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Abstract 

Introduction: The verification of a full three-dimensional dose distribution inside the patient 
during external radiotherapy is the ultimate goal of in-vivo dosimetry. Electronic portal imaging 
devices (EPIDs) are capable of making a two-dimensional dose distribution behind the patient, 
also called portal dosimetry. The aim of this report is to give a detailed description of this portal 
close behind a patient and analyse the various factors that influence this dose distribution. 

Methods: A model based on a pencil beam concept is developed to predict the portal dose 
behind a patient. The portal close is composed of primary and scattered (patient) dose. The model 
takes into account the attenuation of the primary dose and the creation of the scatter exiting the 
patient by evaluating the radiological thickness. The model employs phantom measurements as in­
put parameters. To assess the accuracy of the model, both homogeneous as well as inhomogeneous 
phantom measurements are performed. Also actual patient data are used. 

Results: In case of homogeneous phantoms the model is able to predict the portal dose within 
2% of the measured portal close. For inhomogeneous phantoms with the center-of-mass coinciding 
with the isocenter the error is below 2%, deviations from this center-of-mass criterium results in 
an approximation of the predicted portal dose. For an actual treatment of a breast cancer patient 
the predicted dose was within 3% of the measured close. 

Conclusion: The model shows good agreement with the measurements for homogeneous and 
highly inhomogeneous phantoms. The model can also be used to extract the primary dose from 
measured portal images, which will be the first step towards full three-dimensional dose recon­
struction. 
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General Introduction 

MAASTRO CLINIC is a radiotherapy center for the most southern part of the Netherlands. Ra­
diotherapy is the modality for treating cancer with high energetic radiation to destroy tumor cells 
inside the human body. The aim of the treatment is to deliver a homogeneous close prescribed by 
the physician to tumor cells while keeping the close to healthy tissue as low as possible. Hence, the 
accuracy of treatment delivery should be high. The effect of radiation on human tissue is that cells 
can be damaged or destroyed. Another fact supporting the use of radiation to kill cells, is that 
healthy cells recover faster from damage due to radiation than tumor cells. Also the close-effect 
relation for tumor cells is different from that for healthy tissue. This all requires a high precision 
treatment with small tolerances. Dosimetrie errors should be smaller than a few percent and 
spatial errors should not exceed a few millimeter. Hence, quality control procedures are necessary. 

Besides technica! quality control of the treatment devices, also the close actually delivered to 
the patient is verified in MAASTRO CLINIC: in-vivo dosimetry. This report describes the first 
steps towards the ultimate goal of in-vivo dosimetry: a full three-dimensional close reconstruction. 

Three-dimensional close reconstruction uses the relation between measured close distributions 
behind a patient (transmission close) and the actual close deposition inside the patient. An accurate 
description and understanding of this transmission close is therefore mandatory. This report gives 
a detailed analysis of the various factors that influence the transmission close, as a first step towards 
full three-dimensional close reconstruction. 

Aim of this study 

The aim of this study is to give a detailed analysis of the close behind a patient. This close can be 
measured but also a model is developed to predict this close. The various factors influencing this 
close distribution are discussed as well as the accuracy of the prediction that can be achieved. The 
model is tested on both phantom as well as clinical data. The criteria for the model are chosen 
such that not only the close can be predicted with a high accuracy ( <23 deviations from the mea­
surement) hut that the data can also be used as input for a three-dimensional close reconstruction 
method. 

Report outline 

In chapter 1, an introduction to in-vivo dosimetry is given, as well as an overview of the vari­
ous methods and equipment. In chapter 2 a framework of the physics involved in radiotherapy 
is discussed. Chapter 3 qualitatively describes the various factors influencing the transmission 
close and some methods described in literature to predict this close. In chapter 4, a new model is 
developed to predict the portal close that can also be used for a three-dimensional close reconstruc­
tion method. In chapter 5 the input parameters for the model are derived. Chapter 6 assesses 
the accuracy of the model experimentally by using homogeneous and inhomogeneous phantoms. 
Also a clinical data is example is given. Finally, a genera! discussion and conclusions are given in 
chapter 7. 

v 



C:l 
In-Vivo Dosimetry in Radiotherapy 

Besides surgery and chemotherapy, radiotherapy is an important modality used in the treatment 
of cancer. The aim of radiotherapy is to deliver a homogeneous close to a tumor volume and to 
keep the close to normal tissue as low as possible. Radiotherapy can be divided in two main areas: 
teletherapy and brachytherapy1 . In teletherapy, high energetic x-rays or electrons, generated with 
linear accelerators (linacs), are most often used for irradiation. The treatment (tumor) volume is 
usually localized using a computed tomography (CT) scan. A treatment planning system (TPS) 
calculates the close distribution inside the patient that is produced by the linear accelerator. 
Brachytherapy on the other hand uses sealed radio-active sources that are placed directly inside 
the tumor volume. This gives a very localized close distribution around the radioactive sources 
and a very low close to healthy tissue. 

1.1 In-vivo dosimetry 

In-vivo dosimetry is a method of checking if the prescribed close is actually delivered to the patient. 
Various methods and equipment are developed for this verification. Point measurements can be 
performed by using diodes, thermoluminescence dosimeters (TLD) or metal oxide semiconductor 
field effect transistors (MOSFET) detectors. All these detectors can be positioned on the patient 
skin or in body cavities allowing entrance and exit close measurements. An extensive overview 
of the characteristics and the use of diodes and TLDs in clinical practice is given by Essers and 
Mijnheer [l]. Entrance close measurements are usually performed to detect errors in the output of 
the treatment device; exit close measurements can be clone to detect errors in the close calculation 
algorithm of the TPS. 

However, the ultimate goal of in-vivo dosimetry is not only to check the delivered close at 
specific points but to make a full three-dimensional (3-D) close reconstruction inside the patient. 
Electronic portal imaging devices (EPID) can be used for this purpose because they are capable 
of generating a two-dimensional (2-D) portal close image (PDI) behind a patient. For in-vivo 
dosimetry, this portal close distribution must in some way be related to the patient. As a first step 
towards a full 3-D close reconstruction the portal close can be used to derive 2-D exit or midplane 
close distributions inside the patient. 

In this chapter, the methods presented in literature to derive these 2-D close distributions are 
explained (section 1.2), as well as the first steps towards a full 3-D close reconstruction (section 
1.3). 

1The Greek word 'brachy' means close or nearby and is the opposite of 'tele' which means far or at a distance. 
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1.2 Two-dimensional dose reconstruction 

Various approaches are presented in literature for the 2-D verification of the dose during treatment. 
The portal dose image can be predicted in advance and compared with the image acquired during 
treatment, but also exit dose and midplane dose can be estimated from portal dose images. 

Portal dose prediction 

Portal dose prediction [2, 3, 4] can be used to verify if the planned treatment is similar to the 
actual treatment. If the predicted portal dose is the same as the measured portal dose, then the 
planned and the treatment situation are assumed to be the same. However, if there is a deviation 
between measured and predicted portal dose, then it is not always clear how this affects the dose 
deposited in the patient. One can see a difference but cannot tell if this difference is of importance, 
or how the dose distribution in the patient has changed. With this method it is possible to show 
so-called 'Organ Motion', the day-to-day internal movement of organs relative to bony structures, 
due to f.e. gas pockets in the rectum [5]. 

Exit plane reconstruction 

Exit plane reconstruction is a 2-D reconstruction of the dose exiting the patient. Boellaard et al 
[6, 7] estimated the exit dose with a phantom study and were able to predict this exit dose for 
homogeneous and inhomogeneous phantoms with an accuracy of 2% and 2.5%, respectively. No 
clinical data were presented for this method. Bogaerts et al [8] found that if the portal image was 
taken close to the patient (i.e. air gap of 5 cm), then the portal dose has to be corrected for beam 
divergence only to estimate the exit dose. If the portal dose profile was taken with a 30 cm air 
gap between patient and detector, no correction had to be applied. In this case, the accuracy is 
within 3% of the exit profile. For other distances, f.e. 20 cm air gap the error increases up to 15%. 

Midplane reconstruction 

The first experimentally verified midplane reconstruction algorithm [9] used portal films in com­
bination with diodes to measure the entrance and the exit dose. The calculated midplane doses 
were within 3% compared to ionization chamber measurements. Boellaard et al. [10] estimated 
the midplane dose with a physical model that was an extension of the earlier derived exit dose 
reconstruction. By applying a physical model (i.e. a correction for divergence, attenuation and 
patient scatter at the midplane) this reconstruction was able to achieve an accuracy of 3%. This 
method was only suitable if the phantom was midplane symmetrie, deviations from this ideal ge­
ometry lead to larger differences up to 8%. By using this method for larynx, prostate and breast 
treatments, deviations smaller than 2.5% were found, but for the treatment of lung cancer the 
differences were large and up to 10% [11]. 

1.3 Three-dimensional dose reconstruction 

3-D Dose reconstruction can be done with back projection methods [12, 13], using the dose in­
formation in the portal plane to obtain the dose in the patient. In a way, the method is similar 
to the forward treatment planning process. However, there are a few extra steps necessary if this 
method is compared to the treatment planning. These steps are discussed below. 

Separation of scatter and primary dose/fluence 

A portal dose image is taken during treatment of the patient. This 2-D dose image consists of a 
primary part and a patient scatter part. The primary part is related to the radiological thickness 
along the ray line from the point of detection to the source of the linear accelerator. The scattered 
part can not be related to the specific ray line or point in the patient because it comes from every 
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point inside the patient. Thus the first step for the back projection algorithm is the extraction of 
the 2-D primary close distribution, more specific the primary fluence <jJ(E, r), with E the energy 
of the photon fluence and r the coordinate in the portal plane . 

Back projection of primary fluence 

The second step is the back projection of the primary 
close through the patient. The patient is represented 
as a 3-D matrix with electron densities p(s), f.e. ob­
tained by a CT scan. The primary fluence in the pa­
tient <I>( E, s) can be calculated at every point inside this 
matrix by correcting the primary portal fluence <jJ(E, r) 
for beam divergence and attenuation, 

<I>(E, s) = (1.1) 

rp(E,r) (SD~s~ lrl) 
2 

exp ( + lµ(E,s)dl), 

with the integral taken along the ray line l from por­
tal image point r in the direction of the source to the 
reconstruction point s, µ(E, s) is the corresponding at­
tenuation coefficient and SDD is the distance from the 
source to the portal plane. 

Calculation of Patient Dose 

Once the primary fluence distribution inside the patient 
is known, this fluence is converted to another quan­
tity T(E, s), the total energy released per unit mass 
(TERMA): 

µ(E, s) 
T(E, s) = E p(s) <I>(E, s). (1.2) 

Then the conversion from TERMA to patient close D(s) 
can be made with so-called convolution kernels2 h(E, s). 
This step is similar to the way close can be calculated 
with a treatment planning system: 

D(s) = l JJL T(E, s')h(E, s-s'))d3s'dE. (1.3) 

~ 
s=(u,v,z) \ 

t 

~ 

'""' / r=(x,y) 
x ~-______,. 

y 

Figure 1.1: Schematic view of the back 
projection process. The patient is rep­
resented in the s = ( u, v, z) coordinate 
system with the origin located at source. 
The portal image is a plane r = ( x, y) 
in the coordinate system s with a fixed 
z-coordinate. 

As shown in eq. (1.3) each energy component has to be calculated individually, however one can 
also approximate this integral by taking only one energy component of the radiation, the average 
energy. 

If the close is measured in the portal image DP ( r) instead of the fluence </J( E, r) then an 
approximated but simplified version of the back projection is possible [14]. The back projection 
step is the same as in eq. (1.1) but without the energy dependence, resulting in a primary close 
distribution DP ( s). The step of the TERMA calculation can be skipped, and the final calculation 
of the patient close D( s) can be estimated as the summation of the primary close DP ( s) and a 
patient scatter close D 8 ( s): 

(1.4) 

2These kemels are usually calculated from Monte Carlo simulations; the convolutions method are exact for 
homogeneous objects but an approximation for objects with heterogeneities. 
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with Kpatient a scatter kernel3 and NSPR(T) is the normalized-scatter-to-primary ratio [10], a 
constant depending on the transmission T and @ denotes a convolution. 

Compare reconstructecl close with plannecl close 

The final step is to compare the reconstructed dose with the dose from the treatment planning 
system. If the reconstructed dose is f.e. lower as the planned dose, an additional or adapted 
treatment fraction can be given. In this way, an independent verification of the planned dose 
is possible; possible errors in the delivery can be detected and the treatment can be adjusted if 
necessary. 

In this report the first step of the 3-D dose reconstruction is investigated; a detailed description 
of the portal dose dependencies. The acquisition of the 3-D electron density matrix is the next 
important step for the dose reconstruction method. To make the dose reconstruction completely 
independent of the treatment planning process this step has to be a treatment-time CT-scan. 

3 Louwe et al (14] described this kernel as K(r) = cie-c,r /rc3, the constants are fitted to phantom measurements. 



The Physics of Radiotherapy 

In this chapter, a framework of the physics involved in radiotherapy is discussed. For a detailed 
discussion about this subject see textbooks like Khan [15] or Metcalfe et al [16]. First, the 
attenuation of a photon beam is discussed in section 2.1, then the interaction processes of photons 
with matter in section 2.2. Also the physical properties and the generation of a clinical photon 
beam produced by a linear accelerator is discussed (section 2.3) as well as the measurement of 
dose behind a patient with an Electronic Portal Imaging Device (section 2.4). 

2.1 Attenuation coefficient 

A mono-energetic photon beam that passes through an attenuator deposits some of the energy in 
the medium. The physical interactions involved in this process are dependent on the energy of the 
photons. The photons that do not interact with the attenuator are called the primary photons. 
The photons that do interact are either absorbed in the medium or scattered in a new direction. 
The number of photons dN that is removed from the incident beam N ( either absorption or 
scattering) depends on the thickness dx of the attenuator and a constant specific for the material, 
the attenuation coefficient µ(or linear attenuation coefficient [cm- 1] if x is expressed as a length 
[cm]): 

dN = -µNdx. (2.1) 

This differential equation can be solved and the number of primary photons N ( x) that pass through 
an attenuator without interaction can be written as 

(2.2) 

with N0 the number of incident photons. Because the attenuation coefficient is only a function 
of the energy of the photon and the atomie composition of the material, one can divide the 
coeffici~nt µ by the density pof the material. This results in the mass attenuation coefficient µ/p. 
This constant is not a function of the density hut only depends on the photon energy and atomie 
structure of the attenuator. 

