Eindhoven University of Technology

MASTER

Increasing solver performance for circuit simulation problems

Vollebregt, A.J.

Award date:
2007

Link to publication

Disclaimer

This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required minimum study period may vary in duration.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain

INCREASING SOLVER PERFORMANCE FOR CIRCUIT SIMULATION PROBLEMS

by
A.J. Vollebregt

Supervisors:
Prof. Dr. W.H.A. Schilders (TU/e)
Dr. ir. S.H.M.J. Houben (Magma)

Abstract

Since computer chips have become smaller and smaller over the years, their interior is getting more complex. These chips suffer both dynamic and static dissipation, which result in power leakage and signal delay. The magnitude of these effects (and thus the performance of a chip) can be determined by calculating the voltage drop, for which a linear system has to be solved. A common used technique to solve increasingly growing SPD-matrices with origin in circuit simulation is the Preconditioned Conjugate Gradient method with an incomplete Cholesky decomposition as preconditioner. A consequence of Cholesky decomposition of sparse matrices is the occurrence of fill-in. Fill-in elements are additional nonzero matrix elements, which increase the amount of memory. Reordering of the matrix is a widely used method to reduce the appearance of fill-in. In addition to some methods to improve the iteration speed of the Preconditioned Conjugate Gradient method, this thesis will also discuss several local and global ordering methods such as the Minimum Degree ordering and the Nested Dissection ordering. These orderings are designed to reduce the number of fill-in elements. We present the software package MADAND that reduces the number of fill-in elements and the number of iteration steps of the PCG-method by approximately 50 percent in comparison with the current ordering MINOLD, and can partition the matrix so it can be solved in parallel, which may lead to a speedup factor of 4 .

Contents

1 Introduction 7
2 Electronic circuits 11
2.1 Physical laws 11
2.2 Nodal Analysis 12
2.3 Linear systems 13
2.4 Matrix properties 14
3 Solution methods 17
3.1 Conjugate Gradient method 17
3.1.1 Steepest Descent method 17
3.1.2 Search Directions 18
3.2 Cholesky Factorization 21
3.3 Preconditioned Conjugate Gradient method 24
3.4 Search for the right preconditioner 25
3.4.1 Incomplete Cholesky factorization 25
3.4.2 Standard incomplete Cholesky factorization 26
3.4.3 Drop tolerance 27
3.5 Solver problems 28
3.6 Solution methods 28
4 Matrix Ordering 31
4.1 The benefits of ordering 31
4.2 Graph representation 32
5 Local ordering algorithms 35
5.1 Minimizing fill-in; The Minimum Fill Ordering 35
5.2 Minimum Degree Ordering 35
5.2.1 Mass elimination 36
5.2.2 Graph compression 37
5.2.3 Incomplete degree update 38
5.2.4 Remove redundant edges 38
5.2.5 Element absorption 38
5.2.6 Tie-breaking pre-ordering 39
5.2.7 External degrees 39
5.2.8 Multiple elimination 39
5.2.9 Approximate degrees 40
5.2.10 MADAND(AMD) 41
5.3 Approximate Minimum Deficiency 41
5.4 Minimum degree with drop tolerance prediction 42
5.5 Reverse Cuthill-McKee ordering 42
6 Global ordering algorithms 45
6.1 Nested Dissection ordering 45
6.2 Multisection ordering 46
6.3 Combining local and global ordering methods 47
6.4 Basics of Dissection Orderings 47
6.5 Domain decomposition 48
6.5.1 Zecevic and Siljak 48
6.5.2 Ashcraft and Liu 48
6.5.3 MANDAND(NEST) 49
7 Parallel Solution methods 51
7.1 Substitution in an iteration step 51
7.2 Topology of the preconditioner matrix 52
7.3 Efficient Dissection Verification 54
8 Results 57
8.1 Ordering, Matrix decomposition 58
8.1.1 One processor 58
8.1.2 Multiple Processors 59
8.2 Pre-Conjugate Gradient iterations 65
9 Conclusions and Recommendations 69
Bibliography 70
A MADAND(NEST) Example 74
B Pseudo code 78
B. 1 MADAND(AMD) 78
B. 2 MADAND(NEST) 78
C Results 85

List of Tables

4.1 Nonzero elements of the complete Cholesky factor of testcase3 for several orderings 32
8.1 Description of all testcases processed with MATLAB 57
8.2 Description of all testcases processed with C++. 57
8.3 MNZ for several orderings. 58
8.4 Results of the MADAND(AMD) for Magma designs compared with MINOLD. 59
8.5 MNZ using MANDAND(AMD) for different pre-orderings. 59
8.6 Test configurations for testcase3. 61
8.7 MNZ for the MADAND(CON)-tests of testcase3 61
8.8 WLNZ for the MADAND(CON)-tests of testcase3 62
8.9 The MADAND(CON)-tests contest1 and contest2 for testcase5. 64
8.10 The MADAND(CON)-tests contest 1 and contest 2 for testcase6a. 64
8.11 The MADAND(CON)-tests contest 1 and contest 2 for testcase6b. 64
8.12 The MADAND(CON)-tests contest 1 and contest 2 for testcase 7 a. 65
8.13 The MADAND(CON)-tests contest 1 and contest 2 for testcase 7 b 65
8.14 The number of iteration steps of the PCG-method for testcase 3 for different values of ε and different orderings 66
8.15 Number of iteration steps for different methods. 67
8.16 Results for MADAND(AMD) with $\vartheta=1$, scaled with the results of MADAND(AMD) with $\vartheta=0$ 68

List of Figures

1.1 Simple power design. 7
1.2 Magma's voltage drop map. 8
2.1 A graph of a simple electrical circuit 12
4.1 The elimination graphs $F^{0} \ldots F^{8}$ of a simple circuit. 33
4.2 Sparsity pattern of testcase1 and its Cholesky factor with a random ordering. 34
4.3 Sparsity pattern of testcase 1 and its Cholesky factor with the ordering MINOLD. 34
5.1 The quotient graphs $F^{0} \ldots F^{5}$ of a simple circuit. 39
5.2 Sparsity pattern of testcase1 and its Cholesky factor ordered with symmmd. 40
5.3 Example of a quotient graph in which $d_{4}^{-k}>d_{4}$. 41
5.4 Sparsity pattern of testcase 1 and its Cholesky factor ordered with symrcm. 43
6.1 Sparsity pattern of testcase1 and its Cholesky factor ordered with METIS (oemetis). 46
6.2 Sparsity pattern of testcase 1 and its Cholesky factor ordered with siljak8.m. 47
7.1 Small graph of the example in Section 7.1 52
7.2 Tree structure of the partition numbers. 54
8.1 MNZ of a MADAND(CON) test for several different amount of processors. 60
8.2 The MNZ for the 18 MADAND(CON) tests for $1,2,4,8$ and 16 processors in comparison with METIS. 62
8.3 The WLNZ for the 18 MADAND(CON) tests for $1,2,4,8$ and 16 processors. 63
8.4 Convergence speed of the PCG-method for testcase 3 for several methods 66
8.5 Convergence speed of the PCG-method for testcase5 for several methods 67
8.6 Convergence speed of the PCG-method for testcase6a for several methods 68
A. 1 MADAND(NEST) Example, Figure A.1.1 (left) and Figure A.1.2 (right). 74
A. 2 MADAND(NEST) Example, Figure A. 2.1 (left) and Figure A.2.2 (right). 75
A. 3 MADAND(NEST) Example, Figure A.3.1 (left) and Figure A.3.2 (right). 75
A. 4 MADAND(NEST) Example, Figure A.4.1 (left) and Figure A.4.2 (right). 76
A. 5 MADAND(NEST) Example, Figure A.5.1 (left) and Figure A.5.2 (right). 77

List of Algorithms

1 Steepest Descent 18
2 Conjugate Gradient 20
3 Cholesky factorization (CF) 21
4 Left-looking diagonal Cholesky factorization (LLDCF) 22
5 Right-looking Diagonal Cholesky Factorization (RLDCF) 24
6 Preconditioned Conjugate Gradient 25
7 Incomplete Cholesky factorization (ICF) 25
8 Right-looking standard incomplete Cholesky factorization (RLSICF) 26
9 Right-looking modified incomplete Cholesky factorization (RLMICF) 27
10 Right-looking modified incomplete Cholesky factorization (δ) (RLMICFD) 27
11 Right-looking diagonal Cholesky factorization with drop tolerance (FDCFDT) 27
12 Right-looking diagonal Cholesky factorization with drop tolerance (θ) (RLDCFDTT) 28
13 MD with quotient graphs 36
14 Hash-function initialization $\left(v_{i}\right)$ (in the second for loop) 37
15 Supernode detection (after the third for loop) 37
16 Parallel Forward and Backward substitution 52
17 MADAND(AMD) 78
18 Edge manipulation $\left(v_{p}\right)$ 79
19 Degree update $\left(v_{p}\right)$ 79
20 Element creation $\left(v_{p}\right)$ 79
21 Hash-function initialization $\left(v_{i}\right)$ 79
22 Supernode detection 80
23 Ashcraft and Liu (1997) 80
24 Initialize Border 80
25 Construct Blocks 81
26 Remove Small Blocks 81
27 Grow Remaining Blocks 81
28 Construct Borderblocks 82
29 Make Dissection 82
30 Dissect-Partition $\left(P_{\text {part }}\right)$ 83
31 Paint Block ($b_{\text {paint }}$) 83
32 Improve Border 84
33 Improve(source,target) 84
34 Ready Nodes 84

Chapter 1

Introduction

In the demanding age we live in, people do not only want new features for their electronic devices, they also expect them to become smaller and more durable. For example, a mobile phone can have features like a camera, internet, and games, while it has the size of a thumb and has a battery that lasts in standby mode for a week without charging. So new technologies result not only in smaller designs of computer chips (also called integrated circuits or IC's), but the designs get also more complex. Therefore it becomes an increasingly bigger challenge to design fast IC's using low power.

Power Dissipation

We have to zoom to approximately 100 nm to understand the difficulties of chip design. Computer chips are build up out of millions of transistors. Assume a design has complementary metal oxide semiconductor (CMOS) devices, the most common used semiconductor. Figure 1.1 shows a simple inverter design with two transistors, T_{1} and T_{2}, connected by a gate. T_{1} is connected to the power rail and T_{2} to the ground rail. The transistors have a certain switching threshold V_{t}.

Figure 1.1: Simple power design.

If a input signal reached the inverter, the gate switches from one state to another, and both transistors are turned on for a fraction of a second. This results into a short circuit between the power net $V_{D D}$ and the ground net $V_{S S}$. The time this circuit is active depends on the thresholds and the slope of the input signal. The size of the transistors is very important for the effects that will occur. If the transistors are too large, the gate is overpowered, which means that it consumes a great deal of power (case a). On the other hand, if the transistors are too small, the circuit will be on for too long, therefore the inverter will consume a considerable amount of power (case c). This is called Dynamic Power Dissipation. It can be calculated by the following equation

$$
\begin{equation*}
P_{d y n} \approx \alpha f \cdot C \cdot V^{2} \tag{1.1}
\end{equation*}
$$

with $P_{d y n}$ is the dynamic power, f is the operating frequency, α is the switching activity factor of the gate, C is the amount of capacitance being switched, and V is the supply voltage.

In addition to Dynamic Power Dissipation, a design may suffer Static Power Dissipation. This happens when the gates are not active. There is a certain leakage current ($I_{\text {Leakage }}$) going through the transistors.

$$
\begin{equation*}
I_{\text {Leakage }} \approx e^{-q V_{t} / k T} \tag{1.2}
\end{equation*}
$$

with q is charge of an electron, k is the Boltzman constant, and T is the temperature. Also there is a certain delay $\left(t_{\text {delay }}\right)$, the switching time, described by

$$
\begin{equation*}
t_{\text {delay }} \approx V_{D D} \cdot\left(V_{D D}-V_{t}\right)^{-\alpha} \tag{1.3}
\end{equation*}
$$

The loss of power and especially the delay must be minimized to get an optimal working chip.

Voltage Drop

If a chip is designed the V_{t} is known for every transistor. To acknowledge the dissipation effects the other voltages $V_{D D}$ and $V_{S S}$ must be calculated. These voltages suffer a phenomena that is called voltage drop. Voltage drops are reduction of the voltage if a current goes through a resistance. Because both the dynamic power and the delay depend on the supply voltage, it is important to calculate the voltage drop at each segment of the design.

Current Situation

One of the products the company of Magma Design Automation develops is software to simulate ICdesigns.

Figure 1.2: Magma's voltage drop map.

Figure 1.2 shows the voltage drop map of a chip design, and points out the problem ares. To calculate the voltage drop some very basic - but enormously large - mathematical systems have to be solved, which
can be done using linear algebra. These systems are solved using the preconditioned conjugate gradient method with an incomplete Cholesky factorization using a threshold as preconditioner.

Problem

The problem with this preconditioner is the occurrence of fill-in, new nonzero matrix elements which cost extra memory. If the number of fill-in elements is to large, the memory will get swamped, which is lethal for the performance of the solver. The fill-in can be reduced by tightening the threshold, but, as a consequence, the convergence speed of the solver drops.

Goal

The goal of the thesis is:

- Increase the performance of the solver by either reduction of the fill-in or reduction of the number of iteration steps
- Find a parallel solving method so multiple processors can be used to calculate the solution.

In this thesis we study several methods that may either reduce the occurrence of fill-in, reduce the number of iteration steps of the solving method or parallelize the problem. In chapter 2 the basics of circuit simulation is described, and the mathematical system is modelled. In chapter 3 we discuss several solving methods and preconditioner matrices, and the origin of the problem is formulated.

In chapters 4,5 , and 6 we describe several matrix ordering methods that may reduce the number of fill-in elements and may partition the matrix. Chapter 5 contains several local ordering methods such as the Minimum Degree ordering and Minimum Fill ordering, and several improvements. In chapter 6 we describe some global ordering methods such as the Nested Dissection ordering and Multisection ordering that partition a matrix, and in chapter 7 is described how the system is solved for a partitioned matrix. Finally, the results of all methods are given in chapter 8 .

I would like to finish this introduction with some acknowledgements. First of all, I would like to thank my supervisors prof. dr. Wil Schilders and dr. ir. Stephan Houben for valuable suggestions and guidance throughout the project. I am also very grateful for mr. Houbens help in mastering the necessary programming skills. In addition, I would like to thank dr. Jos Maubach and dr. Rudi Pendavingh for participating in my graduation committee. My gratitude also goes to the company of Magma Netherlands for giving me the opportunity to fulfill my graduation project and giving me a great experience. Finally, I would like to thank all my friends who gave me advice, especially regarding the $\mathrm{C}++$ language.

Chapter 2

Electronic circuits

2.1 Physical laws

Electrical systems consist of certain electrical devices, such as transistors, resistors, and capacitors, all connected by a network. If a mathematical model of these devices and their interaction is made, computers can be used to predict their behaviour. This procedure is called circuit simulation. A simple electrical circuit has two main variables: the current \mathbf{i}, and the voltage difference \mathbf{v}. The circuit consists of nodes, connected by branches, which represent the electrical devices. However, in our model we only use resistors, so all branches only have a certain resistivity (r).

There are two types of equations that can be used to describe an electrical circuit: branch equations and topological equations. A branch equation (BE) depends on the type of branch used (resistor), and describes a relation between the circuit variables (in this case the current and the voltage difference). A topological equation (TE) depends on the topology of the circuit, which means that it only depends on the manner the nodes are connected. For our simple circuit there are three important physical laws that describe the circuit:

1. Ohm's Law (BE)

$$
\begin{equation*}
v_{j}=i_{j} r_{j} \tag{2.1}
\end{equation*}
$$

for every branch j.
2. Kirchhoff's Current Law (TE)

$$
\begin{equation*}
\sum_{a_{k} \in \mathbf{a}} i_{a_{k}}=0 \tag{2.2}
\end{equation*}
$$

for every cutset $\mathbf{a}=\left\{a_{1}, \ldots, a_{n}\right\}$.
3. Kirchhoff's Voltage Law (TE)

$$
\begin{equation*}
\sum_{b_{k} \in \mathbf{b}} v_{b_{k}}=0 \tag{2.3}
\end{equation*}
$$

for every loop $\mathbf{b}=\left\{b_{1}, \ldots, b_{n}\right\}$.
A cutset is a minimal set of branches that divides the circuit into two separate parts if one would remove them. A loop is a path that starts and finishes in the same node. The circuit is directed, which means that the sign of the variable depends on the direction. If branch k connects node p with node q, then i_{k} and v_{k} are positive in the $p-q$ direction and negative in the $q-p$ direction.

Ohm's law (2.1) can also be written in terms of conductances

$$
\begin{equation*}
i_{j}=\gamma_{j} v_{j} \tag{2.4}
\end{equation*}
$$

with the conductance $\gamma_{j}=\frac{1}{r_{j}}$. This relation can be written in matrix form

$$
\begin{equation*}
\Gamma \mathbf{v}=\mathbf{i} \tag{2.5}
\end{equation*}
$$

with $\Gamma=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{b}\right), \Gamma \in \mathbb{R}^{b \times b}, \mathbf{i}=\left\{i_{1}, \ldots, i_{b}\right\}, \mathbf{i} \in \mathbb{R}^{b}$ and $\mathbf{v}=\left\{v_{1}, \ldots, v_{b}\right\}, \mathbf{v} \in \mathbb{R}^{b}$.

2.2 Nodal Analysis

A classic method to construct electrical circuit equations is Nodal Analysis. For this method, the electrical circuit is represented as a simple, directed graph. The information found in the graph is used in the nodal incidence matrix $A \in \mathbb{R}^{n \times b}$, with n the number of nodes and b the number of branches in the circuit. A is defined by

$$
A(i, j):= \begin{cases}1 & \text { if branch } j \text { finishes in node } i \tag{2.6}\\ -1 & \text { if branch } j \text { starts in node } i \\ 0 & \text { if branch } j \text { has no connection with node } i\end{cases}
$$

Figure 2.1: A graph of a simple electrical circuit.

An example of an electrical circuit graph can be found in Figure 2.1. This graph has the following incidence matrix

$$
\left.A=\begin{array}{c}
\\
1 \\
2 \\
3 \\
4 \\
5
\end{array} \begin{array}{ccccccc}
a & b & c & d & e & f & g \\
1 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 1 & 0 & -1 \\
0 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1
\end{array}\right) .
$$

Using Nodal Analysis as a framework we can make a connection between the physical laws from section 2.1. The Kirchhoff's Current Law (KCL) says that the sum of the current over every cutset a should be equal to zero. For every node the set of adjacent edges is a cutset, which means that for every node the incoming current should equal the outgoing current. If, for example, we look at node 2 in Figure 2.1, we find using the KCL

$$
-i_{a}+i_{c}+i_{e}-i_{g}=0
$$

This equation is also found by calculating $A(2, j) \mathbf{i}=0$. We can generalize this for every node, which results into

$$
\begin{equation*}
A \mathbf{i}=\mathbf{0} \tag{2.7}
\end{equation*}
$$

This system is only valid if there are no current sources. More generally, we have

$$
\begin{equation*}
A \mathbf{i}=\mathbf{s} \tag{2.8}
\end{equation*}
$$

with s the vector of the source terms.
It is also possible to find a similar relation in matrix form for the KVL. The Kirchhoff's Voltage Law says that the sum of the voltage difference over a loop should be equal to zero. This means that if we take two arbitrary points the voltage difference between those two points is always the same, independent of the path we choose to get from one point to the other. Take two arbitrary nodes q_{1} and q_{2}, and two disjoint paths from q_{1} to q_{2}, p_{1} and p_{2}. Then the KVL says that $v_{p_{1}}+\left(-v_{p_{2}}\right)=0$, so $v_{p_{1}}=v_{p_{2}}$. Now give q_{1} a certain potential w_{1}. Then the potential of q_{2}, w_{2}, can be calculated, since every path to q_{2} has the same voltage difference. And because q_{1} and q_{2} are arbitrary, all nodes have a potential, which we will refer to as w_{i}. The connection between the node potential and the voltage difference is

$$
v_{j}=w_{i+}-w_{i-},
$$

with v_{j} the voltage difference over branch j, w_{i+} the potential of the node in which branch j finishes and w_{i-} the potential of the node in which branch j starts. Looking at Figure 2.1 gives for branch a

$$
v_{a}=w_{1}-w_{2}
$$

This can be generalized for the entire circuit, which results into the following relation

$$
\begin{equation*}
A^{T} \mathbf{w}=\mathbf{v} \tag{2.9}
\end{equation*}
$$

with $\mathbf{w}=\left\{w_{1}, \ldots, w_{b}\right\}, \mathbf{w} \in \mathbb{R}^{b}$. It is important to realize that \mathbf{w} is a potential, i.e. for given \mathbf{w} we will need a reference value to solve this system uniquely.

2.3 Linear systems

In the previous subsections three linear systems were derived

$$
\begin{align*}
\Gamma \mathbf{v} & =\mathbf{i} \tag{2.10}\\
A \mathbf{i} & =\mathbf{s} \tag{2.11}\\
A^{T} \mathbf{w} & =\mathbf{v} \tag{2.12}
\end{align*}
$$

Our aim is to solve these systems and determine the value of the variables \mathbf{i}, \mathbf{v} and \mathbf{w}. Many of the circuits Magma analyzes are extremely large, so the matrices in these linear systems are similarly large. Therefore numerical methods must be used for solving the systems. One way of simplifying these equations is the substitution of (2.12) into (2.10)

$$
\begin{equation*}
\Gamma A^{T} \mathbf{w}=\mathbf{i} . \tag{2.13}
\end{equation*}
$$

Multiplying both sides of (2.13) with A makes it possible to substitute (2.11) into (2.13)

$$
\begin{equation*}
A \Gamma A^{T} \mathbf{w}=\mathbf{s} \quad \Longrightarrow \quad G \mathbf{w}=\mathbf{s} \tag{2.14}
\end{equation*}
$$

with $G=A \Gamma A^{T}$. This matrix G can also be determined in a direct way.
Theorem 2.3.1. Every matrix G of the form $G=A \Gamma A^{T}$, with A an incidence matrix and Γ a positive diagonal matrix, can be constructed as

$$
\begin{array}{ll}
G(i, i)=\sum_{j_{q}} \gamma_{j_{q}} & \text { for } j_{q} \in\left\{j_{p} \mid \exists k, k \neq i, j_{p} \in J(i, k)\right\}, \\
G(i, k)=\sum_{j_{q}}-\gamma_{j_{q}} & \text { for } j_{q} \in J(i, k), i \neq k, \tag{2.16}
\end{array}
$$

with $J(i, k)$ the set of branches connecting node i and node k.

Proof. G is an $n \times n$ matrix, so that suggests that its information in the i-th row and the k-th column is related to the interaction between node i and node k. We can calculate $G(i, k)$

$$
\begin{aligned}
G(i, k) & =\sum_{p=1}^{b} \sum_{q=1}^{b} a_{i p} \gamma_{p q} a_{q} k^{T} \\
& =\sum_{p=1}^{b} a_{i p} \gamma_{p p} a_{k p} .
\end{aligned}
$$

If node i is not directly connected to node k, i.e. if $J(i, k)=\emptyset$, we know $a_{i p} a_{k p}=0$, because if $a_{i p} a_{k p} \neq 0$ would imply $a_{i p}= \pm 1$ and $a_{k p}= \pm 1$. By definition, node i would then be connected to node k. So we have $G(i, k)=0$ if node i and node k are not directly connected. Next, assume node i is connected to node k in the graph by branches $j_{q} \in J(i, k)$. Then $a_{i p} a_{k p}=-1$ if $j_{p} \in J(i, k)$ and $a_{i p} a_{k p}=0$ otherwise. Hence, $G(i, k)=\sum_{j_{q}}-\gamma_{j}$ for $j_{q} \in J(i, k), i \neq k$. We know that $G(i, i)=\sum_{p=1}^{b} a_{i p}^{2} \gamma_{p p}$, and $a_{i p}^{2}$ is either equal to 0 or equal to 1 , since A only contains the numbers 0,1 and -1 . So $a_{i q}^{2} \gamma_{q q}=\gamma_{q q}$ if $a_{i q}= \pm 1$, or in other words, if there exists a k such that $j_{q} \in J(i, k)$. So $G(i, i)=\sum_{j_{q}} \gamma_{j_{q}}$ for $j_{q} \in\left\{j_{p} \mid \exists k, k \neq i, j_{p} \in J(i, k)\right\}$.

