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Acoustical Physical Uncloneable Functions — Confidential Abstract

by Serge Vrijaldenhoven

Today’s cryptography extensively makes use of one-way functions: functions that are easy to
compute but difficult to invert. During the last years interest has risen for Physical One-Way
Functions: physical systems, rather than mathematical ones, that have this property. If such
a system has some random factor in the production process, then the response of each sys-
tem to certain inputs distinguishes the system from others. Because of their unique responses
these systems are often called Physical Uncloneable Functions (PUFs). Cloning here refers to
making a physical copy or constructing a simulation model that predicts the behavior of the
system. During the last years much research has been devoted to Silicone PUFs and Optical
PUFs. Philips is interested in another type of PUF that has not been under research so far (as
far that is known): the Acoustical PUF (APUF). Experiments with delay lines (the DL701 -
used for delaying signals in old-fashioned tv’s) are used to evaluate the feasibility of creating
APUFs.

PUFs can be deployed in many cryptographic applications. Every application that makes
use of a ‘securely stored’ random key could use a PUF instead. The advantage of using a
PUF is that the PUF cannot be physically copied - not even by the manufacturer. The goal
is to create a PUF together with a very large amount of challenge-response pairs (CRPs).
This means that even brute force (attacks by measuring and storing all or all relevant CRPs)
or dictionary attacks become unfeasible when the time to measure one CRP is substantial.
Every time the key is used another CRP is involved to prevent replay attacks.

The DL701s should be identifiable: if there is not enough differentiation from the noisy mea-
surements, then the objects cannot be used as PUFs. The obtained result is that by using
principle component analysis (PCA) to extract important features, the DL701s can be differ-
entiated. If a False Rejection Rate is allowed of 1 out of 10,000 a False Acceptance Rate of 1
out of 100,000 should be easily possible, especially if temperature control will be used.

It is important to know how many unique APUFs can be produced. Just like normal iron
keys (typically 106 keys possible for one type of lock), the more unique keys, the less chance
that someone has the same key. The upper bound for the number of unique DL701s that
(theoretically) can be created is estimated to be 228·103

. APUFs with different parameters can
be created which probably enlarges this number.

A demo system (called AKI — APUF Key extraction and Identification system) that uses
DL701s has been created. It has different modes of operation. It can identify an enrolled
DL701 automatically when it is placed in the system and extract keys in two different modes.
First method is based on a threshold. This extraction method proved unsatisfactory since
the bits that are extracted seem to be correlated and only a few effective bits result. The
second method is based on quantization. This method is promising since likely many bits are
independent (45 to 240 bits of the 60 components extracted (depending on the number of
quantization values)).

In the end the user could use the key extracted with AKI to encrypt/decrypt files or messages
or just like any other cryptographic key.
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Physical Uncloneable Functions — Non-confidential Abstract

by Serge Vrijaldenhoven
Submitted to the Department of Mathematics and Computing Science of the Eindhoven University of Technology on October 2004

Today’s cryptography extensively makes use of one-way functions: functions that are easy to
compute but difficult to invert. During the last years interest has risen for Physical One-Way
Functions: physical systems, rather than mathematical ones, that have this property. If such
a system has some random factor in the production process, then the response of each sys-
tem to certain inputs distinguishes the system from others. Because of their unique responses
these systems are often called Physical Uncloneable Functions (PUFs). Cloning here refers to
making a physical copy or constructing a simulation model that predicts the behavior of the
system. During the last years much research has been devoted to Silicone PUFs and Optical
PUFs. Philips is interested in another type of PUF that has not been under research so far
(as far that is known): let us call this the Researched PUF (RPUF). Experiments with such
type of objects (called Rs) are used to evaluate the feasibility of creating RPUFs.

PUFs can be deployed in many cryptographic applications. Every application that makes
use of a ‘securely stored’ random key could use a PUF instead. The advantage of using a
PUF is that the PUF cannot be physically copied - not even by the manufacturer. The goal
is to create a PUF together with a very large amount of challenge-response pairs (CRPs).
This means that even brute force (attacks by measuring and storing all or all relevant CRPs)
or dictionary attacks become unfeasible when the time to measure one CRP is substantial.
Every time the key is used another CRP is involved to prevent replay attacks.

