note that ifWG becomes grey andGn becomes
black, the dissection is still valid but smaller. However, for balance and construction arguments we prefer to
switch only a small part ofGn andWG. Consider all nodes inGn and perform a maximal matching. This
gives the pairs{v3, v4}, {v7, v8}, {v11, v12}, {v19, v15}, {v22, v23} and{v25, v26}, and nodev14 remains
unmatched. Sov14 is added toswitchgrey. All adjacent white nodes (nodev12) are added toswitchwhite.
Then all matches to the nodes inswitchwhite (nodev11) are added toswitchgrey. This procedure is re-
peated untilswitchwhite does not grow anymore, so it stops withswitchgrey = {v3, v7, v11, v14} and
switchwhite = {v4, v8, v12}. If switchgrey is painted black andswitchwhite is painted white the border
is smaller (Figure A.5.1). However, the new cost functioncost = 15, so this smaller border is rejected.
In the case the improvement is not rejected, the nodes are grow back to an existing block or form a new
borderblock. The final configuration is shown in Figure A.5.2.

77

Appendix B

Pseudo code

B.1 MADAND(AMD)

Algorithm 17 MADAND(AMD)
V = {v1, . . . , vn}, N = |V |, E = {e1, . . . , em}, M = |E|, W = ∅
for i = 1 . . .M do

Pickei = (vj , vk). Aj = Aj ∪ vk, Ak = Ak ∪ vj .
end for
for i = 1 . . . N do

Hash function initialization(vi)
di = |Ai|, wi = −1

end for
while V 6= ∅ do

Pickvp with score(vp) ≤ score(vj), vj ∈ V
Ap = (Ap ∪

⋃
vj∈Ep

Aj)\vp

Edge manipulation(vp)
Degree update(vp)
Supernode detection
Element creation(vp)

end while

B.2 MADAND(NEST)

78

Algorithm 18 Edge manipulation(vp)

for eachvj ∈ Ap do
Aj = Aj\vp

for eachvk ∈ Aj do
if vk ∈ Ap then
Aj = Aj\vk, Ak = Ak\vj

end if
end for
for eachvk ∈ Ej do

if vk ∈ Ep then
Ej = Ej\vk

else
if wk < 0 then

wk = |Ak|,W = W ∪ vk

end if
wk = wk − |vj |

end if
end for

end for

Algorithm 19 Degree update(vp)

bound1 = |V | − |vp|
for eachvj ∈ Ap do

bound2 = dj + |Ap| − |vj |, bound3 = |Ap| − |vj |
for eachvk ∈ Aj do

bound3 = bound3 + |vk|
end for
for eachvq ∈ Ej do

if Aq\Ap = ∅ then
Ek = Ek\vq,Aq = ∅

else
bound3 = bound3 + wq

end if
end for
dj = min(bound1, bound2, bound3), score(vj) = scorefunction(dj)

end for

Algorithm 20 Element creation(vp)

V = V \vp, Ep = ∅
for eachvk ∈ W do

wk = −1
end for
W = ∅

Algorithm 21 Hash-function initialization(vi)
hashi =

∑
Ai +

∑
Ei mod N

H(hashi) = H(hashi) ∪ vi

79

Algorithm 22 Supernode detection
for j = 0 . . . N − 1 do

if |H(j)| > 1 then
for eachvi ∈ H(j) do

for eachvk ∈ H(j), vk 6= vi do
if Ai ∪ vi == Ak ∪ vk then

chi = chi ∪ vk ∪ chk

V = V \vk,H(j) = H(j)\vk

Ak = ∅, Ek = ∅
end if

end for
end for

end if
end for
for j = 0 . . . N − 1 do

H(j) = ∅
end for

Algorithm 23 Ashcraft and Liu (1997)
Choosedmax, ωmax, ωmin,msb ∈ N, ωmax > ωmin.
Initialize Border
Construct Blocks
Remove Small Blocks
Grow Remaining Blocks
Construct Borderblocks
Make Dissection

Algorithm 24 Initialize Border
V = {v1, . . . , vn}, N = |V |, E = {e1, . . . , em}, M = |E|, Ψ = ∅,
for i = 1 . . .M do