As an example, we show matrix G for the circuit in Figure 2.1

$$
G=\left(\begin{array}{ccccc}
\gamma_{a}+\gamma_{b} & -\gamma_{a} & -\gamma_{b} & 0 & 0 \\
-\gamma_{a} & \gamma_{a}+\gamma_{c}+\gamma_{e}+\gamma_{g} & -\gamma_{c} & -\gamma_{e} & -\gamma_{g} \\
-\gamma_{b} & -\gamma_{c} & \gamma_{b}+\gamma_{c}+\gamma_{d} & -\gamma_{d} & 0 \\
0 & -\gamma_{e} & -\gamma_{d} & \gamma_{d}+\gamma_{e}+\gamma_{f} & -\gamma_{f} \\
0 & -\gamma_{g} & 0 & -\gamma_{f} & \gamma_{f}+\gamma_{g}
\end{array}\right)
$$

2.4 Matrix properties

In this section some properties of matrix G will be discussed. Matrix properties such as being symmetric, positive definite and diagonally dominant are important for choosing the appropriate solving method. First, we will give some definitions.

Definition 2.4.1. An $n \times n$ matrix B is symmetric if and only if

$$
\begin{equation*}
B=B^{T} \tag{2.17}
\end{equation*}
$$

Definition 2.4.2. A real $n \times n$ symmetric matrix B is positive semi-definite if for all nonzero $\mathbf{x} \in \mathbb{R}^{n}$ holds that $\mathbf{x}^{T} B \mathbf{x} \geq 0 . B$ is positive definite if the inequality strictly holds.

Clearly, matrix G is symmetric. If we take $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}$ we see that

$$
\begin{equation*}
\mathbf{x}^{T} G \mathbf{x}=(G \mathbf{x}, \mathbf{x})=\left(A \Gamma A^{T} \mathbf{x}, \mathbf{x}\right)=\left(\Gamma A^{T} \mathbf{x}, A^{T} \mathbf{x}\right)=(\Gamma \mathbf{y}, \mathbf{y})=\mathbf{y}^{T} \Gamma \mathbf{y} \geq 0 \tag{2.18}
\end{equation*}
$$

because Γ is a diagonal matrix with positive nonzero entries on the diagonal. So G is positive semi-definite. However, since $\operatorname{Ker}(A) \neq \emptyset, G$ is not positive definite ($G e=0$ for $e=\{1,1, \ldots, 1\}$). The rank of A is $n-p$, with p the number of disjoint parts of the graph. We assume that the graph is connected, i.e. the rank of A equals $n-1$. If we remove one row, say row i, from A and call the new matrix \tilde{A}, then the rank of \tilde{A} is also $n-1$, so \tilde{A} is non-singular. This means that $A \mathbf{x} \neq 0$ for all $\mathbf{x} \in \mathbb{R}^{n-1}, \mathbf{x} \neq 0$. Clearly, the i-th row and i-th column of Γ have to be removed to keep consistency with A. Take $\tilde{\Gamma}$ the modified matrix Γ, then $\tilde{G}=\tilde{A} \tilde{\Gamma} \tilde{A}^{T}$ and we have for $\mathbf{x} \in \mathbb{R}^{n-1}, \mathbf{x} \neq 0$

$$
\mathbf{x}^{T} \tilde{G} \mathbf{x}=\left(\tilde{\Gamma} \tilde{A}^{T} \mathbf{x}, \tilde{A}^{T} \mathbf{x}\right)=\mathbf{y}^{T} \tilde{\Gamma} \mathbf{y}>0
$$

since $\tilde{\Gamma}$ is positive definite and $\mathbf{y}=\tilde{A} \mathbf{x} \neq 0$. The new system is

$$
\begin{equation*}
\tilde{G} \tilde{\mathbf{w}}=\tilde{\mathbf{s}} \tag{2.19}
\end{equation*}
$$

A physical interpretation of removing the i-th row and the i-th column is grounding node i, so $w_{i}=s_{i}=0$.
A general matrix B can be represented by a graph. A connection from point i to j is a nonzero entry for $B(i, j)$. We call a graph connected if there is a path from an arbitrary point to every other point.

Definition 2.4.3. A matrix B is reducible if its graph is not connected, and irreducible otherwise [29].
Definition 2.4.4. A matrix B is diagonally dominant if

$$
\begin{equation*}
|B(i, i)| \geq \sum_{j=1, j \neq i}^{n}|B(i, j)| \tag{2.20}
\end{equation*}
$$

B is strictly diagonally dominant if the inequality is strict, i.e. if the \geq is replaced by $>. B$ is irreducibly diagonally dominant if B is irreducible and diagonally dominant, with a strict inequality for at least one i.

We will now define some special types of matrices.
Definition 2.4.5. An $n \times n$ matrix B is an L-matrix if $b_{i i}>0, i=1, \ldots, n$, and $b_{i j} \leq 0, i, j=$ $1, \ldots, n, i \neq j$.
Definition 2.4.6. An $n \times n$ matrix B is an M-matrix if B is a non-singular L-matrix and all elements of B^{-1} are non-negative.

The fact that \tilde{G} is an L-matrix is quite clear, but just by using Definition 2.4.6 we will not be able to show that \tilde{G} is an M-matrix. We will need the following Theorem

Theorem 2.4.7. An irreducibly, diagonally dominant L-matrix is an M-matrix [29].
Using this theorem, we can now conclude that \tilde{G} is an M-matrix. This property will be of importance in the next section. In the remaining part of this thesis we will omit the superscript of (2.19).

Chapter 3

Solution methods

The linear system that has to be solved (2.19) was constructed in the previous section, now we will discuss some solution methods. The matrix G is symmetric positive definite and the most common used method for these matrices is the Conjugate Gradient method or a variant of it. This method and its variants will be discussed in this section.

3.1 Conjugate Gradient method

3.1.1 Steepest Descent method

The Conjugate Gradient method (CGM) is actually a "smart" way of formulating the Steepest Descent method (SDM), but before we will discuss these methods we take another look at the problem

$$
\begin{equation*}
G \mathbf{w}=\mathbf{s} \tag{3.1}
\end{equation*}
$$

This is equivalent to finding the minimum of $\varphi(\mathbf{w})$ for

$$
\begin{equation*}
\varphi(\mathbf{w})=\frac{1}{2} \mathbf{w}^{T} G \mathbf{w}-\mathbf{w}^{T} \mathbf{s}, \tag{3.2}
\end{equation*}
$$

since φ is a convex functional and $\nabla \varphi(\mathbf{w})=G \mathbf{w}-\mathbf{s}$. Hence, solving $\nabla \varphi(\mathbf{w})=0$ is equivalent to solving (3.1). SDM uses the fact that φ changes fastest in a direction that is opposite to its gradient. This suggests the following iteration

$$
\mathbf{w}_{k+1}=\mathbf{w}_{k}-\alpha_{k} \nabla \varphi\left(\mathbf{w}_{k}\right),
$$

for a smart chosen α_{k}. We can define the residual \mathbf{r}_{k} of approximation \mathbf{w}_{k} by

$$
\mathbf{r}_{k}=\mathbf{s}-G \mathbf{w}
$$

By taking

$$
\alpha_{k}=\frac{\mathbf{r}_{k}^{T} \mathbf{r}_{k}}{\mathbf{r}_{k}^{T} G \mathbf{r}_{k}}
$$

we minimize $\varphi\left(\mathbf{w}_{k}+\alpha_{k} \mathbf{r}_{k}\right)$.

Lemma 3.1.1.

$$
\begin{equation*}
\mathbf{r}_{k}^{T} \mathbf{r}_{k+1}=0 \quad \text { for all } k \geq 0 \tag{3.3}
\end{equation*}
$$

$$
\begin{aligned}
\mathbf{r}_{k}^{T} \mathbf{r}_{k+1} & =\mathbf{r}_{k}^{T} \mathbf{s}-\mathbf{r}_{k}^{T} G \mathbf{w}_{k}-\alpha_{k} \mathbf{r}_{k} A \mathbf{r}_{k} \\
& =\mathbf{r}_{k}^{T} \mathbf{s}-\mathbf{r}_{k}^{T} G \mathbf{w}_{k}-\frac{\mathbf{r}_{k}^{T} \mathbf{r}_{k}}{\mathbf{r}_{k}^{T} G \mathbf{r}_{k}} \mathbf{r}_{k} G \mathbf{r}_{k} \\
& =\mathbf{r}_{k}^{T} \mathbf{s}-\mathbf{r}_{k}^{T} G \mathbf{w}_{k}-\mathbf{r}_{k}^{T}\left(\mathbf{s}-G \mathbf{w}_{k}\right) \\
& =0
\end{aligned}
$$

```
Algorithm 1 Steepest Descent
    \(w_{0}=0\)
    \(r_{0}=s\)
    for \(k=0,1, \ldots\) do
        \(\alpha_{k}=\left(r_{k}, r_{k}\right) /\left(r_{k}, G r_{k}\right)\)
        \(w_{k+1}=w_{k}+\alpha_{k} r_{k}\)
        \(r_{k+1}=s-G w_{k+1}\)
        if \(r_{k+1}<\varepsilon\) then
            break
        end if
    end for
```

We can now formulate the Steepest Descent method in Algorithm 1. The SDM leads to convergence for any non-singular symmetric positive definite matrix, but the convergence speed can be rather slow. The search direction is equal to the direction of the negative gradient. The algorithm doesn't use all previous search directions, only the last one, so it is possible that two different search direction are taken over and over again. If the information of all preceding search directions is stored the efficiency of the algorithm is improved. This is the basis of the CGM.

3.1.2 Search Directions

To store all previous search directions we introduce the vector \mathbf{p}_{k}, defined by

$$
\begin{equation*}
\mathbf{p}_{k}=\mathbf{r}_{k}+\sum_{i=0}^{k-1} \eta_{k, i} \mathbf{r}_{i} \tag{3.4}
\end{equation*}
$$

This gives a new iterative relation for \mathbf{w}_{k}

$$
\mathbf{w}_{k+1}=\mathbf{w}_{k}+\alpha_{k} \mathbf{p}_{k} .
$$

We can find α by minimizing the search direction in one dimension, giving

$$
\alpha_{k}=\frac{\mathbf{p}_{k}^{T} \mathbf{r}_{k}}{\mathbf{p}_{k}^{T} G \mathbf{p}_{k}}
$$

We find for the residual

$$
\mathbf{r}_{k+1}=\mathbf{r}_{k}-\alpha_{k} G \mathbf{p}_{k}
$$

If we now use the property of (3.3) for (3.4) we get

$$
\begin{equation*}
\mathbf{p}_{k}^{T} \mathbf{r}_{k+1}=\mathbf{p}_{k} \mathbf{r}_{k}-\alpha_{k} \mathbf{p}_{k}^{T} G \mathbf{p}_{k}=0 \tag{3.5}
\end{equation*}
$$

If now $\mathbf{r}_{i} \mathbf{r}_{k+1}=0$ for all $0 \leq i \leq k-1$ we see that

$$
\mathbf{r}_{k}^{T} \mathbf{r}_{k+1}=\mathbf{p}_{k}^{T} \mathbf{r}_{k+1}-\sum_{i=0}^{k-1} \eta_{k, i} \mathbf{r}_{i}^{T} \mathbf{r}_{k+1}=0
$$

So all residuals are mutually orthogonal if we find a set $\left\{\eta_{k, 0}, \ldots, \eta_{k, k-1}\right\}$ such that $\mathbf{r}_{i}^{T} \mathbf{r}_{k}+1=0$ for all $0 \leq i \leq k-1$. Now we will prove that there is such a set. Take

$$
\mathbf{r}_{j}^{T} \mathbf{r}_{k+1}=\mathbf{r}_{j}^{T} \mathbf{r}_{k}^{T}-\alpha_{k} \mathbf{r}_{j}^{T} G \mathbf{p}_{k}=-\alpha_{k} \mathbf{r}_{j}^{T} G \mathbf{r}_{k}-\alpha_{k} \sum_{i=0}^{k-1} \eta_{k, i} \mathbf{r}_{j}^{T} G \mathbf{r}_{i}
$$

Now compose the matrix R_{k-1} by using r_{0} to r_{k-1} as its columns. Then

$$
\mathbf{r}_{j}^{T} \mathbf{r}_{k+1}=0, \quad 0 \leq j \leq k-1
$$

is equivalent to

$$
\begin{equation*}
R_{k-1}^{T} G R_{k-1}\left(\eta_{k, 0}, \ldots, \eta_{k, k-1}, 1\right)^{T}=-R_{k-1}^{T} G \mathbf{r}_{k} \tag{3.6}
\end{equation*}
$$

This last condition requires α_{k} to be nonzero. We know G is positive definite and non-singular, so $R_{k-1}^{T} G R_{k-1}$ has the same properties. Therefore, (3.6) has an unique solution. Now we have to find the coefficients $\eta_{k, i}$. To accomplish this we are going to need some lemma's.

Lemma 3.1.2. If G is symmetric, then

$$
\begin{equation*}
\mathbf{r}_{j}^{T} G \mathbf{r}_{k}=0 \tag{3.7}
\end{equation*}
$$

Proof.

$$
\begin{array}{r}
\mathbf{r}_{j}^{T} G \mathbf{r}_{k}=\mathbf{r}_{k}^{T} G \mathbf{r}_{j}=\mathbf{r}_{k}^{T} G\left(\mathbf{p}_{j}-\sum_{i=0}^{j-1} \eta_{j, i} \mathbf{r}_{i}\right) \\
=\frac{1}{\alpha_{j}} \mathbf{r}_{k}^{T}\left(\mathbf{r}_{j}-\mathbf{r}_{j+1}\right)-\sum_{i=0}^{j-1} \eta_{j, i} \mathbf{r}_{k}^{T} G \mathbf{r}_{i} \\
=-\sum_{i=0}^{j-1} \eta_{j, i} \mathbf{r}_{i}^{T} G \mathbf{r}_{k}
\end{array}
$$

Induction completes the proof.
Using this Lemma we can formulate a recurrent relation for $\eta_{k, i}$. Take $k \geq 2$ and $0 \leq j \leq k-2$, then we get

$$
\sum_{i=0}^{k-2} \eta_{k-1, i} \mathbf{r}_{j}^{T} G \mathbf{r}_{i}+\mathbf{r}_{j}^{T} G \mathbf{r}_{k-1}=0
$$

Now multiplication of this equation by any nonzero δ and substitution of (3.7) results into

$$
\sum_{i=0}^{k-2} \delta \eta_{k-1, i} \mathbf{r}_{j}^{T} G \mathbf{r}_{i}+\delta \mathbf{r}_{j}^{T} G \mathbf{r}_{k-1}+\mathbf{r}_{j}^{T} G \mathbf{r}_{k}=0
$$

If we take $\delta=\eta_{k, k-1}$ we find the recurrence relation

$$
\eta_{k, i}=\eta_{k, k-1} \eta_{k-1, i} \quad 0 \leq i \leq k-2 .
$$

Lemma 3.1.3. If G is symmetric, the search directions satisfy

$$
\begin{equation*}
\mathbf{p}_{k}=\mathbf{r}_{k}+\eta_{k, k-1} \mathbf{p}_{k-1} \tag{3.8}
\end{equation*}
$$

Proof.

$$
\mathbf{p}_{k}=\mathbf{r}_{k}+\sum_{i=0}^{k-1} \eta_{k, i} \mathbf{r}_{i}=\mathbf{r}_{k}+\eta_{k, k-1}\left(\mathbf{r}_{k-1}+\sum_{i=0}^{k-2} \eta_{k-1, i} \mathbf{r}_{i}\right)=\mathbf{r}_{k}+\eta_{k, k-1} \mathbf{p}_{k-1}
$$

So the recent search directions can be found using only the previous search directions. This saves a lot of computing time. We can determine parameter $\eta_{k, k-1}$ by requiring that $\mathbf{p}_{k-1}^{T} \mathbf{r}_{k+1}=0$. This gives

$$
\gamma_{k, k-1}=-\frac{\mathbf{p}_{k-1}^{T} G \mathbf{r}_{k}}{\mathbf{p}_{k-1}^{T} G \mathbf{p}_{k-1}}
$$

Lemma 3.1.4. The search directions satisfy

$$
\begin{equation*}
\mathbf{p}_{j}^{T} G \mathbf{p}_{i}=0, \quad i \neq j \tag{3.9}
\end{equation*}
$$

Proof.

$$
\mathbf{p}_{j}^{T} \mathbf{r}_{i+1}=\mathbf{p}_{j}^{T} \mathbf{r}_{i}-\alpha_{k} \mathbf{p}_{j}^{T} G \mathbf{p}_{i}
$$

We see that $\mathbf{p}_{j}^{T} \mathbf{r}_{i+1}=\mathbf{p}_{j}^{T} \mathbf{r}_{i}=0$. This completes the proof.
This lemma explains why this method is called the Conjugate Gradient method: the search directions are perpendicular with respect to the inner product

$$
\begin{equation*}
\left[\mathbf{p}_{j}, \mathbf{p}_{i}\right]_{G}=\mathbf{p}_{j}^{T} G \mathbf{p}_{i} \tag{3.10}
\end{equation*}
$$

To improve the computation speed, we can reformulate the expressions for α_{k} and $\eta_{k, k-1}$ by

$$
\begin{aligned}
\alpha_{k} & =\frac{\mathbf{r}_{k}^{T} \mathbf{r}_{k}}{\mathbf{p}_{k}^{T} G \mathbf{p}_{k}} \\
\eta_{k, k-1} & =\frac{\mathbf{r}_{k}^{T} \mathbf{r}_{k}}{\mathbf{r}_{k-1}^{T} \mathbf{r}_{k-1}}
\end{aligned}
$$

Since the algorithm doesn't use $\eta_{k, 0}, \ldots, \eta_{k, k-2}$ we can define $\beta_{k-1}=\eta_{k, k-1}$. Algorithm 2 uses the theory above to solve (3.1)

```
Algorithm 2 Conjugate Gradient
    \(w_{0}=0\)
    \(r_{0}=s\)
    for \(k=1,2, \ldots\) do
        \(\rho_{k-1}=\left(r_{k-1}, r_{k-1}\right)\)
        if \(k=1\) then
            \(p_{k}=r_{0}\)
        else
            \(\beta_{k-1}=\rho_{k-1} / \rho_{k-2}\)
            \(p_{k}=r_{k-1}+\beta_{k-1} p_{k-1}\)
        end if
        \(q_{k}=G p_{k}\)
        \(\alpha_{k}=\rho_{k-1} /\left(p_{k}, q_{k}\right)\)
        \(w_{k}=w_{k-1}+\alpha_{k} p_{k}\)
        \(r_{k}=r_{k-1}-\alpha_{k} q_{k}\)
        if \(\left\|r_{k}\right\|_{2}<\varepsilon\) then
            break
        end if
    end for
```


3.2 Cholesky Factorization

Another way of solving the system (3.1) is to solve it directly using a Cholesky decomposition, which is the symmetric version of the LU-decomposition. Because G is a symmetric M-matrix the decomposition

$$
\begin{equation*}
G=L L^{T} \tag{3.11}
\end{equation*}
$$

with L a lower triangular matrix, is always possible and unique with positive diagonal elements ([6]). The system can then be solved by calculating consecutively

$$
\begin{aligned}
L y & =s \\
L^{T} z & =y .
\end{aligned}
$$

The algorithm to calculate the elements of L is described in Algorithm 3.

```
Algorithm 3 Cholesky factorization (CF)
    for \(j=1, \ldots, n\) do
        \(\ell_{j j}=\sqrt{g_{j j}-\sum_{k=1}^{j-1}\left(l_{j k}\right)^{2}}\)
        for \(i=j+1, \ldots, n\) do
            \(\ell_{i j}=\frac{1}{\ell_{j j}} \sqrt{g_{i j}-\sum_{k=1}^{j-1} l_{i k} l_{j k}}\)
        end for
    end for
```

For complete Cholesky factorization the sparsity pattern of the L matrix is generally not equal to that of the lower diagonal matrix of G . We see that $\ell_{i j} \neq 0$ if $g_{i j} \neq 0$ or $\ell_{i k} \ell_{j k} \neq 0$ for some $k<i, j$. The nonzero elements $\ell_{i j}$ are called fill-in if $g_{i j}=0$.

The physical dimension of G is siemens, so the dimension of L is $\sqrt{\text { siemens }}$, which is unsuitable for we want a dimensionless L (the reason is discussed later in this chapter). A good alternative is to use the factorization $G=L D L^{T}$, which can be derived quite simply. If we demand L to be a lower triangular matrix with the unity vector on the diagonal and D to be a diagonal matrix we get

$$
\begin{aligned}
G & =L D L^{T} . \\
g_{i j} & =\sum_{k=1}^{n} \sum_{p=1}^{n} \ell_{i k} d_{k p} \ell_{p j}^{T} \\
& =\sum_{k=1}^{n} \ell_{i k} d_{k k} \ell_{k j}^{T} \\
& =\sum_{k=1}^{j} \ell_{i k} d_{k k} \ell_{j k},
\end{aligned}
$$

for $i \geq j$, because $\ell_{i j}=d_{i j}=0$ by definition if $j>i$. We get

$$
\begin{aligned}
g_{j j} & =\sum_{k=1}^{j} \ell_{j k} d_{k k} \ell_{j k} \\
& =\ell_{j j}^{2} d_{j j} \sum_{k=1}^{j-1} \ell_{j k}^{2} d_{k k} \\
& =d_{j j} \sum_{k=1}^{j-1} \ell_{j k}^{2} d_{k k} \\
\Longrightarrow d_{j j} & =g_{j j}-\sum_{k=1}^{j-1}\left(\ell_{j k}\right)^{2} d_{k k}
\end{aligned}
$$

and

$$
\begin{aligned}
g_{i j} & =\sum_{k=1}^{j} \ell_{i k} d_{k k} \ell_{j k} \\
& =\sum_{k=1}^{j-1}\left(\ell_{i k} d_{k k} \ell_{j k}\right)+\ell_{i j} d_{j j} \ell_{j j} \\
& =\sum_{k=1}^{j-1}\left(\ell_{i k} d_{k k} \ell_{j k}\right)+\ell_{i j} d_{j j} \\
\Longrightarrow \ell_{i j} & =\frac{1}{d_{j j}}\left(g_{i j}-\sum_{k=1}^{j-1} \ell_{i k} d_{k k} \ell_{j k}\right)
\end{aligned}
$$

```
Algorithm 4 Left-looking diagonal Cholesky factorization (LLDCF)
    for \(j=1, \ldots, n\) do
        \(\ell_{j j}=1\)
        \(d_{j j}=g_{j j}-\sum_{k=1}^{j-1}\left(\ell_{j k}\right)^{2} d_{k k}\)
        for \(i=j+1, \ldots, n\) do
            \(\ell_{i j}=\frac{1}{d_{j j}}\left(g_{i j}-\sum_{k=1}^{j-1} \ell_{i k} d_{k k} \ell_{j k}\right)\)
        end for
    end for
```

Algorithm 4 is a backward factorization, because it uses elements in the matrix that are already processed. This algorithm is correct, but the construction of the matrices L and D can be done using much less computer time. Consider Algorithm 4; we need to do a summation of some previous found entries for every new entry. If we look, for example, at the off-diagonal elements, then for every new element we need to look back at the values of $\ell_{1 i}$ and $\ell_{1 j}$. So it is more efficient to put the information of $\ell_{1 i}$ and $\ell_{1 j}$ inside the entries of $\ell_{i j}, i, j>1$ at the moment $\ell_{1 i}$ and $\ell_{1 j}$ are determined. Algorithm 5 is based on this, it stores almost all the information needed to determine a certain entry before the entry is in fact determined. Take $a[i, j]$ to be an array, with initially $a[i, j]=g_{i j}$ for all $i, j=1 \ldots n$.