A clinical photon beam is not mono-energetic hut consists of a spectrum of energies. The 
attenuation of the clinical photon beam will differ from the ideal exponential decay. The mean 
energy of the spectrum of the photon beam will shift towards a higher energy for increasing 
attenuator thicknesses which results in a decrease in attenuation. This phenomenon is called 
beam-hardening. 
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2.2 Interaction of x-rays with matter 

The interaction of photons with matter depends on the energy of the photons. For radiotherapy 
photon energies (4 MeV - 10 MeV) there a three main interaction processes1 : the photoelectric 
effect, Compton scattering and pair production. The total attenuation coefficient µ/ p is the sum 
of the individual processes: 

(2.3) 

with T, ac and 7r the attenuation coefficients for photoelectric effect, Compton scattering and pair 
production, respectively. The individual processes will be discussed. 

2.2.1 Photoelectric effect 

The photoelectric effect occurs when a photon interacts with an atom and ejects one of the orbital 
electrons from the atom. The photon is completely absorbed and one electron is ejected from 
the K, L or M shell. The energy of the ejected electron is equal to the energy of the photon E 
minus the binding energy of the electron. The vacancy in the shell where the electron is ejected 
can be filled by an electron from the outer shells with the emission of a characteristic x-ray, or by 
the emission of so-called Auger electrons. The probability of photoelectric effect depends on the 
photon energy and the atomie number of the material Z: 

(2.4) 

The photoelectric effect is the most important process for radiology. 

2.2.2 Compton scattering 

The most important photon interaction process for therapeutic beam energies is Compton scatter­
ing. From 200 ke V to 2 Me V this is in fact the only important process for soft tissues. Compton 
scattering occurs when a photon with energy E interacts with a free electron in the outer shell of 
the atom and this electron is ejected with an energy Ek. The energy of the photon after interaction 
(i.e. scattered photon) E' is equal to E - Ek. Since momentum is also conserved for this elastic 
scattering, the three energies are related to each other by: 

E' 

E ( a(l - cos B) ) 
l+a(l-cosB) ' 

EC+a(/-cose))' 

(2.5) 

(2.6) 

with a = E / m 0c2, the ratio of the incident photon energy to the electron rest mass energy 
(0.511 MeV), and (;I the angle between the scattered photon direction and the incident photon 
direction. 

Compton differential cross section 

The differential cross section per electron dae/dO for Compton scattering was derived by a quan­
tum mechanica! analysis by Klein and Nishina: 

(2.7) 

1 Actually there are five: also coherent scattering and photo-desintegration. For coherent scattering there is 
no energy transferred to the medium, only the direction of the incident photon is changed. This phenomenon is 
only important for energies below 10 keV or high Z-materials. For very high photon energies (above 10 MeV) 
photo-desintegration can occur; a reaction between the photon and the nucleus. 
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The term da0 /dD is the classical scattering expression and FKN is the Klein-Nishina factor: 

dao 

dD 

2 r; (1+cos28) , 

( 
1 )

2
( 1 a2(l-cos8)2 ) 

1 + a(l - coslJ) + (1 + a(l - cosO)) (1+cos28) ' 

with r 0 the classical electron radius. 

(2.8) 

(2.9) 

Because Compton scattering is an interaction with the outer electron of the atom, it is inde­
pendent of the atomie number Z and only depends on the number of electrons per gram. Except 
for hydrogen, this number is approximately constant over a wide range of atomie numbers. The 
Compton scattering also slightly decreases with photon energy, which can be described by [16]: 

(2.10) 

2.2.3 Pair production 

If the photon passes close enough to the nucleus, then the photon can interact with the electro­
magnetic field of the nucleus and a positron and an electron can be produced. This interaction 
process is called pair production. Pair production can only occur when the energy of the photon 
E is greater than 2m0c2 = 1.022 MeV, the rest mass energy of a positron and an electron. The 
remaining energy of the photon (E - 1.022 MeV) is spread over the positron and the electron as 
kinetic energy. The positron travels through the medium in a same way as the electron until it 
interacts with another free electron; both the electron and positron disappear and 2 photons of 
0.511 MeV are emitted in opposite direction, this radiation is called annihilation radiation. 

Above the threshold energy of 1.022 MeV, the probability of pair production logarithmical 
increases with the energy and proportional with the atomie number Z, 

T / p ex Z log E. (2.11) 

The relative dependence of the three photon interaction processes as a function of atomie 
number and photon energy is graphically shown in figure 2.1. 
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Figure 2.2: Schematic drawing of the treatment head of a linear accelerator; picture taken from Khan 
[15]. 

2.3 Photon beam generation with a linear accelerator 

A linear electron accelerator (linac) is the most frequently used machine to produc~ clinical ra­
diation, both electrons and photons can be produced with a linac. The linac currently used at 
MAASTRO CLINIC is the Elekta SL15. In figure 2.2, a schematic overview is given of the treatment 
head of a linac and the generation of a clinical photon beam is described below. 

The first part of a linac (not shown in figure 2.2) is the same for both the generation of an 
electron as well as a photon beam. First the electrons are generated by an electron gun and ejected 
into an accelerator tube. Inside this tube the electrons are accelerated by a travelling or standing 
electromagnetic wave with a frequency around 3 GHz. This travelling or standing wave can be 
produced by a magnetron or klystron. The electrons are accelerated from an initia! low energy 
of around 50 keV to the high energy region (up to 30 MeV). At the end of the accelerator tube 
usually a bending magnet is placed to direct the beam towards the patient. 

The second part of the machine (shown in figure 2.2) is different for the production of an 
electron or a photon beam. In the case of a photon beam (x-rays), the narrow electron beam 
exiting from the accelerator tube hits a so-called x-ray target. This target is made of a high Z 
material. In this target so-called 'bremsstrahlung' is produced because a high energetic electron 
passes the nucleus of the target at a close distance and the energy of the electron is converted 
in a spectrum of x-ray energies; the maximum energy is equal to the maximum incident electron 
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energy. The average energy is approximately one third of this maximum energy2 [15]. The x-rays 
then pass the primary collimator. Because the production of the x-rays is forwardly peaked an 
additional filter is inserted in the beam, the flattening filter. This filter makes the intensity of the 
x-ray beam uniform across the entire field. 

The photon beam then passes through the ionization chamber. This close monitoring instru­
ment measures the close rate and the integrated close. It controls the actual amount of close 
delivered to the patient. 

The photon beam is then blocked by the secondary collimator to create the specific field size. 
For Elekta linacs, this collimator consists of two pairs of jaws that block the beam. These jaws can 
be moved independently from each other to create field sizes from OxO to 40x40 cm2 at a distance 
from the target of 100 cm. These field sizes can be square or rectangular. Because the jaws can 
be moved independently from each other, also asymmetrie fields can be created. In asymmetrie 
fields the center of the collimator axis does not coincide with the center of the field. 

The treatment head is fixed to the gantry and can be rotated over 360 degrees. The point 
where the center of the gantry rotation intersects with the center of the collimator axis is called 
the isocenter; this distance is fixed at 100 cm from the target. 

2.4 Electronic Portal Imaging Device 

An Electronic Portal Imaging Device (EPID) used for radiotherapy is a device that is able to make 
digital pictures of high energetic x-ray radiation. In figure 2.4 a schematic view of the device is 
shown as it is used in clinical setting. 

There are several commercially available EPIDs. Currently at MAASTRO CLINIC, a so-called 
video-based EPID is used; the Theraview-NT EPID (Cablon Medica!, the Netherlands). Only 
this EPID will be discussed here. For a detailed overview of other types of EPIDs see the review 
article of Boyer et al [18]. 

The video-based EPID is mounted on the gantry at a 
distance to the target that can usually vary from 140 to 
160 cm. The high-energetic photons hit upon a metal de­
tector plate which can release high-energetic electrons. The 
metal plate is coated with a fluorescent screen of Gd202S. 
The high-energetic electrons release visible photons in the 
fluorescent screen and these visible photons are reflected 
through an optica! system of mirrors to a camera. The 
camera signa! can be digitally read out and can be further 
processed (see figure 2.3). 

Figure 2.3: Schematic view of the 
video-based EPID [18]. 

The images acquired during treatment can be used to check patient positioning because the 
bony structures attenuate the photon beam more than the surrounding tissue and the signa! at 
the EPID is thus lower in these regions. These portal images can be compared with the images 
made from either simulation photos or with digitally reconstructed radiographs (DRR) from the 
treatment planning system. 

The images can also be converted from intensity (grayscale) images to dose images. This offers 
the possibility for quality control and in-vivo dosimetry as described in chapter 1. A dosimetrie 
calibration procedure for CCD-based EPIDs is described by Heijmen et al [19], which is accurate 
up to 13 at the beam axis and the accuracy slightly decreases off-axis up to 4.53 for highly 
asymmetrie and wedged fields [20, 21, 22]. 

2The x-ray beam is heterogeneous in energy and designated by megavolts as if it was created by applying this 
voltage across an x-ray tube. 
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Figure 2.4: Schematic drawing of a video-based EPID at a linear accelerator; picture taken from Althof 
et al [23]. 



Portal Dose Images 

Portal close images are close distributions at a plane distal to the patient. These images can be 
acquired either by exposing a film or with electronic portal imaging devices (EPID). The close 
distribution I(r, t) at position r in the portal image behind an object with radiological thickness 
distribution t can be described as the summation of a primary part P(r, t) and a patient scattered 
part S(r, t): 

I(r, t) = P(r, t) + S(r, t). (3.1) 

The primary close is a function of the radiological thickness; the scattered close is dependent on 
various factors which are described in section 3.1. The separation of the primary and the scattered 
part needed for the back projection as described in section 1.3 is not trivial. The scattered 
contribution can be as high as 25% for some configurations (e.g. large phantom thickness, large 
field area, small air gap) [24]. To estimate the scattered part, various methods have been presented 
in literature. An overview of most of these methods is given in section 3.2. A comparison between 
the methods is made in section 3.3 and the ( dis)advantages of each method are discussed. 

3.1 Portal dose dependencies 

Measuring close 

The golden standard for close measurements in radiotherapy is an ionization chamber in a wa­
tertank. Dose measurements can be performed in different media like water, air or PMMA. In 
this report, all measurements are performed under full scatter conditions, i.e. measurements are 
performed in a watertank. The next sections describes the various factors that influence the close 
in the portal image in detail. 

Primary close 

The primary close P(r, t) is only a function of the radiological thickness t of the attenuator (i.e. 
phantom or patient) and the effective attenuation coefficient µ(r, t), following eq. (2.2): 

P(r, t) = O(r)e-µ(r,tJ-t, (3.2) 

with O(r) the close distribution without the attenuator in the beam. The effective attenuation 
coefficient depends on the atomie structure of the phantom in the beam and the energy of the 
incident photon. In this report only 6 MV x-rays are analysed. For higher x-ray energies (e.g. 
10 MV x-rays) the attenuation coefficient generally decreases and the amount of primary close is 
thus higher than for the 6 MV x-rays. Because a clinical photon beam is poly-energetic and the 
spectrum also changes with off-axis locations, this attenuation coefficient depends on the thickness 
t and off-axis distance r = lrl. 
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Scattered close 

The scattered dose S(r, t) in a portal image depends on more factors than the primary dose. An 
overview of the various factors is shown in table 3.1 and described below. The physics describing 
the scatter phenomena is described in section 2.2. 

Number of monitor units1 . Because the dose depends linearly on the number of monitor units, 
this property is not so interesting for the dose in portal images. In fact, to eliminate the effect 
of fiuctuations in the output of the linear accelerator to dose measurements, the transmission is 
measured. 

X-ray energy. The energy of the x-rays used in this report is 6 MV. The underlying physics of 
the scattering processes does not significantly alter if this energy is changed to 10 MV, see section 
2.2. The attenuation coefficient µ will decrease resulting in a higher primary dose and a lower 
scattered dose if the photon energy is increased from 6 to 10 MV. 

Wedge. The presence of a wedge needs a little more explanation, this due to the fact that 
there are two methods to create a wedge. A statie wedge a slab of material (lead or steel) which 
can be inserted into the beam; the statie wedge produces a shift in the beam spectrum towards 
higher energies for the thicker side of the wedge due to beam hardening which has to be taken 
into account by a slightly different attenuation coefficient [25]. A dynamic wedge is produced by 
closing the collimator jaws during irradiation, in this case the attenuation coefficient does not 
change. The infiuence of a wedge to the scattered dose is not investigated in this report. 

Field size. Another important factor infiuencing the dose distribution in portal images is 
the shape and the size of the field. In general, the scattered transmission increases with larger 
field areas but the two-dimensional distribution is highly non-constant. The scattered dose is 
created not only by the primary beam but also by the scattered photons. This makes the scatter 
distribution different for each field size. The effects of square and rectangular as well as symmetrie 
and asymmetrie field sizes are investigated. Irregular field sizes, created by either a multi leaf 
collimator (MLC) or blocks are not investigated. 

Type of object in the beam. The type of object placed in the beam is the most important factor 
infiuencing the scattered dose distribution. The phantoms are arranged in three groups. First, 
based on the phantom material; homogeneous or inhomogeneous. Second, based on the placement 
of the phantom relative to detector or isocenter. Third, based on the symmetry of the phantom 
around its geometrical midplane. 

3.2 Separation of primary and scattered close in portal close . 
images 

In this section various methods are discussed for the calculation or measurement of the primary 
and scattered dose in portal images. 

3.2.1 Large air gap 

Boellaard et al [6] estimated the primary component by taking EPID images with a large air gap 
between EPID and phantom (i.e. 90 cm). At large air gaps, the scatter that reaches the portal 
image is assumed to be small and constant over the dimensions of the EPID. 

The primary dose P(r, t) can also be estimated by extrapolating the measured transmission 
values toa field size ofüxO cm2 ; then the scattered dose S(r, t) for the other field areas is calculated 
by subtracting this extrapolated primary dose P(r, t) from the total image. For other air gaps, the 
primary distribution is simply calculated by taking the primary distribution at this large air gap 
and applying the inverse square law ISQL. The scattered contribution is then calculated using: 

S(r, t) = I(r, t) - (P(r, t) · ISQL). (3.3) 

1The number of monitor units (MU) is the common standard in radiotherapy to describe the amount of dose 
delivered. The definition is that 1 MU delivers 1 cGy at reference conditions. 
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Table 3.1: Factors influencing the close in portal images; the italic printed factors are analysed in this 
report. 