Pickei = (vj , vk). Aj = Aj ∪ vk, Ak = Ak ∪ vj .
end for
for i = 1, . . . , N do

if |Ai| ≥ dmax then
Ψ = Ψ ∪ vi

end if
end for

80

Algorithm 25 Construct Blocks
Z = V \Ψ, t = −1, R = Ψ, Reach = ∅
while Z 6= ∅ do

Pickvseed ∈ Z
t = t + 1, New blockbt

bt = bt ∪ vseed, Z = Z\vseed, Reach = adj(vseed)\R, R = R ∪ vseed

while Reach 6= ∅ do
Pickvreach ∈ Reach
if |bt| ≤ ωmax then

bt = bt ∪ vreach, Z = Z\vreach, R = R ∪ vreach. Reach = (Reach ∪ Adj(vreach))\(R ∪
vreach), R = R ∪Reach

else
Ψ = Ψ ∪ vi, Z = Z\vreach, Reach = Reach\vreach, R = R ∪ vreach

end if
end while

end while
σ = t

Algorithm 26 Remove Small Blocks
for j = 1, . . . , t do

if |bj | < ωmin then
for eachvi ∈ bj do

Ψ = Ψ ∪ vi

end for
bj = ∅

end if
end for

Algorithm 27 Grow Remaining Blocks

A = ∅
for eachvj ∈ Ψ do

if |NBj | = 1 then
A = A ∪ vj

end if
end for
while A 6= ∅ do

Pickvmin ∈ {vu ∈ T ||adj(vu)| ≤ |adj(vw)|, vw ∈ T}, A = A/vmin

if |NBmin| = 1 then
NB is the only block inNBmin

NB = NB ∪ vmin, Ψ = Ψ\vmin

for eachva ∈ Amin do
if va ∈ Ψ and |NBa| = 1 then

A = A ∪ va

end if
end for

end if
end while

81

Algorithm 28 Construct Borderblocks
R = V \Ψ, Reach = ∅
for eachvj ∈ Ψ do

for eachva ∈ Aj do
if NBj ∩NBa = ∅ then

t = t + 1, new blockbt, bt = bt ∪ vj ∪ va, Ψ = Ψ\(va ∪ vj), R = R ∪ vj ∪ va, Reach =
(Aa ∪ Aj)\R
break

end if
end for
while Reach 6= ∅ do

Pickvreach ∈ Reach, Reach = Reach\vreach

if NBreach ∩NBbt = ∅ then
bt = bt ∪ vreach,Ψ = Ψ\vreach, R = R ∪ vreach, Reach = Reach ∪ Areach

end if
end while

end for
for eachbj , j > σ do

for each blockbp, p > j) do
if NBbj

= NBbp
then

bj = bj ∪ bp

bp = ∅
end if

end for
end for
for eachvi ∈ Ψ do

for each blockbj , j > σ do
if NBbj

= NBi then
bj = bj ∪ vi,Ψ = Ψ ∩ vi

break
end if

end for
if vi ∈ Ψ then

t = t + 1, new blockbt

bt = bt ∪ vi,Ψ = Ψ ∩ vi

end if
end for

Algorithm 29 Make Dissection
part = 0, P0 =

⋃
bj

while Ppart > msb do
Dissect-Partition(Ppart)

end while

82

Algorithm 30 Dissect-Partition(Ppart)

H = ∅, S = ∅, W = Ppart, B = ∅, G = ∅, W ∗ = ∅, B∗ = ∅, G∗ = ∅
for eachbj ∈ Ppart do

if j < σ then
H = H ∪ bj

end if
end for
mc = ∞
repeat

while H 6= ∅ do
sc = ∞
for eachbj ∈ H do

if paint(bj)→ min|G| then
bpaint = bj

end if
end for
Paint Block(bpaint)
Updatesc
if sc < mc then

mc = sc, W ∗ = W, B∗ = B, G∗ = G
end if

end while
msc = mc, H = S, W = W ∗, B = B∗, G = G∗

until mcs = mc

Algorithm 31 Paint Block(bpaint)
if bpaint ∈ W then

for eachbj ∈ NBbpaint
do

if bj ∈ G and bk ∈ B for all bk ∈ NBbj
then

G = G\bj , B = B ∪ bj

else if bj ∈ W then
G = G ∪ bj , W = W\bj

end if
end for
W = W\bpaint, B = B ∪ bpaint

else ifbpaint ∈ B then
for eachbj ∈ NBbpaint do

if bj ∈ G and bk ∈ W for all bk ∈ NBbj
then

G = G\bj , W = W ∪ bj

else if bj ∈ B then
G = G ∪ bj , B = B\bj

end if
end for
B = B\bpaint,W = W ∪ bpaint

end if

83

Algorithm 32 Improve Border

if |W | > |B| then
repeat

Improve(W ∗, B∗)
until G = G∗

repeat
Improve(B∗,W ∗)