Theorem 3.2.1. The output of Algorithm 5 is $a[j, j]=d_{j j}$ and $a[i, j]=\ell_{i j}$ for all $i, j=1 \ldots n, i>j$.
Proof. We use the invariant $P(p) \equiv P_{1}(p, p) \wedge P_{2}(p, p) \wedge Q_{1}(p) \wedge Q_{2}(p)$, with

- $P_{1}(p, q) \equiv\left\{\forall i \forall j, p \leq j<i: a[i, j]=g_{i j}-\sum_{k=1}^{q-1} \ell_{i k} d_{k k} \ell_{j k}\right\}$.
- $P_{2}(p, q) \equiv\left\{\forall i, i \geq p: a[j, j]=g_{j j}-\sum_{k=1}^{q-1} \ell_{j k}^{2} d_{k k}\right\}$.
- $Q_{1}(p) \equiv\left\{\forall i \forall j, j<p, j<i: a[i, j]=\ell_{i j}\right\}$.
- $Q_{2}(p) \equiv\left\{\forall j, j<p: a[j, j]=d_{i j}\right\}$.

If we now prove that $P(1)$ holds and that if $P(p)$ holds also $P(p+1)$ holds we can use induction to proof that $P(n)$ holds. $P(1)$:

- $P_{1}(1,1):\left\{\forall i \forall j, 1 \leq j<i: a[i, j]=g_{i j}\right\}$ holds.
- $P_{2}(1,1):\left\{\forall j, j \geq 1: a[j, j]=g_{j j}\right\}$ holds.
- $Q_{1}(1):\{$ true $\}$
- $Q_{2}(1):\{$ true $\}$

So we have $P(1)$. Say we have $P(p)$:

- $P_{1}(p, p) \equiv\left\{\forall i \forall j, p \leq j<i: a[i, j]=g_{i j}-\sum_{k=1}^{p-1} \ell_{i k} d_{k k} \ell_{j k}\right\}$.
- $P_{2}(p, p) \equiv\left\{\forall i, i \geq p: a[j, j]=g_{j j}-\sum_{k=1}^{p-1} \ell_{j k}^{2} d_{k k}\right\}$.
- $Q_{1}(p) \equiv\left\{\forall i \forall j, j<p, j<i: a[i, j]=\ell_{i j}\right\}$.
- $Q_{2}(p) \equiv\left\{\forall j, j<p: a[j, j]=d_{i j}\right\}$.

Then

- $Q_{2}(p+1) \equiv\left\{\forall i \forall j, j<p+1, j<i: a[i, j]=\ell_{i j}\right\}$. Since $Q_{2}(p)$ before iterating we only need $a[p, p]=d_{p p}$. We have $P_{2}(p, p)$, so $a[p, p]=g_{p p}-\sum_{k=1}^{p-1} \ell_{p k}^{2} d_{k k}=d_{p p}$.
- $Q_{1}(p+1) \equiv\left\{\forall i \forall j, j<p+1, j<i: a[i, j]=\ell_{i j}\right\}$. Since $Q_{1}(p)$ before iterating we only need $a[i, p]=\ell_{i p}$. We have $P_{1}(p, p)$ so $a[i, p]=\frac{a[i, p]}{a[p, p]}=\frac{1}{d_{p p}}\left(g_{i p}-\sum_{k=1}^{p-1} \ell_{i k} d_{k k} \ell_{p k}\right)=\ell_{i p}$
- $P_{1}(p+1, p)$ and $P_{2}(p+1, p)$ follow directly from $P_{1}(p, p)$ and $P_{2}(p, p)$, respectively.
- $P_{2}(p+1, p+1) \equiv\left\{\forall j, j \geq p+1: a[j, j]=g_{j j}-\sum_{k=1}^{p} \ell_{j k}^{2} d_{k k}\right\}$. We know $P_{2}(p+1, p)$ halfway, so $\forall j, j \geq p+1: a[j, j]=g_{j j}-\sum_{k=1}^{p-1} \ell_{j k}^{2} d_{k k}$. Then $a[j, j]=a[j, j]-a[j, p]^{2} a[p, p]=g_{j j}-$ $\sum_{k=1}^{p-1}\left(\ell_{j k}^{2} d_{k k}\right)-\ell_{j n}^{2} d_{p p}=g_{j j}-\sum_{k=1}^{p} \ell_{j k}^{2} d_{k k}$. This is true for all $j \geq p+1$, so $P_{2}(p+1, p+1)$ holds.
- $P_{1}(p+1, p+1)\left\{\equiv \forall i \forall j, p+1 \leq j<i: a[i, j]=g_{i j}-\sum_{k=1}^{p} \ell_{i k} d_{k k} \ell_{j k}\right\}$. We know $P_{1}(p+$ $1, p)$ halfway, so $\forall i \forall j, p+1 \leq j<i: a[i, j]=g_{i j}-\sum_{k=1}^{p-1} \ell_{i k} d_{k k} \ell_{j k}$. Then $a[i, j]=a[i, j]-$ $a[i, p] a[p, p] a[j, p]=g_{i j}-\sum_{k=1}^{p-1}\left(\ell_{i k} d_{k k} \ell_{j k}\right)-\ell_{i p} d_{p p} \ell_{j p}=g_{i j}-\sum_{k=1}^{p} \ell_{i k} d_{k k} \ell_{j k}$. This is true for all $i, j, p+1 \leq j<i$, so $P_{1}(p+1, p+1)$ holds.

So given $P(p)$ we have $P(p+1)$. This concludes the proof.

```
Algorithm 5 Right-looking Diagonal Cholesky Factorization (RLDCF)
    \(\{P(0)\}\)
    for \(p=1, \ldots, n\) do
        \(\{P(p)\}\)
        for \(i=p+1, \ldots, n\) do
            \(a[i, p]=\frac{a[i, p]}{a[p, p]}\)
        end for
        \(\left\{Q_{1}(p+1) \wedge Q_{2}(p+1) \wedge P_{1}(p+1, p) \wedge P_{2}(p+1, p)\right\}\)
        for \(j=p+1, \ldots, n\) do
            \(a[j, j]=a[j, j]-a[j, p]^{2} a[p, p]\)
            for \(i=j+1, \ldots, n\) do
                \(a[i, j]=a[i, j]-a[i, p] a[p, p] a[j, p]\)
            end for
        end for
        \(\left\{Q_{1}(p+1) \wedge Q_{2}(p+1) \wedge P_{1}(p+1, p+1) \wedge P_{2}(p+1, p+1)\right\}=\)
        \(\{P(p+1)\}\)
    end for
    \(\{P(n)\}\)
```

Now the factorization is forward, since the information is of the current element is put in elements that are not visited yet. We have $G=K=L D L^{T}$, so solving $K z=r$ can be done by solving successively

$$
\begin{aligned}
L x & =r \\
D y & =x \\
L^{T} z & =y .
\end{aligned}
$$

3.3 Preconditioned Conjugate Gradient method

The CGM converges fast for matrices that are well conditioned or have a few distinct eigenvalues. However, this is not generally the case. Using the Cholesky decomposition, the system will be solved directly without iteration steps, but the number of nonzero element might be too big to be used in the memory of a computer. The solution is to combine both methods, by means of transformation of the linear system. The transformed system has the same solution, but is easier to solve using an iterative solver. This process is called preconditioning.

Preconditioning techniques for the CGM involve a preconditioner matrix K. What we basically do is find a K such that $K \mathbf{w}=\mathbf{s}$ is easier to solve. K is symmetric positive definite, so we can define the K-inner product

$$
\begin{equation*}
[\mathbf{x}, \mathbf{y}]_{K} \equiv(K \mathbf{x}, \mathbf{y})=(\mathbf{x}, K \mathbf{y}) \tag{3.12}
\end{equation*}
$$

If we rewrite the algorithm of the CGM for this inner product, and we use the new residual $K z_{j}=r_{j}$ we find the Preconditioned Conjugate Gradient method.

```
Algorithm 6 Preconditioned Conjugate Gradient
    \(w_{0}=0\)
    \(r_{0}=s\)
    for \(k=1,2, \ldots\) do
        Solve \(K z_{k-1}=r_{k-1}\)
        \(\rho_{k-1}=\left(r_{k-1}, z_{k-1}\right)\)
        if \(k=1\) then
            \(p_{k}=z_{0}\)
        else
            \(\beta_{k-1}=\rho_{k-1} / \rho_{k-2}\)
            \(p_{k}=z_{k-1}+\beta_{k-1} p_{k-1}\)
        end if
        \(q_{k}=G p_{k}\)
        \(\alpha_{k}=\rho_{k-1} /\left(p_{k}, q_{k}\right)\)
        \(w_{k}=w_{k-1}+\alpha_{k} p_{k}\)
        \(r_{k}=r_{k-1}-\alpha_{k} q_{k}\)
        if \(\left\|r_{k}\right\|_{2}<\varepsilon\) then
            break
        end if
    end for
```


3.4 Search for the right preconditioner

The Preconditioned Conjugate Gradient algorithm is formulated above, but we still lack a preconditioner matrix. Several suitable matrices will be discussed in this section.

3.4.1 Incomplete Cholesky factorization

In Algorithm 3 the complete Cholesky factorization is shown. We can get an incomplete Cholesky factorization by neglecting all values outside the sparsity pattern. This is shown in Algorithm 7.

```
Algorithm 7 Incomplete Cholesky factorization (ICF)
    for \(j=1, \ldots, n\) do
        \(\ell_{j j}=\sqrt{g_{j j}-\sum_{k=1}^{j-1}\left(l_{j k}\right)^{2}}\)
        for \(i=j+1, \ldots, n\) do
            if \(g_{i j}=0\) then
            \(\ell_{i j}=0\)
            else
            \(\ell_{i j}=\frac{1}{\ell_{j j}} \sqrt{g_{i j}-\sum_{k=1}^{j-1} l_{i k} l_{j k}}\)
            end if
        end for
    end for
```

All fill-in is neglected, so the memory needed for the preconditioner matrix is equal to the memory needed for the original matrix.

3.4.2 Standard incomplete Cholesky factorization

Van der Vorst ([23],[30]) suggested the use of the standard incomplete Cholesky factorization. Take $G=$ $L+\operatorname{diag}(G)+L^{T}$, for which L is now a strictly lower triangular matrix. Then we are looking for the preconditioner

$$
\begin{equation*}
K=(L+D) D^{-1}\left(D+L^{T}\right) \tag{3.13}
\end{equation*}
$$

The diagonal matrix D can be found using the condition

$$
\begin{equation*}
\operatorname{diag}(G)=\operatorname{diag}(K) \tag{3.14}
\end{equation*}
$$

Take $L+D=C$, then

$$
\begin{aligned}
k_{i j} & =\sum_{p=1}^{n} \sum_{q=1}^{n} c_{i p} \frac{1}{d_{p q}} c_{q j}^{T} \\
& =\sum_{p=1}^{i} c_{i p} c_{j p} \frac{1}{d_{p p}} \\
\Longrightarrow k_{i i} & =\sum_{p=1}^{i} c_{i i}^{2} \frac{1}{d_{p p}} \\
& =c_{i i}^{2} \frac{1}{d_{i i}}+\sum_{p=1}^{i-1} c_{i i}^{2} \frac{1}{d_{p p}}
\end{aligned}
$$

Since $c_{i i}=d_{i i}, c_{i j}=g_{i j}$ for $i>j$, and $k_{i j}=g_{i j}$ we find the following relation to determine $d_{i i}$

$$
\begin{equation*}
d_{i i}=g_{i i}-\sum_{p=1}^{i-1} \frac{a_{i p}^{2}}{d_{p p}} \tag{3.15}
\end{equation*}
$$

If we now use the same strategy we did to find Algorithm 5, we get Algorithm 8.

```
Algorithm 8 Right-looking standard incomplete Cholesky factorization (RLSICF)
    for \(p=1, \ldots, n\) do
        for \(j=p+1, \ldots, n\) do
            \(a[j, j]=a[j, j]-\frac{a[j, p]^{2}}{a[p, p]}\)
        end for
    end for
```

Gustafsson ([13]) came up with the modified incomplete Cholesky factorization, which is the standard factorization we used just before, but with the additional condition

$$
\begin{equation*}
\operatorname{Rowsum}(G)=\operatorname{Rowsum}(K) \tag{3.16}
\end{equation*}
$$

Using similar techniques as for (3.14) we find

$$
d_{i i}=g_{i i}-\sum_{p=1}^{i-1} \sum_{j=p+1}^{n} \frac{a_{i p} a_{j p}}{d_{p p}}
$$

Using the forward method we get Algorithm 9.

```
Algorithm 9 Right-looking modified incomplete Cholesky factorization (RLMICF)
    for \(p=1, \ldots, n\) do
        for \(j=p+1, \ldots, n\) do
            for \(i=p+1, \ldots, n\) do
                \(a[j, j]=a[j, j]-\frac{a[j, p] a[i, p]}{a[p, p]}\)
            end for
        end for
    end for
```

In response to Gustafssons modified method, Van der Vorst ([30]) saw the coherence between the two previous factorizations and introduced a parameter δ. If $\delta=0$, we have the standard factorization, and if $\delta=1$ we have the modified factorization. Basically this means that for Algorithm 9 we multiply the term $\frac{a[j, p] a[i, p]}{a[p, p]}$ with δ if $j \neq i$. This is implemented in Algorithm 10.

```
Algorithm 10 Right-looking modified incomplete Cholesky factorization ( \(\delta\) ) (RLMICFD)
    for \(p=1, \ldots, n\) do
        for \(j=p+1, \ldots, n\) do
            for \(i=p+1, \ldots, n\) do
                if \(i=j\) then
                    \(a[j, j]=a[j, j]-\frac{a[j, p] a[i, p]}{a[p, p]}\)
                    else
                        \(a[j, j]=a[j, j]-\delta \frac{a[j, p] a[i, p]}{a[p, p]}\)
                end if
            end for
        end for
    end for
```


3.4.3 Drop tolerance

Currently, Magma is working with the factorization of G described in Algorithm 5, with a certain adjustment to reduce amount of fill-in, which is called drop tolerance. Drop tolerance means that we choose a certain threshold ε, and we only update a value of $a[i, j]$ if $a[i, j] \neq 0$ or if the update is larger than ε.

```
Algorithm 11 Right-looking diagonal Cholesky factorization with drop tolerance (FDCFDT)
    for \(p=1, \ldots, n\) do
        \(a[p, p]=a[p, p]\)
        for \(i=p+1, \ldots, n\) do
            \(a[i, p]=\frac{a[i, p]}{a[p, p]}\)
        end for
        for \(j=p+1, \ldots, n\) do
            \(a[j, j]=a[j, j]-a[j, p]^{2} a[p, p]\)
            for \(i=j+1, \ldots, n\) do
                if \(a[i, j] \neq 0\) or \(a[i, p] a[p, p] a[j, p]>\varepsilon\) then
                    \(a[i, j]=a[i, j]-a[i, p] a[p, p] a[j, p]\)
                    end if
            end for
        end for
    end for
```

Since we want ε to be dimensionless it is important that the values of L are also dimensionless.

3.5 Solver problems

The Algorithms 6 and 11 form the basis of the current solver. The variable ε represents a connection between the number of iteration steps and the number of fill-in elements. A small ε results in a small amount of iteration steps, but almost complete fill-in, while a large ε results in little fill-in, but many iteration steps. For the current, already quite large threshold the number of fill-in elements can swamp the memory if a very large design is analyzed. This is fatal for the performance of the solver. Therefore Magma needs a method that either reduces the number of iterations (so a large ε can be chosen) or reduces the number of fill-in elements (so a smaller ε can be chosen), or does both. A third option is to exploit parallelism. Parallelism means that the system is solved using multiple processors. This can only be done if the data that is solved by one processor is independent of the data solved by all other processors at that time.

In the next section and coming chapters several methods will be discussed that may have one of the following results:

- Reduction of the number of fill-in elements.
- Reduction of the number of iteration steps.
- Parallelism.

3.6 Solution methods

Inspired by the factorizations of Van der Vorst and Gustafsson, we made a factorization with drop tolerance using a combination of the properties (3.14) and (3.16).

```
Algorithm 12 Right-looking diagonal Cholesky factorization with drop tolerance ( \(\theta\) ) (RLDCFDTT)
    for \(p=1, \ldots, n\) do
        \(a[p, p]=a[p, p]\)
        for \(i=p+1, \ldots, n\) do
            \(a[i, p]=\frac{a[i, p]}{a[p, p]}\)
        end for
        for \(j=p+1, \ldots, n\) do
            \(a[j, j]=a[j, j]-a[j, p]^{2} a[p, p]\)
            for \(i=j+1, \ldots, n\) do
                if \(a[i, j] \neq 0\) or \(a[i, p] a[p, p] a[j, p]>\varepsilon\) then
                    \(a[i, j]=a[i, j]-a[i, p] a[p, p] a[j, p]\)
                else
                    \(a[i, i]=a[i, i]-\theta a[i, p] a[p, p] a[j, p]\)
                    \(a[j, j]=a[j, j]-\theta a[i, p] a[p, p] a[j, p]\)
            end if
            end for
        end for
    end for
```

These ideas might also give one of the three results described in the previous section

- Saad's idea to allow only the μ biggest nonzero entries per row. This can be used without or in combination with the drop tolerance.
- Instead of adjusting D so that the $\operatorname{diag}(K)=\operatorname{diag}(G)$ during the factorization, adjust them after the process.
- Find a permutation of matrix G. This process is called matrix ordering .

The first two ideas gave rather disappointing results. The third however appeared to be a lively and widely studied topic during the last decades. We will discuss matrix ordering during the next three chapters.

Chapter 4

Matrix Ordering

In the previous section we discussed some factorization methods to generate a suitable preconditioner matrix for the PCG-method. Now we look for methods to reduce the numbers of nonzero elements in matrix L. This can be achieved by reordering the matrix G.

Our aim is to find a permutation matrix P such that $P G P=\tilde{L} \tilde{D} \tilde{L}^{T}$ and the number of nonzero elements of \tilde{L} is minimized. Unfortunately, finding such a permutation matrix P is NP-complete [8]. Therefore we need to use heuristics. The best known heuristics are the Minimum Degree ordering, the indexReverse Cuthill-McKee ordering Reverse Cuthill-McKee ordering, and the Nested Dissection ordering. These ordering methods will be discussed in the following chapters.

4.1 The benefits of ordering

We will underline the importance of ordering by using an example: in Algorithm 5 we see that $a[i, j]$ changes if both $a[i, p]$ and $a[j, p]$ are nonzero elements. So if $a[i, j]$ was initially zero, we now have to store an extra element. We called those new nonzero elements fill-in. However, for almost every matrix it is possible to reduce most fill-in by reorganizing the matrix. As an example, look at the following (arrow) matrix (in which the x represent a nonzero matrix value) and its Choleskey factor below.

$$
G=\left(\begin{array}{lllll}
x & x & x & x & x \\
x & x & 0 & 0 & 0 \\
x & 0 & x & 0 & 0 \\
x & 0 & 0 & x & 0 \\
x & 0 & 0 & 0 & x
\end{array}\right), \quad L=\left(\begin{array}{lllll}
x & 0 & 0 & 0 & 0 \\
x & x & 0 & 0 & 0 \\
x & x & x & 0 & 0 \\
x & x & x & x & 0 \\
x & x & x & x & x
\end{array}\right)
$$

The matrix L has maximum fill-in. If we now use a permutation that switches row and column 1 with row and column 5 and row and column 2 with row and column 4 we see that there is no fill-in created at all.

$$
G=\left(\begin{array}{lllll}
x & 0 & 0 & 0 & x \\
0 & x & 0 & 0 & x \\
0 & 0 & x & 0 & x \\
0 & 0 & 0 & x & x \\
x & x & x & x & x
\end{array}\right), \quad L=\left(\begin{array}{ccccc}
x & 0 & 0 & 0 & 0 \\
0 & x & 0 & 0 & 0 \\
0 & 0 & x & 0 & 0 \\
0 & 0 & 0 & x & 0 \\
x & x & x & x & x
\end{array}\right) .
$$

This example shows that an ordering can reduce the number of nonzero elements that need to be stored significantly. However, since most circuit matrices are very large and quite strongly connected we have to come up with algorithms to order them. The table below gives an idea of the impact of ordering and shows the importance to choose an appropriate ordering algorithm.

Table 4.1: Nonzero elements of the complete Cholesky factor of testcase3 for several orderings.

Ordering	Nonzero elements of L
MINOLD	$1,657,581$
Matlab AMD	196,738
METIS oemetis	244,233
Matlab RCM	746,314

MINOLD is the current ordering Magma is using. AMD stands for Approximate Minimum Degree and RCM stands for Reverse Cuthill-McGee. METIS ([18]) is a software package of the University of Minnesota. These algorithms are mainly based on the graph representation of the matrix, so this representation will be discussed in the next section.

4.2 Graph representation

Symmetric matrices have perfectly clear graph representations. Assume F is the graph of matrix $G, F=$ (V, E), with node $v_{i} \in V$ represents the i-th column/row, and edge $e_{i j} \in E$ represents a nonzero value in row i and column j. We define the nodes adjacent to v_{i} by

$$
\begin{equation*}
\operatorname{Adj}\left(v_{i}\right):=\left\{v_{j} \in V \mid e_{i j} \in E\right\} \tag{4.1}
\end{equation*}
$$

and the adjacent set of a set X by

$$
\begin{equation*}
\operatorname{Adj}(X):=\left\{v_{j} \in V \backslash X \mid e_{i j} \in E \text { for some } v_{i} \in X\right\} \tag{4.2}
\end{equation*}
$$

The degree of a node, denoted by d_{i}, is defined by

$$
\begin{equation*}
d_{i}:=\left|\operatorname{Adj}\left(v_{i}\right)\right| . \tag{4.3}
\end{equation*}
$$

Another useful set is the reach of a node v_{i} through a set X, denoted by $\operatorname{Reach}\left(v_{i}, X\right)$

$$
\begin{equation*}
\operatorname{Reach}\left(v_{i}, X\right):=\left\{v_{j} \notin X \mid v_{j}, v_{i} \in \operatorname{Adj}(X), v_{j} \neq v_{i}\right\} \tag{4.4}
\end{equation*}
$$

Our goal is to find a permutation $\underline{\pi}=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right\}$, so first we label node $v_{\pi_{1}}$, then $v_{\pi_{2}}$ etc. The creation of fill-in goes analogously to the matrix problem; if node v_{i} is connected to the nodes v_{k} and v_{j} with no connection between the last two nodes, an edge is created between v_{k} and v_{j} if v_{i} is labelled first. We can use elimination graphs to describe the nonzero pattern of the submatrix after the labelling of the k-th node. The initial elimination graph $F^{0}=\left(V^{0}, E^{0}\right)$ is the original graph. After step k we have $F^{k}=\left(V^{k}, E^{k}\right)$, and to construct F^{k+1} we choose a node v_{i} to label, and then remove it and all adjacent edges from the graph. Next, all nodes adjacent to the eliminated node are fully connected with each other, so, in other words, they form a clique. In Figure 4.1 a small circuit is shown as an elimination graph. The figure also contains the elimination graphs after eliminating the nodes in the current order of labelling.

Figure 4.1: The elimination graphs $F^{0} \ldots F^{8}$ of a simple circuit.

The set $\operatorname{Adj}\left(v_{i}\right)_{F^{k}}$ represent the adjacent nodes of v_{i} in the elimination graph F^{k}. Each node has a score function, a value $\operatorname{score}\left(v_{i}\right)$. A possible way to determine the node to be eliminated next is a node with $\operatorname{score}\left(v_{i}\right) \leq \operatorname{score}\left(v_{j}\right), v_{j} \in V^{k}$.

