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Abstract

In this report, the control design for an autonomous four wheel steered and four
wheel driven robot car is considered. The main objective is to develop a struc-
tured and generic controller that can independently control the time dependent
position and the orientation angle of the center of the robot car. Another objec-
tive is to let the controller function over the whole working range of the robot
car (0-10 m/s2 , 0-50 km/h). The control target over the whole velocity range
di�ers. At high and medium velocity it is most important that the "tracking
error", which is the position and orientation error, is small. At low velocities
the steering angle behavior, as a reaction on position or velocity errors, is also
important.

The robot car itself is an overactuated system, because the number of actuators
(four steering and four driving motors) is larger than the number of degrees
of freedom (three). In this report the problem is overcome by decentralizing
the tracking problem. The position of the center and the orientation angle of
the car are transformed to eight position-coordinates of the wheels. Also four
desired orientation angles for the wheels are calculated using a kinematic ap-
proach, which guarantees that the wheels of the car are oriented so that an
instantaneous center of rotation is present during the total manoeuvre. The
instantaneous center of rotation represents the point around which the WMR is
moving, so it is the point where the perpendiculars to the plane of each wheel
(drawn from the center of the wheel) are all concurrent.

A model for a wheel that can be driven and that can be steered (unicycle)
is developed using the theory on wheeled mobile robots. The controller de-
veloped for this model consists of a static-state feedback controller, which in
combination with output linearizing coordinates, linearizes the (sub)system. A
PD feedback controller with acceleration feedforward is designed for this lin-
earized system. Finally, a tyre slip compensation is also designed to improve
the tracking behavior.
The total robot controller that consists of four separate controllers is tested by
evaluating typical vehicle manoeuvres through simulations and experiments in
the VEHIL test facility. The simulation and experimental results show that the
controller is capable of controlling the car over the whole speci�ed range.
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Samenvatting

Het regelontwerp voor een vier wiel gestuurd en vier wiel aangedreven voertuig
wordt besproken in dit rapport. Het belangrijkste doel is om een gestructureerde
en generieke regelaar te ontwerpen welke de tijdsafhankelijke positie en de oriën-
tatie hoek van het centrum van het voertuig kan regelen. Een andere doel is om
de regelaar te laten functioneren over het hele werkgebied van het voertuig (0-10
m/s2 , 0-50 km/h). Het regeldoel is verschillend over dit werkgebied, want bij
hoge en gemiddelde snelheden is het belangrijk om een zo klein mogelijke fout
in de positie en de oriëntatie hoek te hebben. Bij lage snelheden is het echter
ook belangrijk dat het stuurgedrag, als reactie op positie- of snelheidsfouten,
rustig is ook al gaat dit bijvoorbeeld ten koste van een grotere positiefout.

Het voertuig zelf is een overgeactueerd systeem, wat wil zeggend dat het aantal
actuatoren (vier stuur- en vier aandrijfmotoren) groter is dan het aantal vrijhei-
dsgraden (drie). Dit probleem is aangepakt door het regelprobleem te decentral-
izeren. De positie van het centrum en de orientatiehoek van de wagen worden
vertaald naar acht positie-coördinaten van de wielen. Tevens worden er vier
oriëntatie hoeken voor de stuurwielen bepaald, welke worden berekend volgens
een kinematische aanpak. Dit garandeert dat de wielen zo worden georiënteerd
dat er tijdens de beweging een uniek "instantaneous center of rotation" is. Het
ICR is het punt rond welk het voertuig draait tijdens de manoeuvre, dus het is
het punt waar de loodlijnen op de vlakken van de wielen tezamen komen.

Een model voor een wiel dat kan worden aangedreven en kan worden gestuurd
(unicycle) is ontwikkeld gebruik makend van de theorie over mobiele robots. De
regelaar die voor dit systeem is ontworpen bestaat uit een toestandsterugkop-
peling, welke in combinatie met de juiste uitgangs (linearisatie) variabelen, een
(sub)systeem lineariseert. Een simpele PD regelaar met "feedforward" is ont-
worpen voor dit gelineariseerde systeem. Er is ook nog een bepaalde bandenslip
compensatie ontwikkeld voor de regelaar welke ervoor moet zorgen dat het
volggedrag van het voertuig verbeterd.
De uiteindelijke regelaar, welke bestaat uit een regelaar voor elke hoek, is getest
door simulaties en experimenten in de VEHIL test faciliteit met typische ma-
noeuvres voor het voertuig. Het blijkt dat de regelaar in staat is om het vo-
ertuig over het hele gespeci�ceerde gebied te regelen met de aparte regeldoelen
die daarbij horen.
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List of Symbols

Symbol Unit Description

D N Cornering sti�ness
Fz N Vertical load
G N Slip sti�ness
I kgm2 Inertia
Kp − Proportional gain of the PD controller
Kv − Di�erential gain of the PD controller
L m Distance from vehicle center of gravity to wheel axle
Ncs − Number of conventional steerable wheels
Nf − Number of �xed wheels
Nw − Total number of wheels
O − Order
SA rad Slip angle
V m/s Velocity
W m Distance from the center of the wheel axle to the end
W Nm/s Power of interaction forces

a m/s2 Acceleration
e m Error
ec m Distance from the center of the wheel/tyreto the "control point"
g m/s2 Gravitational constant
hcar m Height of the center of gravity
m kg Mass
m − Number of independent constraints
n − Number of con�guration variables
n − Total number of data-points
r m Radius of the wheel/tyre
t s Time
x m x position in the global coordinate frame
ẋ m/s First derivative of x
ẍ m/s2 Second derivative of x
y m y position in the global coordinate frame
ẏ m/s First derivative of y
ÿ m/s2 Second derivative of y

α rad The angle that de�nes how the wheel is orientated at the car
β rad The steering angle
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Symbol Unit Description
δm − Degree of mobility
δs − Degree of steerability
ε − Normalization parameter
ϕ rad Rotation angle of the wheel/tyre
ϕ̇ rad/s Rotation angle velocity of the wheel/tyre
ϕ̈ rad/s2 Rotation angle acceleration of the wheel/tyre
θ rad Vehicle orientation angle
θ̇ rad/s Vehicle orientation angle velocity
θ̈ rad/s2 Vehicle orientation angle acceleration

A − Matrix with the roll and slip constraints
A1 − Submatrix of the A matrix related to the posture coordinates (q1)
B − Matrix that relates the input torques to the con�guration variables
C − Matrix constructed by coriolis, centrifugal, gravity and resistant torques
C1 − Matrix constructed of slip constraints
F − Total generalized force vector
H − Matrix that relates the total input-vector η with z2

Hε − Matrix constructed by the slow manifolds
J − Matrix constructed by the matrices M , S and A
J1 − Matrix with the part of the roll constraints related to ξ
J2 − Matrix with the part of the roll constraints related to ϕ
K − Matrix constructed by e.g. tyre parameters
KpT − Positive de�nite matrix of the "Kp" value(s) of the PD controller(s)
KvT − Positive de�nite matrix of the "Kv" value(s) of the PD controller(s)
L − Matrix transforming the slip velocities to the longitudinal and lateral components
M − Inertia matrix
Q − Matrix that relates z2 to ż3

R(θ) − Rotation matrix
S − Matrix that links the total input-vector η with the con�guration variables
S1 − Matrix that links the total input-vector η with the posture coordinates

f0 − A vector of the system in singular perturbation form
f1 − A vector of the system in singular perturbation form
f2 − A vector of the system in singular perturbation form
g0 − A vector of the system in singular perturbation form
g1 − A vector of the system in singular perturbation form
g2 − A vector of the system in singular perturbation form
h − Vector with linearizing output functions (equal to z1)
q − Vector with con�guration variables
q1 − Vector of posture coordinates (ξ and β)
w − Vector with an arbitrary reference input
z1 − Vector with linearizing output functions (equal to h)
z2 − First derivative of z1

z3 − Non-linearizing output functions

β − Vector of steering angles
ζ − Input-vector with steering angle velocities
ηa − Input-vector with generalized velocities
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Symbol Unit Description
η − The total input-vector with generalized velocities
λ − Lagrange multipliers vector
µ − Vector that describes the importance of the violation of the constraints
ν − Vector with an arbitrary reference input
τ − Vector of input torques
ξ − Vector of the coordinates x, y, θ
Σ − Matrix where the columns form a basis of the null-space of C1

Indices Description
f Front
r Rear
l Left
l Local coordinate system
r Right
1 Front wheel
2 Rear wheel
i wheel index (bicycle)
ij wheel index (4ws4wd car)
ref Reference variable
lat Lateral component
long Longitudinal component
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Chapter 1

Introduction

1.1 Motivation

Wheeled mobile robots (WMR's) are widely used nowadays in the industry.
The goal is often to let the center of the robot follow a certain time dependent
reference path. TNO owns such a wheeled mobile robot, which is used in the
VEHIL test facility. VEHIL is a hardware in the loop test facility that is used
to e�ciently develop and test intelligent vehicles. The idea is to bring the real
world to a hall, where, instead of real velocities, the relative velocities between
vehicles are used. The wheeled mobile robot is used to simulate this relative
motion of the other car(s) in the surrounding tra�c of the testing vehicle. The
wheeled mobile robot used in the VEHIL test facility is di�erent from most
common wheeled mobile robots, because it is a high dynamic wheeled mobile
robot. The wheeled mobile robot is capable of extreme manoeuvres at high
velocities and exceeds the handling performance of modern road vehicles. The
control goal, for the wheeled mobile robot used in VEHIL, is not only to let the
center follow a certain (time-dependent) reference path, but also to control the
orientation angle of the wheeled mobile robot during the manoeuvre.
Because of this, the wheeled mobile robot used is a four wheel steered and four
wheel driven car (4ws4wd car) that is equipped with four driving motors and
four steering motors. The research in this report focusses on the control design
for this type of wheeled mobile robot.

The 4ws4wd robot is equipped with eight actuators but there are only three
degrees of freedom in the horizontal plane, so the system is an over-actuated
system.
The control methods developed before all focus on the forces and moments that
act on the system. Most of the control methods do not take into account the tyre
behavior (e.g. slip), which can have a great in�uence on the system if extreme
manoeuvres are executed. The methods are also often ad-hoc. Therefore two
important reasons can be stated why to develop a new control method for the
4ws4wd robot.

1. A more structured and generic control method is desired.
2. The control method has to take into account the tyre behavior.
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Figure 1.1: 4ws4wd WMR robot of TNO automotive

The �eld of robotics provides structured and generic methods for the control
problem of a wheeled mobile robot. The starting idea of the method is that
the tyre behaviour is ideal, which here means that no tyre slip is present. A
model for the WMR is constructed using the approach from the �eld of robotics
for WMR's with ideal tyres. Finally a controller is developed for this model.
However, if these controllers are tested on real systems then it often concluded
that tyre slip is an e�ect which cannot be neglected. This is the reason that a
procedure to include the tyre behavior in the controller is developed in the �eld
of robotics.

1.2 Problem statement

In this project, the control of a 4ws4wd vehicle is considered. The objectives of
this project are:

• Develop a tracking controller for the x and y position of the center and
the orientation angle (θ) of the 4ws4wd car.

• Develop a controller that takes into account the tyre behavior.
• Evaluate and tune the controller by means of simulations and experiments
with the 4ws4wd robot used in the VEHIL test facility.

1.3 Outline of the report

The outline of the report is as follows. In chapter 2 the 4ws4wd robot that has
to be controlled will be described. Also some requirement will be stated here.
In chapter 3 an overview of the main literature in the �eld of robotics will be
presented. Chapter 4 will construct the core of this report. Here the general
procedure to derive a model and a controller for a wheeled mobile robot with
and without tyre slip will be presented. A case study with a simple example
will be conducted to demonstrate the procedures. In chapter 5 a controller for
a bicycle model is developed using the procedures described in chapter 4. The
bicycle model has the same manoeuvrability as a full (4ws4wd) car, however the
equations are much more simple. This is the reason that the bicycle model is
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often used in the development process of a (4ws4wd) car. As a start a controller
is developed using the theory for a wheeled mobile robot without tyre slip. The
following step is to introduce a "new" controller for the bicycle to overcome the
problems with the controller from the standard theory. The "new" controller
aims to decentralize the control problem to come to a more generic solution
for the control problem. Each wheel of the wheeled mobile robot will have its
own controller. Each wheel has a so called "unicycle" controller, which is a
controller for a wheel that can be driven and that can be steered. So in total
there are multiple unicycle controllers, because multiple wheels are attached on
the 4ws4wd robot. For this reason the term "multicycle" controller (multiple
unicycle controller) is introduced. Also a controller for a bicycle with tyre
slip will be derived using the procedure described in chapter 4. The (multiple)
unicycle controller is extended with a tyre slip compensation. At the end of this
section, simulations are performed to investigate the advantage of the tyre slip
compensation. In chapter 6 the multicycle controller will be changed so that
the controller can be used for the 4ws4wd robot. At the end of this chapter,
simulations using a full dynamic model of the 4ws4wd robot used in the VEHIL
testing facility will be performed. The main text concludes with a chapter about
the experiments performed in the VEHIL testing facility. Finally conclusions
about the obtained results and also recommendations will be given.





Chapter 2

System description

A general description of the WMR, where the controller will be designed for,
is desired before a start can be made with the control design. First of all the
speci�cations of the WMR are described. Secondly, a list of requirements for the
controller that follow out of the speci�cations will be given. These requirements
will later on in the report be used to choose a certain type of controller during
the control design process.

2.1 Speci�cations

The wheeled mobile robot used in VEHIL is a vehicle that responds to position
commands issued. The WMR requires the independent control of its x and y
position of the center, as well as its orientation (yaw) angle θ in order to carry
out the desired manoeuvres (e.g. �gure 2.1). Such a manoeuvring �exibility is
accomplished through a four wheel steered and four wheel driven vehicle plat-
form equipped with eight actuators. The maximum "longitudinal" acceleration
and de-acceleration of the WMR is about 10 m/s2. Also the maximum "lat-
eral" acceleration, during e.g. driving a corner, is 10 m/s2. There is a not to be
underestimated amount of weight transfer with an acceleration level of 10 m/s2,
because of the height of the center of gravity of the WMR. The more vertical
force on a tyre, the more lateral and longitudinal force the tyre can deliver (up
to a certain limit) (appendix B). Therefore it is important to separately control
the torques for all the four wheels to assure that the maximum performance of
the WMR can be obtained.
The maximum velocity of the WMR in VEHIL is 50 km/h, however it is im-
portant for the controller to work well over the whole working range from 0-50
km/h. Position tracking is most important, but the steering angle behaviour,
as a reaction on errors, is also important at low velocities. It is for example
not desired for the steering angles to change 45o or more as a response on an
error in the lateral direction if the car itself is driving slowly in the longitudinal
direction.
Motors capable of steering the wheels in a range of −350o till 350o are imple-
mented for all four wheels. These large steering angles are needed, because of
the trajectories driven by the WMR in VEHIL. One example is a straight line,
where during this manoeuvre the orientation angle varies from −200o till 200o.
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Real world

4ws4wd car

Test
vehicle

VEHIL world

Figure 2.1: The reason for the independent control of x, y and θ.

Because of this, a controller is needed that is able to control the steering angle
of the wheels over the whole range of 700o.
Finally, it is important for the controller to work real-time with a sample rate
of 500 Hz, so a numerically complicated controller is not desired.
The most important speci�cations of the WMR used in VEHIL are summarized
in table 2.1.

Table 2.1: Speci�cations
Vehicle mass: 620 kg
Wheel base: 1.4 m
Track width: 1.4 m

Maximum speed: 50 km/h
Maximum acceleration: 10 m/s2

Installed power: 52 kW
Steering angle range: −350o - 350o

2.2 Requirements

The (extra) requirements following from the speci�cations are:
1. The controller has to distribute the forces according to the weight shift.
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2. The controller has to work over the whole velocity range of 0-50 km/h.
Position tracking is most important, but the steering angle behaviour is
also important at low velocities.

3. The controller must be able to control the steering angle of the wheels
over the whole range of 700o.

4. The controller has to work real time with a sample rate of 500 Hz.

2.3 Summary

The (extra) requirements for the controller and some speci�cations of the four
wheel driven four wheel steered car used in VEHIL are de�ned. The result is
that a "simple" (velocity scaled) controller that takes into account weight shift
has to be designed.





Chapter 3

Literature survey

This chapter provides an overview of the literature that constitutes the basis
of this report. The studied literature focusses on Wheeled Mobile Robots
(WMR's). A WMR is e�ectively a body with wheels mounted on the body
so that the body can move in the horizontal plane. Di�erent wheel types are
known, such as �xed wheels, conventional steering wheels, swedish wheels and
castor wheels. The most common wheels are conventional steering wheels (e.g.
front wheel(s) of a passenger car) and �xed wheels (e.g. rear wheel(s) of a
passenger car).
The �rst point of attention of the literature study is the theory on wheeled
mobile robots and the resulting controllers. The second point of attention is the
possibility to implement a tyre slip compensation in the controller that is based
on the theory on wheeled mobile robots.
In section 3.1 the term "constraints" will be explained and the possibilities to
describe models using the constraints is explained. Section 3.2 gives a short
overview of the possible models for WMR's. Section 3.3 gives an overview of
the possibilities of the robot theory to model the tyre slip. Finally a summary
will be given that also describes how this literature constitutes the basis of this
research.

3.1 Constraints

The �rst thing explained in every book or paper about WMR's is the term
"constraints". Constraints are mathematical formulas describing the limitations
of the position/movability of the system. There are two important type of
constraints; position and velocity constraints. Velocity constraints are often
described as not integrable kinematic constraints [3]. Kinematic constraints are
not integrable if the constraints have no restrictions on the collection of possible
positions of the robot, but have restrictions on the movability of the robot.
A common example to explain constraints is a normal front wheel steered car.
This car can reach every position in the horizontal plane, but the car cannot
move sideways. The front wheel steered car in �gure 3.1 cannot move from A
to B using path number 1. This is because of the restriction in the sideways
direction of the wheel, which is a restriction of the velocity in this direction,
which limits the (total) movability of the car. Instead of path number 1, path
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number 2 has to be followed to get from A to B.

Figure 3.1: Parking problem for a normal front wheel steered car.

Campion, Bastin and D'Andréa-Novel state that all WMR's are characterized
by velocity constraints [3]. The two important velocity constraints for WMR's
are the slip and roll constraint (see �gure 3.2). The slip constraint states that
no movement is possible in the lateral (sideways) direction of a wheel and the
roll constraint states that the longitudinal (forward) velocity of a wheel is equal
to the rotation velocity of the wheel multiplied by the radius of the wheel.

Figure 3.2: The slip and roll constraint of a wheel.

3.2 Classi�cation

WMR's are subjected to constraints, as is known from the previous section.
Campion et al. [3] have developed an approach to use these constraints to
describe models for WMR's [3] [8].
The constraints contain information about the restrictions of the system with
respect to velocities, so these constraints can be used to formulate a kinematic
model of the system that describes the movement of the system. The idea is that
the movement of the system is hidden in the null-space of the set of constraint
equations [3] [8].
Using this approach, Campion et al. [3] suggest that four di�erent kinds of
(state space) models can be described to understand the behavior of a WMR.

• The posture kinematic model
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• The con�guration kinematic model
• The con�guration dynamic model
• The posture dynamic model

The posture kinematic model describes the motion of the robot in the horizontal
plane, but not all the evolutions of the con�guration variables (e.g. wheel
rotation) are described. These are described in the con�guration kinematic
model. The con�guration dynamic model also models the dynamics of the
robot. The posture dynamic model describes the system dynamics between
the control input and the posture coordinates, which are the positions of the
center of the car, the orientation angle of the car and the steering angles of the
conventional steering wheels attached to the car.
As said before, the kinematic part of the models can be described using the
velocity constraints. Extra dynamical equations are needed to be able to
describe the dynamic models. These dynamic equations contain information
about the mass of the car, the rotation inertia of the wheel, the positioning of
the motors etc.
The velocity constraints of a WMR describe the so-called "mobility" of a WMR
according to Campion et al. [3]. Not every WMR has the same "mobility
properties", therefore it is possible to describe �ve general type of WMR's.
These �ve types will often be characterized as type (δm,δs)-WMR's, where
(δm) is the degree of mobility and (δs) is the degree of steerability.

If a WMR is equipped only with �xed wheels and conventional steering
wheels, then the degree of mobility and the degree of steerability can be
described as:
The degree of mobility is the number of degrees of freedom manipulat-
able directly without re-orienting the conventional steering wheels and the
degree of steerability is the number of independent conventional steering wheels.

The sum of the degree of mobility and the degree of steerability is al-
ways three or less, because the number of degrees of freedom, of a WMR that
moves in the horizontal plane, is three. Two di�erent WMR types are described
in �gure 3.3. On the left side a bicycle with two conventional steering wheels is
illustrated and on the right side a unicycle with two �xed wheels is illustrated.
The bicycle is a (1,2)-WMR, because it has two conventional steering wheels
and it can move in one direction (tangential of the circle) without reorientation
of its conventional steering wheels. The unicycle is a (2,0)-WMR, because it is
equipped with zero conventional steering wheels and it can manipulate "two"
directions. First of all it can move forward by driving both wheels in the same
directions. Secondly the unicycle can rotate around its vertical axis by driving
both wheels in opposite direction.
The term independent in the description of the steerability is important, be-
cause this is the reason why the maximum number for the degree of steerability
is two. This is also the reason for the maximum of two independent steering
wheels on a WMR. Two wheels is the maximum number of wheels needed to
describe the ICR (�gure 3.3), which is the instantaneous center of rotation. If
more wheels are attached to the WMR, the wheels have to be directed so that
the movement around the ICR is not restricted. This is the reason that a four
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Figure 3.3: Driving possibilities of a "bicycle" and a "unicycle" without the
reorientation of a conventional steering wheel. (Topview)

wheel steering (4ws) car is often modelled as a 2ws WMR with two steering
wheels that both are a combination of two of the four steering wheels of the
4ws car. Therefore there have to be steering wheels on the 4ws car that are
linked together in a mathematical way [2], so that an unique ICR is present.

The goal of the report is to �nd a controller for a WMR to track not only the
reference x and y position of the center of the robot, but also the reference
orientation angle and the reference steering angles (if de�ned) of the robot. A
number of di�erent controllers for di�erent WMR's are described in the litera-
ture. Some are based on state feedback [4], while others are based on e.g sliding
mode control [6] [7].
The basis of the controller suggested by D'Andréa-Novel [4] is a static state
feedback controller. This controller linearizes the (sub)system if the right out-
put linearizing coordinates are used. A PD feedback controller with acceleration
feedforward is designed for this linearized system.

3.3 Slip modelling

The strong point of the discussed approach, which is the development of the
controller for the model that is developed using the null-space of the total set of
constraints, is at the same time the drawback of the approach. Constraints of
the wheels are in reality often violated due to tyre slip, which is a result of the
fact that tyres only can deliver forces if there is a di�erence in direction/velocity
of movement between the tyre and the ground [1]. By Motte and Campion [5] it
is suggested to model this slip as a linear system. The slipping e�ects introduce
an extra (fast) dynamic e�ect to the known equations from the standard WMR
theory. These equations together are formulated in a standard form for a system
with "fast" and "slow" dynamics (i.e. a sti� system), the so called singular
perturbation form. Fast relates to the fact that the new "slip" variable of the
tyre-forces is multiplied by a small factor so that the variable can change fast
without having a lot of in�uence on the other slow variables of the system.
A controller based on the so-called "slow manifold approach" is suggested by
Motte and Campion [5]. The slow manifold approach allows to design feedback
control laws taking into account the tyre slip. The system is output linearized



3.4 Summary 13

on the slow manifold, so tracking of the desired variables can be achieved by
choosing the right output linearizing coordinates.

3.4 Summary

The standard approach in the theory on wheeled mobile robots is to model
a 4ws4wd car as a 2ws2wd car with the front wheels modelled as one wheel
and the rear wheels modelled as one wheel. This approach however has the
disadvantage that for example the weight distribution between the four wheels
cannot be modelled properly anymore. So a controller based on this model has
the same disadvantages. Therefore another approach to control a 4ws4wd car
will be discussed in this report next to the straight forward controller from the
�eld of robotics for a 4ws4wd car.
Reviewing the literature of WMR's, the conclusion is that a lot of literature
is available about WMR's, especially for the most simple WMR; the unicycle
(type(2,0)) [3]. A unicycle is described in di�erent ways in the literature; one
wheel that can be rotated and oriented, or two wheels that can rotate and
that are mounted on a �xed axle. The kinematic model of a unicycle is the
most simple model of the collection of WMR's, still containing relevant WMR
characteristics. For this reason it is the most interesting one for modelling and
simulating. Because of the amount of literature about unicycles and because
of the complexity of the system the choice is made to study if it is possible to
use them in a certain way to develop a controller for the 4ws4wd car. The idea
presented is inspired on an idea described in a paper of Borenstein [10]. In this
paper two two-wheeled unicycles are linked together using a compliant linkage.

The literature about tyre slip is substantial, but the literature linking
the tyre slip and the theory on wheeled mobile robots is limited. However,
slip is a not to be underestimated factor, due to the large working range (e.g.
large speed and acceleration) of the 4ws4wd car where the controller will be
developed for. The slip modelling suggested by Motte and Campion is only
suited to model linear tyre behavior, but in reality the tyre has a non-linear
tyre behavior (see appendix B). However the linear approach is a good step
in the right direction. Therefore the slip modelling suggested by Motte and
Campion will be discussed in this report.





Chapter 4

Wheeled mobile robot control

design

This chapter describes the general procedure for the development of a model for
a wheeled mobile robot and the control design. A result of the literature survey
is that the theory on wheeled mobile robots provides structured solutions to
describe a model and develop a controller for a WMR. The theory on WMR's
can be split up in a theory for wheeled mobile robots with wheels that have
no "slip" and wheeled mobile robots with wheels that do have "slip". Slip is a
non-avoidable e�ect since real tyres only can deliver forces if there is a di�erence
in direction/velocity of movement between the tyre and the ground. In section
4.1 the procedure to develop the model and a controller for a WMR without
tyre slip will be described. In section 4.2 this procedure is used to develop a
controller for a 1DOF car without slip. In section 4.3 the procedure to develop
the model and a controller for a WMR with slip will be described. Finally, the
procedure of section 4.3 is used to develop a controller for a 1DOF car with tyre
slip.

4.1 Theory on wheeled mobile robots

The focus in this report is on the modelling of WMR's with conventional steering
wheels and �xed wheels (e.g. front and rear wheels of a car). The theory on
wheeled mobile robot discussed is rewritten for these type of WMR's.
The �rst step is to de�ne the coordinate-system(s). In �gure 4.1 the local and
the global coordinate systems are illustrated.
An orthogonal rotation matrix called R(θ) is introduced to switch between the
velocity (and acceleration) vectors of the global and local axis systems.

