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Samenvatting 

De (mechanische) eigenschappen van een kunststof product zijn niet aileen 
afhankelijk van de moleculaire structuur van de polymere grondstof, maar ook 
van de thermische en mechanische belasting waaraan deze tijdens de fabricage 
onderworpen wordt. De morfologie die men aantreft in een uit semikristallijn 
polymeer vervaardigd product hangt nauw samen met de thermische en mech­
anische geschiedenis van het polymeer. Stromingsgei:nduceerde kristallisatie 
is daarbij een belangrijk fenomeen, dat echter in veel opzichten nog niet of 
slechts ten dele begrepen wordt. Voor de vervaardiging van producten die aan 
hoge specificaties moeten voldoen en voor de optimalisering van fabricage­
processen is het van belang dat dit fenomeen gemodelleerd kan worden. 

Dit afstudeerwerk bestaat uit twee delen: in het eerste wordt de opzet van 
een algemeen model voor stromingsge"induceerde kristallisatie beschreven. 
Dit model is opgebouwd uit een aantal onderdelen, die gebaseerd zijn op 
eerder theoretisch werk dat, waar nodig, aangepast en uitgebreid werd. In het 
tweede deel wordt een aantal aspecten van het model geverifieerd aan de hand 
van beschikbare experimentele gegevens m.b.t. de isotherme kristallisatie van 
een lineair isotactisch polypropeen, dat aan een kortstondige afschuifstroming 
onderworpen werd. 

De overeenkomst tussen de voorspellingen van het model en de resultaten 
van de experimenten is uitstekend. Dit werk kan daarom gezien worden als 
een eerste stap op weg naar het kwantitatief modelleren van de kristallisatie 
van polymeren met complexere moleculaire structuren onder industrieel re­
levante thermische en mechanische belasting. 
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Abstract 

The (mechanical) properties of a plastic product are not only determined by 
the molecular structure of the polymeric material, but also by the thermal 
and mechanical loading to which this material is subjected during the manu­
facturing stage. The morphology observed within a semicrystalline polymer 
product is closely related to the thermal and mechanical history of the poly­
mer. Here, flow-induced crystallization is a phenomenon that plays an im­
portant role. However, in many respects, it is not or only partly understood 
yet. For the manufacturing of products with high design specifications, as 
well as for the optimization of manufacturing processes, it is important to be 
able to model this phenomenon. 

This master's thesis consists of two parts: in the first part, a comprehen­
sive model of flow-induced crystallization is presented. This model comprises 
different elements, which are based on earlier theoretical developments that, 
where necessary, were modified and extended. In the second part, some as­
pects of the model are verified by available experimental data on the isother­
mal crystallization of a linear isotactic polypropylene, which was subjected 
to short-term shear flow. 

The correspondence between the model predictions and the experimen­
tal results is excellent. Therefore, this work can be viewed as a first step 
towards the quantitative modeling of crystallization of polymers with more 
complex molecular structures under industrially relevant thermal and me­
chanical loading conditions. 

v 



Chapter 1 

Introduction 

In this work, a comprehensive framework for modeling flow-induced crystal­
lization (FIC) of polymers is presented. The main effects of flow observed 
at the macroscopic level, which are to be described by the modeling, are 
twofold. First of all, already under moderate flow conditions, the nucleation 
density is significantly increased. Janeschitz-Kriegl [58] demonstrated that 
the number of spherulites obtained after a well-defined flow history depends 
on the applied mechanical work in a nonlinear fashion. This implies that flow­
induced crystallization is a self-enhancing process. Secondly, if the flow (or 
flow history) is strong enough, oriented crystallites are formed. It has been 
observed [4, 52] that a strong increase of the number of spherulites and the 
appearance of oriented crystallites occur simultaneously. A typical example 
where these two effects are observed is shown in figure 1.1. 

The kinetics of crystallization have traditionally been described in terms 
of nucleation, i.e. the appearance of primordial crystalline entities in the 
amorphous phase, and growth of these so-called nuclei into crystallites. Ac­
cording to the classical nucleation theory for polymers, developed by Lau­
ritzen and Hoffman [51, 68], a nucleus becomes stable, meaning that folded­
chain lamellae can spontaneously grow from its surface, when it reaches a 
critical size. It has been common practice, for modeling purposes, to derive 
an expression for the rate at which nuclei cross this size barrier, i.e. the nu­
cleation rate. Much less attention has been devoted to the nuclei that do not 
become stable. An important part of the modeling presented here consists 
of a description of the creation, growth, and disappearance of these unstable 
nuclei, which we call precursors. 

The reason for introducing precursors is the experimental observation 
that, in a melt crystallized at constant temperature, in quiescent conditions 
as well as after short-term flow, all spherulites have nearly the same diam­
eter. The concept of precursors allows us to capture this effect, while still 
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Figure 1.1: Optical micrographs of a linear isotactic polypropylene melt crystallizing at 
135°C after different flow histories. The images were taken 120 seconds after cessation of 
short-term shear flow, which was applied at a constant rate of 60s- 1 for a duration of one 
second (left), three seconds (middle), and six seconds (right) [52]. 

predicting a strong influence of flow on the nucleation process . It is assumed 
that nucleation is severely impeded by the flow, which prevents chain seg­

. ments from aligning in folded-chain lamellae. Therefore, during flow only 
precursors are created. These immediately become nuclei when the flow is 
stopped. This fast transformation is justified by the observation that, in 
quiescent crystallization, all nuclei are present from the start. Relating the 
rate of creation of precursors to a measure of the deformation of molecules 
in the melt, obtained from a constitutive model for the stress, we show that 
point nucleation induced by short-term deformation can be described quan­
titatively. 

For strong flows, threadlike precursors develop, which may grow into ori­
ented crystallites. A description of the growth of pointlike precursors into 
threadlike precursors, and the resulting transition from an isotropic to an 
anisotropic morphology, has been established. However, at the moment, 
there are too many free parameters. Experiments will have to be designed 
to determine these parameters, before trying to simulate flow-induced crys­
tallization experiments where a highly anisotropic morphology develops. 

The semicrystalline morphology that develops influences the rheology of 
the crystallizing polymer. We propose to model the crystallizing polymer as 
a suspension, following the work of Tanner [111, 112]. An essential feature 
of our approach is that the rheological properties of the amorphous phase, 
viewed as the matrix in the suspension model, are affected by the presence 
of precursors. Moreover, the rheological properties of the semicrystalline 
phase, i.e. of the crystallites that play the role of particles in the suspension 
model, change due to perfection of the crystalline structure. Hence, we view 
a crystallizing polymer as a suspension with evolving properties of the matrix 
and the particles. 
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The ultimate objective of all this is to simulate the crystallization process 
during continuous flow. In contrast to the short-term flow experiments, the 
processes of creation, disappearance, and nucleation of precursors on one 
hand, and the disturbance of the flow by the presence of crystallites on the 
other hand, will then interfere. An important subject of future work will be 
to resolve the coupling between crystallization kinetics and rheology. A first 
step is taken here. 
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Chapter 2 

Development of a FIC model 

Modeling flow-induced crystallization requires understanding of two pro­
cesses: the response of the material to thermomechanical loading and the 
transformation of the amorphous phase into the crystalline phase. Since 
these processes influence each other, as is evident from the vast amount of 
literature on flow-induced crystallization experiments, it is necessary to incor­
porate information on the crystalline morphology in the constitutive model 
for the stress state and information on the thermomechanical history of the 
material in the description of phase transformation kinetics. A framework 
is presented that incorporates concepts from rheology and crystallization ki­
netics in a comprehensive model of flow-induced crystallization. 

2.1 Rheology of polymer melts 

2.1.1 Kinematics and stresses 

The Cauchy stress tensor of the fully amorphous melt is written in the form 

M 

(F = -pi + Tv + L Te,i , 

i=l 

(2.1) 

where the extra stress tensor is decomposed into a viscous mode Tv = 2T}D 
and M viscoelastic modes Te,i· The viscous stress is defined by an appropriate 
choice for the viscosity TJ, which may for instance depend on the deformation 
rate and temperature. The viscoelastic stress modes are related to the de­
formation, i.e. orientation and stretch, of macromolecules in the melt. The 
deformation of a single macromolecular chain is elastic: upon removal of the 
stress, its original contour length is regained and its orientation tends back to 
the isotropic, coil-like state. However, deformation at the molecular level is 
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Figure 2.1: Nonaffine deformation of a macromolecular chain. A similar picture can be 
found in Larson [66]. 

nonaffine with respect to the macroscopic deformation. Energy is dissipated 
as a result of slippage of the chain with respect to the continuum; see figure 
2.1. Peters and Baaijens [87] used the concept of a slip tensor to describe 
this effect. Their approach is briefly outlined here. 

The molecular structure of the melt is represented by a set of connector 
vectors Ri· The equation of motion of a connector vector is written as 

(2.2) 

where Ai is the slip tensor and Le,i is the elastic part of the velocity gradient 
tensor L. A dot designates the material time derivative, i; = 8xj8t + iJ · 
V x. The connector vectors are written as Ri = A(ni, with iii a unit vector 
and A the appropriate stretch factor. The average of the dyadic product 
~~ over all orientations is known as the conformation tensor. Under the 
assumption that the stretch is independent of orientation, hence (Ai) = Ai, 
the conformation tensor is given by 

(2.3) 

where Si = (iiiiii) is the orientation tensor. The evolution equation for the 
conformation tensor is derived from the equation of motion (2.2) as 

(2.4) 

in which D / Dt is another notation for the material time derivative. The 
deformation tensor is decomposed into an elastic part and a plastic part 
(F = Fe,i · Fp,i)· The velocity gradient tensor L = F · p-l can then be 
written as the sum of an elastic part 

0 -1 
Lei = L - Ai = Fe i . F . ' ' e,~ 

(2.5) 
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and a plastic part 
. -1 

Lpi=Ai=Fei·Fpi·F. 
' ' ' 

(2.6) 

Furthermore, the elastic Finger tensor is defined as 

Bei = Fei ·Fer.. 
' ' '" 

(2.7) 

Since it is easily shown that the time derivative of Be,i obeys 

. T 
Be i = Lei . Be i + Be i . Le" ' 

' ' ' ' ,to 
(2.8) 

which is equivalent to equation 2.4 with UlJii) replaced by Be,i, it follows 
from the initial conditions (RJ'-li) = ~I and Be,i = I, corresponding to the 
undeformed configuration, that 

(2.9) 

Hence, the elastic Finger tensor is directly related to the stretch and orien­
tation of molecules in the melt. For this reason, Zuidema et al. [131, 132] 
used the second invariant of the deviatoric part of Be as the driving force for 
flow-induced nucleation and crystal growth. 

The viscoelastic stress, experienced momentarily by the temporary net­
work of entangled chains, is denoted by cr e,i and is related to the elastic 
Finger tensor according to 

(2.10) 

Defining the viscoelastic modes of the extra stress tensor as Te,i = cre,i- GJ, 
which in combination with equation 2.10 is analogous to the well-known neo­
Hookean constitutive model r = G(B- I), the overall contribution of these 
viscoelastic modes is written as 

M M 

Te = L Gi (Be,i- I)= L Gi (3AISi- I) (2.11) 
i=l i=l 

2.1.2 Non-linear viscoelastic constitutive models 

With the viscoelastic part of the extra stress in equation 2.1 given by equation 
2.11, the constitutive modeling is completed by a formulation of the evolution 
of the elastic Finger tensor Be,i or, equivalently, of the orientation tensor Si 

1 Also known as the Truesdell rate. 
2 Also known as the Cotter-Rivlin rate. 
3 Also known as the Jaumann rate. 
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Table 2.1: Definition of some objective derivatives. 

Upper convected derivative1 v . T 
X=X-L·X-X·L 

Lower convected derivative2 
D. 0 

X = X + LT · X + X . L 
Corotational derivative3 -"· . T X=X-fl·X-X·fl 

D v 
Gordan-Schowalter derivative X= X+ ((D. X+ X. D) 

and the stretch parameter Ai. This means that a slip tensor Ai has to be 
specified. Taking the upper convected derivative of equation 2.10 (see table 
2.1) and substituting equations 2.5 and 2.8, the evolution of the viscoelastic 
stress CTe,i is obtained as 

(2.12) 

v 
For Te,i we get, making use of I= -2D, 

(2.13) 

Several nonlinear viscoelastic constitutive models can be reproduced by an 
appropriate choice for the slip tensor Ai (see appendix A from Peters and 
Baaijens [87] and table 3.1 from Swartjes [110]). Table 2.2 summarizes the 
governing equations for the most frequently used models, omitting the sub­
script i for the sake of brevity. 

It is essential, when trying to understand the molecular origins of flow­
induced crystallization, that the effects of orientation and stretch can be 
studied separately. This will be one of the subjects of chapter 3. Such a 
separation is accomplished by decomposing the elastic Finger tensor into 
the orientation tensor Si and the scalar stretch parameter Ai according to 
equation 2.9, where 

tr (Be,i) 

3 
(2.14) 

since by definition tr(Si) = 1. Thus, equation 2.8 can be converted into two 
separate evolution equations for Si and Ai· A class of constitutive models 
known as the Porn-Porn models are particularly interesting because there the 
distinction between molecular orientation and stretch processes was explicitly 
made, on the basis of a physical picture of the molecular architecture, in the 
equations describing the orientation and stretch relaxation processes. 
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Table 2.2: Formulation of some differential constitutive models, using the concept of a slip tensor. 

Viscoelastic stress de+ A· (je + (je ·AT= 0 
Slip tensor A= aoD + a1ae + a2a;

1 + a3I 
Model ao a1 0:2 a3 >. References 
J ohnson-Segalman 1 ( 0 _.!:i_ ...!.. constant [75,87] 2A 2A 

1 

Leonov2 0 1 G tr(ue)-G2tr(u~- ) constant [75,87] 4GA - 4A 12GA 

Giesekus 0 a: (1-a:)G 1-2a: constant [75,87] 2GA -~ 2":\ 

Phan-Thien-Tanner1' 2 ( 0 G 1 { Aoexp [ -§tr ( Te) J [75,87] -2A 2A Ao [1 + §tr (re)] 

Extended Pom-Pom3 0 _a:_ _ (1-a:)G 1 [1-a:-3a:A4 S:S + _1_ (1 _ _l_)] -1 
[125, 126] 

2GAob 2Aob 2A AobA2 As A2 

V' 

Extended Porn-Porn S + 2 (D: S) S +A 
1
A2 [3aA4S · S + (1- n- 3nA4S: S) S- 13a: I] = 0 [125, 126] 

Ob , 

(double-equation form) A = A ( D : S) - } (A - ~) 

1In these models >.ife + Ue = Gcsl, using the Gordan-Schowalter derivative (see table 2.1) and the modulus Gcs = (1- o-le. 
The definitions u e = GcsBe and Te = u e - Gcsl assure that >.fle + Te = 2G >.D [66]. The Gordan-Schowalter derivative reduces to the 
other derivatives listed in table 2.1 for specific values of the slip parameter(. We get the upper convected Maxwell model for ( = 0, the 
lower convected Maxwell model for ( = 2, and the corotational Maxwell model for ( = 1. 

2Table 4.4.2 of Macosko [75] contains some errors. For the Leonov model, I must be replaced by GI throughout the definition of 
!J. For the Phan-Thien-Tanner model, fd should read >.- 1 (exp[,BG- 1tr(T)]- 1)T. Furthermore, fc should be multiplied by T for the 
White-Metner model and replaced by 2j[T + GI] for Larson's model, with f from equation A5, A6, or A7 of Peters and Baaijens [87]. 

3The stretch relaxation time As in the XPP model depends on A (see equation 2.15). The expression given by Swartjes [110] for the 
generalized relaxation time )..9 , here denoted by ).., contains an error. The left-hand side of his equation 3.15 should read >.;- 1
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The original Porn-Porn model of McLeish and Larson [77] was based on 
the Doi-Edwards tube model for linear polymer melts [27]. The pom-pom 
molecule has a simplified branched architecture, which serves as a model for 
long-chain branched polymers. It is visualised as a backbone, whose motion 
is confined to a tube determined by constraints imposed by the surrounding 
chains, with an equal number of branches at each of its two ends. Every 
mode Te,i of the viscoelastic stress corresponds to a pom-pom molecule with 
a number of branches per end given by the parameter qi· In this picture, Si 

and A represent the orientation and stretch of a part of the backbone tube. 
The definition of the viscoelastic stress Ue,i that McLeish and Larson used, 
in the differential form as well as in the integral form of the Porn-Porn model, 
differs from equation 2.10 by a constant. However, Rubio and Wagner [96] 
showed that equation 2.10 gives the correct expression for constitutive models 
based on a differential approximation of the Doi-Edwards model. 

The extended Pom-Pom model (XPP) of Verbeeten et al. [125, 126] was 
based on the differential form of the original Pom-Pom model. The viscoelas­
tic stress is calculated by equation 2.11 in combination with the evolution 
equations for the orientation tensor and the stretch parameter given in table 
2.2. Alternatively, the XPP model can be written in a single-equation form, 
which is also shown in the table. One important improvement with respect 
to the original Pom-Pom model was the introduction of an exponential decay 
of the stretch relaxation time with increasing stretch of the contour length 
of the backbone tube, 

As,i (t) = Aos,iexp [-vi (Ai (t)- 1)] , (2.15) 

where vi = 2/ qi. The orientation relaxation time Aob,i is constant. Exper­
imental data for two LDPE melts, obtained in a range of flow types, were 
fitted accurately by Verbeeten et al. [125, 126] without having to change the 
fitting parameters for different flows. Surprisingly, they found that the XPP 
model also performed reasonably well for HDPE, which has a linear molec­
ular structure. The formulation of the stretch relaxation law was modified 
later (see chapter 5 of [125]) to improve the convergence of contraction flow 
simulations, which had turned out to be problematic. This new version of 
the XPP model is also the one presented in table 2.2. The references [110] 
and [126] use the older version. 

10 



2.2 Modeling crystallizing polymers as sus-. 
pensions 

The mechanical behavior of an undercooled polymer melt gradually changes 
as more and more molecules are incorporated in newly formed nuclei or in the 
already present crystalline phase ( s). The morphology that develops as nu­
clei grow into crystallites with distinct shapes agrees with the basic concept 
of a particle suspension: isolated particles (the crystallites) are scattered 
throughout a continuous matrix (the amorphous phase). Theories of sus­
pension mechanics have therefore been used in the context of flow-induced 
crystallization [11, 12,111, 112]. 

In this section, we introduce the concept of a crystallizing polymer as 
a suspension, where the amorphous matrix is characterized by the moduli 
Go,i and relaxation times Ao,i, whereas the semicrystalline particle phase is 
characterized by the moduli G 1,i and relaxation times A1,i· Both spectra 
may change during the crystallization process; the first by the development 
of noncrystalline structures within the amorphous phase and the latter by 
perfection of the semicrystalline structure. These phenomena are briefly dis­
cussed in section 2.2.5. Perfection will be left out of consideration in the 
simulations presented in chapter 3, where we mainly look at the early stage 
of crystallization, which is characterized by nucleation and growth. A more 
detailed discussion of modeling structure development within the amorphous 
phase is postponed to section 2.4.3. The reason for this is that a theoretical 
picture of the kinetics of flow-induced nucleation, which will be introduced 
in section 2.4.2, is needed. 

Before proceeding to the rheology of viscoelastic suspensions, which is 
still a largely unexplored area, a number of results obtained for the more 
extensively studied case of a suspension of elastic particles in an elastic matrix 
will be discussed here. 

2.2.1 Classical elastic suspension theory 

The effective modulus of a suspension of elastic particles in an elastic matrix, 
also called a composite, is generally expressed in the form 

(2.16) 

where ¢ represents the volume fraction of the particles or, in the present 
context, the crystallites and v denotes the Poisson ratio. The subscripts 0 
and 1 refer to the suspension at ¢ = 0 and at ¢ = 1. The ratio f c = G / G0 is 
commonly referred to as the relative modulus, while G is called the effective 
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modulus. In general, fa not only depends on the volume fraction and the 
mechanical properties of the individual phases, but also on the geometry of 
the particles, expressed by a set of shape factors fJ = [fJ1 fJ2 ... ]. 

Kerner [62] derived an expression for the relative shear modulus of a 
suspension of elastic spheres in an elastic matrix, where the particles c·ould 
belong to an arbitrary number of different phases with different material 
properties. When only one particle phase is present, it reads 

fa= 7- 5vo + (8- 10v0 ) ~ + (7- 5v0) ( ~- 1) ¢ . 

7- 5vo + (8 - 10vo) g~ - (8 - 10vo) ( ~ - 1) ¢ 
(2.17) 

Uemura and Takayanagi [120] obtained the same result. However, their ex­
pression for the effective Poisson ratio differs from Kerner's. On the basis of 
a composite spheres model, where the suspension is viewed as an assembly of 
spherical unit cells, each consisting of a particle surrounded by a concentric 
shell of the matrix material, Hashin [37] derived upper and lower bounds 
on the relative bulk modulus and found that these converged to the exact 
solution 

3 ( 1 - v0 ) ( ~~ - 1) ¢ 
fK (¢) = 1 + . . 