There are two types of ordering algorithms: local ordering algorithms and global ordering algorithms. Local ordering algorithms use graphs like elimination graphs, the nodes are chosen one at the time and after each elimination the next node is chosen by some metric, in most cases the score function. Global ordering methods use the structure of the graph and try to minimize the interaction between the nodes by separating them.

Before we discuss the different ordering methods we look at the structure of a matrix before ordering, and the same matrix ordered with the current ordering method MINOLD. Such a matrix, testcase1, and its L matrix are shown in Figures 4.2 and 4.3. All nonzero elements are coloured and all elements that are zero are blank.

Figure 4.2: Sparsity pattern of testcase 1 and its Cholesky factor with a random ordering.

Figure 4.3: Sparsity pattern of testcase 1 and its Cholesky factor with the ordering MINOLD.

The problems with fill-in are in the bottom right corner of the matrix. The figures of the MINOLD ordering show the problem with elimination graphs. If a node is eliminated, all his neighbours form a clique. Consequently, removing d_{i} edges can lead to adding $\left(d_{i}^{2}-d_{i}\right) / 2$ edges in the worst case. So handling nodes with large degree is very consuming for both time and memory. Therefore MINOLD only handles nodes below a certain degree, as you can see in Figure 4.3. How the problem with elimination graphs can be solved is described in the next chapter.

Chapter 5

Local ordering algorithms

In this chapter we will discuss several local ordering methods that are known for reducing fill-in. With an historical overview we highlight the most important improvements of the past decades that lead to efficient local orderings.

5.1 Minimizing fill-in; The Minimum Fill Ordering

Our objective is to find a labelling of the graph that results in the least fill-in for the (incomplete) Cholesky factor L. The most intuitive way to get such a labelling is to calculate for every node exactly how much fill-in will appear if the node is eliminated next. This is a local approach, since minimum fill-in per step does not guaranty total minimum fill-in. The amount of fill-in is equal to the number of possible edges between the adjacent nodes of the node we eliminate minus the number of edges already present between the adjacent nodes. Mathematically this means

$$
\begin{equation*}
\operatorname{score}\left(v_{i}\right)=\left(d_{i}^{2}-d_{i}\right) / 2-|\Upsilon| \tag{5.1}
\end{equation*}
$$

with

$$
\Upsilon=\left\{e_{j \ell} \in E \mid v_{\ell} \in \operatorname{Adj}\left(v_{i}\right) \wedge v_{j} \in \operatorname{Adj}\left(v_{i}\right)\right\}
$$

The method for which the fill-in is explicitly calculated is called Minimum Deficiency ordering or Minimum Fill ordering (MF). This method is very time-consuming, for comparisons have to be made for every possible pair $v_{j}, v_{\ell} \in \operatorname{Adj}\left(v_{i}\right)$ during every update. However, if we neglect Υ, we get an upper bound for the amount of fill-in, since. This upper bound ($u b_{\text {score }}$) is

$$
\operatorname{score}\left(v_{i}\right)=\left(d_{i}^{2}-d_{i}\right) / 2-|\Upsilon| \leq \frac{\left(d_{i}^{2}-d_{i}\right)}{2}=u b_{\text {score }}
$$

Since this is a monotonic function for positive integers we can also use just d_{i} as an upper bound. The method that uses the degree as a score function is called Minimum Degree (MD).

5.2 Minimum Degree Ordering

The Minimum Degree ordering algorithm has been a very popular ordering algorithm for over 30 years. There have also been multiple enhancements to speed up the algorithm ([10]), which will be discussed later in this chapter. The algorithm simply chooses a node v_{i} in the graph for which d_{i} is the smallest degree, and eliminates it from the elimination graph. Next, the elimination graph is updated and a new node is chosen. This procedure is repeated until all nodes are eliminated. This version of MD is already much faster than MF, but the elimination graphs still have a big drawback. In the previous section we discussed that the upper bound of fill-in is calculated by $\left(d_{i}^{2}-d_{i}\right) / 2$, and that eliminating a node could
result (in the worst case scenario) into removing d_{i} edges and adding $\left(d_{i}^{2}-d_{i}\right) / 2$. This means that during the first part of the algorithm the number of edges can increase dramatically, which leads to unacceptable high use of memory. A much more efficient way to model the elimination process is to use quotient graphs.

Quotient graphs consist of two kinds of nodes: unlabelled nodes (also referred to as supernodes) and eliminated nodes (also referred to as elements). When a node should be labelled next it becomes an eliminated node, which remains in the graph. Two unlabelled nodes are adjacent if they are connected with an edge or if they can reach each other through their eliminated neighbours. This way, no extra edges will be formed, so there will be no need for extra memory.

The initial quotient graph $F^{0}=\left(V^{0}, \bar{V}^{0}, E^{0}, \bar{E}^{0}\right)$ is the same as the initial elimination graph, because $V^{0}=V$ and $E^{0}=E$, and \bar{V}^{0} and \bar{E}^{0} are empty. V^{k} is the set of supernodes and \bar{V}^{k} is the set of eliminated nodes after step k. E^{k} is the set of edges $V^{k} \times V^{k}$ and \bar{E}^{k} is the set of edges $V^{k} \times \bar{V}^{k}$. For each node, there are two extra interesting sets we should distinguish: all adjacent supernodes to node $v_{i}\left(\mathcal{A}_{i}\right)$, and all adjacent eliminated nodes to node $v_{i}\left(\mathcal{E}_{i}\right)$. The basic MD algorithm with quotient graphs is given in Algorithm 13.

```
Algorithm 13 MD with quotient graphs
    \(V=\left\{v_{1}, \ldots, v_{n}\right\}, N=|V|\)
    \(E=\left\{e_{1}, \ldots, e_{m}\right\}, M=|E|\)
    for \(i=1 \ldots M\) do
        Pick \(e_{i}=\left(v_{j}, v_{k}\right) . \mathcal{A}_{j}=\mathcal{A}_{j} \cup v_{k}, \mathcal{A}_{k}=\mathcal{A}_{k} \cup v_{j}\).
    end for
    for \(i=1 \ldots N\) do
        \(d_{i}=\left|\mathcal{A}_{i}\right|\)
    end for
    while \(V \neq \emptyset\) do
        Pick \(v_{p}\) with \(d_{p} \leq d_{j}, v_{j} \in V\)
        \(\mathcal{A}_{p}=\left(\mathcal{A}_{p} \cup \bigcup_{v_{j} \in \mathcal{E}_{p}} \mathcal{A}_{j}\right) \backslash v_{p}\)
        for \(v_{j} \in \mathcal{A}_{p}\) do
            \(\mathcal{A}_{j}=\mathcal{A}_{j} \backslash v_{p}\)
            \(\mathcal{E}_{j}=\mathcal{E}_{k} \cup v_{p} \cup \mathcal{E}_{p}\)
            \(d_{j}=\left|\mathcal{A}_{j} \cup \bigcup_{v_{k} \in \mathcal{E}_{j}} \mathcal{A}_{k}\right|\)
        end for
        \(V=V \backslash v_{p}\)
    end while
```

A visual example of quotient graphs is given later in this section in Figure 5.1. In addition to the use of quotient graphs several methods have been thought of during the years to improve the runtime of MD. These include mass elimination, graph compression, incomplete degree update, remove redundant edges, element absorption, multiple elimination, tie-breaking pre-ordering, external degrees and approximate degrees. We will discuss these enhancements next.

5.2.1 Mass elimination

George and McIntyre [11] observed that when a node is eliminated there is often a subset of nodes that can be eliminated in the same elimination step. If v_{i} is eliminated in step k and we look at the subset

$$
\begin{equation*}
U=\left\{v_{j} \in \operatorname{Adj}\left(v_{i}\right)_{F^{k}} \mid\left(d_{i}\right)_{F^{k-1}}=\left(d_{j}\right)_{F^{k-1}-1}\right\}, \tag{5.2}
\end{equation*}
$$

then all elements of U can be eliminated right after v_{i}. These nodes appeared to be indistinguishable with respect to v_{i}. Two nodes v_{i} and $v_{j} \in V \backslash X$ are indistinguishable if

$$
\begin{equation*}
\operatorname{Reach}\left(v_{i}, X\right) \cup\left\{v_{i}\right\}=\operatorname{Reach}\left(v_{j}, X\right) \cup\left\{v_{j}\right\} \tag{5.3}
\end{equation*}
$$

In other words, a set of indistinguishable nodes form a clique. Since removing one node from a clique does not generate any fill-in at all (all adjacent nodes are also adjacent to one another), all these nodes can be eliminated right after each other in any order. If we merge indistinguishable nodes in one node, which we will call a supernode, we encounter two advantages: we eliminate multiple nodes in one step, and we have less nodes for which we need to calculate new degrees. Mass elimination means that after eliminating a node we check its adjacency set for indistinguishable nodes, and each couple nodes are merged if they are indistinguishable. The identification of supernodes can be done using the hash function

$$
\begin{equation*}
\text { hash }_{i}=\sum \mathcal{A}_{i}+\sum \mathcal{E}_{i} \bmod N . \tag{5.4}
\end{equation*}
$$

If two nodes have the same hash value their adjacency list should be compared, and if they are the same they should be merged. We choose one node as the source and one as the target. The source node is removed from the graph and becomes a child of the target node, which we will write as $c h_{\text {target }}=c h_{\text {target }} \cup v_{\text {source }}$. We also define the cardinality of a node v_{i} as

$$
\begin{equation*}
\left|v_{i}\right|=1+\left|c h_{i}\right| . \tag{5.5}
\end{equation*}
$$

The MD algorithm can be expanded with the supernode detection after the degree update

```
Algorithm 14 Hash-function initialization( \(v_{i}\) ) (in the second for loop)
    hash \(_{i}=\sum \mathcal{A}_{i}+\sum \mathcal{E}_{i} \bmod N\)
    \(H\left(\right.\) hash \(\left._{i}\right)=H\left(\right.\) hash \(\left._{i}\right) \cup v_{i}\)
```

```
Algorithm 15 Supernode detection (after the third for loop)
    for \(j=0 \ldots N-1\) do
        if \(|H(j)|>1\) then
            for each \(v_{i} \in H(j)\) do
                for each \(v_{k} \in H(j), v_{k} \neq v_{i}\) do
                    if \(\mathcal{A}_{i} \cup v_{i}==\mathcal{A}_{k} \cup v_{k}\) then
                        \(c h_{i}=c h_{i} \cup v_{k} \cup c h_{k}\)
                        \(V=V \backslash v_{k}, H(j)=H(j) \backslash v_{k}\)
                        \(\mathcal{A}_{k}=\emptyset, \mathcal{E}_{k}=\emptyset\)
                    end if
            end for
        end for
        end if
    end for
    for \(j=0 \ldots N-1\) do
        \(H(j)=\emptyset\)
    end for
```

Since N is very large for matrices that cause memory problems, the chance that we have a hash collision for two neighbouring nodes is very small, and since we know they are neighbours and have at least one element in common, the amount of extra fill-in generated by a bad collision is not that big. However, skipping the second-if statement of Algorithm 15 will save quite some computing time.

5.2.2 Graph compression

In addition to mass elimination we look for indistinguishable nodes prior to the elimination process. This addition works especially good for discretized problems with more then one solution component per grid point. Because this is not the case for our problem we will not use compression in our implementation.

5.2.3 Incomplete degree update

Some nodes have high degree, it is not their turn to be eliminated by far, so we would like to skip their degree updating, but how does the algorithm know when they come back in the field? The solution is the outmatching of nodes. A node v_{j} is outmatched by v_{i} if

$$
\begin{equation*}
\operatorname{Reach}\left(v_{i}\right) \cup\left\{v_{i}\right\} \subseteq \operatorname{Reach}\left(v_{j}\right) \cup\left\{v_{j}\right\} . \tag{5.6}
\end{equation*}
$$

It is clear that v_{j} will never have a lower degree then v_{i}, so we don't have to update the degree of v_{j} until v_{i} is eliminated.

5.2.4 Remove redundant edges

Some edges in the quotient graph are redundant, and therefore it would improve the performance of the algorithm if they were removed. Take three nodes, v_{i}, v_{j} and v_{k}, which are fully connected with each other. If v_{k} is eliminated, v_{i} and v_{j} are connected through v_{k} and with a direct connection. This direct connection is redundant and can be removed. So instead of line 13 of Algorithm 13 we get

$$
\mathcal{A}_{j}=\left(\mathcal{A}_{j} \backslash \mathcal{A}_{p}\right) \backslash v_{p}
$$

5.2.5 Element absorption

Eliminated nodes are used to represent a clique between some of the nodes in V. But if all elements remain part of the graph it is expensive to find all the reachable sets for those nodes. It is more efficient to absorb adjacent elements, for the new adjacent element span the same adjacency list as the union of the old adjacency list, so no information is lost. This method is called element absorption. We can replace line 14 of Algorithm 13 with

$$
\mathcal{E}_{j}=\left(\mathcal{E}_{j} \backslash \mathcal{E}_{p}\right) \cup v_{p}
$$

An extension of element absorption is aggressive element absorption, for which all elements v_{e}, including the ones not directly adjacent to v_{p}, for which holds that

$$
\begin{equation*}
\mathcal{A}_{e} \backslash \mathcal{A}_{p}=\emptyset, \tag{5.7}
\end{equation*}
$$

are merged into v_{p}.
As an example, look in Figure 5.1 at the simple circuit from the previous chapter, shown as an quotient graph. The figure also contains the quotient graphs after eliminating the nodes in the current order of labelling, using mass elimination, (aggressive) element absorption, and removal of redundant edges. The large open circles represent elements.

Figure 5.1: The quotient graphs $F^{0} \ldots F^{5}$ of a simple circuit.

In the third picture, after the elimination of v_{2}, the edge between nodes v_{4} and v_{7} is redundant and should be removed. When v_{4} is eliminated the adjacent elements (nodes v_{2} and v_{3}) must be absorbed. However, although v_{1} is not adjacent to node v_{4}, it does not give any additional information and should therefore also be absorbed. This is an example of aggressive element absorption. Nodes v_{5}, v_{7} and v_{8} form a clique now, but we only check for supernodes in \mathcal{A}_{4}, so we merge nodes v_{5} and v_{7}. After eliminating node v_{5} the remaining quotient graph is a clique, this will become one supernode and is the last node that is eliminated.

5.2.6 Tie-breaking pre-ordering

Large graphs imply many nodes with the same degree. Since the first node to be eliminated is the node of the lowest degree with the lowest initial labelling it might be of importance how the matrix is ordered prior to the elimination process. Two possible pre-ordering are random ordering and the Reversed CuthillMcKee ordering, which will be discussed later in this chapter.

5.2.7 External degrees

Liu came up with the idea to use external degrees instead of true degrees. External degrees of supernodes are equal to the true degree minus the number of nodes merged into the supernode. Since supernodes form a clique, no internal fill-in will be created, so external degrees form a tighter bound than true degrees. Therefore, the degree update should be

$$
\begin{equation*}
d_{j}=\left|\mathcal{A}_{j} \backslash v_{p}\right|+\left|\bigcup_{v_{k} \in \mathcal{E}_{j}} \mathcal{A}_{k} \backslash v_{p}\right| . \tag{5.8}
\end{equation*}
$$

and we should add to the supernode routine in Algorithm 15

$$
\begin{equation*}
d_{j}=d_{j}-\left|v_{k}\right| \tag{5.9}
\end{equation*}
$$

5.2.8 Multiple elimination

If we eliminate a node v_{i} we need to calculate the degree of its neighbours. But if we find another node with the same minimal degree to eliminate that is not a neighbour of v_{i} we can postpone updating the degrees. So, in general we do

```
\(G_{i}=\left(V_{i}, E_{i}\right)\)
\(W=V_{i}\)
Eliminate \(v_{j} \in W\) with \(\operatorname{score}\left(v_{j}\right) \leq \operatorname{score}\left(v_{k}\right), v_{k} \in W\).
\(W=W\left(v_{j} \bigcup \operatorname{Adj}\left(v_{j}\right)\right)\)
while \(\left(\exists v_{k} \in W\right.\) with \(\left.\operatorname{score}\left(v_{k}\right)=\operatorname{score}\left(v_{j}\right)\right)\) do
    Eliminate \(v_{k}\)
    \(W=W\left(v_{k} \bigcup \operatorname{Adj}\left(v_{k}\right)\right)\)
end while
```

This enhancement is known as multiple elimination, and the method, very popular between 1985 and 2000, is known as Multiple Minimum Degree (MMD). Figure 5.2 shows the multiple minimum degree ordering of the matrix testcase 1 using the Matlab-ordering symmmd. This figure shows that using the minimum degree ordering leads to significant reduction of fill-in.

Figure 5.2: Sparsity pattern of testcase 1 and its Cholesky factor ordered with symmmd.

5.2.9 Approximate degrees

Since the term degree is already a somehow loose upper bound for the amount of fill-in, it is not unlikely to think that an approximation of the degree will give similar results but a better performance. This is what Amestoy, Davis and Duff thought when they came up with the Approximate Minimum Degree ordering algorithm (AMD) [1]. Instead of calculating the exact degree d_{i} the approximate degree d_{i}^{-k} is calculated. We take p to be the node that is eliminated next and $\left|v_{i}\right|$ to be the weight of the current supernode. This approximate degree is the minimum of three upper bounds for the degree. The first upper bound, $u b_{1}=$ $n-k$, is quite obvious. It is equal to the number of nodes left in the graph. The second bound, $u b_{2}=$ $d_{i}^{k-1}+\left|\mathcal{A}_{p} \backslash\right| v_{i}| |$, is equal to the old degree plus the worst case fill-in. Clearly, if d_{i}^{-k-1} is an upper bound, $u b_{2}$ is also an upper bound. For the third bound, $u b_{3}=\left|\mathcal{A}_{i} \backslash\right| v_{i}| |+\left|\mathcal{A}_{p} \backslash\right| v_{i}| |+\sum_{e \in \mathcal{E}_{i} \backslash p}\left|\mathcal{A}_{e} \backslash \mathcal{A}_{p}\right|$, we calculate the number of directly adjacent nodes, the number of adjacent nodes through the new element, and the number of nodes through other elements that are not present in the current element. All nodes adjacent to the current node are counted, so $u b_{3}$ is an upper bound. This gives the approximate degree

$$
d_{i}^{-k}=\min \left\{\begin{array}{l}
n-k, \tag{5.10}\\
d_{i}^{-k-1}+\left|\mathcal{A}_{p} \backslash\right| v_{i}| |, \\
\left|\mathcal{A}_{i} \backslash\right| v_{i}| |+\left|\mathcal{A}_{p} \backslash\right| v_{i}| |+\sum_{e \in \mathcal{E}_{i} \backslash p}\left|\mathcal{A}_{e} \backslash \mathcal{A}_{p}\right| .
\end{array}\right.
$$

The calculation of the term $\left|\mathcal{A}_{e} \backslash \mathcal{A}_{p}\right|$ can be done in an efficient way. Every element has a certain w-value, that is -1 at the start of each iteration step. After the formation of \mathcal{A}_{i} all nodes in this set are visited $\left(v_{j}\right)$,
and for all these neighbours all adjacent elements are visited. If such an element e has a w_{e} of -1 , the value is set to $w_{e}=\left|\mathcal{A}_{e}\right|$. Then $w_{e}=w_{e}-\left|v_{j}\right|$. After all neighbouring nodes are visited we have

$$
\begin{equation*}
w_{e}=\left|\mathcal{A}_{e} \backslash \mathcal{A}_{p}\right| \tag{5.11}
\end{equation*}
$$

Clearly, $w_{p}=0$. If $w_{e}=-1$ the element is not visited, so we will not need it for the degree update.
Theorem 5.2.1. The approximate degree d_{i}^{-k} is equal to d_{i} if $-\mathcal{E}_{i} \mid \leq 2$.
Proof. Initially, if $-\mathcal{E}_{i} \mid=0$ for all $i, d_{i}^{0}=d_{i}$. Assume we update the degree of a node v_{i} with $\left|\mathcal{E}_{i}\right|=1$. Then the only possible adjacent element is the current eliminated node v_{p} and $\sum_{e \in \mathcal{E}_{i} \backslash p}\left|\mathcal{A}_{e} \backslash \mathcal{A}_{p}\right|=0$, so $d_{i}^{-k}=d_{i}$. Assume now we update the degree of a node v_{i} with $\left|\mathcal{E}_{i}\right|=2$. Then there is one additional element besides v_{p} in \mathcal{E}_{i}, say v_{q}. The degree of v_{i} is equal to the number of nodes adjacent to it plus the number of nodes that can be reached through v_{p} plus the number of nodes that can be reached through v_{q} without the nodes adjacent to v_{p}. This is exactly d_{i}^{-k}, so $d_{i}^{-k}=d_{i}$.
The following example (Figure 5.3) shows that the equation $d_{i}^{-k}=d_{i}$ is no longer always valid if $\left|\mathcal{E}_{i}\right|>2$.

Figure 5.3: Example of a quotient graph in which $d_{4}^{-k}>d_{4}$.

Node v_{3} is the node that is just eliminated. If we want to calculate d_{4}^{-3} we need d_{4}^{-2}, say $d_{4}^{-2}=5$ (the minimum value possible). We find that $d_{4}=6$, since the adjacent nodes are $v_{5}, v_{6}, v_{7}, v_{8}, v_{10}$ and v_{12}. $u b_{1}=12-3=9$ and $u b_{2}=5+2=7$. For $u b_{3}$ we need all adjacent nodes (v_{12}), all nodes reachable through $v_{3}\left(v_{8}\right.$ and $\left.v_{10}\right)$, all nodes reachable trough v_{1} that are not adjacent to $v_{3}\left(v_{5}\right.$ and $\left.v_{6}\right)$ and all nodes reachable trough v_{2} that are not adjacent to $v_{3}\left(v_{6}\right.$ and $\left.v_{7}\right)$. Note that node v_{6} is counted twice. So $u b_{3}=1+2+2+2=7$ and $d_{4}^{-3}=\min (9,7,7)=7>6=d_{4}$.

5.2.10 MADAND(AMD)

AMD is considerably faster than MMD, and a combination is not very suitable due to the method of calculating the approximate degree ([1]). For the same reason we do not use incomplete degree update. We had already ruled out graph compression. With the use of the other enhancements we get our MADAND(AMD) algorithm. The pseudo code of this algorithm can be found in the appendix.

5.3 Approximate Minimum Deficiency

The AMD algorithm handles the problem of updating degrees very well, but there might still be room for improvement concerning the score function. Rothberg and Eisenstat ([25]) recognized the degree as an
upper bound of fill-in, which could be fit tighter. Take \mathcal{A}_{e} for some eliminated node e. Then all supernodes in \mathcal{A}_{e} form a clique, so there will no new edges occur between these nodes. Now take a supernode v_{i} and assume \hat{e} is the last eliminated neighbour of v_{i}. Then $c_{i}=\left|\mathcal{A}_{\hat{e}} \backslash\right| v_{i}| |$ is the number of nodes in the clique (without the current node v_{i}), so $\left(c_{i}^{2}-c_{i}\right) / 2$ is the number of edges already present in the clique that we can subtract from the upper bound. This gives a new score function:

$$
\begin{equation*}
\operatorname{score}\left(v_{i}\right)=\left(d_{i}^{2}-d_{i}\right) / 2-\left(c_{i}^{2}-c_{i}\right) / 2 \tag{5.12}
\end{equation*}
$$

The method using this score function is called Approximate Minimum Local Fill ordering (AMF). In the same paper they also discussed the Approximate Minimum Mean Local Fill ordering (AMMF) with score function

$$
\begin{equation*}
\operatorname{score}\left(v_{i}\right)=\frac{\operatorname{score}_{A M F}}{\left|v_{i}\right|} \tag{5.13}
\end{equation*}
$$

and Approximate Minimum Increase in Neighbour Degree ordering (AMIND) with score function

$$
\begin{equation*}
\operatorname{score}\left(v_{i}\right)=\operatorname{score}_{A M F}-\left(d_{i} \times\left|v_{i}\right|\right) \tag{5.14}
\end{equation*}
$$

The implementations are called MADAND(AMF), MADAND(AMMF) and MADAND(AMIND), respectively.