R(θ) =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 (4.1)

where θ is the orientation angle of the car.
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Figure 4.1: Coordinate de�nition

The matrix R(θ) is de�ned so that: ẋl

ẏl

θ̇

 = R(θ)ξ̇ where ξ =

 x
y
θ

 (4.2)

As stated before, a wheel has two important constraints; The slip constraint,
which limits the movability in the horizontal plane and the roll constraint, which
relates the rotation of the wheels to the forward speed of the wheels. Both
constraints are de�ned relative to the local coordinate system and translated to
the global coordinate system using the matrix R(θ).
The slip constraint restricts the movement in the lateral direction of a tyre.
This can be de�ned as [3]:(

sin(α + β) − cos(α + β) −L cos(β)
)
R(θ)ξ̇ = 0 (4.3)

where β is the steering angle, L is the distance from the local coordinate origin
of the car to the wheel, α is an angle that de�nes how the wheel is oriented at
the car, ϕ is the rotation of the wheel and r is the radius of the tyre. These
variables are illustrated in �gure 4.2.
The roll constraint de�nes that the forward velocity plus the rotation-velocity
of the tyre multiplied with the radius of the tyre is zero. This can be de�ned as
[3]: (

cos(α + β) sin(α + β) L sin(β)
)
R(θ)ξ̇ + rϕ̇ = 0 (4.4)

4.1.1 Model development using the theory on wheeled

mobile robots

The WMR's discussed in this report are equipped with Ncs conventional steering
wheels and Nf �xed wheels, so the total number of wheels is Nw = Ncs + Nf .
The WMR satis�es a set of m independent constraints [5]. The set of slip
constraints is:

C1R(θ)ξ̇ = 0 (4.5)
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Figure 4.2: Coordinate de�nition for the constraints

where C1 is a (Nwx3)-matrix. The set of roll constraints is:
J1R(θ)ξ̇ + J2ϕ̇ = 0 (4.6)

where J1 is a (Nwx3)-matrix and J2 is a (NwxNw)-matrix.

Figure 4.3: Bicycle with one conventional steering wheel and one �xed wheel.

As an example, the constraints of a bicycle with one conventional steering wheel
and one �xed wheel (�gure 4.3) will be determined and written in the standard
form.
The front conventional steering wheel and the rear �xed wheel both have two
constraints. To obtain these constraints from the general form (4.3) - (4.4), α,
L and β have to be de�ned. For the front wheel α=0, L=L and β=β1. For the
rear wheel α=π, L=L and β=0. The set of slip constraints now is (4.5):

C1R(θ)ξ̇ =
(

sin(β1) − cos(β1) −L cos(β1)
0 1 −L

)
R(θ)ξ̇ = 0 (4.7)
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The total set of roll constraints now is (4.6):

J1R(θ)ξ̇ +J2ϕ̇ =
(

cos(β1) sin(β1) L sin(β1)
−1 0 0

)
R(θ)ξ̇ +

(
r 0
0 r

)
ϕ̇ = 0

(4.8)
The following step is to introduce the variable q, which is the set of n-
con�guration variables, which are the position coordinates ξ, the steering angle
coordinates of the conventional steering wheels β and the rotation angles coor-
dinates of the wheels ϕ, so:

q =

 ξ
β
ϕ

 (4.9)

Therefore, the system of constraints (4.5) - (4.6) can be written in a more general
form:

AT (q)q̇ = 0 (4.10)
where AT (q) is a mxn matrix:

AT (q) =
(

C1R(θ) 0 0
J1R(θ) 0 J2

)
(4.11)

Before the kinematic and dynamic models can be de�ned, it is important to state
how the degree of steerability (δs), which is the number of degrees of freedom
that can manipulated without re-orienting the conventional steering wheels, and
the degree of mobility (δm), which is the number of independent conventional
steering wheels, are de�ned.
The degree of mobility is [8]:

δm = dim(N [C1]) = 3− rank[C1] (4.12)
where dim(N [C1]) is the dimension of the null-space of C1. So the dimension of
the null-space of C1 is equal to the degree of mobility. This can be explained by
looking at what C1 e�ectively is. The matrix C1 de�nes the mobility limitations
of the system in the horizontal plane, so the possible movements of the system
are hidden in the null-space of C1. These possible movements are the mobility
of the system. For the bicycle with one conventional steering wheel and one
�xed wheel, the C1 matrix is de�ned in (4.7). The rank of this matrix is equal
to two, so the degree of mobility is one.
The degree of steerability is [8]:

δs = rank[C1(β)] (4.13)
where C1(β) is the part of the C1 matrix constructed from the constraints for
the conventional steering wheels. The C1(β) matrix for the bicycle with one
conventional steering wheel and one �xed wheel is de�ned as:

C1(β) =
(

sin(β1) − cos(β1) −L cos(β1)
) (4.14)

Therefore, the degree of steerability is one. Concluding, the bicycle with one
�xed and one conventional steering wheel is a so called (1,1)-WMR.
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The most simple model for a WMR is the posture kinematic model, so
therefore this is the �rst model to derive. The posture kinematic model is a
model that describes the motion of the robot in the horizontal plane, without
describing all evolutions of the con�guration variables. The most important
matrix for this model is the C1 matrix, because C1 describes the limitation on
the coordinates velocities in the horizontal plane (ẋ, ẏ, θ̇). The matrices J1 and
J2 are not relevant for the posture kinematic model, because J1 in combination
with the J2 matrix (4.6) describes the relation between the posture coordinates
and the wheel rotation coordinates, which aren't posture coordinates.
The following step is to de�ne a matrix Σ(β), which is a (3xδm) matrix where
the columns form a basis of the null-space of C1, so C1Σ(β) = 0.
Using this de�nition it is possible to rewrite (4.5) as:

R(θ)ξ̇ = Σ(β)ηa (4.15)
so

ξ̇ = RT (θ)Σ(β)ηa (4.16)
where ηa is an input-vector of dimension δm with generalized velocities. Now
the posture kinematic model is almost known. It is however desired that the
posture kinematic model is a linear system with respect to the inputs. The
steering angles are also an input, so the system is not a linear system with
respect to the inputs, because of the possible nonlinearities in β in Σ(β). For
this reason the extra di�erential equation β̇ = ζ that de�nes the movement of
the steering angles is added. So the posture kinematic model is:(

ξ̇

β̇

)
=
(

RT (θ)Σ(β) 0
0 I

)(
ηa

ζ

)
(4.17)

The following step is to �nd the con�guration kinematic model, which is the
posture kinematic model expanded with the description of the wheel rotation
variables. The description is determined using (4.6) and (4.15).

ϕ̇ = −J−1
2 J1R(θ)ξ̇ = −J−1

2 J1Σ(β)ηa (4.18)
The con�guration kinematic model is:

q̇ =

 ξ̇

β̇
ϕ̇

 =

 RT (θ)Σ(β) 0
0 I

−J−1
2 J1Σ(β) 0

( ηa

ζ

)
= S(q)η (4.19)

where q are the con�guration coordinates and η is the total generalized velocities
input of dimension δm + δs.
Looking at (4.10) and (4.19) the conclusion is that

AT (q)S(q) = 0 (4.20)
if η 6= 0. The statement AT (q)S(q) = 0 is important for the theory on wheeled
mobile robots as will be explained later on.
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A WMR with �xed wheels and/or conventional steering wheels is equipped with
motors that can orient and rotate the wheels, so in total there are two "types"
of torques; steering torques (τs) and driving torques (τd).
The coupling between all con�guration coordinates, generalized velocities and
torques of the motors is made in the con�guration dynamic model. An extra
dynamic equation that links the torque inputs to the movement of the con�g-
uration coordinates is needed. This extra dynamic equation is the di�erential
equation describing a mechanical system, which has the following standard form:

M(q)q̈ = C(q, q̇) + F + B(q)τ (4.21)
where C(q, q̇) is the matrix constructed by coriolis, centrifugal, gravity and
resistant torques, M(q) is the inertia matrix, τ is the vector of input torques,
B(q) is a matrix that relates the input torques to the generalized coordinates
and F is the total generalized force vector.
The force F in this case consists of constraint forces, which are the forces that
ensure that the constraints are satis�ed. The power for these forces is equal to
zero for any motion satisfying the constraints [4], so:

AT (q)q̇ = 0 → FT q̇ = 0 (4.22)
This implies that a m-vector (A is a (nxm) matrix) exists, called the 'Lagrange
multipliers vector' λ so

F = A(q)λ (4.23)
The system is now completely described by the con�guration kinematic model
(q̇ = S(q)η) and the di�erential equation. Because of (4.20) it is possible to
eliminate the Lagrange forces in the di�erential equation by left-multiplying the
equation with ST (q):

ST (q)M(q)q̈ = ST (q){C(q, q̇) + B(q)τ} (4.24)
Using the con�guration kinematic model and the derivative of the con�guration
kinematic model, which is q̈ = Ṡ(q)η + S(q)η̇, the con�guration dynamic model
can be written as:(

q̇
η̇

)
=
(

S(q)η
{ST M(q)S(q)}−1ST (q){−M(q)Ṡ(q, q̇)η + C(q, q̇) + B(q)τ}

)
(4.25)

where q are the con�guration variables and η is the total generalized velocities
vector. A complete model, describing the relation between the con�guration
variables and the real inputs (the torques of the steering and driving motors),
is available now.

The con�guration dynamic model is feedback equivalent (by a static state
feedback) to the following system:

q̇ = S(q)η
η̇ = ν

(4.26)
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with
τ = {ST (q)B(q)}+{ST (q){M(q)S(q)ν + M(q)Ṡ(q, q̇)η − C(q, q̇)}} (4.27)

where the superscript + stands for the pseudo inverse and ν is an arbitrary
(reference) input. The pseudo inverse of ST (q)B(q) is calculated instead of the
"normal" inverse, because ST (q)B(q) can be a non-square matrix. This is for
example the case if the WMR is "overactuated". An example of this is a bicycle
with two conventional steering wheels, both having a steering and driving
motor. E�ectively only one driving motor is needed to move the WMR, because
the mobility of the WMR is one. The matrix ST (q)B(q) will be non-square if
two driving motors are attached to the bicycle. Using the pseudo-inverse, the
total driving force will be distributed between the two driving motors.

The feedback equivalent model of the con�guration dynamic model (4.26) can
be rewritten by choosing only the posture coordinates (q1 = [ξ, β], dimension
3 + δs). This model is then called the posture dynamic model.

q̇1 = S1(q)η
η̇ = ν

(4.28)

where S1(q1) is the sub-matrix of S(q) that is related to the q1 variables.

4.1.2 Controller development for a wheeled mobile robot

The main goal of the controller is to let the center of the WMR track a
certain reference trajectory ([xref , yref , θref ]). Also, it is desired that the
reference steering angles βref are tracked if they are given. It is investigated if
a nonlinear control method that output linearizes the (sub)system can be used.
The advantage of this is that the normal linear control techniques can be used
for the linearized system.
All type of WMR's discussed in this report are not full state linearizable by
a smooth static time-invariant state feedback. The largest (sub)system of the
posture dynamic model linearizable by a smooth static state feedback is of
dimension 2(δm+δs). The nonlinear subsystem that remains next to the linear
subsystem is of dimension 3 − δm. A feedback controller will be developed for
the linearized (sub)system [4], [8].

This �rst step in the procedure to derive a output linearized system is to select
(δm + δs) linearizing output functions z1(q1).

z1 = h(x, y, θ, β) = h(q1) (4.29)
Next, this function is di�erentiated with respect to time:

z2 = ż1 =
∂h

∂q1
q̇1 =

∂h

∂q1
S1(q1)η = H(q1)η (4.30)

where H(q1) is a (δm+δs)x(δm+δs) matrix. This function is again di�erentiated
with respect to time:

ż2 = z̈1 = H(q1)η̇ + Ḣη = H(q1)ν + b(q1, η) (4.31)
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where ν is de�ned according to (4.26).
Summarizing, the following change of coordinates is used:

z1 = h(q1)
z2 = H(q1)η
z3 = k(q1)

(4.32)

where k(q1) is de�ned so that the mapping

q1 =


x
y
θ
β

→
(

h(q1)
k(q1)

)
=
(

z1

z3

)
(4.33)

is a di�eomorphism on Rδs+3 (δs + 3 = dimension(q1)), which means that the
map between both the coordinate systems is di�erentiable and has a di�eren-
tiable inverse [9]. Finally ż3 can be de�ned:

ż3 =
∂k

∂q1
q̇1 =

∂k

∂q1
S1(q1)η =

∂k

∂q1
S1(q1)H(q1)−1z2 = Q(q1)z2 (4.34)

The inverse of the matrix H(q1) in�uences the nonlinear subsystem of dimension
3 − δm as can be concluded from (4.34). Therefore, the output coordinates
(z1) have to be chosen so that the inverse of H(q1) always exists, or that the
singularity is never reached in the working range of the WMR.
All the variables from the model (4.38) are de�ned, so the last step is to de�ne
ν so that a linear system, ż2 = w, remains.

ν = H(q1)−1(w − b(q1, η)) (4.35)
where w is the new input. The goal of the whole procedure is to track the co-
ordinates [ξref , βref ]. It is not possible to track these variables directly because
the dimension of [ξref , βref ] is larger than the dimension of z1. Therefore, the
reference variables have to be rewritten in a reference variable z1ref using (4.29).
A solution for the input w, which ensures that the error in z1 and z2 exponen-
tially converge to zero, is:

w = z̈1ref −KpT (z1 − z1ref )−KvT (ż1 − ż1ref ) (4.36)
where KpT and KvT are two positive de�nite matrices. The total torque input
is a combination of (4.36) and (4.27).

τ = {ST (q)B(q)}+{ST (q){M(q)S(q)H−1(w−b(q1, η))+M(q)Ṡ(q, q̇)η−C(q, q̇)}}
(4.37)

The end result of the procedure is the following system:
ż1 = z2

ż2 = b + H(z)ν = w
ż3 = Q(q1)z2

(4.38)

A schematic overview of the system is plotted in �gure 4.4.
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Figure 4.4: Schematic overview

4.2 Case study - one degree of freedom example
- part 1

In this paragraph, a simple example of a car that is capable of driving in one
direction (forwards-backwards) will be studied to clarify the procedure. The
model and the controller for a front wheel driven 1DOF car without tyre slip
will be developed using the theory on wheeled mobile robots.

Figure 4.5: Car with front-wheel drive

The 1DOF-Car is a car that can accelerate and brake along a straight line (�gure
4.5). The two con�guration variables (n=2) are the position x and the rotation
of the wheel ϕ. The local and global coordinates are equal, so the R(θ) matrix
is 1.

Wheeled mobile robot theory - 1DOF model
The con�guration coordinates q are:

q =
(

x
ϕ

)
(4.39)

The car is a 1DOF car, so only one constraint (m=1), which is the roll constraint,
consists. Using (4.4), this constraint is:

ẋ + ϕ̇r = 0 (4.40)
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which is in the standard form AT q̇ = 0:

( 1 r )
(

ẋ
ϕ̇

)
= 0 (4.41)

The procedure to determine S for the 1DOF car is a bit di�erent from the
method for a normal 3DOF WMR. Therefore, a trivial procedure instead of the
formal procedure will be used to determine the S of the 1DOF car.
It is known that AT S = 0 [5] and it is clear that the mobility of the 1DOF car
is one, because the only movement possible is in the x-direction. The result is
that a possible solution for S is:

S =
(

1
− 1

r

)
(4.42)

So the con�guration kinematic model is:

q̇ = Sη =
(

1
− 1

r

)
η (4.43)

which is a model that looks pretty straightforward. The �rst line describes that
the forward velocity ẋ is equal to the velocity input η. The second line describes
that the rotation velocity of the wheel is equal to the negative velocity input
divided by the radius. So the rotation velocity of the wheel is also equal to
the negative forward velocity ẋ divided by the radius, which is exactly the roll
constraint from which the model is derived (4.40).
The desired model is the con�guration dynamic model. An extra dynamic
equation (4.21) has to be introduced to get from the con�guration kinematic
model to the con�guration dynamic model. It is assumed that the car has no
external disturbances, such as rolling friction and air resistance. A driving motor
is attached to the front wheel. This motor accelerates the wheel in negative ϕ
direction if the torque is positive. The total generalized force vector consists of
constraint forces (4.23).
The extra equation can now be de�ned as:

Mq̈ = F + C + Bτ =(
m o
o Iϕ

)(
ẍ
ϕ̈

)
=
(

1
r

)
λ +

(
0
0

)
+
(

0
−1

)
τ

(4.44)

where m is the mass of the car, λ is the "Lagrange multiplier" and Iϕ is the
rotation inertia of the wheel. The conclusion is that the Lagrange multiplier is
equal to the force in x-direction Fx.
The matrices that are needed to introduce the con�guration dynamic model
(4.25) are M , Ṡ, C and B. S is a time-independent vector here, so Ṡ = 0.
Hence, the resulting con�guration dynamic model is:

q̇ =
(

1
1
−r

)
η

η̇ = r
mr2+Iϕ

τ
(4.45)

In this case, the posture is equal to the position of the center of the car (x), so
the feedback equivalent of the posture dynamic model is:

q̇1 = η
η̇ = ν

(4.46)
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where the used torque input is:

τ = (m +
Iϕ

r2
)νr (4.47)

1DOF car controller
For this case it is easy to develop a controller, but the formal approach of section
4.1.2 will be followed to explain the procedure. It is desired that the center of
the car follows a speci�ed reference trajectory (xref ), so the output function z1

is equal to x. The variable z2 is equal to ẋ, which is equal to η, so H is 1 for
this 1DOF system. The variable ż2 is equal to η̇, so b = 0. The variable z3 is
equal to 0, because z1 is equal to the full posture.
Therefore, the total linearized system, using that

ν = H−1(w − b) = w (4.48)
is:

ż1 = z2

ż2 = w
(4.49)

So the torque input of the system is:

τ = (m +
Iϕ

r2
)wr (4.50)

where w is chosen as:
w = z̈1ref −Kp(z1 − z1ref )−Kv(ż1 − ż1ref ) (4.51)

where Kp and Kv are two gains. The variable z1ref is equal to xref , because z1 is
x. If the system is ideal system, w = z̈1ref is enough to assure a perfect tracking
if no starting errors are present. However, in reality there can be disturbances,
starting errors or parameter uncertainties. Therefore, a PD feedback loop is
added to the input w.

4.3 Wheeled mobile robot extended with tyre
slip

The main di�erence between wheeled mobile robots with and without tyre slip
are the generalized forces, which are no longer constraint forces, but real contact
forces. The constraints are violated because of the tyre slip. This is the reason
why a reformulation of the theory on wheeled mobile robot that is described is
needed.

4.3.1 Model extended with tyre slip

An ideal wheeled mobile robot has no tyre slip, but reality is di�erent (see
appendix B), because a real tyre can only deliver forces if there is a certain
amount of slip. The velocity constraints are violated as a result of the slip,
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so AT (q)q̇ 6= 0. The slip results in interaction forces, which have a dissipative
nature [4]. The assumption is made that the power of interaction forces (W )
is a negative de�nite function of the generalized slip velocities [4]. A negative
de�nite function has the standard form of xT Ux ≤ 0. The generalized slip
velocities here are AT (q)q̇. This results in the following equation for the power
of interaction forces:

W = −1
ε
[q̇T A(q)]K(q, q̇)[AT (q)q̇] ≤ 0 (4.52)

where ε is a small normalization parameter (ε ≥ 0) and K(q, q̇) is a positive def-
inite m x m matrix to ensure that (4.52) is a negative de�nite function. K(q, q̇)
is for instance constructed by tyre parameters, such as cornering sti�ness.
Power can be described as a force multiplied by a velocity, so it is possible to
write (4.52) as:

W = q̇T F so F = −1
ε
A(q)K(q, q̇)AT (q)q̇ (4.53)

where F is the generalized force.
The following procedure is set-up to determine the unknown matrix K. A nor-
mal tyre can generate forces in both the lateral and longitudinal direction of the
tyre (see appendix B). Both e�ects are decoupled in the linear approximation,
so the forces for every tyre i of the WMR can be expressed as [4]:(

Flat i

Flong i

)
=

1
Vi

(
D 0
0 G

)(
Vlat i

Vlong i − rϕ̇i

)
(4.54)

where Vi is the absolute velocity of the center of the tyre, Vlat i and Vlong i

are the velocities in respectively lateral and longitudinal direction of the tyre.
D = D0

ε is the cornering sti�ness and G = G0
ε is the slip sti�ness.

The lateral velocity (Vlat i) of the tyre is zero if the slip constraint is not violated
("ideal" case). The expression Vlong i − rϕ̇i is zero if the roll constraint is not
violated. However, in the current situation the constraints have to be violated to
develop a tyre force. Both the lateral and longitudinal velocity can be expressed
as a combination of the generalized slip velocities.(

Vlat i

Vlong i − rϕ̇i

)
= Li(q)AT (q)q̇ (4.55)

where Li(q) is a matrix that transforms the slip velocities to the longitudinal
and the lateral velocity components.
The generalized force is also a combination of the longitudinal and lateral force
of the tyre. The lateral force is pointed in the direction of the lateral slip and the
longitudinal force is pointed in the direction of the longitudinal slip. It is now
possible to de�ne the generalized force, using the same principle as in (4.55).

Fi = −A(q)LT
i (q)

(
Flat i

Flong i

)
(4.56)

If (4.54), (4.55) and (4.56) are combined, the generalized force can be expressed
as:

Fi = −1
ε
A(q)LT

i (q)
1
Vi

(
D0 0
0 G0

)
Li(q)AT (q)q̇ (4.57)
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Using (4.53), the expression for Ki is.

Ki = LT
i (q)

1
Vi

(
D0 0
0 G0

)
Li(q) (4.58)

The total generalized force (4.53) is the summation of all the generalized forces
of the tyres (4.57). The only di�erence between the forces (Fi) of each tyre
is the Ki matrix, so the only di�erence between the total and the separate
generalized forces is the K matrix. Therefore, K is the summation of the Ki's
of all the tyres.

Considering the above, the con�guration kinematic model expression (4.19)
is not valid anymore, because the constraints, on which the model is based,
are violated. Instead, a possible expression for the con�guration coordinate
velocity vector is:

q̇ = S(q)η + A(q)εµ (4.59)
where µ is an m-vector describing the importance of the violation of the con-
straints, because if (4.59) is pre-multiplied by AT (q) and if (4.20) is used,(4.59)
becomes:

AT (q)q̇ = AT (q)A(q)εµ (4.60)
Equation (4.20) can still be used, because the matrices A and S are not changed.
Equation (4.59) is equal to a standard no-slip WMR system if ε is zero, which
is expected, because the slip is zero if ε is zero.
Using (4.60) and (4.53), the total generalized force can be written as:

F = −A(q)K(q, q̇)AT (q)A(q)µ (4.61)
All dynamic models describing a mechanical model, so also the dynamical model
for a wheeled mobile robot can be written in a standard form (4.21). The
generalized force vector F is no longer equal to F = A(q)λ, but is equal to
(4.61). Furthermore the rest of the matrices are equal to the matrices of the
wheeled mobile robot without tyre slip.
The vectors q̇ and q̈ in (4.21) can be replaced by (4.59) and the time derivative
of (4.59) respectively.

M(q)(S(q)η̇ + Ṡ(q)η + A(q)εµ̇ + Ȧ(q)εµ) =
C(q, S(q)η + A(q)εµ)−A(q)K(q, S(q)η + A(q)εµ)AT (q)A(q)µ + B(q)τ

(4.62)
If the above system is pre-multiplied by the matrix [S(q)A(q)]T , the following
equation is obtained:

J(q)
(

η̇
εµ̇

)
=
(

ST (q)
AT (q)

)
[C(q, Sη + Aεµ) + B(q)τ −M(q)(Ṡη + Ȧεµ)]+(

0
−AT (q)A(q)K(q, S(q)η + A(q)εµ)AT (q)A(q)µ

)
(4.63)
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where J =
(

ST (q)M(q)S(q) ST (q)M(q)A(q)
AT (q)M(q)S(q) AT (q)M(q)A(q)

)
Using (4.59) and (4.63), front multiplied by J−1, the resulting system
can be written in the so called singular perturbation form, which is:

q̇ = S(q)η + A(q)εµ
η̇ = fo(q, η) + εf1(q, η, µ) + ε2f2(q, η, µ) + B1(q)τ −R12A

T AKAT Aµ
εµ̇ = go(q, η) + εg1(q, η, µ) + ε2g2(q, η, µ) + B2(q)τ −R22A

T AKAT Aµ

(4.64)
If these equations are compared to the equations for a wheeled mobile robot
without tyre slip (4.25), the conclusion is that a third equation is added to the
system. This is an equation describing the dynamics of the variable µ, which is
the so called fast variable. Notice that µ is a fast variable because ε is a small
variable. The variables µ and µ̇ are multiplied by ε or K (K = K(ε, ..), using
that G0 = εG and D0 = εD) in all the three equations, so the variable can
change fast in time without having a lot of in�uence on the other so called slow
variables of the system.

4.3.2 Controller with tyre slip compensation

The slow manifold approach [5] is used for the development of the controller.
The idea behind the approach is to de�ne an invariant and attractive "slow
manifold" on which the system is output linearizable. This assures that the
results are comparable with the results of the controller without tyre slip com-
pensation.
The �rst step is to transform the model in singular perturbation form to the
slow manifold. A continuous feedback law is introduced: τε(q(t), η(t), t). If
ε = 0, then

µ = H0(q, η, τε) (4.65)
is the unique solution of:

0 = go(q, η) + B2(q)τε −R22A
T AKAT Aµ (4.66)

which is the last equation of (4.64) for ε = 0. Solution (4.65) is a so called
"integral manifold" for system (4.64) with ε = 0. A manifold can be described
as a kind of space that locally looks like an "ordinary" Euclidean/Cartesian
space, which is often denoted as Rn. A simple example is a sphere, which
in total is not a plane, but small patches of the sphere are "homeomorph" to
patches of the Euclidean plane.
Equation (4.65) is called an integral manifold of system (4.64) with ε = 0,
because a trajectory that starts in the manifold will remain in the manifold for
all future time. Consequently the motion on the manifold is described by:

q̇ = S(q)η
η̇ = fo(q, η) + B1(q)τε −R12A

T AKAT AHo
(4.67)

Start intermezzo
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It is important to give a short introduction of Tikhonov's theorem [5]
�rst. A system in singular perturbation form has the following standard form:

ẋ = f(t, x, z, ε)
εż = g(t, x, z, ε) (4.68)

where the �rst equation describes the slow dynamics and the second equation
describes the fast dynamics. The main idea is to approximate x using the
solution of the reduced problem, which is:

˙̄x = f(t, x̄, h(t, x̄), 0) x̄(0) = x0 (4.69)
where z̄ = h(t, x̄) is the solution of 0 = g(t, x, z, 0). For small values of ε it
can be expected that x̄ is a good approximation of x. However it cannot be
expected directly that z̄ is a good approximation of z. The di�erence between
z and z̄ is expressed as: ẑ = z − z̄. Now Tikhonov introduces the following so
called "boundary system" for a �xed (t0, x0).

dẑ

dτ
= g(t0, x0, ẑ + h(t0, x0), 0), ẑ(0) = z0 − h(0, x0) τ = t/ε (4.70)

The boundary layer describes the fast dynamics, disregarding variation in the
slow variables (t, x), since of τ = t/ε. Tikhonov's theorem uses that ẑ = 0 is an
exponentially stable equilibrium of the boundary layer problem. This condition
implies that limτ→+∞ẑ(τ) = 0. If this is used,

x(t, ε) = x̄(t) + O(ε)
z(t, ε) = h(t, x̄(t)) + ẑ(τ) + O(ε) (4.71)

where O(ε) stands for the order of ε, i.e. when ε → 0 then O(ε) → 0.