Linear Accelerator 

N umber of Monitor Units 
Energy of x-rays 
Wedge in the beam 
Field area1 

Field shape 

Phantom 

Material 
Isocenter symmetrie 
Midplane symmetrie 

Detector 

Measurement conditions 
Detector type 
Detector depth 
Source Surface Distance 
Source Detector Distance 

Adjustable 
6 MV or 10 MV 
No / Statie / Dynamic 
3x3 - 24x24 em2 

square / reetangular / irregular 
symmetrie / asymmetrie 

Homogeneous / Inhomogeneous 
Yes/ No 
Yes/ No 

Full scatter water phantom 
Ionization chamber 
2.5 cm 
147.5 cm 
150 cm 

1 The largest field area used is a 24 x 24 cm2 field; this because of the maximum width of phantom material 
of 30x30 cm2

. 

3.2.2 Primary dose by ray tracing 

By making use of the attenuation map (e.g. CT data), one can calculate the primary distribution 
exiting from the phantom. If the incident beam profile O(r) and this attenuation map are known, 
then it is possible to calculate the primary transmission P(r, t): 

P(r, t) = O(r) · e-µ(r,t)t, (3.4) 

with t the radiological thickness of the phantom and µ(r, t) the attenuation coefficient of the 
phantom at the calculated point. The scattered part Scan then be estimated by subtracting this 
primary part P from the measured portal image/. 

3.2.3 Monte Carlo 

l\1onte Carlo simulations can track what happens to the incident photon beam when it interacts 
with matter. It is thus possible to follow the photon through the phantom/patient. It is also 
possible to calculate a dose distribution in a plane after the beam has interacted with the patient. 
The great advantage of Monte Carlo techniques is that a separation can be made between the 
photons which have interacted with the phantom/patient (the scattered part) and photons which 
have not interacted at all (the primary part). 

3.2.4 Superposition with pencil beam scatter kernels 

The scatter contribution can be calculated from phantom properties ( thickness, attenuation co­
efficient, etc.) by a superposition of the open beam ftuence with so-called pencil beam scatter 
kemels (PBSKs). These scatter kemels can be calculated either from Monte Carlo simulations 
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[26], analytically calculated kemels by evaluating Compton and pair productions cross sections 
[27, 2] or empirically derived kemels from measurements [3]. 

The scatter kemels K(t, r) are calculated for a known thickness t by evaluating so-called 
'pencil beams'; the scatter in a plane distal to the phantom is calculated from these small narrow 
beams. The scattered radiation for a beam area A is then calculated by a superposition of this 
open beam O(r) with the pencil beam scatter kemels: 

S(r, t) = j" { O(r') · K(t, r - r')d2r'. 
lr1 EA 

(3.5) 

The problem with this algorithm is obtaining a good set of kemels and the phantom/patient thick­
nesses have to be known for the prediction of the scattered close. 

Iterative reconstruction of radiological thickness. 
Hansen et al [26] have used these pre-calculated scatter kemels for the derivation of the primary 
close and avoiding the need of phantom/patient information by calculating the primary close and 
the radiologica! thickness with an iterative method: 

1. Initia! guess of P(r, t) = /(r, t) and start iteration with n=l, 

2. Radiological phantom thickness tn can be calculated from pn(r, t) = O(r)·exp [-µ (r, t) · tn], 

3. Choose the kemel K ( tn, r) on the basis of tn, 

4. Scatter distribution calculation sn(r, t) = Ifr'EA O(r'). K(tn, lr - r'l)d2r', 

5. Extraction of primary distribution pn+l(r, t) = /(r, t) - sn(r, t), 

6. Repeat steps 2-5 until the solution converges. 

In this way an estimate is made of the radiological thickness, the primary and the scattered close 
solely on the basis of the open beam image, the (transmission) portal image and the set of PBSKs. 

3.2.5 Method Swindell & Evans 

Swindell & Evans [28] have used Monte Carlo simulations to derive a simple physical model for 
the estimation of scatter for the on-axis transmission of homogeneous phantoms. The derived 
scatter-to-primary ratio SPR = S/P is: 

SPR koAt(l + kit)(l + k2A), (3.6) 

ko 0.0266 ( Li + L2) 2 

LiL2 
(3. 7) 

ki C>' 2 · 10-3cm- 1 for 60 :::; L2 :::; lOOcm, (3.8) 

k2 1 ( 1 1 ( 1 1 r ( 2 3~)) 
- 27r Li + L~ + Li + L2 3 + 2 ' (3.9) 

(3.10) 

with Li and L2 the distance to the isocenter and the distance from isocenter to portal image 
respectively, and ~ the mean energy of the beam. This physical model would be correct within 
0.5% for thicknesses from 0-40 cm and (circular) beam areas up to 320 cm2 . This however is only 
an approximation of the on-axis scatter for homogeneous phantoms. 

3.2.6 Constant scatter 

The scattered part can also be estimated to be a constant, this is true if the EPID is at a large 
distance from the phantom and probably only holds if the phantom is not heterogenous [6]. 
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3.2.7 Average scatter 

lf the scatter S(r, t) for a set of configurations is known then the average scatter for the set of 
configurations can be calculated by averaging the N portal images to an averaged scatter image 
S(r, t): 

-- 1 N 
S(r, t) = N L Si(r, t). (3.11) 

i=l 

This averaged scatter can in the fut ure be used as an estimation of the scat ter. 

3.3 Comparison of the methods 

lf a high degree of accuracy with an error of only a few percent of the total close has to be achieved 
then the 'constant' and 'average scatter' method are not possible due to the high non-constant 
behavior of the scatter. The method proposed by Swindell & Evans is only correct for homoge­
neous phantoms and is only an estimate of the (0-D) on-axis scatter, hence not suitable for a 2-D 
estimation of the scatter. The methods that can be derived from measurements and not need 
complex Monte Carlo simulations are the 'Large Air Gap', 'Ray Tracing' and the 'Pencil Beam 
Scatter Kemels' methods. 

Monte Carlo. 
The Monte Carlo method is widely used as 'Golden Standard' to verify the actual close deposi­
tion in inhomogeneous media. At MAASTRO CLINIC, a Monte Carlo code (XVMC, University of 
Tübingen, Germany [29]) is available hut with this code it is not (yet) possible to make a difference 
between scattered and primary close and this method is not further taken into account. 

Large air gap. 
The 'large air gap' method is not possible for the EPID used in MAASTRO CLINIC because the 
distance of the EPID from the source can only be varied from 140 to 160 cm and for this method 
the EPID has to be at large distance (e.g. 190 cm) from the source. A possible drawback is the 
small field of view at the isocenter due to the finite size of the EPID (e.g. 40 cm at 190cm from 
the source represents a field of view of 40 · 100/190 = 21.1 cm at the isocenter). 

Ray tracing. 
The drawback of the 'ray tracing' method is that this method can only be used if an attenuation 
map (CT-scan) is available. For the verification of the treatment process, it is preferred to use as 
less information in advance which makes the verification as independent as possible. The method 
only predicts the primary component and gives no information about the scattered close distribu­
tion directly. 

Pencil beam scatter kernels. 
With the 'pencil beam scatter kemel' method, it is possible to predict the portal close images 
within a few percent error [4]. An advantage is that the input data (the images with and without 
phantom/patient) are already routinely acquired per patient at MAASTRO CLINIC. Another ad­
vantage is that the model is able to extract the primary close from the portal image. This is one 
of the input parameters for the three-dimensional close reconstruction as described in section 1.3. 

Based on the considerations mentioned above, the method chosen to describe the close distribution 
in the portal image and is able extract the primary close is the method based on the pencil beam 
scatter kemels. In this report the derivation of the PBSKs from measurements is discussed and 
not a derivation based on simulations by a Monte Carlo code as frequently is clone in literature 
[30]. The method presented calculates the kemels from a set of transmission measurements on the 
beam axis from various field areas and phantom thicknesses. 



Portal Dose Prediction Model 

Based on the considerations mentioned in chapter 3, a new model to predict the dose in portal 
images is developed. The definitions used in this report are given first (section 4.1), then some 
concepts are described on which the model is based. The use of pencil beam scatter kemels (section 
4.2) and the use of a so-called equivalent homogeneous phantom concept (section 4.3) is explained. 
In section 4.4 the new model is presented, assumptions and approximations are discussed. Finally 
in section 4.5, some other possible applications of the model are briefty discussed. The measure­
ment set-up and the accuracy of the model are discussed in chapter 5 and 6, respectively. The 
verification of the new model is performed using homogeneous and inhomogeneous phantoms. Also 
a clinical example of the treatment of breast cancer is presented. 

4.1 Definitions 

The dose distribution in a portal image at a distance r = (x, y) from the beam axis without an 
attenuator in the beam (i.e. phantom or patient) is called the open dose distribution O(r), and 
I(r, t) is the dose distribution with a phantom or a patient with thickness t in the beam. The 
latter dose distribution is the summation of a primary dose P(r, t) and a scattered dose S(r, t): 

I(r, t) = P(r, t) + S(r, t). ( 4.1) 

From these quantities the total T( r, t), primary TP ( r, t) and scattered T 8 ( r, t) transmissions can 
be calculated: 

I(r, t) 
T(r, t) = O(r) , 

p P(r,t) 
T (r,t) = O(r) , 

4.2 Pencil beam concept 

T s( ) = S(r, t) 
r,t O(r) . (4.2) 

The pencil beam concept was originally developed for the calculation of dose inside the patient, 
see for example Ahnesjo et al [31]. The incident beam profile can be described as a superposition 
of many small pencil beams. It is assumed that the profile has the same properties over the area 
of the beam which is substituted with the pencil beams. The deposited dose inside a medium due 
to such a pencil beam is calculated from f.e. Monte Carlo simulations. The total dose is then 
calculated from the superposition of the pencil beams that describe the field. 

For the prediction of dose in a portal image a similar concept is used. A schematic overview 
of the pencil beam concept is shown in figure 4.1. An infinitely thin pencil beam incidents on 
a phantom with known thickness t. Some photons do not internet with the phantom at all and 
exit the phantom (the primary photons). The photons that do internet are absorbed or change 
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Figure 4.1: Schematic view of the pencil beam concept. A pencil beam incidents upon a phantom. Some 
photons do not internet (primary photons) and some photons have interacted and exit the phantom with 
a different angle (scattered photons). 

direction and are detected at an off-axis location r = lrl; the photons that have a changed direction 
are the scattered photons. 

The function describing the spread of scattered photons at the off-axis locations is called the 
pencil beam scatter kernel. For a given beam spectrum and a homogeneous phantom placed 
symmetrically around the midplane, the kernel KL(t, r) is a function of the phantom thickness t 
and the distance L between detector and midplane of the phantom. 

4.3 Equivalent homogeneous phantom concept 

The equivalent homogeneous phantom (EHP) concept is introduced by Pasma et al [3]. Using 
this concept, an inhomogeneous phantom or patient is replaced with a homogeneous phantom 
taking into account the radiological path length and the center-of-mass. The EHP consists of two 
2-D arrays. These two arrays are calculated by ray-tracing the photons from the source through 
the phantom to the detector. The matrix elements of the first array consist of the radiological 
thickness and the second array describes the coordinates of the center of mass, both taking into 
account the beam divergence1 . The EHP can be derived by ray tracing through a CT-scan. See 
also figure 4.2 for a visual explanation of the concept. 

4.4 Portal dose prediction model 

Following the pencil beam and the EHP concept, the primary and the scattered close can be 
calculated if the thickness of the attenuator and the open beam close distribution is known. The 
calculation of the primary close and the scattered close distribution are clone separate and the two 
distributions are summed to yield the total close distribution. 

1Conceptually it is the same as a digitally reconstructed radiograph (DRR) but with information about the 
center-of-mass and using the attenuation coefficients for MV x-rays instead of kV x-rays. 
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Figure 4.2: Visualization of the EHP concept. On the left the actual electron density is presented as a 
gray scale image and on the right the corresponding EHP is shown. 

4.4.1 Precliction of primary close 

The effective attenuation is derived as a function of the phantom thickness t and the off-axis 
location r because a clinical photon beam is poly-energetic. In general, beam hardening2 will occur 
with larger phantom thicknesses as a result of the shift in energy spectrum. Beam softening3 is 
expected for off-axis locations due to off-axis differences in beam quality produced by the shape 
of the flattening filter. 

The total primary close can be calculated, following eq. (2.2), at each position by taking into 
account the attenuation coefficient µ(r, t) and the radiological thickness t (derived from the EHP): 

P(r, t) = O(r)e-µ(r,tH. (4.3) 

4.4.2 Precliction of scatterecl close 

The model to predict scattered close in portal images is a combination of the pencil beam concept 
and the EHP concept. The physical interpretation of the scattered close calculation is that it 
originates from the center-of-mass of the phantom. The total scatter produced by the column of 
phantom material can be replaced by a corresponding radiological thickness distributed symmet­
rically around the center-of-mass of the replaced column of phantom material, see figure 4.2. The 
scattered close can then be calculated by applying the pencil beam model in relation with the EHP 
concept. The pencil beam scatter kemel describes the scattered portal close for a particular ray 
line. The pencil beam scatter kemel for every ray line (pencil beam) is chosen on the basis of the 
information in the EHP, i.e. the thickness t and the distance of the center of mass to detector L. 
Assuming midplane symmetry (i.e. fixed L ), the total scattered close S(r, t) is the superposition of 
the open beam close O(r) with the pencil beam scatter kemel K(t, r). The specific kemel chosen 
is based on the radiological thickness at the point r examined 

S(r, t) = J J O(r')K(t, lr' - rl)d2r'. 

The integral is taken over the entire field area. 

2 Beam hardening: The decrease of the attenuation coefficient. 
3 Beam softening: The increase of the attenuation coefficient. 

( 4.4) 



20 Portal Dose Prediction Model 

Kernel functions 

To avoid the use of Monte Carlo simulations [26, 30] for the derivation of the pencil beam scat­
ter kernels, a new method is developed to calculate these scatter kernels from measurements. 
Pasma et al [3] calculated the scatter kernels numerically from transmission measurements using 
square field areas and applied a correction for the non-circular beam area. These kernels are very 
noisy and show non-physical behavior near the beam axis. The derivation presented is based on 
measurements and assuming a kernel shape. 

With the new method presented in this report, the pencil beam scatter kernels are derived by 
fitting on-axis transmission measurements to a predefined kernel function. The on-axis transmis­
sion T(r = 0, t) for various square field areas A and homogeneous phantom thicknesses t are fitted 
to describe the following relation: 

T(r = 0, t) = c1(t) + Jr { ~r y? K(t, Jx 12 + y'2 )dx'dy'. l(x 1 ,y1 )EA 0, 0 
( 4.5) 

Note that this equation is similar to the sum of equations ( 4.3) and ( 4.4) divided by the open 
beam dose O(r) for the coordinate r = (x, y) = (0, 0). The quantities T(r = 10, t), O(r) and A are 
measured and the coefficient c1 (t) and K(t, r) are fitted; c1 (t) is the primary transmission TP (r, t) 
and K(t, r) is the pencil beam scatter kernel. 