5.4 Minimum degree with drop tolerance prediction

Eliminating nodes from the graph can result into new edges which represent fill-in in the matrix. However, during the creation of the L matrix we neglect some fill-in using the drop tolerance. So perhaps if we can predict which edge will be neglected we can save some computing time.

Initially, each edge has a value $\left(\gamma_{e}\right)$, the negative value of the capacitance. Recall that if node v_{i} is connected to the nodes v_{k} and v_{j} with no connection between the last two, an edge is created between v_{k} and v_{j} if v_{i} is labelled first. Assume we know $a[i, k]=-g_{i k}, a[i, j]=-g_{i j}, a[k, j]=0$ and the node to be eliminated is node i. Then $a[i, k]=-g_{i k} / g_{i i}$ and $a[i, j]=-g_{i j} / g_{i i}$, and we have $a[k, j]=-g_{i j} g_{i k} / g_{i i}$.

Now assume i or j is the first node to eliminate. Then if $\gamma_{i j} \ll g_{i i}$ AND $\gamma_{i j} \ll g_{j j}$, the edge between i and j will not likely create fill-in, so removing the edge from the graph may have little influence on the total fill-in of the matrix, while less edges are present in the graph.

This clearly only holds initially, since eliminating nodes not only creates new edges, but also adjusts the values of the old edges. However, if we assume that these adjustments are small and if we only remove edges for which hold

$$
\begin{equation*}
\left|\frac{\gamma_{i j}}{\min \left(\gamma_{i i}, \gamma_{j j}\right)}\right|<\eta, \tag{5.15}
\end{equation*}
$$

for some small $\eta>0$, the amount of fill-in should not increase substantially. The drop tolerance prediction can be used for every MADAND variant.

5.5 Reverse Cuthill-McKee ordering

The reverse Cuthill-McKee ordering turned out to be superior over the original Cuthill-McKee ordering from 1969. The principle of the algorithm is to find an appropriate starting node and number all his neighbours in increasing order of degree, and then reverse the ordering. In [9] is described how the starting node is found. Figure 5.4 shows the Reverse Cuthill-McKee ordering of the matrix testcase 1 using the Matlab-ordering symrcm. This Figure shows that this method does not really reduce the fill-in for this matrix.

Figure 5.4: Sparsity pattern of testcase 1 and its Cholesky factor ordered with symrcm.

Chapter 6

Global ordering algorithms

Global ordering methods try to separate the nodes so their interaction (and thus the occurrence of fill-in) is minimal. The aim is to find a separator (also called border) that cuts the graph into multiple disjoint partitions. This is usually done either recursive as in the Nested Dissection ordering, or at once as in the Multisection ordering. We will discuss both methods in this chapter.

6.1 Nested Dissection ordering

The aim of the Nested Dissection ordering to find a separator in the form of a bisector, a set of vertices whose removal would cut the graph into two parts, approximately of the same length. These parts can be cut again and again, until the parts have an appropriate length. A matrix ordered with a Nested Dissection can be used for parallel computing, since we can calculate each part on a different processor, and only the columns of the separators depend on the parts they separate. This is a hierarchical structure

$$
P G P^{T}=\left(\begin{array}{ccc}
A & 0 & S_{A}^{T} \tag{6.1}\\
0 & B & S_{B}^{T} \\
S_{A} & S_{B} & S
\end{array}\right)=\left(\begin{array}{ccccccc}
A A & 0 & S_{A A}^{T} & 0 & 0 & 0 & S_{A}^{T} \\
0 & A B & S_{A B}^{T} & 0 & 0 & 0 & \vdots \\
S_{A A} & S_{A B} & S A & 0 & 0 & 0 & S_{A}^{T} \\
0 & 0 & 0 & B A & 0 & S_{B A}^{T} & S_{B}^{T} \\
0 & 0 & 0 & 0 & B B & S_{B B}^{T} & \vdots \\
0 & 0 & 0 & S_{B A} & S_{B B} & S B & S_{B}^{T} \\
S_{A} & \cdots & S_{A} & S_{B} & \cdots & S_{B} & S
\end{array}\right) .
$$

Packages such as METIS [18] and CHACO [15] can calculate such orderings, as shown in Figure 6.1. In addition to the parallel structure of the matrix L the ordering method also reduces the fill-in significantly, but not as good as the MD and its variants.

Figure 6.1: Sparsity pattern of testcase 1 and its Cholesky factor ordered with METIS (oemetis).

6.2 Multisection ordering

Multisection ordering uses, unlike the Nested Dissection ordering, only one separator. The graph is cut into more than two parts, say M parts. These M parts can be processed parallel, with finally a integral process using the separator.

$$
P G P^{T}=\left(\begin{array}{ccccc}
A & 0 & \cdots & 0 & S_{A}^{T} \tag{6.2}\\
0 & B & \ddots & \vdots & S_{B}^{T} \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & 0 & M & S_{M}^{T} \\
S_{A} & S_{B} & \cdots & S_{M} & S
\end{array}\right)
$$

An example of a Multisection ordering is the ordering of Zecevic and Siljak ([31]), which will be discussed in section 6.4. In Figure 6.2 the results of the algorithm are shown.

Figure 6.2: Sparsity pattern of testcase1 and its Cholesky factor ordered with siljak8.m.

6.3 Combining local and global ordering methods

For most of our test-matrices the local ordering will lead to less fill-in compared to the global orderings. But we need to use global orderings to parallel solving methods, so it is of course possible to use the local ordering as a pre- or a post-ordering. Which should we use first? When we use the local first we might consider impossible fill-in, because most nodes will be separated, and when we use the global method first we neglect the fill-in produced in the separator. Liu ([20]) suggested to connect the MD and its variants with the different dissection methods. His constrained version of the minimal degree algorithm is simply the MD, but adding the separator to the graph. Those nodes can not be chosen to be eliminated, but they will appear in the adjacency lists. This way the fill-in in the separator will also be minimized. We will refer to the constrained version of MADAND as MADAND(CON).

6.4 Basics of Dissection Orderings

The basics for most Nested Dissection and Multisection ordering algorithms are the same. They consist of three steps, but before we discuss these steps we need to give some definitions.

Definition 6.4.1. A matching is a set of edges, no two of which are incident on the same node.
Definition 6.4.2. A matching is maximal if the edges that are not in the matching contain at least one node that has been matched.

An efficient greedy algorithm to find a maximal matching is random matching, which walks through the nodes and matches all unmatched nodes. A graph can be coarsened using a random matching by merging the nodes in the matching and giving the nodes and edges a weight number. The Kernighan-Lin algorithm [19] uses a certain initial configuration of the graph, a bisection, and then exchanges two nodes, one from each part, such that the new edge cut (the number of edges connecting both parts) is minimized. The tree basic steps are:

1. Coarsen the graph with a maximal matching, for a coarsened graph needs far less operations with respect to the original graph.
2. Find a certain initial configuration and swap nodes using a Kernighan-Lin alike algorithm.
3. While uncoarsening the graph try to improve the configuration. Then label the nodes by partition, with the separator at the end.

In this thesis we especially focus on the second step.

6.5 Domain decomposition

In this subsection we will highlight two ordering algorithms based on domain decomposition. The first is constructed by Zecevic and Siljak ([31]) and is a Multisection ordering algorithm, and the second is constructed by Ashcraft and Liu ([3]) and is a Nested Dissection algorithm. The main step is to form blocks of adjacent nodes, separated by a small set of nodes, which we already defined as separator. Obviously, the intersection of two blocks is always empty. It is important to keep track of all adjacent blocks, this will be notated with $\mathcal{N} \mathcal{B}_{i}$ for node v_{i} of $\mathcal{N} \mathcal{B}_{b_{t}}$ for block b_{t}. The method to form the blocks is described below:

- Choose $\omega_{\max }, \omega_{\min }$ and $d_{\max }$.
- Put all nodes v_{i} with $d_{i} \geq d_{\max }$ in the separator Ψ.
- Pick a random node in $V \backslash \Psi$ and grow it into a block in a breath first fashion.
- If the size of this block is $\omega_{\max }$ it is full and all adjacent nodes go into Ψ.

6.5.1 Zecevic and Siljak

After the blocks are formed, $\mathrm{Z} \& \mathrm{~S}$ continue with:

- Determine for every node v_{i} the status of its neigbours. q_{i} is the number of neighbours of v_{i} that are contained in Ψ and S_{i} is the total size of all adjacent blocks.
- As long as $\min \left(S_{i}\right) \leq|\Psi|$, take v_{i} out of Ψ. This may lead to several (small) partitions.
- If $\min \left(S_{i}\right)>|\Psi|$ we start the algorithm over again, but only using Ψ, and before starting we already create the fill-in that may occur during the factorization process.

This last step turned out to be a bottleneck. Essentially they perform a minimum fill algorithm, which we already pointed out as very slow in the previous chapter. In addition, multisection gives more connection between nodes in the separator, which may lead to more fill-in. Multisection appears to be useful for specific problems like rectangular grids of the form $h \times k$ with $h \gg k$, but not for general unstructured matrices.

Zecevic and Siljak handled their bottleneck by adjusting their algorithm so it became a Nested Dissection ordering [32]. Instead of multiple blocks the growing procedure continued until there are only few blocks left. These blocks can be dissected again, and this results into a nested algorithm, which we will call $i m p Z \& S$.

6.5.2 Ashcraft and Liu

Ashcraft and Liu came up with a block version of the Kernigan-Linn algorithm:

- For all blocks with a number of nodes less than $\omega_{\min }$, put every node in Ψ and destroy the blocks.
- Check for all nodes in Ψ that are adjacent to only one block if there is room for them. If so, put them in the block (lowest degree first).
- Combine all adjacent nodes in Ψ that have no adjacent block in common.
- Combine all adjacent sets of nodes that cut exactly the same block. These two steps make blocks of the separator-nodes in a way such that two different coloured blocks will always be separated.
- We want two parts, W and B, that are balanced and $G \subseteq \Psi$ to be as small as possible. Therefore we use $\gamma(G, W, B)=|G|\left(1+\alpha \frac{\max (|B|,|W|)}{\min (|B|,|W|)}\right)$ as a cost function.
- Begin with an initial B, W and G and swap all partitions one by one, the one that leads to the smallest G first. Choose the configuration with the smallest cost en continue, until we find no better configuration.
- All three sets form a separate partition. The partitions of B and W can be dissected again, which will lead to the nested structure.

It is also possible to improve the separator with the use of the Dulmage-Mendelsohn decomposition. This method is based on the following scenario: assume there are two partitions, part1 and part2, separated by sep. Say there are sets of nodes, one in $\operatorname{sep}, \operatorname{sep}\left(v_{i}\right)$, and one in $\operatorname{part} 1, \operatorname{part} 1\left(v_{j}\right)$, such that $\operatorname{part} 1\left(v_{j}\right)$ contains all nodes in part1 adjacent to the nodes $\operatorname{sep}\left(v_{i}\right)$. If $\operatorname{part1}\left(v_{j}\right)$ is put in the separator and $\operatorname{sep}\left(v_{i}\right)$ in the other partition, we still have a legal separator. In addition, if $\left|\operatorname{sep}\left(v_{i}\right)\right|>\left|\operatorname{part} 1\left(v_{j}\right)\right|$, the new separator is smaller then the old one. Clearly, the new configuration should also result into a smaller value of the cost function, otherwise the balance of the blocks could become disturbed. The complete pseudo code of the border-improving method using the Dulmage-Mendelsohn decomposition can be found in the appendix, as well as an example on which the algorithm is applied.

6.5.3 MANDAND(NEST)

The $i m p Z \& S$-algorithm appears to be a simple version of the $A \& L$-algorithm. However, the blocks are merged with a local search algorithm, and there is no room for improvement after a bad (local) choice. Therefore the implemented nested dissection for the MADAND-software is the algorithm of Ashcraft and Liu, which we will refer to as MADAND(NEST).

Chapter 7

Parallel Solution methods

A Nested Dissection ordering or Multisection ordering gives a structured matrix. In this chapter we discuss how we can benefit from these structures.

7.1 Substitution in an iteration step

For the (incomplete) Cholesky decomposition we can solve our system with the use of Forward-Backward substitution. If we have a structured matrix we are able to do this step on multiple processors. If the matrix G has a block bordered form, a result of a Multisection ordering, parallel processing is possible. The matrix below has a block bordered structure

$$
\hat{G}=\left(\begin{array}{ccccc}
G_{11} & 0 & \cdots & 0 & G_{1 m} \tag{7.1}\\
0 & G_{22} & \ddots & \vdots & G_{2 m} \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \cdots & 0 & G_{m-1 m-1} & \vdots \\
G_{m 1} & G_{m 2} & \cdots & \cdots & G_{m m}
\end{array}\right) .
$$

One method of solving this system is using the Schur complement S with

$$
\begin{equation*}
S=G_{m m}-\sum_{i=1}^{m-1} G_{m i} G_{i i}^{-1} G_{i m} \tag{7.2}
\end{equation*}
$$

Using the Schur complement we can construct algorithm 16. With a little adjustment, the Schur complement can also be used for matrices with a nested structure. For two levels, this structure looks like

$$
\hat{G}=\left(\begin{array}{ccccccc}
G_{11} & 0 & G_{121} & 0 & 0 & 0 & G_{15} \tag{7.3}\\
0 & G_{22} & G_{122} & 0 & 0 & 0 & G_{25} \\
G_{112} & G_{221} & G_{12} & 0 & 0 & 0 & G_{125} \\
0 & 0 & 0 & G_{33} & 0 & G_{343} & G_{35} \\
0 & 0 & 0 & 0 & G_{44} & G_{344} & G_{45} \\
0 & 0 & 0 & G_{334} & G_{434} & G_{34} & G_{345} \\
G_{51} & G_{52} & G_{512} & G_{53} & G_{54} & G_{534} & G_{55}
\end{array}\right) .
$$

We can calculate the Schur complement of the separate blocks 1-2 and 3-4 and then use the results to calculate the Schur complement of the entire system. Clearly, this is possible for multiple levels.

```
Algorithm 16 Parallel Forward and Backward substitution
    for \(i=1, \ldots, m-1\) do
        \(G_{i i}=L_{i i} D_{i i} L_{i i}^{T}\)
        \(L_{m i}=G_{m i}\left(L_{i i}^{T}\right)^{-1} D_{i i}^{-1}\)
        \(y_{i}=L_{i i}^{-1} b_{i}\)
        \(S^{(i)}=L_{m i} D_{i i} L_{m i}^{T}\)
        \(z^{(i)}=L_{m i} y_{i}\)
    end for
    \(S=G_{m m}-\sum_{i=1}^{m-1} S^{(i)}\)
    \(y_{m}=b_{m}-\sum_{i=1}^{m-1} z^{(i)}\)
    Solve \(S x_{m}=y_{m}\)
    for \(i=1, \ldots, m-1\) do
        \(x_{i}=\left(L_{i i}^{T}\right)^{-1} D_{i i}^{-1}\left(y_{i}-D_{i i} L_{m i}^{T} x_{m}\right)\)
    end for
```


7.2 Topology of the preconditioner matrix

One of the additional research questions was to think of a manner to recalculate L fast if some nonzero values of G are changed in other nonzero values. Almost all ordering algorithms are based on the topology of the matrix, so changing branch values will not change the order of the nodes. This is important, because we only have to determine the order once, this order is still valid after adjustments of branch-values.

In the construction of L we already noticed that it goes in a forward fashion: Node v_{1} adjusts matrix entries for nodes v_{2} to v_{n}, Node v_{2} adjusts matrix entries for nodes v_{3} to v_{n} etc. Assume we have calculated L and D and say we adjust branches $e_{1} \ldots e_{m}$ connecting nodes $v_{1} \ldots v_{k}$ for which v_{1} has the smallest label. Then for all nodes labelled before v_{i} nothing changes, so the decomposition of the nodes before v_{i} remains the same. This way we only need a new decomposition of the matrix entries starting at v_{1}.

Figure 7.1: Small graph of the example in Section 7.1.

For a matrix that has a nested form, there is more room for improvement. Assume we adjust branch e_{1} connecting nodes v_{1} and v_{2}, v_{1} labelled first. Then v_{1} and v_{2} are in the same block, or v_{2} or both nodes are in a separator of the block. So we must make a new decomposition of the block v_{1} is in, starting at v_{1}, and of all separators of this block. This is probably less work than in the normal case. As an example, look at Figure 7.1. The T matrix, with

$$
\begin{equation*}
T=L+D-I \tag{7.4}
\end{equation*}
$$

ordered with a minimum degree ordering of this graph is given below.

$$
\left(\begin{array}{cccccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.6 & 5.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.5 & -0.4 & -1 & 11.5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -0.43478 & 17.826 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -0.52174 & -0.53902 & 13.69 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.44878 & -0.97239 & 21.465 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -0.46587 & 17.341 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -0.51246 & -0.29551 & 16.849 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -0.69199 & -0.98205 & 0.44695
\end{array}\right) .
$$

If the branch between node v_{4} and v_{5} would be changed in 40 the T matrix becomes

$$
\left(\begin{array}{cccccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.6 & 5.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.5 & -0.4 & -1 & 46.5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -0.86022 & 20.591 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -0.12903 & -0.5906 & 14.043 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.38851 & -0.97732 & 21.478 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -0.46558 & 17.344 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -0.51214 & -0.29528 & 16.854 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -0.69188 & -0.98156 & 0.45695
\end{array}\right) .
$$

So, in column the columns v_{1} to v_{3} nothing changes, so we can skip 30% of the factorization. Now assume we use a new (nested) ordering ($1,2,3,4,10,9,8,7,6,5$). The T matrix is (with the original edges)

$$
\left(\begin{array}{cccccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.6 & 5.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.5 & -0.4 & -1 & 11.5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 25 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.52 & 17.24 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.48 & -0.36195 & 13.981 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -0.63805 & -1 & 17 & 0 & 0 \\
0 & 0 & 0 & -0.52174 & 0 & 0 & 0 & -0.52941 & 14.105 & 0 \\
0 & 0 & 0 & -0.43478 & 0 & 0 & 0 & -0.47059 & -0.9815 & 0.47344
\end{array}\right) .
$$

Again, if the (original) branch between v_{4} and v_{5} would be changed in 40 the T matrix becomes

$$
\left(\begin{array}{cccccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.6 & 5.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.5 & -0.4 & -1 & 46.5 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 25 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.52 & 17.24 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.48 & -0.36195 & 13.981 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -0.63805 & -1 & 17 & 0 & 0 \\
0 & 0 & 0 & -0.12903 & 0 & 0 & 0 & -0.52941 & 16.461 & 0 \\
0 & 0 & 0 & -0.86022 & 0 & 0 & 0 & -0.47059 & -0.99609 & 0.49437
\end{array}\right) .
$$

Now only columns 4, 9 and 10 change, so we can skip 70% of the factorization. Clearly, this is only relevant if the preconditioner matrix is stored.

7.3 Efficient Dissection Verification

A Nested Dissection ordering algorithm can be rather complicated, so an efficient method to test its validity can be very useful. Assume a certain nested dissection is given, and assume all nodes have a certain partition, generated by the tree structure given in Figure 7.2.

Figure 7.2: Tree structure of the partition numbers.

So the partitions have the following nested structure:

- $M+1$ is the number of partitions, the first partition is 0 .
- For the first $(M / 2-1)$ partitions holds: partition k has two leaves, partition $2 * k+1$ and partition $2 * k+2$.
- Partitions $M / 2$ to M have no leaves.
- A subtree τ_{k} is the union of partition k and the subtrees of partitions $2 * k+1$ and $2 * k+2$ if $k<M / 2$, and the union of partition k and its leaves if $k \geq M / 2$.

We traverse the tree depth-first, every time considering the left branch before the right one.

Theorem 7.3.1. If the partitions of a nested structure are labelled as in Figure 7.2 and traversed as described above, a dissection is valid if and only if during the constrained ordering for every eliminated node v_{p} holds that

$$
\begin{equation*}
\operatorname{part}\left(v_{p}\right) \leq \operatorname{part}\left(v_{j}\right), \forall v_{j} \in \mathcal{A}_{p} \tag{7.5}
\end{equation*}
$$

Proof. \Longrightarrow is trivial. \Longleftarrow Consider the case that for every eliminated node $v_{p} 7.5$ holds. Assume that the dissection is not valid. Then there is a separator for which the two subtrees (τ_{1} and $\tau_{2}, \tau_{1}<\tau_{2}$) are separated. Say node v_{1} is part of subtree τ_{1} and node v_{2} is part of subtree τ_{2}, and take v_{1} and v_{2} connected. If v_{1} is part of partition τ_{1} we have a contradiction. So assume v_{1} is part of partition τ_{3} with $\tau_{3}>\tau_{1}$. But then if all partitions in the subtree τ_{1} except τ_{1} itself are eliminated, there is a node v_{3} with partition τ_{1} such that it is connected with v_{2}, because the connection between v_{1} and v_{2} can not be removed, only passed on to another node. So we have a contradiction. This concludes the proof.

With the use of this theorem we can simply check - during the local ordering - whether the dissection is valid or not.

Chapter 8

Results

There are two main steps of the solving method that we can manipulate and are therefore suitable for testing:

- Ordering, matrix decomposition, and fill-in reduction.
- Pre-Conjugate Gradient iterations and forward-backward substitution.

The analyzed testcases used are described in Tables 8.1 and 8.2.

Table 8.1: Description of all testcases processed with MATLAB.

Testcase	N	d
testcase1	1,858	4.64
testcase2	1,964	4.61
testcase3	10,574	5.00

Table 8.2: Description of all testcases processed with C++.

Testcase	N	\bar{d}	N / H	\bar{d}_{H}
testcase4	291,306	3.40	0.32	5.54
testcase5	$14,503,944$	2.78	0.28	5.20
testcase6a	$3,349,110$	3.28	0.28	5.58
testcase6b	$2,964,285$	3.31	0.25	5.72
testcase7a	$3,007,889$	3.45	0.42	4.72
testcase7b	$3,485,738$	3.71	0.40	5.28

We have N to be the number of nodes, and \bar{d} is the average degree. Before the matrix is generated we do a certain preprocessing step. All nodes with degree 3 or less are eliminated with an elimination graph using the local ordering. Note that elimination graphs are no worse than quotient graphs for nodes of degree three or lower. These low degree nodes are solved using a direct method. All other nodes go in a matrix which is solved using the PCG-method. Testcase 1 to testcase 3 are already pre-processed, the others are not, so for each case the approximate size of the matrix is given, since this depends on the ordering method. The approximate size of the matrix is H, and \bar{d}_{H} is the average degree of the nodes in this matrix. However, the difference in sizes of the matrix between MINOLD and MADAND are less than 0.5 percent for any testcase.

Other notations that will be used often:

- MNZ is the number of nonzero elements of the Cholesky factor.
- WLNZ is the number of nonzero elements the busiest processor has to process. This is explained in section 8.1.2.
- PART is the current partition.
- NOP is the percentage nodes in the current partition.
- NZP is the percentage nonzero elements in the current part of the rows of Cholesky factor.
- OT is the ordering time.
- CT is the computing time.
- RT is the overall runtime.

8.1 Ordering, Matrix decomposition

8.1.1 One processor

The MADAND local ordering method, discussed in section 5.2.10, is implemented in $\mathrm{C}++$ and the results are shown below.

Table 8.3: MNZ for several orderings.