End intermezzo

The following step is to use Tikhonov's theorem for (4.64). If ε > 0 and
the same feedback control law is used for the complete system instead of the
reduced system, then using Tikhonov's theorem it is possible to conclude that
trajectories of (4.64) starting in an O(ε) neighborhood of (4.65) will remain in
an O(ε) neighborhood of (4.65) [5]. This means that the total error at the end
will be bounded and quite small if ε is small.

It also follows that for any control law τε(t) = τε(q, η, t), ε1 > 0 exists
and a function Hε(q, η, τε), that de�nes a slow manifold (µ = Hε(q, η, τε)), for
all ε ∈ [0, ε1] exists [5].
The dynamics on this manifold are described by:

q̇ = S(q)η + A(q)εHε

η̇ = fo(q, η) + εf1(q, η,Hε) + ε2f2(q, η, Hε) + B1(q)τε −R12A
T AKAT AHε

(4.72)
The dynamics are only depending on the slow variables q, η and t. This is the
reason why the integral manifold µ = Hε(q, η, τε) is called a slow manifold for
(4.64).
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The slow manifold is, independently of the choice of the feedback control law
(τε), attractive for su�ciently small values of ε, provided that η remains bounded
[5]. So if the system is not to far from the ideal case (the constraints are satis�ed)
and if the start is not to far from the slow manifold, the system will converge:

lim
t→∞

(µ−Hε) = 0 (4.73)
The main goal of the controller for the wheeled mobile robot with tyre slip is
to let the center of the WMR track a certain reference trajectory ([xref , yref ,
θref ]). It is also desired that the reference steering angles βref are tracked if they
are given. The goal is to �rst output linearize the system on the corresponding
slow manifold using the right output coordinates. A feedback controller will
consequently be developed for this linearized system [5].
All type of WMR's discussed in this report are not full state output linearizable
on the corresponding slow manifold. The largest (sub)system of the posture
dynamic model output linearizable is of dimension 2(δm+δs). The nonlinear
subsystem that remains next to the linear subsystem is of dimension 3− δm.
The following (δm+δs) output functions (z1) can be de�ned.

z1 = h(x, y, θ, β) = h(q1) (4.74)
The �rst derivative of this function is equal to:

z2 = ż1 = Ssη + Asεµ (4.75)
where Ss and As are determined in the similar way as H (4.30). The nonlinear
subsystem z3 is de�ned in the similar way as for the wheeled mobile robot
without tyre slip (z3 = k(q1)). The desired linear subsystem and the nonlinear
subsystem on the manifold are (see also (4.38)).

ż1 = z2

ż2 = Ṡsη + ȦsεHε + Ssη̇ + AsεḢε = w
ż3 = Q1z2 + Q2

(4.76)

where ż3 is:
ż3 = ∂k

∂q1
q̇1 = ∂k

∂q1
(S1η + A1εHε) =

∂k
∂q1

(S1(S−1
s z2 − S−1

s AsεHε) + A1εHε)
(4.77)

where S1 and A1 are sub-matrices of S and A, so that (q1 = S1η + A1εHε) and
Q1 and Q2 are

Q1 = [
∂k

∂q1
S1]S−1

s (4.78)

Q2 =
∂k

∂q1
(−S1(S−1

s AsεHε) + A1εHε) (4.79)
where Q1 is equal to Q from the wheeled mobile robot without tyre slip. Q2

is determined by the variable εHε, so Q2 is zero if ε is zero, so the variable ż3

will convert to the variable ż3 for the wheeled mobile robot without slip if ε is
zero. Q2 will also be zero if Hε is zero, which is the case when the tyre has no
absolute velocity. The new input w, similar to (4.36), is:

w = z̈1ref −KpT (z1 − z1ref )−KvT (Ss(q)η + As(q)εHε − ż1ref ) (4.80)
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where KpT and KvT are two positive de�nite matrices and Ss(q)η+As(q)εHε is
equal to ż1 on the slow manifold. The reference z1ref is determined by rewriting
the reference posture variables using the output linearizing coordinate(s) z1.
In the slow manifold approach, it is determined that a τε and a Hε exist, but
they are still unknown. To construct these variables a Taylor series expansion
is made:

τε = τ0 + ετ1 + ε2τ2 + ...
Hε = H0 + εH1 + ε2H2 + ...

(4.81)

where
τu = 1

u! (
∂τε

∂εu )ε=0

Hu = 1
u! (

∂Hε

∂εu )ε=0
(4.82)

These expressions of τε and Hε can be inserted into the linearization condition,
which is the second equation of (4.76), and in the manifold condition, which is
the third equation of (4.64).
ż2 = z̈1 = Ṡs(q, η, Hε)η + Ȧs(q, η, Hε)εµ + Ss(q)η̇ + As(q)εḢε = w

εḢε = go(q, η) + εg1(q, η, Hε) + ε2g2(q, η, Hε) + B2(q)τε −R22A
T AKAT AHε

(4.83)
As a result of this for each power εu of ε there is a system of two equations lin-
early depending on τu and Hu, which can now be obtained solving the equations
(4.83).

• Determine H0 and τ0

To determine H0 and τ0, ε in (4.83) has to be set to zero. This results in
the following two equations:

Ṡs(q, η)η + Ss(q)fo(q, η) + Ss(q)B1(q)τ0 − Ss(q)R12A
T AKAT AH0 =

ÿr −KpT (y1 − yr)−KvT (Ss(q)η − ẏr)
0 = go(q, η) + B2(q)τ0 −R22A

T AKAT AH0

(4.84)
These are two algebraic equations with two unknowns, so it should be
possible to determine them. However, problems can arise if a combination
of matrices is singular, e.g. to determine τ0 the inverse of SsB1 is needed.

• Determine Hu and τu (u ≥ 1)
To determine Hu and τu �rst the equations (4.83) have to be di�erentiated
with respect to εu. After this ε has to be set to zero and the total has to
be divided by u!. This results in the following two equations:

Ṡs(q, η, Hu−1)η + Ȧs(q, η,Hu−1)Hu−1 + Ss(q)fu(q, η, Hu−1)+
Ss(q)B1(q)τu − Ss(q)R12A

T AKAT AHu + As(q)Ḣu−1 = −KvT As(q)Hu−1

Ḣu−1 = gu(q, η,Hu−1) + B2(q)τu −R22A
T AKAT AHu

(4.85)
These are two equations with two unknowns if Ḣu−1 is known. This is
true if it is stated that Ḣu−1 is the time derivative of the known variable
Hu−1. Again problems can arise with a combination of matrices that is
singular.
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4.4 Case study - one degree of freedom example
- part 2

In this paragraph, the model and the controller for the 1DOF car (�gure 4.5)
with tyre slip will de derived. The procedure up to the equation for the con�g-
uration kinematic model (4.43) is the same. From there on this method follows
the general procedure for a WRM with tyre slip.

WMR model extended with tyre slip - 1DOF
The con�guration kinematic model is known, so the �rst step is to introduce
an extra di�erential equation, which is equal to (4.44). The only di�erence is
the general force F , which is no longer equal to Aλ, but is determined by the
contact forces.(

m o
o Iϕ

)(
ẍ
ϕ̈

)
= F +

(
0
−1

)
τ (4.86)

where m is the mass of the car and Iϕ is the rotation inertia of the wheel.
The general procedure gives a formulation for the contact forces, which is F =
−AKAT Aµ. The model for a WMR with tyre slip can be written in the standard
form described by (4.64). To be able to write the model in this form a few steps
have to be taken. Given that the longitudinal tyre force is

Flong =
G0

ε

Vlong − rϕ̇

V
(4.87)

and using (4.55), the conclusion is that L = −1. Using this and (4.58), it is
possible to de�ne K for the 1DOF example:

K =
G0

V
(4.88)

After pre-multiplying (4.86) with
(

ST

AT

)
and substituting q̈ by(

S A
)( η̇

εµ̇

)
the dynamic model reduces to:

(
m + Iϕ

r2 m− Iϕ

m− Iϕ m + Iϕr2

)(
η̇
εµ̇

)
=
(

1
r
−r

)
τ +

(
0

−(1+r2)2G0
V

)
µ (4.89)

This is, rewritten in the standard form (4.64):

q̇ =
(

1
1
−r

)
η +

(
1
r

)
εµ

η̇ = rτ
Iϕ(1+r2) −

G0(−m+Iϕ)r2µ
V Iϕm

εµ̇ = −rτ
Iϕ(1+r2) −

G0(mr2+Iϕ)µ
V Iϕm

(4.90)

Comparing this with the con�guration dynamic model of the 1DOF car without
tyre slip (4.45), the conclusion is that tyre characteristics are added to the
equation (G0) and an extra dynamic equation of the fast variable µ is added.



4.4 Case study - one degree of freedom example - part 2 33

The system itself looks strange, because of the problems with the dimensions
(e.g. m+Iϕ). However the idea is here to see it as a "dimensionless" system.
If ε = 0 is implemented in (4.90) and if equation three of (4.90) is implemented
in equation two of (4.90), a system equivalent to the system of the 1DOF car
without tyre slip remains (4.45).

Controller with tyre slip compensation - 1DOF
The following step is to develop a controller for the system in singular pertur-
bation form using the theory from section 4.3.2. It is desired that the center of
the car follows a speci�ed reference trajectory (xref ), so the output function z1,
is equal to x. The derivative of z1 is ż1 = Ssη + Asεµ, is

ż1 = η + εµ (4.91)
so Ss = 1 and As = 1 and their time derivatives are zero. The variable z2 is
equal to ż1 and z3 = 0, because z1 is equal to the full posture.
The (desired) linear subsystem on the slow manifold (Hε) is:

ż1 = z2

ż2 = Ṡsη + ȦsεHε + Ssη̇ + AsεḢε = η̇ + εḢε = w
(4.92)

The linearizing condition and manifold condition (4.83) are:

z̈1 = η̇ + εḢε = w so rτε

Iϕ(1+r2) −
G0(−m+Iϕ)r2Hε

V Iϕm + εḢε = w

εḢε = −rτε

Iϕ(1+r2) −
G0(mr2+Iϕ)Hε

V Iϕm

(4.93)

where w = z̈1ref −Kp(z1 − z1ref )−Kv(η + εHε − ż1ref ).
The resulting system in state-space form is:

ż1 = z2

ż2 = w
(4.94)

Now the variables τε and Hε have to be determined. The �rst step is to derive τ0

and H0 using the procedure described in section 4.3.2. If ε = 0, the linearizing
condition and manifold condition are:

rτ0
Iϕ(1+r2) −

G0(−m+Iϕ)r2H0
V Iϕm = wp1

0 = −rτ0
Iϕ(1+r2) −

G0(mr2+Iϕ)H0
V Iϕm

(4.95)

where wp1 = z̈1ref −Kp(z1 − z1ref )−Kv(η − ż1ref ). Equation (4.95) is a pair
of algebraic equations that has a solution for τ0 and H0, which is:

τ0 = (m + Iϕ

r2 )wp1r

H0 = −wp1V m
(1+r2)G0

(4.96)

The variable τ0 shows already similarities with (4.50), which is obvious, because
τ0 is the part of the Taylor series expansion that remains if ε (zero slip).
The following step is to derive τ1 and H1. First the linearizing condition and the
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manifold condition have to be di�erentiated with respect to ε. By implementing
ε = 0, the two equations become:

rτ1
Iϕ(1+r2) −

G0(−m+Iϕ)r2H1
V Iϕm + Ḣ0 = −KvH0

Ḣ0 = −rτ1
Iϕ(1+r2) −

G0(mr2+Iϕ)H1
V Iϕm

(4.97)

where Ḣ0 is:

Ḣ0 = (−ẇp1V−wp1V̇ )m
(1+r2)G0

(4.98)

where
ẇp1 = (

...
z 1ref −Kp(ż1 |ε=0 −ż1ref ))−Kv(η̇ |ε=0 −z̈1ref ) =

(
...
z 1ref −Kp(η − ż1ref ))−Kv(−Kp(z1 − z1ref )−Kv(η − ż1ref ))) (4.99)

The solutions for τ1 and H1 are:

τ1 =
Kvwp1V m(mr2+Iϕ)

G0(1+r2)r + (wp1V̇ +ẇp1V )Iϕm
G0r = −KvH0r(m + Iϕ

r2 ) + (wp1V̇ +ẇp1V )Iϕm
G0r

H1 = −Kvwp1V 2m2

(1+r2)2G2
0

(4.100)
The following step is to derive τ2 and H2. First the linearizing condition and the
manifold condition have to be di�erentiated with respect to ε2. By implementing
ε = 0, the two equations become:

rτ2
Iϕ(1+r2) −

G0(−m+Iϕ)r2H2
V Iϕm + Ḣ1 = −KvH1

Ḣ1 = −rτ2
Iϕ(1+r2) −

G0(mr2+Iϕ)H2
V Iϕm

(4.101)

where Ḣ1 is:

Ḣ1 = Kv(−ẇp1V−2wp1V̇ )V m2

(1+r2)2G2
0

(4.102)

The solutions for τ2 and H2 are:

τ2 = K2
vwp1V 2m2(mr2+Iϕ)

G2
0(1+r2)2r

+ (2wp1V̇ +ẇp1V )KvIϕV m2

G2
0(1+r2)r

=

−KvH1r(m + Iϕ

r2 )−KvV Ḣ0
Iϕm
G0r −KvV̇ H0

Iϕm
G0r

H2 = −K2
vwp1V 3m3

(1+r2)3G3
0

(4.103)

This process can be continued an in�nite number of times with as a �nal result:
τε = τ0 + ετ1 + ε2τ2 + ...

= (m + Iϕ

r2 )(wp1 − εKvH0 − ε2KvH1 − ..)r+
ε

((wp1−εKvH0−..)V̇ +(ẇp1−εKvḢ0−..)V )Iϕm
G0r

(4.104)

Using that
w = z̈1ref −Kp(z1 − z1ref )−Kv(η + εHε − ż1ref )
wp1 = z̈1ref −Kp(z1 − z1ref )−Kv(η − ż1ref ) (4.105)
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it is possible to state that:
w = wp1 − εKv(H0 + εH1 + ..) = wp1 − εKvHε

ẇ = ẇp1 − εKv(Ḣ0 + εḢ1 + ..) = ẇp1 − εKvḢε
(4.106)

so τε is:
τε = (m + Iϕ

r2 )wr + ε
(wV̇ +ẇV )Iϕm

G0r
(4.107)

The conclusion is that the input τε is equal to the input τ of the 1DOF sys-
tem without slip (4.50) if ε = 0. The extra "slip compensation" term has the
dimension of a torque, but furthermore it is di�cult to give an interpretation
of the slip compensation term. This is mainly due to the fact that slip itself is
velocity-based and that torque is acceleration-based.

4.5 Summary

In this chapter, all necessary steps to develop the model and controller for a
wheeled mobile robot with and without tyre slip are described. A case study is
presented to show how to use the general procedures. In the case study a simple
system is described, so that it is still possible to understand what the procedure
consists of without losing the overview.
In the following chapters the concepts presented in this chapter will be used to
develop models and controllers for di�erent kind of wheeled mobile robots.





Chapter 5

Bicycle control design

The model of a (4ws4wd) car is quite complex. That is the reason why a
simpli�ed model for a car, which is called the bicycle model, can be used as a
starting point in the modelling process. The longitudinal dynamics of the car
are modelled in the bicycle model, but the lateral dynamics are simpli�ed. For
example, the two tyres at the front are combined to one tyre and the two tyres
at the rear are also combined to one tyre.
The car that will be studied consists of two wheels that both can be driven and
steered. The manoeuvrability properties are equal to �nal controllable 4ws4wd
car. The wheels of the car are subjected to velocity constraints, which are
restrictions on the movability.
As a start, a controller from the theory on wheeled mobile robots for a bicycle
(model) with two conventional steering wheels will be discussed. In section
5.2 another type of controller, with improved properties, will be developed. In
section 5.3 a �rst step will be made in the tuning process of the controller. From
here on it is assumed that the velocity constraints are violated during normal
driving, which will be described as slip. A model and a controller with slip
compensation will be developed for a bicycle model with tyre slip. Finally a
study will be made in section 5.7 to compare the controllers with and without
slip compensation.

5.1 Bicycle model and controller from the theory
on wheeled mobile robots

A model is made (appendix C) for the two wheel steered and two wheel driven
car using the theory on wheeled mobile robots.
It is desired that the center of the car will follow a speci�ed reference trajectory
(xref , yref , θref ). One of the possible control techniques to achieve this is out-
put linearization via static state feedback [8]. Such a controller for the bicycle
model is described in detail in appendix C. The controller has some drawbacks
looking at the requirements summed up in section 2.2.
The largest drawbacks of the controller are the singular steering angles. The
result is that not the whole speci�ed steering range of 700o can be controlled.
Another drawback is the incapability of the controller to distribute the torques
according to the vertical force on the wheels. This is desired, because of the
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huge amount of weight transfer during the trajectories in combination with the
knowledge that the controller later on will be used by a wheeled mobile robot
with normal tyres. Normal tyres cannot deliver an in�nite amount of force, but
can deliver a larger force, up to a certain limit, if the vertical load is increased.
Another drawback of the controller, using static state feedback, for a bicycle is
that the error in lateral direction is regulated using the front wheel. The rear
wheel is not used to compensate for the lateral error. However, this is a direct
result of the choice of the output coordinates.
The static state feedback controller for the bicycle model does not satisfy the
requirements summed up in section 2.2. Therefore, it is studied whether a
dynamic state feedback controller [8] is an option. The idea is to delay some
"combination of inputs" simultaneously a�ecting several outputs, via the addi-
tion of integrators, in order to enable other inputs to act in the meanwhile and
therefore hopefully to obtain an extended decoupled system. The conclusion
is that the drawbacks of the singular steering angles and the incapability to
distribute the torque according to the weight transfer remain.
It follows therefore that a non standard control method has to be constructed
because of the speci�c requirements of the controlled wheeled mobile robot.

5.2 Basic idea of the double unicycle controller

Figure 5.1: Bicycle model - Rewritten for double unicycle controller
The control method is inspired on the concept presented in the paper of Boren-
stein [10]. The basic idea of the double unicycle controller is to decentralize
the tracking problem, which is to let the center of the car (x, y, θ) follow the
reference trajectory (xref , yref , θref ). The concept is to convert the (reference)
position and (reference) orientation angle of the center to (reference) positions
xi, yi (i = f(ront), r(ear)) (�gure 5.1). The same procedure is followed to
calculate the �rst and second derivative of the (reference) positions of the
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corners.
The (reference) orientation angles of the wheels (θi) are calculated using the
kinematic approach, which means that the orientation angles are calculated
using the reference velocity signals of the front and the rear. This approach
guarantees that the wheels are oriented so that instantaneous center of rotation
(ICR �gure 6.1) is present during the total manoeuvre. The ICR represents
the point around which the WMR is moving, so it is the point where the
perpendiculars to the plane of each wheel (drawn from the center of the wheel)
are all concurrent. The (reference) positions, velocities and accelerations front
and rear are:

xf = x + L cos(θ)
xr = x− L cos(θ)
yf = y + L sin(θ)
yr = y − L sin(θ)
ẋf = ẋ− Lθ̇ sin(θ)
ẋr = ẋ + Lθ̇ sin(θ)
ẏf = ẏ + Lθ̇ cos(θ)
ẏr = ẏ − Lθ̇ cos(θ)
ẍf = ẍ− Lθ̈ sin(θ)− Lθ̇2 cos(θ)
ẍr = ẍ + Lθ̈ sin(θ) + Lθ̇2 cos(θ)
ÿf = ÿ + Lθ̈ cos(θ)− Lθ̇2 sin(θ)
ÿr = ÿ − Lθ̈ cos(θ) + Lθ̇2 sin(θ)

(5.1)

and,

θi = arctan(
ẏi

ẋi
) (5.2)

and θ̇i and θ̈i are the �rst and second time derivative of (5.2).
The system with some of the new coordinates is illustrated in �gure 5.1. Looking
at the front and the rear of the car, the conclusion is that the car consists
e�ectively of two systems, which both consists of a wheel that can be oriented
and driven. Both systems have their own reference signal (xiref , yiref , θiref )
and their own mass (mi), so e�ectively two control problems remain. A single
wheel that can be oriented and that can be driven independently is called a
unicycle [3] in the theory on wheeled mobile robots. A schematic overview that
illustrates the idea of the control method is plotted in �gure 5.2. At the top
of the schema the reference and measured position and orientation angle (plus
the derivatives) enter. These are translated to reference and measured positions
(plus the derivatives) of the front and the rear of the car using geometric model
information. The reference orientation angles of the wheels (plus the derivatives)
are calculated and are used as an input for the unicycle controller in combination
with the reference and measured position of the corner (plus the derivatives) and
the reference and measured orientation angle of the center (plus the derivatives).
Also other measured data, such as the velocity of the wheels, steering angles
etc, enter the unicycle controllers. The output of the controllers are four torques
that are sent to the motors of the car.
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Figure 5.2: Schematic overview double unicycle controller

5.2.1 Unicycle model

The �rst step, in developing the double unicycle controller, is to develop a
model for a single unicycle using the wheeled mobile theory presented in section
4.1.1. The unicycle with the relevant coordinates is illustrated in �gure 5.3.
The unicycle is a so called (2,0)-type WMR, so the degree of mobility is two
and the degree of steerability is zero. The degree of mobility is two, because
the unicycle can manipulate two "directions" directly. The unicycle can drive
forward and backward, which is the �rst possible movement. The unicycle can
also move around its vertical axis, which is the second possible movement.
The degree of steerability is zero, because no conventional steerable wheels are
mounted on the unicycle.

A unicycle has four con�guration variables (n=4), which are the position of the
center (xi and yi), the orientation angle θi and the rotation of the wheel ϕi.

qi =


xi

yi

θi

ϕi

 (5.3)

The unicycle described here consists of one wheel that is subject to two con-
straints (m=2), which are the roll and the slip constraint. The slip constraint
limits the movability of the system in the horizontal plane (ẏli = 0). The roll
constraint relates the rotation of the wheel to the forward speed of the wheel
(ẋli + rϕ̇ = 0).
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Figure 5.3: Unicycle model

The total procedure to develop the complete model for a unicycle is described
in appendix D. Here only the the resulting model(s) will be stated. The con�g-
uration dynamic model of a unicycle is:

ẋi

ẏi

θ̇i

ϕ̇i

η̇1i

η̇2i

 =



cos(θi)η1i

sin(θi)η1i

η2i
−η1i

ri
riτdi

mir2
i +Iϕi
τsi

Iθi


(5.4)

where mi is the mass of the unicycle, Iθi is the inertia of the unicycle around the
vertical axis, Iϕi

is the rotation inertia of the wheel, η1i is the forward velocity
of the unicycle, η2i is the orientation velocity of the unicycle, τdi is the driving
torque and τsi is the steering torque.
The driving motor is implemented so that a positive τdi results in an acceler-
ation in negative ϕi direction. The steering motor is implemented so that a
positive τsi results in an acceleration in positive θi direction.
The analogy with the con�guration dynamic model of the 1DOF car is visible.
The term for η̇1i is equal to the term for η̇ of the 1DOF car (4.45).
The system that is feedback equivalent (by static state feedback) to the con-
�guration dynamic model can be described using the following torque input
τi: (

τdi

τsi

)
=

(
ν1i(mir

2
i +Iϕi

)

ri

ν2iIθi

)
(5.5)

where νi = [ν1i ν2i] is a new system input. The posture dynamic model, which
is the part of the con�guration dynamic model related to the posture variables
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(q1i = [xi yi θi]) now becomes:
ẋi

ẏi

θ̇i

η̇1i

η̇2i

 =


cos(θi)η1i

sin(θi)η1i

η2i

ν1i

ν2i

 (5.6)

5.2.2 Unicycle controller

Looking at (5.6), the conclusion is that it is possible to directly have control of
the forward velocity of the unicycle and the orientation angle of the unicycle.
However, it is not easy to have a direct control of the position of the unicy-
cle, because there is not something as the forward position of the unicycle to
control. Therefore, a "master" controller should be introduced that transforms
the position errors in adapted (velocity) reference signals, which are used by
the "slave" controller that controls the velocity. The drawback of this is that
the total controller consists of more parameters, which is more di�cult to tune.
Therefore, the choice is made to design a controller that directly controls the
position and orientation angle of the unicycle. It is important to control the
orientation angle next to the position of the unicycle, since then the orientation
angle will always be as close as possible to the ideal orientation angle (5.2). This
is desired, because it is necessary that an ICR is present during the manoeuvre
and because the controller will be used for a car with real tyres that have slip.
Because of the tyre characteristic diagram of real tyres (appendix B), it is de-
sired to keep the orientation angle as close as possible to the ideal (kinematic)
steering angle, so that the so called slip angle is minimized.
The goal of the controller is to control the three variables (xi, yi and θi), but
only two inputs are available (steering and driving motor). Because of this the
control method, using output linearization, described in section 4.1.2, will be
used. The goal of the control design method is to get a controllable linear sub-
system with dimension 4 (ż1i, ż2i) and a nonlinear subsystem of dimension 1
(ż3i), which will result in a 5-dimensional system, which is also the dimension
of the posture dynamic model (5.6).
First, the linearizing output vector z1i is selected, which is of dimension 2 be-
cause of the degree of mobility. The vector z1i is constructed from the posture
variables (qi = [xi, yi, θi]) so that a controllable system will remain. The vari-
able z1i is of dimension 2, so e�ectively a point tracking problem remains. If the
point xi, yi would be chosen, then it is not possible to assure that the orientation
angle will be equal or convert to the reference orientation angle. However, if a
point in front of the wheels is chosen, it is assured that the variables xi, yi, θi

will convert to the reference variables if there is a forward velocity. A simple ex-
ample that can illustrate this concept is a truck with a trailer. The reference is
that the orientation angle between the truck and the trailer is zero. If the trailer
is oriented with a certain angle relative to the truck while the truck stands still,
this orientation angle will remain. However, if the truck starts driving forward
in a straight line, the orientation angle of the trailer (relative to the truck) will
convert to zero which is the reference signal. The chosen "virtual control point"
in front of the wheel, illustrated in �gure 5.4 [8], is:
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Figure 5.4: Output linearizing coordinates z1i.