until G = G∗

else
repeat

Improve(B∗,W ∗)
until G = G∗

repeat
Improve(W ∗, B∗)

until G = G∗

end if
Ready nodes
Grow Remaining Blocks
Construct Borderblocks

Algorithm 33 Improve(source,target)

Ω = {vi|vi ∈ bi, bi ∈ G}
∆ = ∅
for vi ∈ Ω do

for vj ∈ Adj(Ω), vj has colour sourcedo
if vi /∈ ∆ ∧ vj /∈ ∆ then

matchm(vi, vj), ∆ = ∆ ∪ vi ∪ vj

end if
end for

end for
Q = Ω ∩∆, Z = ∅
repeat

Q = Q ∪ Z
X = {vj ∈ Adj(Q) | vj has colour source}
Z = {vk | ∃m(vk, vj), vj ∈ X}

until Z ∩Q = ∅
Q = Q ∪ Z
if |Q| > |X| ∧ impsc < sc then

store(target) = store(target) ∪Q
store(G) = store(G) ∪X

end if

Algorithm 34 Ready Nodes

G = ∅
G = G ∪ store(G)
for vi ∈ store(W) do

Ψ = Ψ ∪ vi

end for
for vi ∈ store(B) do

Ψ = Ψ ∪ vi

end for

84

Appendix C

Results

The tables are constructed in the following way: the first column consists of the number of processors and
the total number of nonzero elements of the matrix (the MNZ). The second column contains the partition
numbers. The next two columns contain the number of nonzero elements of that partition (NZP) and the
number of nodes in that partition, respectively. Then, depending on the number of processors, there are
m (with number of processorsp = 2m) times 3 additional columns. The first of these columns represent
the NZP between the partitions1 . . . 2m

p , . . . , (p− 1) 2m

p + 1 . . . 2m + 1, the second number is the number
of nodes in that separator and the third number is the MNZP of this partition, defined by MNZP:= max(
MNZP1,MNZP2) + NZP, with MNZP1 and MNZP2 the MNZP of the 2 blocks that are dissected by this
separator. For the first level, the MNZP = NZP. Finally, the last MNZP is bold and is equal to the WLNZ.

85

1 proc costfunction block-var. greedy/random
MNZ 1 WLNZ

2 proc 1 nz(1) #1 3 = b(1|2)
MNZ 2 nz(2) #2 nz(3) #3 WLNZ

4 proc 1 nz(1) #1 5 = b(1|2)
MNZ 2 nz(2) #2 nz(5) #5 wl(5)

3 nz(3) #3 6 = b(3|4) 7=b(5|6)
4 nz(4) #4 nz(6) #b6 wl(6) nz(7) #7 WLNZ

8 proc 1 nz(1) #1 9=b(1|2)
MNZ 2 nz(2) #2 nz(9) #9 wl(9)

3 nz(3) #3 10=b(3|4) 13=b(9|10)
4 nz(4) #4 nz(10) #10 wl(10) nz(13) #13 wl(13)
5 nz(5) #5 11=b(5|6)
6 nz(5) #6 nz(11) #11 wl(11)
7 nz(7) #7 12=b(7|8) 14=b(11|12) 15=b(13|14)
8 nz(8) #8 nz(12) #12 wl(12) nz(14) #14 wl(14) nz(15) #15 WLNZ

16 proc 1 nz(1) #1 17=b(1|2)
MNZ 2 nz(2) #2 nz(17) #17 wl(17)

3 nz(3) #3 18=b(3|4)
4 nz(4) #4 nz(18) #18 wl(18) nz(25) #25 wl(25)
5 nz(5) #5 19=b(5|6)
6 nz(5) #6 nz(19) #19 wl(19)
7 nz(7) #7 20=b(7|8)
8 nz(8) #8 nz(20) #20 wl(20) nz(26) #26 wl(26) nz(29) #29 wl(29)
9 nz(9) #9 21=b(9|10)