3 ( 1 - v0 ) + ( 1 + v0 ) ( ~ ~ - 1) ( 1 - ¢) 
(2.18) 

The effective Poisson ratio follows from the effective moduli according to 

3K -2G 
v = 6K + 2G. (2.19) 

Hashin only obtained upper and lower bounds on the relative shear modulus 
of an elastic suspension of spheres. More general bounds, applicable to any 
macroscopically isotropic elastic suspension, were later derived by Hashin and 
Shtrikman [38] and Walpole [128]. Christensen and Lo [19] pointed out that 
the relative shear modulus given by equation 2.17 is not exact, but coincides 
with the lower bound derived in these works. 

In the limiting case of a dilute suspension of spheres, equations 2.17 and 
2.18 reduce to the results of Eshelby [32], 

. 15 ( 1 - vo) ( g~ - 1) ¢ 
hm fa(¢)= 1 + a (2.20) 
¢-+D 7- 5v0 + (8 - 10vo) a~ 

and 

(2.21) 
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Evaluating equations 2.17, 2.18, 2.20, and 2.21, some interesting features are 
observed: 

1. The shear moduli of the individual phases only appear in the relative 
shear modulus fc via their ratio GI/G0 . Similarly, for the relative bulk 
modulus fx, the ratio Kd K 0 is important. 

2. The relative shear modulus fc is independent of the moduli of the in­
dividual phases if G1 << G0 (voids) or G1 >> Go (rigid particles). 
If, in the latter case, ¢ ~ 0 and v0 = 0.5 then equation 2.20 becomes 
equal to Einstein's dilute suspension model for rigid spheres in an in­
compressible matrix: fc = 1 + 2.5¢. 

3. As ¢ ~ 1, fc and fx become linearly proportional to GI/G0 and 
Kd Ko, respectively. The correct results fc = GI/Go and fx =Kif Ko 
are obtained at ¢ = 1. 

4. The effective shear and bulk moduli are independent of the Poisson 
ratio of the particles. On the other hand, the Poisson ratio of the 
matrix remains present in the expression for f 0 (though not in the one 
for fx) as¢~ 1, and only cancels out exactly at¢= 1, which is not 
realistic. 

Kerner forced the Poisson ratio of the matrix to vanish by replacing the 
matrix properties by the effective properties of the suspension in going to 
¢ = 1, which in the case of a single particle phase simply yields fc = GI/G0 . 

Uemura and Takayanagi, on the other hand, proposed to use equation 2.17 
with the indices 0 and 1 interchanged and ¢ replaced by 1 - ¢. The packed 
spheres are then assumed to form a continuous matrix, while the actual 
matrix material in the interstitial spaces is treated as the particle phase. A 
second relative modulus, describing the high-concentration behavior of the 
suspension, is therefore introduced according to 

h = .2_ = 7- Sv1 + (8- 10vl) ~ + (7- 5v1) ( ~ - 1) (1- ¢) 
0 

G1 7- 5v1 + (8- 10v1) g~ - (8- 10vl) ( g~ - 1) (1- ¢). 
(2.22) 

Analogous to equation 2.20, in the limit ¢ ~ 1 it follows that 

. 15 (1 - v1) ( ~ - 1) (1 - ¢) 
hm he ( ¢) = 1 + 0 ¢--+1 7- 5v1 + (8 - 10vl) 0~ 

(2.23) 

The same procedure is carried out for the relative bulk modulus, thus defining 
a solution hx = K / K1 for high volume fractions. 
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Uemura and Takayanagi [120] compared the predictions of equations 2.17 
and 2.22 to experimental data for blends of polyethylene and poly(1-butene). 
The materials were assumed incompressible (v0 = v1 = 0.5). The expressions 
for the relative shear modulus were reformulated in terms of the dynamic 
viscosity: fry• from equation 2.17 for the low-concentration behavior and hry• 
from equation 2.22 for the high-concentration behavior, with the elastic shear 
moduli in these expressions replaced by dynamic viscosities. Replacing elas­
tic shear moduli by static viscosities is justified if pressure gradients and 
inertia effects can be neglected. The correspondence principle, which will be 
discussed in section 2.2.3, was then applied to replace these static viscosities 
by dynamic viscosities. Since the components were both liquid, and therefore 
could both form the dispersed phase depending on the volume fraction, equa­
tion 2.22 was the exact high-concentration solution to the problem studied. 
Excellent agreement with the data, corresponding to two different temper­
atures, was obtained for 0 ~- ¢ ~ 0.4 using fry• and for 0.8 ~ ¢ ~ 1 using 
hry•. In the range of intermediate volume fractions, the experiments showed a 
zero-shear viscosity in between the limiting solutions. The same qualitative 
behavior is observed in crystallizing polymer melts, where the storage mod­
ulus is often measured in order to characterize the evolution of crystallinity. 
At some point, the storage modulus starts to increase, then it rises steeply, 
and eventually it levels off. 

In liquid-liquid suspensions, this transition from low-concentration to 
high-concentration behavior is related to phase inversion, which means that 
droplets coalesce and gradually form a new matrix, while the former matrix is 
reduced to isolated droplets. In suspensions of solid particles, the transition 
is determined by a percolation threshold rather than phase inversion, since 
the particles do not coalesce upon impingement. Consequently, using equa­
tion 2.22 at high volume fractions, two things are neglected. First, whereas 
the model was derived for spherical particles, the newly defined particles, 
formed by what is in fact the matrix material, are not spherical. The re­
sulting error is probably insignificant if these particles are small. Secondly, 
bodies with no edges, such as spheres, cannot possibly enclose a region in 
three-dimensional space. Therefore, the newly defined particles are intercon­
nected. But in a crystallizing melt, where impinged crystallites continue to 
grow in the free directions, isolated amorphous regions can be created. Thus, 
it is conceivable that the sudden strong hardening of the material is due to 
a process with characteristics of a phase inversion as well as a percolation 
threshold. Finally, a disadvantage of simply switching the phases in equation 
2.17 to obtain equation 2.22 is that this method does not provide a solution 
for highly concentrated suspensions with multiple particle phases, e.g. dif­
ferent crystalline phases in the present context, unless one of these has such 
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a high volume fraction in comparison with the others that it is reasonable to 
assume that this phase alone constitutes the homogeneous matrix. A reason­
able first approximation might be to assume that all crystalline phases have 
the same mechanical properties and simply treat them as a single dispersed 
phase in the suspension model. 

The results of Uemura and Takayanagi [120] were obtained from dynamic 
viscosity measurements in the limit of zero frequency. This probably explains 
the rather large range of volume fractions in which their experimental data 
were predicted by equation 2.17. However, in general, this model is only 
accurate for ¢ < < 1. 

Two main strategies to determine f c at higher volume fractions exist. 
On one hand, dilute suspension theories Uc "' ¢) have been extended to 
higher volume fractions by incorporating higher-order effects like interactions 
between particles (typically fc "' ¢ 2

). For example, Shaqfeh and Fredrick­
son [102] calculated the effective viscosity of a suspension of randomly ori­
ented, rigid fibers in a viscous liquid by taking the scattering of elastic waves 
from multiple fibers into account. For the case of spherical particles sus­
pended in a Newtonian liquid, Phan-Thien et al. [89, 91] approached the 
effect of hydrodynamic interactions as a lubrication problem involving pairs 
of particles. Models of this kind are usually valid in the semidilute regime, 
which extends up to ¢ ';::::j 0.45 if a 10% error is allowed and the model is 
0( ¢2 ) accurate, but not in the highly concentrated regime. For elastic com­
posites, Torquato [117] derived exact series expansions for the effective shear 
and bulk moduli in terms of an infinite set of probability functions s}il, that 
give the probability of finding n points in the same phase p. Truncating the 
series after the third-order terms, the predicted relative moduli agreed very 
well with numerical simulations of two- and three-dimensional composites, 
except for the case of rigid particles in an incompressible matrix, where the 
predictions deviated from the simulations for¢> 0.6 [118]. 

On the other hand, several researchers have developed approximate mi­
cromechanical models based on a so-called effective medium method, where a 
model system with a simplified morphology is generally taken as the starting 
point for determining the effective properties of the suspension. Because of 
this simplification, effective medium methods are easily implemented in com­
parison to models based on a more realistic picture of the actual microstruc­
ture. Moreover, no parameters other than the mechanical properties of the 
constituent phases, and shape factors for nonspherical particles, are needed. 
Two of these effective medium methods have been taken from the literature 
and will be discussed next. The first is the differential effective medium 
approximation, which has the advantage that it is simple in concept and im-
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plementation. The second is known as the generalized self-consistent method. 
While its mathematical formulation is more complex, it has also proved more 
successful in predicting elastic properties of suspensions, of spheres as well as 
fibers, up to ¢ = 1. A test of the performance of these models with respect 
to polymer crystallization experiments is postponed to chapter 3. 

2.2.2 Effective medium methods 

Differential effective medium approximation (DEMA) 

The DEMA [20,82,83,90] is based on a simple scheme. It is imagined that an 
infinitesimal amount of particles is added to the pure matrix. The effective 
mechanical properties are calculated with a dilute suspension model. The 
effective medium thus obtained is considered the homogeneous matrix and 
again an infinitesimal amount of new particles is added. The previous steps 
are repeated until the correct total volume fraction is reached. At any stage, 
the sizes of the new particles should be considerably greater than those of 
the previously added ones for the assumption of a homogeneous matrix to be 
valid [90]. 

The relative moduli of a dilute suspension of elastic spheres in an elastic 
matrix were derived by Eshelby [32]. The results were given in equations 
2.20 and 2.21. For non-spherical particles, one or more shape factors /3i enter 
the dilute suspension model. Here, however, we restrict our attention to 
suspensions of spheres to illustrate the concept of the DEMA. Departing from 
equations 2.20 and 2.21, the differential scheme for calculating the effective 
shear and bulk moduli is summarized in the coupled differential equations 

and 

dG 15 (1- v) (G1- G) 
d¢ (1- ¢) (7- 5v + (8- 10v) CfJ) 

dK 
d¢ (1-¢)(1+:~~~)' 

(2.24) 

(2.25) 

with the effective Poisson ratio given by equation 2.19. A peculiar case is 
when v0 = v1 = 1/5, equations 2.24 and 2.25 are decoupled and v = 1/5 for 
all values of¢ [20, 90]. 

Generalized self-consistent method ( GSCM) 

The basic idea common to all self-consistent methods is that a unit cell, 
containing the relevant characteristics of the microstructure of a suspension, 
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is thought to be embedded in a homogeneous medium with the effective 
properties to be determined. Several self-consistent methods have been pro­
posed, for example for spherical and ellipsoidal particles by Berryman [9, 10], 
for spherical particles and fibers by Hashin et al. [37, 39], and for fibers by 
Hill [47-50]. 

The model discussed here was developed by Christensen and Lo [19] and is 
known as the generalized self-consistent method. For suspensions of spheres, 
the unit cell consists of a spherical particle, surrounded by a concentric shell 
of the matrix material. This unit cell is embedded in an infinitely extend­
ing effective medium. The effective mechanical properties of the suspension 
are found when the response of the model system to a prescribed stress or 
strain becomes equal to the response of a homogeneous system, i.e. when 
the properties of the unit cell and the effective medium become equal. It was 
found that the effective shear modulus of a suspension of elastic spheres in 
an elastic matrix follows from the equation 

(2.26) 

The parameters A, B, and C depend on the Poisson ratios of both phases, the 
ratio of their respective shear moduli, and the volume fraction of particles; the 
expressions involved are contained in appendix A since they are quite lengthy. 
One of the two possible solutions to equation 2.26 can always be discarded 
as physically unrealistic. The other gives the relative shear modulus sought. 
The relative bulk modulus was found to be the same as in the composite 
spheres model of Hashin [37] (equation 2.18). 

The GSCM can also be applied to fiber suspensions, as Christensen and Lo 
[19] demonstrated. The mechanical behavior of anisotropic elastic materials 
is described by a generalized form of Hooke's law where the single modulus 
is replaced by a fourth order stiffness tensor, which contains the moduli 
corresponding to different directions: 

(2.27) 

where 4C is the fourth-order stiffness tensor and E is a strain tensor. 
Hashin and Rosen [39] and Hill [47, 48] developed a theory for elastic 

suspensions of aligned fibers. They assumed transverse isotropy, which means 
that the effective moduli do not vary with respect to a rotation about the fiber 
axis. The mechanical behavior of the suspension can then be expressed in 
five independent effective moduli. The mentioned authors derived solutions 
for four of these moduli, but only obtained upper and lower bounds on the 
effective shear modulus in the transverse direction. Christensen and Lo used 
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the GSCM to determine this property. They defined an essentially two­
dimensional unit cell consisting of a cylindrical particle, surrounded by a 
concentric shell of the matrix material, embedded in the infinitely extending 
effective medium. The relative transverse shear modulus was found to be the 
solution of an expression similar in form to equation 2.26, but with different 
parameters A, B, and C. These are also given in appendix A, along with the 
expressions for the remaining four relative moduli. 

Christensen and Lo demonstrated that the elastic (transverse) shear mod­
ulus predicted by equation 2.26 lies between the appropriate upper and 
lower bounds derived by Hashin [37, 40, 44], Hashin and Shtrikman [38], 
and Walpole [128]. In a paper by Christensen [20], theoretical results for 
suspensions of rigid spheres were shown to correlate well with experimen­
tal data compiled by Thomas [114], where the highest volume fraction was 
approximately 0. 7. In contrast, the predictions of the DEMA showed a 
large deviation from the data at volume fractions above 0.5. Segurado 
and Llorca [100] performed numerical simulations of elastic sphere-reinforced 
composites, where 0 ~ ¢ ~ 0.5, and compared their results to the predic­
tions of the GSCM and Torquato's third-order approximation (TOA) [118]. 
Both models performed equally well when the particles were not rigid, except 
that the relative bulk modulus was predicted slightly more accurately by the 
TOA. For rigid spheres, the TOA provided better results. 

In complex flows of crystallizing polymers, shishes and row crystallites 
are generally not oriented in a common direction but rotate according to the 
deformation gradients along their individual paths. This does not mean that 
the GSCM, which assumes that fibers are oriented along a common axis, be­
comes useless. In order to calculate the stress field resulting from a complex 
thermomechanical history, a finite element method is usually applied. The 
GSCM can then be used to calculate the effective moduli within each indi­
vidual volume element, where the orientation of the fibers is assumed homo­
geneous and is obtained from the viscoelastic constitutive model. Analogous 
to equation 2.27, we can replace the viscoelastic modes of the total stress, as 
expressed in equation 2.11, by 

(2.28) 

Another possible formulation, which looks similar but may yield very different 
results, is given by 

(2.29) 

It will be assumed that the longitudinal axes of the fibers coincide with the 
direction corresponding to the highest eigenvalue of the local elastic Finger 
tensor. In flow-induced crystallization experiments, spherulites and oriented 
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crystallites are usually present at the same time, i.e. locally there is a mixture 
of the two that varies with time and position. In that case we propose to 
determine the effective properties of that part of the material which consists 
of the amorphous phase and the spherulites first, applying the 3D GSCM, 
and to use the resulting effective medium as the matrix in the 2D GSCM to 
account for the additional filler effect due to the oriented crystallites. 

2.2.3 Extension to linear viscoelasticity 

Models for nondilute viscoelastic suspensions subjected to arbitrary flows 
are not available, due to the complex nature of the problem, but rigorous 
bounds on the effective dynamic moduli were derived in a series of papers by 
Gibiansky et al. [34,35] and Milton and Berryman [78]. In the range of linear 
viscoelasticity the correspondence principle, developed by Hashin [41-43] and 
Christensen [18], can be used. In their derivation, these authors departed 
from the constitutive model of a linear viscoelastic material, which is given 
by the Boltzmann integral 

T (t) = ltoo 2G (t- t') E (t') dt', (2.30) 

where E is the strain tensor. Taking the Laplace transform of equation 2.30 
yields, according to the convolution theorem, 

T (s) = 2sG (s) i (s) (2.31) 

with s the Laplace variable. Equation 2.31 has the form of Hooke's law. 
The solution to any linear viscoelastic problem can thus be found by trans­
forming the constitutive equation to the Laplace domain, where sG ( s) plays 
the role of the elastic shear modulus, replacing the boundary conditions by 
their appropriate transforms, solving the resulting elastic problem, and fi­
nally transforming back to the time domain. Now suppose that the material 
is subjected to a steady harmonic oscillation 

(2.32) 

The stress response is then given by 

r* (jw) = G* (jw) E* (jw) , (2.33) 

where G* is the dynamic modulus. Equation 2.33 has the same functional 
dependence on jw as equation 2.31 has on s. Since there is no objection 
to taking s = jw in equation 2.31, the correspondence principle applies, 
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which can be formulated as follows: For a linear viscoelastic suspension of 
fixed volume fraction, the effective dynamic modulus is obtained by replacing 
elastic moduli by dynamic moduli in the model of an elastic suspension with 
the same structural geometry. According to Tanner [112], who proposed a 
suspension model for crystallizing polymers, the correspondence principle will 
still be a good approximation if <P changes slowly compared to the molecular 
relaxation processes. 

Equation 2.16 is now replaced by 

G* ( w' <P) = fa ( <P' G~ ( w) ' Vo' ~' G~ ( w) ' vl' ... ) G~ ( w) (2.34) 

The Poisson ratios are assumed real numbers, which is a common assump­
tion. Agbossou et al. [3] explored the possibilities of mechanical modeling of 
suspensions allowing the Poisson ratio of the matrix, and hence the effective 
Poisson ratio, to be complex. This method will be left out of consideration 
here, but it can easily be included. It is important to note that the relative 
modulus fc is now a complex quantity. With the abbreviations fc = Re{f(;} 
and f:f = Im{.f(;}, the effective modulus is written as 

G* - +' G' - f" G" + J. ( +" G' + +' G") - Ja 0 a 0 Ja 0 Ja 0 · (2.35) 

Dickie et al. [24-26] used the correspondence principle according to equa­
tion 2.34 in combination with the elastic suspension model derived by Kerner 
[62] and Uemura and Takayanagi [120], which is expressed in equation 2.17. 
If v0 = v1 = 0.5, the result is equivalent to the more recent incompressible 
linear viscoelastic suspension model of Palierne [85] in the special case of 
vanishing interfacial tension [36]. Dickie et al. introduced composite par­
ticles (made up of both phases) to simulate partial phase inversion and a 
maximum packing fraction to correct for interactions between particles. The 
experimentally determined dynamic moduli of different suspensions of spher­
ical polymeric particles in polymeric matrices, as a function of temperature 
and composition, could be fitted qualitatively by this approach. 

Tanner [112] stated that the correspondence principle implies that all 
moduli of the relaxation spectrum are increased in proportion to a real num­
ber fa(¢), while the relaxation times do not change with </J. Looking at equa­
tion 2.17 again, and substituting dynamic moduli for static elastic moduli, it 
is seen that this is only true in suspensions of rigid particles (I Gi I > > jG0 I) 
or voids (!Gil << jG0j). The ratio Gi/G0 then drops out of the right-hand 
side of the equation and fc becomes real. Consequently 

G* =fa (<P) G~ =fa (<P) G~ +)fa (<P) G~, (2.36) 
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where fc = fb = f(;, and hence 

M \2 2 
I ~ "'O,iW 

G (w) = L. fc (¢) Go,i 1 + ,\2 .w2 
i O,t 

(2.37) 

and 
M 

, ( ) ~ ( ) Ao,iw 
G w = L. fc ¢ Go,i 1 + ,\2 .w2 . 

i O,t 

(2.38) 

Thus, the moduli Gi in equation 2.11 may be written as Gi = fc(¢)Go,i· The 
validity of equation 2.17 is restricted to low volume fractions. But the same 
conclusions can be drawn for models of semidilute and highly concentrated 
suspensions, which share with dilute suspension models the fact that not the 
absolute values of the phase moduli, but their ratio is important. For a sus­
pension of voids, this ratio ( G"]./ G0 in the linear viscoelastic case considered 
here) will vanish. For a suspension of rigid particles, it becomes infinitely 
large. In any realistic suspension model, the ratio of the phase moduli then 
must drop out of the expression for the relative modulus, since fc should 
only become infinite in the limit ¢ --+ 1. The models considered in this thesis 
all meet this requirement. 

It is interesting in this respect to look at the work of See et al. [99], who in­
vestigated suspensions of polyethylene spheres in silicon oil and in a polymer 
solution. In both cases, i.e. for a viscous matrix and for a viscoelastic ma­
trix, they found that the relative viscosities, storage moduli, and loss moduli 
could be described by a single real function f ( ¢) = TJ I TJo = G' I G~ = G" I G~ 
that was predicted by a constitutive model based on pairwise interactions 
between particles (see also Pharr-Thien et al. [89, 9 1]). The range of investi­
gated volume fractions extended from ¢ = 0 up to ¢ = 0.4. In the light of 
the above discussion, the result of See et al. is explained by the high moduli 
of the solid particles compared to the matrix fluids used in their experiments. 