Various functions can be used to fit the scatter kernel function K(t, r). Three functions are 
examined: a Gaussian profile, an isotropic point source model and a model based on the Klein­
Nishina differential cross section. 

Fit function 1: Gaussian profile 

As an empirical approach, the first fitting function is a Gaussian shaped profile with coefficients 
ci(t) and c3(t) 

K(t, r) = c3(t)e-c2 (tlr
2

, 

with r = Jx2 + y2 . 

Fit function 2: Isotropic point source 

( 4.6) 

The second fitting function is a (virtual) radially isotropic point source at a distance of c2 (t) above 
the detector plane with strength c3 (t) 

K( ) = c3(t)c2(t) 
t, r 3/2' 

(r2 + c2(t)
2
) 

(4.7) 

with r = Jx2 + y2 . 

Fit function 3: Klein-Nishina differential cross section 
1 

The third fitting function is based on single scattered photons. These scattered photons can in 
principle be derived analytically by using the scattering cross section for Compton scattering. This 
function is known as the Klein-Nishina differential cross section, see eq. (2.8) and (2.9): 

K( ) _ c2(t) ( 1 )
2 (i 28 a 2

(1- cosB)2 ) cosB t, r - -- + cos + , 
2 1 + a(l - cos B) 1 + a(l - cos B) r 2 + z 2 

(4.8) 

with B the scattered angle of the incident photon and a the ratio of the incident photon energy E 
to the electron rest mass energy moc2 = 0.511 MeV, 

z 
cosB = , 

../r2 + z2 

E 
a--­

- moc2' r = Jx2 + y2. 
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Figure 4.3: Scatter estimation: Parallel approach versus the kemel tilting approach. 
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The factor cos(}/ (r2 + z2) is used to couvert from spherical coordinates to cartesian (plane) coor­
dinates. Assuming that the scattered radiation comes from the center of the phantom (following 
the EHP concept) and that the detector is placed at a distance 150 cm from the source, then 
z = 50 cm and the mean energy of the polyenergetic 6 MV beam is assumed to be ~ of the 
nominal energy [15], E = 2 MV. 

Fitting geometry 

For the concept of the EHP and the pencil beam two approaches are possible: a parallel beam 
approach and a kemel tilting approach. The two approaches differ in whether the divergence of 
the beam is taken into account for the calculation of the scatter contribution, or not. In figure 
4.3, the two concepts are shown and a visual explanation for the difference is given. 

The parallel approach does not take into account the divergence of the beam and simplifies the 
creation of the scatter as if it originate from the point of interaction of a parallel photon beam. 

The kemel tilting approach does take into account the beam divergence. The scatter kemel 
is calculated as if scatter originates from a virtual point at a distance above the detected point 
parallel to the beam axis in the plane behind the phantom. 

Fitting procedure 

The fitting procedure is implemented as a minimization problem4 in Matlab (version 6.5.1, The 
Math Works, Ine.). The coefficients c 1 ( t), c 2 ( t) and c3 ( t) are fitted to yield the smallest absolute 
difference between measured and fitted on-axis transmissions. Another way of deriving the pencil 
beam scatter kemels in a semi-analytical way is described in appendix A; this method uses circular 
fields as incident beams and is not used in this report. 

4.4.3 Overview of the prediction model 

If the attenuation coefficient, the EHP and the pencil beam scatter kemels are known then portal 
dose distributions can be calculated. This procedure is listed below: 

1. Calculate radiological thickness: t, 

2. Calculate primary dose: P(r, t) = O(r) · exp [-µ (r, t) · t], 

3. Calculate scattered dose: S(r, t) = JJ O(r')K(t, lr - r'l)d2r', 

4. Add primary and scatter: I(r, t) = P(r, t) + S(r, t). 
4The specific function is fminsearch that uses a simplex search method to minimize the difference between 

measured and fitted values/data. 
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4.5 Other applications of the model 

The prediction model describes the relation between three parameters: (1) the open beam close 
O(r), (2) the portal close J(r, t) and (3) the radiological thickness t. If two parameters are known 
than th~ third can be calculated from the other two. However, this holds only for phantoms 
that are midplane symmetrie. This limitation is necessary because the EHP concept is not only 
based on the radiological thickness but also on the distance if the center-of-mass to detector. For 
midplane symmetrie phantoms, this distance is approximately constant over the EHP. 

Model to extract the radiological thickness 

The above described prediction model can also be used to calculate the radiological thickness 
which is related to the primary close by the attenuation coefficient, eq. (4.3). The primary close 
is the input for the three dimensional close reconstruction algorithm, described in chapter 1. The 
extraction of the radiological thickness can be calculated in an iterative way as described by 
Hansen et al [26]. The iterative steps are described in section 3.2.4 but for completeness shown 
again below: 

1. Initial guess of P(r, t) = J(r, t) and start iteration with n=l, 

2. Radiological phantom thickness tn can be calculated from tn = µ(;,t) · ln( P~i~\t)), 

3. Choose the kernel K(tn,r) based on tn, 

4. Scatter distribution calculation sn(r, t) = f f O(r')K(tn, lr - r'l)d2r', 

5. Extraction of primary distribution pn+ 1(r, t) = J(r, t) - sn(r, t), 

6. Repeat steps 2-5 until the solution converges. 

Model to extract the incident beam profile 

Analogous to the way the radiologica! thickness is extracted, also the open beam close can be 
reconstructed. Input parameters for the reconstruction of incident beam profile are the portal 
close J(,·) and the radiological thickness. If these two parameters are known, the third can be 
calculated using an iteration procedure: 

1. Initia! guess of O(r) = J(r, t) · exp [+µ (r, t) · t] and start iteration, 

2. Choose the kernel K(t, r) based on t, 

3. Scatter distribution calculation sn(r, t) = ff on(r')K(t, lr - r'l)d2r', 

4. Extraction of primary distribution pn(r, t) = J(r, t) - sn(r, t), 

5. New estimate of open beam close on+1 (r) = pn(r, t) · exp [+µ (r, t) · t] 

6. Repeat steps 2-5 until the solution converges. 

Spies e~ al [32] have used this algorithm with Monte Carlo calculated scatter kernels for the 
extraction of the incident beam profile. 



Portal Dose Measurements 

The measurements performed to assess the accuracy of the prediction model are divided into four 
main categories. The first category describes the derivation of the input parameters of the model; 
the attenuation coefficient and the pencil beam scatter kemels. The second categorie describes 
the accuracy of the various geometries and scatter kemels for homogeneous phantoms. The third 
category, the model is applied to predict the dose for inhomogeneous phantoms and phantom 
geometries that deviate from the fitting geometry. And as a final category, the model is tested on 
actual clinical data; the treatment of breast cancer. The numbering of the sections is the same 
as the sections with results shown in chapter 6. An overview of all the measurements is given in 
table 5.2 at the end of this chapter. All measurements are performed with a 6 MV clinical photon 
beam from an Elekta 8115 linear accelerator. 

Point measurements 

The measurements presented in this report are clone with various measurement instruments. The 
type of detector is also chosen to match this golden standard; an ionization chamber (Scanditronix 
Wellhofer CC13) placed in a watertank (Scanditronix Wellhofer Blue Phantom). The depth of 
measurement is chosen to be similar to the calibration conditions of the EPIDs at MAASTRO 
CLINIC [20, 21, 22] at 2.5 cm below the water surface which is positioned at 147.5 cm from the 
target, resulting in an effective source to detector distance (SDD) of 150 cm. An overview of the 
measurement set-up and equipment is shown in table 5.1 and in figure 5.1. The accuracy of the 
point measurements is estimated to be within 0.4%. 

Two-dimensional measurements 

Measuring a complete two-dimensional (2-D) dose distribution can be dorre with an EPID or 
film. These measurements both require an additional step ( calibration) to couvert the measured 
grayscale values to dose. To avoid these measurements, 2-D dose distributions are obtained using 
a linear detector array1 with 23 ionization chambers equally spaced at 2 cm. With this detector 
array, a 2-D close distribution could be scanned, with a grid spacing of 2 cm across the entire 
plane. A reference detector is placed in the field to compensate for fluctuations in close rate of the 
linear accelerator. Because the profiles measured are relative, also an absolute point measurement 
is done at the beam axis. 

Possible variations in detector response with time are estimated by comparing two measured 
close distributions acquired approximately one hour after another; maximum differences of 0.91 % 
in the gradient area of the treatment fields. 

1The detector array is a Wellhofer Scanditronix CA24 linear detector array consisting of 23 ionization chambers, 
read out by a Wellhofer Scanditronix MD240 electrometer. 



24 Portal Dose Measurements 

Table 5.1: Measurement equipment. 

Water Phantom 

Water Phantom Type 
Scanning volume 
Water surface (SSD) 

Point Detector 

Type 
Detector 
Electrometer 
Depth 

Array Detector 

Type 
Detector type 
Electrometer 
Depth 

Phantom Material 

Material 
Area 
Thickness 
Density p 
Material 
Area 
Thickness 
Density p 

Scanditronix Wellhöfer Blue Phantom 
480 x 480 x 410 mm3 

147.5 cm 

Scanditronix Wellhöfer CC 13 
Ionization chamber 
Scanditronix Wellhöfer CU500e 
2.5 cm (SDD=150 cm) 

Scanditronix Wellhöfer CA 24 
23 ionization chambers spaced equally at 2 cm 
Scanditronix Wellhöfer MD240 
2.5 cm (SDD=150 cm) 

Polystyrene (PS-ABS) 
29cmx29cm 
4.3, 8.6, 12.9, 17.1 and 21.4cm 
1.01 - 1.04 g/cm3 

Cork 
29cmx29cm 
1 - 12 cm 
± 0.2 g/cm3 
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Figure 5.1: The set-up for the point measurements. The detector is placed 2.5 cm below the water 
surface and can be moved in the water phantom to measure also off-axis point close values. 

EPID measurements 

EPID measurements are performed with a video-based EPID, the Theraview-NT. The accuracy 
of the measurements is estimated to be within 1 % on the beam axis and increasing up to 4.5% 
off-axis [21]. The acquisition of EPID images prior to and during treatment is standard procedure 
at MAASTRO CLINIC for all curative treatments. The acquisition of these EPID images is part 
of a quality control program. 

5.1 Input parameters for the model 

Attenuation coefficient 

To measure the effective attenuation, point measurements are taken at on- and off-axis locations 
r relative to the beam axis with a polystyrene phantom of thickness t placed in the beam and 
field sizes A of 3x3, 4x4 and 5x5 cm2 centered around the on- and off-axis locations. The on­
and off-axis distances expressed at the isocenter plane are 0, 3, 6 and 9 cm; the polystyrene 
phantom thicknesses used are 4.3, 8.6, 12.9, 17.1 and 21.4 cm. The primary transmission TP(r, t) 
is estimated by extra po lating the measured total transmission T ( r , t) to a field size of 0 x 0 cm 2 , 

the scatter contribution is assumed to be zero fora field size of Ox ü cm2
: 

TP(r , t) = limT(r,t). 
AlO 

(5.1) 

The extrapolation is done by taking a first order linear fit through the measured data and evaluate 
the transmission at zero field area. The primary transmission profile TP ( r, t) is related to the 
phantom thickness by the effective attenuation coefficient µ(r, t): 

TP(r, t) = e-µ(r,t)-t . (5.2) 

Morton et al [33] used a point by point quadratic calibration for the estimation of the effective 
attenuation coefficient, i.e. µ(r, t) = A(r) + B(r) · t. In this report the attenuation coefficient is not 
fitted to such parameters A and B. Instead of this, the thickness is derived by a two-dimensional 
interpolation of the measured set of on- and off-axis transmission data. 
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Figure 5.2: The three extreme placements of the phantoms are shown. In (a) the isocenter is located in 
the center of the phantom (i.e. the midplane), in (b) and (c) the isocenter is at the upper and lower side 
of the phantom, respectively. 

Calculation of the scatter kernels 

Point measurements are performed to calculate scat ter kemels using the following field sizes: 3 x 3, 
6x6, lüxlO, 15 x l5 , 2lx21 and 24x24 cm2 , and for polystyrene phantom thicknesses: 4.3, 8.6, 
12.9, 17.l and 21.4 cm. All possible combinations are measured. Also close measurements are 
performed without a phantom in the beam for the calculation of the transmission. The total 
on-axis transmission is defined as the ratio of the close measured with a phantom in place and 
without the phantom (so-called open beam). Also an open beam profile is measured along the 
diagonal of the largest field (24x24 cm2 ) by moving the ionization chamber through the water 
phantom. The kemels are derived using the procedure described in section 4.4.2. The phantom is 
placed symmetrically around the isocenter resulting in a fixed center-of-mass to detector distance 
of 50.0 cm. 

Verification of the derived kernels 

To verify the derived kemels , on-axis point transmission measurements are clone for a set of 
rectangular fields: 5x20, 10 x20, 20x5 and 20 x 10 cm2 . The same phantom thicknesses are used 
as for the fit: 4.3 - 21.4 cm. The function used to verify the three kemels is the same as the fittillg 
function but with the appropriate boundary values of the integral in eq. ( 4.5) . 

Scatter kernels for other air gaps 

To analyse the influence of the position of the phantom on the shape of the scatter kemels, point 
measurements are performed for other phantom detector distances. The phantom is not placed 
symmetrically around the isocenter but with the upper and the lower sides of the phantom placed 
at the isocenter (see figure 5.2). This is clone for the phantoms with thickness 8.6 cm and 17.1 
cm. The resulting distances from phantom midplane to detector (MDD) are 45.7, 50.0 and 54.3 
cm for the 8.6 cm phantom. And for the 17.1 cm thick phantom: 41.5, 50.0, and 58.6 cm. 
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5.2 Homogeneous phantoms 

To assess the accuracy of the model, first homogeneous phantoms are investigated because the 
homogeneous phantoms best represent the fitting geometries. 

Off-axis point measurements 

To verify the prediction model the measured transmission and the predicted transmission values 
are not only compared for on-axis distances but also for off-axis distances. Point measurements are 
performed at off-axis distances of 0, 3, 6 and 9 cm along the longest field axis and for polystyrene 
phantom thicknesses of 4.3, 8.6, 12.9, 17.1 and 21.4 cm. The field sizes used are 5x24 and 15x24 
cm2 . 

Asymmetrie field 

For the evaluation of the prediction algorithm in case of an asym­
metrie field, two homogeneous phantom thicknesses are used. Phan­
tom thicknesses are 8.6 and 17.l cm of polystyrene. The midplane of 
the phantom is placed at the isocenter plane, situation (a) in figure 
5.2. The field size is 7.5x24 cm2 , graphically shown in figure 5.3. 