10 nz(10) #10 nz(21) #21 wl(21)
11 nz(11) #11 22=b(11|12)
12 nz(12) #12 nz(22) #22 wl(22) nz(27) #27 wl(27)
13 nz(13) #13 23=b(13|14)
14 nz(14) #14 nz(23) #23 wl(23)
15 nz(15) #15 24=b(15|16)
16 nz(16) #16 nz(24) #24 wl(24) nz(28) #28 wl(28) nz(30) #30 wl(30) nz(31) #31WLNZ

TEST X

86

1 proc COST1 7-40-20 GREEDY
146200 1 146200

2 proc 1 80678 5862
146574 2 62306 4677 3590 35 84268

4 proc 1 39193 2941
154098 2 37358 2878 5436 43 44629

3 29306 2178
4 30563 2456 4508 43 35071 7734 35 52363

8 proc 1 16757 1483
156713 2 17517 1418 4520 40 22037

3 19041 1485
4 14424 1355 4137 38 23178 7242 43 30420
5 12251 1060
6 12174 1081 4404 37 16655
7 13487 1163
8 12972 1246 3927 47 17414 6130 43 23544 7736 35 38156

16 proc 1 6749 714
160836 2 6761 730 3248 39 10009

3 7093 706
4 6913 674 3618 38 10711 5219 40 15930
5 7280 706
6 7110 727 4152 52 11432
7 6285 680
8 5522 635 2742 40 9027 4854 38 16286 6910 43 23196
9 4872 522

10 4450 481 3312 57 8184
11 4663 528
12 4479 505 3313 48 7976 5125 37 13309
13 4698 542
14 5841 580 2818 41 8659
15 3112 345
16 8490 881 1630 20 10120 4859 47 14979 6768 43 21747 7910 35 31106

TEST 1

87

1 proc COST2 7-40-20 GREEDY
146200 1 146200

2 proc 1 72447 5264
146681 2 70271 5263 3963 47 76410

4 proc 1 36841 2636
2 32710 2584 4251 44 41092

155662 3 36563 2629
4 32159 2578 4411 56 40974 8727 47 49819

8 proc 1 14054 1267
2 15647 1319 6550 50 22197

159516 3 13938 1302
4 15512 1235 3897 47 19409 6795 44 28992
5 15573 1293
6 14027 1285 5410 51 20983
7 15478 1302
8 12709 1233 3615 42 19093 6991 57 27974 9320 47 38312

16 proc 1 6071 666
2 5437 557 3256 44 9327

164572 3 5509 596
4 6687 675 4067 48 10754 5423 50 16177
5 5618 616
6 5473 639 3164 47 8782
7 5334 557
8 5763 625 3517 53 9280 5175 47 14455 7324 44 23501
9 6021 621

10 5755 619 4133 53 10154
11 4941 608
12 5749 622 3294 55 9043 5706 51 15860
13 5510 621
14 6621 631 2998 50 9619
15 5474 587
16 4493 594 3494 52 8968 4638 42 14257 8340 57 24200 9587 47 33787

TEST 2

88

1 proc MODCOST1 7-40-20 GREEDY
146200 1 146200

2 proc 1 70302 5109
146843 2 72384 5426 4157 39 76541

4 proc 1 34766 2551
2 31565 2516 4561 42 39327

154883 3 35160 2615
4 34570 2772 4113 39 39273 10148 39 49475

8 proc 1 14825 1301
2 14511 1205 5840 45 20665

157527 3 13060 1239
4 15125 1237 3669 40 18794 6597 42 27262
5 12148 1296
6 14634 1247 8011 72 22645
7 15352 1277
8 16022 1443 4367 52 20389 5688 39 28333 7678 39 36011

16 proc 1 5554 625
2 6311 631 3271 45 9582

160490 3 5649 579
4 5387 581 3187 45 8836 4958 45 14540
5 5257 607
6 5267 589 2982 43 8249
7 5194 557
8 6426 634 3536 46 9962 4313 40 14275 6525 42 21065
9 6029 651