In numerical simulations of flow-induced crystallization processes where 
the crystallites cannot be assumed rigid, so that equations 2.37 and 2.38 do 
not hold, it will be necessary (in the time interval where ¢ increases signif­
icantly) to calculate the effective dynamic modulus for different frequencies 
by means of a viscoelastic suspension model and to obtain a new relaxation 
spectrum from these dynamic data. In this way the moduli Gi and relaxation 
times Ai, needed in the constitutive model, can be found. 

2.2.4 Preliminary nonlinear viscoelastic modeling 

Formally, the correspondence principle is only valid in the range of linear vis­
coelasticity. In nonlinear viscoelastic constitutive models for polymer melts, 
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the moduli and relaxation times of the linear relaxation spectrum are gen­
erally retained, while a number of additional parameters are introduced to 
capture the nonlinear phenomena. It will be assumed that the correspondence 
principle still applies to the linear viscoelastic part of the mechanical behav­
ior. Tanner [112] proposed a similar generalization by assuming that, also in 
a nonlinear viscoelastic constitutive model, the moduli Go,i of the amorphous 
phase can be replaced by fc(¢)Go,i, while leaving the basic structure of the 
model intact. It was shown in the previous section that this assumption is 
invalid, even in the linear viscoelastic regime, if the crystallites cannot be as­
sumed rigid. Although the modulus of the final semicrystalline phase exceeds 
the modulus of the amorphous phase by several decades, the assumption of 
rigidity is probably not realistic in earlier stages of the crystallization process, 
when the semi crystalline phase is still highly imperfect. However, in this sec­
tion, Tanner's simplifying approach will be followed in order to illustrate the 
basic concept of a nonlinear viscoelastic suspension model. For deformable 
crystallites, the spectrum (moduli and relaxation times) should be updated 
as space filling, which plays the role of the volume fraction in the suspension 
model, evolves. 

Of the differential constitutive models summarized in table 2.2, only the 
Leonov model is completely determined by the linear viscoelastic relaxation 
spectrum. The other models all contain one or more additional parame­
ters, related to the nonlinear viscoelastic part of the mechanical behavior. 
The possible dependence of these parameters on space filling, degree of crys­
tallinity, and microstructure of a crystallizing polymer has not been explored 
yet. In section 2.4.3, the branching parameter q of the XPP model will be 
related to the structure that develops in the amorphous phase during flow­
induced crystallization. 

Mall-Gleissle et al. [76] investigated suspensions of glass spheres in silicon 
oil subjected to simple shear flow. They observed that the first normal stress 
difference N 1 = Tn - T22 depended on the shear stress as N1 "' Tf2 with 
1.63 ~ n ~ 1.68. Upon increasing the volume fraction of particles, while 
keeping the shear stress constant, N1 decreased. Hwang et al. [54] simulated 
suspensions of rigid particles in an Oldroyd-B fluid and found a similar scal­
ing with n = 2. Furthermore, the normal stress difference and the shear 
viscosity were observed to increase with the volume fraction of particles as 
well as the shear rate. A phenomenological modeling approach, proposed by 
Peters [86], is followed here in an attempt to capture the essentials of the 
mentioned experimental and numerical results. For illustrative purposes, we 
start with an upper convected Maxwell model for the viscoelastic stress in 
the suspension, 

(2.39) 
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The effective modulus is related to the volume fraction of particles as fiG, 
where h follows from the linear viscoelastic suspension model as discussed 
in the previous section. Moreover, it is assumed that the distortion of the ve­
locity field by the presence of particles can be captured by a second scalar h, 
depending on the volume fraction¢ and the shear rate~= v2D: D. Thus, 
an effective rate of deformation tensor hD is introduced. The following 
results are obtained for the effective viscosity in simple shear flow, 

712 
TJ =·-. = Ghh>-, 

1' 

and the effective first normal stress coefficient, 

N1 2 2 
tJr1 = ~ = 2Gfd2 >- . 

1' 

(2.40) 

(2.41) 

The relative viscosity and the relative first normal stress coefficient are thus 
given by 

TJ 
TJr =- = hh 

TJo 
(2.42) 

and 

(2.43) 

respectively. The notation used by Hwang et al. is followed here in the 
definitions of the relative properties. In accordance with their results, the 
ratio 

1 
(2.44) 

TJ?. .f1 
is independent of the shear rate. Hence, the trend observed experimentally 
may be captured by the rather simple phenomenological model expressed in 
equation 2.39. Because an upper convected Maxwell model was used, the 
second normal stress difference N2 = 7 22 - 7 33 equals zero. This is not in 
accordance with the data of Mall-Gleissle et al. [76], where a negative N2 

was found, whose absolute value showed the same qualitative dependence on 
7 12 as N1 • 

The method outlined above can be extended to more advanced nonlinear 
viscoelastic constitutive models, such as those listed in table 2.2. If u e · 

Ue terms appear in the constitutive equation for the stress, i.e. if a 1 # 
0, no explicit expressions for the shear viscosity and relative normal stress 
differences can be derived. Exceptions are the Johnson-Segalman (JS) and 
Pharr-Thien-Tanner (PTT) models, which yield the shear viscosity 

(2.45) 
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and the normal stress coefficients 

2Ghfi>-2 

l{!l = 1 + ( (2 - () fi _x2-y2 
(2.46) 

and 
N2 -(G hfi >-2 

l{!2 = 'Y2 = 1 + ( (2 - () fi ).2-y2 . 
(2.47) 

The ratio of the relative first normal stress coefficient and the squared relative 
viscosity is then obtained as 

1 + ( (2 - () fi >.2-y2 

h [1 + ( (2- () ).2'Y2] . 
(2.48) 

The difference between the JS and PTT models is that, in the PTT model, 
>. is a function of tr( Te). Comparing equation 2.48 to equation 2.44 it is 
seen that, if the slip parameter ( =/= 0, the ratio lJ!1r/rJ; depends on the 
shear rate and the relaxation time, which are combined in the dimensionless 
Weissenberg number 

We='Y>., (2.49) 

as well as on the volume fraction. 
It will be interesting to test the performance of the proposed method 

in simulating flow-induced crystallization processes. But that is beyond the 
scope of the present work, where we will look at crystallization during short­
term deformation experiments (chapter 3) because then the processes of nu­
cleation and space filling do not overlap in time, which allows us to study 
them separately. 

2.2.5 Concluding remarks 

A framework for a constitutive model for the stress in a crystallizing polymer, 
based on suspension mechanics, has been established. The evolution of the 
effective linear viscoelastic properties of the material as a function of the 
volume fraction of crystallites is determined by the relative dynamic modulus 
G* / G0 = fc ( ¢, ... ) . Because this is generally a complex quantity, both the 
effective moduli and the effective relaxation times will change. In chapter 
3, one of the suspension models discussed above, i.e. a specific expression 
for f(], will be chosen after comparison of the dynamic mechanical response 
predicted by these models to the one measured during quiescent and flow­
induced crystallization experiments. 

Suspension theories provide an attractive means to account for the evo­
lution of mechanical properties of a crystallizing polymer. It is important, 
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however, to note that a suspension theory may not be applicable, or will 
have to be modified, under certain conditions. This is due to the specific 
microstructures encountered in different stages of the polymer crystallization 
process. Some limitations to the proposed modeling, and possible modifica­
tions to remove these limitations, are discussed next. 

Brownian motion 

The influence of Brownian motion on the concentration dependence of ma­
terial parameters may be significant in early stages of crystallization, when 
crystallites are still small. The material should then be treated as a colloid. 
In the quiescent state, typical colloidal particle sizes range from 10-9m (i.e. 
one order greater than atomic size, in which case the material is considered 
a solution) to 10-7m, whereas suspensions are made up of particles with a 
characteristic dimension of the order of one micron or higher. The impor­
tance of Brownian motion of a particle relative to the macroscopic flow is 
expressed in the dimensionless Peclet number [88, 121], 

R2· 

P - _ ___2 
e- D ' (2.50) 

with "f = V2D : D the characteristic shear rate and D the diffusivity of the 
particle in a specific direction. The effect of Brownian motion is significant 
when Pe is small, which is to be expected in slow flows of small particles. 
Spheres are characterized by a single diffusivity Do because of their three­
dimensional rotational symmetry. The Stokes-Einstein relation gives D 0 as a 
function of temperature T, matrix viscosity ry, and particle radius R according 
to 

D _ ksT 
0

- 61rryR' (2.51) 

where ks is Boltzmann's constant. In suspensions of orientable particles, 
or clusters of particles, multiple diffusivities have to be defined according to 
the different rotational and translational degrees of freedom. Rotational and 
translational diffusivities of axisymmetric particles of diverse shapes were 
derived by Brenner [15]. Many other experimental and theoretical works 
on the rheology of colloids have been published. Van der Werff and De 
Kruif [121] determined the dependence of shear viscosity on particle size, 
volume fraction, and shear rate. The introduction to their paper provides a 
useful review of publications up to 1989. In a comprehensive literature review 
from 1999 on the rheology of fiber suspensions, Petrie [88] also discussed 
theories of Brownian suspensions (i.e. colloids). 
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Structure development within the amorphous phase 

From molecular dynamics simulations, Muthukumar [79, 80] concluded that 
the nucleation process is significantly influenced by the ability of polymer 
molecules to participate in multiple nuclei. This will be true either if the 
nucleation density is high, the average internuclear distance being at most of 
the order of the contour length of the longest molecules, or if the nuclei appear 
in clusters rather than being scattered evenly throughout the material. To 
our knowledge, no evidence of such clustering during quiescent crystallization 
exists. If nuclei are created in a spatially random manner, then, during a 
large part of the crystallization process, they will be too far apart to assign a 
significant probability to the event that one molecule is incorporated in two 
nuclei. In flow-induced crystallization, on the other hand, connectivity of the 
spherulites that form a row crystallite can be inferred from their tendency 
to stay together in spite of strong velocity gradients. But in the case of 
flow-induced point nucleation, analogous to nucleation in a quiescent melt, 
Muthukumar's statement may be questioned. 

More generally, one could argue that in some range of degree of crys­
tallinity the material will resemble a physical network rather than a suspen­
sion, because the crystallites are interlinked through the amorphous phase; 
at high nucleation densities by single chains but otherwise by sequences of 
entangled chain segments. Indeed, rheological measurements by Pogodina 
et al. [93] showed a gel point in the early stages of quiescent crystallization 
of isotactic polypropylene, which they attributed to the formation of a net­
work of amorphous 'tie chains' linking the spherulites [95]. The time to reach 
the gel point was observed to decrease exponentially with increasing under­
cooling [93] and, in shear-induced crystallization, with increasing strain [94]. 
Tanner [112], who proposed a rheological model for crystallizing polymers 
based on suspension mechanics, acknowledged that materials with gel-like 
crystalline structures should be given further consideration. 

Boutahar et al. [12] carried out rheological experiments on two struc­
turally different crystallizing polymers: a suspension-like polypropylene and 
a colloid-like polyethylene. For the colloid-like sample, their dynamic mea­
surements revealed a yield effect in the low frequency range, which mani­
fested itself at the very beginning of the crystallization process, whereas in 
the suspension-like sample it was delayed until a critical volume fraction of 
spherulites ( ¢ = 0.4) had been reached. The authors related this latter yield 
effect to a percolation threshold caused by the formation of a physical network 
in between the spherulites. For the suspension-like sample, they noted that 
the critical volume fraction was close to the result obtained by Pike and Sea­
ger [92], who performed numerical simulations of percolation in suspensions 
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of spherical particles. The particles were considered bonded when within 
a certain distance from each other; a percolation threshold of ¢ = 0.3 was 
calculated. But Boutahar et al. gave no explanation for the fact that the 
yield effect appeared immediately in the colloid-like sample. Nevertheless, 
their results qualitatively confirm the observation of Pogodina et al. [93-95] 
that physical gelation, characteristic of network formation, occurred before 
a dense packing ( ¢ = 0.63) had been accomplished. 

Small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering 
(WAXS) patterns obtained by Somani et al. [105, 106] during shear-induced 
crystallization of isotactic polypropylene were also interpreted by the au­
thors as evidence for the existence of a network at the early stages. But it 
should be mentioned that they looked at strong flows, where oriented crystal­
lites developed, whereas the previously mentioned results applied to spherical 
morphologies, developed in quiescent and weak flow conditions. 

Janeschitz-Kriegl et al. [57, 58, 108] argued against the hypothesis of net­
work formation in polymer crystallization. In their experiments on shear­
induced and elongational flow-induced crystallization of isotactic polypro­
pylene, where for the most part no oriented structures developed, the num­
ber of spherulites per unit volume was so small that any interlinking would 
extend over distances far greater than might reasonably be expected. But 
nevertheless, the number of nuclei increased nonlinearly as a function of the 
applied work, indicating that nucleation is a self-enhancing process. These 
data are in contradiction with the idea of a sample-spanning network and 
suggest that the flow-induced acceleration of nucleation kinetics is governed 
by a localized process, acting on isolated nuclei, rather than a global process 
that involves all nuclei together. Janeschitz-Kriegl et al. therefore developed 
a theory based on the hypothesis that flow promotes the activation of nu­
clei that already exist in the melt above the melting temperature, yet are 
unstable and consequently do not grow yet. 

Another possible explanation can be found in the works of Zuidema et al. 
[131,132]. They assumed that nuclei act as physical crosslinks. Consequently, 
as crystallization progresses, the molecular structure of the melt essentially 
becomes increasingly branched. When a flow is applied, a more branched 
chain segment will be able to maintain stretch and orientation for a longer 
time, thereby locally increasing the probability that a new nucleus is created. 
Thus, rather than postulating the formation of a global network, nucleation 
is supposed to be enhanced in the vicinity of existing nuclei. Zuidema et al. 
related the nucleation rate to the recoverable part of the strain corresponding 
to the longest relaxation time of the melt and, in accordance with the idea 
of physical crosslinking, made this relaxation time a function of the number 
of flow-induced nuclei. As a result, flow-induced nucleation becomes a self-
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enhancing process. This part of the modeling proposed by Zuidema et al. 
turned out to be essential for predicting flow-induced structure formation 
during injection molding. 

A more detailed discussion of the athermal flow-induced nucleation pro­
posed by Janeschitz-Kriegl et al. and the thermal flow-induced nucleation 
model of Zuidema et al. will be presented in section 2.4.3. First, we will turn 
to the modeling of the kinetics of quiescent and flow-induced crystallization. 

Secondary crystallization 

A final remark is made with respect to the modeling of spherulites and shish­
kebabs as spheres and cylinders, respectively, in (suspension) theories of poly­
mer crystallization. These objects, which we call crystallites, are not homo­
geneous, but actually consist of alternating crystalline lamellae and regions 
of amorphous material. Crystallization within these internal amorphous re­
gions causes a hardening of the crystallites. As a result, the linear viscoelastic 
moduli G~ and G~ of the semicrystalline phase, and probably the nonlinear 
viscoelastic rheological parameters as well, are not constant, but increase in 
time. This process, called perfection or secondary crystallization, is comple­
mentary to the processes of nucleation and growth [30]. 

Regular suspension theories do not consider any evolution of the mechani­
cal properties of the constituent phases. Since the characteristic time scale of 
perfection is expected to be much larger than that of nucleation and growth, 
perfection is usually neglected during the space filling process. Theoretically, 
the earlier a crystallite started to grow from a nucleus, the further the harden­
ing process will have advanced. Thus, an unequal distribution of mechanical 
properties among the crystallites is obtained. But if perfection is indeed a 
slow process compared to nucleation and growth, it may be assumed to alter 
the effective moduli only after they have reached their 'plateau values', i.e. 
when the semicrystalline phase fills the entire volume of the material. In 
the colloid-like sample studied by Boutahar et al. [12], where complete space 
filling by tiny spherulites of low degree of crystallinity was reached virtually 
instantaneously, perfection was the main process through which hardening of 
the material occurred. In the remainder of this thesis, perfection is left out 
of consideration. We will only investigate the crystallization process up to 
the moment when space filling is completed. 
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2.3 Quiescent crystallization 

The equations governing the spatial transition from one phase to another, in 
a substance at rest and without any flow history, were derived independently 
by Kolmogorov [65] and Avrami [5-7]. They identified two processes: nucle­
ation, i.e. the appearance of primordial entities (nuclei) of the new phase, 
and subsequent growth of these nuclei by attachment of molecules from the 
original phase to their surfaces. The Kolmogorov-A vrami theory is widely 
used in crystallization studies, although it sometimes appears in a modified 
form, for example to allow for expansion or shrinkage of the crystallizing ma­
terial [8] or for temperature gradients [17, 29-31 J. In the original theory, the 
overall progress of crystallization is fully characterized by a nucleation rate 
a(t) [m-3

] and a crystal growth rate G(t) [ms-1]. The latter is integrated 
from a past time s to the current time t to get the current size R(t, s), as 
measured in the direction of growth, of a crystallite created at s, assuming 
that its growth is not impeded by the presence of other crystallites. In the 
case of a spherulite, growing at the same rate in all directions, the expression 

V ( t, s) = 
4
; [1~ G ( u) du r (2.52) 

equals the volume of the spherulite under the aforementioned assumption. 
A vrami called this the extended volume [5]. Other terms, like undisturbed 
volume and unbounded volume, have also been used in literature. The latter 
designation will be used throughout the remainder of this thesis. 

Equation 2.52 is modified to account for the fact that different growth 
rates may exist in different directions. Following Hutter et al. [53] we con­
sider the common situation where crystal growth can be expressed in three 
time-dependent growth rates along the axes of a suitably defined Cartesian 
coordinate system { x1 , x2 , x3 }. The unbounded volume of a crystallite is then 
given by 

V (t, s) = c 1~ GI(u) du 1~ G2 (v) dv 1~ GJ(w) dw. (2.53) 

The parameter c is a shape factor. For example, c = 21r in the case of a disk or 
fiber growing in the axial direction at a rate G 1 (t) = dLjdt, where L denotes 
half the length of the fiber or half the height of the disk, and in the radial 
direction at a rate G2 (t) = G3 (t) = dRjdt, with R the cross-sectional radius. 
For a spherulite with a radial growth rate G 1 (t) = G2 (t) = G 3 (t) = dR/dt, 
c = 47r /3 and equation 2.53 reduces to equation 2.52. The growth rates are 
taken equal to zero for t < s. If any of the dimensions Rn (n = 1, 2, 3) of 
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a crystallite is constant for t 2: s, then the corresponding growth rate Gn is 
represented by a Dirac function, 

Gn (t, s) = Ronb (t- s) , (2.54) 

and consequently 

Rn (t, s) = 1~ Gn (u) du = Ron1t (t- s) , (2.55) 

where 7t(t- s) denotes the Heaviside step function centered at t = s. 
The fraction of the total volume of material occupied by the crystalline 

phase is called space filling and is denoted by ~9 ( t). It is related to the 
nucleation rate and the growth rate by the Kolmogorov-Avrami equation 

~9 (t)=1-exp[-cltoo a(s)V(t,s)ds]. (2.56) 

Kolmogorov [65] and A vrami [5-7] arrived at this result by different ap­
proaches. For the derivation of Kolmogorov's theory of phase transformation 
kinetics, which is based on the treatment of nucleation as a stochastic pro­
cess, one can turn to the works of Eder [29-31]. The subscript in ~9 refers to 
the geometric approach to which this derivation reduces in the limiting case 
of small temperature gradients. The integral in equation 2.56 represents the 
total volume occupied by the crystalline phase per unit volume of the ma­
terial in the hypothetical case of unbounded growth. From the space filling 
the actual number of crystallites is calculated as 

(2.57) 

Stepwise differentiation of the integral in equation 2.56 with respect to 
time results in a set of coupled differential equations describing, in the case of 
spherulitic growth, the evolution of the unbounded number N, total radius 
Rtat, total surface area Stat. and total volume V'tat of spherulites per unit 
volume. These rate equations, derived by Schneider et al. [98], read 

¢3 (t) = 81ra (t) (¢3 = 81rN); (2.58) 

¢2 (t) = G(t)¢3(t) ( cP2 = 47r Rtat) ; (2.59) 

¢1 (t) = G(t)¢2 (t) (¢1 =Stat); (2.60) 

¢o (t) = G(t)¢1 (t) (¢o = V'tat) · (2.61) 

The advantage of a differential formulation is that it is easily incorporated in 
the framework of thermodynamics, where the governing equations are also 
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in a differential form. For anisotropic crystal growth processes, Schneider's 
model should be modified by starting with equation 2.53 instead of equation 
2.52. Hutter et al. [53] mainly focused on the special cases where all nonzero 
growth rates are equal. They studied the effects of changes in the preferred 

. crystal shapes and in the directions of growth on the overall kinetics. In 
the model of shish-kebab formation developed by Liedauer et al. [73], which 
will be discussed in the next section, longitudinal and radial growth occur 
simultaneously and proceed at different rates. 