z1i =
(

z1xi

z1yi

)
=
(

xi + ec cos(θi)
yi + ec sin(θi)

)
(5.7)

where ec is the distance between the center of the unicycle and the "virtual
control point" (z1i).
The variable z2i = ż1i, using (5.6) and (5.7), is:

z2i = ż1i = Hiηi =
(

cos(θi) −ec sin(θi)
sin(θi) ec cos(θi)

)(
η1i

η2i

)
(5.8)

The determinant of Hi is equal to ec. If ec is zero, this would mean that
z1i = [xi yi], so ż1xi = cos(θi)η1i and ż1yi = sin(θi)η1i. As a result of this ż1i

will not see the input η2i anymore.
Now z1i and z2i are known, but the nonlinear subsystem, which is z3i, is still
unknown. A possible choice for z3i is θi [8], because then the mapping between
q1i and [z1i, z3i] is a di�eomorphism on R3. The following step is to determine
ż2i and ż3i. Using that η̇i = νi, it is possible to de�ne ż2i as:

ż2i = z̈1i = Hiη̇i + Ḣiηi = Hiνi + bi (5.9)
where Hi is de�ned in (5.8) and bi is:

bi =
(
−η1iη2i sin(θi)− ecη

2
2i cos(θi)

η1iη2i cos(θi)− ecη
2
2i sin(θi)

)
(5.10)

ż3i is equal to:

ż3i =
∂θi

∂q1
q̇1 = Qi(q1i)z2i =

(
− sin(θi)

ec

cos(θi)
ec

)( z2xi

z2yi

)
(5.11)

where q̇1 is de�ned in (5.6). The variable ec will in�uence the behavior of the
nonlinear subsystem as can be concluded from (5.11).
Finally it is possible to state that z̈1i = wi using that:

νi = H−1
i (wi − bi) (5.12)
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where wi is a new to be de�ned input. It follows again that ec has to be a
non-zero number, because the determinant of Hi is equal to ec. The system
that remains is :

˙z1i = z2i

˙z2i = wi

˙z3i = Qi(q1i)z2i

(5.13)

where Qi is de�ned in (5.11). The new input wi is:

wi =
(

w1i

w2i

)
(5.14)

where a possible choice for wi is a PD controller with a feedforward acceleration
signal.

w1i = z̈1xiref −Kv(ż1xi − ż1xiref )−Kp(z1xi − z1xiref )
w2i = z̈1yiref −Kv(ż1yi − ż1yiref )−Kp(z1yi − z1yiref ) (5.15)

where Kp and Kp are gains and z1iref = [z1xiref z1yiref ] =
z1i(xiref , yiref , θiref ). The choice is made to apply the same control gains,
Kp and Kv, for both w1i and w2i in order to make the system behaviour inde-
pendent of the direction. If for example the control gains in w1i and w2i would
not be equal, the response on a position error in the longitudinal direction of
the wheel would be di�erent for orientation angles of respectively 0o and 90o.
The total torque input is now a combination of (5.12) and (5.5).(

τdi

τsi

)
=

(
(mir

2
i +Iϕi

)

ri
(cos(θi)w1i + sin(θi)w2i + ecη

2
2i

Iθi
(− sin(θi)

ec
w1i + cos(θi)

ec
w2i − η1iη2i

ec
)

)
(5.16)

The internal dynamics of this system are described by the last equation of
(5.13). It is interesting to determine the behaviour of these dynamics. While
driving, the the variable z3 is bounded as long as ec 6= 0, because the error in
z2 exponentially converges to zero (see 4.1.2). A useful procedure to check if
the internal dynamics are stable if the unicycle stands still is to verify if the
zero-dynamics [14], which are the dynamics that remain if the outputs are zero,
are stable.
The two relative degrees, which are loosely speaking the number of integrators
between the inputs (wi) and the de�ned outputs (z1i), of the system are two
[14], so the �rst step in the procedure to determine the zero-dynamics is to
implement that z1i=z2i=0. The input wi has to be zero to keep the variable z2i

zero. The zero-dynamics of the system are thus equal to ż3i = 0. Therefore, a
possible solution for z3i(t) is θit, which is a stable solution. The result is that
z1xi = xit+ec cos θit = 0, z1yi = yit+ec sin θit = 0 are solutions for the situation
that the unicycle stands still at the (0,0)-position of the virtual control point
z1i.

5.2.3 Double unicycle controller

The idea behind the double unicycle controller is to model the front and the rear
of the car as a unicycle. The unicycle controller is developed, but a small change
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has to be made to the controller. The motor that steers the wheels on the bicycle
only has to steer the wheels relative to the body of the bicycle. This angle is the
so called "steering angle" (βi). The steering angle is equal to the orientation
angle of the wheel minus the orientation angle of the car (βi = θi−θ). The total
steering torque (5.16) from the unicycle controller is equal to Iθi θ̈i. The steering
torque that has to be sent to the car is equal to Iθi β̈i. So a compensation term
of −Iθi

θ̈ has to be added to the calculated steering torque (5.16) to get the real
steering torque for the motors on the car.
The total torque, for each of the 2 wheels on the car, is:(

τdi

τsi

)
=

(
(mir

2
i +Iϕi

)

ri
(cos(θi)w1i + sin(θi)w2i + ecη

2
2i

Iθi
(− sin(θi)

ec
w1i + cos(θi)

ec
w2i − η1iη2i

ec
)− Iθi

θ̈

)
(5.17)

where θi (i = f, r) etc are illustrated in �gure 5.1 and wi is de�ned in (5.15).
Especially for a real car with tyres, it is important to implement a certain weight
transfer. This is important, because the more vertical force on a normal tyre,
the more lateral and longitudinal force a tyre can deliver (up to a certain limit).
For example, the rear driving torque has to be larger than the front driving
torque to obtain the maximum performance if a car is accelerating in longitu-
dinal direction.
This e�ect can be implemented in the double unicycle controller by implement-
ing a (varying) mass for the unicycles according to:

mf = 1
2m− hcarm

4Lg along

mr = 1
2m + hcarm

4Lg along
(5.18)

where hcar is the height of the center of gravity, g is the gravity constant, m
is the total mass of the car and along is the longitudinal acceleration (�gure
5.1). The orientation and the rotation inertia of the unicycle are equal to the
orientation and rotation inertia of the wheel(s) of the bicycle model.

5.3 Tuning the double unicycle controller

The control method of controlling a virtual point at a distance of ec in front of
the wheel introduces an extra controller parameter (ec) next to the controller
gains Kp and Kv. The PD controller with feedforward controls the position
of the virtual point (z1i, i = f, r). However, in reality it is more important
that the center of the bicycle has a good tracking behaviour. This is studied by
simulations with the con�guration dynamic model of a bicycle (appendix C).
Di�erent trajectories are driven using the double unicycle controller. The result
is that the tracking of the center is perfect when no starting errors and no slip
is present. The system is output feedback linearized, which in combination with
the correct feedforward signal of the reference trajectory, is the reason that the
tracking is perfect. Therefore, it is more interesting to see how the response of
the system is on position/starting errors.
It is desired that the response on a position error in lateral direction and the
response on a position error in longitudinal direction is equal in the time domain
because of the equal performance of the controllable 4ws4wd car in lateral and
longitudinal direction (see chapter 2). However, steering angle behavior, as a
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reaction on a lateral error, is also important at low velocities (< 2 km/h).
The relation between ec, the orientation angle, the forward velocity η1i and the
lateral error will be studied. This analysis is done using the idea that the car
is driving in positive x direction with an orientation angle of zero. If feedback
is used, then the PD controller will cause the car to react on an error in lateral
direction. The input w2i will have the most in�uence on the dynamics, especially
at orientation angles close to the reference orientation angles of zero (see e.g.
(5.17)). To get an insight in the orientation angle dynamics the (open loop)
transfer function between the input w2i and θi, (linearized) around θi = 0 will
be given. Using (5.4), (5.16) and η2i = θ̇i, the transfer function can be described
as:

Hsteer =
θi

w2i
=

1
ecs2 + η1is

(5.19)

The conclusion is that the forward velocity of the unicycle (η1i) is e�ectively a
damper that in�uences the steering system. So the faster the unicycle is driving,
the more damping in the steering system. The parameter ec is e�ectively a mass
for the steering system.
At low velocities, the gain between the input w2i and the output θi = 0 is
relatively high compared to the gain at higher velocities, so the output will be
larger at lower velocities for an equal input. If the variable ec is increased, the
gain is lowered, so the output will be lower for an equal input. It has to be
considered that the variable ec only has an in�uence if there is an error in the
position or velocity of the point z1i. The "normal" steering angle behaviour,
which is the steering angle behaviour while driving a trajectory with no position
and velocity error, is determined by the de�ned trajectory (e.g. ICR position)
and is not changed by the variable ec.

5.3.1 Simulations with starting errors

To get a more detailed view on the in�uence of ec on the reaction of the system at
position errors, simulations with a starting error in the position are performed.
They are performed using the con�guration dynamic model of the bicycle (ap-
pendix C) in combination with the double unicycle controller as described in
section 5.2.3. Two di�erent simulations with starting errors are performed (�g-
ure 5.5). The starting errors are 0.5 m, which is the maximum allowed position
error for the real 4ws4wd car in VEHIL.

1. A simulation with a longitudinal starting error of 0.5 meter (ex0 = −0.5).
2. A simulation with a lateral starting error of 0.5 meter (ey0 = −0.5).

The orientation angle of the bicycle is chosen to be zero, so the lateral error
corresponds to the y error (ey = y−yref ) and the longitudinal error corresponds
to the x error (ex = x− xref ). The reference trajectory for the simulations is a
straight line with a constant velocity:

xref = V t, ẋref = V, ẍref = yref = ẏref = ÿref = θref = θ̇ref = θ̈ref = 0
(5.20)

Simulation 1 is performed with four di�erent values for the velocity V . The
value of ec is not changed, because this factor has no in�uence on the dynamics
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Figure 5.5: Simulation 1 and 2

if there is only a longitudinal error, because z̈1xi reduces to ẍi = ẍiref −Kv(ẋi−
ẋiref ) − Kp(xi − xiref ) if θi, θ̇i, θ̈i = 0. Simulation 2 is performed with four
di�erent values for the velocity V and three di�erent values for ec.
The gains of the PD controller (Kp and Kv) are respectively chosen as 41 and 9,
which results in a natural damped system. For a more detailed discussion about
the tuning of the gains, see appendix A. All the simulations are performed using
Matlab/Simulink, using the ode5 solver with a �xed step size of 0.002 s. The
results of the simulations are shown in �gure 5.6, �gure 5.7 and �gure 5.8.
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Figure 5.6: Position error for simulation 1 - ex is the error in x and V is the
forward velocity of the bicycle
Figure 5.6 shows the error in x direction for simulation 1 for four di�erent veloc-
ities V . From �gure 5.6 it follows that the response on the error in x-direction is
equal for di�erent velocities. This can be explained by looking at the equation
for z̈1xi, which reduces to ẍi = ẍiref − Kv(ẋi − ẋiref ) − Kp(xi − xiref ) if
θi, θ̇i, θ̈i = 0. So the resulting behaviour is the behaviour of the PD controller,
because ẍiref = 0.
Figure 5.7 and �gure 5.8 show respectively the errors in x and y direction and
the steering angles for simulation 2 for three di�erent values of ec and four
di�erent values of the velocity V . From �gure 5.7 it follows that a smaller ec

value results in a faster decrease of the error in the y-direction. It can also be
concluded that the response on the starting error in the y-direction causes a
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Figure 5.7: Position error for simulation 2 for three di�erent values of ec and
for four di�erent forward velocities V - ex is the error in x (dark lines) and ey

is the error in y (light lines)
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Figure 5.8: Steering angles for simulation 2 for three di�erent values of ec and
for four di�erent forward velocities V
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small error in the x-direction at low velocities. This is both the result of the
e�ect that the steering angles increase if the ec variable decreases (�gure 5.8).
If the velocity increases, then the error in the x-direction, due to the response
on the on the starting error in y-direction, reduces. This is because the steering
angles decrease if the velocity is increased (�gure 5.8), which is expected from
(5.19). It can also be concluded that the responses for the di�erent values of ec

get more comparable if the velocity increases. This is because the in�uence of
the velocity on the gain of (5.19) is relatively larger than the in�uence of ec if
the velocity is high.
As can be expected from (5.19), small values of ec and low velocities result in
large steering angles (�gure 5.8).

A few additional requirements (see chapter 2) are needed to be able to draw
�nal conclusions for the desired value of ec. These extra requirements follow
from the desired behaviour of the 4ws4wd car that has to be controlled.

• For low velocities, the steering behaviour is more important than the (lat-
eral) error.

• For medium and high velocities, the tracking error is more important than
the steering behaviour.

• For medium and high velocities, the response on errors in lateral and
longitudinal direction is desired to be equal.

Using these extra requirements, the conclusion is that ec has to be di�erent for
di�erent trajectories. From �gure 5.6, �gure 5.7 and �gure 5.8 it follows that a
value for ec between 0.25 m (or lower) and 0.5 m is desired for trajectories with
mostly medium (>10 km/h) and high velocities, because then the response on
an error in lateral direction is comparable to the response on an error in lon-
gitudinal direction. A value of ec of 0.5 m or higher is desired for trajectories
with mostly low velocities (<2 km/h), because then the orientation angles, as
a reaction on lateral position errors (max 0.5 m), are less then 45o o� the ref-
erence orientation angles (see chapter 2).
It is recommended for further research to implement a velocity dependent vari-
able ec for trajectories that have a more even distributed velocity range. Using
a velocity dependent ec it is possible to have the most desirable value of ec for
high and low velocity periods of the trajectory.

5.4 Bicycle with tyre slip control design

In reality, wheeled mobile robot cars always have tyres that only can deliver
forces if there is slip. A tyre can deliver forces in the longitudinal and the
lateral direction, so there is slip in these directions: First, when the forward
velocity of the car is not equal to the rotation of the tyres multiplied by the
radius of the tyres (longitudinal). Secondly when the direction in which the tyre
is pointing is di�erent than the direction in which the tyre is moving (lateral)
(see appendix B).
The tyre slip can result in an (extra) error, so it is useful to include a certain tyre
slip compensation in the controller. The controller that is developed consists of
two separate controllers for the wheels, the so called unicycle controllers.
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Not a lot of literature, related to wheeled mobile robots, about tyre slip and the
compensation of the tyre slip is available. One of the few slip compensations
for wheeled mobile robots with tyre slip is developed by Motte and Campion
[5]. They suggest to model this slip as a linear system, so as a starting point a
linear tyre model will be implemented into the unicycle model and a controller
will be developed for this system.

5.5 Unicycle model and controller with slip com-
pensation

The controller, developed for the bicycle model without tyre slip, is the so
called "double unicycle controller", which is based on the idea to decentralize
the tracking problem. The unicycle is the most important part of this controller.
This section just brie�y discuss the model and controller of the unicycle with
slip, which has the same system properties as the unicycle discussed in section
5.2.1. For a more detailed discussion of the procedure, see appendix E.

5.5.1 Unicycle model extended with tyre slip

A wheeled robot with tyre slip can be described with a model written in the
standard singular perturbation form (4.64), which is a standard form for systems
that consist of fast and slow variables. The procedure, described in section 4.3.1,
is used to get to this model description for the unicycle (appendix E).
The unicycle (see �gure 5.3) with tyre slip in singular perturbation form is:

q̇i =


cos(θi) 0
sin(θi) 0

0 1
−1
ri

0

 ηi +


sin(θi) cos(θi)
− cos(θi) sin(θi)

0 0
0 ri

 εµi

η̇i = ε

(
−µ1iη2ir

2
i

r2
i +1

0

)
+

(
ri

(r2
i +1)Iϕi

0
0 1

Iθi

)
τεi −

(
0 −(mi−Iϕi

)r2
i G0

VimiIϕi

0 0

)
µi

εµ̇i =
(

η1iη2i

0

)
+ ε

(
η2iµ2i
−µ1iη2i

r2
i +1

)
+

(
0 0
−ri

(r2
i +1)Iϕi

0

)
τεi−(

D0
Vimi

0

0 (mir
2
i +Iϕi

)G0

VimiIϕi

)
µi

(5.21)
where η1i is the forward velocity of tyre i, η2i is the orientation velocity of tyre i,
Vi is the absolute velocity of tyre i, mi is the mass of unicycles, τi is the torque
vector ([τdi τsi]), ri is the radius of tyre i, G0 and D0 are tyre parameters, Iϕi

is the rotation inertia of tyre i, Iθi
is the orient inertia of tyre i and µi is the so

called "fast" variable that gives an indication for the amount of tyre slip.

5.5.2 Unicycle controller with tyre slip compensation

The goal of the control method is to assure that the unicycle center tracks the
reference variables xiref , yiref , θiref and their derivatives. The control method
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that is used is a combination of the slow manifold theory and output lineariza-
tion. The idea behind the slow manifold approach is to de�ne an invariant and
attractive slow manifold on which the system is output linearizable.
Output linearization is needed, because the unicycle is a non-linear system with
two inputs, which are the steering and driving motor. By choosing appropriate
output variables, a linear subsystem of dimension 4 [z1i, z2i] and a nonlinear
subsystem of dimension 1 [z3i] remain.
The whole procedure is described in detail in appendix E. Here only the output
variables will be stated and the �nal controller with the slip compensation term
will be stated.
The appropriate output linearization variables to perform the procedure de-
scribed in section 4.3.2 have to be de�ned.
The same output linearizing variables as for the unicycle without tyre slip are
chosen to be able to make a valid comparison:

z1i =
(

xi + ec cos(θi)
yi + ec sin(θi)

)
(5.22)

where ec is the distance from the center of the unicycle to the "virtual control
point" (z1i) (see �gure 5.4).
The �rst derivative of this equation is:

ż1i = z2i = Ssiη + Asiεµi =
(

ẋi − ecθ̇i sin(θi)
ẏi + ecθ̇i cos(θi)

)
(5.23)

The variable z3i is equal to the z3i variable of the unicycle without tyre slip,
being θi. The desired linearization condition is z̈1i = wi (4.92), where wi is a
new input. The linearization condition for a unicycle is:

z̈1i = Ssiη̇i + AsiεḢεi + Ṡsiηi + ȦsiεHεi = wi (5.24)
where µi = Hεi

is the so called "slow manifold" solution. The system that
remains is almost equal to the system that remains for the unicycle without
slip. The linearized system for the unicycle with slip is equal to:

ż1i = z2i

ż2i = wi

ż3i = Q1i(q1i)z2i + Q2i(Hεi, q1i)
(5.25)

where Q1i is equal to Qi that is de�ned in (5.11), so:

Q1i =
(
− sin(θi)

ec

cos(θi)
ec

)
(5.26)

The variable Q2i is:
Q2i =

(
1
ec

0
)
εHεi (5.27)

The variable Q2i is dependent of Hεi1 , which is (partly) described in appendix
E. Con�rming expectations, Hεi1 is related to the variable D0, because D0 is
the cornering sti�ness which is related to the slip angle of the tyre. Besides,
Hεi1 is zero if the velocity is zero, which is expected on beforehand, because
there is no slip if the tyre is not moving.
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A possible choice for the new input wi, to assures that the error in the velocity
and position of z1i exponentially converges to zero, is:

wi =
w1i = z̈1xiref −Kv(ż1xi − ż1xiref )−Kp(z1xi − z1xiref )
w2i = z̈1yiref −Kv(ż1yi − ż1yiref )−Kp(z1yi − z1yiref ) (5.28)

where z1iref = [z1ixref z1iyref ] = z1(xiref , yiref , θiref ) and Kp and Kv are two
positive gains.

The linearization condition (5.24) in combination with the manifold con-
dition (equation 3 of (5.21) with µi = Hεi

) is a set of two equations with two
unknowns (τεi and Hεi). These two variables are constructed using a Taylor
series expansion. The variables of this Taylor series expansion, which are
τ0i and H0i and τ1i etc, are determined in the similar way as for the 1DOF
example. This procedure is described in detail in appendix E.
The result of the procedure for the torque input is:
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where TCRTti is the tyre characteristic related slip compensation term, which
is:

TCRTti =
(

TCRT1ti

TCRT2ti

)
(5.30)

where TCRT1ti and TCRT2ti are:
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(5.32)
The similarity between the controller for a model without tyre slip and the
controller with slip compensation with ε = 0 is visible in the 1DOF example
(chapter 4). The same similarity can be found for the unicycle, because (5.29)
with ε = 0 is equal to (5.16).
Also similarities between the controller with slip compensation for the 1 DOF
model and the unicycle model can be found. The driving part of the unicycle
controller (�rst row of (5.29)) is equal to the torque input with tyre slip compen-
sation of the 1 DOF model (4.107), if θi = 0 and θ̇i = η2i = 0 are implemented
in (5.29).
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To give an interpretation of the slip compensation term is again di�cult. How-
ever, it is clear that both tyre characteristics are implemented in the compen-
sation term.
The internal dynamics of this system are described by the last equation of (5.25).
Just like for the unicycle without slip it is interesting to determine the zero-
dynamics for the unicycle with slip and check if they are stable. The �rst step in
the procedure to determine the zero-dynamics is to implement that z1i=z2i=0,
because the two relative degrees of the system are two. The input wi will have
to be zero to keep the variable z2i zero. The variable Q2i is zero, because the
slip is zero if the velocity is zero, so Hεi1 = 0. The zero-dynamics of the system
are equal to ż3i = 0. The result of this is that a possible solution for z3i(t) is
θit, which is a stable solution. The result is that z1xi = xit + ec cos θit = 0,
z1yi = yit + ec sin θit = 0 are solutions for the situation that the unicycle stands
still at the (0,0)-position of the virtual control point z1i.

5.5.3 Double unicycle controller with tyre slip compensa-

tion

The double unicycle controller with tyre slip compensations can be derived
just like the double unicycle controller without slip compensation (5.17). The
steering torque is changed, because the tyres only have to be oriented relative
to the body of the bicycle. Because of this, a compensation term of −Iθi

θ̈ is
added. The result for the input torque for each of the two wheels on the car is:
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where θi (i = f, r) etc are illustrated in �gure 5.1, TCRTti is the tyre charac-
teristic related term for tyre i, w1i and w2i are de�ned in (5.28) and mi is the
(varying) mass of the unicycle.

5.6 Analysis of the e�ect of the tyre slip compen-
sation

In this section, it will be analytical studied whether the controller with slip
compensation can assure perfect tracking of trajectories for the center of the
two wheel steered two wheel driven car.
The most important goal of the unicycle controller (with feedback) is to assure
that z1i = z1iref . The variable z1iref consists of the reference position variables
xiref and yiref and the reference orientation angle θiref . The reference orien-
tation angle is determined using the idea that the wheels should be directed so
that an ICR is present during the manoeuvre. The reference orientation angle
is the kinematic orientation angle as described in section 5.2. However, the real
orientation angle during a manoeuvre is equal to the kinematic orientation angle
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plus the slip angle (appendix B), because a tyre needs a certain slip angle to gen-
erate a lateral force, which is needed to fore example drive a corner. The result
is that there will be an error in the positions x, y and or the orientation angle
θ while driving the manoeuvre, even if z1i = z1iref for every "unicycle". The
situation while driving a circle with an orientation angle of zero is illustrated in
�gure 5.9.

Figure 5.9: Error due to the chosen control method of input output linearization
(SA is the slip angle of the tyre, grey is the reference and black is the real bicycle
model if z1i = z1iref ).

The position error at a corner (TE in �gure 5.9 when z1i = z1iref ) is:
TE = 2ec sin(0.5SA) (5.34)

where SA is the slip angle of the tyre (also often described as α). The smaller
the variable ec, the smaller the error (TE) which results in a smaller error of the
center of the bicycle. Using simulations with position errors, it is determined
that a value for ec of 0.25 (or lower) - 0.5 m is desired for medium and high
velocity trajectories. The slip angles of non-linear tyres normally will be be-
tween 0o-8o (appendix B) if the tyres are used up to the maximum performance
possible. The TE will have a value of 0-7 cm for these slip angles and an ec of
0.5.
The result of this analysis is that slip compensation is expected to have a positive
in�uence on the tracking behaviour if z1i 6= z1iref , but the slip compensation in
combination with the chosen output linearization cannot assure that the error
of the center of the bicycle is equal to zero when for example a circle is driven
while z1i = z1iref .
The main reason for this is that the reference orientation angle is calculated us-
ing a kinematic approach. It would be better if the reference orientation angle
would consists of the reference kinematic orientation angle plus the estimated
slip angle. It is however di�cult to estimate the exact slip angle(s) in reality
because of the non-linearities of tyres in general.
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For this moment, the choice is made to accept the error of the center of the
bicycle. The error is accepted, because the error is related to the error TE,
which has a relatively low maximum (7 cm) compared to the maximum allow-
able error (0.5 m) for the position of the center. Another reason why the error
is accepted is that a good estimator of the real slip angle is not available for the
real 4ws4wd car for which the controller is developed.
A recommendation for further research is that it would be useful to develop a
good estimator of the slip angle so that the currently uncompensatable error
(TE) is removed, while still maintaining the advantage of the steering angle
behaviour of the chosen control method (see section 5.3.1).

5.7 Simulations of the e�ect of the tyre slip com-
pensation

Simulations will be performed to see if the tyre slip compensation in the con-
troller has a positive in�uence on the performance compared to the performance
with the controller without tyre slip compensation. It is known that perfect
tracking cannot be obtained (section 5.6), but it is still expected that the slip
compensation improves the tracking.
It is important to �nd a proper (simulation) model of a bicycle with tyre slip
before the simulations with the double unicycle controller with and without
slip compensations can be started. A bicycle model with slip in singular per-
turbation form, which expendability is limited, is not available. Therefore, a
physical model is designed, the so called one track model in combination with a
linear tyre model (see appendix B). The one track model describes the vehicle
body dynamics in the horizontal plane using three degrees of freedom, i.e. the
displacements in x- and y-direction and the rotation around the vertical z-axis
(yaw). Although there are only three degrees of freedom, it is possible to account
for the distribution of the gravitation force between the front and rear axle as
a function of the longitudinal acceleration. The one track model is a non-linear
six order model: two orders for every degree of freedom. Non-linearities are
caused by the geometrical relations.
First of all, simulations with the con�guration dynamic model (of the bicycle
without slip) and the one track model are done to see if the results of the sim-
ulations with the one track model convert to the results with the con�guration
dynamic model if the tyre sti�ness is increased (and thus the slip is decreased).
The tyres used for the simulations with the one track model are (based on)
simple linear tyres (see appendix B):

Flati = Dα
Flongi = Gκ

(5.35)

where D is the cornering sti�ness and G is the slip sti�ness. The parameters of
the car are described in table 5.1. For the tyres, the standard parameters are:
G = 46Fzi and D = 70Fzi, where Fzi is the vertical load on tyre i.
All the parameters are chosen, so that the results also can be used for the
controller of the 4ws4wd car.
The ec variable that is used is 0.35 m, which is a value between 0.25 and 0.5
m, which is a valid choice looking at the conclusion of section 5.3.1. The value
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Table 5.1: Speci�cations
m: 310 kg
Iz: 194 kgm2

Iϕi : 0.36 kgm2

Iθli
: 2 kgm2

L: 0.7 m
ec: 0.35 m
ri: 0.23 m

is relatively high, because it also has to work well at low velocities, because the
variable ec is not velocity dependent yet. The result(s) of the simulations can
be found in appendix F. The conclusion of the simulations is that the results
of the simulations with the one track model convert to the results with the
con�guration dynamic model if the tyre sti�ness is increased, so the one track
model is a valid simulation model.