Ordering	testcase1	testcase2	testcase3
Random Ordering	20,231	21,982	287,211
MINOLD	15,363	14,148	237,278
Matlab AMD	11,725	12,215	144,281
METIS oemetis	13,179	14,048	161,219
MADAND(AMD)	12,058	12,647	146,200
MADAND(AMD) (mass elim.)	11,735	12,221	145,611
MADAND(AMF) (mass elim.)	11,721	13,105	144,588
MADAND(AMMF) (mass elim.)	11,846	13,090	162,267
MADAND(AMIND) (mass elim.)	14,219	18,154	145,611
MADAND(AMD) with DT-pred. (1e-4)	11,891	12,473	147,124
MADAND(AMD) with DT-pred. (1e-2)	16,951	15,715	245,832
MADAND(AMD) with DT-pred. (1e-4) (mass e.)	11,589	12,215	145,823

For the random ordering the mean of three tests is taken. The implemented versions of MADAND(AMF) give similar results as Matlab's AMD-ordering. The ordering of METIS is an improvement compared to the old ordering, but it appears that local orderings give Cholesky factors with lower fill-in then global orderings. The results of the AMMF and AMIND variants seem to be highly matrix dependant. The drop tolerance prediction seems to work for very small values of η. However, because this gives a edge reduction of less then 4 percent it will probably not have a great influence on the performance of the ordering software.

Since the test-results of MADAND(AMF) and MADAND(AMD) are similar, and MADAND(AMF) is a bit more complex, we choose to use MADAND(AMD) in the Magma-software. In Table 8.4 the ordering time, compute time and total runtime of the MADAND(AMD) software is given, scaled with the results of the MINOLD ordering.

- $\operatorname{SOT}=\mathrm{OT}(\mathrm{MADAND}(\mathrm{AMD})) / \mathrm{OT}(\mathrm{MINOLD})$.
- $\mathrm{SCT}=\mathrm{CT}(\mathrm{MADAND}(\mathrm{AMD})) / \mathrm{CT}(\mathrm{MINOLD})$.
- $\operatorname{SRT}=\mathrm{RT}(\mathrm{MADAND}(\mathrm{AMD})) / \mathrm{RT}(\mathrm{MINOLD})$.
- $\operatorname{SMNZ}=$ MNZ(MADAND(AMD)) $/$ MNZ(MINOLD).

Table 8.4: Results of the MADAND(AMD) for Magma designs compared with MINOLD.

Testcase	SOT	SCT	SRT	SMNZ
testcase4	1.43	0.82	1.05	0.64
testcase5	1.45	0.63	0.83	0.59
testcase6a	1.59	0.41	0.59	0.38
testcase6b	1.65	0.51	0.72	0.45
testcase7a	2.01	0.76	0.86	0.66
testcase7b	1.88	0.65	0.73	0.64

An important note is that the time values may fluctuate a bit, since the tests are done on a communal server. However, compute time is significantly reduced for all testcases, and the overall runtime is smaller for the MADAND(AMD) software than for the MINOLD software for all large cases. In addition, the fill-in is approximately halved for every case.

Tie-Breaking Pre-ordering

In section 5.2.6 the tie-breaking pre-ordering was discussed. We tested three different pre-orderings for MADAND(AMD). The results are shown in Table 8.5.

Table 8.5: MNZ using MANDAND(AMD) for different pre-orderings.

Testcase	MINOLD	Random ordering	Matlab RCM
testcase1	12,058	12,600	12,092
testcase2	12,647	12,889	12,790

These results show that pre-ordering has some influence on the amount of fill-in. However, none of the orderings is significant better than any other, so we chose not to implement a special pre-ordering for in the Magma-software.

8.1.2 Multiple Processors

In this section we test the MADAND (CON) software for several variable configurations and up to four levels of dissection, which means that we ordered the matrix so we can solve it with $2,4,8$ or 16 processors.

In the previous subsection we already saw that a nested dissection method like METIS gave considerably more fill-in than the local method AMD. This also holds for MADAND(CON), as shown in Figure 8.1. This is of course only one case, but the results later on in this section will support the fact that the number op partitions should be minimized.

Figure 8.1: MNZ of a MADAND(CON) test for several different amount of processors.

The tested version of MADAND(CON) includes:

- Improved border (with use of the DM-decomposition).
- Constrained AMD.
- No mass elimination.

The parameters for the tests are described below:

- Cost function: we tested three different cost functions
- cost $1=|G|\left(1+\frac{\max (|B|,|W|)}{\min (|B|,|W|)}\right)$, the original cost function of A and L .
- $\operatorname{cost} 2=|G|+\max (|B|,|W|)$, to secure the balance.
- $\bmod \operatorname{cost} 1=\operatorname{cost} 1$ if $\frac{\max (|B|,|W|)}{\min (|B|,|W|)}<\zeta$, and ∞ otherwise. For these tests $\zeta=1.15$.
- Block creation variables: the values $d_{\max }, \omega_{\min }$ and $\omega_{\max }$ should be chosen properly, since they have influence on the performance of our implementation. Experience shows that the value of $d_{\max }$ should imply that approximately 10% of the nodes are put in the border, and that $\frac{\omega_{\max }}{\omega_{\min }}=2$ is the best choice to get blocks of similar sizes.
- Block creation: if a block is full and a new block is started, we can choose the first available node with the lowest index, or we can choose the an available node with a random index. Similarly, if we grow the blocks, we could start with low indexes first, or randomize. This is a form of greedy selection in contrast to random selection. We expect that random selection gives more balanced blocks and thus better results.

Table 8.6 shows the configurations for the 18 tests.

Table 8.6: Test configurations for testcase3.

7-40-20	greedy	random	7-80-40	greedy	random	7-60-30	greedy	random
cost1	test 1	test 4	cost1	test 7	test 10	cost1	test 13	test 16
cost2	test 2	test 5	cost2	test 8	test 11	cost2	test 14	test 17
modcost 1	test 3	test 6	modcost 1	test 9	test 12	modcost 1	test 15	test 18

For each test there are two interesting output variables. The first one is the MNZ, because this is the number of elements that should be stored in the memory. The second one WLNZ, the amount of nonzero elements the busiest processor is handling, since this workload should give an indication how long the forward-backward substitution of the PCG-method will take. The results are shown in the tables en graphs below.

Table 8.7: MNZ for the MADAND(CON)-tests of testcase3

Ordering	2 proc.	4 proc.	8 proc.	16 proc.
MINOLD	237,278	237,278	237,278	237,278
Matlab AMD	144,281	144,281	144,281	144,281
test 1	146,574	154,098	156,713	160,836
test 2	146,681	155,662	159,516	164,572
test 3	146,843	154,883	157,527	160,482
test 4	146,574	153,249	156,326	158,427
test 5	146,433	154,990	160,404	166,097
test 6	146,485	152,870	156,973	158,490
test 7	146,396	152,431	157,076	unbalanced
test 8	146,466	154,745	159,710	164,812
test 9	146,396	155,278	159,387	no feasible cost
test 10	146,396	151,474	157,027	unbalanced
test 11	153,966	157,863	163,831	168,893
test 12	146,396	152,860	158,069	no feasible cost
test 13	146,652	155,377	157,433	unbalanced
test 14	154,349	156,576	160,798	165,680
test 15	151,482	157,179	161,000	163,894
test 16	146,680	153,182	155,576	157,062
test 17	153,431	155,949	161,560	167,513
test 18	146,680	153,182	155,576	158,514

Table 8.8: WLNZ for the MADAND(CON)-tests of testcase3

Ordering	2 proc.	4 proc.	8 proc.	16 proc.
MINOLD	237,278	237,278	237,278	237,278
Matlab AMD	144,281	144,281	144,281	144,281
test 1	84,268	52,363	38,156	31,106
test 2	76,410	49,701	38,312	33,787
test 3	76,541	49,475	36,011	33,151
test 4	84,268	52,162	38,327	31,107
test 5	76,334	50,293	36,884	33,398
test 6	75,733	49,027	34,334	29,104
test 7	78,178	52,914	38,038	unbalanced
test 8	76,122	49,919	38,103	34,076
test 9	78,178	49,740	37,709	no feasible cost
test 10	78,178	53,266	37,148	unbalanced
test 11	84,343	54,029	42,163	38,010
test 12	78,178	49,586	37,644	no feasible cost
test 13	75,523	58,943	40,731	unbalanced
test 14	84,140	52,697	41,649	37,713
test 15	82,194	53,738	38,534	34,204
test 16	75,630	50,877	35,879	30,055
test 17	83,203	52,114	42,309	39,390
test 18	75,630	50,877	35,879	29,961

Figure 8.2: The MNZ for the 18 MADAND(CON) tests for $1,2,4,8$ and 16 processors in comparison with METIS.

Figure 8.3: The WLNZ for the 18 MADAND(CON) tests for $1,2,4,8$ and 16 processors.

Note that the values of MNZ in Figure 8.2 start at approximately 140,000.
There are two possible problems with the dissection.

- The dissection is unbalanced. This means that a partition of level k is larger than a partition of level $k-1$.
- There is no feasible cost. For modcost 1 there is a constraint for the balance between the two partitions. If the algorithm finds no configuration for which these constraints are satisfied it stops.

The results show that the number of processors has the greatest influence on the WLNZ, and in almost every case 16 processors is the best choice. Cost1 had difficulties with balance, and cost2 gives quite large separators. Modcost1 is a good alternative. However, we should think of a way to deal with cases for which there is no feasible cost. We could, for example, dissect that certain partition again with a looser bound. We also see that random block growing works best for cost1 and modcost1, and that greedy growing works best for cost2.

A very interesting observation is the minor increase in memory needed for 2 processors and the major increase for 4 processors This could be explained with the following conjecture: at the end of the minimum degree algorithm there are few nodes left which all form one clique. In a nested dissection algorithm with 2 partitions the separator consists also of few nodes that form a clique. But if there are 4 partitions, the 2 non-main separators form also a clique, and they are connected to all nodes in the main separator. So there will be an increasing amount of fill-in in the rows of the main separator.

We did also some tests of the MADAND(CON)-software for large Magma designs. For contest1, the chosen parameters are $d_{\max }=10, \omega_{\max }=N / 400, \omega_{\min }=N / 800$ and modcost 1 with $\zeta=1.3$. For contest2, the chosen parameters are $d_{\max }=10, \omega_{\max }=N / 200, \omega_{\min }=N / 400$ and modcost1 with $\zeta=1.3$. The implemented block growth goes in a greedy fashion. The depth of the dissection is 3 , so there are $1+2+4=7$ partitions. We introduce:

- $A M N Z=M N Z(M A D A N D(C O N)) / M N Z(M A D A N D(A M D))$.
- $A W L N Z=W L N Z(M A N D A N D(C O N)) /$ MNZ(MADAND(AMD)).
- $\mathrm{AOT}=\mathrm{OT}(\mathrm{MANDAND}(\mathrm{CON})) / \mathrm{OT}(\operatorname{MADAND}(\mathrm{AMD}))$.

Table 8.9: The MADAND(CON)-tests contest1 and contest2 for testcase5.

AMNZ	AWLNZ	AOT
1.00	0.30	1.15
PART	NOP	NZP
3	22.29	21.81
4	25.44	24.99
1	0.09	0.66
5	22.85	22.75
6	29.20	28.71
2	0.07	0.55
0	0.06	0.54

AMNZ	AWLNZ	AOT
1.00	0.30	1.10
PART	NOP	NZP
3	29.23	28.94
4	23.22	22.81
1	0.07	0.62
5	23.57	23.44
6	23.75	22.90
2	0.08	0.68
0	0.07	0.61

Table 8.10: The MADAND(CON)-tests contest1 and contest2 for testcase6a.

AMNZ	AWLNZ	AOT
1.01	0.39	1.40
PART	NOP	NZP
3	24.75	14.04
4	19.05	12.61
1	0.28	2.26
5	24.23	32.10
6	31.43	35.70
2	0.05	0.82
0	0.19	2.46

AMNZ	AWLNZ	AOT
1.01	0.36	1.19
PART	NOP	NZP
3	20.59	12.92
4	23.44	27.41
1	0.06	0.83
5	25.66	31.66
6	29.86	22.27
2	0.15	1.76
0	0.24	3.14

Table 8.11: The MADAND(CON)-tests contest1 and contest2 for testcase6b.

AMNZ	AWLNZ	AOT
1.01	0.31	1.16
PART	NOP	NZP
3	28.01	26.90
4	21.61	20.41
1	0.25	2.29
5	25.59	24.10
6	24.24	22.36
2	0.17	1.97
0	0.14	1.97

AMNZ	AWLNZ	AOT
1.01	0.31	1.11
PART	NOP	NZP
3	26.51	26.77
4	23.36	19.65
1	0.21	2.18
5	24.08	22.29
6	25.59	26.07
2	0.10	1.10
0	0.15	1.94

Table 8.12: The MADAND(CON)-tests contest1 and contest2 for testcase7a.

AMNZ	AWLNZ	AOT
1.01	0.30	1.22
PART	NOP	NZP
3	27.52	25.74
4	23.00	21.91
1	0.18	1.64
5	24.43	23.08
6	24.57	24.50
2	0.08	0.80
0	0.23	2.32

AMNZ	AWLNZ	AOT
1.01	0.31	1.13
PART	NOP	NZP
3	24.88	23.18
4	25.41	23.12
1	0.19	1.69
5	27.76	28.08
6	21.43	20.69
2	0.12	1.14
0	0.21	2.11

Table 8.13: The MADAND(CON)-tests contest1 and contest2 for testcase7b.

AMNZ	AWLNZ	AOT
1.02	0.30	1.24
PART	NOP	NZP
3	27.27	25.33
4	22.20	21.33
1	0.25	2.11
5	25.18	24.17
6	24.67	22.90
2	0.17	1.54
0	0.27	2.62

AMNZ	AWLNZ	AOT
1.01	0.32	1.10
PART	NOP	NZP
3	24.06	22.40
4	28.40	27.64
1	0.24	2.20
5	24.05	23.06
6	22.92	21.34
2	0.13	1.32
0	0.20	2.03

These results show that for large matrices MADAND(CON) generates an ordering that gives almost the same MNZ but a very small WLNZ compared to MADAND(AMD). Since the ordering time is often a small part of the total runtime (see also Table 8.4) and does not increase much for the MADAND(CON) case, it is very likely that using MADAND(CON) with a parallel solver will reduce the overall runtime substantially. The results for testcase6a are remarkable, partitions 3 and 5 have the same magnitude, but partition 5 has more than two times as much nonzero elements. So apparently the number of nodes in a partition is not always a good measure for the amount of fill-in.

8.2 Pre-Conjugate Gradient iterations

The results of ordering a matrix can be great considering fill-in, but what does ordering do with the number of iterations of the preconditioned conjugate gradient method?

In the table below, Table 8.14 we show for testcase 3 that the number of iteration steps corresponds with the level of fill reducing of the ordering method (however, certainly not with the total amount of fill-in). The less fill-in, the less iteration steps.

Table 8.14: The number of iteration steps of the PCG-method for testcase3 for different values of ε and different orderings.

Ordering	$\varepsilon=0.01$	$\varepsilon=0.1$	$\varepsilon=1$
MINOLD	5	7	11
Matlab AMD	4	6	10
METIS	4	6	11

As discussed in chapter 3 we can instead of choosing for equal rowsums of G and K also choose for equal diagonals of G and K. We tested Algorithm 12 with $\varepsilon=0.1$ for three different ordering methods with $\vartheta=0$ and $\vartheta=1$. The results are shown in Figure 8.6.

Figure 8.4: Convergence speed of the PCG-method for testcase3 for several methods.

The most interesting result is the difference in the first iteration step between $\vartheta=0$ and $\vartheta=1$. For all orderings, the results for $\vartheta=1$ are significantly better than for $\vartheta=0$ in the first step. After that, the fill-in of the matrix determines the convergence speed. So using $\vartheta=1$ for $\varepsilon=0.1$ can save an iteration step, which is about 20 percent.

We looked at the number of iteration steps for large Magma-designs and the results are shown in Table 8.15. The methods that are compared are MINOLD, MADAND(AMD) and MADAND(AMD) with $\vartheta=1$.

Table 8.15: Number of iteration steps for different methods.

Testcase	MINOLD	MADAND, $\vartheta=0$	MADAND, $\vartheta=1$
testcase5	21	17	10
testcase6a	65	37	19
testcase6b	56	35	18
testcase7a	91	82	46

Figure 8.5: Convergence speed of the PCG-method for testcase5 for several methods

Figure 8.6: Convergence speed of the PCG-method for testcase6a for several methods

The value of ε has influence on the amount of fill-in and on the computing time. This is shown in Table 8.16.

- $\operatorname{TCT}=\mathrm{CT}(\operatorname{MADAND}(\operatorname{AMD}, \vartheta=0)) / \mathrm{CT}(\operatorname{MADAND}(\operatorname{AMD}, \vartheta=1))$
- $\operatorname{TMNZ}=\operatorname{MNZ}(\operatorname{MADAND}(\operatorname{AMD}, \vartheta=0)) / \operatorname{MNZ}(\operatorname{MADAND}(\operatorname{AMD}, \vartheta=1))$

Table 8.16: Results for MADAND(AMD) with $\vartheta=1$, scaled with the results of MADAND(AMD) with $\vartheta=0$

Testcase	TCT	TMNZ
testcase5	0.86	1.01
testcase6a	0.89	1.02
testcase6b	0.91	1.02
testcase7a	0.81	1.05

These results show that choosing $\vartheta=1$ increases the amount of fill-in slightly, while the compute time of the solver is reduced considerably. Therefore taking $\vartheta=1$ is a good addition for the MADAND-software.

Chapter 9

Conclusions and Recommendations

In this thesis we present the package MADAND, which consists out of two parts: the local ordering method MADAND (AMD) and the constrained ordering method MADAND(CON). MANDAND successfully improves the performance of the preconditioned conjugate gradient solver the company of Magma is currently using in comparison with the current ordering MINOLD. In addition, the amount of memory needed for the preconditioner matrix is reduced by 40 to 60 percent in comparison with the current ordering MINOLD.
. For general designs with an origin in circuit simulation local ordering methods appear to generate matrices who's Cholesky factor has less nonzero elements than with the use of global ordering methods. For non-parallel solving the MADAND(AMD) gives both little fill-in and fast ordering. In addition we have shown that equalizing the diagonal values of the original matrix and the preconditioner matrix can reduce the number of iteration steps considerably.

Global ordering methods can be used to solve a linear system parallel. The MADAND(CON)-software generates a nested dissection ordering for a small price considering fill-in and ordering time. However, the theory shows that using a parallel solver and the MADAND(CON)-software will lead to a faster runtime in comparison with MADAND(AMD).

The calculation time of the solver is reduced with the use of MADAND, but the ordering time may be done faster. First of all, the local ordering MADAND(AMD) can be done in parallel. If the partitions are found using the Nested Dissection ordering, all leaves can be processed independently. Since the AMD algorithm is the most time consuming part of the ordering, parallel ordering can reduce the total ordering time.

In addition, coarsening will lead to a smaller graph, which reduces the ordering time, since there are less nodes to eliminate and less edges. However, this coarsening is not trivial, since the AMD algorithm is local, and coarsening might interfere with this local search. Therefore a coarsening based on a local ordering [28] may result into both little fill-in and fast ordering.

Bibliography

[1] Amestoy, P., Davis, T., Duff, I., An approximate minimum degree ordering algorithm, SIAM J. Matrix anal. appl., Vol 17, no 4, pp. 886-905, 1996.
[2] Anis, M., Elmasry, M., Multi-Threshold CMOS Digital Circuits, Managing Leakage Power, Kluwer, Norwell, 2003.
[3] Ashcraft, C., Liu, J.W.H., Using Domain Decomposition to find Graph Bisectors, BIT, vol 37. pp. 506-534, 1997.
[4] Ashcraft, C., Liu, J.W.H., Applications of the Dulmage-Mendelsohn Decomposition and Network Flow to Graph Bisection Improvement, SIAM J. Matrix anal. appl., Vol 19, no 2, pp. 325-354, 1998.
[5] Barret, R., Berry, M., Chan, F., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philidelphia, 1994.
[6] Ciarlet, P.G., Introduction to Numerical Linear Algebra and Optimisation, Cambidge University Press, Cambridge, 1989.
[7] Duff, I.S., Van der Vorst, H.A., Developments and Trends in the Parallel Solution of Linear Systems, j. of Parallel Computing, vol 25, no 13-14, pp. 1931-1970, 1999.
[8] Garey, M., Johnson, D. Stockmeyer, L., Some Simplified NP-complete Graph Problems, Theoratical Computer Science, Vol. 1, pp. 237-267, 1976.
[9] George, A., Liu, W.L., Computer Solution of Large Sparse Positive Definite Systems, Prentice Hall, Englewood Cliffs, N.J., 1981.
[10] George, A., Liu, W.L., The evolution of the minimum degree ordering algorithm SIAM Rev., 31, pp. 1-19, 1989.
[11] George, A., McIntyre, D., On the application of the minimum degree algorithm to finite element systems, SINUM, vol 15, pp. 90-112, 1978.
[12] Golub, G.H., Van Loan, C.F., Matrix Computations, Johns Hopkins University Press, London, 1996.
[13] Gustafsson, I., A class of 1st order factorization methods, BIT, vol. 18, pp. 142-156, 1978.
[14] Heggernes, P., Eisenstat, S.C., Kumfert, G., Pothen, A., The Computational Complexity of the Minimum Degree Algorithm, Proceedings of 14th Norwegian Computer Science Conference, University of Troms, Norway, 2001.
[15] Hendrikson, B., Rothberg, E., The CHACO User Guide. Version 2.0, Technical Report SAND960868J, Sandia National Laboratories, Albuquerque, 1996.
[16] Houben, S.H.M.J., Algorithms for Periodic Steady State Analysis on Electric Circuits, Philips Electronics, Eindhoven, 1999.
[17] Houben, S.H.M.J., Circuits in Motion: The numerical simulation of electrical oscillators, Eindhoven University of Technology, Eindhoven, 2003.
[18] Karypis, G., Kumar, V., A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, Technical Report TR 95-035, Department of Computer Science, University of Minnesota, 1995.
[19] Kernighan, B.W., Lin, S., An efficient heuristic procedure for partitioning graphs, Bell System Technical Journal, vol. 49, pp 291-307, 1970.
[20] Liu, W.L., The minimum degree ordering with constraints, SIAM J. Sci. Stat. Comp., Vol. 10, No. 6, pp. 1136-1145, 1989.
[21] Magma design automation, inc., Enabling Low Power Design Within an RTL-to-GDSII Implementation Flow, white paper, 2003.
[22] Mattheij, R.M.M., Numerieke lineaire algebra, Syllabus, Eindhoven University of Technology, Eindhoven.
[23] Meijerink, J.A., van der Vorst, H.A., An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, ACC, Utrecht, 1976.
[24] Ogrodzki, J., Circuit Simulation Methods and Algorithms, CRC Press Inc, Boca Raton, Florida, 1994.
[25] Rothberg, R., Eisenstat, C., Node selection strategies for bottom-up sparse matrix ordering, SIAM J. Matrix anal. appl. Vol 19, no. 3, pp 682-695, 1998.
[26] Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Co., Boston, MA, 1996.
[27] Schilders, W.H.A., Numerical methods in electromagnetics, Eindhoven University of Technology, Eindhoven, 2004.
[28] Schulze, J., Towards a Tighter Coupling of Bottem-Up and Top-Down Sparse Matrix Ordering Methods, BIT, vol 41, pp 800-841, 2001.
[29] Varga, R.S., Matrix Iterative Analysis, Prentice-Hall Inc. New Jersey, 1962.
[30] Van der Vorst, H.A., High performance preconditioning, SIAM J. Sci. Stat. Comp. Vol 10, No 6, pp. 1174-1185, 1989.
[31] Zecevic, A.I., Siljak, D.D., Balanced Decompositions of Sparse Systems for Multilevel Parallel Processing, IEEE, Trans on circuits and systems 41, 1994.
[32] Zecevic, A.I., Siljak, D.D., a Nested Decomposition Algorithm for Parallel Computations of very large Sparse Systems, MPE, volume 1, pp 41-57, 1995.