The differential model of crystalline structure formation in quiescent con­
ditions is completed by a description of impingement of the growing crystal­
lites. Avrami's model, which was derived for the case of spatially random 
nucleation [6] is expressed as 

c/Jo (t) = -ln [1- eg (t)] (2.62) 

and corresponds to equation 2.56 when used in combination with Schneider's 
rate equations. The actual number of crystallites is again given by equation 
2.57. Tobin [115, 116] derived a different impingement model. He found 

eg (t)( ) =eft a (s) v (t, s) [1- eg (s)] ds 
1 - eg t -(X) 

(2.63) 

for the space filling. The implementation of this model in a differential for­
mulation is not straightforward since, due to the factor (1- eg) appearing in 
the integrand, the right-hand side of equation 2.63 is not equivalent to ¢ 0 • 

Therefore, using instead of equation 2.62 the expression 

(2.64) 

in combination with Schneider's rate equations is not equivalent to the in­
tegral formulation given in equation 2.63. Nevertheless, Tobin's model is 
usually implemented this way. Since it was obtained by a more phenomeno­
logical approach than the Kolmogorov-Avrami model, which can be derived 
from a formal stochastic treatment of the nucleation phenomenon, there is 
no fundamental objection to this apparent misuse of Tobin's model. Better 
results may even be obtained in certain cases [131] than with the Avrami 
model. 

The modeling of crystallization processes, outlined above, is easily ex­
tended to multiphase systems, consisting of an amorphous melt and multiple 
growing crystalline and/or mesomorphic phases. See for example Brucato et 
al. [16] and Coccorullo et al. [21]. 
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2.4 Flow-induced crystallization 

2.4.1 Structure development during and after flow 

The crystallization of polymers is significantly influenced by flow. Two ef­
fects are observed in experiments. Even in relatively weak flows the nu­
cleation rate, and as a result the nucleation density, is significantly en­
hanced [4, 57, 119]. Secondly, under sufficiently strong flow conditions, the 
crystalline morphology changes. Row crystallites and shish-kebabs have been 
identified in various experiments [4,31,52,57,105,106]. A row crystallite con­
sists of a number of adjoining spherulites, aligned in the flow direction. A 
shish-kebab is observed as a fibrillar nucleus (the shish) with chain-folded -
lamellae (kebabs) growing outward from its surface. These oriented mor­
phologies are here assumed to originate from the same initial fibrillar struc­
ture. The only difference, presumably, lies in the lateral growth processes. 

It is generally believed that orientation and stretch of macromolecules 
lower the free energy barrier associated with the formation of a stable nucleus. 
Attempts have been made to incorporate this deformation and temperature­
dependent process in a continuum mechanics framework. Ziabicki's general 
theory of nucleation kinetics provides a means to account for the influence 
of the orientation distribution of macromolecular chains in the amorphous 
phase on the free energy barrier associated with incorporating these chains 
in the crystalline phase [129]. The theory was used to establish a coupling 
between the nucleation rate and macroscopic flow conditions [130]. Similar 
in approach is a recent paper in which Coppola et al. [22] took the nucleation 
rate from the theory of Lauritzen and Hoffman [51,68], which is driven by the 
free energy difference between the amorphous phase and the crystalline phase, 
and modified it by incorporating the free energy change caused by chain 
orientation according to the Doi~ Edwards model [27]. They successfully 
predicted the decrease of the induction time of shear-induced crystallization 
with increasing shear rate. 

The first successful attempt to capture the creation and development of 
the shish-kebab morphology in a theoretical framework was made by Liedauer 
et al. [73]. They adapted Schneider's rate equations to describe fibrillar nuclei 
growing in the longitudinal and radial directions. The resulting set of coupled 
differential equations reads, in a slightly different notation, 

-J;3(t) + 1/J3(t) = 81rfn (t) (1/J3 = 81fNori); 
Tn 

(2.65) 

-J;2 ( t) + 1/J2 ( t) = !1 ( t) 1jJ3 ( t) ( 1/J2 = 4 1r Ltot) ; 
Tl 

(2.66) 
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~l(t) == Ci(t)vJ2(t) 
~o(t) == Ci(t)vJI(t) 

( vJ1 == Stot) ; 

( vJo == vtot) · 

(2.67) 

(2.68) 

The functions In and Iz are the driving forces for nucleation and longitudinal 
growth. The number and length of oriented nuclei are subject to relaxation 
processes characterized by Tn and Tz, respectively. In the original model, both 
driving forces were chosen proportional to the square of the shear rate, 

[
'Y(t)]2 

In (t) == 9n "fn (2.69) 

and 

[
'Y(t)]2 

Iz (t) == 9z Tz , (2.70) 

where the shear rate is again defined as 'Y == J2D : D, "'n and "fz are char­
acteristic shear rates for the flow-induced nucleation and growth processes, 
and 9n and gz are temperature-dependent scaling parameters. 

Zuidema et al. [131, 132] adapted this model, preserving its basic structure 
but assuming In and I1 proportional to the second invariant of the deviatoric 
part of the elastic Finger tensor, 

(2.71) 

and 
Iz ( t) == gz h ( n: ( t)) . (2.72) 

Notice that B~ contains the stretch and the deviatoric part of the orientation 
tensor: B~ == 3A2Sd. Zuidema et al. justified their assumptions by plotting 
the number of shishes vJ3 calculated at the experimentally determined bound­
aries between morphological layers [61] against the shear time, using either 
of the three highest modes of the relaxation spectrum. Their results showed 
a linear trend except when the mode with the longest relaxation time was 
used, in which case vJ3 was independent of the shear time. Therefore, only 
this mode was used thereafter in equations 2. 71 and 2. 72. The shear time 
independence was observed at the boundary between the core and the fine­
grained layer as well as the boundary between the fine-grained layer and the 
oriented skin in the injection-molded samples. In contrast to the model of 
Liedauer et al, the kinetics of nucleation and growth are enhanced not only 
during flow, but also after cessation of flow, as long as the viscoelastic stress 
has not fully relaxed. 

An important characteristic of the nucleation model expressed in equa­
tion 2.65 is that a nucleus is allowed to disappear, a process governed by 
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the relaxation time Tn, before a shish can grow out of it. Liedauer et al. 
suggested taking Tn -+ oo because nuclei only contribute to space filling once 
they become stable and start to grow, and as of that moment they cannot 
disappear anymore. However, it is widely accepted that the nucleation rate 
is determined by two opposing forces: the macroscopic flow, orienting and 
stretching the molecules in the melt, and the relaxation processes associated 
with molecular orientation and stretch. One would expect from this point 
of view that unstable nuclei can dissolve and that the relative time scales 
of macroscopic flow and molecular relaxation processes, which are strongly 
dependent on temperature, determine the rate at which stable nuclei ap­
pear [123]. So it seems reasonable to make a distinction between stable and 
unstable nuclei. This was done neither by Liedauer et al. in their original 
paper [73] and subsequent publications from the same group [14, 29,31], nor 
by Zuidema et al. [131, 132]. In the latter authors' numerical simulations 
of injection molding, a process in which the material is cooled very fast, 
the assumption of an infinite relaxation time for the nuclei was appropriate. 
However, when isothermal crystallization after a short-term deformation is 
considered, as is the case in the majority of experiments reported in the liter­
ature, one might question the validity of this assumption. In chapter 3, where 
we simulate crystallization induced by short-term shear flow, it will become 
clear that it is indeed necessary to assume that nuclei can dissolve. But when 
the driving force In vanishes, the nuclei that have already started growing 
into crystallites should not be predicted to dissolve. Therefore, we distin­
guish between stable and unstable nuclei. In the remainder of this thesis, 
the term nuclei will be used to designate stable nuclei exclusively. Unstable 
nuclei shall henceforth be called precursors. 

Thus, the first step in the development of crystalline structure is the 
creation of precursors. The second step is the transformation of precursors 
into nuclei. The equations governing these processes, to be derived in the 
next section, will replace the single equation 2.58 for point nuclei or 2.65 for 
fibrillar nuclei. The evolution of the unbounded size, surface, and volume of 
spherulites and oriented crystallites is still given by equations 2.59 to 2.61 and 
2.66 to 2.68, respectively. Impingement is taken into account by summation 
of their unbounded volume fractions. Using Avrami's model, 

¢o (t) + '1/Jo (t) = -ln [1- !;,9 (t)] . (2.73) 

The actual numbers of spherulites and oriented crystallites follow from equa­
tion 2.57 when a is replaced by ¢3 j(81r) or ;p3 j(81r), respectively. 
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2.4.2 Flow-induced point nucleation 

A brief return to the basic derivation of Avrami's theory of nucleation serves 
as the point of departure for a description of flow-induced nucleation. First a 
distinction is made between homogeneous precursors, consisting of the poly­
mer's own molecules, and heterogeneous precursors, which include impurities 
such as nucleating agents, catalyst residues, and cavities. It is assumed that 
some precursors are present at the start of the crystallization process, their 
number per unit volume being predetermined by (1) the synthesis of the 
original material where, either on purpose or coincidentally, heterogeneous 
precursors may have been added and (2) the thermomechanical history of 
the material, as a result of which precursors, in general mainly of the ho­
mogeneous kind, may have been created that are still present. According 
to A vrami [5], who did not consider creation of new precursors, this initial 
number diminishes in two ways in quiescent conditions. First of all, some 
precursors are transformed into nuclei; in terms of Lauritzen and Hoffman's 
theory of polymer crystallization [51, 68] they reach the critical size required 
for the growth of folded-chain lamellae to be stable. Secondly, some are lost 
as a result of the growth of the crystalline phase at the expense of the amor­
phous phase. In Avrami's analysis, this 'swallowing' effect was intentionally 
ignored at first, considering the imaginary case of unbounded growth. Precur­
sors are then also nucleated and, in the theory discussed next, created inside 
the already formed crystalline phase. Moreover, impingement of crystallites 
is ignored, so that they grow through each other without any obstruction. 
The error thus made was corrected for afterwards in the analysis leading to 
equation 2.62 for the space filling [6]. The following discussion concerns the 
unbounded numbers of precursors and nuclei. Application of equation 2.57 
will result in the actual number of crystallites. 

Avrami's theory is extended to include the creation of new homogeneous 
precursors. Furthermore, precursors will be allowed to dissolve into the melt. 
The form of equation 2.65, describing the nucleation process in the rate 
equations of Liedauer et al. [73], is adopted to capture these processes. A 
homogeneous precursor is envisaged as a cluster or bundle of chain segments, 
belonging to one or more macromolecules, in some ordered state. The ques­
tion what exactly this state is, though interesting, is beyond the scope of this 
work. Homogeneous precursors are created by two fundamentally different 
processes. The first is a thermal process, which means that chain segments 
sporadically form precursors as a result of random order fluctuations, oc­
curring in the melt at a frequency that depends on temperature and, if a 
flow is applied, on the molecular orientation and stretch. The second pro­
cess is athermal creation of precursors. The concept of athermal nucleation, 
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as introduced by Fisher et r;,l. [33], implies that precursors are transformed 
into nuclei when, upon reaching a characteristic temperature, the critical 
size required to overcome the energy barrier for nucleation becomes equal 
to their actual size. The nuclei thus obtained are called athermal nuclei. 
Here, athermal precursors are defined as precursors that appear upon low­
ering the temperature. They originate from entities with a certain degree of 
order, which are intrinsically present in the melt. This definition may appear 
strange; why not label all these entities precursors? The answer is that only 
part of them are large enough to be nucleated at a given temperature. If we 
keep the material at that temperature for a sufficiently long time, eventually 
they will become nuclei. But the ones that are too small will never become 
nuclei, no matter how long we wait. Upon cooling, more of these ordered 
entities become available for nucleation; they become precursors. Whether 
they are actually nucleated depends on the nucleation rate and the rate of 
dissolution of precursors. 

Things will become more clear when we look at the mathematical formu­
lation of the balance between these processes of creation and disappearance. 
The number of homogeneous precursors per unit volume N;am is given by 
the differential equation 

. ham . oN;aam 
NP (t) = Ipq (t) + Ipf (t) + T (t) oT (2.74) 

where Ipq is the driving force behind the thermal creation of homogeneous 
precursors in a quiescent melt and Ipf is an additional flow-induced driving 
force, related to one or more modes of the viscoelastic constitutive model. 
This relation will be dealt with separately in the next section and in chapter 
3. The third term on the right-hand side of equation 2.74 is the rate of 
creation of athermal homogeneous precursors. The last term represents the 
rate of depletion of available homogeneous precursors; 1/Tp is a measure of 
the probability that one of them disappears. This parameter is composed of 
two terms, related to the mechanisms of disappearance, i.e. dissolution into 
the melt and nucleation: 

1 1 1 
+ 

Tp Tpd Tpn 
(2.75) 

...__,. ...__,. 
dissolution nucleation 

From this expression Tp, which may be thought of as a mean residence time 
of homogeneous precursors, is obtained as 

(2.76) 
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The characteristic time of nucleation was already present in A vrami's 
theory [5]. The characteristic time of dissolution is conceptually similar to the 
'relaxation time' of nuclei encountered in publications by the group of Eder 
and Janeschitz-Kriegl [29, 31, 73] and by Zuidema et al. [131, 132]. However, 
since the dissolution process is associated with precursors instead of nuclei 
in the present theory, a finite value can be assigned to Tpd while still avoiding 
the unrealistic result that nuclei, which are by definition stable, gradually 
disappear when the driving forces Ipq and Ipf vanish. Both characteristic 
times may depend on flow conditions and temperature. It is expected that 
Tpd and r pn are related to one or more relaxation processes associated with 
orientation or stretch of chain segments. 

The number of homogeneous nuclei appearing in a given time interval is 
matched by the number of homogeneous precursors disappearing as a result 
of nucleation in that time interval. For the homogeneous nucleation rate one 
then finds 

(2. 77) 

It is evident from equation 2. 77 that the homogeneous nucleation rate goes 
to infinity when Tpn --+ 0. In a numerical simulation, the number of nuclei 
created during a time step then becomes infinite. This violates the species 
balance, which dictates that the number of newly created nuclei cannot ex­
ceed the number of available precursors. Nevertheless, such fast nucleation 
processes are encountered in practice (see for example chapter 3). So the 
model has to be reformulated for small Tpn· Because all homogeneous precur­
sors become nuclei at the very moment they appear, the distinction between 
the two species vanishes. Thus, we may discard the evolution equation for 
the number of homogeneous precursors, 2. 7 4, and replace equation 2. 77 by 

(2.78) 

This result can be derived analytically from equations 2. 7 4 and 2. 76. The 
details of this derivation are included in appendix B. Athermal nucleation, 
according to the formal definition of Fisher et al. [33], is obtained when 
Ipq = Ipf = 0 in addition to Tpn = 0. 

It is assumed that the number of foreign entities available to become 
heterogeneous precursors is constant. Although, for example, cavities may 
develop in the material as a result of thermomechanical loading and serve 
as heterogeneous precursors, the vast majority of these entities will in gen­
eral consist of chemical impurities, which may have been added on purpose 
(such as nucleating agents). Their number in the uncrystallized melt was 
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established during the synthesis of the material. Impurities are often of a 
non polymeric nature. As a result, they cannot dissolve ( Tpd -----+ oo). In the 
present context, we consider something dissolved if it has been decomposed 
into elements that behave like the disordered polymer molecules in the amor­
phous phase. These elements cannot act as a precursor, even upon lowering 
the temperature, unless they are assembled in an ordered structure again. 
It is assumed that any nonpolymeric heterogeneity will be able to become a 
precursor at some activation temperature. Polymeric additives are left out 
of consideration here. 

The only way for the impurities to become precursors is therefore through 
an athermal process, and the resulting heterogeneous precursors can only 
disappear by becoming nuclei. Hence 

N
. het (t) T. oN;:t (t) N;et (t) 

p = [) - het ( ) . ( 2. 79) 
T Tpn t 

The heterogeneous nucleation rate is given by 

Nhet (t) 
JVhet (t) = p . 

n T;/{t (t) 
(2.80) 

Finally, one additional assumption with respect to heterogeneous precur­
sors will be made here, namely that they are not subject to any thermal 
fluctuations in size, which cause thermal nucleation. Then equation 2.80 is 
transformed into 

(2.81) 

This result can be derived in the same way as equation 2. 78, as explained in 
appendix B, if we take T;~t = 0. In other words, heterogeneous precursors 
and heterogeneous nuclei are assumed equivalent. Every ordered entity that 
is large enough to be nucleated at a given temperature will be nucleated as 
soon as that temperature is reached. 

Eder et al. [28] proposed a simple, and therefore attractive, model for the 
athermal nucleation of heterogeneous precursors. They used a discrete set of 
nucleation times T;~j for different species of heterogeneous precursors N;,e/ 
and assumed that each species would instantaneously become stable when 
its characteristic temperature Tj was reached: 

Thet. (T) = { oo for T > Tj ; (2.82) 
pn,J 0 for T :; Tj . 

Equation 2.81 is then to be replaced by 

Nt:et(T(t)) = 'L,N;,jt(0)8(T(t) -Tj), 
j 
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where t = 0 corresponds to the onset of undercooling. Care should be taken 
when implementing the above method in numerical simulations. Equation 
2.83 predicts that, upon heating, the athermal nuclei are instantaneously lost, 
i.e. the folded-chain crystal structure melts, and the underlying precursors 
reappear as soon as Tj is reached. This is not observed in experiments. 
In fact, in the 'inverse quenching' experiments of Acierno and Grizzutti [2], 
where the crystallizing melt was heated fast to a suitably chosen temperature 
below the melting point, the nuclei obtained at lower temperature were shown 
to remain stable for a substantial period of time. Fortunately, since in most 
industrial manufacturing processes no heating occurs, melting of nuclei can 
usually be left out of consideration altogether. 

2.4.3 Modeling flow-induced creation of precursors 

The driving forces behind the creation of homogeneous precursors, Ipq as 
found in a quiescent melt and the flow-induced driving force lpf, have not 
been specified yet. At practical degrees of undercooling, the contribution of 
lpq to the final number of crystallites is negligible in comparison to the num­
ber of crystallites grown from athermal nuclei in quiescent conditions. On 
the other hand, the strong influences of strength and duration of flow on the 
nucleation density seem to indicate that the flow-induced sporadic creation 
process, characterized by lpf, cannot be disregarded. In fact, nearly all flow­
induced crystallization theories that have been proposed over the years are 
based on the assumption that flow induces sporadic creation of homogeneous 
precursors. Differences lie in the presumed nature of these precursors and 
the physics behind the creation process. For example, spinodal decomposi­
tion of the melt into two phases of different density has been suggested, with 
the denser phase being rich in closely packed helical sequences that serve as 
precursors [45, 46, 84, 97, 113]. On the other hand, transient liquid crystalline 
phases have been observed during flow-induced crystallization and were pro­
posed as intermediate states in the transition from the amorphous to the 
semi crystalline phase [ 69~ 71]. 

The basic concept of the different physical pictures is that flow promotes 
the creation of precursors by orienting and/or stretching the macromolecular 
chains in the melt. In the following, the model developed by Zuidema et 
al. [131, 132] will be taken as a starting point, since it is quite general in the 
sense that no detailed assumptions of the internal structure of precursors are 
made. On the other hand, because the kinetics of creation and growth are 
related to molecular orientation and stretch, there is a clear link between 
macroscopic structure formation and processes occurring at the molecular 
scale. Finally, a unique new view on flow-induced nucleation, based on an 
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athermal instead of a thermal creation process, will be discussed. 

Enhanced thermal creation process 

According to the model proposed by Zuidema et al, flow increases the fre­
quency of thermal order fluctuations having a sufficiently high amplitude to 
serve as nuclei. Therefore, the second invariant of the deviatoric part of the 
elastic Finger tensor was chosen as the driving force behind nucleation, as 
seen in equation 2.71. The flow-induced nuclei, as effective crosslinks, were 
assumed to increase the longest relaxation time of the melt according to the 
simple linear relationship 

A (t) = Ao [1 +aNn! (t)] , (2.84) 

where Ao is the relaxation time of the amorphous phase, Nnf is the number 
of flow-induced nuclei and a is a scaling parameter, characteristic of the 
material and the processing conditions. Since the relaxation time determines 
the evolution of the elastic Finger tensor, which in turn determines the flow­
induced nucleation rate, equation 2.84 makes flow-induced nucleation a self­
enhancing process. As a result, structure formation in injection molding 
processes could be simulated quite successfully [131, 132]. 