10 5618 628 679 17 6708
11 5401 586
12 4893 581 5148 80 10549 8365 72 18914
13 6791 621
14 5917 625 2737 30 9528
15 6806 699
16 6937 719 1757 25 8694 5358 53 14886 5500 39 24414 8737 39 33151

TEST 3

89

1 proc COST1 7-40-20 RANDOM
146200 1 146200

2 proc 1 80678 5862
146574 2 62306 4677 3590 35 84268

4 proc 1 38444 2949
2 36928 2871 5465 42 43909

153249 3 30284 2464
4 29418 2171 4457 42 34741 8253 35 52162

8 proc 1 16454 1461
2 17894 1444 4974 44 22868

156326 3 18768 1480
4 14293 1353 4370 38 23138 7485 42 30623
5 13584 1165
6 13303 1256 3076 43 16660
7 11721 1055
8 12122 1077 4544 39 16666 6034 42 22700 7704 35 38327

16 proc 1 6377 693
2 6761 731 3161 37 9922

158427 3 6882 703
4 7203 703 3603 38 10806 5360 44 16166
5 7379 717
6 6962 712 3885 51 11264
7 6448 689
8 5369 625 2684 39 9132 5045 38 16309 7149 42 23458
9 4997 560

10 5676 564 2870 41 8546
11 7616 819
12 3825 413 1945 24 9561 4208 43 13769
13 4667 505
14 4798 513 2557 37 7355
15 3439 425
16 5802 602 3257 50 9059 4335 39 13394 6518 42 20287 7649 35 31107

TEST 4

90

1 proc COST2 7-40-20 RANDOM
146200 1 146200

2 proc 1 72870 5287
146433 2 70099 5248 3464 39 76334

4 proc 1 35262 2620
2 33263 2618 4168 49 39430

154990 3 32004 2597
4 35503 2597 5038 54 40541 9752 39 50293

8 proc 1 14446 1284
2 14869 1284 6749 52 21618

160404 3 13675 1287
4 16235 1283 4472 48 20707 6531 49 28149
5 14379 1260
6 13714 1276 4623 61 19002
7 15306 1277
8 13827 1269 5433 51 20739 7581 54 28320 8564 39 36884

16 proc 1 5561 592
2 6316 647 2877 45 9193

166097 3 5605 581
4 5757 612 5117 91 10874 6132 52 17006
5 5646 618
6 5201 623 3125 46 8771
7 5801 593
8 5918 634 3643 56 9561 5365 48 14926 7595 49 24601
9 5323 606

10 5458 598 3467 56 8925
11 6206 619
12 6148 630 1488 27 7694 6118 61 15043
13 5944 616
14 5921 607 4044 54 9988
15 5485 636
16 5551 596 2551 37 8102 5706 51 15694 8231 54 23925 8797 39 33398

TEST 5

91

1 proc MODCOST1 7-40-20 RANDOM
146200 1 146200

2 proc 1 70752 5134
146485 2 72132 5405 3601 35 75733

4 proc 1 32488 2514
2 32686 2579 5403 41 38089

152870 3 33266 2543
4 35668 2821 3583 41 39251 9776 35 49027

8 proc 1 13894 1231
2 15294 1241 5667 42 20961

156973 3 12727 1217
4 16979 1324 4037 38 21016 5150 41 26166
5 13526 1270
6 14422 1226 5518 47 19940
7 16203 1356
8 15443 1421 4497 44 20700 5448 41 26148 8168 35 34334

16 proc 1 4861 569
2 5721 605 3605 57 9326

158490 3 5712 584
4 5970 615 3178 42 9148 4785 42 14111
5 5381 596
6 4815 579 2613 42 7994
7 6821 650
8 6262 630 3173 44 9994 4474 38 14468 6099 41 20567
9 5396 630

10 6168 603 2711 37 8879
11 5991 610
12 5399 576 3086 40 9077 4985 47 14062
13 6705 611
14 6802 657 3150 38 9952
15 7185 695
16 6583 649 1707 27 8892 4819 44 14771 6140 41 20911 8193 35 29104