B 

Measurements are performed with the linear detector array. Gan•rv 
Target 

Different air gaps 

The phantoms can be placed symmetrie or asymmetrie relative to 
the isocenter plane, see figure 5.2. Two homogeneous polystyrene 
phantoms are used with a thickness of 8.54 and 17.12 cm, Hl and 
H2 respectively. To make an estimation of the error, three positions 
of the phantoms are investigated: (a) the midplane of the phantom 
is coinciding with the isocenter plane, (b)/(c) the upper/ lower side 

A 

Figure 5.3: Asymmetrie 
field size. 

of the phantom is coinciding with the isocenter plane, see figure 5.2. The midplane to detector 
distance (MDD) for situation (a) is 50 cm, the same as the fitting geometry. The MDD for 
situation (b) (the minus sign) and ( c) (the plus sign) is 50 ± 4.27 cm and 50 ± 8.56 cm, for Hl 
and H2 respectively. The field size irradiating the phantoms is 15 x 24 cm2

• The measurements 
are clone with the linear detector array. 

5.3 Inhomogeneous phantoms 

To simulate clinical treatment situations, also phantoms with inhomogeneities are investigated. 
The phantoms are made out of polystyrene and cork, see table 5.1 for details. Five phantoms 
are investigated, a schematic view of the phantoms is shown in figure 5.4. The phantoms can 
be classified according to the midplane symmetry; phantom A, C and D are midplane symmetrie 
and phantom Bl and B2 are midplane asymmetrie. All the measurements are performed with 
the linear detector array to make a two dimensional close distribution and the field size used to 
irradiate the phantoms is 15 x 24 cm2 . 

Midplane symmetrie 

First phantom Dis investigated. This phantom consist of two large inhomogeneities of 6.2 cm cork 
(low electron density) separated by a polystyrene layer of 4.3 cm. On top and beneath the cork 
is a layer of 2.1 cm polystyrene. This phantom is used to simulate the lungs in a patient; these 
have a smaller density than the surrounding tissue. The phantom is placed with the midplane 
coinciding with the isocenter plane. 
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PHANTOMA PHANTOM B1 PHANTOM B2 
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Figure 5 .4: The phantoms A-D are made of polystyrene and cork. The phantoms are all symmetrie in 
the direction perpendicular to the plane of drawing. The field size irradiating the phantoms is 15x24 cm2

; 

the phantoms are placed in the beam with the geometrical midplane positioned in the isocenter. 

M idplane asymmetrie 

Deviations from the midplane symmetry are assessed with the phantoms A, Bl and B2. Phantom 
A is midplane symmetrie and consists of a layer of 10.3 cm cork embedded between two layers of 
6.4 cm polystyrene. Phantom Bl consists of the same layer of cork but now the layer of polystyrene 
on top of the cork is 2.1 cm and the layer below the cork is 10. 7 cm thick. Phantom B2 is similar to 
Bl but the two layers of [POlystyrene are reversed: 10. 7 cm on top and 2.1 cm below the cork. The 
geometrical midplane is located in the isocenter plane for all three phantoms. This means that for 
phantom Bl the center-of-mass is shifted towards the detector and for phantom B2 towards the 
target. 

3 Slab p hant om 

To create steep close gra,dients in the portal close distributions, a three slab phantom is created. 
This phantom consists ~:mt of two layers of 4.3 cm polystyrene and between these two layers 
there are three regions with a different electron density; the thickness of the region is 12.8 cm. 
Symmetrical around the, center axis of the phantom, there is a cavity of air of 8 cm width, to the 
left a slab of cork and to the right a slab of polystyrene. This phantom is also placed with the 
midplane of the phantom coinciding with the isocenter plane. 

5.4 Clinical data: breast cancer treatment 

The clinical case presented in this report is the treatment of a breast cancer patient. The patient 
is treated with both wedged and non-wedged beams; only the non-wedged beams have been taken 
into consideration because portal close images with wedged beams cannot be predicted by the 
model. The treatment consists out of two fields directed opposed to each other. EPID images 
are acquired with and without patient in the beam. The calculation of the ERP is clone by ray 
tracing through the CT-scan of the patient. For one of the non-wedged fields, an EPID image is 
predicted and compared to the measured distribution. The field size used is 11.1x16.2 cm2 and 
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Figure 5.5: The treatment planning system (XiO, CMS, St. Louis (MO), USA) calculates the close 
distribution in the patient. lsodose lines are plotted on top of the CT-scan of the patient (right plot) . 
The plot on the left shows the field size superimposed on the digitally reconstructed radiograph (DRR). 

a collimator rotation of 258°. The water equivalent thickness at the center of the EPID can be 
extracted from the treatment planning system and is estimated to be 9.74 cm. 
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Table 5.2: Overview of the measurements . 

Field size Phantom Thickness l so center Midplane Detector 
[cm x cm] [cm] symmetrie symmetrie Type 

3 x 3, 4 x 4 and 5 x 5 Polystyrene 4.3 , 8.6 , 12.9, Yes Yes Point 
17. l and 21.4 

3x3, 6 x 6, lO x lO, Polystyrene 4.3 , 8.6, 12.9, Yes Yes Point 
15 x 15, 21 x 21 , 24 x 24 17.l and 21.4 

5x20, 10 x 20, Polystyrene 4.3, 8.6, 12.9, Yes Yes Point 
20 x5 and 20 x l0. 17.1 , and 21.4 
3x3, 6 x 6, lO x lO, Polystyrene 8.6 and 17.l No Yes Point 

15x 15, 21 x 21 , 24 x 24 
5x 24, 15 x 24. Polystyrene 0, 4.3 , 8.6, 12.9, Yes Yes Point 

17.1 , and 21.4 
7.5 x 24 Polystyrene 8.6 and 17.1 Yes Yes Array 

15 x 24 Polystyrene 8.6 and 17.1 No Yes Array 
Hl and H2 

15 x 24 D Yes Yes Array 

15x 24 A, Yes Yes Array 
Bl , B2 No Yes Array 

15 x 24 c Yes Yes Array 

ll.l x l6.2 Pat ient data No No EPID 
CT - scan 



Results of the Prediction Model 

This chapter describes the results of the measurements presented in chapter 5. The numbering of 
the sections is the same as in chapter 5. The results of the measurements are presented along with 
a short discussion of the particular measurement. The general discussion of the total prediction 
model with the conclusions is shown in chapter 7. Unless stated otherwise, the results in this 
chapter are expressed as mean ± 1 standard deviation (SD). Differences of a measurement M 
relative to a standard G is for absolute differences expressed as M - G and for relative differences 
as ( M - G) / G. Accuracies are expressed as the mean relative differences. Field sizes are expressed 
at the isocenter planes and results for the portal plane predictions and measurements are expressed 
in portal plane coordinates, radiological thickness is expressed as polystyrene equivalent thickness. 

6.1 Input parameters for the model 

6.1.1 Attenuation coefficient 

In figure 6.l(a), the logarithm of the primary transmission is plotted against the polystyrene 
phantom thickness. The dotted line shows the ideal exponential decay if the beam was mono-. 
energetic, the attenuation coefficient of this dotted line can be calculated using eq. (2.2) and 
is estimated to be 0.048 cm- 1 . The deviation from this dotted line shows the decrease of the 
attenuation coefficient (beam hardening) due to the heterogeneous energy spectrum of the 6 MV 
photon beam. 

In figure 6.1 (b) the change in primary transmission for the off-axis points is shown. The primary 
transmission is normalized at the beam axis to show the difference with the off-axis points relative 
to the on-axis transmission. The attenuation coefficient increases (beam softening) for large off­
axis distances resulting in a lower primary transmission relative to the beam axis due to a lower 
mean energy of the photon beam. 

The results presented in figure 6.1 are also shown numerically in table 6.1. The point mea­
surements for the individual measurements are shown in the table B.1 of appendix B. 

6.1.2 Calculation of the scatter kernels 

The results for the transmission measurements are shown in figure B.l(a) of appendix B. The 
on-axis transmission is defined as the ratio of the dose measured with and without phantom. 

The beam profile is measured along the diagonal of the largest field: 24 x 24 cm 2 • This profile is 
normalized at the beam axis and shown in figure B.l(b ). Raw data is in table B.2 of the appendix 
B. 

The on-axis transmission measurements along with the open beam profile are the input for the 
fitting procedure described in section 4.4.2. The derived pencil beam scatter kemels for the two 
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Table 6 . 1: Primary transmission for various polystyrene (PS) phantom thicknesses for on- and off-axis 
locations. Open beam values are corrected for the t reatment couch in the beam. 

PS Thickness 
[cm] Ocm 

0.0 1.0000 
4.3 0.8125 
8.6 0.6673 
12.9 0.5490 
17.l 0.4567 
21.4 0.3803 

Primary Transmission 
0 
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(a) On-axis primary transmission values as a func­
tion of t he polystyrene phantom thickness. 

Off-Axis Distance 
3cm 6cm 9cm 

1.0000 1.0000 1.0000 
0.8155 0.8127 0.8097 
0.6686 0.6634 0.6567 
0.5497 0.5464 0.5369 
0.4561 0.4507 0.4430 
0.3790 0.3747 0.3665 

Normalized Attenuation Coefficient 
1.02 
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(b) Off-a.xis beam softening. Resu lts are normalized 
at the beam axis. 

Figure 6.1: Primary transmission as a function of phantom thickness (a) and normalized off-axis trans­
mission, normalized at the beam axis (b). The dashed line through plot (a) represents the ideal attenuation 
for a mono-energetic beam, deviations from this line show the decrease in attenuation coefficient. 
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approaches, the parallel and the kemel tilting approach, are shown in figure B.2 of appendix B 
and figure 6.2, respectively. In these two figures the three kemel functions: Isotropic, Gaussian, 
and the Klein-Nishina function are shown along with the residual difference of the fit. This 
residual difference is the relative difference of the calculated/fitted transmission compared with 
the measured transmission. The fitted coefficients of the different scatter kemels are shown in 
table B.3 and B.4. The maximum beam width used for the fitting procedure is 24 cm, this results 
due to beam divergence in a distance off-axis of 18 cm. The kemel values for distances larger than 
18 cm are extrapolated from the coefficients of the scatter kernel that are fitted in the region 0 -
18 cm. 

The kernels can be fitted to the measured data within 0.23 of the measured value, except for 
the Klein-Nishina kernel in the tilting approach. This kernel shows differences up to 0.43, see 
figure 6.2f. The Klein-Nishina kernel has only one fitting parameter: the amount of scatter at the 
beam axis . The width of the kernel is defined by the Compton differential cross section and is 
kept fixed to represent a 6 MV photon beam. This kemel in the tilting approach is probably not 
a good description of the scatter kernel, based on the deviations of the shape from the other to 
two kernels and the higher error of the fit. 

The Gaussian scatter kernel in the parallel approach for a phantom thickness of 4.3 cm shows 
a deviation from the other kernels. This can be due to the low amount of scatter that is created 
from the thinnest phantom resulting in a low scatter to primary signal. Because of this low scatter 
signal the fit is very sensitive to errors in the measured signal. 

The shape of the kernels is interesting. If the scatter kemels are calculated with the parallel 
approach the scatter distribution will be higher towards the beam axis but fall off faster compared 
to the kernel tilting approach. To make a quantitative comparison between the different kernels 
the width of the kemels and the magnitude are investigated. The width of the various kemels can 
be expresses as the Half Width at Half Maximum (HWHM) and the magnitude is defined as the 
on axis scatter transmission. The magnitude and HWHM for the different kernels are shown in 
table 6.2. 

The magnitude is increasing with phantom thickness. This is due to the increased amount of 
scatter that is created by the primary beam because there is more phantom material. The amount 
of scatter gradually levels off with larger phantom thicknesses due to the loss of intensity of the 
primary beam and the attenuation of the scattered photons becomes larger than the generation 
of new scattered photons by the weakening primary beam [26]. 

The HWHM decreases for larger phantom thicknesses. This decrease in HWHM is a result of 
two effects. The first effect is that the beam hardens for larger phantom thicknesses (increase in 
mean energy) and the scatter is more forward peaked for higher energies. The second effect is that 
the air gap is smaller for larger phantom thicknesses and the angular spread of scatter photons 
is thus smaller. This HWHM also explains why the Klein-Nishina kernel in the parallel approach 
has almost the same accuracy of the fit as the other two kernels. The shape, defined mainly by 
the magnitude and width, of the three kernels is almost identical. In the kernel tilting approach 
this does not hold for the Klein-Nishina kemel with the parameter z = 50 cm, see eq. (4.8) . The 
fit cannot be made within 0.23 and shows a systematic trend error. However if this parameter is 
adjusted to the (non-physical) value of 1.5 · 50 = 75 cm, and the fit is done again, then the HWHM 
increases to 28.46 cm and the kernel difference between measurement and fit is again similar to 
figure B.2f. 

Concluding, the magnitude first increases rapidly with phantom thickness and levels off for 
larger phantom thickness. The HWHM decreases with phantom thickness due to the increase in 
mean energy of the beam and the smaller air gap between phantom and detector. 

6.1.3 Verification of the derived kernels 

In figure 6.3 the differences are plotted between the calculated and the measured transmission. In 
this plot, the values for measured field sizes 5x20 cm2 and 20x5 cm2 are combined as well as the 
values for 10x20 cm2 and 20x10 cm2 . This to average out any ftuctuations in the measured data 
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Figure 6.2: T ilted approach: F itted kem els (left) and the residual difference of the measurements from 
t he fit (right) expressed as a percentage. 
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Table 6.2: The magnitude and the Half Width at Half Maximum (HWHM) for the three kem els in the 
parallel and the tilted approach 1 . 

Parallel approach 
lso tropie Gaussian Klein-Nishina 

Thickness Magnitude HWHM Magnitude HWHM Magnitude HWHM 
[cm] [10- 4 cm- 2] [cm] [10- 4 cm- 2] [cm] [10- 4 cm- 2] [cm] 

4.3 0.516 47.09 0.503 81.39 0.609 18.97 
8.6 1.141 21.67 1.135 20.29 1.187 18.97 
12.9 1.450 19.14 1.442 18.01 1.449 18.97 
17.1 1.716 18.87 1.700 17.93 1.706 18.97 
21.4 1.887 17.68 1.864 16.96 1.830 18.97 

Kernel tilting approach 
Isotropic Gaussian Klein-Nishina 

Thickness Magnitude HWHM Magnitude HWHM Magnitude HWHM 
[cm] [10- 5 cm- 2] [cm] [10-5 cm- 2] [cm] [10- 5 cm- 2] [cm] 

4.3 2.278 80.42 2.235 122.52 3.297 18.97 
8.6 5.072 32.51 5.043 30.45 6.449 18.97 
12.9 6.444 28.72 6.408 27.02 7.874 18.97 
17.1 7.628 28.30 7.556 26.91 9.272 18.97 
21.4 8.387 26.52 8. 285 25.44 9.944 18.97 

T he relat ion between fitt ing parameters and HWHM: H W H M1 sotropic = c2(t)V41/ 3 - 1, H W H Maau ss = J cl
2
n(;) 

a nd H W H MKl ein-Nishina = 18.97 cm. 