The Zuidema model will be formulated in a different way here, due to the 
treatment of the crystallizing melt as a multiphase system. We assume that 
nuclei, and the crystallites that grow from them, only influence the effective 
properties (moduli and relaxation times) of the material as a whole. This 
should be accounted for by the chosen suspension model. The matrix formed 
by the amorphous phase, however, is where precursors are created. Therefore, 
lpf is chosen proportional to the deviatoric part of the elastic Finger tensor, 

(2.85) 

or some other function of the average viscoelastic stress in the material. 
Another possible choice is to use a function of the average viscoelastic stress 
resulting from the disturbed velocity field, which is characterized by hD as 
explained in section 2.2.4, but using the modulus of the amorphous phase G 
instead of the effective modulus h G. Perhaps this will give a closer relation to 
the state of deformation in the amorphous phase, where precursor formation 
takes place. 

Following the train of thoughts that lead to equation 2.84, the relaxation 
time of the amorphous phase may be related to the number of flow-induced 
precursors Npf according to 

A (i) = Ao [1 + aNP! (t)] . (2.86) 
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Perceptive readers may object that this approach fails in the case of fast nu­
cleation processes, described by equations 2.78 and 2.81, because then there 
are no precursors, only nuclei. In section 3.3.2, we will see that the method 
proposed here is useful after all. The reason is that, based on experimen­
tal observations, the assumption must be made that nucleation is inhibited 
by flow. It is only after cessation of flow that the majority of precursors · 
become nuclei. Another point of criticism might be that nuclei, which are 
stable but whose size is still of the order of molecular dimensions or smaller, 
also act as physical crosslinks. Arguably, it would be more realistic to relate 
the relaxation time to the combined number of precursors and these small 
nuclei, while taking nuclei beyond a certain size into account as particles in 
the suspension model. But then the size distribution of nuclei would have 
to be known. Here, we simply assume that a precursor is removed from the 
amorphous phase once it becomes a nucleus and that, at the same instant, 
this nucleus starts to act as a particle instead of a physical crosslink. 

Whereas Zuidema et al. successfully used the constitutive model of 
Leonov, which is based entirely on linear viscoelastic data, it is interest­
ing to look at the more advanced Porn-Porn models. As explained in section 
2.1.2, the parameter q appearing in these models is a measure of the amount 
of branching. Therefore, again using the concept of precursors as physical 
crosslinks, we propose that q is a function of the number of flow-induced pre­
cursors. In the original Porn-Porn model of McLeish and Larson [77], both 
relaxation times are proportional to q. Modifying this parameter according 
to an expression similar to equation 2.86, 

q (t) = q0 [1 + aNP! (t)] , (2.87) 

then yields 
Ab (t) = Aob [1 + aNpf (t)] (2.88) 

and 
As (t) = Aos [1 + aNpf (t)] (2.89) 

for the orientation relaxation time and the stretch relaxation time of the 
backbone, respectively. In the extended Pom-Pom model of Verbeeten et 
al. [125, 126] however, the latter is related to the molecular stretch parameter 
A by an exponential function, according to equation 2.15. Equation 2.89 
should therefore be replaced by 

[ 
v(A(t)-1)] 

As (t) = Aos [1 + aNpf (t)] exp - ( ) 
1 + aNP! t 

(2.90) 

when the XPP model is used. 
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Enhanced athermal creation process 

Over the course of the last decade, Janeschitz-Kriegl and coworkers [55-
59, 108] have developed an interesting new, fundamentally different view on 
flow-induced nucleation. Their original goal, however, was to explain the ob­
servation made in quiescent experiments that, even in polymers containing 
few heterogeneous precursors, the nucleation density increases exponentially 
by many decades as a function of the crystallization temperature. Quiescent 
homogeneous nucleation has traditionally been described as a sporadic pro­
cess, characterized by a finite nonzero free enthalpy barrier or, in the present 
context, a finite nonzero value of TJ::;m. But this picture is not correct at 
high degrees of undercooling. The mentioned barrier, following the classical 
nucleation theory, decreases upon cooling and becomes negligible at a tem­
perature Tu. Thus, only in the temperature range Tu < 1' < T m a sporadic, 
fluctuation-controlled nucleation process can exist. According to what is 
known as Ostwald's rule of stages, the transition from the amorphous phase 
to the semicrystalline phase then proceeds through a number of intermediate, 
metastable states of increasing stability. Janeschitz-Kriegl [55] estimated the 
upper limit of this range of metastable undercooling as 

(2.91) 

where Cp,m is the heat capacity of the melt at the equilibrium melting tem­
perature T m and i1H f is a heat of fusion, the exact meaning of which will be 
clarified shortly. Upon cooling to Tu all homogeneous precursors immediately 
become stable, so that none are left for nucleation at lower temperatures. But 
this does not agree with the aforementioned exponential increase of the num­
ber of crystallites with increasing degree of undercooling, which is observed 
below Tu as well as above, even in very pure polymer samples. 

In subsequent papers by Janeschitz-Kriegl et al. [56,58] the idea of ather­
mal nucleation of homogeneous precursors, intrinsically present in the melt, 
was developed in an attempt to solve this problem. These effectively pointlike 
precursors were envisaged as short bundles of parallel helical chain segments. 
According to the ideas of Strobl [109] the rate of lateral attachment of new 
segments, leading to the growth of a lamella, is determined by a 'surface 
tension' ae at the tips of the bundle, which is created by the difference in 
packing density between the chains' helical parts and their coiled ends pro­
truding into the melt. This surface tension is not constant, but builds up as 
more helical stems are added and eventually levels off (see figure 2 of [58]). 
The lamellar growth process will proceed at a critical value of the number 
of repeating units n along the axes of the helices, i.e. in the longitudinal 
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direction of the bundle, 

(2.92) 

where LJ.H f is defined as the heat of fusion per repeating unit. Because n will 
generally be large, the effect of CJ e on LJ.H f may be neglected. Hence, LJ.H f 
represents the heat of fusion of an ideal bundle of packed helical chains, where 
only a free enthalpy barrier associated with the process of lateral attachment 
itself has to be overcome. It is this barrier that vanishes at T = Tu. The 
laterai growth rate then initially increases, but is impeded by the buildup of 
CTe. Only long enough precursors (n ~ n*) can overcome this new barrier and 
grow into lamellae. 

Janeschitz-Kriegl et al. [57, 58, 108] further proposed that flow allows the 
intrinsic homogeneous precursors to grow longer, as a result of which they 
will attain the critical size n* at higher temperatures than in quiescent con­
ditions. It was argued that precursors with lower activation temperatures, 
having a less ordered structure, will be more easily created and hence be more 
numerous in the melt than precursors with higher activation temperatures. 
Therefore, increasing the strength or the duration of flow will have a non­
linear effect on the number of nuclei tapped from the reservoir of precursors 
whose activation temperatures were initially below the actual crystallization 
temperature. 

In a quiescent melt, the implementation of this athermal nucleation model 
is straightforward. The number of athermal precursors as a function of tem­
perature, which is derived from the number of crystallites obtained in quies­
cent crystallization experiments, can be used as input. Because no threadlike 
precursors develop in the absence of any flow history, homogeneous and het­
erogeneous precursors do not have to be considered separately. Either the 
combined T8Npa/8T terms in equations 2.74 and 2.79, or a discrete set of 
precursor species, to be used in equations 2.82 and 2.83, are determined by 
the experiments. In the latter case, one or more species should be taken to 
represent the sporadic nucleation process (the corresponding Tpn,j having a 
finite value in the temperature range Tu < T < T m). 

If the melt possesses a flow history, it is necessary to know which part 
of the initially available precursors are homogeneous. Only these can grow 
and shift their activation temperatures by the mechanism described above. 
Subtracting the concentration of nucleating agents, which would have to be 
supplied by the manufacturer, from the total number of athermal precursors 
as a function of temperature in quiescent conditions, a fairly accurate es­
timate of the number of homogeneous athermal precursors might be made. 
The activation temperature of nucleating agents may be chosen close to the 

43 



melting temperature. A longitudinal growth model is needed in order to de­
termine which fraction of the total amount of homogeneous precursors are 
long enough to be nucleated at any time during the crystallization process. 

Thermal and athermal processes in flow-induced crystallization 

In the Zuidema model, which was slightly modified here, it is assumed that 
flow enhances thermal creation of precursors. The driving force lpf is related 
to the recoverable strain, which reflects the combined molecular orientation 
and stretch. Furthermore, a correlation between the orientation and stretch 
relaxation times is assumed. The model leaves some room for theorizing the 
details of the underlying physics, while still capturing the essentials. The 
Janeschitz-Kriegl model defies the traditional view of flow-induced nucle­
ation as a sporadic process. Instead, it assumes that a range of homogeneous 
precursor species already exist in the material above the melting tempera­
ture and are activated (become nuclei) at specific temperatures. Flow merely 
perfects these precursors, shifting their activation temperatures upwards. Al­
though these models are fundamentally different, both predict a nonlinear 
increase of the number of crystallites with increasing work supplied to the 
material, as observed by Janeschitz-Kriegl et al. [57, 58, 108]. 

Neither of the two models can be discarded yet. It is even conceivable 
that the different processes that are envisioned both take place in crystal­
lizing polymer melts. The truth may prove difficult to find. But at least a 
framework for modeling flow-induced nucleation and growth of spherulites, 
in which sporadic as well as athermal nucleation processes can be incorpo­
rated, has been established in section 2.4.2. The kinetics of homogeneous 
nucleation are determined either by equations 2.74 and 2.77 or by equation 
2. 78. Analogously, the kinetics of heterogeneous nucleation are determined 
either by equations 2. 79 and 2.80 or by equation 2.81. Substituting 

(2.93) 

in Schneider's rate equations and using an impingement model, for example 
equation 2.62, the crystallization process is fully described. However, the 
situation becomes more complicated when threadlike precursors develop in 
the melt, which may lead to oriented crystal structures. A rate-type model 
of oriented crystallization, similar to equations 2.65-2.68, is needed that in­
cludes the creation and growth of precursors and their transformation into 
either spherulites or oriented crystallites. 
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2.4.4 Growth of threadlike precursors 

Strong flow conditions are known to induce the formation of threadlike pre­
cursors ( shishes) but the nature of this process and the internal structure of 
the threadlike precursors are still subjects of debate. It is generally believed, 
however, that the high molecular weight fraction of a crystallizing polymer 
melt is of primary importance in the development of oriented semicrystalline 
morphologies [1, 60, 107, 127, 132]. Here, two recently proposed physical ex­
planations for the creation and growth of threadlike precursors [101, 106] will 
be discussed and their place within the framework of a unifying approach to 
flow-induced nucleation and growth kinetics [123] will be indicated. 

The streamer model 

Seki et al. [101] investigated binary iPP /iPP blends where one of the con­
stituents had a relatively high molecular weight with a narrow distribution. 
The concentration of these long molecules was varied. The authors concluded 
from birefringence measurements, performed during isothermal crystalliza­
tion under pressure-driven shear flow, that the long chain content greatly 
enhanced the formation of threadlike precursors, even while these consisted 
partly of shorter molecules. Surprisingly, they found that the number of 
point nuclei was not significantly influenced by the presence of long chains. 
Seki et al. explained the flow-induced development of oriented structures 
as follows. The formation of a shish starts with a pointlike precursor, to 
which a long chain is adsorbed. This chain is oriented by the flow, forming a 
'streamer' in the wake of the pointlike precursor. The increased orientation 
of this streamer increases the probability that new pointlike precursors are 
created, to which new streamers can be adsorbed. Thus a string of connected 
pointlike precursors constitutes the shish. In a later stage, kebabs grow from 
this row of pointlike precursors. 

The bundle model 

Somani et al. [106] concluded, on the basis of results from in-situ SAXS 
measurements performed during shear-induced crystallization of iPP, that 
the streamer model of Seki et al. did not apply to their experiments. This 
conclusion was based on the observation that no meridional maxima, which 
would indicate the presence of lamellar stacks oriented perpendicular to the 
flow direction, showed up in the scattering patterns until after an equato­
rial streak, related to fibrillar structures aligned in the flow direction, had 
developed. Therefore, rather than as a string of pointlike precursors, they 
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visualised a shish as a bundle of parallel chain segments and proposed a lon­
gitudinal growth mechanism driven by the increased orientation and stretch 
of the free chain ends at the tips of the bundle1 . The meridional maxima 
appearing in later stages of the crystallization process were attributed to 
kebabs growing from the shish. 

Because of the low degree of crystallinity, estimated from WAXS mea­
surements, it was assumed that the threadlike precursors consisted mainly 
of mesomorphic structures, and contained only a small fraction of crystalline 
material. A similar conclusion was drawn by Li and De Jeu [69-71] from 
SAXS and WAXS experiments after step shear flow. They identified smectic 
filaments as the building blocks of threadlike precursors. 

One might object against Somani et al.'s dismissal of the streamer model 
that a pointlike precursor, consisting of a small number of parallel chain 
segments, may have been present for some time before a lamella starts to 
grow from its lateral surface. In that case, the growth process proposed by 
Seki et al. will result in strings of pointlike precursors that pass unnoticed 
in SAXS until they are nucleated and that, if they develop into fibrillar 
structures, do so either before or after the moment of nucleation. Thus, the 
absence of meridional scattering prior to the appearance of equatorial streaks 
may be caused by delayed nucleation; it does not necessarily mean that no 
pointlike precursors have been formed yet. 

A closer look at the conditions and kinetics of precursor growth 

Before comparing experimental results, it is of the utmost importance to 
verify if the external conditions are similar enough to allow such compari­
son. Van Meerveld et al. [123] therefore set up a classification scheme for 
flow-induced crystallization experiments. They identified four flow regimes. 
The transitions between these regimes are characterized by three parameters: 
the Deborah numbers associated respectively with orientation and stretch of 
chain segments, Deb= i'>-b and Des = )'A8 , and the critical backbone stretch 
A* at which rotational energy barriers are sufficiently lowered to allow ro­
tational isomerization (RI) of chain segments, implying a departure from 
Gaussian chain dynamics. Table 2.3 shows the definition of the flow regimes. 
Regime 1 corresponds to the quiescent state or weak flow conditions, where 
pointlike precursors are created as a result of fluctuations in the orienta­
tion and conformation of chain segments. According to Van Meerveld et al, 
the rate of creation is increased when chain segments are oriented by the 
flow (regime 2) because, in that case, only a fluctuation in the conformation 

1 Several models have been proposed to describe this kind of growth; see for example 
Lieberwirth [72]. 
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Table 2.3: Classification of FIC experiments [123]. 

I Flow regime I Deb = Ab'Y I Des = A./y I A = J ~trEe I 

1 Deb< 1 Des< 1 A~1 

2 Deb> 1 Des< 1 A~1 

3 Deb> 1 Des> 1 1 <A< A* 
4 Deb> 1 Des> 1 A> A* 

may suffice to create a precursor. In regime 3, chain segments are stretched 
and consequently the probability of conformational fluctuations becomes even 
higher. Finally, regime 4 is characterized by strong RI. Rotational energy bar­
riers vanish, allowing the chains to easily adopt a helical conformation, which 
is favorable for creating bundles of parallel segments. Threadlike precursors 
are supposed to develop when chain segments maintain a large stretch, i.e. 
A > A*, for a sufficiently long time. 

With this classification scheme in mind, it is conceivable that different 
growth models, such as those discussed above, are not necessarily mutually 
exclusive. First of all, they may simply apply to different flow regimes. To 
enable the identification of these regimes, Van Meerveld et al. [123] compiled 
rheological data for materials used in several flow-induced crystallization ex­
periments. The data for the iPP melt used by Somani et al. can be found 
in their table 1. The orientation and stretch relaxation times, based on the 
longest chains in the molecular weight distribution, were calculated using the 
theoretical results [27, 63] 

>.. = 3>.. z3 [1- 1.51]2 
b e ..JZ (2.94) 

and 
(2.95) 

The equilibration time Ae determines the stretch relaxation of a tube seg­
ment, which is defined as a portion of the backbone tube confined by two 
neighboring entanglements, and is independent of molecular weight. The 
parameter Z, on the other hand, represents the average number of entangle­
ments per molecule, which is obviously a function of the molecular weight 
distribution of the melt. It is generally defined as 

(2.96) 
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with Me the average molecular weight between entanglements, which is re­
lated to the plateau modulus G~. Van Meerveld et al. used M = MHMW 

with MHMW a characteristic weight of the longest molecules in the melt. The 
equilibration time was derived from the zero-shear viscosity, given by 

(2.97) 

and 
M = ~pRT 

e 5 G~ 
(2.98) 

according to the constitutive model of Likhtman and McLeish [7 4]. A slightly 
different definition of Me is used in a number of constitutive models, where 
the value of the prefactor is 1 instead of 4/5. Other material functions, like 
Z and T}o, are then to be modified accordingly. Thus, care must be taken not 
to mix up these definitions [67]. The above procedure to determine Ae was 
discussed in detail by Van Meerveld [122]. The result of interest here is that 
Des lay between 2.3 and 2.4 in the experiments of Somani et al. [103, 104, 106]. 
This means that the flow conditions corresponded to regime 3 or regime 4. 
But .A* is lacking, so we cannot check if the maximum stretch condition 
was indeed fulfilled, as expected on the basis of the shish-kebab morphology 
observed. In fact, as Van Meerveld et al. pointed out, the magnitude of .A* for 
temperatures close to and below T m has not been resolved yet. Unfortunately, 
insufficient information on the materials and experimental conditions used by 
Seki et al. [101] is available to estimate Deb and Des. No rheological data 
of the blends or their components were given by the authors. Moreover, 
they used an experimental setup in which a pressure-driven duct flow with 
a prescribed wall shear stress was applied, so the shear rates in the flow cell 
are unknown. 

Another reason for discarding neither the streamer model nor the bun­
dle model, besides the possibility that they apply to different flow regimes, 
is that both growth processes may be active in the melt at the same time. 
The flow regimes, defined in a global sense, are then to be replaced by a 
model describing localized flow-induced creation and longitudinal growth of 
precursors. In the following, such a model is distilled from the theoretical 
works [101, 106, 123] discussed above. Some degree of speculation is unfortu­
nately inevitable because of the already indicated lack of comparable data. 
Figure 2.2( a) shows an ensemble of two parallel chain segments from different 
molecules, which is an extremely simplified representation of a pointlike pre­
cursor, but it will suffice to elucidate the basic ideas. This picture corresponds 
to flow regime 1 in table 2.3: the free ends of the molecules are coiled and 
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(a) 

(b) 

streamers -- streamers 

(c) 

streamers -- vG,;(=:;. ::::=;"' .. ----/.\..., --- streamers 

--\ )~ 
RI zone RI zone 

Figure 2.2: Identification of flow regimes at the molecular level. (a) No longitudinal 
growth (regime 1). (b) Strings of pointlike precursors induced by orientation (regime 2) 
and/or stretch (regime 3) of semi-attached chains (streamer model [101]). (c) Longitudinal 
growth of bundles of parallel chain segments [72, 106] induced by RI close to the bundle tips 
(regime 4) and incorporation of new molecules further downstream induced by streamers 
(regimes 2 and 3). 

randomly oriented. Figure 2.2(b) shows what happens when these chains are 
oriented (regime 2) and/or stretched (regime 3) in the flow direction. Since in 
general it is not trivial what 'flow direction' exactly means, it is defined here, 
based on Zuidema's idea that the recoverable strain in the amorphous phase 
drives the creation and growth of precursors, as the direction of the eigenvec­
tor corresponding to the highest eigenvalue of Be or, equivalently, of B:. The 
increased order in the wake of the original precursor enhances the probability 
that new pointlike precursors are created. This corresponds to the streamer 
model, resulting in a row-nucleated or shish-kebab morphology where strings 
of pointlike precursors form the shishes [101]. Breakup of these strings as 
a result of the applied macroscopic flow may explain the greater number 
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of spherulites obtained in comparison to quiescent crystallization. Finally, 
in figure 2.2(c) the growth process in regime 4, characterized by rotational 
isomerization of chain segments, is shown. We expect that the condition 
A > A* is only fulfilled in a region close to the tips of the bundles of parallel 
chain segments forming the original pointlike precursors. Consequently, due 
to the locally vanishing rotational energy barriers, the length of these bun­
dles increases. At the same time, however, the oriented and stretched free 
chain ends form new pointlike precursors, again according to the streamer 
model, which subsequently grow as a result of RI, etcetera. Thus we obtain 
a threadlike precursor' with an internal structure of alternating bundles of 
parallel chain segments and regions that are more akin to the amorphous 
phase, similar to the structure proposed by Somani et al. [106]. 

An essential feature of the proposed explanation of oriented growth is 
that molecular orientation and stretch are increased locally, i.e. in the vicin­
ity of the tips of precursors. This increase can be accounted for by relating 
the longest relaxation time of the melt to the number of flow-induced precur­
sors, as explained in the previous section. But the question remains how to 
incorporate the ideas presented above in a mathematical model of precursor 
growth. In view of the many uncertainties regarding the nature of threadlike 
precursors, we take a more phenomenological approach. The basic structure 
of the growth model of Liedauer et al. [73] is probably general enough to cap­
ture the relevant processes without the need to specify the inner structure of 
threadlike precursors. In analogy to equation 2.66, the length of a precursor 
is given by 

. Lp (i) 
LP (t) =It (t) - -(-) . 