TEST 6

92

1 proc COST1 7-80-40 GREEDY
146200 1 146200

2 proc 1 74727 5446
146396 2 68218 5093 3451 35 78178

4 proc 1 35928 2800
2 35377 2602 4196 44 40124

149034 3 40619 3175
4 20619 1877 3854 41 44473 8441 35 52914

8 proc 1 13655 1305
2 18320 1452 5047 43 23367

157077 3 15727 1290
4 14041 1264 5460 48 21187 6374 44 29741
5 19636 1623
6 16517 1506 5311 46 24947
7 10849 964
8 8718 874 4331 39 15180 5959 41 30906 7132 35 38038

16 proc 1
2 0

0 3
4 0 0
5
6 0
7
8 0 0 0
9

10 0
11
12 0 0
13
14 0
15
16 0 0 0 0

TEST 7

93

1 proc COST2 7-80-40 GREEDY
146200 1 146200

2 proc 1 72441 5292
146466 2 70344 5244 3681 38 76122

4 proc 1 34049 2690
2 33936 2544 5132 58 39181

154745 3 31709 2538
4 36498 2657 4346 49 40844 9075 38 49919

8 proc 1 13655 1305
2 16699 1342 4773 43 21472

159710 3 14093 1244
4 12959 1229 7074 71 21167 7803 58 29275
5 13240 1245
6 14694 1245 3791 48 18485
7 16270 1366
8 14336 1245 5062 46 21332 6433 49 27765 8828 38 38103

16 proc 1 5447 605
2 5536 659 2671 41 8207

164812 3 5614 604
4 6988 687 3516 51 10504 5425 43 15929
5 5784 591
6 5171 591 3508 62 9292
7 6065 617
8 4142 555 3381 57 9446 6802 71 16248 8707 58 24955
9 5987 596

10 5526 613 2203 36 8190
11 5037 576
12 5699 608 3806 61 9505 5107 48 14612
13 5939 626
14 6707 689 3769 51 10476
15 5031 531
16 6136 668 3175 46 9311 5144 46 15620 7668 49 23288 9121 38 34076

TEST 8

94

1 proc MODCOST1 7-80-40 GREEDY
146200 1 146200

2 proc 1 74727 5446
146396 2 68218 5093 3451 35 78178

4 proc 1 35928 2800
2 35377 2602 4196 44 40124

155278 3 33363 2495
4 30037 2525 8058 73 41421 8319 35 49740

8 proc 1 13655 1305
2 18320 1452 5047 43 23367

159387 3 15727 1290
4 14041 1264 5460 48 21187 6374 44 29741
5 12542 1175
6 14666 1255 6082 65 20748
7 13370 1160
8 12096 1313 5046 52 18416 9911 73 30659 7050 35 37709

16 proc 1
2 0

0 3
4 0 0
5
6 0
7
8 0 0 0
9

10 0
11
12 0 0
13
14 0
15
16 0 0 0 0

TEST 9

95

1 proc COST1 7-80-40 RANDOM
146200 1 146200

2 proc 1 74727 5446
146396 2 68218 5093 3451 35 78178

4 proc 1 34535 2602
2 35951 2800 3756 44 39707

151474 3 23966 1915
4 39843 3139 4288 39 44131 9135 35 53266

8 proc 1 14041 1264
2 15925 1290 5399 48 21324

157027 3 13655 1305
4 18623 1452 5195 43 23818 5928 44 29746
5 11393 1006
6 8561 866 4366 43 15759
7 18747 1533
8 17156 1559 4938 47 23685 5698 39 29383 7402 35 37148

16 proc 1
2 0

0 3
4 0 0
5
6 0
7
8 0 0 0
9

10 0
11
12 0 0
13
14 0
15
16 0 0 0 0

TEST 10

96

1 proc COST2 7-80-40 RANDOM
146200 1 146200

2 proc 1 73178 5207
153966 2 69623 5294 11165 73 84343

4 proc 1 34403 2596
2 33341 2564 4099 47 38502

157863 3 31991 2655
4 34860 2596 4181 43 39041 14988 73 54029

8 proc 1 14150 1272
2 15660 1274 5863 50 21523

163831 3 14280 1216
4 13924 1301 4879 47 19159 6182 47 27705
5 14883 1284
6 11192 1270 7863 101 22746
7 14336 1235
8 13250 1279 7952 82 22288 5972 43 28718 13445 73 42163