The following step is to perform simulations to study if the tyre slip
compensation improves the tracking of a trajectory. The choice is made to
not perform simulations with starting errors, because these type of simulations
are considered to be less relevant for the goal of the simulations. Therefore,
two di�erent trajectories with high accelerations (longitudinal and lateral) will
be simulated. The �rst trajectory is an eight shaped trajectory with a �xed
orientation angle (θ = 0) of the car and a maximum lateral and longitudinal
acceleration of 10 m/s2. This trajectory has two corners with a �xed radius.
This means that there will be a constant (sideways) slip, which is why this
trajectory is useful. The second trajectory is a lane change with the orientation
angle of the bicycle tangential to the trajectory and a maximum lateral and
longitudinal acceleration of 10 m/s2. This trajectory has two places where the
steering angles have to increase and decrease fast while the car is driving with a
�xed forward velocity, which means that the slip will rise and decrease fast. It
also has two straight lines in which the bicycle will accelerate and de-accelerate
from zero to its maximum velocity and visa versa. So this is also a very useful
trajectory to see if the tyre slip compensation has a positive in�uence on the
performance.

The double unicycle controller used for the simulations has Kp and Kv gains of
respectively 3 and 4.5, which result in a natural damped system (in longitudinal
direction). The resulting errors (measured-reference) for the center of the car
for the two trajectories are plotted in �gure 5.10 and �gure 5.11.
The conclusion from the simulations is that the tyre slip compensation has a
positive in�uence on the tracking performance of the system, but the error of
the center is (as expected) not reduced to zero (see section 5.6). For the eight
shaped trajectory the di�erence between the controller with and without tyre
slip compensations is most obvious during the �xed radius corners of the tra-
jectory. This is as expected, because this is the phase of the trajectory with the
largest (lateral) tyre slip. For the lane change manoeuvre the di�erence between
the controller with and without tyre slip compensations is most obvious during
the start and end of the evasive manoeuvre. The overshoot at the start and
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Figure 5.10: Errors of the eight shaped trajectory using the double unicycle
controller with and without slip compensation.
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Figure 5.11: Errors of the lane change using the double unicycle controller with
and without slip compensation.
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end of the evasive manoeuvre is decreased when the controller with tyre slip
compensation is used.
Overall the error is 30-40 procent less when the controller with tyre slip com-
pensation is used, which is considered a satisfying result.

5.8 Summary

A controller for the bicycle model is presented. It appears that the standard con-
trollers, described in the theory on wheeled mobile robots, have singular steering
angles (e.g. 90 degrees). The trajectories normally driven by the 4wswd car of-
ten are constructed in such a way that these problem steering angles will be
reached, so another type of controller is designed. This is the double unicycle
controller, which is a controller consisting of two unicycle controllers, which each
are a controller for a wheel that can be driven and steered. This control method
can be easily adapted to a 4ws4wd car. So if a car is equipped with wheels
that can be steered and driven independently, then the controller can be used.
Therefore, the more general name of the controller will be multicycle controller
(multiple unicycle controller).
Some simulations with the double unicycle controller are performed to tune the
parameters of the controller. The conclusion is that especially the parameter ec

can in�uence the steering and tracking response of the car on position errors at
low and high velocities.
Also a double unicycle controller with tyre slip compensation is developed for
the bicycle model. For the double unicycle controller with slip compensation,
simulations, using a physical model of the car, prove that the tyre slip compen-
sation has a positive in�uence on the tracking error of the system. It is an extra
performance gain without increasing the Kp and Kv values of the controller.
It is also determined that the tracking error of the center will not be equal to
zero while driving trajectories if there is slip. This is because the reference ori-
entation angles of the tyres are equal to the kinematic steering angles in stead
of the kinematic steering angles plus the (estimated) slip angles. It is however
di�cult to estimate the slip angle and therefore it is accepted that the tracking
error cannot be reduced to zero.
Although the tracking error will not reduce to zero, it is still useful to extend the
double unicycle controller to a "double unicycle controller with tyre slip com-
pensation". The following step will be to introduce the multicycle controller
with slip compensation for the 4ws4wd car.



Chapter 6

Multicycle control design

A controller is designed for a simpli�ed model of the 4ws4wd car, called the
bicycle model. The controller assures that the car will follow a prescribed tra-
jectory in the horizontal plane in combination with a prescribed orientation
angle of the car. The controller that has proven to be the best choice is the
double unicycle controller with tyre slip compensation. The double unicycle
controller consists of two "separate" unicycle controllers, one for each wheel of
the car, which each has his own reference trajectory. The following step will be
to expand this controller so that it can be used for a 4ws4wd car model. The
controller will also be tested to obtain the best gains settings and to check the
performance and robustness. In section 6.1, the controller for the 4ws4wd car
model will be developed. In section 6.2, simulations with a complete dynamic
model [15] of the 4ws4wd car used in VEHIL will be performed. If the controller
works on this model, it is expected to work on the real 4ws4wd car as well.

6.1 Multicycle controller

The multicycle control method is inspired on the idea presented in a paper of
Borenstein [10]. The basic idea is to decentralize the tracking problem. The
tracking problem is to let the center of the car (x, y, θ) follow the reference
trajectory (xref , yref , θref ). The concept is to convert the (reference) position
of the center to a (reference) position xij and yij (i = f(ront), r(ear), j =
l(eft), r(ight)) at the four corners where the wheels are attached (�gure 6.1)).
The same procedure is followed for the �rst and second derivative of the (refer-
ence) positions of the corners.
The (reference) orientation angles of the wheels (θij) are calculated using the
kinematic approach, which means that the orientation angles are calculated us-
ing the reference velocity signals of the corners. This approach guarantees that
the wheels are oriented so that an instantaneous center of rotation (ICR �gure
6.1) is present during the total manoeuvre. The ICR represents the point around
which the WMR is moving, so it is the point where the perpendiculars to the
plane of each wheel (drawn from the center of the wheel) are all concurrent.
In the previous chapter it is suggested that the reference orientation angle ide-
ally should consist of the kinematic orientation angle and the estimated slip
angle of the tyre. It is however hard to estimate the slip angle of the tyre, so the
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kinematic reference orientation angle is used as the reference orientation angle
instead.
The (reference) positions, velocities and accelerations for the corners are:

xfl = x + Lb cos(θ + arctan(W
L ))

yfl = y + Lb sin(θ + arctan(W
L ))

ẋfl = ẋ− Lbθ̇ sin(θ + arctan(W
L ))

ẏfl = ẏ + Lbθ̇ cos(θ + arctan(W
L ))

ẍfl = ẍ− Lbθ̈ sin(θ + arctan(W
L ))− Lbθ̇

2 cos(θ + arctan(W
L ))

ÿfl = ÿ + Lbθ̈ cos(θ + arctan(W
L ))− Lbθ̇

2 sin(θ + arctan(W
L ))

...

(6.1)

where Lb =
√

L2 + W 2, where the variables L and W are illustrated in �gure
6.1.
The kinematic orientation angles of the wheels are:

θij = arctan(
ẏij

ẋij
) (6.2)

and θ̇ij and θ̈ij are the �rst and second time derivative of (6.2). The system
with some of the new coordinates is illustrated in �gure 6.1.

Figure 6.1: 4ws4wd model - Rewritten for multicycle controller.

Looking at the corners of the car the conclusion is that the car consists e�ectively
of four systems, which are all wheels that can be oriented and driven. All these
systems have their own reference signal (xijref , yijref , θijref ), so e�ectively four
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tracking problems remain. A single wheel that can be driven and that can
be steered can be modelled as a unicycle system, so every "corner" of the car
is a unicycle system. Especially for a real car with tyres, it is important to
implement a certain weight transfer e�ect. This is important, because the more
vertical force on a normal tyre, the more lateral and longitudinal force a tyre can
deliver. For example the driving torque rear has to be larger than front to obtain
the maximum performance if a car is accelerating in longitudinal direction.
This e�ect can be implemented in the multicycle controller by implementing a
(varying) mass according to [11]:

mfl = 1
4m− hcarm

4Lg along − hcarm
4Wg alat

mfr = 1
4m− hcarm

4Lg along + hcarm
4Wg alat

mrl = 1
4m + hcarm

4Lg along − hcarm
4Wg alat

mrr = 1
4m + hcarm

4Lg along + hcarm
4Wg alat

(6.3)

where along and alat are the longitudinal and lateral acceleration of the car
during the manoeuvre. along points in the positive xl direction and alat points
in the positive yl direction. m is the total mass of the 4ws4wd car and hcar is
the height of the center of gravity of the 4ws4wd car.
The unicycle model has two inputs, which are the driving and the steering motor.
The driving motor is implemented so that a positive torque will result in an
increase of the longitudinal acceleration of the unicycle. The steering motor is
implemented so that a positive torque will result in an increase of the orientation
acceleration of the unicycle. The procedure to derive a model and a controller
for a unicycle is described in chapter 5. The control method used is the slow
manifold approach. The idea behind this approach is to de�ne an invariant and
attractive slow manifold on which the system is output linearizable. The result is
that a linearized subsystem and a nonlinear subsystem remain. A PD controller
with acceleration feedforward is designed for the linearized subsystem.
The output of the unicycle controller is a driving and an orientation torque.
However, the motor that orients the wheels on the 4ws4wd car only has to steer
the wheels relative to the body of the car. This angle is the so called "steering
angle" (βij). The steering angle is equal to the orientation angle of the wheel
minus the orientation angle of the car (βij = θij − θ). The total steering torque
(5.16) from the unicycle controller is equal to Iθij

θ̈ij . The steering torque that
has to be sent to the car is equal to Iθij β̈ij . So a compensation term of −Iθij θ̈
has to be added to the calculated steering torque (5.16) to get the real steering
torque for the motors on the car.
The resulting torque input is:

τεij =

 mijr2
ij+Iϕij

rij
Iθij

ec

(( c(θij) s(θij)
−s(θij) c(θij)

)(
w1ij

w2ij

)
+
(

ecη
2
2ij

−η1ijη2ij

))
+εTCRTtij −

(
0

Iθij
θ̈

)
(6.4)

where θij etc are illustrated in �gure 6.1, TCRTtij (5.30) is the tyre slip com-
pensation factor for tyre ij, mij is the (varying) mass of the unicycle, Iθij is the
inertia of the wheel around the vertical axis, Iϕij

is the rotation inertia of the
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wheel, η1ij is the forward velocity of the unicycle, η2ij is the orientation velocity
of the unicycle and w1ij and w2ij are:

w1ij = z̈1xijref −Kv(ż1xij − ż1xijref )−Kp(z1xij − z1xijref )
w2ij = z̈1yijref −Kv(ż1yij − ż1yijref )−Kp(z1yij − z1yijref ) (6.5)

where Kv and Kp are the "PD" controller gains and z1ijref =
[z1xijref z1yijref ] = [xijref + ec cos θijref yijref + ec sin θijref ] (z1ij is the out-
put linearization variable). A schematic overview of the control method can be
found in appendix G.

6.2 Simulations

The multicycle (double unicycle) controller has proven to be the best controller
for the bicycle model of the 4ws4wd car (chapter 5). The goal of the simulations
here is to check if the multicycle controller can be used to control the real 4ws4wd
car in the VEHIL test facility. A complete dynamic model of the 4ws4wd car
[15], e.g. with steering motor dynamics, will be used to get an idea of the
usefulness of the controller. First of all the transfer functions in longitudinal
and lateral directions will be determined. These tests are used to determine the
controller parameters and test the robustness of the controller. The following
step will be to test trajectories with low velocities and low acceleration levels.
During these tests the tyres are not used up to their limits and will still operate
in their linear region. Also the steering and driving motor dynamics are not
that important at low velocities and low acceleration levels. So the system is
"close" to an ideal system, where the multicycle controller is derived for. The
last part of the simulations will be to simulate trajectories with high velocities
and high accelerations. These tests are chosen, so that the 4ws4wd car is used
up to the maximum performance possible. It is interesting to determine the
performance of the controller for these severe trajectories.

6.2.1 Frequency response

The frequency response in longitudinal direction (reference to measured signal)
is determined using a swept sine, superposed on a forward velocity, for the full
dynamic model [15]. The swept sine used for the responses has a frequency
range of 0-10 Hz. The modelled dynamics of the full dynamic model are all
present in this region and also the used trajectories have their frequency range
(0-1 Hz, see appendix A) in this region. First, the frequency response using an
"ideal controller", which is the multicycle controller with tyre slip compensation
without parameter errors, is determined. For example the mass in the multicycle
controller is equal to the mass of the model. Secondly the frequency response
using the multicycle controller with parameter errors is determined to check the
robustness. It is important to study this, because in reality the parameters of
the 4ws4wd system are not (always) known in detail. Therefore, this frequency
response will give a more realistic result for the real frequency response of the
controlled 4wd4ws car. The mass used in the controller with parameter errors
is 0.8 times the mass used in the model. The rotation and orientation inertia of
the wheel used in the controller with parameter errors is 0.5 times the inertia
used in the model.
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The parameters of the vehicle model are the parameters of the 4ws4wd car
summarized in table (2.1). The ec variable that is used is 0.35 m, which is a
compromise between the error due to the slip angle, the steering angle behaviour
and the response on a (lateral) position error (section 5.3.1). The simulations
are performed with three di�erent settings for the PD values of the controllers,
which all result in natural damped systems (see appendix A). Matlab/Simulink
with an ode5 solver with a �xed step time of 0.002s is used for the simulations.
In �gure 6.2 the resulting magnitude and phase characteristic of the frequency
response in longitudinal directon for the controllers with and without parameter
errors are shown. It follows from the frequency response in longitudinal direction
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Figure 6.2: Frequency response in longitudinal direction for a controller with
and without parameter errors.

that the magnitude, using the controller without parameter errors, is about
0 dB up to 1-2 Hz. The magnitude of about 0 dB is expected because of
the output linearization in combination with the feedforward of the reference
trajectory. It also follows that there is a resonance frequency around 5 Hz,
which is equal to the damped pitch eigenfrequency of the 4ws4wd model. The
frequency response using the controller with parameter errors shows a di�erent
behaviour. The linearization is not perfect anymore, because the torque input
partly consists of the PD controller with feedforward that is multiplied by a
factor, which is inaccurate because it consists of e.g. the mass of the unicycle.
Therefore, the feedforward is not perfect anymore, so the response is more like
a response of a system with a PD controller. The "weakest" controller has a
closed loop bandwidth of 1.5 Hz and the "strongest" controller has a closed
loop bandwidth of 4 Hz. The controller shows that it can handle parameter
variations, so the controller is robust with respect to parameter variations. For
performance reasons, the strongest controller is preferred, because the phase
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delay with this controller is up to 1 Hz almost zero. This is desired, because the
most common trajectories that are driven by the 4ws4wd car have a frequency
range where frequencies below 1 Hz are most dominant (appendix A).
The frequency response function in lateral direction is also determined using
a swept sine while driving with a forward velocity and an orientation angle
of zero. The swept sine used for the response has again a frequency range
of 0-10 Hz. In �gure 6.3 the resulting magnitude and phase characteristic of
the frequency response in lateral direction for the controllers with and without
parameter errors are drawn. The conclusion from the frequency response in
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Figure 6.3: Frequency response in lateral direction for a controller with and
without parameter errors.
lateral direction is that the magnitude using the controller without parameter
errors is about 0 dB up to 1-2 Hz. The magnitude of about 0 dB is, as described
before, expected. A resonance frequency around 5 Hz, which is equal to the
damped roll eigenfrequency of the 4ws4wd model, is again visible. The frequency
response using the controller with parameter errors shows again the behaviour
of the "PD" part of the controller.
The conclusions from both the frequency responses is that the controller with
feedforward, a Kp value of 165 and a Kv value of 18 is desired, so this controller
will be used for the simulations and the experiments later on.

6.2.2 Trajectories

Two di�erent types of trajectories will be used to test the performance of the
multicycle controller in combination with the full dynamic model of the 4ws4wd
car [15]. The trajectories are an eight shaped trajectory with a �xed orientation
angle and a lane change with an orientation angle tangential to the trajectory.
They are all obtained using a tool developed by TNO [15] that constructs the
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trajectories from 5th order polynomials.
All the trajectories have a non-rolling start, from which the velocity tangen-
tial to the track is increased to a prescribed velocity level with a prescribed
acceleration. At the end of the trajectory the velocity is decreased to zero
with a prescribed deceleration. The velocity is kept constant between these two
phases.
The maximum acceleration levels tangential to the trajectory are prescribed
during the calculation. The acceleration levels perpendicular to the trajectory
(centripetal acceleration) are a combination of the velocity tangential of the
track and the radius of the corner(s) of the trajectory.
Di�erent simulations with trajectories that have both low (<3 m/s2) and high
(>8 m/s2) acceleration levels are performed. The errors of the position and the
orientation angle of the center are, as expected, smaller if the acceleration levels
are lower. This is expected, because the tyre slip is smaller if the accelerations
are lower. Also the steering motor dynamics etc. are not that important if the
trajectory has a low acceleration level pro�le.
The error of the position and the orientation angle of the center increase if the
acceleration levels are increased. This is expected, because the tyre slip and the
in�uence of the motor dynamics increase. To give a more absolute measurement
for the position and orientation angle error, the root mean square error (6.6)
values of two high acceleration trajectories (appendix H) are given in table 6.1.

RMSE =

√∑
i=1:n e2

i

n
(6.6)

where ei is the error and n is the total number of data-points.
The root mean square error is overall rather small (<2 cm for the position).
The conclusion is that the RMSE for the eight shaped trajectory is larger than
the RMSE for the lane change. This is because the region in time with tyre
slip is larger for the eight shaped trajectory due to the two large corners. The
peaks in the position errors of these trajectories, and also other trajectories
that are simulated, also remain within the limits (e.g. maximum position error
0.05-0.1 m where a maximum of 0.5 is allowed). Also the orientation angle error
that is measured is acceptable. Therefore, the conclusion is that the multicycle
performs well over the whole working range with this WMR on simulation level.
A more detailed discussion of some of these simulations in combination with
experiments with the real 4ws4wd car of these trajectories can be found in the
following chapter.

Table 6.1: Root mean square error for two di�erent trajectories
high acceleration lane change high acceleration 8 trajectory

x: 0.0045949 x: 0.016821
y: 0.0072361 y: 0.019394
θ: 0.00066521 θ: 0.0016563

6.3 Summary

A so called "multicycle controller" for the 4ws4wd car is derived and studied
using a complete dynamic model of the 4ws4wd car used in the VEHIL test
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facility. First, the longitudinal and lateral frequency responses are determined.
Secondly, both high and low acceleration level manoeuvres are performed. The
conclusion is that the controller performs well on the whole working range (0-10
m/s2, 0-50 km/h). The following step is to test the controller in reality.



Chapter 7

Experimental results

The �nal step in the control design process is the testing of the controller in
the reality. Here this means that the controller is used by the 4ws4wd car that
is used in VEHIL. The trajectories that will be driven are trajectories that are
already simulated in chapter 6, so the controller can handle the trajectories on
simulation level. The trajectories that will be shown in this chapter have high
acceleration levels, because these are the most challenging trajectories.
The maximum velocity during the experiments is 20 km/h, which is so low
because of safety reasons. Two di�erent trajectories will be used to test the
multicycle controller in combination with the real 4ws4wd car. The trajectories
are an eight shaped trajectory with a �xed orientation angle and a lane change
with an orientation angle tangential to the trajectory. As already discussed in
chapter 6, the eight shaped trajectory is chosen, because of the long �xed radius
corner that causes a constant sideways slip. The lane change is chosen, because
of the high frequency spectrum (appendix A). The trajectories are all obtained
using a tool developed by TNO [15] that constructs a trajectory of 5th order
polynomials.
All the trajectories have a non-rolling start, from which the velocity tangential
to the track is increased to a prescribed velocity level with a prescribed accel-
eration. During the last part of the trajectory, the velocity is decreased to zero
with a prescribed deceleration. The velocity is kept constant between these two
phases. At the end, the car will stand still for a few seconds before the data
logging will be stopped.
The controller is implemented in a real time Simulink model, which is capable
of communicating with the 4ws4wd car. The actual position and velocity of the
4ws4wd car is estimated using a discrete Kalman �lter in combination with a
magnetic grid in the road surface [15]. Additional sensors, like encoders, are
used in the design of the state estimator. This estimator is also implemented
in the full dynamic model of the 4ws4wd car used for the simulations. The
estimated position and velocity are used to evaluate the tracking of the 4ws4wd
car.
The goal of the experiments is to check the performance of the multicycle con-
troller in reality. It is chosen to compare the results with the simulations to
see if the complete dynamic model is a correct representation of the real car.
Known di�erences between the simulation model and the reality are:
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1. The tyre parameters used in the model are not known in detail (in com-
bination with the �oor).

2. The �oor in the simulation model is �at, but the �oor in the hall is not
totally �at.

3. The friction torque between the tyre and the road is not modelled in the
simulation model.

Another goal of the experiments is to see if the slip compensation is a real advan-
tage. The errors of the center of the car will be shown in di�erent �gures and also
the root mean square error values will be calculated to check the performance.
Sometimes also other �gures (e.g. the steering torque) will be shown to explain
non-expected results. The controller settings used are: Kp=165, Kv=18 and
ec=0.35, which have shown to be the best compromise for simulations (chapter
6).
In section 7.1.1 the results of the experiment of the high acceleration eight
shaped trajectory will be presented. In section 7.1.2 the results of the experi-
ment of the high acceleration lane change will be presented. Also a comparison
will be made between the multicycle controller and the original controller that
is used at this moment. Finally, a summary with some conclusions regarding
the usefulness of the multicycle controller and the usefulness of the slip com-
pensation will be given.

7.1 Experiments with multicycle controller

7.1.1 High acceleration eight shaped trajectory

First of all a high acceleration eight shaped trajectory with a �xed orientation
angle is driven (see �gure 7.1 and appendix H). From a non-rolling start (lon-
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Figure 7.1: The reference xy of the high acceleration eight shaped trajectory

gitudinal direction is the x direction), the 4ws4wd car accelerates to 20 km/h
with a maximum acceleration of 5 m/s2. The tangential velocity of the track
is kept constant at 20 km/h. The maximum acceleration in perpendicular di-
rection of the trajectory is 9 m/s2, which is a result of the tangential velocity
and the radius of the corners of the eight shaped trajectory. At the end of the
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trajectory, the velocity is reduced to zero again with a maximum deceleration
of 5 m/s2. The �nal part of the trajectory is a stand-still of three seconds.
The resulting errors for the high acceleration eight shaped trajectory with �xed
orientation angle are drawn in �gure 7.2. The errors of the experiment and
the simulation with the multicycle controller without slip compensation (NSC)
and the multicycle with slip compensation (WSC) are drawn. The two most
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Figure 7.2: The resulting error in x, y, θ for the high acceleration eight shaped
trajectory (error=measured-reference)

pronounced conclusions from the plots are that a di�erence is visible between
the simulations and the experiments and that the advantage of the slip com-
pensation is small compared to the total error for the experiments and (almost)
not visible for for the simulations. First, the di�erence between the simulations
and the experiments will be discussed.
The error in the x direction shows a starting error for one of the experiments.
This is because the robot is put in its initial position using the original controller
for the 4ws4wd car [15], which is not accurate in longitudinal directions at low
velocities.
The error in the y direction shows a static error for the last 3 seconds of the
trajectory. This is the phase that the car stands still at a �xed position.
The car is standing still with the longitudinal direction in positive x direc-
tion. This error is the result of the chosen control method, which is output
linearization. The zero-dynamics, which are the dynamics that remain if the
car stands still, are that θ̇ij = 0, so the orientation angle can have any �xed
(θijt) value as long as z1ij = z1ijref , so z1xij = xijt + ec cos(θijt) = z1xijref and
z1yij = yijt + ec sin(θijt) = z1yijref are (ideal) solutions for the situation that
the tyre stands still at the reference position of the virtual control point z1ij .
The car ends the trajectory with an error in the y direction, so z1ij 6= z1ijref .
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Therefore, the car will steer the wheels so that that the measured output coor-
dinates are equal to reference output coordinates, so that z1ij = z1ijref .
Overall the largest di�erence (spikes) in x and y direction for the simulations
and the experiments can be found around 9 seconds. This is the moment that
the car is reducing its velocity to zero again by braking. It was visible during
the experiments that the car "moved" up and down during this phase, which
is caused by bumps in the �oor. This causes that e.g. the mass distribution is
very di�erent from what is expected, which �nally results in the spikes in the
position errors. During the rest of the trajectory a smaller di�erence is visible.
The main reason for this di�erence can be found using �gure 7.3 and 7.4. The
real steering torque at the tyre is equal to the steering torque of the motors,
which is illustrated in the �gure(s), multiplied with a factor 59, which is the
gearbox ratio. The real drive torque at the tyre is equal to the drive torque
of the motors, which is illustrated in the �gure(s), multiplied with a factor 5,
which is the gearbox ratio.
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Figure 7.3: Drive torque eight shaped trajectory; actual torque with slip com-
pensation (light), simulated torque with slip compensation (dark).

Figure 7.3 shows that the driving torque for the experiments is larger than the
driving torque of the simulations. During the braking and acceleration phase
of the trajectory this di�erence can be partly explained by a larger mass of the
car than expected, because the mass of the car at this moment is not known in
detail. The mass can be larger than expected due to the newest modi�cations
of the 4ws4wd car. Also some non-modelled friction and losses in the drive
motors and gearboxes is a factor [16]. In the "middle" phase of the trajectory,
the di�erence can also be explained by the extra corrections that the controller
has to make to compensate for the larger position errors.
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Figure 7.4: Steering torque eight shaped trajectory; actual torque with slip
compensation (light), simulated torque with slip compensation (dark).

Figure 7.4 shows that the steering torque for the experiments is completely
di�erent than the steering torque of the simulations. The main reason for this
is that the friction torque between the road and the tyre is not modelled in the
full dynamic model of the 4ws4wd car that is used for the experiments. The
most important non-modelled torque is the so-called "parking torque", which
is the friction moment due to the width of the tyre. Due to the parking torque
of the tyre a certain "deadzone" will result in the steering torque. Also some
non-modelled friction torque in the bearings of the steering motors is present.
This non-modelled friction torques are the main reason for the di�erence in
position error between the results of the simulations and the experiments.