1 Note t hat t he parallel and the kernel t ilt ing approach are equal once a latera l sealing factor (1.5) and 
t he magnit ude sealing factor (1.52 ) is taken into account . T his off course does not hold for t he Klein-Nishina 
kernel because the widt h is taken as a constant for t his kernel. 
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Figure 6.3: Verificat ion of the derived kemels. Difference between calculated and measured on-axis 
transmission values in case of rectangular fie lds. 

by assuming a radial symmetry of t he photon beam. T he results of the raw measurements as well 
as the prediction of t he on-axis transmission are shown in table B.5 of appendix B. 

T he differences between predicted and measured transmission values are small and comparable 
for the two approaches. T here is a systematic under-est imation of t he fit of 0.3% but this is within 
t he measurement accuracy of the point detector. 

6.1.4 Scatter kernels for other air gaps 

To analyse the infiuence of the phantom position on t he shape of the scatter kem els, measurements 
are done for other phantom detector distances. 

Kernels are derived for the Gaussian fit function and the t il ted approach, kernels for the other 
two fitt ing functions are comparable to the Gaussian kernel. Resul ts are shown in figure 6.4(a) 
and 6.4(c) for t he 8.6 and t he 17.1 cm phantom respectively. T he accuracy of the fi t is again 
wit hin 0.23 of t he measurements . 

As expected when t he lower side of t he phantom is placed at the isocenter plane (result ing in 
a larger air gap between phantom and detector) t he kem el is wider and there is a lower on-axis 
scattered t ransmission (dashed line in figure 6.4). If the phantom is placed with the upper side of 
t he phantom at the isocenter, a smaller air gap between phantom and detector is created. T his 
results in a higher magni tude and t he kernel is more sharply peaked in forward direction (dot ted 
line). The magnitude and HWHM are shown in table 6.3. 

This behavior can be explained by taking into account the center-of~mass. T he scatter in t he 
EHP concept is assumed to be originating from the center-of-mass of the phantom. T he scatter 
kem els for t he different MDDs are approximately equal once a sealing factor represent ing t he 
divergence is t aken into account. T he sealing factor depends on the distance of t he midplane 
to detector a nd is (MDD / 50.0)2

. T his sealing factor is applied to both t he magnit ude and t he 
HW HM. Figure 6.4(b) and (d) show t he scatter kem els as they are scaled for divergence, in table 
6.3 t he scaled magnit ude and HWHM are also shown. 

T he scaled scatter kernels are approximately equal, this is an important resul t because it 
supports the t heory of t he EHP concept. The scatter that is the result of a pencil beam can be 
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Figure 6.4: Gaussian pencil beam scatter kemels (a) / (c) and scaled kemels (b)/(d) for different midplane 
to detector distances . 

Table 6.3: Magnitude and half width at half maximum (HWHM) of the Gaussian kemel in the tilted 
approach shown in figure 6.4 for varying midplane to detector distances (MDD). 

Phantom Scaled Scaled 
Thickness MDD HWHM Magnitude HWHM Magnitude 

[cm] [cm] [cm] [10-5cm-2] [cm] [10-5cm- 2] 

8.6 45.7 23.48 5.935 28.10 4.958 
8.6 50.0 30.45 5.043 30.45 5.043 
8.6 54.3 35.96 4.089 30.04 4.894 
17.1 41.5 18.38 10.95 26.75 7.525 
17.1 50.0 26.91 7.556 26.91 7.556 
17.1 58.6 40.29 5.467 27.69 7.955 
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Figure 6.5: Difference calculated and measured on/off axis transmission for the parallel (top) and the 
tilted (bottom) approach for the field size 5x24 cm2 for the three fitted kem els. Differences are expressed 
relative to the measured transmission. 

replaced by a point located with the same radiological mass symmetrically distributed around the 
center of mass along the pencil beam ray line. The scatter can be assumed to originate from that 
point, the scatter kemels can be calculated for an arbitrary MDD by rescaling it to the new MDD. 

6.2 Homogeneous phantoms 

6.2.1 Off-axis dependency 

The relative differences between calculated and measured transmission values for on- and off-axis 
positions are graphically shown in figure 6.5 and 6.6. In table B.6 and B. 7 of the appendix B, the 
raw data are shown. 

The difference between predicted and measured transmission for both the parallel as well as 
the t ilted approach are small. For the parallel approach, the mean differences averaged over all 
measurements are -0.17±0.42%, - 0.11±0.33% and -0.13±0.31 % for the Gaussian, isotropic and 
Klein-Nishina kemels, respectively. For the tilted approach these differences are 0.13±0.26%, 
0.16±0.28% and 0.34±0.32%, respectively. 

Looking at these overall results, there is not much differences between the two approaches and 
the three different kemels. However, if one looks in detail to the individual data points, there are 
differences in case of the parallel approach. The errors are higher for larger off-axis distances and 
thicker phantoms. This is most clearly seen for the large field 15 x24 cm2 and for the thickest 
phantom of 21 .4 cm. The scatter contribution is the largest for this configuration, i.e. an on­
axis scatter-to-primary ratio of 17%. The parallel approach shows a systematic smaller predicted 
transmission for the larger fields and larger phantom thicknesses; the errors in total predicted 
transmission can be as large as 2%. This does not occur for the kemel tilting approach. 

The explanation for this larger error is a result of the parallel approach. In this approach 
the location of the field edge is located 12 cm from the beam axis, while the measuring point is 
9 · 1.5 = 13.5 cm from the beam axis due to divergence. The smaller transmission value is due to 
the fact that the beam divergence is not included in the scatter close calculation. The scatter close 
is calculated as if it is not dependent on the incident angle of the beam on t he photon (see figure 
4.3). 
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Figure 6.6: Difference calculated and measured on/off axis transmission for the parallel (top) and the 
tilted (bottom) approach for the field size 15x24 cm2 for the three fitted kemels. Differences are expressed 
relative to the measured transmission. 

Based on both the on- and off-ax:is results for the homogeneous phantoms, the kemels 
in the tilting approach in combination with the Gaussian or the isotropic kemel show 
good agreement with measurement. The shape of the two kemels is approximately the 
same, no differences in accuracy are expected between these two kemels. The predictions 
for the other phantoms in this chapter are clone with the Gaussian kernel in the tilting 
approach. Based on the differences in figure 6.5 and 6.6, the overall accuracy of the 
method representing the fitting geometry for homogeneous phantoms is estimated to be 
within 0.63. 

The results also show that it is not necessary to derive different kemels for off-axis distances. The 
scatter kemels are fitted to the on-axis transmission measurements hut can also be used for off-axis 
distances. This observation supports the use of the pencil beam concept: the substitution of the 
incident beam as a superposition of many small pencil beams. 

6.2.2 Field symmetry dependency 

Results for the asymmetrie field are shown in figure 6. 7 for two cross-sections of the two-dimensional 
close distribution, at y=O cm and x=5.5 cm. 

Differences are calculated along these two cross sections and are smaller than 13, except for 
the points placed at steep close gradients on the field edges (x=-12,-10,-2 and 0 cm), (y=-18, 
-16 and +18 cm). Differences for the 8.54 cm phantom are 0.17±1.073 and -0.08±0.583 for 
the x and y profile, respectively; for the 17.12 cm phantom these differences are 0.25±1.293 and 
-0.17±0.793. The accuracy is similar to the accuracy presented in the previous section for the 
homogeneous phantoms with symmetrie fields. The accuracy of the model does not depend on 
field size or the field symmetry. 

6.2.3 Air gap dependency 

Results of predieted and measured close distributions are shown in figure 6.8 and 6.9 for phantoms 
Hl and H2, respectively. 

The relative close differences for phantom Hl and H2 compared to the fitting geometry, situ­
ation (a) are x: 0.60±1.403 y: 0.90±0.413, and x: 0.77±1.413 y: 0.82±0.733 for the Hl and 
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Figu re 6.7: Results for the asymmetrie field. The lower right plot shows the phantom with two ray lines 
indicating the field edges. The upper right plot shows the predicted two dimensional close distribution, 
the close along the two indicated lines at y=O cm and x=5.5 cm is shown in the upper left and middle 
plot. The upper left and middle plot consist of three lines, from top to bottom these are the open close 
profile (solid line) , close profile for the 8.5 cm PS (crosses) and 17.1 cm PS phantom (circles), respectively. 
Differences in the lower plot are expressed as relative difference between predicted and measured close 
normalized to the total on-axis close. 
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Figure 6.9: Different air gaps between phantom H2 and detector. P hantom thickness is 17.12 cm. In 
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(b) ( circles) and placement ( c) (squares). The lower two plots show the difference of the predicted and 
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H2 phantom respectively. For the situation (b) / ( c) the measured dose is higher / lower than for 
situation (a) due to the decreased/ increased air gap. 

For phantom Hl which is the thinnest phantom of the two, the resulting relative differences are 
small due to the small amount of scatter and the high primary dose, x: 0.10±1.38% y: 0.40±0.45% 
and x: 1.27±1.44% y: 1.39±0.51% for situation (b) and (c) respectively. 

For phantom H2 the thickest phantom of the two, the resulting relative differences are larger 
due to the higher amount of scatter and the lower total dose, x: -1.30±1.56% y:-1.34±0.80% 
and x: 2.54±1.52% y: 2.52±0.78% for situation (b) and (c) respectively. 

The differences for the situations (b) and ( c) can be explained by taking into account the air 
gap, if the pencil beam scatter kemels are rescaled to take into account the different air gap (as 
described in section 6.1.4), then the differences are again small, e.g. for Phantom H2 (b) the 
differences are then 0.35±1.41 % and 0.30±0.58%, for the x and y cross-section. 

From the errors in the prediction presented above a quick rule of thumb can be developed to 
estimate the error that is made if the phantoms midplane is not coinciding with the isocenter 
midplane. This rule of thumb is as follows: 

Error [%] = (PS eq. thickness [cm] / 8.6 cm) x (displacement center-of-mass [cm] / 10 cm). 

The differences of the prediction and the measured dose distribution for situation (a), representing 
the fitting geometry, can maybe be explained by two factors, first the exact PS thickness can 
deviate from the used PS thickness. This is estimated to be approximately 1 mm, this results in 
a dose difference of 0.4%. And second the actual measurement is estimated to be correct within 
0.4%. 

6.3 Inhomogeneous phantoms 

The inhomogeneous phantoms analyzed in this section are made out of polystyrene and cork. The 
attenuation coefficient for polystyrene is described in section 6.1.l. The attenuation of cork can 
be related to the attenuation of polystyrene. The attenuation of the cork is estimated in a similar 
way as described in section 6.1.1, i.e. extrapolation to a field size of OxO cm2

• The primary 
transmission for a slab of cork of 12.4 cm thickness is estimated to be 0.8886, resulting in: 1 cm 
cork = 0.21 cm polystyrene. 

6.3.1 Midplane symmetry dependency 

Results for phantom D are shown in figure 6.10 for two profiles located at the coordinates x=O cm 
and y=O cm. 

The average differences along the x and y profile are -0.59±1.51% and -0.57±0.63%. The 
dose difference is generally smaller than 1.5%, except for the areas with steep close gradients. The 
a small systematic under-prediction of around -0.6% can maybe be explained by the conversion 
of the total phantom to equivalent homogeneous (polystyrene) thickness; a difference of -0.6% 
indicates that that the real polystyrene equivalent thickness is ±2 mm thicker than the used 
thickness. 

This result for the inhomogeneous phantom supports the use of the equivalent homogeneous 
phantom (EHP) concept: a highly inhomogeneous phantom can be replaced by its equivalent 
homogeneous thickness. 

6.3.2 Midplane asymmetry dependency 

Results of measurements in case of phantoms A, Bl and B2 are shown in figure 6.11. 
The differences for the midplane symmetrie phantom A are small , -0.06±1.43 and -0.02±0.67% 

for the x and y cross section. This small error is expected because the phantom is midplane 
symmetrie. The errors for the x and y cross section for phantom Bl are -0.35±1.42% and 
-0.46±0.68%, and for phantom B2 0.64±1.48% and 0.54±0.59%. These results can be explained 
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Figure 6 .10: Phantom D is shown schematically in the lower right plot. The top right plot shows 
the predicted close with superimposed the two cross section examined. These measured close (crosses) is 
sh~wed in the upper left and middle plot. The solid represent from top to bottom line: the open beam 
close, the predicted close, primary close and the scattered close. The SPR ratio at the beam axis is 0.071. 
Th~ differences between prediction and measurement are shown in the bottom plots. 
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plots are expressed relative to the on axis close. 



46 Results of the Prediction Model 

by taking into account the center-of-mass of the phantom, similar to the results of the homoge­
neous case presented in section 6.2.3. For phantom Bl this center-of-mass is shifted towards the 
bottom of the phantom and for phantom B2 shifted towards the upper side of the phantom. For 
phantom B2 this results in a larger distance of the center-of-mass to detector and the scatter that 
is assumed to be produced at that point, is spread due to divergence over a larger area of the 
detector with a lower magnitude. Phantom Bl has a smaller center-of-mass to detector distance 
so the scatter is more forwardly peaked and higher in magnitude. 

The shift in center-of-mass can be calculated and is estimated to be 2.34 cm towards/away 
from the detector, for phantom Bl an B2. The error in the prediction made for this displacement 
of the center-of-mass is on average -0.4% and +0.6% for phantom Bl and B2 respectively. This 
is in agreement with the rule of thumb for the estimation of the error made for the homogeneous 
phantoms described in section 6.2 .3 that are displaced relative to the detector. The scatter kemels 
can be rescaled to take into account the new phantom midplane-to-detector distance as described 
in section 6.1.4; the differences for phantom Bl are for the x and y cross-section 0.40±1.41 and y: 
0.27±0.66%, respectively. For phantom B2 these differences are -0.03±1.49 and -0.11±0.59%, 
respectively for the x and y cross-section. 