Index

aggressive element absorption, 34
approximate degree, 36
Approximate Minimum Deficiency ordering, 37
Approximate Minimum Degree ordering, 28, 36
Approximate Minimum Increase in Neighbour Degree ordering, 38
Approximate Minimum Local Fill ordering, 38
Approximate Minimum Mean Local Fill ordering, 38
Ashcraft and Liu, 43
border, 40
branch, 9
branch equations, 9
CHACO, 40
Cholesky decomposition, 18
circuit simulation, 9
clique, 30
coarsening, 42
Conjugate Gradient method, 14, 17
connected graph, 13
constrained ordering, 42
current, 9
cutset, 9
diagonally dominant, 13
dissection verification, 48
domain decomposition, 43
drop tolerance, 24
drop tolerance prediction, 38
Dulmage-Mendelsohn decomposition, 44
Dynamic Power Dissipation, 6
element, 32
element absorption, 34
elimination graph, 28, 29
external degree, 35
fill-in, 27
global ordering, 29, 40
graph, 13
graph compression, 33
incomplete Cholesky factorization, 22
incomplete degree update, 34
indistinguishable node, 33
Kernighan-Lin algorithm, 42
Kirchhoff's Current Law, 9, 10
Kirchhoff's Voltage Law, 9, 11
L-matrix, 13
local ordering, 29, 31
loop, 9
M-matrix, 13
MADAND(AMD), 37, 51
MADAND(CON), 42, 52
MADAND(NEST), 44
mass elimination, 32
matching, 42
maximal matching, 42
METIS, 28, 40
Minimum Degree ordering, 31
Minimum Fill ordering, 31
Mininmum Degree ordering, 27
MINOLD, 28
MNZ, 51
multiple elimination, 35
Multiple Minimum Degree ordering, 36
Multisection ordering, 40, 41, 45
Nested Dissection ordering, 27, 40, 43, 45, 48
Nodal Analysis, 10
nodal incidence matrix, 10
node, 9
Ohm's Law, 9
ordering, 26, 27
outmatched nodes, 34
parallel computing, 40
parallel solving, 45
positive definite, 12
positive semi-definite, 12
Preconditioned Conjugate Gradient method, 21
preconditioning, 21
quotient graph, 32
random matching, 42
random ordering, 35
reducible, 13
redundant edges, 34
Reverse Cuthill-McGee ordering, 28
Reverse Cuthill-McKee, 38
Reversed Cuthill-McKee ordering, 35
Schur complement, 45
separator, 40
Static Power Dissipation, 7
Steepest Descent method, 14, 15
subtree, 48
supernode, $32,33,35$
symmetric, 12
tie-breaking pre-ordering, 35
topological equations, 9
voltage difference, 9
voltage drop, 7
WLNZ, 51
Zecevic and Siljak, 41, 43

Appendix A

MADAND(NEST) Example

Consider the example in Figure A.1. The left figure shows a graph of 26 nodes. We choose the parameters $d_{\max }=5, \omega_{\max }=3, \omega_{\min }=2$. For this example we use cost $_{1}$ as the cost function.

Figure A.1: MADAND(NEST) Example, Figure A.1.1 (left) and Figure A.1.2 (right).

Since $d_{\max }=5$, all nodes with degree 5 or higher go in the border, so $\Psi=\left\{v_{7}, v_{8}, v_{11}, v_{12}, v_{18}, v_{19}\right\}$. Nodes in the border are represented with a large circle and a dot inside. The next phase is to construct blocks in a breath-first way. So put node v_{1} in block b_{1}. The Reach becomes $\left\{v_{2}, v_{6}\right\}$. Now put node v_{2} in b_{1}, the Reach becomes $\left\{v_{6}, v_{3}\right\}$, and put node v_{6} in b_{1}, the Reach becomes $\left\{v_{3}, v_{13}\right\}$. Since $\left|b_{1}\right|=3$, there is no room left in the block, so all nodes in the reach go into the border. This block-creation process is continued until all nodes are either in a block or in the border. This is described in Figure A.2.1. The result is of the block creation is

- $b_{1}=\left\{v_{1}, v_{2}, v_{6}\right\}$
- $b_{2}=\left\{v_{4}, v_{5}, v_{9}\right\}$
- $b_{3}=\left\{v_{14}\right\}$
- $b_{4}=\left\{v_{15}, v_{23}, v_{26}\right\}$
- $b_{5}=\left\{v_{20}, v_{21}, v_{24}\right\}$

Figure A.2: MADAND(NEST) Example, Figure A.2.1 (left) and Figure A.2.2 (right).

Now all blocks with $\left|b_{j}\right|<2$ are discarded, so block b_{3} with $b_{3}=\left\{v_{14}\right\}$ is discarded and v_{14} is added to the border. The remaining blocks can now grow. All nodes in the border with exactly one blockneighbour are considered, and the nodes with the smallest degree go first. The nodes with exactly one blockneighbour are $A=\left\{v_{7}, v_{8}, v_{13}, v_{17}, v_{18}\right\}$. Node v_{13} is picked, for it has degree 4 , which is the lowest. After node v_{13} is added to b_{1}, nodes v_{17} and v_{18} are no longer considered, and there are no new nodes with one blockneighbour. Now v_{8} is added to b_{2}, and the are no nodes left in A. The result is drawn in Figure A.2.2. The blocks are ready, but now the borderblocks must be formed. To make sure the dissection will be valid all adjacent nodes with no blockneighbours in common must be placed in the same borderblock. Node v_{11} has no blockneighbours in common with node v_{14} (since node v_{14} has no blockneighbours at all) so they are put in b_{6}. This b_{6} has no blockneighbours in common with node v_{19}, so v_{19} is added to b_{6}. This is described in Figure A.3.1.

Figure A.3: MADAND(NEST) Example, Figure A.3.1 (left) and Figure A.3.2 (right).

The next step (Figure A.3.2) is to check if nodes that are not in a block yet can be added to an existing borderblock. They can be added if they have exactly the same blockneighbours. Node 3 divides b_{1} and b_{2}, and since b_{6} is the only borderblock that exists and divides b_{1}, b_{2}, b_{4} and b_{5} this node is put in b_{7}. Then node v_{7} is also added to b_{7}. This is continued until all nodes are put in a (border)block. The configuration of the blocks is now

- $b_{1}=\left\{v_{1}, v_{2}, v_{6}, v_{13}\right\}$
- $b_{2}=\left\{v_{4}, v_{5}, v_{8}, v_{9}\right\}$
- $b_{4}=\left\{v_{15}, v_{23}, v_{26}\right\}$
- $b_{5}=\left\{v_{20}, v_{21}, v_{24}\right\}$
- $b_{6}=\left\{v_{11}, v_{14}, v_{19}\right\}$
- $b_{7}=\left\{v_{3}, v_{7}\right\}$
- $b_{8}=\left\{v_{10}, v_{12}, v_{16}\right\}$
- $b_{9}=\left\{v_{17}, v_{18}\right\}$
- $b_{10}=\left\{v_{22}, v_{25}\right\}$

Figure A.4: MADAND(NEST) Example, Figure A.4.1 (left) and Figure A.4.2 (right).

All blocks are finished, it is time to paint them. Initially, all blocks are white and mincost $=\infty$. Take b_{a}, n_{a} an block. For all blocks $b_{i}(i<6)$ that are not painted yet we calculate bordersize in the case the block would be painted, and minimum of these bordersizes is chosen. If b_{1} is painted the bordersize is 7 , which happens to be the minimum. After painting b_{1}, mincost $=33.25$, since cost $=7 *(1+15 / 4)=$ 33.25. The next block that is painted is b_{5}, for which the bordersize is maintained. Now mincost $=14.78$. See also Figure A.4. Now either b_{4} or b_{2} can be painted, but cost will be higher then mincost. So the algorithm starts again with the configuration b_{1} and b_{5} black and b_{2} and b_{4} white, but this will not give a smaller mincost. The dissection of Figure A.4.2 gave mincost and is therefore chosen.

Figure A.5: MADAND(NEST) Example, Figure A.5.1 (left) and Figure A.5.2 (right).

A given dissection might become smaller using the Dulmage-Mendelsohn decomposition. The algorithm uses the border and the nodes adjacent to the border. Since White is the largest partition we try to move the border a bit to the white side. Consider all grey nodes $G_{n}, G_{n}=\left\{v_{3}, v_{7}, v_{11}, v_{14}, v_{19}, v_{22}, v_{25}\right\}$, and all adjacent white nodes $W_{G}, W_{G}=\left\{v_{4}, v_{8}, v_{12}, v_{15}, v_{23}, v_{26}\right\}$. Note that if W_{G} becomes grey and G_{n} becomes black, the dissection is still valid but smaller. However, for balance and construction arguments we prefer to switch only a small part of G_{n} and W_{G}. Consider all nodes in G_{n} and perform a maximal matching. This gives the pairs $\left\{v_{3}, v_{4}\right\},\left\{v_{7}, v_{8}\right\},\left\{v_{11}, v_{12}\right\},\left\{v_{19}, v_{15}\right\},\left\{v_{22}, v_{23}\right\}$ and $\left\{v_{25}, v_{26}\right\}$, and node v_{14} remains unmatched. So v_{14} is added to switch ${ }_{\text {grey }}$. All adjacent white nodes (node v_{12}) are added to switch ${ }_{\text {white }}$. Then all matches to the nodes in switch $_{\text {white }}$ (node v_{11}) are added to switch ${ }_{\text {grey }}$. This procedure is repeated until switch ${ }_{w h i t e}$ does not grow anymore, so it stops with switch grey $^{=}\left\{v_{3}, v_{7}, v_{11}, v_{14}\right\}$ and switch $_{w h i t e}=\left\{v_{4}, v_{8}, v_{12}\right\}$. If switch $_{\text {grey }}$ is painted black and switch $_{w h i t e}$ is painted white the border is smaller (Figure A.5.1). However, the new cost function cost $=15$, so this smaller border is rejected. In the case the improvement is not rejected, the nodes are grow back to an existing block or form a new borderblock. The final configuration is shown in Figure A.5.2.

Appendix B

Pseudo code

B. 1 MADAND(AMD)

```
Algorithm 17 MADAND(AMD)
    \(V=\left\{v_{1}, \ldots, v_{n}\right\}, N=|V|, E=\left\{e_{1}, \ldots, e_{m}\right\}, M=|E|, W=\emptyset\)
    for \(i=1 \ldots M\) do
        Pick \(e_{i}=\left(v_{j}, v_{k}\right) . \mathcal{A}_{j}=\mathcal{A}_{j} \cup v_{k}, \mathcal{A}_{k}=\mathcal{A}_{k} \cup v_{j}\).
    end for
    for \(i=1 \ldots N\) do
        Hash function initialization \(\left(v_{i}\right)\)
        \(d_{i}=\left|\mathcal{A}_{i}\right|, w_{i}=-1\)
    end for
    while \(V \neq \emptyset\) do
        Pick \(v_{p}\) with \(\operatorname{score}\left(v_{p}\right) \leq \operatorname{score}\left(v_{j}\right), v_{j} \in V\)
        \(\mathcal{A}_{p}=\left(\mathcal{A}_{p} \cup \bigcup_{v_{j} \in \mathcal{E}_{p}} \mathcal{A}_{j}\right) \backslash v_{p}\)
        Edge manipulation \(\left(v_{p}\right)\)
        Degree update \(\left(v_{p}\right)\)
        Supernode detection
        Element creation \(\left(v_{p}\right)\)
    end while
```


B. 2 MADAND(NEST)

```
Algorithm 18 Edge manipulation \(\left(v_{p}\right)\)
    for each \(v_{j} \in \mathcal{A}_{p}\) do
        \(\mathcal{A}_{j}=\mathcal{A}_{j} \backslash v_{p}\)
        for each \(v_{k} \in \mathcal{A}_{j}\) do
            if \(v_{k} \in \mathcal{A}_{p}\) then
                \(\mathcal{A}_{j}=\mathcal{A}_{j} \backslash v_{k}, \mathcal{A}_{k}=\mathcal{A}_{k} \backslash v_{j}\)
            end if
        end for
        for each \(v_{k} \in \mathcal{E}_{j}\) do
            if \(v_{k} \in \mathcal{E}_{p}\) then
            \(\mathcal{E}_{j}=\mathcal{E}_{j} \backslash v_{k}\)
            else
                if \(w_{k}<0\) then
                    \(w_{k}=\left|\mathcal{A}_{k}\right|, W=W \cup v_{k}\)
            end if
                \(w_{k}=w_{k}-\left|v_{j}\right|\)
            end if
        end for
    end for
```

```
Algorithm 19 Degree update \(\left(v_{p}\right)\)
    bound \(1=|V|-\left|v_{p}\right|\)
    for each \(v_{j} \in \mathcal{A}_{p}\) do
        bound \(2=d_{j}+\left|\mathcal{A}_{p}\right|-\left|v_{j}\right|\), bound \(3=\left|\mathcal{A}_{p}\right|-\left|v_{j}\right|\)
        for each \(v_{k} \in \mathcal{A}_{j}\) do
            bound \(3=\) bound \(3+\left|v_{k}\right|\)
        end for
        for each \(v_{q} \in \mathcal{E}_{j}\) do
            if \(\mathcal{A}_{q} \backslash \mathcal{A}_{p}=\emptyset\) then
            \(\mathcal{E}_{k}=\mathcal{E}_{k} \backslash v_{q}, \mathcal{A}_{q}=\emptyset\)
            else
                bound \(3=\) bound \(3+w_{q}\)
            end if
        end for
        \(d_{j}=\min \left(\right.\) bound 1, bound 2, bound 3 ), score \(\left(v_{j}\right)=\operatorname{scorefunction~}\left(d_{j}\right)\)
    end for
```

```
Algorithm 20 Element creation \(\left(v_{p}\right)\)
    \(V=V \backslash v_{p}, \mathcal{E}_{p}=\emptyset\)
    for each \(v_{k} \in W\) do
        \(w_{k}=-1\)
    end for
    \(W=\emptyset\)
```

```
Algorithm 21 Hash-function initialization \(\left(v_{i}\right)\)
    hash \(_{i}=\sum \mathcal{A}_{i}+\sum \mathcal{E}_{i} \bmod N\)
    \(H\left(h a s h_{i}\right)=H\left(\right.\) hash \(\left._{i}\right) \cup v_{i}\)
```

```
Algorithm 22 Supernode detection
    for \(j=0 \ldots N-1\) do
        if \(|H(j)|>1\) then
            for each \(v_{i} \in H(j)\) do
                for each \(v_{k} \in H(j), v_{k} \neq v_{i}\) do
                    if \(\mathcal{A}_{i} \cup v_{i}==\mathcal{A}_{k} \cup v_{k}\) then
                    \(c h_{i}=c h_{i} \cup v_{k} \cup c h_{k}\)
                            \(V=V \backslash v_{k}, H(j)=H(j) \backslash v_{k}\)
                            \(\mathcal{A}_{k}=\emptyset, \mathcal{E}_{k}=\emptyset\)
                    end if
                end for
            end for
        end if
    end for
    for \(j=0 \ldots N-1\) do
        \(H(j)=\emptyset\)
    end for
```

```
Algorithm 23 Ashcraft and Liu (1997)
    Choose \(d_{\max }, \omega_{\max }, \omega_{\min }, m s b \in \mathbb{N}, \omega_{\max }>\omega_{\min }\).
    Initialize Border
    Construct Blocks
    Remove Small Blocks
    Grow Remaining Blocks
    Construct Borderblocks
    Make Dissection
```

```
Algorithm 24 Initialize Border
    \(V=\left\{v_{1}, \ldots, v_{n}\right\}, N=|V|, E=\left\{e_{1}, \ldots, e_{m}\right\}, M=|E|, \Psi=\emptyset\),
    for \(i=1 \ldots M\) do
        Pick \(e_{i}=\left(v_{j}, v_{k}\right) . \mathcal{A}_{j}=\mathcal{A}_{j} \cup v_{k}, \mathcal{A}_{k}=\mathcal{A}_{k} \cup v_{j}\).
    end for
    for \(i=1, \ldots, N\) do
        if \(\left|\mathcal{A}_{i}\right| \geq d_{\max }\) then
            \(\Psi=\Psi \cup v_{i}\)
        end if
    end for
```

```
Algorithm 25 Construct Blocks
    \(Z=V \backslash \Psi, t=-1, R=\Psi\), Reach \(=\emptyset\)
    while \(Z \neq \emptyset\) do
        Pick \(v_{\text {seed }} \in Z\)
        \(t=t+1\), New block \(b_{t}\)
        \(b_{t}=b_{t} \cup v_{\text {seed }}, Z=Z \backslash v_{\text {seed }}\), Reach \(=\operatorname{adj}\left(v_{\text {seed }}\right) \backslash R, R=R \cup v_{\text {seed }}\)
        while Reach \(\neq \emptyset\) do
            Pick \(v_{\text {reach }} \in\) Reach
            if \(\left|b_{t}\right| \leq \omega_{\max }\) then
                \(b_{t}=b_{t} \cup v_{\text {reach }}, Z=Z \backslash v_{\text {reach }}, R=R \cup v_{\text {reach }}\). Reach \(=\left(\operatorname{Reach} \cup \operatorname{Adj}\left(v_{\text {reach }}\right)\right) \backslash(R \cup\)
                \(\left.v_{\text {reach }}\right), R=R \cup\) Reach
            else
                \(\Psi=\Psi \cup v_{i}, Z=Z \backslash v_{\text {reach }}\), Reach \(=\) Reach \(\backslash v_{\text {reach }}, R=R \cup v_{\text {reach }}\)
            end if
        end while
    end while
```

 \(\sigma=t\)
    ```
Algorithm 26 Remove Small Blocks
    for \(j=1, \ldots, t\) do
        if \(\left|b_{j}\right|<\omega_{\text {min }}\) then
            for each \(v_{i} \in b_{j}\) do
                \(\Psi=\Psi \cup v_{i}\)
            end for
            \(b_{j}=\emptyset\)
        end if
    end for
```

```
Algorithm 27 Grow Remaining Blocks
    \(A=\emptyset\)
    for each \(v_{j} \in \Psi\) do
        if \(\left|\mathcal{N B} \mathcal{B}_{j}\right|=1\) then
            \(A=A \cup v_{j}\)
        end if
    end for
    while \(A \neq \emptyset\) do
        Pick \(v_{\text {min }} \in\left\{v_{u} \in T| | \operatorname{adj}\left(v_{u}\right)\left|\leq\left|\operatorname{adj}\left(v_{w}\right)\right|, v_{w} \in T\right\}, A=A / v_{\text {min }}\right.\)
        if \(\left|\mathcal{N} \mathcal{B}_{\text {min }}\right|=1\) then
            \(N B\) is the only block in \(\mathcal{N} \mathcal{B}_{\text {min }}\)
            \(N B=N B \cup v_{\text {min }}, \Psi=\Psi \backslash v_{\text {min }}\)
            for each \(v_{a} \in \mathcal{A}_{\text {min }}\) do
                if \(v_{a} \in \Psi\) and \(\left|\mathcal{N} \mathcal{B}_{a}\right|=1\) then
                    \(A=A \cup v_{a}\)
                end if
            end for
        end if
    end while
```

```
Algorithm 28 Construct Borderblocks
    \(R=V \backslash \Psi\), Reach \(=\emptyset\)
    for each \(v_{j} \in \Psi\) do
        for each \(v_{a} \in \mathcal{A}_{j}\) do
            if \(\mathcal{N B}_{j} \cap \mathcal{N} \mathcal{B}_{a}=\emptyset\) then
                    \(t=t+1\), new block \(b_{t}, b_{t}=b_{t} \cup v_{j} \cup v_{a}, \Psi=\Psi \backslash\left(v_{a} \cup v_{j}\right), R=R \cup v_{j} \cup v_{a}\), Reach \(=\)
                    \(\left(\mathcal{A}_{a} \cup \mathcal{A}_{j}\right) \backslash R\)
                    break
            end if
        end for
        while Reach \(\neq \emptyset\) do
            Pick \(v_{\text {reach }} \in\) Reach, Reach \(=\) Reach \(\backslash v_{\text {reach }}\)
            if \(\mathcal{N B}_{\text {reach }} \cap \mathcal{N B} \mathcal{B}_{b_{t}}=\emptyset\) then
                    \(b_{t}=b_{t} \cup v_{\text {reach }}, \Psi=\Psi \backslash v_{\text {reach }}, R=R \cup v_{\text {reach }}\), Reach \(=\) Reach \(\cup \mathcal{A}_{\text {reach }}\)
            end if
        end while
    end for
    for each \(b_{j}, j>\sigma\) do
        for each block \(b_{p}, p>j\) ) do
            if \(\mathcal{N} \mathcal{B}_{b_{j}}=\mathcal{N} \mathcal{B}_{b_{p}}\) then
                \(b_{j}=b_{j} \cup b_{p}\)
                \(b_{p}=\emptyset\)
            end if
        end for
    end for
    for each \(v_{i} \in \Psi\) do
        for each block \(b_{j}, j>\sigma\) do
            if \(\mathcal{N} \mathcal{B}_{b_{j}}=\mathcal{N} \mathcal{B}_{i}\) then
                \(b_{j}=b_{j} \cup v_{i}, \Psi=\Psi \cap v_{i}\)
                    break
            end if
        end for
        if \(v_{i} \in \Psi\) then
            \(t=t+1\), new block \(b_{t}\)
            \(b_{t}=b_{t} \cup v_{i}, \Psi=\Psi \cap v_{i}\)
        end if
    end for
```

```
Algorithm 29 Make Dissection
    part \(=0, P_{0}=\bigcup b_{j}\)
    while \(P_{\text {part }}>m s b\) do
        Dissect-Partition \(\left(P_{\text {part }}\right)\)
    end while
```

```
Algorithm 30 Dissect-Partition \(\left(P_{\text {part }}\right)\)
    \(H=\emptyset, S=\emptyset, W=P_{\text {part }}, B=\emptyset, G=\emptyset, W^{*}=\emptyset, B^{*}=\emptyset, G^{*}=\emptyset\)
    for each \(b_{j} \in P_{\text {part }}\) do
        if \(j<\sigma\) then
            \(H=H \cup b_{j}\)
        end if
    end for
    \(m c=\infty\)
    repeat
        while \(H \neq \emptyset\) do
            \(s c=\infty\)
            for each \(b_{j} \in H\) do
                if paint \(\left(b_{j}\right) \rightarrow \min |G|\) then
                        \(b_{\text {paint }}=b_{j}\)
                    end if
            end for
            Paint Block \(\left(b_{\text {paint }}\right)\)
            Update \(s c\)
            if \(s c<m c\) then
                    \(m c=s c, W^{*}=W, B^{*}=B, G^{*}=G\)
            end if
        end while
        \(m s c=m c, H=S, W=W^{*}, B=B^{*}, G=G^{*}\)
    until \(\mathrm{mcs}=\mathrm{mc}\)
```

```
Algorithm 31 Paint Block \(\left(b_{\text {paint }}\right)\)
    if \(b_{\text {paint }} \in W\) then
        for each \(b_{j} \in \mathcal{N} \mathcal{B}_{b_{\text {paint }}}\) do
            if \(b_{j} \in G\) and \(b_{k} \in B\) for all \(b_{k} \in \mathcal{N} \mathcal{B}_{b_{j}}\) then
                \(G=G \backslash b_{j}, B=B \cup b_{j}\)
            else if \(b_{j} \in W\) then
                \(G=G \cup b_{j}, W=W \backslash b_{j}\)
            end if
        end for
        \(W=W \backslash b_{\text {paint }}, B=B \cup b_{\text {paint }}\)
    else if \(b_{\text {paint }} \in B\) then
        for each \(b_{j} \in \mathcal{N} \mathcal{B}_{b_{\text {paint }}}\) do
            if \(b_{j} \in G\) and \(b_{k} \in W\) for all \(b_{k} \in \mathcal{N} \mathcal{B}_{b_{j}}\) then
                \(G=G \backslash b_{j}, W=W \cup b_{j}\)
            else if \(b_{j} \in B\) then
                \(G=G \cup b_{j}, B=B \backslash b_{j}\)
            end if
        end for
        \(B=B \backslash b_{\text {paint }}, W=W \cup b_{\text {paint }}\)
    end if
```