Overall the di�erence between the simulated and calculated orientation angle
is large. This is due to a combination of the non-modelled friction torque and
the further uncertainties in the parameters of the car (e.g. exact height of the
center of gravity). However the error for the experiments is smaller than 2.5o,
so the error is still rather small compared to the error with the controller that
is used at this moment. A brief discussion about the comparison between the
multicycle and the controller that is used at this moment controller will follow
later on in this chapter and a detailed discussion can be found in appendix I.
The following step is to see if the slip compensation has a real advantage on the
position error. It is hard to see the e�ect of the slip compensation in �gure 7.2.
Because of this, the root mean square error is calculated (see table 7.1). The
result is that the controller with slip compensation, most of the time, performs
better in the experiments and the simulations. The di�erence between the error
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Table 7.1: Root mean square error for the high acceleration eight shaped tra-
jectory

Exp NSC Exp WSC Sim NSC Sim WSC
x: 0.041494 x: 0.036556 x: 0.017759 x: 0.016821
y: 0.054095 y: 0.053752 y: 0.020183 y: 0.019394
θ: 0.011029 θ: 0.011031 θ: 0.0020043 θ: 0.0016563

with slip compensation and without slip compensation is however rather small.
The main reasons are the error due to the use of the kinematic orientation angle
and the error due to the position and velocity estimator, which cause that the
slip is just a small part of the total error. Another reason is that the measured
signals are subjected to noise (especially the acceleration signals). The slip
compensation uses these signals and also the derivatives of these signals. This
causes that the calculated slip compensation term will not be as e�ective as
possible.

7.1.2 High acceleration lane change

A high acceleration lane change with an orientation angle tangential to the tra-
jectory is driven (see �gure 7.5 and appendix H). From a non-rolling start,
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Figure 7.5: The reference xy of the high acceleration lane change

the 4ws4wd car accelerates in a straight line in x direction to 20 km/h with a
maximum acceleration of 5 m/s2. The tangential velocity of the track is kept
constant at 20 km/h. The maximum acceleration in perpendicular direction of
the trajectory is 9 m/s2, which is a result of the tangential velocity and the ra-
dius of the corners of the lane change. At the end of the trajectory, the velocity
is reduced to zero again in a straight line with a maximum deceleration of 5
m/s2. The �nal part of the trajectory is a stand-still of two seconds.
The resulting errors for the high acceleration lane change with varying orienta-
tion angle are shown in �gure 7.6. The errors of the experiments and the simu-
lations with the multicycle controller without slip compensation (NSC) and the
multicycle with slip compensation (WSC) are drawn. The two most pronounced
conclusions from the plots are that the di�erence between the simulations and
the experiments is larger compared to the di�erence for the high acceleration
eight shaped trajectory and that the advantage of the slip compensation is again
small compared to the total error for the experiments and (almost) not visible
for for the simulations.
The trajectory starts with an error in the x and y direction, which is again
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Figure 7.6: The resulting error in x, y, θ for the high acceleration lane change
(error=measured-reference)

caused by the positioning of the 4ws4wd car at the start using the original con-
troller [15]. The multicycle controller is capable of controlling the error in x
direction, but has some problems controlling the error in the y direction. The
main reason for this are the non-modelled friction torques that cause a certain
deadzone in the steering torque. The controllers are trying to steer the wheels
as can be seen in �gure 7.7, but this does not result in a decrease of the error
in the y directions directly. At 1.5 seconds the controller "suddenly" decreases
the error in y direction, but an overshoot is visible. The controller again tries
to steer the wheels, but now in di�erent direction (di�erent sign of the torque).
Figure 7.8 shows what happens with the steering angles. The left wheels of
the car are steered, but the right wheels are (almost) not steered during the
�rst 3 seconds which is the acceleration phase in a straight line. The center of
gravity is in the center of the car, so the explanation cannot be that the mass
is distributed di�erent as expected. The main reason is expected to be that the
friction torque that causes the deadzone is larger at the right side of the 4ws4wd
car compared to the left side of the car.
At the end of the trajectory, which is again a standstill of three seconds, the
static error in the y direction is visible. This error is the result of the zero-
dynamics in combination with the fact that the error in y at the end of the
braking phase of the trajectory is not equal to zero. It is visible that the right
steering angles are smaller than the left steering angles during the last three sec-
onds. It is also visible that the right steering motors still have a static steering
torque and that the left steering motors do not have a static steering torque.
These two e�ects can be combined and be explained using the friction torque
that causes a deadzone. Near the end of the braking phase of the trajectory
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Figure 7.7: Steering torques lane change; actual torque without slip compensa-
tion (light), simulated torque without slip compensation (dark).
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a certain error in z1yij remains for every tyre due to the error in y direction.
This error is equal for all the tyres, because the orientation angle of the car is
close to zero. The controller tries to reduce this error to zero (mostly) using a
steering action. However, on the right side the friction torque is so large that
a static error in z1yij will remain for the right tyres causing a smaller steering
angle and a residue steering torque.
During the evasive manoeuvre and the braking part of the trajectory it can be
seen that the error is sawtooth shaped. As �gure 7.9 shows, the measured posi-
tion is sawtooth shaped. This shape is a result of the estimator that suddenly
fails to deliver a smooth signal. A jump in the measured position is visible every
time the estimator sees a magnet, which is every half meter. The controller is
capable of handling this sawtooth shaped signal, so the controller proves to be
robust. However the sawtooth shaped signal has a negative in�uence on the
performance of the controller, so it is one of the reasons why the di�erence be-
tween the simulations and the experiments is so clear.
Overall the di�erence between the simulated and calculated orientation angle
is large. This is due to a combination of the non-modelled friction torque, the
further uncertainties in the parameters of the car (e.g. exact height of center of
gravity) and the sawtooth shaped measured position. However the error for the
experiments is smaller than 2.5o, so the error is still rather small compared to
the error with the controller that is used at this moment (see appendix I).
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Figure 7.9: The lane change estimated xy plots

The following step is to see if the slip compensation has a real advantage on the
position error. It is hard to see the e�ect of the slip compensation in �gure 7.6.
It is however visible that the slip compensation has a positive in�uence on the
orientation angle error during the evasive manoeuvre. To get a more detailed
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overview of the advantage, the root mean square error is calculated (see table
7.2).

Table 7.2: Root mean square error for the high acceleration lane change
Exp NSC Exp WSC Sim NSC Sim WSC
x: 0.014156 x: 0.018113 x: 0.0046146 x: 0.0045949
y: 0.038248 y: 0.036089 y: 0.0072083 y: 0.0072361
θ: 0.013002 θ: 0.01179 θ: 0.00074871 θ: 0.00066521

The result is that the controller with slip compensation performs, in most cases,
better in the experiments and the simulations. Only for the root mean square
error in x direction for the experiments, it seems like the experiment with the
slip compensation is far worse than the experiment without slip compensation.
The reasons for this are, �rst that the starting error for the experiment with
slip compensation is larger than for the experiment without slip compensation
(�gure 7.6) and secondly that two strange peaks in the x error, which are the
result of the estimator, are visible around 5.5 seconds in �gure 7.6.
Overall the di�erence between the error with slip compensation and without
slip compensation is small, which has the same reasons as reported in section
7.1.1.

7.2 Comparison between multicycle and original
controller

Here, a brief comparison will be made between the original controller, which is
used at this moment for the path control of the 4ws4wd car used in VEHIL,
and the multicycle controllers. The comparison will be done using the high
acceleration lane change. The controllers are also compared using the low and
high acceleration eight shaped trajectories. These results and also the total
comparison can be found in appendix I.
The controller that is used at this moment for the path control has proven to
be the best choice for the control for the 4ws4wd car over the last few years.
This controller is a master slave controller. The master controller controls
the position of the center of the vehicle and its orientation. To this end, the
master controller outputs are a desired longitudinal and lateral force and a
moment around the vertical axis, as if the vehicle is equipped with a virtual
force actuator located in the center. The slave controller in fact 'distributes'
these reference forces to the steering and driving torque of each wheel assembly,
also taking essential tyre behaviour into account. The slave controller thus
implements the virtual force actuator.
The resulting errors of the original controller, the multicycle controller without
slip compensation and the multicycle with slip compensation for the high
acceleration lane change with varying orientation angle are drawn in �gure
7.10.
The conclusion is that there is a large di�erence between the original controller
and the multicycle controllers. This di�erence is visible during the manoeuvre,
but also at the end of the manoeuvre. This is the �rst sign that both controllers
are totally di�erent.
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Figure 7.10: The resulting error in x, y, θ for the high acceleration lane change
(error=measured-reference)

The steering and driving torque of the front left wheel are drawn in �gure 7.11.
The conclusions is that the original controller compensates the error more by
steering its wheels and that the multicycle controller compensates the error more
by driving the wheels. This can be concluded, because the steering torque signal
for the original controller is larger and spikier than the steering torque signals of
the multicycle controllers and the driving torque signal for the original controller
is very di�erent than the driving torque signals of the multicycle controllers.
Finally, the lateral and longitudinal accelerations are plotted in �gure 7.12. Here
it is visible that the response in lateral direction is far better for the multicycle
controller than for the original controller. It looks like the original controller
has a certain phase delay (lateral).
A comparison is made between the original and the multicycle controller. The
conclusion is that the multicycle controller performs better than the original con-
troller if high acceleration trajectories are driven. The di�erence is very clear
for the lane change track. This can partly be explained looking a the frequency
spectrum of a lane change and the frequency response in lateral direction of the
car in combination with the controllers (appendix I). The frequency spectrum
of a lane change has frequencies up to 1 Hz. The lateral frequency response
of the car in combination with the multicycle controller is far better than the
lateral frequency response of the car in combination with the original controller
around 1 Hz (appendix I).
Another conclusion is that both control methods (original controller and mul-
ticycle controller) have a di�erent way of compensating the error. The orig-
inal controller compensates more by steering the wheels rather than driving
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Figure 7.11: The steering and driving torques for the front left wheel for the
high acceleration lane change.

0 1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

15

t [s]

ac
ce

le
ra

tio
n 

[m
/s

2 ]

original controller

0 1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

15

t [s]

ac
ce

le
ra

tio
n 

[m
/s

2 ]

Multicycle without SC

0 1 2 3 4 5 6 7 8
−15

−10

−5

0

5

10

15

t [s]

ac
ce

le
ra

tio
n 

[m
/s

2 ]

Multicycle with SC

reference longitudinal acceleration
reference lateral acceleration
measured longitudinal acceleration
measured lateral acceleration

Figure 7.12: The lateral and longitudinal acceleration for the high acceleration
lane change.
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the wheels. The multicycle controller compensates more by driving the wheels
rather than steering the wheels.
Whether the multicycle controller keeps performing well if the velocities are
increased has to be determined. It is however expected that the multicycle
controller remains to have a better tracking performance for high acceleration
(lateral) manoeuvres where the accelerations increase and decrease fast.

7.3 Summary

The multicycle controller is reviewed using experiments and it is studied whether
the tyre slip compensation has a positive in�uence on the resulting error in real
situation.
Both the results of the simulations and the experiments are compared. The
result is that the maximum position error for high acceleration reference signals
is about 0.1 m, where a maximum position error of 0.5 m is allowed. The results
of the simulations and the experiments are quite di�erent. Overall the position
error of the experiments is larger than expected from the simulations. The main
reasons for this di�erence are:

1. Some non-modelled friction forces/torques (gearbox, parking moment
tyres etc)

2. Parameter uncertainties (e.g. the mass of the car is not known in detail
at this moment)

The result of the investigation of the tyre slip compensation is that the tyre slip
compensation has a positive in�uence, but this in�uence is small. The main
reasons for this are expected to be that:

1. The total error consists of an error due to the slip, but also consists of
other errors, such as position estimation errors.

2. The slip compensation term consists of signals with a large signal to noise
ratio (e.g. acceleration), so the slip compensation, as suggested by Motte
and Campion [5], is not as e�ective as possible.

From the simulations and the experiments, the conclusion is that the multicycle
controller itself is a good controller for the 4ws4wd car. It is however desired to
perform more experiments to investigate how well the controller can handle more
complicated trajectories (e.g. spinning around its vertical axis at a �xed point).
Finally a comparison is made between the original controller that is used at this
moment and the multicycle controller. The conclusion is that the multicycle
controller has a better tracking performance than the original controller for the
tested trajectories.





Chapter 8

Conclusions and

recommendations

The control design for a four wheel steered and four wheel driven (4ws4wd)
overactuated vehicle is considered in this report. Most attention is paid to the
minimization of the position error during the driving of the trajectories. This is
for example achieved by the implementation of a tyre slip compensation in the
controller. Next to this, attention is paid to the steering behavior, especially for
the reaction on lateral errors. The following conclusions and recommendations
are the result of the research.

8.1 Conclusions

The �rst objective of this report is the development of a controller that can
independently track the time dependent x and y positions of the center and
the orientation angle θ of the 4wd4ws car over the whole working range (0-10
m/s2, 0-50 km/h). The control objective over the velocity range di�ers. At
high and medium velocities it is most important that the position error is as
small as possible. At low velocities (<2 km/h) the steering angle behavior, as
a reaction on position errors, is also or even more important.
The 4ws4wd car has eight actuators, which are the four steering and the four
driving motors, and three degrees of freedom. Therefore, the system is an
overactuated system.
In this report it is considered if the controllers that are developed in the
wheeled mobile robot world can be used for the 4ws4wd car. During the
literature survey it appeared that a lot of literature is available of the so called
"unicycle" model, which is a model of a wheel that can be driven and steered.
A control method, called the multicycle controller, that uses one of the available
controllers for a unicycle model is developed.
The idea of the multicycle controller is to decentralize the control problem
so that four subsystems remain (four corners). For every corner, a unicycle
controller is developed. The controller itself consists of a state feedback
controller, which in combination with the right output linearizing coordinates
("virtual control point"), linearizes the (sub)system. A PD feedback controller
with acceleration feedforward is designed for this linearized system. In total,
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the system consists of four unicycle controllers that together assure that the
4ws4wd robot car follows its desired trajectory.
The control method that is used in this report assures that the position error
at high and medium velocities is low. The control method also assures that the
steering behavior (as a reaction on position errors) is relaxed at low velocities.
The second objective of this report is the implementation of the tyre behavior
in the controller. The most important tyre behavior that has to be modelled
is the tyre slip. The tyre slip is implemented by investigating a unicycle with
linear tyres. A controller from the �eld of robotics is developed for this system.
The controller is based on the slow manifold approach. The idea behind the
slow manifold approach is to de�ne an invariant and attractive "slow manifold"
on which the system is output linearizable. The same output coordinates and
the same PD controller with feedforward is used to be able to compare the
two controllers. The result is that both controllers are comparable, only the
controller for the system with tyre slip has an extra term, the so called slip
compensation term.

The controller is tuned and tested by means of simulations and experi-
ments using the model and the real 4ws4wd robot car used in VEHIL.
The simulations show that the controller is capable of controlling the position
of the center and the orientation angle of the car while driving di�erent
trajectories. On simulation level, the controller with slip compensation shows a
better tracking behaviour than the controller without slip compensation. The
controller with slip compensation is however not able to fully compensate for
the position error due to the tyre slip. This is because the reference orientation
angles of the wheels are calculated using a kinematic approach (i.e. neglecting
tyre slip). This error reduces if the distance of the virtual control point from
the center of the tyre is decreased. To fully reduce the error, the reference
orientation angle has to be the kinematic orientation angle plus the estimated
slip angle. It is however not possible yet to estimate the slip angle with great
accuracy. That is the reason why the kinematic orientation angles are used as
the reference signals instead.
The result of the experiments is that the controller is capable of controlling the
position of the center and the orientation angle of the car while driving di�erent
trajectories. The trajectories that are driven have a relatively low velocity
(max 20 km/h) because of safety reasons. The di�erence between the controller
with and without slip compensation is less visible. This is mainly because the
total error not only consists of an error related to the slip of the tyre, but also
consists of other errors (e.g. position estimator). Another important reason
is that the tyre slip compensation uses measured signals that have a large
signal to noise ratio (e.g. acceleration), so the tyre slip compensation is not as
e�ective as possible.

The �nal conclusion is that the multicycle controller is a controller that
links two worlds, because it combines the control methods of the �eld of
robotics (e.g. unicycle controllers) with the real world of complicated (e.g. a
lot of weight transfer) cars with multiple steerable wheels. The control method
for the unicycle that is used in this report is suited for the speci�c requirements
of the 4ws4wd car used by TNO in VEHIL.
The slip compensation that is used in this report is one of the few slip compen-
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sations found in the robotics literature. The conclusion is that the suggested
slip compensation has an advantage for the tracking, but the advantage is
rather small. Another method to compensate for the slip (angle) is suggested
in this report (slip angle estimation), but the method is not yet implemented.
The multicycle controller that is developed is a controller that meets the given
objectives, but improvements are possible. Improvements and other remarks
will be summed up in the recommendations.

8.2 Recommendations

Velocity dependency
The controller that is designed is a controller that controls a virtual point in
front of the real tyre. This is done, so that a point tracking problem remains.
The virtual point is at this moment attached at a �xed distance from the center
of the wheel. However, it would be desired to reduce this distance at medium
and high velocities to reduce the error due to the tyre slip. It also would be
desired to increase this distance at low velocities to maintain the advantage
of the steering behavior of the controller. Therefore it is recommended to
implement a distance of the virtual control point (ec) that is velocity dependent.

Estimator
A part of the position error from the experiments is the result of the estimator.
The actual position and velocity of the 4ws4wd car is estimated using a discrete
Kalman �lter in combination with a magnetic grid in the road surface. The
result is that the position estimation is not ideal, which has as a result that
the controller doesn't work perfectly. The result is a larger position error
than expected from simulations with a perfect feedback of the position and
the velocity of the center. If an estimator that constantly measures the right
position would be used, it is expected that the tracking error is decreased.
A possible solution could be a local measuring system that is equal to a
miniaturized GPS system.

Di�erent unicycle controllers
The control method described in this report is suited for the speci�c require-
ments of the used WMR. However a lot of other control methods are known for
the unicycle system, so it would be interesting to investigate if other control
methods for the unicycle are suited for the control of a multiple wheeled mobile
robot that has steerable wheels.

Slip angle feedforward
It would be an advantage if the reference orientation angle of the unicycles
would consist of the kinematic orientation angle plus the estimated slip angle
of the unicycle/tyre in stead of only the kinematic orientation angle. Therefore
an estimator that can predict the slip angles of the tyres is desired.

Friction torque
It would be useful to expand the full dynamic model with the friction torque
between the tyre and the road. The results of the simulations and the experi-
ments are expected to be closer related to each other if the full dynamic model
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is expanded with this friction torque. If the friction torque is known, then it is
also possible to implement a feedforward of this signal in the controller so that
the controller performance is improved.

Parameters
The multicycle controller is a state feedback controller. The exact values of
the parameters of the system (mass, height of the center of gravity etc) are
therefore important to achieve the maximum performance possible with the
controller. At this moment not all the parameters of the car are known in detail
so it is useful to determine them in detail. Also it would be useful to determine
the tyre parameters, such as cornering sti�ness and slip sti�ness, in detail.

Tyre saturation
Real tyres can deliver a certain maximum force (lateral and longitudinal),
which is dependent on the vertical force on the tyre. Above a certain slip
angle, the lateral force will not increase anymore. Therefore, it is not desired
that the controller steers the tyres even further if this certain slip angle is
present because this will have no e�ect for the lateral force that is delivered. It
can even decrease the lateral force for certain tyres and so the system can be
destabilized. Therefore, a smart controller that can handle the tyre saturation
has to be developed to stabilize the car around the maximum performance
region.

Control method
In this report, a control method that decentralizes the tracking problem
is suggested. It has proven to be a useful concept for the control of the
4ws4wd car and more general for WMR's with conventional steerable wheels.
It is interesting to investigate if this control method can be used for other
control problems such as positioning platforms that are equipped with multiple
positioning motors.
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Appendix A

Tuning of the feedback

controller

The tuning of the PD controller will be described in this appendix .
The concept of the control method described in this report is that, after the state
feedback in combination with output linearization coordinates, a linear system
of the form z̈1 = w remains. The variable w is an input that can consists of a
feedforward acceleration signal and a position and velocity feedback loop (PD
controller). The values of the PD controller have to be determined. The system
is plotted in �gure A.1.

Figure A.1: z1 system

To estimate the values of the PD controller the choice is made to neglect the
feedforward for this moment, so the following system remains:

z̈1 = Kp(z1ref − z1mes) + Kv(ż1ref − ż1mes) (A.1)
where Kp is the P value of the controller and Kv is the D value of the controller.
The remaining system is e�ectively a mass of 1 kg to where a damper and a
spring are added by the PD controller.
The closed loop system can be written as HC

1+HC , where C is the PD controller
and H is the representation of the mass of 1 kg, which is 1

s2 .

Closedloop =
something

s2 + Kvs + Kp
(A.2)

where the dominator in general can be written as s2 + 2βωns + ω2
n, where β is

the damping ratio and ωn is the undamped natural frequency. A common choice
for the damping ratio is 0.7 [12], which results in a natural damped system.



88

The controller will be designed using the "bandwidth" design method. The
idea is to design the controller so that the closed loop system will respond to
signals that have a frequency smaller than the bandwidth and that the closed
loop system will not respond to signals that have a frequency larger than the
bandwidth. the normal time domain and the frequency spectra of some (severe)
trajectories will be illustrated in �gure A.2 - A.7 to evaluate how large the
bandwidth of the system has to be.

Figure A.2: Eight shaped trajectory - Time Domain

The result from the frequency spectra is that the lane change with varying
orientation angle is the most demanding/severe reference signal. The most
dominant frequencies can be found in the frequency range of 0-1 Hz. For this
moment the choice is made to design three di�erent controllers; one controller
with a bandwidth of about 1.5 Hz, one controller with a bandwidth of about
2.5 Hz and one controller with a bandwidth of about 4 Hz. The �rst one should
be good enough for the "normal" reference signals and the second and the third
one can be used for the more "severe" reference signals. In the tuning process
it is always possible to change the values of the PD controller, but these three
controllers will give a good "estimation" of the minimum values of Kp and Kv.
The closed loop systems are plotted in �gure A.8 - A.10
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Figure A.3: Eight shaped trajectory- Frequency Spectrum

Figure A.4: Lane change (�xed orientation angle) - Time Domain
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Figure A.5: Lane change (�xed orientation angle) - Frequency Spectrum

Figure A.6: Lane change (varying orientation angle) - Time Domain
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Figure A.7: Lane change (varying orientation angle) - Frequency Spectrum

Figure A.8: Closed loop - 1.5 Hz
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Figure A.9: Closed loop - 2.5 Hz

Figure A.10: Closed loop - 4 Hz



Appendix B

Fundamental tyre behavior

In this appendix, some fundamentals of the tyre-road contact behavior will be
explained. In the �rst section the term "slip" is introduced. Then the pure slip
characteristics on the basis of the so called Magic Formula [13] are discussed.
These characteristics describe the relation between slip value and tyre force in
the contact patch of tyre and road. Although these characteristics are highly
non-linear (caused by the in�uence of vertical load and friction level), it is
managed to describe them with a limited set of input parameters. It is not
claimed that this model is a full proof representation of the behaviour of a real
tyre. Nevertheless, this model allows a vehicle model to manoeuvre at limit
performance without harming the reality notoriously.

B.1 Slip values

In �gure B.1 a side and top view of a tyre is drawn. The left part (side view)
shows the construction parts of the tyre and its rotational velocity ω. The
wheel rim and thus the tyre center are towed over the road in longitudinal
direction with a velocity vlong. The center of the rim is located at a distance
above the road surface, which is de�ned by the loaded tyre radius Rl. This
radius is smaller than the unloaded tyre radius due to the fact that the vertical
load de�ects and �attens the tyre near the contact patch. The slip point S is
introduced. This imaginary point is attached to the wheel rim. In a free rolling
condition, the point S is the momentary pole of the rotation of the wheel body.
The distance of point S to the wheel center is de�ned as the e�ective rolling
radius Re. In general the e�ective rolling radius is larger than the loaded tyre
radius but smaller than the unloaded tyre radius. By de�nition, the velocity of
rolling vr equals:

vr = Reω (B.1)
In case of acceleration the longitudinal traction force Flong causes the slip point
S to slide backwards over the road surface. This so called longitudinal slip
velocity vs,long is de�ned as the di�erence between the rolling velocity of the
wheel vr and the forward velocity of the wheel center vlong :

vs,long = Reω − vlong (B.2)
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Figure B.1: The forces acting in the contact patch of slipping tyre during accel-
erating and cornering.

In vehicle dynamics the longitudinal slip κ is used as an input variable for
computing the longitudinal tyre force and is de�ned by:

κ =
vs,long

|vlong|
=

Reω − vlong

|vlong|
(B.3)

The absolute value of the longitudinal velocity vlong is used in the slip de�nition
to make sure that the direction of the longitudinal slip velocity vs,long coincides
with the direction of the generated slip force. For calculating the lateral tyre
slip force Flat the lateral slip velocity vs,lat = vlat is used for determining the
input slip value. In a lot of vehicle dynamics literature the orientation of the
slip velocity v to the wheel plane, called the slip angle α∗, is used as an input
for the lateral tyre force. In the Magic Formula [13] however, lateral slip is
de�ned by the tangent of this slip angle, probably for consistency reasons with
the longitudinal slip κ, reading:

α = tan(α∗) =
vlat

|vlong|
(B.4)

The same argumentation for the absolute value of vlong in this formula can
be used as in B.3. At low levels of longitudinal and lateral slip the relation-
ship between slip force and slip value can be approximated by linear functions
containing the coe�cient Gb and Db:

Flong = Gbκ (B.5)
Flat = Dbα (B.6)

At large levels of slip, these relationships no longer hold as the increase of
traction and cornering forces are no longer proportional to the increasing slip
values. The friction between tyre and road limits the maximum level of forces
and moments. In the Steady-State Tyre Characteristics section a formula is
introduced which is capable of describing the non-linear relationship between
force and slip: the Magic Formula model.
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B.2 Steady-State Tyre Characteristics (pure slip
condition)

The steady-state force generation of the tyre is highly non-linear with respect
to slip. In �gure B.2 a typical diagram of a tyre force under pure longitudinal
or lateral slip conditions are shown.