6.3.3 3 Slab phantom 

Results for phantom C are presented in figure 6.12. 
For the cross sections (a) - (d) the differences between prediction and measurement are gen­

erally smaller than 1% except for the point at the steep close gradients; (a)- (c): x=-14, -12, 
-10, 10, 12 and 14 cm, (d): y=-6 and 6 cm. The average values1 for the cross-sections (a), 
(b), (c) and (d) are - 0.75±0.19%, -0.69±0.19%, - 0.57±0.27% and -0.67±1.86%, respectively. 
The systematic under prediction of around - 0.6% is systematic but nevertheless not large and 
comparable to the accuracy achieved with the homogeneous phantoms. 

From the results presented for the inhomogeneous phantoms one can conclude that the 
model has an accuracy of 2% for the prediction of the portal close distribution if the 
phantoms radiological midplane is coinciding with the isocenter plane. 

6.4 Clinical study 

The final case presented is the treatment of a breast cancer patient. The parameters of the 
treatment are discussed in section 5.4. The predicted portal close is shown in the top right plot of 
figure 6. 13. On the left the predicted and the measured close are shown for two cross sections along 
the x and y axis. To evaluate the prediction results the differences are not evaluated by a point by 
point comparison of the close as was clone for the previous results. A frequently used method to 
compare close distributions in radiotherapy is the so-called gamma method. This method is also 
suitable to compare the close distributions in regions of steep close gradients. The usual accepted 
accuracy in radiotherapy is a close difference smaller than 3%, or in regions of steep close regions 
a spatial mismatch of the close of 3 mm. The gamma method can take into account these both 
criteria and the mathematica! framework is explained in appendix C. The close criterion is set 
to 3% maximum close difference and the spatial criterion is set to 5 mm (this is 3.3 mm in the 
isocenter plane). The value of 'Y then expresses the difference. If this value is 0 then the predicted 
and measured close are equal in that point, if the value is 1 then either the close difference is 3% 
or there is a spatial shift of the close of 5 mm (or a combination of both, e.g. 2.1 % close difference 
with a shift of 3.5 mm). 

The predicted close matches well with the measured close, i.e. 1-values below 1 over large 
regions in the portal image. The differences that are measured are in the region where there is no 
tissue (the two triangular shaped regions around (x,y)=(8,8) and (3,-10)), or at steep gradients in 

1The values at the steep dose gradients are not included in the average results. 
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the radiological thickness ( around ( x,y) = ( - 2, - 7)). The difference in the clinical region of interest 
is small, 'Y values below 1, indicating a close difference of below 3%. 

The clinical case is presented to show the feasibility of the method. If there are differences 
between the prediction and the measurement, these differences are difficult to interpret. Large 
differences can exist due to a difference in position or deformation of patient anatomy between 
the reference CT and the actual measurement during treatment. 

The prediction of the portal images is estimated to be within 3% of t he measured portal dose 
for large areas of the portal image; differences found are most likely to be due toa different patient 
position/anatomy during t reatment for this clinical casestudy. 



Discussion and Conclusion 

In this chapter, the results derived in the previous chapters will be discussed in genera!. A 
detailed discussion about the specific measurements was already presented in the previous chapters. 
This chapter will give an overview of results in genera! terms. At the end of this chapter, some 
conclusions are drawn. 

Attenuation coefficient 

The attenuation coefficient for on- and off-axis distances is measured for small fields and extra­
polated to the transmission at a zero field size. The attenuation coefficient for a specific off-axis 
distance and thickness is found by interpolation between the measured data points. This interpo­
lation step can be removed by fitting the measurements to a model that takes into account both 
off-axis distance and thickness [34, 35]. The attenuation coefficient is then not sensitive to the 
individual measurements but described by the parameters of the model. 

Pencil beam scatter kernels 

The scattered close is estimated with the superposition of the scatter kemels. The scatter kemels 
are derived experimentally from measurements. Because the generation of a pencil beam is not 
possible, a work-around method is presented. The ultimate verification of the derived kemels 
is by comparing the derived kemels with Monte Carlo simulations1. In literature, these kemels 
are described f.e. by Hansen et al [26] or by McCurdy et al [30]. A direct comparison with 
these two publications is however not straightforward because the scatter kemels derived here are 
measured under full scatter conditions while in literature often only photon fiuence is described. 
The conversion from photon fiuence to close is not trivia! because the energy of the scattered 
photon has to be taken into account. Measurements presented in this report are performed under 
full scatter conditions in a water tank, this makes a comparison with literature difficult. Because 
of the considerations mentioned above, no comparison with other studies is clone. 

Another possibility to improve the pencil beam scatter kemels, other than Monte Carlo simu­
lations, is to derive an analytica! function to describe the scatter kemel. With such an analytica! 
model it is possible to fit the measurements for all the phantom thicknesses to a scatter kemel 
function , and not only fit the kemel function to one particular phantom thickness as is clone in this 
report. The magnitude and half width at half maximum for the different phantom thicknesses can 
be explained qualitatively but to cast these observations in a mathematica! framework is currently 
not possible, however there are some first approaches presented in literature [2, 27]. 

A first attempt to develop an analytica! model was shown in this report by fitting the kemels to 
the Klein-Nishina differential cross section. The Klein-Nishina kemel did not describe the scatter 

1 A Monte Carlo code is currently available at MAASTRO CLINIC, but with this method it is not (yet) possible 
to simulate a pencil beam. Also the separation between primary and scattered dose was not possible. 
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1 

kemel accurate. There are several reasons for this. First, the Klein-Nishina kemel assumes that 
photons only scatter once. This is an approximation that is correct for thin phantoms. However for 
thicker phantoms, the higher order scatter becomes more important and can account for another 
203 of the scatter signal for a 6 MV beam [27]. Second, the Klein-Nishina cross-section only 
predicts the direction of the scattered photon; the energy of the scattered photon also depends

1 
on 

this correction. This energy is important because the scatter is measured not as a photon fluence 
counter but as close measured under full scatter conditions in a water phantom [2]. Third, the 
mean energy of the photon beam is not constant. Beam hardening will occur for larger phantom 
thicknesses, which results in a higher mean energy. The Klein-Nishina differential cross section 
decreases for higher photon energies, resulting in a decrease in width of the scatter kemel. So if 
the mean energy is a function of the phantom thickness, the decrease in width of the kemel ,for 
larger phantom thicknesses can be taken into account. If the presented improvements above of 
the model are taken into account, then the close prediction model with the Klein-Nishina kemel 
can improve. 

The use of the EHP and pencil beam concept 
1 

The pencil beams derived for other air gaps show that the kemels can be scaled with divergence 
as if the scatter is created at the center-of-mass of the phantom. This is in agreement with other 
Monte Carlo studies [26]. This property of the scatter kemels is the justification of the use of the 
equivalent homogeneous phantom for the prediction of the scattered close in the portal image. 

The model uses the pencil beam concept for the prediction of the scattered close in the portal 
image. The scatter kemel used is the same for the on- and off-axis locations. This is an assumption 
that is not strictly true because the amount of scatter that is created at a fixed distance behind ~he 
phantom depends in the first place on the thickness of the phantom but second also on the energy 
spectrum of the photon beam. This photon beam has a lower energy off-axis (beam softening) so 
a higher amount of scatter will be created at the off-axis points. This second property is however 
very small. The use of different pencil beam scatter kemels for the off-axis locations is, based on 
the results of the phantom study, not necessary. 

The model predicts the close based on the hypothesis that the pencil beam scatter only depends 
on the radiological thickness and the distance of the center-of-mass along the ray line. Because the 
scatter kemel is assumed to be radial symmetrie, this is not necessarily true for highly inhomoge­
neous densities. These inhomogeneities can break the radial symmetry and the kemel is then not 
a good representation of the scatter. However, this asymmetry only occurs for multiple scattered 
photons inside the medium in the region of high electron density gradients. The majority of the 
scattered photons that are detected are single scattered photons [27]. So the representation of the 
superposition of the incident beam with pencil beams remains valid in this case. 

Because the calculations and measurements are performed numerically with discrete data 
points, the resolution of the grid size can be of importance. The incident pencil beam grid is 
scaled to the dimensions of the portal close grid. This grid is fixed as a result of the pixel size in 
the EPID after the corrections from grayscale values to close are made; the pixel spacing is 3.1 mm. 
McCurdy et al [4] estimated the dependency of the close grid on the accuracy of the prediction 
by means of Monte Carlo simulations and found that a grid size of 5 mm was sufficient. A larger 
grid resulted in larger errors of the prediction and a smaller grid only increased the computation 
time and <lid not increase the accuracy. The grid size used in this report is 3.1 mm. So no effects 
of the grid size on the accuracy of the prediction model are expected. 

Overal accuracy of the model 

The overal accuracy of the model for the prediction of the portal close is estimated through various 
phantom measurements. The accuracy of the model does not depend on the field size, or on the 
field symmetry. For phantoms, either homogeneous or highly inhomogeneous, the accuracy is 
estimated to be within 23 of the measured dose. This is true if the center-of-mass of the phantom 
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is located at the isocenter plane. Deviations from this criterion result in a larger error that can 
be estimated by a simple rule of thumb. 

Further improvements of the model 

The model presented here is only fitted to a clinical 6 MV photon beam. The linear accelerators 
used currently at MAASTRO CLINIC, Elekta SL15s, also produce a 10 MV photon beam. This 
photon energy was not investigated in this report because the physics describing the interaction 
processes are more or less the same. The results from this model can also be used for a 10 MV 
beam. In fact, the scatter produced by a 10 MV beam in general decreases for higher photon 
energies, so the 6 MV is most suitable to test the prediction model. The differences of the model 
for a 10 MV instead of a 6 MV beam will be a smaller attenuation coefficient and the scatter 
kemels will have a lower magnitude and smaller width. 

The possible use of a wedge is also not implemented in the model. The use of statie wedge 
extends the prediction model. The attenuation coefficient of the model must be adjusted slightly 
to incorporate the beam hardening effects that occur in a statie wedge, see [25]. For the imple­
mentation of a virtual wedge there are no modifications of the model necessary because the wedge 
is produced by a difference in fluence created by a moving collimator jaw. 

Extraction of radiological thickness 

Another feature of the model is the iteratively reconstruction of the radiologica! thickness, see 
section 4.5. The input for this reconstruction is the open beam close profile and the measured close 
profile. To make a comparison with the prediction model , the radiological thickness of phantom C 
is extracted based on the open and the measured close distributions. The results of this radiologica! 
thickness extraction are shown in figure 7 .1. 

The radiologica! thickness, expressed as polystyrene equivalent thickness, can be extracted 
with an accuracy generally below 5 mm, excluding the regions of steep close gradients. This 
maximum difference of 5 mm is related to a maximum close difference2 of ±1 %. If the measured 
close distribution is used without a correction for the scattered close then the radiologica! thickness 
is underestimated up to 3 cm. This would result in an overestimation of the primary close up to 
8%. 

The model iteratively reconstructs the radiologica! thickness which is directly related to the 
primary close. An advantage of the superposition with the scatter kemels is that the scattered 
close in the portal image has no steep gradients in the close and is a slowly varying function of the 
phantom properties and off axis location. This is an advantage if the model is used to calculate 
the radiologica! thickness iteratively; the solution will converge to a stable solution within a few 
iteration steps. Most of the time 2 or 3 iteration loops are sufficient [36]. The extraction of the 
thickness in figure 7 .1 is clone with only two iteration loops. 

The extraction of the primary close is more interesting than the extraction of the radiologica! 
thickness. The primary close is input for the three-dimensional close reconstruction as described 
in chapter 1 but can also be used to correct for scatter in the images obtained by a cone beam CT 
scan. This leads to a better reconstruction of the CT data / electron density map as described by 
[36]. 

Furthermore, the model can be used to extract the incident beam profile from the measured 
portal image and the CT scan. This can be a valuable tool for the evaluation of intensity modulated 
radiation treatment (IMRT) fields during treatment [32]. 

2 Primary transmission TP is related to radiologica! thickness t through the attenuation coefficient µ. Difference 

in primary transmission t:i.TP is related to difference in radiologica! thickness l:i.t: TP = exp(-µt) ---+ d~tp = 
-µexp(-µt)---+ t:i.TP = -µexp(-µt) · l:i.t. 
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Figure 7.1: The results of the iterative reconstruction of the radiologica! thickness. In the upper and 
lower right plot the actual and reconstructed thickness are shown, respectively. The upper two plots on 
the left show some cross sections with the actual and reconstructed thickness, the solid lines are the actual 
thick~esses and the measurements are indicated with a symbol, the clash-dot line in the upper middle 
plot shows the thickness if not the primary close but the total close is used for the thickness estimation. 
Below these plots the absolute differences between extracted and actual thickness are shown. The vertical 
dashed lines indicate the field edges. 

Conclusion 

The described model in this report is able to predict the dose behind a phantom/ patient in a 
portal image based on the open beam dose distributions and a map of the radiological thickness 
of the phantom/ patient. The accuracy of the model is better than 2% if the center-of-mass of the 
phantoms/ patients is located at the isocenter plane. Deviations from this center-of-mass criterium 
results in an approximation of the predicted dose and the error can be estimated in advance by 
takincr the displacement of the center-of-mass and the radiological thickness into account. 

The problem with comparing treatment-time portal images with predicted portal images is that 
if there are deviations between these distribution the clinical importance is not easy to interpret. 
Deviations can f.e. occur due to a different patient set-up, incorrect dosimetrie performance of 
the linear accelerator or difference in patient anatomy (organ motion) [5]. The full gain of the 
acquirement of the portal dose images can be achieved by developing a way to relate this dose to 
specific points inside the patient. There are some studies [11, 37] describing such methods but 
finally a three-dimensional dose reconstruction will be the ultimate goal [13, 14]. Before this can be 
achieved, a detailed analysis of the dose in the portal image has to be made. This report describes 
this analysis, so the first step towards three-dimensional dose reconstruction is successfully made. 
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Semi-Analytica! Derivation of the Pencil 
Beam Scatter Kernels 

The method described here to derive the pencil beam scatter kemels (PBSK) is semi-analytical. 
This derivation is not used because of the time consuming procedures needed to perform the 
measurements: circular blocks have to be made out of cerroband to create circular fields. The 
blocks are attached to a tray and for measurement of a different field size the tray has to be 
replaced. 