The Rs should be identifiable: if there is not enough differentiation from the noisy mea-
surements, then the objects cannot be used as PUFs. The obtained result is that by using
principle component analysis (PCA) to extract important features, the Rs can be differenti-
ated. If a False Rejection Rate is allowed of 1 out of 10,000 a False Acceptance Rate of 1 out
of 100,000 should be easily possible, especially if temperature control will be used. The up-
per bound for the number of unique Rs that (theoretically) can be created is estimated to be
228·103

. RPUFs with different parameters can be created which probably enlarges this number.

A demo system (called RKI — RPUF Key extraction and Identification system) that uses Rs
has been created. It has different modes of operation. It can identify an enrolled Rs automat-
ically when it is placed in the system and extract keys in two different modes. First method
is based on a threshold. This extraction method proved unsatisfactory since the bits that are
extracted seem to be correlated and only a few effective bits result. The second method is
based on quantization. This method is promising since many bits seem to be independent (45
to 240 bits of the 60 components extracted (depending on the number of quantization values)).

In the end the user could use the key extracted with RKI to encrypt/decrypt files or messages
or just like any other cryptographic key.

Supervisors:

dr. R.M. Aarts — Philips Research, DSP-Acoustics & Sound Reproduction
dr. C. Huizing — TU/e, Department of Mathematics and Computer Science

Computational Engineering - Visualization
dr. E.P. de Vink — TU/e, Department of Mathematics and Computer Science

Software Technology - Formal Methods

v / 96



confidential Confidential

vi / 96



confidential

Acknowledgements

I like to keep things simple, very simple

I thank all people close and around me
— you feel it if you are...

vii / 96



confidential Confidential

viii / 96



confidential

Contents

1. Theory of PUFs 3
1.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Challenge-Response Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3. Attacks on PUFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1. Duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2. Exhaustive Model Building . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3. Adaptive Model Building . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4. Controlled PUFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5. Applications of PUFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1. Example Application: PUFs replace TAN lists . . . . . . . . . . . . . 9
1.5.2. Example Application: PUFs on SIMs . . . . . . . . . . . . . . . . . . . 10

1.6. Key Generating Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.1. Mean Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.2. Quantized Key Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Glass Delay Line as APUF 25
2.1. Delay Lines in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2. The DL701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3. Sound Propagation Through Solids . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4. DL701 as APUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5. Number of Possible Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. System Setup 33
3.1. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2. Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. Experiments and Results 39
4.1. Typical Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1. Characteristic Frequency Spectrum . . . . . . . . . . . . . . . . . . . . 39
4.2. Identification of DL701s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1. Entropy of the Principle Components . . . . . . . . . . . . . . . . . . 43
4.2.2. Demo System DL701 Identification . . . . . . . . . . . . . . . . . . . . 47
4.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3. Threshold Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4. Quantized Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5. PUF on chip Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix / 96



Confidential confidential

5. Conclusion 59
5.1. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A. Cryptography 63
A.1. Symmetric Encryption Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1.1. One-time pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.1.2. Stream/Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2. Perfect Secrecy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.3. Hash and one-way functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.4. Asymmetric Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
A.5. Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.6. Identification of Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.7. (Pseudo) Random Number Generators . . . . . . . . . . . . . . . . . . . . . . 68

A.7.1. Attacks on PRNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.7.2. Skew Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.8. Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.8.1. Bits of Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.8.2. Entropy of a measurement value . . . . . . . . . . . . . . . . . . . . . 72

B. Plotting Functions 75
B.1. Plotting q · fW (w|s = j) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
B.2. Plotting I(W ;S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

C. AKI Manual 79
C.1. PCI-GPIB Card Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.2. Starting the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.2.1. Starting the Network Analyzer . . . . . . . . . . . . . . . . . . . . . . 80
C.2.2. Preparing the Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . 80
C.2.3. Sweep Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.2.4. Plotting and Conversion of the Network Analyzer Values . . . . . . . 81
C.2.5. Starting AKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.3. Auto Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.3.1. Enrollment for Auto Identification . . . . . . . . . . . . . . . . . . . . 83
C.3.2. Auto Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

C.4. Threshold Key Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C.4.1. Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
C.4.2. Key Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C.5. Quantized Key Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
C.5.1. Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
C.5.2. Key Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

1 / 96



confidential Confidential

2 / 96



confidential

1. Theory of PUFs

This chapter discusses various characteristics and definitions of PUFs. What exactly are
PUFs? How do they fit in cryptographic applications and how can keys be extracted from
them? People not familiar with cryptography may want to consult section A in the appendix
first. It is a short introduction in cryptography and also contains information about the
entropy of measurement values.