Figure B.2: Typical tyre force-slip diagram
The conclusion can be that at low values of the slip (B.5) and (B.6) are valid.
At higher values of the slip, a saturation point is reached. The tyre forces reach
a maximum value, that is equal to:

Flong = µlongFz (B.7)
Flat = µlatFz (B.8)

where µlong and µlat are the longitudinal and lateral friction coe�cient.
The longitudinal force generation is in�uenced by lateral slip and vice versa.
This is because a tyre can deliver a certain total force. So if there is a certain
lateral force, then the maximum longitudinal force that can be generated will be
lower. So if there is both a lateral slip and a longitudinal slip, then both forces
will be in�uenced by each other. This e�ect is the reason why a normal front
wheel driven passenger car will loose grip in a corner if the driver has to brake
hard in the corner. This e�ect is called combined slip, which can be plotted as
a circle, the so called friction circle. An example of a a friction circle is shown
in �gure B.3.
In practice the friction circle will be more elliptically shaped.
Another important aspect in the behavior of the tyre is the in�uence of the
vertical wheel load Fz. The basis coulomb friction law states that the maximum
friction force is proportional to the friction coe�cient multiplied by the load
between the two surfaces. However, in practice, the tyre behavior also has
non-linearities in this respect. Both µlong and µlat are a function of the wheel
load.
For modelling the non-linear tyre characteristics an empirical tyre model, the
Magic Formula, is chosen. This model is based on a set of mathematical expres-
sions, with coe�cients that are strongly related to the physical tyre properties
(friction level, slip sti�ness, etc), representing experimental tyre data. The ad-
vantage of such an empirical model over modelling the tyre structure itself is
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Figure B.3: Schematic description of the friction circle.

that its computational load in a computer simulation is much lower. The Magic
Formula was �rst presented in 1987, and since then many revisions have been
made. A short summary and an explanation of the adaptation to reduce the
number of input parameters to a minimum will be given here.
The general shape of the Magic Formula for describing the pure slip character-
istics is a sine function with an arctangent as an argument:

F = D sin(C arctan(Bx)) (B.9)
where F stands for the steady-state tyre characteristic and x denotes the slip
value κ or α . The coe�cients B, C and D characterize the shape of the slip
characteristics. Each coe�cient represents a speci�c aspect of the slip charac-
teristic: the shape factor C in�uences the overall shape of the characteristic
and the peak factor D in�uences the maximum value of the characteristic. The
coe�cient B is called sti�ness factor because, when multiplied by C and D, it
de�nes the slip sti�ness (Gb or Db) (= BCD) and thus in�uences the slope of
the characteristic at low values of slip. The real Magic Formula uses an enor-
mous amount of parameters to describe the load, camber, ply-steer and friction
dependencies of its coe�cients. All these parameters have to be de�ned and
validated for every new tyre mounted to the car.
As stated, the magnitude of the tyre forces is strongly dependent on the vertical
wheel load Fz. Therefore the normalized slip characteristic is introduced, which
is merely a division of the tyre force F (B.9) by the vertical wheel load Fz.
The normalized characteristic is merely an approximation but well accepted
in literature by Pacejka et al [13]. The normalized tyre model coe�cients are
denoted with the norm subscript. The result is that as an approximation the
tyre behavior can be modelled with only one curve in longitudinal and lateral
direction.
Finalizing, the non-linear steady-state combined longitudinal tyre force Flong

and the lateral tyre force Flat are given by:
Flong(κ, α, Fz) = G(κ, α)longFlong,norm(κ)Fz (B.10)
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Flat(κ, α, Fz) = G(κ, α)latFlat,norm(α)Fz (B.11)
where G(κ, α)long and G(κ, α)lat are the weight functions for the interaction of
the longitudinal and lateral slip.
In reality the steady state situation is not reached instantaneously. It takes a
certain distance/time before the tyre can deliver the steady state forces. This
e�ect is called the "transient behavior". The choice is made to not discuss
this e�ect here. If one is interested in this e�ect, then the book called Tire
and Vehicle Dynamics by Pacejka [13] is a good starting point to get more
information.





Appendix C

Wheeled mobile robot bicycle

controller

In this appendix, the model and controller for a bicycle will be discussed. The
model and controller are directly derived from the theory on wheeled mobile
robots without tyre slip. The appendix is written so that it can be read in
combination with chapter 4, which is the chapter that describes the general
procedure.

C.1 Bicycle model

Figure C.1: Bicycle model
The bicycle model, that will be studied here, consists of two wheels that can be
driven and steered separately (�gure C.1). The seven global variables (n=7) are
the position of the center x and y, the orientation angle θ, the steering angles
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β1 and β2 and the rotation angles of the wheels ϕ1 and ϕ2.

q =



x
y
θ
β1

β2

ϕ1

ϕ2


(C.1)

The bicycle itself has also local coordinates, which are xl, yl and θ. The trans-
formation matrix R(θ) (4.1) can be used to switch between the local and global
velocities and accelerations. In total there are four constraints (m=4); two roll
constraints and two slip constraints.
It is important to de�ne some variables (see �gure 4.2) for both wheels before
the constraints can be de�ned. These variables for wheel 1 are: α = 0, β = β1

and L = L. These variables for wheel 2 are: α = π, β = β2 and L = L. The
slip constraints can now be written, using 4.3, as:

C1R(θ)ξ̇ =(
sin(β1) − cos(β1) −L cos(β1)
− sin(β2) cos(β2) −L cos(β2)

)
R(θ)

 ẋ
ẏ

θ̇

 = 0
(C.2)

The roll constraints can be written, using 4.4, as:

J1R(θ)ξ̇ + J2ϕ̇ =(
cos(β1) sin(β1) L sin(β1)
− cos(β2) − sin(β2) L sin(β2)

)
R(θ)

 ẋ
ẏ

θ̇

+
(

r 0
0 r

)(
ϕ̇1

ϕ̇2

)
= 0

(C.3)
These constraints can be written in the standard form AT q̇ = 0:

AT q̇ =


sin(β1 + θ) − cos(β1 + θ) −L cos(β1) 0 0 0 0
− sin(β2 + θ) cos(β2 + θ) −L cos(β2) 0 0 0 0
cos(β1 + θ) sin(β1 + θ) L sin(β1) 0 0 r 0
− cos(β2 + θ) − sin(β2 + θ) L sin(β2) 0 0 0 r





ẋ
ẏ

θ̇

β̇1

β̇2

ϕ̇1

ϕ̇2


= 0

(C.4)
It is now possible to determine the degree of mobility and the degree of steerabil-
ity using (4.12) and (4.13). The degree of mobility is equal to 1 and the degree
of steerability is 2. The degree of steerability is 2, which is obvious, because
there are two independent conventional steering wheels attached to the body.
The degree of mobility is 1. Physically this means that the bicycle can only
move in one direction without re-orienting its conventional steering wheels (e.g
driving on a circle. The only direction in which the bicycle can move without
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re-orienting the steering wheels is on the circle). So the only possible movement
is the rotation about the instantaneous center of rotation that is constructed
from the two perpendiculars to the planes of the wheels. The result is that a
bicycle is a type-(1,2) robot as described in [3].
The following step is to de�ne the posture kinematic model. First of all it is im-
portant to calculate the matrix Σ(β), which is a matrix where the columns form
a basis of the null-space of C1 (C1Σ(β) = 0). It is known that R(θ)ξ̇ = Σ(β)ηa

(see section 4.1.1), where ηa is an input-vector of dimension δm. Because of
this, a possible expression for Σ(β) is:

Σ(β) =

 L cos(β1 − β2) + L cos(β1 + β2)
L sin(β1 + β2)
sin(β1 − β2)

 (C.5)

Knowing that there are two conventional steering wheels the posture kinematic
model can be written as:(

ξ̇

β̇

)
=
(

RT (θ)Σ(β) 0
0 I

)(
ηa

ζ

)
=

1
2L cos(θ + β1 − β2) + 1

2L cos(−θ + β1 − β2) + L cos(θ + β1 + β2) 0 0
1
2L sin(θ + β1 − β2)− 1

2L sin(−θ + β1 − β2) + L sin(θ + β1 + β2) 0 0
sin(β1 − β2) 0 0

0 1 0
0 0 1


 ηa

ζ1

ζ2


(C.6)

,where ηa is the "velocity" of the bicycle and ζ1 and ζ2 are the steering velocities
of the wheels.

The following step is to de�ne the con�guration kinematic model, which is: ξ̇

β̇
ϕ̇

 =

 RT (θ)Σ(β) 0
0 I

−J−1
2 J1Σ(β) 0

( ηa

ζ

)
=

1
2L cos(θ + β1 − β2) + 1

2L cos(−θ + β1 − β2) + L cos(θ + β1 + β2) 0 0
1
2L sin(θ + β1 − β2)− 1

2L sin(−θ + β1 − β2) + L sin(θ + β1 + β2) 0 0
sin(β1 − β2) 0 0

0 1 0
0 0 1

−2L cos(β2)
r 0 0

2L cos(β1)
r 0 0


 ηa

ζ1

ζ2



→ q̇ = S(q)η
(C.7)

The following step is to determine the con�guration dynamic model. First of
all an extra dynamic equation has to be introduced.

M(q)q̈ = C(q, q̇) + F + Bτ (C.8)
The force vector consists of lagrange forces, which are (internal) forces that
assure that the constraints are not violated. It is assumed that no resistance
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forces are present. The bicycle has four di�erent torque inputs; the driving
and steering motor torques. These torques are implemented so that a positive
torque will result in an increase of the acceleration in longitudinal direction if
the steering angles are zero.
For the unicycle model the matrices M , C, τ and B are:

M =



m 0 0 0 0 0 0
0 m 0 0 0 0 0
0 0 Iθ 0 0 0 0
0 0 0 Is 0 0 0
0 0 0 0 Is 0 0
0 0 0 0 0 Iϕ 0
0 0 0 0 0 0 Iϕ


(C.9)

C = 0 (C.10)

F = Aλ (C.11)

τ =


τs1

τs2

τd1

τd2

 (C.12)

B =



0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


(C.13)

where m is the mass of the bicycle, Iθ is the inertia of the bicycle around
the vertical axis, Iϕ is the rotation inertia of the steering wheels, Is is the
orientation inertia of the steering wheels, τdi is the driving torque of wheel i
(i = 1, 2/f(ront), r(ear)) and τsi is the steering torque .
To be able to write down the con�guration dynamic model, as described by
(4.25), the matrix Ṡ(q, q̇) has to be de�ned.

Ṡ =



Ṡ11 0 0
Ṡ21 0 0

(ζ1 − ζ2) cos(β1 − β2) 0 0
0 0 0
0 0 0

2ζ2 sin(β2)
r 0 0

−2ζ1 sin(β1)
r 0 0


(C.14)

where
Ṡ11 = − 1

2L(ηa sin(β1 − β2) + ζ1 − ζ2) sin(θ + β1 − β2)−
1
2L(−ηa sin(β1 − β2) + ζ1 − ζ2) sin(−θ + β1 − β2)−
L(ηa sin(β1 − β2) + ζ1 + ζ2) sin(θ + β1 + β2)

(C.15)
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Ṡ21 = 1
2L(ηa sin(β1 − β2) + ζ1 − ζ2) cos(θ + β1 − β2)−

1
2L(−ηa sin(β1 − β2) + ζ1 − ζ2) cos(−θ + β1 − β2)+
L(ηa sin(β1 − β2) + ζ1 + ζ2) cos(θ + β1 + β2)

(C.16)

Now the con�guration dynamic model of a bicycle can be de�ned as:
q̇ = Sη

η̇ = (ST MS)−1ST (−MṠη + Bτ)
(C.17)

The �nal step is to de�ne the feedback equivalent (by static state feedback) of
the con�guration dynamic model. The torque input τ can be de�ned as:

τ = (ST B)+ST M(Sν + Ṡη) (C.18)
where ν = [ν1 ν2 ν3] is an arbitrary reference input. Using this, the feedback
equivalent (by static state feedback) of the con�guration dynamic model is:

q̇
η̇a

ζ̇1

ζ̇2

 =


S(q)η

ν1

ν2

ν3

 (C.19)

C.2 Bicycle controller

The goal is to develop a controller such that a reference trajectory (xref , yref and
θref ) will be tracked by the center of the bicycle. Next to this also the reference
steering angles (β1ref and β2ref ) will be controlled. The control method as
described in section 4.1.2 will be used. The goal of the control method is to get
a controllable linear subsystem with a dimension of 2(δm + δs) = 6 (ż1, ż2) and
a nonlinear subsystem of dimension of 3− δm = 2 (ż3) as described by (4.38).
The �rst step is to select the linearizing output vector z1 of dimension δm + δs.
A possible choice is [8]:

z1 =

 z11

z12

z13

 =

 x + L cos(θ) + ec cos(θ + β1)
y + L sin(θ) + ec sin(θ + β1)

β2

 (C.20)

where ec is the distance between the center of the front-wheel and a virtual
"control" point (see e.g. �gure 5.4). So the position of a point, at a distance of
ec in the longitudinal direction of the front-wheel, will be controlled. Also the
steering angle at the rear will be controlled. The following step is to de�ne z2,
which is equal to ż1, which is:

ż1 = z2 = Hη (C.21)

H =

 H11 −ec sin(θ + β1) 0
H21 ec cos(θ + β1) 0
0 0 1

 (C.22)

where H11 and H21 are:

H11 = L cos(θ+β1−β2)+L cos(θ+β1+β2)−
1
2
ec cos(θ+β2)+

1
2
ec cos(θ+2β1−β2)
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(C.23)

H21 = L sin(θ+β1−β2)+L sin(θ+β1+β2)−
1
2
ec sin(θ+β2)+

1
2
ec sin(θ+2β1−β2)

(C.24)
Now z1 and z2 are known, but z3 is still unknown. A possible choice for z3 is
[θ β1] [8]. The following step is to determine ż2. Using that η̇ = ν it is possible
to de�ne ż2 as:

ż2 = z̈1 = Hη̇ + Ḣη = Hν + b (C.25)
where H is described in (C.21) and b is:

b = Ḣη =

 Ḣ11 −ec(ηa sin(β1 − β2) + ζ1) cos(θ + β1) 0
Ḣ21 −ec(ηa sin(β1 − β2) + ζ1) sin(θ + β1) 0
0 0 0

 η (C.26)

where Ḣ11 and Ḣ21 are:
Ḣ11 = −L(ηa sin(β1 − β2) + ζ1 − ζ2) sin(θ + β1 − β2)−

L(ηa sin(β1 − β2) + ζ1 + ζ2) sin(θ + β1 + β2)−
1
2ec(ηa sin(β1 − β2) + 2ζ1 − ζ2) sin(θ + 2β1 − β2)+
1
2ec(ηa sin(β1 − β2) + ζ2) sin(θ + β2)

(C.27)

Ḣ21 = L(ηa sin(β1 − β2) + ζ1 − ζ2) cos(θ + β1 − β2)+
L(ηa sin(β1 − β2) + ζ1 + ζ2) cos(θ + β1 + β2)+
1
2ec(ηa sin(β1 − β2) + 2ζ1 − ζ2) cos(θ + 2β1 − β2)−
1
2ec(ηa sin(β1 − β2) + ζ2) cos(θ + β2)

(C.28)

Finally using that ν = H−1(w − b) it is possible to state that z̈1 = w.

z̈1 =

 w1

w2

w3

 (C.29)

where we = z̈1eref −Kve(ż1e − ż1eref )−Kpe(z1e − z1eref ), where Kpe and Kve

are gains and e = 1, 2, 3.
The total controller is now a combination of ν = H−1(w − b) and (C.18). The
inverse of the matrix H is used, which causes problems for certain steering
angles, because the determinant of H is 2ecLcos(β2). The controller works well
as long as the determinant of H is nonzero.
The total system that remains is:

ż1 = z2

ż2 = w
ż3 = Q(q1)z2

(C.30)

The �nal step is to de�ne the zero-dynamics, so the dynamics if the bicycle
stands still. The internal dynamics are determined by the equation ż3 = Qz2.



C.2 Bicycle controller 105

The variable z1 and z2 are zero if the bicycle stands still at the desired output
z1 = [0 0 0]. The result is that ż3 is also zero. The zero-dynamics are then also:

θ(t) = θ0

β1(t) = β10
(C.31)

Stable solutions for the problem of the bicycle standing still at z1 = [0 0 0] are:
x0 + L cos(θ0) + ec cos(θ0 + β10) = 0
y0 + L sin(θ0) + ec sin(θ0 + β10) = 0
β20 = 0

(C.32)

where the variables with subscript 0 can have any value as long as the equations
are not violated.





Appendix D

Unicycle model and controller

In this appendix, the unicycle model and controller will be derived using the
theory on wheeled mobile robots. The appendix is written so that it can be read
in combination with chapter 4, which is the chapter that describes the general
procedure.

D.1 Unicycle model

The model for a unicycle, as shown in �gure D.1, using the wheeled mobile
theory presented in section 4.1.1, will be described in this appendix.

Figure D.1: Unicycle model
A unicycle as described here has four con�gurations variables (n=4), which are
the position of the center (xi and yi), the orientation angle θi and the rotation
of the wheel ϕi (i = f(ront), r(ear)).

qi =


xi

yi

θi

ϕi

 (D.1)
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The wheel itself has also local coordinates, which are xli, yli and θi. The trans-
formation matrix R(θi) (4.1) can be used to switch between the local and global
velocities and accelerations. In total there are two constraints (m=2), because
there is one wheel. These constraints are the roll constraint and the slip con-
straint.
A few extra variables for the unicycle are needed to determine the constraints
using (4.3) and (4.4). Li is zero, αi is zero and βi is zero. Using (4.3), the slip
constraint can now be written as:

(
0 −1 0

)
R(θi)

 ẋi

ẏi

θ̇i

 = C1R(θi)ξ̇i = 0 (D.2)

which simply states that there is a restriction on the velocity in yl direction.
Using (4.4), the roll constraint can now be written as:

(
1 0 0

)
R(θi)

 ẋi

ẏi

θ̇i

+ riϕ̇i = J1R(θi)ξ̇i + J2ϕ̇i = 0 (D.3)

which states that the longitudinal velocity of the unicycle ẋli is equal to −riϕ̇i.
The constraints rewritten in the standard form AT

i q̇i = 0 are:

AT
i q̇i =

(
sin(θi) − cos(θi) 0 0
cos(θi) sin(θi) 0 ri

)
ẋi

ẏi

θ̇i

ϕ̇i

 = 0 (D.4)

It is now possible to determine the degree of mobility and the degree of steer-
ability using (4.12) and (4.13). The degree of mobility (δm) is equal to two and
the degree of steerability (δs) is zero. The degree of mobility is two, because
two movements are possible. The wheel can be driven forward/backward in
xli direction. The second possible movement is the orientation of the unicycle
(θi). It is now already possible to see the connection with a normal wheel on
the 4ws4wd/2ws2wd car, because one driving motor is available that drives the
wheel in the xli direction and one steering motor is available that can orient
the wheel (θi). The conclusion can be that a unicycle is a type-(2,0) robot as
described in [3].
The following step is to de�ne the posture kinematic model. First of all it
is important to calculate the matrix Σ(β), which is a (3x2) matrix where the
columns form a basis of the null-space of C1 so that C1Σ(β) = 0. It is known
that R(θi)ξ̇i = Σ(β)ηai (see section 4.1.1), where ηai is an input-vector of di-
mension 2. The result from this is that a possible expression for Σ(β) is:

Σ(β) =

 1 0
0 0
0 1

 (D.5)

Knowing that there are no conventional steering wheels the posture kinematic
model can be written as:

ξ̇i = (RT (θi)Σ(β))ηai =

 cos(θi) 0
sin(θi) 0

0 1

( η1i

η2i

)
(D.6)
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where η1i is the forward velocity of the unicycle (ẋli) and η2i is the orientation
velocity of the unicycle (θ̇i).

The following step is to de�ne the con�guration kinematic model, which
is:

(
ξ̇i

ϕ̇i

)
=
(

RT (θi)Σ(β)
−J−1

2 J1Σ(β)

)
ηai =


cos(θi) 0
sin(θi) 0

0 1
−1
ri

0

( η1i

η2i

)
→ q̇i = Si(q)ηi

(D.7)
where the added equation simply is the roll-constraint, because η1i = ẋli, so
riϕ̇i = −ẋli.
The following step is to determine the con�guration dynamic model, because
the real torque input cannot be determined using the kinematic model. First of
all an extra dynamic equation has to be introduced (4.21) that e.g. describes
how the motors are attached to the unicycle. It is again assumed that there are
no disturbances etc, so the Ci matrix used in (4.21) is zero. The unicycle has
two di�erent torque inputs; the driving and steering motor torque. As a result
of this the τi vector has two components. The steering motor is "implemented"
so that a positive torque has as a consequence that θ̈i increases. The driving
motor is "implemented" so that a positive torque has as a consequence that ẍli

increases. Fi is constructed from the constraint forces.


mi 0 0 0
0 mi 0 0
0 0 Iθi 0
0 0 0 Iϕi

 q̈i = Ai(q)λi +


0 0
0 0
0 1
−1 0

( τdi

τsi

)
(D.8)

where mi is the mass of the unicycle, Iθi
is the inertia of the unicycle around

the vertical axis, Iϕi
is the rotation inertia of the wheel, λi is the Lagrange

multiplier vector, τdi is the driving torque and τsi is the steering torque .
The matrix Ṡi(qi, q̇i) has to be de�ned to be able to write down the con�guration
dynamic model, as described by (4.25).

Ṡi(qi, q̇i) =


−η2i sin(θi) 0
η2i cos(θi) 0

0 0
0 0

 (D.9)

Now the con�guration dynamic model of a unicycle can be de�ned as:
ẋi

ẏi

θ̇i

ϕ̇i

η̇1i

η̇2i

 =



cos(θi)η1i

sin(θi)η1i

η2i
−1
ri

η1i
riτdi

mir2
i +Iϕi
τsi

Iθi


(D.10)
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Here the analogy with the con�guration dynamic model of the 1DOF car is
visible. The term for η̇1i is equal to the term for η̇ of the 1DOF car (4.45).
The �nal step is to de�ne the feedback equivalent (by static state feedback) of
the con�guration dynamic model. The torque input τi can be de�ned as:(

τdi

τsi

)
=

(
ν1i(mir

2
i +Iϕi

)

ri

ν2iIθi

)
(D.11)

where νi = [ν1i ν2i] is an arbitrary reference input. The feedback equivalent (by
static state feedback) of the con�guration dynamic model is:

ẋi

ẏi

θ̇i

ϕ̇i

η̇1i

η̇2i

 =


cos(θi)η1i

sin(θi)η1i

η2i
−1
ri

η1i

ν1i

ν2i

 (D.12)

The posture dynamic model is:
ẋi

ẏi

θ̇i

η̇1i

η̇2i

 =


cos(θi)η1i

sin(θi)η1i

η2i

ν1i

ν2i

 (D.13)

D.2 Unicycle controller

Looking at (D.12) the conclusion can be that it would be possible to directly
have control of the forward velocity of the unicycle and the orientation angle
of the unicycle. However to be able to control the position of the unicycle, a
"master" controller should be introduced that transforms the position error in
adapted velocity reference signals. Because of this and because of the require-
ment of the steering angle behaviour, the choice is made to design a controller
that "directly" controls the reference trajectory (xiref , yiref and θiref ) of the
unicycle. It is important to control the orientation angle next to the position
of the unicycle, because then the orientation angle will always be as close as
possible to the ideal orientation angle (5.2). This is desired, because �nally the
controller will be used for a car with real tyres that have slip. Because of the
tyre characteristic diagram of real tyres (See appendix B) it is desired to keep
the orientation angle as close as possible to the ideal steering angle, because
then the slip(angle) will be minimized.
The goal of the controller is to control the three variables (xi, yi and θi), but
only two inputs are available (steering and driving motor). Because of this, the
control method described in section 4.1.2, will be used. The goal of the control
design method is to get a controllable linear subsystem with a dimension of
2(δm + δs) = 4 (ż1i, ż2i) and a nonlinear subsystem of dimension of 3− δm = 1
(ż3i) as described by (4.38).
The �rst step is to select the linearizing output vector z1i of, which is of di-
mension 2 because of the degree of mobility. The vector z1i is constructed from
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the posture variables (qi = [xi, yi, θi]) so that a controllable system will remain.
The variable z1i is of dimension 2, so e�ectively a point tracking problem will re-
main. If the point xi, yi would be chosen, then it would not be possible to assure
that the orientation angle will be equal or convert to the reference orientation
angle. However if a point in front of the wheels is chosen, then it is assured
that the variables xi, yi, θi will convert to the reference variables if there is a
forward velocity. An example that can illustrate this is a truck in combination
with a trailer. It the trailer is oriented with a certain angle relative to the truck
while the truck stands still, then this orientation angle will remain. However,
if the truck starts driving in a straight line with a certain velocity, then the
orientation angle of the trailer (relative to the truck) will convert to zero. This
is not exactly what happens when a point in front of the unicycle is chosen, but
it illustrates the concept.
The virtual control point z1i in front of the wheel is illustrated in �gure D.2 [8].

Figure D.2: Output linearizing coordinates z1i.

z1i =
(

z1xi

z1yi

)
=
(

xi + ec cos(θi)
yi + ec sin(θi)

)
(D.14)

where ec is the distance between the center of the unicycle and the virtual "con-
trol" point (z1i). So instead of controlling the actual unicycle center position
and the orientation angle, the z1xi and the z1yi position of the virtual "control"
point will be controlled. So e�ectively a point tracking problem remains. The
following step is to de�ne z2i, which is equal to ż1i, which is:

ż1i = z2i = Hiηi =
(

cos(θi) −ec sin(θi)
sin(θi) ec cos(θi)

)(
η1i

η2i

)
(D.15)

The determinant of Hi is equal to ec, so ec has to be everything but zero,
because the inverse of Hi will be used. Now z1i and z2i are known, but z3i

is still unknown. A possible choice for z3i is θi [8]. The following step is to
determine ż2i and ż3i. Using that η̇i = νi it is possible to de�ne ż2i as:

ż2i = z̈1i = Hiη̇i + Ḣiηi = Hiνi + bi (D.16)
where Hi is equal to (D.15) and bi is:

bi =
(
−η1iη2i sin(θi)− ecη

2
2i cos(θi)

η1iη2i cos(θi)− ecη
2
2i sin(θi)

)
(D.17)
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ż3i is equal to:

ż3i = Qiz2i = Qiż1i =
(
− sin(θi)

ec

cos(θi)
ec

)( ż1xi

ż1yi

)
(D.18)

Finally using that νi = H−1
i (wi − bi) it is possible to state that z̈1i = wi.

So after feedback linearization the following expression for z̈1i remains:

z̈1i =
(

w1i

w2i

)
(D.19)

w1i = z̈1xiref −Kv(ż1xi − ż1xiref )−Kp(z1xi − z1xiref )
w2i = z̈1yiref −Kv(ż1yi − ż1yiref )−Kp(z1yi − z1yiref ) (D.20)

where Kp and Kp are arbitrary positive numbers and z1iref = [z1xiref z1yiref ] =
z1i(xiref , yiref , θiref ).
The total controller is now a combination of νi = H−1

i (wi − bi) and (5.5).(
τdi

τsi

)
=

(
(mir

2
i +Iϕi

)

ri
(cos(θi)w1i + sin(θi)w2i + ecη

2
2i

Iθi
(− sin(θi)

ec
w1i + cos(θi)

ec
w2i − η1iη2i

ec
)

)
(D.21)



Appendix E

Unicycle model and controller

with slip compensation

In this appendix the complete procedure to derive the controller for a unicycle
with tyre slip will be described. Some of the matrices already stated in appendix
D, such as Si, Ai etc will be used (i = f(ront), r(rear)). The appendix is written
so that it can be read in combination with chapter 4, which is the chapter that
describes the general procedure.