Tt t 
(2.99) 

For compatibility with equation 2.65-2.68, Lp must be defined as the contour 
length from the center of a precursor to one of its tips, i.e. half its end-to­
end contour length. The growth process is promoted by locally enhanced 
oriention and stretch of molecules, which is expressed in the driving force h 
while Tt is a relaxation time associated with disengagement of molecules from 
the tips of the precursor. Only homogeneous precursors are assumed to grow 
in this manner, because they consist of macromolecular chains, which can 
be oriented and stretched. Nogales et al. [81] presented evidence for a flow­
induced oriented structure induced by a network-forming nucleating agent, 
but this will be left out of consideration here. In the following, we restrict 
our attention to homogeneous precursors and nuclei, and these are simply 
denoted by NP and Nn for convenience (instead of Nj;om and N~om). 

The total length of precursors L~ot changes according to the balance be­
tween the processes of growth and disappearance. The latter includes dis-
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solution and nucleation. The characteristic time of nucleation Tpn may be 
assumed independent of LP. According to the ideas of Janeschitz-Kriegl [58], 
discussed in the previous section, the length of a precursor only determines 
whether or not it can induce the growth of a lamella at a certain tempera­
ture. A precursor above a certain length will be able to become a nucleus, 
but the average amount of time that passes before this actually happens, 
i.e. Tpn, depends on the thickness of the precursor. On the other hand, the 
probability that a precursor dissolves is expected to decrease, hence Tpd is 
expected to increase, as a function of the precursor's length Lp. So unless 
dissolution is negligible relative to nucleation, in which case Tpd > > Tpn and 
consequently Tp ~ Tpn as seen in equation 2. 76, one is forced to introduce a 
discrete number of 'classes' of precursors, characterized by a number Np,k, 
an average length Lp,k, a nucleation time Tpn,k(Lp,k), and a dissolution time 
Tpd,k(Lp,k). For each class, Np,k is determined by nucleation and dissolution, 
as well as migration of precursors to and from other classes. The details of 
such an approach are discussed in appendix C. 

Here, as an illustrative example, we assume that Tpd --r oo. Therefore, it 
is not necessary to keep track of the length distribution. Because Tp = Tpn is 
the same for all precursors, regardless of their lengths, the rate of change of 
L~ot can be written as 

(2.100) 

where the average length 

(2.101) 

was used. The first term on the right-hand side of equation 2.100 is what 
L~ot would ·be if none of the precursors became nuclei. The second term 
accounts for the total length lost as a result of nucleation. The total length 
of precursors is obtained by integrating equation 2.100 and reads 

tot lt . t . lt L~ot (s) 
LP (t)= -=Np(s)Js Lp(u)duds- -=Tpn(s)ds. (2.102) 

The first term on the right-hand side is the result commonly encountered 
in literature [14, 29, 31, 73], which corresponds to the assumption that all 
precursors immediately become nuclei (Tpn = 0). 
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Figure 2.3: Transition from point nuclei to oriented nuclei. 

The correlation between the growth of threadlike precursors and the de­
velopment of an oriented semicrystalline structure is not trivial. While the 
transformation of pointlike precursors into threadlike precursors is kinetically 
determined, the transition from a spherulitical to an oriented morphology 
also depends on the time available for precursors to grow before they are 
nucleated. A short fibrillar nucleus will easily be overgrown by folded-chain 
lamellae and develop into a spherulite, and can therefore essentially be con­
sidered a point nucleus, while a long fibrillar nucleus will most likely template 
the growth of a row crystallite or a shish-kebab. Figure 2.3 illustrates this 
idea. 

Janeschitz-Kriegl [58] reported that spherulites, which were accidentally 
cut exactly through their centers, when observed under the microscope indeed 
displayed lamellae growing from an oblong particle at the core. In this way, 
the temporary birefringence observed in the early stages of spherulitic crys­
tallization could be explained. The initial lamellae, growing laterally from 
the threadlike precursors, cause this effect. Later, lamellae start to grow in 
all directions and the birefringence vanishes. Hutter et al. [53] provided a 
possibility to describe these kinds of processes with changing directions of 
growth. 

To designate the transition from spherulitical to oriented crystallization, 
a critical length L; is introduced. Precursors with a length below L; are 
considered pointlike, while precursors whose length exceeds L; are considered 
threadlike. When nucleated, these precursors are transformed into point 
nuclei and fibrillar nuclei, respectively. Unfortunately, it is impossible to 
write down an equation for the formation of new threadlike precursors at 
a given time t because it will depend on the subsequent development of 
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temperature and flow conditions whether a precursor with a certain length 
Lp(t) will be long enough at a later time t+L1t, i.e. LP(t+L1t) ;::: L;. This is an 
additional reason why, in general processing conditions, it will be necessary to 
model the length distribution of precursors. At the beginning of a new time 
step, one can look back to find the time interval(s) in the past during which 
precursors were formed that, in the mean time, have grown long enough to 
induce the growth of oriented semicrystalline structures. In the near future, 
the possibilities of predicting the transition from a spherical to an oriented 
morphology, based on the ideas presented here, will be investigated. At the 
moment, however, not enough experimental data are available to sufficiently 
reduce the number of free parameters. 

2.5 Summary 

The modeling framework presented in this chapter covers a broad range of 
length scales at which different processes take place. At the macroscopic 
level, the evolution of the degree of crystallinity and space filling, as well 
as the specific crystalline morphology, determine the evolution of the rhe­
ological properties of the material. We describe a crystallizing polymer as 
a suspension. Preliminary steps towards extending the suspension rheologi­
cal modeling of crystallizing melts to the nonlinear viscoelastic regime have 
been indicated. In contrast to regular suspension theories, the mechanical 
properties of the constituent phases are not constant. The semicrystalline 
phase will harden as a result of secondary crystallization, which occurs in 
the amorphous regions within the crystallites. The amorphous phase pre­
sumably hardens because flow-induced precursors act as physical crosslinks. 
Thus, the evolution of rheological properties is linked to the molecular-scale 
processes of creation, growth, and disappearance of precursors. 

Several aspects of the physics of flow-induced crystallization at the molec­
ular level have not been resolved yet. Nevertheless, we have attempted, on the 
basis of previous theoretical developments and experimental data, to provide 
a means to capture the essentials of the relevant molecular processes. The 
kinetics of creation and disappearance of precursors, the growth of pointlike 
precursors into threadlike precursors, and the transition from a spherulitical 
to an oriented crysta~line morphology have been formulated. In chapter 3, 
we will validate the modeling presented here by comparing it to experimental 
results on short-term shear-induced point nucleation, for which the limited 
number of free parameters allows such comparison. Validation with respect 
to anisotropic crystallization after strong short-term deformation, as well as 
continuous flow-induced crystallization, will be the objective of future work. 
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Chapter 3 

Simulation of FIC experiments 

Different parts of the theoretical framework presented in the previous chapter 
will be confronted with experimental data in the following. The ultimate 
objective is to be able to describe, in a quantitative manner, the characteristic 
phenomena observed under experimental as well as processing conditions. 
Specifically, we would like to predict 

• the final number of spherulites and oriented crystallites per unit volume; 

• the moment of transition from spherical to oriented morphologies; 

• space filling and degree of crystallinity as a function of time; 

• the evolution of rheological properties and probably other properties, 
which have not yet been considered, as a function of space filling and 
degree of crystallinity. 

Two main subjects are covered here. First, the possibility to monitor qui­
escent and flow-induced crystallizl'l,tion processes by rheometry is discussed. 
Specifically, the storage modulus is related to space filling according to dif­
ferent scaling laws as well as on the basis of suspension rheology. The second 
subject is the validation of the theory of crystallization kinetics for the case 
that point nucleation dominates. Anisotropic flow-induced crystallization 
processes involve too many additional modeling parameters, related to the 
longitudinal growth and relaxation processes of precursors and nuclei, for a 
reliable validation. Therefore, attention is restricted to point nucleation here. 

3.1 Materials and experimental methods 

Different aspects of the evolving semicrystalline structure were studied by 
Hristova et al. [52] using in situ methods - optical microscopy (OM) and 
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Figure 3.1: Linear viscoelastic relaxation spectra of the iPP melts HD120MO from 
Borealis [52, 124] and 13E10 and 15M10 from DSM [110, 124] at 135°C. 

small- and wide-angle X-ray scattering (SAXS and WAXS) - as well as ex 
situ methods - differential scanning calorimetry (DSC) and environmental 
scanning electron microscopy (ESEM). Vega et al. [124] studied the evolution 
of linear viscoelastic rheological properties (storage modulus G' and loss angle 
o) during crystallization. 

Experimental results of both studies will be compared to predictions based 
on the theory developed in chapter 2. The experiments discussed in this 
chapter were performed during isothermal crystallization, following the fast 
cooling of a polymer melt from above the melting temperature T m, where it 
was kept long enough to erase any deformation history, to the desired crys­
tallization temperature Tc. Quiescent and flow-induced crystallization were 
studied, the latter by applying short-term shear flows of varying strengths 
and durations at the beginning of the isothermal crystallization process. 

A linear isotactic polypropylene (iPP) HD120MO, manufactured by Bo­
realis, was studied. The XPP model is applied here to simulate the ex­
periments. This model requires nonlinear rheological data, which are not 
available for this material. The rheological data of the linear iPP 15M10 
from DSM will be used instead. This material was characterized by Swart­
jes [110]. The linear viscoelastic relaxation spectrum is comparable to that 
of the Borealis iPP (figure 3.1). The crystallization parameters, the growth 
rate G(T) and the number of available athermal precursors Npa(T), are those 
determined by Hristova et al. for HD120MO. 
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Table 3.1: Properties of the iPP melts HD120MO [52, 124] and 15M10 [110, 124]. 

Material Mw [kg/mol] 111w/Mn H Tm [0 C] 
HD120MO 365 5.4 165 

15M10 350 5.6 161 

A general feature of crystallization induced by a short-term flow, applied 
at the beginning of the crystallization process, is that the final nucleation 
density is reached before any space filling can be noticed. The kinetics of 
precursor formation and nucleation therefore take place in essentially un­
bounded conditions; no significant volume fraction of the amorphous phase 
is crystallized yet during this period, which we will refer to as the early stage 
of cryst~llization. Consequently, the state of stress in the material is not 
disturbed by the presence of crystallites and it is not necessary to apply a 
suspension model when looking at the crystallization kinetics. Experiments 
conducted by Devaux et al. [23] showed that the extent of the early stage 
was of the order of 102s at Tc = 136°C. They used an iPP melt with a 
weight-averaged molecular weight Mw = 338kg/mol and polydispersity in­
dex Mw/ Mn = 6.45, which is similar to the HD120MO melt considered here 
(table 3.1). The full modeling, including suspension rheology, will be applied 
to continuous flow experiments conducted by Vega et al. [124] in the near 
future. In the present work, however, only crystallization after short-term 
shear flow is considered. Nevertheless, it will be shown in the next section 
that the suspension rheology approach to flow-induced crystallization offers 
a possibility to accurately monitor the development of space filling. In this 
respect, it constitutes a significant improvement over methods that have been 
used up till now. 

3.2 Monitoring crystallization by rheometry 

Because in most cases it is not possible to determine the degree of crys­
tallinity x(t) or the space filling ~9 (t) in situ by means of optical microscopy, 
experimentalists have devised indirect methods to obtain these properties. 
For example, the degree of crystallinity is often related to the intensity mea­
sured with light scattering or X-ray diffraction techniques. A commonly used 
measure of space filling is the storage modulus G'. In this section, the relation 
between G' and ~9 is investigated. 

Vega et al. [124] determined the linear viscoelastic relaxation spectrum 
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of the iPP melt HD120MO by means of oscillatory shear rheometry. Next, 
they determined the storage modulus G'(i) and the loss angle <5(t) during 
isothermal crystallization, at Tc = 135°C and at Tc = 145°C, of samples that 
were sheared at different rates 'Y and for different durations ts immediately 
after reaching Tc· Here, we consider the results obtained at 135°C with 
an angular frequency of 5rad/s, for the preshear conditions 'Y = 60s-1 and 
t 8 = Os, 3s, and 6s, and compare them to predictions based on different 
supposed relations between G' and ~9 . The evolution of G' and <5 during 
these experiments is shown in figure 3.2. Two phenomena, well-known from 
literature, are observed upon increasing the shear time (or shear strain). 
First, the effect of crystallization on G' shows up earlier. This is in accordance 
with the idea of a flow-enhanced nucleation rate. Secondly, for higher shear 
times, there is a distinct change in the slopes of the storage modulus and loss 
angle curves in the intermediate stage, where space filling becomes important 
and the increase, respectively decrease, of G' and <5 is most conspicuous. The 
change in the slopes of the curves is an indication of the development of 
anisotropic semicrystalline structures. 

In order to relate these rheological data to the evolution of space filling, 
we need to know how the dynamic moduli G0(t) and Gi(t) of the individual 
phases develop during the crystallization process. Comparison of the data 
for the three experiments in the early stage of crystallization reveals that, 
during the shear period, the melt becomes more elastic: the storage modulus 
increases and the loss angle decreases. Since this effect is observed while 
~9 ~ 0, it must be the result of structure development in the amorphous 
phase. In chapter 2, changes in the rheology of the amorphous phase were 
related to the flow-induced creation of precursors. It will be shown later on 
in this chapter that no significant number of precursors is created after the 
flow has been stopped. Therefore, G~ and <50 are assumed constant and equal 
to the earliest measured values. 

The rheological properties of the semicrystalline phase can only be deter­
mined in the plateau region, reached after a certain time, where both log( G') 
and <5 become weak linear functions of log( t). Presumably, space filling is 
then completed and the crystallization process involves only perfection of the 
semicrystalline phase. The characteristic time t 1 , indicating the transition 
from the space filling stage to the perfection stage, is defined by the intersec­
tion of the extrapolated linear fits of the log( G')-log( t) data in these stages, 
as shown in figure 3.3. The value read from the G' axis at the intersection 
point is taken as G~ ( t1 ), i.e. the storage modulus of the semi crystalline phase 
at t = t1 . The corresponding loss angle <51 (h) is defined as the value at t = t 1 

of the extrapolated fit of <5 versus log( t) in the plateau region. An alternative 
method is to derive the characteristic time t1 from the loss angle data, and 
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Table 3.2: Parameters for calculating the rheological properties and degree of crystallinity 
of the semicrystalline phase by means of equations 3.1, 3.2, and 3.4. 

0 2.89. 103 4.83. 107 3.48 -

3 4.25. 102 4.80. 107 4.83 4.98. w-1 

6 3.22. 102 4.68. 107 4.97 5.40. w-1 

I ts [s] I m 

0 9.oo. w-2 -1.29. w-1 -

3 7.02. w-2 -3.40. w-1 5.75. w-2 

6 7.11· w-2 -3.40. w-1 0 

determine 61 ( t1 ) and G~ ( t1 ) from this. However, comparison revealed that 
the values of t1 based on the storage modulus data were in better agreement 
with the onset of the plateau regions observed in the space filling and the 
degree of crystallinity measured during quiescent and flow-induced crystal­
lization, respectively, which will be discussed next. Since it is unknown how 
the rheological properties of the semicrystalline phase develop in the earlier 
stages of crystallization, we simply assume that no secondary crystallization 
takes place up to t = t1 , and that G~ and 61 are given by the fits of the 
plateau regions for t > t1 . Thus 

(3.1) 

and 

{ 

61 (t1) fort::; t1 

61( t) = .r ( ) ( t ) .c • VI t1 + Co ln t:;" !Of t > t 1 
(3.2) 

The values of the parameters used in these equations, obtained from the 
rheological experiments, are given in table 3.2. 

For the quiescent crystallization experiment, ~9 was derived from in situ 
optical microscopy by Hristova et al. [52]. The result was verified using 
Schneider's rate equations, with the growth rate obtained from sequences of 
microscopic images of spherulites and assuming that all nuclei were present 
from the start of the crystallization process, which is justified by the observed 
narrow size distribution of the spherulites. Figure 3.4 shows the evolution of 
~9 during this experiment. It is seen that the space filling process is completed 
at t ~ 3 · 103s, which agrees with t1 obtained from the measured storage 
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modulus. The contribution of oriented crystallites, appearing in the flow­
induced crystallization experiments, to E,g could not be determined accurately 
by optical means. Therefore, the degree of crystallinity x, derived from in 
situ WAXS experiments by Hristova et al. [52], is used here to estimate ~g· 
By definition, f,g and x are related according to 

f, (t) = X (t) 
g X1 (t) 

(3.3) 

with x1 the internal degree of crystallinity of the semicrystalline phase. 
Whereas f,g directly influences the effective rheological properties of the melt 
(from the point of view of suspension rheology it plays the role of the vol­
ume fraction ¢) x1 determines the rheology of the semicrystalline phase, and 
thus influences the effective properties of the melt indirectly (in the linear 
viscoelastic regime through the dynamic modulus Gi). 

The integrated WAXS intensities X w Axs for the quiescent and flow­
induced crystallization experiments are included in figure 3.4. Comparing 
the results of WAXS and OM for the quiescent melt, it is seen that X w Axs 
is close to or even slightly higher than E,g up to f,g = 0.3. Since the de­
gree of crystallinity is always smaller than the space filling, we conclude 
that XwAxs > X· This is a consequence of the sensitivity of WAXS mea­
surements: intensity peaks are caused not only by crystallites, but also by 
noncrystalline ordered structures. On the other hand, the values of t 1 de­
rived from the storage modulus measured during flow-induced crystallization 
(table 3.2) correlate with the onset times of the plateaus in the WAXS data. 
So at least the time scale is correct, provided that t 1 corresponds to f,g = 1 as 
observed in the quiescent crystallization experiment. For t > t 1 , the contri­
bution of noncrystalline ordered phases to the scattered intensity is expected 
to be negligible, so that X WAXS ~ X· The data in the plateau region can be 
fitted by a linear function XwAxs(t > t1) "'t. This is probably an adequate 
measure of the internal degree of crystallinity x1 . It is unknown, however, 
how x and x1 develop during the space filling process. Like in the rheological 
experiments, it is assumed that no secondary crystallization takes place up 
tot= t1: 

(3.4) 

Furthermore, for lack of better data, X wAX s is taken as x and the experi­
mental data are scaled by equation 3.4, in accordance with equation 3.3, to 
obtain f,g· The result is shown in figure 3.5. The parameters used in equation 
3.4 are included in table 3.2. 

Although it was necessary to make some simplifying assumptions con­
cerning the properties of the semicrystalline phase, the experimental results 
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discussed in this section will provide insight into the relation between the 
rheological properties of a crystallizing melt and its crystalline structure. 
Methods to monitor crystallization processes by means of dynamic rheologi­
cal experiments can now be evaluated. Here, we consider two different kinds 
of methods: scaling laws and methods based on suspension models. 

3.2.1 Scaling laws for the storage modulus 

Because both log( G') versus log( t) and !;,9 versus log( t) have a characteristic 
sigmoidal shape, it seems reasonable to approximate !;,9 by a scaled storage 
modulus, which is easily measured by oscillatory shear rheometry. Khanna 
[64] proposed a simple linear scaling, 

or, equivalently, 

G' (t) - G~ (t) 
!;,9 ( t) = G~ ( t) - G~ ( t) ' 

G' (t) = G~ (t,) + [G~ (t)- G~ (t)] !;,9 (t) . 

(3.5) 

(3.6) 

Contrary to common practice, where the storage modulus is scaled between 
the values at the beginning and at the end of the experiment, the phase 
moduli G~ and G~, which are in general time-dependent, are used here. 

It is not difficult to pinpoint the error in Khanna's approach: not G', but 
log(G') is similar in shape to !;,9 . So the logical choice would be to relate the 
space filling to the scaled logarithm of the storage modulus like 

log ( G' (t,)) - log ( G~ ( t)) 
l;,g ( t) = log ( G~ ( t)) - log ( G~ ( t)) ' 

which can be rewritten in the form 

(3.7) 

(3.8) 

The right-hand side of equation 3. 7 corresponds to the normalized storage 
modulus used by Pogodina et al. [94]. Figure 3.6 shows the storage modulus 
calculated by equations 3.6 and 3.8, using the experimentally obtained G~, 
G~, and !;,9 . Not surprisingly, Khanna's linear scaling law completely fails to 
predict the measured storage modulus. The logarithmic scaling law performs 
a lot better, but is still not quite accurate, especially at the longest shear 
time. 
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3.2.2 The storage modulus from suspension models 

Based on the theory of suspension mechanics, discussed in the previous chap­
ter, we predict that 

G' (t) Re {f(;G~} 

fb ( t) G~ - f~ ( t) G~ , (3.9) 

which is a nonlinear function of G~, G~, G~, and cr in the case of a non­
dilute suspension of deformable particles, like the crystallizing polymer melts 
considered here. Two approaches to obtain G' from the experimentally deter­
mined space filling will be outlined next. In the first, the linear viscoelastic 
form of the classical elastic suspension model [62, 120], discussed in section 
2.2.1, is applied. Solutions for the low-concentration and high-concentration 
regimes are thus obtained. An interpolation between the two limiting solu­
tions is applied. The second approach is based on the linear viscoelastic form 
of the generalized self-consistent method [19, 20], discussed in section 2.2.2. 
The relative modulus fa is in both cases obtained from the originally elastic 
models by applying the correspondence principle (section 2.2.3). 