```
Algorithm 32 Improve Border
    if \(|W|>|B|\) then
        repeat
            Improve \(\left(W^{*}, B^{*}\right)\)
        until \(G=G^{*}\)
        repeat
            Improve \(\left(B^{*}, W^{*}\right)\)
        until \(G=G^{*}\)
    else
        repeat
            Improve \(\left(B^{*}, W^{*}\right)\)
        until \(G=G^{*}\)
        repeat
            Improve \(\left(W^{*}, B^{*}\right)\)
        until \(G=G^{*}\)
    end if
    Ready nodes
    Grow Remaining Blocks
    Construct Borderblocks
```

```
Algorithm 33 Improve(source,target)
    \(\Omega=\left\{v_{i} \mid v_{i} \in b_{i}, b_{i} \in G\right\}\)
    \(\Delta=\emptyset\)
    for \(v_{i} \in \Omega\) do
        for \(v_{j} \in \operatorname{Adj}(\Omega), v_{j}\) has colour source do
            if \(v_{i} \notin \Delta \wedge v_{j} \notin \Delta\) then
                match \(m\left(v_{i}, v_{j}\right), \Delta=\Delta \cup v_{i} \cup v_{j}\)
            end if
        end for
    end for
    \(Q=\Omega \cap \Delta, Z=\emptyset\)
    repeat
        \(Q=Q \cup Z\)
        \(X=\left\{v_{j} \in \operatorname{Adj}(Q) \mid v_{j}\right.\) has colour source \(\}\)
        \(Z=\left\{v_{k} \mid \exists m\left(v_{k}, v_{j}\right), v_{j} \in X\right\}\)
    until \(Z \cap Q=\emptyset\)
    \(Q=Q \cup Z\)
    if \(|Q|>|X| \wedge i m p s c<s c\) then
        store \((\) target \()=\) store \((\) target \() \cup Q\)
        store \((G)=\operatorname{store}(G) \cup X\)
    end if
```

```
Algorithm 34 Ready Nodes
    \(G=\emptyset\)
    \(G=G \cup \operatorname{store}(G)\)
    for \(v_{i} \in \operatorname{store}(W)\) do
        \(\Psi=\Psi \cup v_{i}\)
    end for
    for \(v_{i} \in \operatorname{store}(B)\) do
        \(\Psi=\Psi \cup v_{i}\)
    end for
```


Appendix C

Results

The tables are constructed in the following way: the first column consists of the number of processors and the total number of nonzero elements of the matrix (the MNZ). The second column contains the partition numbers. The next two columns contain the number of nonzero elements of that partition (NZP) and the number of nodes in that partition, respectively. Then, depending on the number of processors, there are m (with number of processors $p=2^{m}$) times 3 additional columns. The first of these columns represent the NZP between the partitions $1 \ldots \frac{2^{m}}{p}, \ldots,(p-1) \frac{2^{m}}{p}+1 \ldots 2^{m}+1$, the second number is the number of nodes in that separator and the third number is the MNZP of this partition, defined by MNZP $:=\max ($ MNZP1,MNZP2) + NZP, with MNZP1 and MNZP2 the MNZP of the 2 blocks that are dissected by this separator. For the first level, the MNZP = NZP. Finally, the last MNZP is bold and is equal to the WLNZ.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& 1 \text { proc } \\
\& 146200
\end{aligned}
\] \& 1 \& \multicolumn{3}{|l|}{146200} \& \multicolumn{2}{|r|}{cosT1} \& \multicolumn{3}{|r|}{7-40-20} \& \multicolumn{3}{|l|}{GREEDY} \& \multicolumn{3}{|l|}{TEST 1} \\
\hline \[
\begin{aligned}
\& 2 \text { proc } \\
\& 146574
\end{aligned}
\] \& 1 \& \[
\frac{80678}{62306}
\] \& \[
\frac{5862}{4677}
\] \& 3590 \& 35 \& 84268 \& \& \& \& \& \& \& \& \& \\
\hline \begin{tabular}{l}
4 proc \\
154098
\end{tabular} \& 1
2
3
4 \& \[
\begin{aligned}
\& 39193 \\
\& \hline 37358 \\
\& \hline 29306 \\
\& \hline 30563
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline 2941 \\
\hline 2878 \\
\hline 2178 \\
\hline 2456
\end{array}
\] \& 5436
4508 \& 43 \& \begin{tabular}{|l|}
44629 \\
35071
\end{tabular} \& 7734 \& 35 \& 52363 \& \& \& \& \& \& \\
\hline \[
\begin{aligned}
\& 8 \text { proc } \\
\& 156713
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 \\
\& 2 \\
\& 3 \\
\& 4 \\
\& 5 \\
\& 6 \\
\& 7 \\
\& 8
\end{aligned}
\] \& \[
\begin{array}{|}
16757 \\
\hline 17517 \\
\hline 19041 \\
\hline 14424 \\
\hline 12251 \\
\hline 12174 \\
\hline 13487 \\
\hline 12972
\end{array}
\] \& \begin{tabular}{|l|}
\hline 1483 \\
\hline 1418 \\
\hline 1485 \\
\hline 1355 \\
\hline 1060 \\
\hline 1081 \\
\hline 1163 \\
\hline 1246 \\
\hline
\end{tabular} \& \begin{tabular}{|l|}
4520 \\
4137 \\
\hline 4404 \\
\hline 3927 \\
\hline
\end{tabular} \& \begin{tabular}{|c|}
40 \\
38 \\
37 \\
37 \\
47
\end{tabular} \& \begin{tabular}{|l|}
\hline 22037 \\
\hline 23178 \\
\hline 16655 \\
\hline 17414 \\
\hline
\end{tabular} \& 7242

6130 \& 43 \& $$
\begin{aligned}
& 30420 \\
& \\
& 23544
\end{aligned}
$$ \& 7736 \& 35 \& 38156 \& \& \&

\hline $$
\begin{gathered}
16 \text { proc } \\
160836
\end{gathered}
$$ \& \[

$$
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14 \\
15 \\
16
\end{array}
$$

\] \& | 6749 |
| ---: |
| 6761 |
| 7093 |
| 6913 |
| 7280 |
| 7110 |
| 6285 |
| 5522 |
| 4872 |
| 4450 |
| 4663 |
| 4479 |
| 4698 |
| 5841 |
| 3112 |
| 8490 | \& | 714 |
| :--- |
| 730 |
| 706 |
| 674 |
| 706 |
| 727 |
| 680 |
| 635 |
| 522 |
| 481 |
| 528 |
| 505 |
| 542 |
| 580 |
| 345 |
| 881 | \& | 3248 |
| :--- |
| 3618 |
| 4152 |
| 2742 |
| 3312 |
| 3313 |
| 2818 |
| 1630 | \& | 39 |
| :---: |
| 38 |
| 52 |
| 40 |
| 1 |
| 57 |
| 48 |
| 41 |
| 20 | \& | 10009 |
| ---: |
| 10711 |
| 11432 |
| 9027 |
| 8184 |
| 7976 |
| 8659 |
| 10120 | \& | 5219 |
| :--- |
| 4854 |
| |
| |
| 5125 | \& | 40 |
| :---: |
| 38 |
| |
| |
| 37 | \& | 15930 |
| :---: |
| 16286 |
| |
| 13309 |
| 14979 | \& 6910 \& 43 \& 23196 \& 7910 \& 35 \& 31106

\hline
\end{tabular}

| $\begin{aligned} & 1 \text { proc } \\ & 146200 \end{aligned}$ | 1 | 146200 | | | COST1 | | | 7-40-20 | | RANDOM | | | TEST 4 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 proc | | 80678 | 5862 | | | | | | | | | | | | |
| 146574 | 2 | 62306 | 4677 | 3590 | 35 | 84268 | | | | | | | | | |
| $\begin{aligned} & 4 \text { proc } \\ & 153249 \end{aligned}$ | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$ | 38444 | 2949 | | | | | | | | | | | | |
| | | 36928 | 2871 | 5465 | 42 | 43909 | | | | | | | | | |
| | | 30284 | 2464 | | | | | | | | | | | | |
| | | 29418 | 2171 | 4457 | 42 | 34741 | 8253 | 35 | 52162 | | | | | | |
| 8 proc
 156326 | $\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$ | 16454 | 1461 | | | | | | | | | | | | |
| | | 17894 | 1444 | 4974 | 44 | 22868 | | | | | | | | | |
| | | 18768 | 1480 | | | | | | | | | | | | |
| | | 14293 | 1353 | 4370 | 38 | 23138 | 7485 | 42 | 30623 | | | | | | |
| | | 13584 | 1165 | | | | | | | | | | | | |
| | | 13303 | 1256 | 3076 | 43 | 16660 | | | | | | | | | |
| | | 11721 | 1055 | | | | | | | | | | | | |
| | | 12122 | 1077 | 4544 | 39 | 16666 | 6034 | 42 | 22700 | 7704 | 35 | 38327 | | | |
| 16 proc
 158427 | 12345678910111213141516 | 6377 | 693 | | | | | | | | | | | | |
| | | 6761 | 731 | 3161 | 37 | 9922 | | | | | | | | | |
| | | 6882 | 703 | | | | | | | | | | | | |
| | | 7203 | 703 | 3603 | 38 | 10806 | 5360 | 44 | 16166 | | | | | | |
| | | 7379 | 717 | | | | | | | | | | | | |
| | | 6962 | 712 | 3885 | 51 | 11264 | | | | | | | | | |
| | | 6448 | 689 | | | | | | | | | | | | |
| | | 5369 | 625 | 2684 | 39 | 9132 | 5045 | 38 | 16309 | 7149 | 42 | 23458 | | | |
| | | 4997 | 560 | | | | | | | | | | | | |
| | | 5676 | 564 | 2870 | 41 | 8546 | | | | | | | | | |
| | | 7616 | 819 | | | | | | | | | | | | |
| | | 3825 | 413 | 1945 | 24 | 9561 | 4208 | 43 | 13769 | | | | | | |
| | | 4667 | 505 | | | | | | | | | | | | |
| | | 4798 | 513 | 2557 | 37 | 7355 | | | | | | | | | |
| | | 3439 | 425 | | | | | | | | | | | | |
| | | 5802 | 602 | 3257 | 50 | 9059 | 4335 | 39 | 13394 | 6518 | 42 | 20287 | 7649 | 35 | 31107 |

| $\begin{aligned} & 1 \text { proc } \\ & 146200 \end{aligned}$ | 1 | 146200 | | | COST1 | | 7-80-40 | | | GREEDY | | | TEST 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 2 \text { proc } \\ & 146396 \end{aligned}$ | 1 2 | $\frac{74727}{68218}$ | $\frac{5446}{5093}$ | 3451 | 35 | 78178 | | | | | | | |
| $\begin{aligned} & 4 \text { proc } \\ & 149034 \end{aligned}$ | 1
 2
 3
 4 | $\begin{array}{r} 35928 \\ \hline 35377 \\ \hline 40619 \\ \hline 20619 \end{array}$ | $\begin{array}{\|l\|} \hline 2800 \\ \hline 2602 \\ \hline 3175 \\ \hline 1877 \end{array}$ | 4196 | 44 | 40124
 44473 | 8441 | 35 | 52914 | | | | |
| 8 proc 157077 | 1
 2
 3
 4
 5
 6
 7
 8 | 13655
 18320
 15727
 14041
 19636
 16517
 10849
 8718 | 1305
 1452
 1290
 1264
 1623
 1506
 964
 874 | 5047
 5460
 5311
 4331 | 43 48 46 46 39 | 23367
 21187
 24947
 15180 | 6374 5959 | 44 | $\begin{aligned} & 29741 \\ & 30906 \end{aligned}$ | 7132 | 35 | 38038 | |
| 16 proc 0 | | | | | | 0 0 0 0 0 0 0 0 0 | | | 0
 0
 0
 0 | | | 0 0 | 0 |

| $\begin{aligned} & 1 \text { proc } \\ & 146200 \end{aligned}$ | 1 | 146200 | | | COST2 | | | 7-80-40 | | GREEDY | | | TEST8 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 2 \text { proc } \\ & 146466 \end{aligned}$ | | 72441 | 5292 | | | | | | | | | | | | |
| | 2 | 70344 | 5244 | 3681 | 38 | 76122 | | | | | | | | | |
| $\begin{aligned} & 4 \text { proc } \\ & 154745 \end{aligned}$ | 1
 2
 3
 4 | 34049 | 2690 | | | | | | | | | | | | |
| | | 33936 | 2544 | 5132 | 58 | 39181 | | | | | | | | | |
| | | 31709 | 2538 | | | | | | | | | | | | |
| | | 36498 | 2657 | 4346 | 49 | 40844 | 9075 | 38 | 49919 | | | | | | |
| 8 proc159710 | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$ | 13655 | 1305 | | | | | | | | | | | | |
| | | 16699 | 1342 | 4773 | 43 | 21472 | | | | | | | | | |
| | | 14093 | 1244 | | | | | | | | | | | | |
| | | 12959 | 1229 | 7074 | 71 | 21167 | 7803 | 58 | 29275 | | | | | | |
| | | 13240 | 1245 | | | | | | | | | | | | |
| | | 14694 | 1245 | 3791 | 48 | 18485 | | | | | | | | | |
| | | 16270 | 1366 | | | | | | | | | | | | |
| | | 14336 | 1245 | 5062 | 46 | 21332 | 6433 | 49 | 27765 | 8828 | 38 | 38103 | | | |
| 16 proc
 164812 | 123 | 5447 | 605 | | | | | | | | | | | | |
| | | 5536 | 659 | 2671 | 41 | 8207 | | | | | | | | | |
| | | 5614 | 604 | | | | | | | | | | | | |
| | 4 | 6988 | 687 | 3516 | 51 | 10504 | 5425 | 43 | 15929 | | | | | | |
| | 5 | 5784 | 591 | | | | | | | | | | | | |
| | 6 | 5171 | 591 | 3508 | 62 | 9292 | | | | | | | | | |
| | 7 | 6065 | 617 | | | | | | | | | | | | |
| | 8 | 4142 | 555 | 3381 | 57 | 9446 | 6802 | 71 | 16248 | 8707 | 58 | 24955 | | | |
| | 9 | 5987 | 596 | | | | | | | | | | | | |
| | 10 | 5526 | 613 | 2203 | 36 | 8190 | | | | | | | | | |
| | 11 | 5037 | 576 | | | | | | | | | | | | |
| | 12 | 5699 | 608 | 3806 | 61 | 9505 | 5107 | 48 | 14612 | | | | | | |
| | 13 | 5939 | 626 | | | | | | | | | | | | |
| | 14 | 6707 | 689 | 3769 | 51 | 10476 | | | | | | | | | |
| | $\begin{aligned} & 15 \\ & 16 \end{aligned}$ | 5031 | 531 | | | | | | | | | | | | |
| | | 6136 | 668 | 3175 | 46 | 9311 | 5144 | 46 | 15620 | 7668 | 49 | 23288 | 9121 | 38 | 34076 |

| $\begin{aligned} & 1 \text { proc } \\ & 146200 \end{aligned}$ | 1 | 146200 | | | COST1 | | 7-80-40 | | | RANDOM | | | TEST 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 2 \text { proc } \\ & 146396 \end{aligned}$ | 1 2 | $\frac{74727}{68218}$ | $\frac{5446}{5093}$ | 3451 | 35 | 78178 | | | | | | | |
| 4 proc
 151474 | 1
 2
 3
 4 | $\begin{aligned} & 34535 \\ & \hline 35951 \\ & \hline 23966 \\ & \hline 39843 \end{aligned}$ | $\begin{array}{\|} \frac{2602}{2800} \\ \hline \frac{1915}{3139} \\ \hline \end{array}$ | 3756 | 44 | 39707
 44131 | 9135 | 35 | 53266 | | | | |
| 8 proc
 157027 | 1
 2
 3
 4
 5
 6
 7
 8 | 14041
 15925
 13655
 18623
 11393
 8561
 18747
 17156 | 1264
 1290
 1305
 1452
 1006
 866
 1533
 1559 | 5399
 5195
 4366
 4938 | 48 43 43 47 | 21324
 23818
 15759
 23685 | 5928 | 44
 39 | $\begin{array}{\|c\|} \hline 29746 \\ \hline \\ 29383 \end{array}$ | 7402 | 35 | 37148 | |
| 16 proc | $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 8 \end{aligned}$ | | | | | 0 0 0 0 0 0 0 0 0 | | | 0
 0
 0
 0 | | | $00 \mid$ | 0 |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& 1 \text { proc } \\
\& 146200
\end{aligned}
\] \& 1 \& \multicolumn{3}{|l|}{146200} \& \multicolumn{2}{|r|}{COST2} \& \multicolumn{3}{|c|}{7-80-40} \& \multicolumn{3}{|l|}{RANDOM} \& \multicolumn{3}{|l|}{TEST 11} \\
\hline \[
\begin{aligned}
\& 2 \text { proc } \\
\& 153966
\end{aligned}
\] \& 1 \& \[
\frac{73178}{69623}
\] \& \[
\frac{5207}{5294}
\] \& 11165 \& 73 \& 84343 \& \& \& \& \& \& \& \& \& \\
\hline \[
\begin{aligned}
\& 4 \text { proc } \\
\& 157863
\end{aligned}
\] \& \begin{tabular}{l|l|}
1 \& \\
2 \& \\
3 \& \\
4 \& \\
\&
\end{tabular} \& \[
\begin{array}{|l|}
\hline 34403 \\
\hline 33341 \\
\hline 31991 \\
\hline 34860
\end{array}
\] \& \[
\begin{array}{|l|}
\hline 2596 \\
\hline 2564 \\
\hline 2655 \\
\hline 2596
\end{array}
\] \& 4099 \& 47 \& \begin{tabular}{|l|}
38502 \\
\hline 39041
\end{tabular} \& 14988 \& 73 \& 54029 \& \& \& \& \& \& \\
\hline 8 proc
\[
163831
\] \& \begin{tabular}{l|l|}
1 \\
2 \& \\
3 \& \\
4 \& \\
5 \& \\
6 \& \\
7 \& \\
8 \& \\
\end{tabular} \& \begin{tabular}{|l|}
\hline 14150 \\
\hline 15660 \\
\hline 14280 \\
\hline 13924 \\
\hline 14883 \\
\hline 11192 \\
\hline 14336 \\
\hline 13250 \\
\hline
\end{tabular} \& \begin{tabular}{|l|}
\hline 1272 \\
\hline 1274 \\
\hline 1216 \\
\hline 1301 \\
\hline 1284 \\
\hline 1270 \\
\hline 1235 \\
\hline 1279
\end{tabular} \& \begin{tabular}{l}
5863 \\
4879 \\
7863 \\
\hline 7952 \\
\hline
\end{tabular} \& \begin{tabular}{|c}
50 \\
47 \\
\hline 101 \\
\hline 82 \\
\hline
\end{tabular} \& \begin{tabular}{|l|}
\hline 21523 \\
\hline 19159 \\
\hline 22746 \\
\hline 22288 \\
\hline
\end{tabular} \& 6182

5972 \& 47 \& $$
\begin{array}{|c|}
\hline 27705 \\
\hline 28718
\end{array}
$$ \& 13445 \& 73 \& 42163 \& \& \&

\hline $$
\begin{aligned}
& 16 \text { proc } \\
& 168893
\end{aligned}
$$ \& 2

3
4
5
6
7
8
9

10 \& \begin{tabular}{|}
\hline 4291

\hline 5689

\hline 5554

\hline 6992

\hline 5810

\hline 5325

\hline 5053

\hline 6232

\hline 6016

\hline 6178

\hline 5921

\hline 4907

\hline 5638

\hline 5646

\hline 6032

\hline 5377

 \&

\hline 579

\hline 626

\hline 589

\hline 624

\hline 588

\hline 579

\hline 581

\hline 676

\hline 597

\hline 655

\hline 631

\hline 631

\hline 584

\hline 608

\hline 656

\hline 581

 \&

4256

3482

3490

2763

\hline 2627

\hline 249

\hline 2958

\hline 2771

\hline

 \&

67

61

49

44

42

32

8

43

42

 \&

\hline 9945

\hline 10474

\hline 9300

\hline 8995

\hline 8805

\hline 6170

\hline 8604

\hline 8803

\hline

 \&

5742

\hline 5408

\hline

8702

\hline

\end{tabular} \& $\begin{array}{r}50 \\ 47 \\ 47 \\ \\ \\ 101 \\ \hline 82\end{array}$ \& \[

$$
\begin{array}{|l|}
\hline 16216 \\
\hline 14708 \\
\hline \\
17507 \\
\hline \\
16393
\end{array}
$$

\] \& 7870 \& 47 \& \[

$$
\begin{array}{|c|}
\hline 24086 \\
\hline \\
\\
23907 \\
\hline
\end{array}
$$
\] \& 13924 \& 73 \& 38010

\hline
\end{tabular}

| $\begin{aligned} & 1 \text { proc } \\ & 146200 \end{aligned}$ | 1 | 146200 | | | COST2 | | | 7-60-30 | | RANDOM | | | TEST 17 | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $\begin{gathered} 2 \text { proc } \\ 153431 \end{gathered}$ | 1 | 75370 | 5248 | | | | | | | | | | | | |
| | 2 | 70228 | 5245 | 7833 | 81 | 83203 | | | | | | | | | |
| 4 proc 155949 | 1 | 33968 | 2592 | | | | | | | | | | | | |
| | 2 | 33629 | 2585 | 7919 | 71 | 41887 | | | | | | | | | |
| | 3 | 31896 | 2581 | | | | | | | | | | | | |
| | 4 | 33659 | 2613 | 4651 | 51 | 38310 | 10227 | 81 | 52114 | | | | | | |
| 8 proc
 161560 | 12345678 | 13564 | 1264 | | | | | | | | | | | | |
| | | 13764 | 1257 | 7510 | 71 | 21274 | | | | | | | | | |
| | | 14398 | 1232 | | | | | | | | | | | | |
| | | 13395 | 1305 | 4692 | 48 | 19090 | 9217 | 71 | 30491 | | | | | | |
| | | 13833 | 1306 | | | | | | | | | | | | |
| | | 14312 | 1234 | 4542 | 41 | 18854 | | | | | | | | | |
| | | 14724 | 1267 | | | | | | | | | | | | |
| | | 12306 | 1283 | 7022 | 63 | 21746 | 6463 | 51 | 28209 | 11818 | 81 | 42309 | | | |
| 16 proc167513 | 123 | 5671 | 612 | 2356 | 37 | 8589 | | | | | | | | | |
| | | 6233 | 615 | | | | | | | | | | | | |
| | | 4734 | 553 | | | | | | | | | | | | |
| | 4 | 6441 | 659 | 3269 | 45 | 9710 | 7478 | 71 | 17188 | | | | | | |
| | 5 | 5907 | 604 | | | | | | | | | | | | |
| | 6 | 5290 | 577 | 3431 | 51 | 9338 | | | | | | | | | |
| | 7 | 5071 | 590 | | | | | | | | | | | | |
| | 8 | 5593 | 670 | 2790 | 45 | 8383 | 4859 | 48 | 14197 | 10091 | 71 | 27279 | | | |
| | 9 | 5969 | 647 | | | | | | | | | | | | |
| | | 4964 | 602 | 3541 | 57 | 9510 | | | | | | | | | |
| | \|11|| | 6040 | 618 | | | | | | | | | | | | |
| | 12 | 5301 | 575 | 2815 | 41 | 8855 | 5111 | 41 | 14621 | | | | | | |
| | 13 | 6041 | 604 | | | | | | | | | | | | |
| | 14 | 5708 | 604 | 4047 | 59 | 10088 | | | | | | | | | |
| | 15 | 6069 | 651 | | | | | | | | | | | | |
| | 16 | 4273 | 590 | 2227 | 42 | 8296 | 6241 | 63 | 16329 | 7841 | 51 | 24170 | 12111 | 81 | 39390 |