E.1 Unicycle model extended with tyre slip

A wheeled robot with tyre slip can be described with a model that can be written
in the standard singular perturbation form (4.64). The procedure, described in
section 4.3.1, will be used to get to this model for the unicycle.
The dynamical model can (again) be written in the standard form (4.21). It is
assumed that there are no resistance torques etc, so Ci = 0. The generalized
force vector consists of tyre contact forces. The resulting dynamical model is:

mi 0 0 0
0 mi 0 0
0 0 Iθi 0
0 0 0 Iϕi

 q̈i = −AiKiA
T
i Aiµi +


0 0
0 0
0 1
−1 0

( τdi

τsi

)
(E.1)

,where Ki is a to be determined matrix.
The general procedure to derive Ki is described in section 4.3.1. A unicycle has
two independent constraints (slip and roll) that both will be violated due to
tyre slip, so the matrix Ki can be expressed as:

Ki = LT
i (qi)

1
Vi

(
D0 0
0 G0

)
Li(q) (E.2)

where D0 = εD (D is the cornering sti�ness), G0 = εG (G is the slip sti�ness)
and Vi is the absolute velocity of the center of the tyre. The matrix Li is still
unknown, but it is known that:(

Vlati

Vlongi − riϕ̇i

)
= Li(q)AT

i (q)q̇i (E.3)
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A possible expression for Li is determined using the matrix Ai for the unicycle
and �gure 5.3.

Li =
(
−1 0
0 −1

)
(E.4)

so Ki can be expressed as:

Ki =
1
Vi

(
D0 0
0 G0

)
(E.5)

The following procedure is to see what sign D0 and G0 have. The general forces
(4.56) in this example will be calculated for an angle θi of zero degrees. In
this case the �rst general force corresponds to Fxi and the second general force
corresponds to Fyi.

Fi = −AiL
T
i

(
Flati

Flongi

)
= −


0 1
−1 0
0 0
0 ri

( −1 0
0 −1

)(
Flati

Flongi

)
=


Flongi

−Flati

0
riFlongi


(E.6)

The conclusion can be that Flati is equal to −Fyi, so Flati points in the negative
yi-axis direction, and that Flongi is equal to Fxi, so Flongi points in the positive
xi-axis direction. The following step is to see how the velocities are directed.(

Vlati

Vlongi
− riϕ̇i

)
= LiA

T
i q̇i =

(
−1 0
0 −1

)(
0 −1 0 0
1 0 0 ri

)
ẋli

ẏli

θ̇i

ϕ̇i

 =
(

0 1 0 0
−1 0 0 −ri

)
ẋli

ẏli

θ̇i

ϕ̇i


(E.7)

The conclusion is that Vlati
is equal to ẏi and that Flati

is pointing in the
negative yi-direction. The force and the slip-velocity are positioned in an
opposite direction, because if the tyre is sliding in positive direction than the
force will be pointed in negative direction. Using this, the conclusion can
be that D0 is a positive number. Using the same procedure it is possible to
conclude that G0 also has to be a positive number.

The standard con�guration kinematic model (q̇i = Si(qi)ηi) is no longer valid.
Instead of this q̇i = Si(q)ηi + Ai(qi)εµi (4.59) has to be used.

q̇i =


cos(θi) 0
sin(θi) 0

0 1
−1
ri

0

( η1i

η2i

)
+


sin(θi) cos(θi)
− cos(θi) sin(θi)

0 0
0 ri

 ε

(
µ1i

µ2i

)
(E.8)

The derivative of this function with respect to the time is:

q̈i =
(

Si Ai

)( η̇i

εµ̇i

)
+
(

Ṡi Ȧi

)( ηi

εµi

)
(E.9)
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where

Ṡi = η2i


− sin(θi) 0
cos(θi) 0

0 0
0 0

 Ȧi = η2i


cos(θi) − sin(θi)
sin(θi) cos(θi)

0 0
0 0

 (E.10)

using that θ̇i = η2i.
The last steps are to implement q̈i (E.9) in (E.1) and front multiply (E.1) by
(Si Ai)T . The resulting equation is:

Ji(qi)
(

η̇i

εµ̇i

)
=
(

ST
i (qi)

AT
i (qi)

)
[Bi(qi)τi −Mi(qi)(Ṡiηi + Ȧiεµi)]+(

0
−AT

i (q)Ai(qi)Ki(qi, q̇i)AT
i (qi)Ai(qi)µi

) (E.11)

where Ji =
(

ST
i (qi)Mi(qi)Si(qi) ST

i (qi)Mi(qi)Ai(qi)
AT

i (qi)Mi(qi)Si(qi) AT
i (qi)Mi(qi)Ai(qi)

)

The �nal step to come to a complete model in singular perturbation form is
rewriting the equations to the standard form (4.64), which is:

q̇i = Si(qi)ηi + Ai(qi)εµi

η̇i = foi(qi, ηi) + εf1i(qi, ηi, µi) + ε2f2i(qi, ηi, µi) + B1i(qi)τi −R12iA
T
i AiKiA

T
i Aiµi

εµ̇i = goi(qi, ηi) + εg1i(qi, ηi, µi) + ε2g2i(qi, ηi, µi) + B2i(qi)τi −R22iA
T
i AiKiA

T
i Aiµi

(E.12)
where in this case:

Si =


cos(θi) 0
sin(θi) 0

0 1
−1
ri

0

 (E.13)

Ai =


sin(θi) cos(θi)
− cos(θi) sin(θi)

0 0
0 ri

 (E.14)

f0i =
(

0
0

)
(E.15)

f1i =

(
−µ1iη2ir

2
i

r2
i +1

0

)
(E.16)

f2i =
(

0
0

)
(E.17)
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B1i =

(
ri

(r2
i +1)Iϕi

0
0 1

Iθi

)
(E.18)

R12iA
T
i AiKiA

T
i Ai =

(
0 −(mi−Iϕi

)r2
i G0

VimiIϕi

0 0

)
(E.19)

g0i =
(

η1iη2i

0

)
(E.20)

g1i =

(
η2iµ2i
−µ1iη2i

r2
i +1

)
(E.21)

g2i =
(

0
0

)
(E.22)

B2i =

(
0 0
−ri

(r2
i +1)Iϕi

0

)
(E.23)

R22iA
T
i AiKiA

T
i Ai =

(
D0

Vimi
0

0 (mir
2
i +Iϕi

)G0

VimiIϕi

)
(E.24)

E.2 Unicycle controller with tyre slip compensa-
tion

Now the model is known, so the following step is to continue from the model
in singular perturbation form to the slow manifold approach. The �rst step is
to choose appropriate output linearization variables to perform the procedure
described in section 4.3.2.
The largest linearizable subsystem of a WMR can be obtained by selecting
δm+δs = 2 linearizing output functions (see section 4.1.2). So a smart combi-
nation of xi, yi, θi has to be chosen for the output linearizing coordinates. The
same output linearizing coordinates as for the controller for the unicycle without
slip will be chosen, so z1i is:

z1i =
(

xi + ec cos(θi)
yi + ec sin(θi)

)
(E.25)

The �rst derivative of this equation is:

ż1i = Ssiηi + Asiεµi =
(

ẋi − ecθ̇i sin(θi)
ẏi + ecθ̇i cos(θi)

)
(E.26)
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Using (E.12) Ssi and Asi are:

Ssi =
(

cos(θi) −ec sin(θi)
sin(θi) ec cos(θi)

)
(E.27)

Asi =
(

sin(θi) cos(θi)
− cos(θi) sin(θi)

)
(E.28)

The desired linearization condition is z̈1i = wi (4.92), where wi is a new input.
The linearization condition for a unicycle is:

z̈1i = Ssiη̇i + AsiεḢεi
+ Ṡsiηi + ȦsiεHεi

= wi (E.29)
where Ṡsi and Ȧsi are:

Ṡsi = η2i

(
− sin(θi) −ec cos(θi)
cos(θi) −ec sin(θi)

)
(E.30)

Ȧsi = η2i

(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)
(E.31)

and a possible choice for wi is:

wi =
(

w1i

w2i

)
= z̈1iref−KpT (z1i−z1iref )−KvT (Ssiηi+AsiεHεi−ż1iref ) (E.32)

where Ssiηi + AsiεHεi is equal to ż1i on the slow manifold, z1iref =
z1i(xiref , yiref , θiref ) and KpT and KvT are two positive de�nite matrices, e.g.:

KpT =
(

Kp 0
0 Kp

)
(E.33)

KvT =
(

Kv 0
0 Kv

)
(E.34)

It is now possible to describe the two equations (linearization and manifold
condition) that are needed for the slow manifold approach (4.83). This can be
done using the matrices (E.13) - (E.34).

The following step is to derive τ0i and H0i using the procedure described
in 4.3.2. If ε = 0, then the linearizing condition and manifold condition are
(4.84). This equation is an algebraic equation with the following solutions for
τ0i and H0i for a unicycle:

τ0i =

(
(mir

2
i +Iϕi

)

ri
(cos(θi)wp101i + sin(θi)wp102i + ecη

2
2i)

Iθi

ec
(− sin(θi)wp101i + cos(θi)wp102i − η1iη2i)

)

H0i =

(
η1iη2i

Vimi

D0
−Vimi

G0(1+r2
i )

(cos(θi)wp101i + sin(θi)wp102i + ecη
2
2i)

) (E.35)

where:
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(
wp101i

wp102i

)
= z̈1iref −KpT (z1i − z1iref )−KvT (Ssiηi − ż1iref ) (E.36)

The following step is to determine τ1i and H1i using the method described in
section 4.3.2. It is clear that there is an extra variable, which is Ḣ0i, that is not
known yet. To derive Ḣ0i the time derivative of H0i has to be taken and as a
second step ε has to be set to zero. It is used that mi, G0 and D0 can be seen
as �xed variable, because G0 and D0 are dependent of mi. The result of this
procedure on (E.35) is:

Ḣ0i =


η1iη2i

V̇imi

D0
+ η̇1iε0η2i

Vimi

D0
+ η1iη̇2iε0

Vimi

D0
−V̇imi

G0(1+r2
i )

(cos(θi)wp101i + sin(θi)wp102i + ecη
2
2i)+

−Vimi

G0(1+r2
i )

η2i(− sin(θi)wp101i + cos(θi)wp102i)+
−Vimi

G0(1+r2
i )

(cos(θi)ẇp101i + sin(θi)ẇp102i + 2ecη̇2iε0η2i)

 (E.37)

where:(
η̇1iε0

η̇2iε0

)
=

(
ri

(r2
i +1)Iϕi

τdi0 + −(mi−Iϕi
)r2

i G0

VimiIϕi
H02i

1
Iθi

τsi0

)
(E.38)

The solution for H1i and τ1i can now be determined. For the moment only the
solution of τ1i will be written down. The choice is made to only calculate τ0i

and τ1i, because the contribution of τ2i to the total τi is very small, because it
is front multiplied by ε2, which is a small parameter.

τ1i =

(
mir

2
i +Iϕi

ri
Iθi

ec

)
KSCi

(
H01i

H02i

)
+ TCRTi (E.39)

where KSCi and TCRTi (Tyre Characteristic Related Term) are:

KSCi = −
(

cos(θi) sin(θi)
− sin(θi) cos(θi)

)
KvT Asi (E.40)

TCRTi =
(

TCRT1i

TCRT2i

)
(E.41)

where TCRT1i and TCRT2i are:
TCRT1i =

miIϕi

riG0
(Vi(cos(θi)ẇp101i + sin(θi)ẇp102i+

2η2i(− sin(θi)wp101i + cos(θi)wp102i − η1iη2i))+
V̇i(cos(θi)wp101i + sin(θi)wp102i+
ecη

2
2i) + η2iVi(− sin(θi)wp101i + Vi cos(θi)wp102i))−

Iϕi
Vimi

riDo
η1iη

2
2i

(E.42)
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TCRT2i =
miIθi

e2
cD0

(ecη2i(Vi cos(θi)wp101i + Vi sin(θi)wp102i + Viecη
2
2i + η1iV̇i)+

η1iVi(− sin(θi)wp101i + cos(θi)wp102i − η1iη2i))+
VimiIθi

ecG0(1+r2
i )

η2i(cos(θi)wp101i + sin(θi)wp102i + ecη
2
2i)

(E.43)

The "total" controller τi = τ0i + ετ1i is:

τi =

(
mir

2
i +Iϕi

ri
Iθi

ec

)((
c(θi) s(θi)
−s(θi) c(θi)

)((
wp101i

wp102i

)
−KvT εAsiH0i

)
+
(

ecη
2
2i

−η1iη2i

))
+εTCRTi

(E.44)
If this controller is compared with the controller of the 1DOF example (4.104)
then it can be concluded that they have a similar structure. Because of the
similarities the controller for the unicycle that will be used for the simulation
is:

τiε =

(
mir

2
i +Iϕi

ri
Iθi

ec

)((
c(θi) s(θi)
−s(θi) c(θi)

)(
w1i

w2i

)
+
(

ecη
2
2

−η1iη2i

))
+

εTCRTti

(E.45)
where TCRTti is the TCRTi term with wi and ẇi instead of wp1i and ẇp1i. In
the 1DOF example, it was possible to see the similarity between the controller
from the standard robot theory for a model without tyre slip and the controller
with slip compensation with ε = 0. For the unicycle there is also such a simi-
larity, because (E.45) with ε = 0 is equal to (5.16).
It is also possible to see the similarities between the controller with slip com-
pensation for the 1 DOF model and the unicycle model. The driving part of
the unicycle controller (�rst row of (E.45)) converts to (4.107) if θi = 0 and
θ̇i = η2i = 0 are implemented in (E.45).





Appendix F

Validation one-track model

In this appendix, a short validation of the physical one-track model will be
given. This will be done by discussing a a lane change with a maximum lateral
accelerations of 10 m/s2 and a maximum longitudinal acceleration of 10 m/s2.
The simulations will be performed using the ode 5 solver with a �xed step size
of 0.002 s. The �rst step in the process is to simulate the lane change using the
con�guration dynamic model of the bicycle. The double unicycle controller is
"tuned" so that the error is (almost) zero. The 4 torque inputs of the model
are saved. Now these torques are used as an input for the one track model.
The expectation is that the error will convert to zero when the tyre sti�ness is
increased, because then the slip in lateral and longitudinal direction is reduced.
This expectation is con�rmed by the simulations, from which the results are
plotted in �gure F.1.
Now the conclusion can be that the one track model is validated.
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Figure F.1: Error (measured-reference) for the simulations with the one track
model with increasing tyre sti�ness. (Original tyre: G = 46Fzi and D = 70Fzi,
10 x sti�er tyre: G = 460Fzi and D = 700Fzi)



Appendix G

Schematic overview

multicycle controller

Figure G.1: Schematic overview of the multicycle controller for a 4ws4wd car.





Appendix H

Reference trajectories

In this appendix, the two high acceleration reference trajectories that are used
for the simulations and the experiments with the 4ws4wd car are illustrated.
The position, velocity and the accelerations signals are illustrated.
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Figure H.1: The reference variables for the high acceleration eight shaped tra-
jectory used for the simulations and the experiments with the 4ws4wd car.
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Figure H.2: The reference variables for the high acceleration lane change used
for the simulations and the experiments with the 4ws4wd car.



Appendix I

Comparison between the

multicycle controllers and the

original controller

In this appendix, a comparison between the original controller, which is used
at this moment for the path control of the 4ws4wd car used in VEHIL, and
the multicycle controllers will be made. First a comparison will be made on
simulation level. Finally a comparison will be made using experiments.

I.1 Simulations

The longitudinal and lateral frequency responses (xref to x and yref to y if
the orientation angle is zero) while driving with a certain forward velocity are
determined using the full dynamic simulation model of the 4ws4wd car (e.g.
steering motor dynamics and roll dynamics of the car modelled) [15] . The
multicycle controller with three di�erent settings for the PD feedback controller
is used. Also the original controller for the 4ws4wd car [15] is used. The
simulations are split up in 2 sections: with and without parameter errors. The
simulations with parameter errors are performed using the multicycle controller
with parameter errors (e.g. the mass used in the controller is 0.8 times the mass
of the model). The results of the simulations are drawn in �gure I.1 and I.2.
The conclusion is that the lateral response of the original controller is not good
compared to the lateral response of the multicycle controller without parameter
errors. If parameter errors are introduced, then the multicycle controller with
the strongest PD controller (highest bandwidth) is the only one that is better
than the original controller. This is mainly, because the feedforward signal is not
perfect anymore, so the response is more like the response of the PD controller.
The conclusion from the longitudinal response is that the original controller and
the multicycle controller are comparable. Although it looks that the multicycle
controller with the strongest PD settings is a little bit better.
A more detailed discussion about the frequency responses of the multicycle
controller can be found in chapter 6.



I.1 Simulations 128

10
1

10
0

10
1

�-10

�-5

0

5

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

Without Parameter Error

10
�1

10
0

10
1

�-150

�-100

�-50

0

50

100

150

Frequency [Hz]

P
ha

se
 [d

eg
]

10
�1

10
0

10
1

�-10

�-5

0

5

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

With Parameter Error

10
�1

10
0

10
1

�-150

�-100

�-50

0

50

100

150

Frequency [Hz]

P
ha

se
 [d

eg
]

original controller
Multicycle � Kv=9, Kp=41, FF
Multicycle � Kv=12, Kp=74, FF
Multicycle � Kv=18, Kp=165, FF

original controller
Multicycle � Kv=9, Kp=41, FF
Multicycle � Kv=12, Kp=74, FF
Multicycle � Kv=18, Kp=165, FF

 
Multicycle � Kv=9, Kp=41, FF
Multicycle � Kv=12, Kp=74, FF
Multicycle � Kv=18, Kp=165, FF

 
Multicycle � Kv=9, Kp=41, FF
Multicycle � Kv=12, Kp=74, FF
Multicycle � Kv=18, Kp=165, FF

Figure I.1: Frequency response in longitudinal direction with and without pa-
rameter errors for the multicycle controller.
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Figure I.2: Frequency response in lateral direction with and without parameter
errors for the multicycle controller.
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I.2 Experiments

The results of the experiments that are performed in the VEHIL test
facility will be presented in this section. The trajectories used in the ex-
periments are based on the trajectories used for the simulations performed
in chapter 6. The experiments are performed using three di�erent con-
trollers: Original controller, Multicycle controller with tyre slip compensation
(Kp = 165,Kv = 18, ec = 0.35) and multicycle controller without tyre slip
compensations (Kp = 165,Kv = 18, ec = 0.35).
The results of three di�erent experiments will be discussed. First a low
acceleration eight shaped trajectory with a �xed orientation angle is driven.
From a non-rolling start (longitudinal direction is the x direction), the 4ws4wd
car accelerates to 15 km/h with a maximum acceleration of 3 m/s2. The
tangential velocity of the track is kept constant at 15 km/h. The maximum
acceleration in perpendicular direction of the trajectory is 3 m/s2, which is a
result of the tangential velocity in combination with the radius of the corners of
the eight shaped trajectory. At the end of the trajectory the velocity is reduced
to zero again with a maximum de-acceleration of 3 m/s2. The �nal part of the
trajectory is a stand-still of a few seconds. Secondly a high acceleration eight
shaped trajectory with a �xed orientation angle is driven (see appendix H).
From a non-rolling start (longitudinal direction is the x direction), the 4ws4wd
car accelerates to 20 km/h with a maximum acceleration of 5 m/s2. The
tangential velocity of the track is kept constant at 20 km/h. The maximum
acceleration in perpendicular direction of the trajectory is 9 m/s2, which is a
result of the tangential velocity in combination with the radius of the corners of
the eight shaped trajectory. At the end of the trajectory the velocity is reduced
to zero again with a maximum de-acceleration of 5 m/s2. The �nal part of
the trajectory is a stand-still of a few seconds. Finally a high acceleration lane
change with an orientation angle tangential to the trajectory is driven (see
appendix H). From a non-rolling start, the 4ws4wd car accelerates in a straight
line in x direction to 20 km/h with a maximum acceleration of 5 m/s2. The
tangential velocity of the track is kept constant at 20 km/h. The maximum
acceleration in perpendicular direction of the trajectory is 9 m/s2, which is a
result of the tangential velocity in combination with the radius of the corners
of the lane change. At the end of the trajectory the velocity is reduced to zero
again in a straight line with a maximum de-acceleration of 5 m/s2. The �nal
part of the trajectory is a stand-still of two seconds.

I.2.1 Low acceleration eight shaped trajectory

The resulting errors for the low acceleration eight shaped trajectory with �xed
orientation angle are drawn in �gure I.3.
The errors using the original controller and the multicycle with slip com-
pensation are drawn. The conclusion is that the di�erence between the
controllers for this trajectory is rather small. The error is larger than expected
from simulations of comparable trajectories (e.g. appendix A). One of the
reasons that the error is larger is the fact that the position of the 4ws4wd
car is determined using an estimator that estimates the position based on a
discrete measuring tool (magnet grid) and a continuous measuring tool (wheel
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velocities). The discrete measuring tool causes that the positions and velocity
estimation is not ideal. The result is that the controller will not work perfect,
which results in a larger error a the position error.
The error in the x direction at the end of the trajectory increases for the original
controller. This is the phase when the car is close to the stop, so the velocity is
low in the last few seconds of the trajectory. The original controller switches
the feedback loop o� at low velocities to overcome problems with the steering
angle behavior. The error in the y direction at the end of the trajectory is not
zero for the multicycle controller. This is the phase that the car (almost) stands
still. The car is oriented with the longitudinal direction in positive x direction,
so the error is due to the solutions of the zero-dynamics of the chosen control
method, which is output linearization. The zero-dynamics are that θ̇ij = 0, so
the orientation angle can have any �xed (θijt) value as long as z1ij = z1ijref ,
so z1xij = xijt + ec cos(θijt) = z1xijref and z1yij = yijt + ec sin(θijt) = z1yijref

are (ideal) solutions for the situation that the tyre stands still at the reference
position of the virtual control point z1ij . The car ends the trajectory with
an error in the y direction, so z1ij 6= z1ijref . Therefore, the car will steer the
wheels so that that the measured output coordinates are equal to reference
output coordinates, so that z1ij = z1ijref .
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Figure I.3: The resulting error in x, y, θ for the low acceleration eight shaped
trajectory (error=measured-reference). Dark signal: Multicycle controller with
slip compensation. Light signal: Original controller
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I.2.2 High acceleration eight shaped trajectory

The resulting errors for the high acceleration eight shaped trajectory with �xed
orientation angle are drawn in �gure I.4. The errors of the original controller,
the multicycle controller without slip compensation and the multicycle with slip
compensation are drawn. The conclusion is that the error using the multicycle
controllers is smaller than the error using the original controller. This is visible
in the error in the x direction and the error in the orientation angle θ. The
di�erence between the multicycle with and without slip compensations is small.
It is again visible that the original controller has an error in the x direction at
the end of the trajectory and that the multicycle controllers have an error in
the y direction at the end of the trajectory.
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Figure I.4: The resulting error in x, y, θ for the high acceleration eight shaped
trajectory (error=measured-reference)

The steering and driving torque of the front left wheel are drawn in �gure I.5.
The conclusions is that the original controller compensates the error more by
steering its wheels and that the multicycle controller compensates the error more
by driving the wheels. This can be concluded, because the steering torque signal
for the original controller is larger and spikier than the steering torque signals of
the multicycle controllers and the driving torque signal for the original controller
is smaller and less spikier than the driving torque signals of the multicycle
controllers.

I.2.3 High acceleration lane change

The resulting errors for the high acceleration lane change with varying orien-
tation angle are drawn in �gure I.6. The errors of the original controller, the
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Figure I.5: The steering and driving torques for the front left wheel for the high
acceleration eight shaped trajectory.

multicycle controller without slip compensation and the multicycle with slip
compensation are drawn.
The conclusion is that there is a large di�erence between the original controller
and the multicycle controllers. The errors using the multicycle controllers are
smaller than the errors using the original controller. Also a small di�erence is
visible between the multicycle controller with and without slip compensation.
The steering and driving torque of the front left wheel are drawn in �gure I.7.
The conclusions is again that the original controller compensates the error by
steering its wheels and that the multicycle controller compensates the error by
driving the wheels. This can be concluded, because the steering torque signal for
the original controller is larger and spikier than the steering torque signals of the
multicycle controllers and the driving torque signal for the original controller is
very di�erent than the driving torque signals of the multicycle controllers. The
steering angles of the di�erent controllers are drawn in �gure I.8. Here it is
visible that the steering angles are larger if the the original controller is used.
Finally, the lateral and longitudinal accelerations are plotted in �gure I.9. Here
it is visible that the response in lateral direction is far better for the multicycle
controller than for the original controller. This corresponds with the results of
the frequency response shown in the �rst section of this appendix.
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Figure I.6: The resulting error in x, y, θ for the high acceleration lane change
(error=measured-reference)
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Figure I.7: The steering and driving torques for the front left wheel for the high
acceleration lane change.
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Figure I.8: The steering angles for the high acceleration lane change.
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Figure I.9: The lateral and longitudinal acceleration for the high acceleration
lane change.
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I.3 Summary

A comparison is made between the original, the multicycle with and without
slip compensation controller in this appendix. The conclusion is that the multi-
cycle controller performs better than the original controller if high acceleration
trajectories are driven. The di�erence is very clear for the lane change track.
This can be explained looking a the frequency spectrum of a lane change and
the frequency response in lateral direction. The frequency spectrum of a lane
change has frequencies up to 1 Hz. The lateral frequency response of the multi-
cycle controller is far better than the lateral frequency response of the original
controller around 1 Hz. The di�erence for the eight shaped trajectories is not
that large, because the frequency spectrum of the eighttrack is "lower" than
the frequency spectrum of the lane change. The di�erence between the lateral
frequency respons between the original controller and the multicycle controllers
is smaller at those lower frequencies (0.2 Hz).
The second conclusion is that the multicycle with slip compensations is indeed
better in reality than the multicycle without slip compensation. However the
improvement is rather small. The simulations performed in chapter 5.4 show a
more signi�cant improvement than the experiments. One of the reasons is that
slip is not the only reason for the error during the experiments because of other
errors such as the position estimations errors. Another important factor is the
large signal to noise ratio of the measured signals used for the slip compensation
that cause that the slip compensation is not as e�ective as possible.
Another conclusion is that both control methods (original controller and mul-
ticycle controller) have a di�erent way of compensating the error. The orig-
inal controller compensates more by steering the wheels rather than driving
the wheels. The multicycle controller compensates more by driving the wheels
rather than steering the wheels.
Whether the multicycle controller keeps performing well if the velocities are
increased has to be determined. It is however expected that the multicycle
controller remains to have a better tracking performance for high acceleration
(lateral) manoeuvres where the accelerations increase and decrease fast.