Tanner [112] proposed an interpolation between the theoretical relative 
moduli corresponding to low and high space filling, obtained from the clas-
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sical first-order suspension theory, i.e. equations 2.17 and 2.22 or the corre­
sponding dilute limits, equations 2.20 and 2.23, respectively. We introduce a 
weight function w(~g) E [0, 1] to interpolate between these asymptotic solu­
tions. The effective dynamic modulus of the material is then written as 

The weight function should obviously satisfy the boundary conditions 

w(O) 
w(1) 

O· 
' 

1. 

(3.10) 

(3.11) 

Furthermore, it should be of the order of ~; or higher. This becomes clear 
when the assumption IGil >> IG~I is made. Note that equation 3.10 can 
then be replaced by two uncoupled equations for the storage modulus and 
the loss modulus. The dynamic equivalents of equations 2.20 and 2.23 under 
the mentioned assumption reduce to 

(3.12) 

and 
lim h(; (~g) = 1 - 15 (1 - vl) (1 -~g) . 
~-1 7-5~ 

(3.13) 

If both phases are incompressible (v.0 = v.1 = 0.5) it follows from equations 
3.10, 3.12, and 3.13 that 

G* (~g)= [1- w (~g)] [ 1 + ~~g] G~ + w (~g) [~~g- ~] Gi. (3.14) 

In the limit ~g --+ 0, equation 3.14 should attain the Einstein form G* = 
(1 + 5/2~g)G0 . This is the case if w goes to zero faster than ~g· Hence, for w 
a function at least of the order of ~; should be chosen. 

The weight function w can easily be defined such that the evolution of the 
storage modulus in the range of intermediate space filling is fitted accurately. 
A definition that satisfies the boundary conditions 3.11 is 

1+ [<Po ]2n' 
¢0,1/2 

(3.15) 
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where <Po= -ln(1- ~9 ) is the unbounded volume fraction of crystallites, and 
<Po,1; 2 and n determine the point where w = 0.5 and the slope of w( <Po) in 
that point. The quiescent crystallization experiment is fitted quite accurately 
with <Po, 1; 2 = 3 and n = 1, as shown in figure 3.7. For the flow-induced crys­
tallization experiments, using the same values of the fitting par1;1meters, the 
prediction of G' becomes worse as the shear time increases. The results are 
still satisfying for t 8 = 3s, but clearly not for ts = 6s. The same conclusions 
can be drawn when comparing the calculated loss angle to the experimental 
data (figure 3.8). 

In order to avoid the use of fitting parameters that don't have a clear phys­
ical meaning, like in the interpolation method outlined above, it is preferable 
to apply a suspension model that is valid over the entire range of space filling. 
The generalized self-consistent method (GSCM), discussed in section 2.2.2, 
is used here because it was shown to give accurate results for elastic suspen­
sions [19,20,100]. The differential effective medium approximation (DEMA), 
also discussed in section 2.2.2, was tested as well. This model failed at higher 
~9 , as expected [19, 20], and the results are therefore not shown here. 

One of the main advantages of the GSCM, given the spherical and fibrillar 
morphologies typically encountered in flow-induced crystallization processes 
of polymers, is that it provides solutions for suspensions of spheres as well 
as suspensions of fibers. Because, in the flow-induced crystallization experi­
ments, spherulites and oriented crystallites were present simultaneously, the 
3D GSCM (equation 2.26) is first applied to calculate the effective rheological 
properties of the amorphous phase containing the spherulites. The result is 
used as the matrix in the 2D GSCM, with the oriented crystallites as the 
particles, to calculate the effective rheological properties of the melt. We 
assume that all oriented crystallites are immediately aligned in the flow di­
rection, so that only the longitudinal shear modulus, given by equation A.8 
in the appendix, needs to be determined. Incompressibility was assumed 
for both phases: v0 = v1 = 0.5. The volume fraction of spherulites in the 
amorphous phase, used in the 3D GSCM, is given by 

t;,sPh 
xsph = g 

1- ~g +~:ph' 
(3.16) 

where ~9 is the total space filling derived from the W AXS measurements and 
~;ph is the space filling contributed by the spherulites only, as obtained from 
the OM experiments. In the 2D GSCM, the space filling due to the oriented 
crystallites, 

cfib = c _ csph 
'-,g <.,g '-,g ' (3.17) 

was used. 
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Figure 3. 7 shows the evolution of the storage modulus for the three ex­
periments. For high ~9 , an oscillation occurs in the prediction of the GSCM, 
which is even more prominent in the loss angle (figure 3.8). In appendix A, 
it is shown that this behavior is an inherent feature of the solution of the 
quadratic equation 2.26, which gives the relative shear modulus, when the 
Poisson ratio of the matrix is close to 0.5. For the quiescent crystallization 
experiment, a better fit was obtained with v0 = 0.49 and v1 = 0.5, but the 
simulations of the flow-induced crystallization experiments could not be im­
proved. In fact, the oscillation in these simulations is partly due to ~£ib, as 
calculated from equation 3.17, which reaches its maximum around t = 2 ·102s 
and then falls back to zero (figure 3.9). This behavior of ~£ib can probably be 
explained by the overgrowth of the oriented crystallites by the more numer­
ous spherulites. However, given the uncertainties in the assumptions that we 
made to obtain ~9 from the WAXS data, the real space filling due to oriented 
crystallites may differ significantly from the calculations shown in figure 3.9. 

Apart from this, for the quiescent melt and the melt sheared for 3s, G'(t) 
as predicted by the GSCM agrees very well with the experimental results. 
For the melt sheared for 6s, a large difference between the simulation and the 
data is observed. This is probably due to the inaccuracy of the assumptions 
concerning the rheological properties of the semicrystalline phase, and possi­
bly also of the amorphous phase, during the space filling process. Figure 3.8 
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shows that the difference between the predicted and measured loss angles al­
ready becomes large for the 3s shear experiment. Nevertheless, the successful 
simulation of the oscillatory shear experiments during quiescent crystalliza­
tion is a promising result. In the case of flow-induced crystallization, there 
is room for improvement in the modeling of the crystallization kinetics and 
the resulting morphology. 

3.3 Early-stage crystallization kinetics 

The evolution of the unbounded number of homogeneous precursors, as de­
scribed by equation 2. 7 4, is the result of a balance of two processes. First, the 
creation of precursors, the rate of which is determined by the driving forces 
lpq and lpf and the number of athermal precursors obtained per unit time 
T8Npa/8T and, secondly, the depletion of available precursors, characterized 
by Tp. This parameter is essentially a residence time related to the probability 
that a precursor survives and, as expressed in equation 2. 76, is the resultant 
of two characteristic time scales: Tpn for nucleation and Tpd for dissolution 
into the melt. The experiments considered here are isothermal, except for 
the initial cooling to the crystallization temperature Tc. Therefore, it follows 
from equation 2.81 or equation 2.83 that the number of heterogeneous nuclei 
is constant from the moment Tc is reached and depends on the number of 
heterogeneous precursors with activation temperatures above Tc that are con­
tained in the material prior to cooling. The cooling rate (T = 15°Cmin-1

) 

is high in comparison to the kinetics of nucleation and growth, which are 
initially very slow, so the size distribution of these athermal nuclei is narrow. 

As already mentioned, the kinetics in the early stage of crystallization 
take place in unbounded conditions. This is a fortunate circumstance since, 
when space filling increases, the velocity field will become nonuniform due to 
disturbances caused by the crystallites. Then the deformation of molecules in 
the amorphous phase can no longer be represented by a single elastic Finger 
tensor derived from. the macroscopic flow conditions. As long as creation of 
precursors is confined to the early stage of crystallization, it is not affected 
by these disturbances. 

Different models for the creation of pointlike precursors and the trans­
formation of these precursors into nuclei, which grow into spherulites, will 
be tested in the next sections. The calculated space filling and nucleation 
density will be compared to the experimental data of Hristova et al. [52] 
for quiescent crystallization and short-term shear-induced crystallization at 
a constant shear rate 'Y = 60s-1 and varying shear times ts = 1, 2, 3, 4, and 
6s. The crystallization temperature Tc = 135°C was used. 
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Because only point nucleation was simulated, despite the fact that ori­
ented crystallites appeared in the experiments where a flow was applied, 
the space filling due to spherulites e~ph' obtained from optical microscopy, 
is probably more useful for validating the results than the total space filling 
derived from WAXS. Therefore, the calculated space filling will be compared 
to e~ph. In all experiments, the number of oriented crystallites is two or more 
orders of magnitude smaller than the number of spherulites. So the errors in 
the calculated numbers of pointlike precursors, due to the fact that some of 
these grow into threadlike precursors, are negligible. In the future, when we 
include a growth model to predict the number of oriented crystallites, our 
objective will be to fit the total space filling while at the same time predicting 
the correct numbers of oriented crystallites as well as spherulites. 

3.3.1 Characterization of the nucleation process 

The images obtained by optical microscopy during and after application 
of short-term shear flow, as well as in quiescent conditions, showed that 
all spherulites were approximately the same size, indicating that they had 
started to grow at the same moment, or at least within a short time inter­
val. Therefore, it is assumed that Ipq = 0 so that, in quiescent conditions, 
there is no sporadic creation of precursors. Furthermore, Tpn is set to zero. 
Then dissolution is negligible relative to nucleation because all precursors are 
nucleated immediately ( Tp ~ Tpn = 0) The kinetics of such fast nucleation 
processes are explained in appendix B. Thus, the nucleation rate is simply 
given by 

Nn (t) = fpf (t) . (3.18) 

This is not surprising at a crystallization temperature of 135°C, which is 
about 30 degrees below the limit of sporadic nucleation [58]. 

3.3.2 Effects of macroscopic flow and molecular defor­
mation 

As a starting point, the flow-induced nucleation models of Liedauer et al. [73] 
and Zuidema et al. [131, 132] are compared. These were given in equations 
2.69 and 2. 71, respectively, and are here applied to the creation of precursors. 
According to the Liedauer model, the driving force is proportional to the 
shear rate, 

[
'Y(t)]2 

fpf (t) = 9p 'Yn (3.19) 
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Because~ is constant here, the only adjustable parameter is the ratio gp/~n· 
In agreement with experimental results, this model predicts that the un­
bounded volume fraction ¢ 0 = -ln (1 - ~9) becomes proportional to t 3 after 
cessation of flow. This is shown in figure 3.10, commonly known as an Avrami 
plot, where log(¢0) is plotted against log(t). 

In figure 3.11, the calculated time evolution of the number of point nuclei 
Nnp in each flow-induced crystallization experiment is plotted. The corre­
sponding experimentally determined numbers of spherulites are also included. 
As mentioned before, these were all created at the same time, since they were 
all the same size, and were counted some time after they had become visible. 
The data points are plotted at an arbitrary position along the time axis in 
the figure. Because Tpn = 0, there are no precursors. 

The tremendous increase of the final number of crystallites with increasing 
shear time, observed experimentally, is not captured by the model. Moreover, 
in Hristova et al. 's experiment with the highest shear time (90s at a shear 
rate of 4s-l, not shown in the figure) the predicted difference between the 
largest and smallest crystallite diameters, based on the measured growth rate 
of 51nm/s, is 9.2J.Lm. This value lies well above the resolution limit of the 
microscope, which is about 2J.Lm. Hence a distribution of diameters would 
have to be observed, but this is not the case. 

According to the model of Zuidema et al, the driving force is proportional 
to the recoverable strain in the melt, quantified by the second invariant of 
the deviatoric part of the elastic Finger tensor, 

(3.20) 

Because several studies indicate that flow-induced nucleation primarily in­
volves the high molecular weight fraction of the melt [1, 60, 103, 107, 127, 132] 
only a single mode of the relaxation spectrum, the one corresponding to the 
longest relaxation time, is considered. First, we look at the results without 
relating the relaxation time to structure development within the amorphous 
phase. Due to the fact that h ( B~ ( t)) does not vanish instantaneously at 
t = ts but gradually relaxes to zero, nucleation continues for t > t 8 • Conse­
quently, an even broader distribution of crystallite diameters will be predicted 
than by the Liedauer model. After the recoverable strain has relaxed, the 
Avrami plot again attains the slope of 3 (figure 3.12) and the number of 
nuclei becomes constant (figure 3.13). The figures clearly demonstrate that 
the strong influence of shear time on the final number of crystallites is still 
missing. 

These results are not surprising, given the experimental evidence support­
ing the idea that flow-induced creation of precursors is a self-enhancing pro­
cess [57]. The shear rate is a macroscopic parameter. Hence, in the Liedauer 
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Figure 3.10: Avrami plot for 1 = 60s- 1 and ts = 0, 1, 2, 3, 4, and 6s. The solid lines are 
simulations based on equation 3.19; Tpn = 0 so that the nucleation rate is given by equation 
3.18. Dots connected by a thin dotted line represent the data points of one experiment. 
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Figure 3.11: Evolution of the number of point nuclei for 1 = 60s- 1 and t 8 = 1, 2, 3, 4, 
and 6s according to equation 3.19; Tpn = 0 so that the nucleation rate is given by equation 
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6s according to equation 3.20; q is taken equal to q0 (from the rheological characterization 
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squares indicate the numbers of spherulites determined by optical microscopy. 
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model, no connection with molecular dynamics is made. In contrast, the 
Zuidema model offers the possibility to capture the self-enhancing nature of 
precursor creation by correlating rheological parameters with the changing 
microstructure of the melt. In a first attempt to get a better agreement 
with experimental results, following the approach of Zuidema [131] outlined 
in section 2.4.2, the relaxation time was made a function of the number of 
flow-induced nuclei according to equation 2.84. This indeed improved the 
predictions of the final numbers of crystallites. But with an increasing relax­
ation time, a large number of nuclei is created even after cessation of flow. 
As a result, contrary to the OM observations, a very broad distribution of 
spherulite sizes is predicted. Moreover, a fundamental difference between 
theory and experiment is observed in the A vrami plot: its slope does not 
reach the final value of 3 observed experimentally, which indicates a constant 
number of crystallites. Assuming a relation between the relaxation time and 
the number of precursors (instead of nuclei) does not make any difference in 
this case, simply because all precursors become nuclei at the moment they 
are created. 

These problems can be solved in two steps. First, the assumption is made 
that nucleation is inhibited during flow. From a physical point of view, this 
implies that velocity gradients tend to tear apart folded-chain lamellae or 
prevent their formation in the first place. The optical microscopy data seem 
to support this idea: only in the experiments with the highest shear times, 
e.g. ts = 90s at a rate of 'Y = 4s-1 , a few nuclei were already observed 
before t 8 • But the vast majority appeared at a later time, with no visible 
distribution of sizes. The characteristic time of nucleation is therefore written 
as 

T. = { oo for 'Y =/= 0 ; 
pn 0 for 'Y = 0 , (3.21) 

where the shear rate is again defined as 'Y = v'2D: D. The second step 
taken to improve the results is to make the relaxation time a function of the 
developing structure. However, a8 explained in section 2.4.3, we make the 
branching parameter q of the XPP model, and consequently the orientation 
and stretch relaxation times, a function of the number of flow-induced pre­
cursors instead of the number of flow-induced nuclei, as Zuidema et al. did 
for the relaxation time of the Leonov model. 

Equation 3.21 resembles the athermal nucleation model of Eder et al. [28], 
expressed in equation 2.82, where heterogeneous precursors become stable at 
their characteristic temperature. Here we have defined an additional 'ather­
mal' mechanism, which interferes with all other nucleation processes as fol­
lows. As long as a flow is applied, precursors are created and 'put on hold'. 
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As soon as the flow is switched off, all precursors that exceed the critical 
size at the current temperature are transformed into nuclei. This is a rather 
crude model: it will not work for continuous flow, because then it will predict 
that no precursors are nucleated at all. So the infinite Tpnh of= 0) should be 
replaced by a finite value. Furthermore, Tpn( .:Y = 0) will be greater than zero 
in the range of shallow undercooling (Tu < T < Tm)· It seems reasonable 
to assume a smooth transition between these two values, which takes place 
at a characteristic shear rate .:Yc > 0. Equation 3.21 can then be extended 
to a multi-mode model, where to every precursor species a different .:Yc is as­
signed at which this species becomes stable. However, for the constant shear 
rate experiments discussed here, the single-mode formulation according to 
equation 3.21 suffices. 

Although the assumption Tpd ----+ oo may not hold when Tpn is large, dis­
solution of precursors will also be neglected during flow. Given the fact that 
most shear times are more than one order of magnitude smaller than the re­
laxation times Ab and As belonging to the highest mode, which are expected 
(or at least one of which is expected) to correlate with Tpd, the number of 
dissolved precursors is probably small in these experiments. Equation 3.18 
is now replaced by two separate expressions. One describes the creation of 
precursors during flow, 

(3.22) 

while the other gives the evolution the number of flow-induced nuclei after 
the flow has been stopped, 

Nnf (t) = Ipf (t) fort 2:: ts. (3.23) 

Figures 3.14 and 3.15 show the results obtained using equation 3.20 with 
the above assumptions. There are now two adjustable parameters: gp in 
equation 3.20 and a in equation 2.87. The increase of the final number of 
crystallites with increasing shear time is at least qualitatively predicted. And 
secondly, also in accordance with the experimental data, the number of nuclei 
does not change significantly after cessation of flow. These results are easily 
understood. Precursors are created during flow at a rate determined by the 
deformation of molecules, which is characterized by h(B:(t) ). Because of 
the coupling of the relaxation time with the number of precursors, this is a 
strongly self-enhancing process. At t = t 8 , all precursors are immediately 
nucleated and the relaxation time abruptly drops to its original value. The 
self-enhancing effect vanishes, and the precursors created afterwards are far 
less numerous than those created during flow. 

75 



10
2 

10' 

:::::!::: 10° 
,.-..... 
~ 

"' "'"' <.JJ> 10-1 

I 
,....; 

-----.B 10-2 

I 

10-3 

10-4 
10' 10

4 

t [s] 
Figure 3.14: Avrami plot for 1 = 60s- 1 and ts = 0, 1, 2, 3, 4, and 6s. The solid lines are 
simulations based on equation 3.20; q is given by equation 2.87 and Tpn by equation 3.21. 
Dots connected by a thin dotted line represent the data points of one experiment. 
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Figure 3.15: Evolution of the number of pointlike precursors (dashed lines) and point 
nuclei (solid lines) for 1 = 60s- 1 and ts = 1, 2, 3, 4, and 6s according to equation 3.20; q 
is given by equation 2.87 and Tpn by equation 3.21. The squares indicate the numbers of 
spherulites determined by optical microscopy. 
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The question remains whether equivalent or even better results would 
have been obtained with Janeschitz-Kriegl's athermal flow-induced nucle­
ation model, discussed in section 2.4.2. Unfortunately, insufficient data are 
at our disposal for such an investigation. Even if we determine the number of 
spherulites obtained in quiescent conditions as a function of the crystalliza­
tion temperature, which is a straightforward procedure, it is still unknown 
which of these spherulites were initiated by precursors of the homogeneous 
kind, which can grow longitudinally. With the number of homogeneous pre­
cursors as a function of temperature it would be possible to fit the Janeschitz­
Kriegl model, in combination with a model for the flow-induced growth of 
precursors, to experimental data. This will be a subject of future research. 

3.3.3 The role of molecular orientation and stretch 

At this point, it is interesting to see if any conclusions regarding the nature of 
the driving force behind precursor formation can be drawn. For example, one 
could hypothesize that molecular orientation alone suffices to increase Npf 

and therefore assume lpJ(t) in equations 3.22 and 3.23 linearly proportional 
to the second invariant of the deviatoric part of the orientation tensor, 

(3.24) 

where 
J (Sd) = J2(B~) = Jz (B~) 

2 Jl (Be)z 9A4 
(3.25) 

The time-dependent numbers of precursors and nuclei calculated on the basis 
of this hypothesis are plotted in figure 3.16. The model now completely fails 
to predict the increase in the final number of nuclei as a function of shear time. 
It was attempted to make the self-enhancing effect stronger by replacing the 
linear relation between the branching parameter q and the number of flow­
induced precursors, equation 2.87, by a power law. However, this yielded no 
better results. 