The on-axis transmission values T(A, t) through homogeneous phantoms with radiological 
thickness t, irradiated with a circular field with area A can be fitted to a polynomial. The coeffi­
cients of the polynomial characterize the PBSK. Fitting the transmission values to a polynomial 
of N'th order: 

T(A,t) 
N 

ao(t) + ai(t)A + a2(t)A2 + · · · + aN(t)AN = L an(t)An. (A.l) 
n=O 

The coefficients an ( t) are related to physical parameters; ao ( t) is the primary transmission TP ( t) 
and is related to the effective attenuation coefficient µ 

(A.2) 

the coefficients a 1 (t), ... , aN(t) are related to the scattered transmission T 8 (A, t), using A = 7rr2 : 

(A.3) 

with O(r) the open beam close profile and K(t, r) t he PBSK. This PBSK can be analytically 
derived by differentiating the left and the right side of eq. (A.3): 

dT8 (A, t) 
dr 

(A.4) 
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rewriting eq. (A.4) yields 

K(t , r) 
N 

0(0) ( 2 ) 0(0) ~ 2 n-1 
O(r) al(t) + a2(t)27rr + · · · = O(r) ~ nan(t)[7rr ] 

N 
0(0) ~ n-1 
O(r) L nan(t)A . 

n=l 

(A.5) 

T he PBSK for a particular t hickness t can be derived from the coefficients an(t) of the poly­
nomial fit through the on-axis transmission measurements for various field sizes. 



Measurement Data 

In this appendix the raw measurement data from the various point measurements are shown as 
well as some figures representing this data. For an explanation of the tables and the figures see 
the text of the corresponding chapter. 
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Table B.1: On- and off-axis measured transmission for the derivation of the attenuation coefficient . 

Field Off-axis Polystyrene thickness 
si ze distance 4.3 cm 8.6 cm 12.9 cm 17.1 cm 21.4 cm 

[cm xcm] [cm] [-] [-] [-] [-] [-] 
3x3 0.0 0.7945 0.6527 0.5384 0.4473 0.3730 
4x4 0.0 0.7955 0.6527 0.5386 0.4481 0.3739 
5x5 0.0 0.7951 0.6530 0.5405 0.4487 0.3749 
3x3 3.0 0.7975 0.6537 0.5383 0.4470 0.3721 
4x4 3.0 0.7979 0.6539 0.5389 0.4472 0.3728 
5x5 3.0 0.7979 0.6537 0.5396 0.4485 0.3744 
3x3 6.0 0.7950 0.6490 0.5343 0.4414 0.3671 
4x4 6.0 0.7951 0.6489 0.5337 0.4416 0.3673 
5x5 6.0 0.7954 0.6493 0.5339 0.4425 0.3681 
3x3 9.0 0.7915 0.6422 0.5261 0.4337 0.3593 
4x4 9.0 0.7905 0.6419 0.5251 0.4342 0.3596 
5x5 9.0 0.7907 0.6422 0.5271 0.4347 0.3607 

Note that t he point measurements for the open beam are taken without t he treatment couch in 
the beam. The other measurements are taken with a phantom placed on this couch, to correct 
for this difference the factor 0.9778 has to be taken into account , this factor has to be multiplied 
with the measurement of the open beam to yield t he result that would have been acquired with a 
couch in place. This to compare the results with the other measurements clone in this report. 

Table B.2: On-axis point measurements for the derivation of t he pencil beam scatter kem el. Values are 
expressed as on-axis transmission. With treatment couch in the beam for measurement of t he open beam. 

Polystyrene thickness 
Field size 4.3 cm 8.6 cm 12.9 cm 17.1 cm 21.4 cm 

[cmxcm] [-] [-] [-] [-] [-] 
3x3 0.8155 0.6706 0.5533 0.4593 0.3831 
6x6 0.8174 0.6720 0.5568 0.4633 0.3875 

lO x lO 0.8208 0.6795 0.5661 0.4742 0.3995 
15 x 15 0.8274 0.6937 0.5829 0.4934 0.4199 
21x21 0.8370 0.7132 0.6095 0.5227 0.4513 
24x24 0.8450 0.7255 0.6220 0.5389 0.4684 

Table B.3: Parallel approach: Fitted kem el parameters for the various functions . 

Isotropic Gaussian Klein Nishina 
Thickness Ct C2 C3 C1 C2 C3 Ct C2 

[cm] [-] [cm] [-] [-] [cm- 2] [cm- 2] [-] [-] 
4.3 0.8155 61.45 0.1949 0.8155 1.046·10- 4 0.503·10-4 0.8150 0.1521 
8.6 0.6688 28.27 0.0912 0.6688 1.683·10-3 1.135·10-4 0.6685 0.2969 
12.9 0.5509 24.97 0.0904 0.5509 2.139·10-3 1.442·10-4 0.5509 0.3623 
17.1 0.4576 24.61 0.1040 0.4576 2.155· 10- 3 1.700·10-4 0.4579 0.4266 
21.4 0.3811 23.06 0.1004 0.3812 2.410·10- 3 1.864·10-4 0.3814 0.4574 
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Figure B.1: Total transmission T(A , t) vs. beam width (a ) and the normalized beam profile (b) . 

T a ble B.4: Tilted approach: Fitted kemel parameters for the various functions . 

Isotropic Gaussian Klein Nishina 
Thickness C1 C2 C3 C1 C2 C3 C1 C2 

[cm] [-] [cm] [-] [-] [cm- 2] [cm-2] [-] [-] 
4.3 0.8155 104.93 0.2508 0.8155 4.618·10 5 2.235·10 5 0.8144 0.0825 
8.6 0.6688 42.42 0.0913 0.6688 7.477·10-4 5.043·10- 5 0.6673 0.1612 
12.9 0.5509 37.47 0.0905 0.5516 9.496·10-4 6.408·10- 5 0.5494 0.1968 
17.1 0.4576 36.93 0.1040 0.4576 9,575.10- 4 7.556·10-5 0.4558 0.2318 
21.4 0.3811 34.60 0.1004 0.3812 1.071·10-3 8.285·10- 5 0.3795 0.2486 
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Figure B.2: Parallel approach: Fitted kemels (left) and the residual difference of the measurements from 
the fit (right) expressed as a percentage. 
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Table B.5: On-axis calculated and measured transmission for the parallel and the tilted approach and 
for the three fitted kemels. Open beam with treatment couch in the beam. 

Tilted Kernels Parallel Kernels 
Field size Thick- Klein- Klein-

x x y ness Measured Gaussian Isotropic Nishina Gaussian Isotropic Nishina 
[cmxcm] [cm] [-] [-] [-] [-] [-] [-] [-] 

5x20 4.3 0.8213 0.8177 0.8178 0.8190 0.8175 0.8178 0.8183 
10x20 4.3 0.8282 0.8229 0.8230 0.8252 0.8225 0.8230 0.8240 
20x5 4.3 0.8223 0.8177 0.8178 0.8190 0.8175 0.8178 0.8183 
20x10 4.3 0.8271 0.8229 0.8230 0.8252 0.8225 0.8230 0.8240 
5x20 8.6 0.6780 0.6784 0.6784 0.6800 0.6784 0.6784 0.6786 

10x20 8.6 0.6904 0.6892 0.6892 0.6920 0.6892 0.6892 0.6897 
20x5 8.6 0.6807 0.6784 0.6784 0.6800 0.6784 0.6784 0.6786 
20x10 8.6 0.6900 0.6892 0.6892 0.6920 0.6892 0.6892 0.6897 
5x20 12.9 0.5662 0.5635 0.5635 0.5649 0.5635 0.5635 0.5632 

10 x20 12.9 0.5797 0.5775 0.5775 0.5800 0.5775 0.5775 0.5770 
20x5 12.9 0 .5666 0.5635 0.5635 0.5649 0.5635 0.5635 0.5632 
20x10 12.9 0 .5792 0.5775 0.5775 0.5800 0.5775 0.5775 0.5770 
5x20 17.1 0.4743 0.4730 0.4731 0.4750 0.4730 0.4731 0.4730 

10x20 17.1 0.4898 0.4889 0.4889 0.4923 0.4889 0.4890 0.4889 
20x5 17.1 0.4747 0.4730 0.4731 0.4750 0.4730 0.4731 0.4730 
20x10 17.1 0.4892 0.4889 0.4889 0 .4923 0.4889 0.4890 0.4889 
5x20 21.4 0.3993 0.3981 0.3981 0.3999 0.3981 0.3981 0.3978 

10 x20 21.4 0.4156 0.4153 0.4153 0.4184 0.4153 0.4153 0.4148 
20x5 21.4 0.3998 0.3981 0.3981 0.3999 0.3981 0.3981 0.3978 
20x10 21.4 0.4157 0.4153 0.4153 0.4184 0.4153 0.4153 0.4148 

Table B.6: Measured and calculated off-axis transmission for a 5x24 cm2 field for the three kemels. 
Open beam without treatment couch in the beam. 

Off- Kernel Tilting approach Parallel approach 
Axis Thick- Klein Klein 

Distance ness Measured Gaussian Isotropic Nishina Gaussian Isotropic Nishina 
[cm] [cm] [-] [-] [-] [-] [-] [-] [-] 
0.0 4.3 0.8014 0.8006 0.8006 0.8017 0.8006 0.8006 0.8011 
0.0 8.6 0.6644 0.6652 0.6652 0.6666 0.6652 0.6652 0.6654 
0.0 12.9 0.5532 0.5526 0.5526 0.5510 0.5526 0.5526 0.5526 
0.0 17.1 0.4645 0.4652 0.4652 0.4669 0.4652 0.4652 0.4652 
0.0 21.4 0.3915 0.3920 0.3921 0.3937 0.3920 0.3921 0.3918 
3.0 4.3 0.8044 0.8034 0.8035 0.8044 0.8034 0.8035 0.8038 
3.0 8.6 0.6643 0.6663 0.6663 0.6675 0.6661 0.6661 0.6663 
3.0 12.9 0.5527 0.5529 0.5530 0.5543 0.5527 0.5527 0.5527 
3.0 17.1 0.4636 0.4642 0.4642 0.4658 0.4638 0.4639 0.4639 
3 .0 21.4 0.3901 0.3903 0.3904 0.3918 0.3899 0.3900 0.3898 
6.0 4.3 0.8004 0.8007 0.8007 0.8012 0.8007 0.8006 0.8005 
6.0 8.6 0.6587 0.6606 0.6607 0.6615 0.6599 0.6600 0.6599 
6.0 12.9 0.5461 0.5489 0.5490 0.5499 0.5479 0.5480 0.5480 
6.0 17.1 0.4562 0.4579 0.4581 0.4591 0.4567 0.4569 0.4569 
6.0 21.4 0.3840 0.3850 0.3851 0 .3861 0.3835 0.3838 0.3837 
9.0 4.3 0.7969 0.7976 0.7976 0 .7975 0.7976 0.7974 0.7966 
9.0 8.6 0.6507 0.6532 0.6533 0.6535 0.6517 0.6520 0.6517 
9.0 12.9 0.5368 0.5385 0.5387 0 .5389 0.5363 0.5368 0.5367 
9.0 17.1 0.4470 0.4491 0.4493 0.4496 0.4465 0.4470 0.4470 
9.0 21.4 0.3745 0.3754 0.3757 0.3760 0.3724 0.3730 0.3732 
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Table B. 7: Measured and calculated off- axis transmission for a 15 x24 cm2 field for the three kemels. 
Open beam without treatment couch in the beam. 

Off- Kernel Tilting approach Parallel approach 
Axis Thick-

' 
Klein Klein 

Distance ness Measured Gaussian Isotropic Nishina Gaussian Isotropic Nishina 
[cm] [cm] H H [-] H H H [-] 
0.0 4.3 0.8178 0.8127 0.8128 0 .8146 0.8127 0.8128 0.8137 
0.0 8.6 0.6891 0.6895 0.6895 0.6919 0.6895 0.6895 0.6899 
0.0 12.9 0.5847 0.5825 0.5825 0.5849 0.5825 0.5825 0.5825 
0.0 17.1 0.4995 0.5005 0.5005 0.5033 0.5005 0.5005 0.5004 
0.0 21.4 0.4295 0.4300 0.4301 0.4327 0.4300 0.4301 0.4296 
3.0 4.3 0.8202 0.8155 0.8156 0.8170 0.8155 0.8155 0.8159 
3.0 8.6 0.6887 0.6902 0.6902 0.6922 0.6896 0.6897 0.6899 
3.0 12.9 0.5833 0.5823 0.5824 0.5844 0.5815 0.5816 0.5816 
3.0 17.1 0.4978 0.4988 0.4989 0.5012 0.4978 0.4980 0.4979 
3.0 21.4 0.4268 0.4275 0.4276 0.4299 0.4263 0.4266 0.4263 
6.0 4.3 0.8145 0.8126 0.8126 0.8130 0.8126 0.8123 0.8114 
6.0 8.6 0.6818 0.6835 0.6836 0.6845 0.6813 0.6817 0.6813 
6.0 12.9 0.5748 0.5768 0.5770 0.5780 0.5736 0.5742 0.5741 
6.0 17.1 0.4888 0.4907 0.4910 0.4921 0.4870 0.4877 0 .4876 
6.0 21.4 0.4186 0.4201 0.4205 0.4215 0.4157 0.4166 0.4167 
9.0 4.3 0.8086 0.8095 0.8093 0.8080 0.8093 0.8086 0.8060 
9.0 8.6 0.6717 0.6746 0.6749 0.6740 0.6703 0.6711 0.6701 
9.0 12.9 0.5634 0.5642 0.5648 0.5640 0.5579 0.5593 0.5591 
9.0 17.1 0.4770 0.4793 0.4800 0.4791 0.4718 0.4734 0.4734 
9.0 21.4 0.4063 0.4075 0.4084 0.4076 0.3989 0.4008 0.4015 



Gamma Method 

In radiotherapy, the criteria for dose delivery is that the actual delivered dose is within 3% of the 
planned dose, for areas with steep dose gradients this criterion is replaced by the criterion that the 
planned dose must be within 3 mm of the delivered dose. This requires two verification methods 
for dose distributions, however a single method is developed to combine these two criteria, the 
so-called gamma method [38, 39]. 

The gamma method is based on both dosimetrie and spatial differences. The gamma function 
r(r1,r2) is defined as 

(C.l) 

with r( r 1, r2) = lr1 - r2I the pathlength difference between ri and r 2, and ó(r1, r 2) = D(r1) - D(r2) 
the difference between the dose at point r 1 and r 2. The criteria for the maximum dose and 
pathlength difference are tiD M and tid M, respectively. 

The gamma value 1(r i) at the specific point r i can be calculated by minimizing the gamma 
function r( ri, r 2): 

(C.2) 

In this report , the criteria for the maximum difference are defined as tiDM = 0.03 · max{D(r1)} 
is 3% of the maximum dose, and tidM = 5 mm. 

The values of / that are smaller than 1 have dose differences smaller than 3% or spatial 
differences smaller than 5 mm. 