16 proc 1 4291 579
2 5689 626 4256 67 9945

168893 3 5554 589
4 6992 624 3482 61 10474 5742 50 16216
5 5810 588
6 5325 579 3490 49 9300
7 5053 581
8 6232 676 2763 44 8995 5408 47 14708 7870 47 24086
9 6016 597

10 6178 655 2627 32 8805
11 5921 631
12 4907 631 249 8 6170 8702 101 17507
13 5638 584
14 5646 608 2958 43 8604
15 6032 656
16 5377 581 2771 42 8803 7590 82 16393 6400 43 23907 13924 73 38010

TEST 11

97

1 proc MODCOST1 7-80-40 RANDOM
146200 1 146200

2 proc 1 74727 5446
146396 2 68218 5093 3451 35 78178

4 proc 1 34535 2602
2 35951 2800 3756 44 39707

152860 3 31255 2536
4 33717 2515 3767 42 37484 9879 35 49586

8 proc 1 14041 1264
2 15925 1290 5399 48 21324

158069 3 13655 1305
4 18623 1452 5195 43 23818 5928 44 29746
5 13234 1242
6 14813 1249 3789 45 18602
7 13699 1211
8 13840 1252 6124 52 19964 5906 42 25870 7898 35 37644

16 proc 1
2 0

0 3
4 0 0
5
6 0
7
8 0 0 0
9

10 0
11
12 0 0
13
14 0
15
16 0 0 0 0

TEST 12

98

1 proc COST1 7-60-30 GREEDY
146200 1 146200

2 proc 1 71600 5378
146652 2 71129 5160 3923 36 75523

4 proc 1 32992 2555
2 34522 2782 4080 41 38602

155377 3 42061 3036
4 24840 2082 4740 42 46801 12142 36 58943

8 proc 1 16305 1298
2 12765 1206 4649 51 20954

157433 3 16620 1345
4 14887 1396 3346 41 19966 5613 41 26567
5 17490 1498
6 19393 1499 5152 39 24545
7 12179 1098
8 9874 949 2974 35 15153 6838 42 31383 9348 36 40731

16 proc 1
2 0

0 3
4 0 0
5
6 0
7
8 0 0 0
9

10 0
11
12 0 0
13
14 0
15
16 0 0 0 0

TEST 13

99

1 proc COST2 7-60-30 GREEDY
146200 1 146200

2 proc 1 75358 5248
154349 2 70209 5245 8782 81 84140

4 proc 1 33803 2617
2 33400 2569 8502 62 42305

156576 3 32180 2584
4 33446 2608 4853 53 38299 10392 81 52697

8 proc 1 13482 1264
2 14286 1290 6894 63 21180

160798 3 14086 1220
4 13428 1304 4355 45 18441 9102 62 30282
5 14733 1237
6 13833 1306 4877 41 19610
7 15713 1332
8 12047 1228 5816 48 21529 6779 53 28308 11367 81 41649

16 proc 1 5585 573
2 6002 646 2868 45 8870

165680 3 5329 582
4 6462 664 3310 44 9772 6903 63 16675
5 5472 584
6 5385 589 3417 47 8889
7 5119 589
8 5556 670 2925 45 8481 4705 45 13594 9529 62 26204
9 5819 610

10 5503 583 2988 44 8807
11 5177 623
12 5180 617 4299 66 9479 4946 41 14425
13 5850 614
14 6613 667 4229 51 10842
15 5335 548
16 4309 637 2580 43 7915 5059 48 15901 7717 53 23618 11509 81 37713

TEST 14

100

1 proc MODCOST1 7-60-30 GREEDY
146200 1 146200

2 proc 1 74447 5328
151482 2 69288 5181 7747 65 82194

4 proc 1 34679 2612
2 34686 2671 4613 45 39299

157179 3 35802 2558
4 29463 2581 4712 42 40514 13224 65 53738

8 proc 1 14761 1257
2 14558 1299 5793 56 20554

161000 3 16536 1361
4 13767 1269 4832 41 21368 6487 45 27855
5 15285 1291
6 15624 1222 4699 45 20323
7 16132 1367
8 10828 1175 3748 39 19880 7271 42 27594 10679 65 38534