From these observations, we conclude that creation of precursors as a 
result of orientation of chain segments is not sufficient to explain the tremen­
dous increase in the final nucleation density with increasing shear time. 
Stretch of the chains' contour paths, characterized by the scalar stretch pa­
rameter A = J J 1 (Be) /3, is apparently essential. This parameter appears in 
)z ( B~) to the fourth power. In order to investigate the influence of chain 
stretch, the following expression is proposed: 

fpf (t) = 9p [A (t)m- 1] (3.26) 
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Figure 3.16: Evolution of the number of pointlike precursors (dashed lines) and point 
nuclei (solid lines) for "y = 60s- 1 and t 8 = 1, 2, 3, 4, and 6s according to equation 3.24; q 

is given by equation 2.87 and Tpn by equation 3.21. The squares indicate the numbers of 
spherulites determined by optical microscopy. 

The exponent m is assumed constant. For different values of m, we can 
try fitting the experimental data by varying the parameters gP and a again. 
The results are shown in figures 3.17 to 3.20 for different shear rates and 
shear times. It is obvious that a linear relationship between Ipf and A is not 
enough. When m is equal to three or higher, however, the results are about 
as satisfactory as those obtained using J2 (B~). With m = 4 we essentially 
get the original Zuidema model again, because the effect of orientation is 
negligible and the second invariant of the deviatoric elastic Finger tensor 
depends on the stretch parameter to the power four. 

3.3.4 Depletion of ordered species in the melt 

The fact that the high molecular weight fraction of the melt most strongly 
influences the kinetics of flow-induced nucleation is supposedly due to the 
fact that only chains that are sufficiently long and/or sufficiently branched 
can stay in an ordered state long enough to form precursors. One might 
expect that at some point, the amorphous phase simply runs out of these high 
molecular weight chains. Somani et al. [103] observed and investigated this 
phenomenon. Their results show that an increasing portion of the molecular 
weight distribution (characterized by M > M*) can be used for the creation 
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Figure 3.17: Evolution of the number of pointlike precursors (dashed lines) and point 
nuclei (solid lines) for "y = 60s- 1 and ts = 1, 2, 3, 4, and 6s according to equation 3.26 with 
m = 1; q is given by equation 2.87 and Tpn by equation 3.21. The squares indicate the 
numbers of spherulites determined by optical microscopy. 
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Figure 3.18: Evolution of the number of pointlike precursors (dashed lines) and point 
nuclei (solid lines) for "y = 60s- 1 and ts = 1, 2, 3, 4, and 6s according to equation 3.26 with 
m = 2; q is given by equation 2.87 and Tpn by equation 3.21. The squ.ares indicate the 
numbers of spherulites determined by optical microscopy. 
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Figure 3.19: Evolution of the number of pointlike precursors (dashed lines) and point 
nuclei (solid lines) for "y = 60s- 1 and ts = 1, 2, 3, 4, and 6s according to equation 3.26 with 
m = 3; q is given by equation 2.87 and Tpn by equation 3.21. The squares indicate the 
numbers of spherulites determined by optical microscopy. 
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Figure 3.20: Evolution of the number of pointlike precursors (dashed lines) and point 
nuclei (solid lines) for "y = 60s- 1 and t 8 = 1, 2, 3, 4, and 6s according to equation 3.26 with 
m = 4; q is given by equation 2.87 and Tpn by equation 3.21. The squares indicate the 
numbers of spherulites determined by optical microscopy. 
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of precursors when the shear rate is increased ( M* = M* ( "()). Eventually, 
some plateau is reached. Increasing the shear rate further, no larger portion 
of the molecular weight distribution becomes available for the creation of 
precursors. We model this kind of depletion simply by rewriting the driving 
force as 

lpf (t) = gP (t) [A (t) 4
- 1] , (3.27) 

where [Jp(t) is the product of gP and a function that 'dampens' lpf as more 
and more molecules are taken out of the high molecular weight tail of the 
distribution. The simplest choice is a linear function of the number of flow­
induced precursors and nuclei, 

_ (t) = [1 _ Npf (t) + Nnf (t)] 
9p 9p (N + N ) pf nf max 

(3.28) 

The denominator on the right-hand side represents the maximum number of 
crystallizable species, which is temperature- and flow rate-dependent. Fig­
ures 3.21 and 3.22 show that this linear saturation law significantly improves 
the agreement with experimental data. The same results were obtained using 
J2(B:) instead of A4 - 1 in equation 3.27. The flow-induced crystallization 
model now contains three adjustable parameters: gp, a, and (Npf + Nnf )max· 
In the experiments considered here, the space filling due to spherulites and 
the spherulitic nucleation density are predicted quantitatively using constant 
values for these parameters. Their dependence on temperature and flow con­
ditions has not been explored yet. 
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Figure 3.21: Avrami plot fori'= 60s- 1 and ts = 0, 1, 2, 3, 4, and 6s. The solid lines are 
simulations based on equation 3.27; q is given by equation 2.87, Tpn by equation 3.21, and 
[/p by equation 3.28. Dots connected by a thin dotted line represent the data points of one 
experiment. 
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Figure 3.22: Evolution of the number of pointlike precursors (dashed lines) and point 
nuclei (solid lines) fori'= 60s- 1 and ts = 1, 2, 3,4, and 6s according to equation 3.27; 
q is given by equation 2.87, Tpn by equation 3.21, and [/p by equation 3.28. The squares 
indicate the numbers of spherulites determined by optical microscopy. 
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Chapter 4 

Conclusions 

The evolution of the linear viscoelastic properties of a linear isotactic polypro­
pylene during crystallization could be described accurately using a suspension 
model. This was demonstrated by comparison of model predictions, using 
information on the semicrystalline structure provided by Hristova et al. [52] 
as input, to oscillatory shear experiments conducted by Vega et al. [124] 
during crystallization. The suspension rheology approach presents a major 
improvement in comparison to a simple scaling method (Khanna et al. [64]) 
that, unfortunately, is widely accepted in polymer crystallization studies. 

A theory of crystallization kinetics was formulated, based on the concept 
of precursors (unstable nuclei). Precursors were introduced to explain the 
fact that all spherulites obtained in isothermal flow-induced crystallization 
experiments have the same size. For this purpose, the assumption was made 
that nucleation, i.e. the formation and growth of folded-chain lamellae on 
the lateral surfaces of the precursors, is impeded by flow. The kinetics of 
precursor creation were coupled to rheology, following the ideas of Zuidema 
et al. [131, 132]. The results were compared to short-term shear-induced crys­
tallization experiments of Hristova et al. [52], where the shear rate was kept 
constant. The number of spherulites and the time evolution of space filling 
due to these spherulites could simultaneously be described, in a qualitative 
sense, as a function of shear time. 

Creation of precursors was shown to be determined by molecular stretch, 
whereas molecular orientation alone could not explain the experimental re­
sults. Using only the stretch as the driving force behind the creation process, 
the simulations were as good as using the Zuidema model, where both stretch 
and orientation were taken into account. 

The modeling was extended with a description of the depletion of available 
chains with a sufficiently high molecular weight to form precursors. The 
existence of such a process was demonstrated experimentally by Somani et 
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al. [103]. Taking this into account, the increase of the number of spherulites 
with increasing shear time could be predicted quantitatively. 

A model for the growth of pointlike precursors into threadlike precursors 
was presented. The validation of this model will be possible if the number of 
free parameters is reduced. In the near future, experiments will be designed 
specifically for this purpose. 

Another subject of future work is the simulation of continuous flow­
induced crystallization experiments, where the effects of precursors, nuclei, 
and crystallites on the rheology of the crystallizing polymer, and the effects 
of flow on the formation of precursors, nucleation of these precursors, and 
the development of isotropic as well as anisotropic structures all take place at 
the same time. It is important that the appropiate experiments are carried 
out simultanously to support this modeling. 

Finally, it will be interesting to depart from the concept of a flow-enhanced 
rate of sporadic creation of precursors and see if the idea of flow as a pro­
motor of the development of athermal precursors, recently put forward by 
Janeschitz-Kriegl and coworkers [55-59, 108], enables us to describe flow­
induced crystallization processes as well. 
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Appendix A 

Evaluation of the generalized 
self-consistent method 

The results of the GSCM [19, 20] for suspensions of elastic particles in an elas­
tic matrix are presented here. These can be rewritten for linear viscoelastic 
materials by replacing the static elastic moduli by complex dynamic moduli 
according to the correspondence principle (section 2.2.3). The dependence 
of fa on the phase Poisson ratios v0 and v1 is investigated. 

A.l Spherical particles 

For a suspension of spheres, the relative shear modulus fa is obtained from 
equation 2.26 with the parameters A, B, and C from table A.l. Christensen 
and Lo [19] showed that the GSCM reduces to the Eshelby equation (2.20) 
in dilute conditions. The relative bulk modulus fK is given by equation 2.18. 
Results for fa are plotted in figures A.1 and A.2. The ratio of the phase 
moduli is kept constant (GI/G0 = 103 ) while the Poisson ratios v0 and v1 

and the volume fraction ¢ are varied. When both phases are incompressible, 
i.e. v0 = v1 = 0.5, the log(! a)~¢ curve exhibits an inflection point at¢:::::; 0.70 
and another one at ¢:::::; 0.95, after which fa increases very fast to its final 
value GI/G0 . It is self-evident that the resulting shoulder in the relative 
modulus curve between these points is obscured when the particles are rigid, 
like in the suspensions considered by Christensen [20]. On the other hand, 
Christensen and Lo [19] looked at suspensions with finite ratios of moduli 
and their calculated fa(¢) curves all had a monotonously increasing slope. 
The results presented here reveal that this is due to the low Poisson ratios 
of the materials they used in their simulations (v0 = 0.35, v1 = 0.20 and 
v1 = 0.22). Figure A.1 shows that, upon lowering the Poisson ratio of the 
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Table A.l: Parameters used in the GSCM [19, 20] for suspensions of spheres. 

Shear modulus G (equation 2.26) 

A 
B - c1 ( g~ - 1) ryi(/}013 + c2 [ 63 ( g~ - 1) rJ2 + 2'T}l 'r]3 J ¢/13 -

c J 

C3 ( §; - 1) 'fJ2qy&/
3 + C4 ( g~ - 1_} 'rJ2</J + C5'r]2'r]3 + 

with ... ... for A: ... forB: ... for C: 
c1 8(4-5vo) -4 (1- 5vo) -4 (7- 5vo) 
c2 -2 4 -2 
C3 252 -504 252 
C4 -50 (7 - 12vo + 8v5) 150 (3 - vo) Vo -25 (7- v5) 
c5 4 (7- 10vo) -3 (7- 15vo) - (7 + 5vo) 

'fJl ( §; - 1) (7- 10vo) (7 + Sv1) + 105 (v1 - vo) 

'fJ2 (~ -1 
Go (7 + Sv1) + 35 (1 - v1) 

'fJ3 ( g~ - 1) (8- 10v0) + 15 (1 - vo) 

matrix, f c( </J) decreases and the shoulder vanishes fast: at v0 = 0.49 it is 
hardly recognizable anymore. In contrast, decreasing v1 while v0 = 0.5 has a 
much weaker influence on fc, as seen in figure A.2, and the shoulder remains. 

A.2 Aligned fibers 

Under the assumption of transverse isotropy, the elastic constitutive equation 
for a suspension of aligned fibers can be written in matrix form according to 

7n Cn c12 C13 0 0 0 En 
722 c12 c22 c23 0 0 0 E22 
733 C13 C23 c22 0 0 0 E33 (A.1) 
712 0 0 0 c44 0 0 2E12 
713 0 0 0 0 c44 0 2E13 
723 0 0 0 0 0 c22- C23 2c23 

with the index 1 corresponding to the direction of the fiber axes and the 
indices 2 and 3 corresponding to perpendicular directions in the transverse 
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Figure A.l: Influence of the Poisson ratio of the matrix phase on the relative modulus 
of an elastic suspension of spheres (Gl/Go = 103 , v1 = 0.5). 
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Figure A.2: Influence of the Poisson ratio of the particle phase on the relative modulus 
of an elastic suspension of spheres (Gl/Go = 103 , v0 = 0.5). 
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plane. In a more concise notation, 

:r:=C·f;· (A.2) 

Hashin and Rosen [39] conveniently selected the following moduli to describe 
the mechanical behavior of the suspension: 

K23 = Czz+Cza (plane- strain bulk modulus), (A.3) 2 
G23 = Czz-Cza (transverse shear modulus), (A.4) 2 

G12 = G13 = c44 (longitudinal shear modulus), (A.5) 

Eu = C 2Cfz 
11 - Czz+Cza (longitudinal Young's modulus), (A.6) 

and C11 . In the case of a random arrangement of the fibers across the 23-plane 
they found 

and 

where 

En 
Eo 

(1 + 2v0¢) ~ + 2v0 (1- ¢) 

(1- ¢) ~~ + 2vo + ¢ 

(1 + ¢) ~ + 1-¢ 

(1- ¢) g~ + 1 + ¢' 

[(
E1 _ 1) ¢ + 1] [D1- D3F1 + (D2- D4F2) ~] 
Eo D1 - D3 + (D2- D4) ~~ 

L1¢~~ + L2vo (1- ¢) 
v -v - ----~----------
12- 13- L3¢~~+L2(1-¢) 

(A.7) 

(A.8) 

, (A.9) 

(A.10) 

(A.ll) 

is the Poisson ratio for uniaxial stress in the direction of the fiber axes. The 
parameters D1, D2, D3, D4, F1, F2, £1, £2, and £3 depend on the properties 
of the individual phases and on ¢ and are given in table A.2. 

The relative transverse shear modulus G23/G0 is obtained from equation 
2.26 with the parameters A, B, and C from table A.2. The dependence of 
G23 / G0 on v0 and v1 is the same as in the case of a suspension of spheres. 
For a dilute suspension of aligned rigid fibers in an incompressible matrix, 
i.e. with 

G1 
------+()() 

Go ' 

vo = v1 = 0.5 , 
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Table A.2: Parameters used in the composite cylinders model [39] and the GSCM [19,20] 
for suspensions of aligned fibers. 

Longitudinal Young's modulus E11 (equation A.9) 

D1 1- V1 D4 2v8 1~ 

D2 1+¢ +v F1 
vo¢~+v1(l-¢) 

1-¢ 0 §. 
VlcP En +1-¢ 

D3 2v2 
1 F2 !:iF 

vo 1 
P01sson ratiO v12 (equation A.11) 

£1 2vl (1- v8) ¢ + Vo (1 + vo) (1 - ¢) 
£2 ( 1 - v1 - 2vi) ¢ 
£3 2 ( 1 - v8) ¢ + ( 1 + vo) ( 1 - ¢) 

Transverse shear modulus G23 (equation 2.26) 

A 3clc2¢ (1- ¢)"2 + (c2T/o- c3¢3) (ciTJocP- c4) 
B -6c1c2¢ (1- ¢)",!. + [c2 (TJo- 1)- 2c3¢3] (c1¢ + c4) 
c 3clc2¢ (1- ¢)"2 + (c2 + c3¢3) (c1¢ + c4) 

cl c2 C3 C4 'flo T/1 
0-1 
Gn ~ +TJI ~~'flo- T/1 ~~'flo+ 1 3- 4vo 3- 4vl 

and 
¢-+ 0, (A.14) 

the relative transverse shear modulus according to the GSCM is found to be 

c:Jo3 = 1 + 2¢ . (A.15) 

This is the two-dimensional equivalent of Einstein's model for dilute suspen­
sions of rigid spheres, as given by Brady [13]. 
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Appendix B 

Modifying the rate equations 
for fast stabilized precursors 

An alternative formulation of the (unbounded) homogeneous nucleation rate 
appearing in the differential model of crystalline structure formation, 

Nn (t) = Np (t) , (B.l) 
Tpn (t) 

is derived here for Tpn -----> 0, which corresponds to the situation that all precur­
sors, once created, are immediately transformed into nuclei. The superscript 
hom is omitted because only homogeneous precursors are considered. The 
evolution of the number of homogeneous precursors is given by 

. - NP(t) 
NP (t) = IP (t) - -(-) , (B.2) 

Tp f 
- "8N 

where Ip is a shorthand notation for Ipq + Ipf + T afa. Now suppose that, 
at some time t = t', Tpn -----> 0. It is easily derived from equation 2. 76 that, 
in a fast nucleation process, the disappearance of precursors is dominated by 
nucleation, 

lim Tp = Tpn, 
Tpn--->0 

(B.3) 

so that dissolution can be neglected. Since Tp becomes constant, equation 
B.2 reduces to an ordinary differential equation with the general solution 

NP (t 2': t') = e- t-;;' [ Np(i/) + 1t lp(u)e u;pt' du] . (B.4) 

The number of homogeneous nuclei is obtained by integrating equation B.l, 
after substitution of equation B.4, 

Nn (t 2': t') = Nn(t') + 1t [Np(t') e -";;' + 18 
Jp(u) e-s;Pu du] ds. (B.5) 

t' Tp t' Tp 
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Taking Tp-----+ 0 in equation B.5 and making use of 

t e-e 
lim-() = <5 (t) , 
0---->0 

where 6(t) is the Dirac function, it follows that 

(B.6) 

Nn (t;::: t') = Nn(tt) + 1t [Np(t')<5(s- t') + 18 

Jp(u)<5(s- u)du] ds 

Nn (t') + NP (t') + r JP (s) ds. (B.7) Jt' 
Thus, if Tpn -----+ 0, the nucleation rate is equal to the rate of creation of 
precursors, 

. . aN (t) 
Nn (t ;::: t') = Ipq (t) + lpf (t) + T (t) ;~ . (B.8) 

If, in addition, lpq = lpf = 0, the nucleation process is purely athermal: no 
new nuclei appear unless the temperature is lowered. 

The result obtained here allows for a description of crystallization pro­
cesses involving fast nucleation, without using equation B.l. In the example 
used above, where the transition from slow to fast nucleation kinetics takes 
place at t', we get: 

t < t' { 
N_p (t) = lp (t)- ~;g; 
N - Np(t) 

n - Tpn(t) 

{ 

Nn(t') -----+ Nn(t') + Np(t') 
t;::: t' J\(p(t') -----+ 0 

Nn (t) = JP (t) 

The implementation of the inverse transition, from fast to slow nucleation 
kinetics, is trivial. 
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Appendix C 

Tracing the length distribution 
of precursors 

The evolution equation for the number of homogeneous precursors is given 
by 

. - NP (t) 
NP (t) = Ip (t)- -(-) 

Tp t 
(C.l) 

with the abbreviation JP = Ipq + Ipf + T8i~m as introduced in appendix B. 
The length of a single precursor follows from 

. Lp (t) 
Lp (t) = Il (t)- -(-) , 

Tl t 
(C.2) 

where Il is the driving force behind longitudinal growth and Tz is a relaxation 
time associated with the length of a precursor. As before, only homogeneous 
precursors are considered here. Therefore, the superscript hom is omitted 
again. 

The length of an oriented crystallite may be described by a model similar 
to equation C.2, taking T1 -----+ oo because the kebabs growing from a shish, or 
the spherulites forming a row crystallite, prevent shortening of the threadlike 
precursor that forms the core of the crystallite. One could use the same !1 as 
for the precursors before nucleation, assuming that the ends of a precursor 
keep growing by the same process after it has been nucleated, or assume that 
longitudinal growth stops at the moment of nucleation because the chains 
protruding from the tips of the shish are incorporated in the lamellae. Al­
ternatively, a finite rate at which nucleated precursors stop growing could be 
introduced. Here, however, we only look at the growth process of precursors 
before they are nucleated. 

Keeping track of the length distribution of precursors is complicated by 
the fact that growth and disappearance of precursors take place at the same 
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time. Here, the simplifying assumption is made that the growth process is 
uniform, i.e. independent of Lp, which means that the relaxation time r 1 is 
infinite. Hence 

(C.3) 

Increasing the length of a precursor will most likely decrease the probability 
that it dissolves, so a single parameter Tpd will not adequately describe the 
overall process of dissolution. Therefore, the length distribution is repre­
sented by a discrete number of classes. Each class contains Np,k precursors, 
to all of which are assigned a length Lp,k and a dissolution time Tpd,k· A 
constant range of lengths W is taken for all classes here, but generalization 
of the method to unequally sized classes is straightforward. 

A consequence of the assumption that the length relaxation time is infinite 
is that, during an infinitesimal time interval Llt, the entire length distribution 
is shifted by the amount L1Lp = LpL1t. Obviously Lp ~ 0 because, otherwise, 
the length of the shortest precursors would become negative. If the time step 
L1t is chosen such that w 

L1t < -. -, 
Lp (t) 

(C.4) 

precursors from a class Np,k can only move to the adjacent class Np,k+l· The 
change of the length distribution is given by a set of balance equations 

· Lp (t) Np,k(t) 
Np,k (t) = w- [Np,k-l (t)- Np,k (t)]- T (t) (C.5) 

p,k 

for k = 1, 2, 3, ... with 

N (t) = N~(t)W. 
p,O Lp (t) (C.6) 

When the relaxation time r 1 of the precursors is finite, the precursors will not 
grow uniformly. However, with certain modifications, the length distribution 
can still be modeled by a method like the one described here. 
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