16 proc 1 5994 595
2 6719 634 2288 28 9007

163894 3 5956 642
4 6127 615 2611 42 8738 6035 56 15042
5 6302 653
6 6329 660 3852 48 10181
7 5400 607
8 5341 614 2981 48 8381 4752 41 14933 7498 45 22540
9 5708 593

10 6031 646 3542 52 9573
11 5557 591
12 5559 578 3273 53 8832 5830 45 15403
13 5205 643
14 6437 653 4861 71 11298
15 5194 579
16 5098 579 536 17 5730 4077 39 15375 7452 42 22855 11349 65 34204

TEST 15

101

1 proc COST1 7-60-30 RANDOM
146200 1 146200

2 proc 1 72128 5408
146680 2 71050 5131 3502 35 75630

4 proc 1 34353 2584
2 34644 2784 4003 40 38647

153182 3 35507 2727
4 29305 2365 6259 39 41766 9111 35 50877

8 proc 1 13582 1235
2 16225 1298 4539 51 20764

155576 3 16166 1349
4 14920 1397 3671 38 19837 5767 40 26531
5 15822 1325
6 15276 1356 6207 46 22029
7 12769 1128
8 12561 1196 4221 41 16990 5875 39 27904 7975 35 35879

16 proc 1 5752 642
2 5425 558 2725 35 8477

157062 3 6540 645
4 5879 615 3211 38 9751 5310 51 15061
5 6837 626
6 6923 696 2188 27 9111
7 7322 721
8 6188 646 1616 30 8938 4258 38 13369 6018 40 21079
9 5008 548

10 7857 739 3365 38 11222
11 5829 647
12 6348 668 3779 41 10127 4653 46 15875
13 4542 515
14 5127 570 2831 43 7958
15 4657 552
16 5417 602 2804 42 8221 4473 41 12694 6481 39 22356 7699 35 30055

TEST 16

102

1 proc COST2 7-60-30 RANDOM
146200 1 146200

2 proc 1 75370 5248
153431 2 70228 5245 7833 81 83203

4 proc 1 33968 2592
2 33629 2585 7919 71 41887

155949 3 31896 2581
4 33659 2613 4651 51 38310 10227 81 52114

8 proc 1 13564 1264
2 13764 1257 7510 71 21274

161560 3 14398 1232
4 13395 1305 4692 48 19090 9217 71 30491
5 13833 1306
6 14312 1234 4542 41 18854
7 14724 1267
8 12306 1283 7022 63 21746 6463 51 28209 11818 81 42309

16 proc 1 5671 612
2 6233 615 2356 37 8589

167513 3 4734 553
4 6441 659 3269 45 9710 7478 71 17188
5 5907 604
6 5290 577 3431 51 9338
7 5071 590
8 5593 670 2790 45 8383 4859 48 14197 10091 71 27279
9 5969 647

10 4964 602 3541 57 9510
11 6040 618
12 5301 575 2815 41 8855 5111 41 14621
13 6041 604
14 5708 604 4047 59 10088
15 6069 651
16 4273 590 2227 42 8296 6241 63 16329 7841 51 24170 12111 81 39390

TEST 17

103

1 proc MODCOST1 7-60-30 RANDOM
146200 1 146200

2 proc 1 72128 5408
146680 2 71050 5131 3502 35 75630

4 proc 1 34353 2584
2 34644 2784 4003 40 38647

153182 3 35507 2727
4 29305 2365 6259 39 41766 9111 35 50877

8 proc 1 13582 1235
2 16225 1298 4539 51 20764

155576 3 16166 1349
4 14920 1397 3671 38 19837 5767 40 26531
5 15822 1325
6 15276 1356 6207 46 22029
7 12769 1128
8 12561 1196 4221 41 16990 5875 39 27904 7975 35 35879

16 proc 1 5044 601
2 5450 582 3812 52 9262

158514 3 6510 646
4 5879 615 3150 37 9660 5243 51 14903
5 6837 626
6 6923 696 2188 27 9111
7 6075 631
8 6657 720 2520 46 9177 4747 38 13924 6059 40 20962
9 5904 597

10 6657 677 3664 51 10321
11 5383 617
12 6685 692 3745 47 10430 5310 46 15740
13 4542 515
14 5127 570 2831 43 7958
15 4657 552
16 5417 602 2804 42 8221 4473 41 12694 6505 39 22245 7716 35 29961

TEST 18

104