1.1. General

PUFs can be used for all kinds of fields related to cryptography and security. This section
starts off with some definitions about PUFs as given in [16].

Definition 1 A Physical Uncloneable Function (PUF) is a function that maps challenges to
responses, that is realized by a physical system, and verifies the following properties:

• Easy to evaluate: The physical device is easily capable of evaluating the function in a
short amount of time.

• Hard to characterize: From a polynomial number of plausible physical measurements (in
particular, determination of chosen challenge-response pairs (CRPs) ), an attacker who
no longer has the device, and who can only use a polynomial amount of resources (time,
matter, etc. . . ) can only extract a negligible amount of information about the response
to a randomly chosen challenge.

Short and polynomial are relative to the size of the device where short means linear or low
degree polynomial. Plausible is relative to the current state of the art measurement techniques
and will likely change when improved methods are devised.

Definition 2 A type of PUF is said to be Manufacturer Resistant if it is technically impos-
sible to produce two identical PUFs of this type given only a polynomial amount of resources
(time, money, silicon, etc.).

Of course manufacturer resistant PUFs are the most interesting, since they can be used
to make unique systems that cannot be reproduced, not even by the manufacturer.

Definition 3 A PUF is said to be Controlled (CPUF) if it can only be accessed via an
algorithm that is physically linked to the PUF in an inseparable way (i.e., any attempt to cir-
cumvent the algorithm will lead to the destruction of the CPUF). In particular this algorithm
can restrict challenges that are presented to the PUF and can limit the information about
responses that is given to the outside world.
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In practice, linking an algorithm to a PUF in an inseparable way is quite difficult. How-
ever, it is still easier to do than to link an algorithm to a digital secret key in an inseparable
way, which is what current smartcard technology attempts.

The physical system is designed such that it interacts in a complicated way with stimuli
(challenges) and leads to unique but unpredictable responses. Hence a PUF can be compared
with a keyed hash function (see section A.3 on page 65). The key is the physical system
consisting of many ‘random’ components. In order to be hard to characterize, it should be
difficult to extract the relevant properties of the interacting components by measurements
from the system. If the physical function is based on many complex interactions, then math-
ematical modelling is hard. Furthermore it should be hard to produce a physical copy of the
PUF. Good candidates are physical systems that are produced by production processes that
contain (measurable) randomness. Some examples of PUFs are digital PUFs, optical PUFs,
silicon PUFs and acoustical PUFs.

Digital PUFs A tamper resistant environment protects a secret key. The secret key is used
for encryption and authentication purposes. (Note that a physical copy can easily be
made by the manufacturer in this case).
Currently smartcards link a conventional digital secret key to an algorithm in an insep-
arable way. Barriers are incorporated to protect the secret key. Suppose an integrated
circuit (IC) is equipped with a secret key k, a hash function h and tamper resistant
technology is used to protect k. Then the following function is a PUF

x → h(k, x) (1.1)

This kind of PUF is not always satisfactory for several reasons:

• High quality tamper resistant technology is needed, which is expensive and difficult
to create.

• The digital PUF is not tamper manufacturer resistant. The PUF creator can create
multiple ICs with the same secret key.

Because of these two weaknesses, a digital PUF does not offer any security advantage
over storing a key in digital form, and hence it is cheaper to use a conventional key
storage system (without tamper resistant environment).

Optical PUFs Optical structures containing some scattering material are irradiated with co-
herent light. The speckle patterns that result from this scattering are unique. The chal-
lenge can be e.g. the angle of incidence, focal distance or wavelength of the light, a mask
pattern blocking part of the laser light, or any other change in the wave front.
Modelling of optical PUFs is difficult [26] due to the inherent complexity of multiple
coherent scattering. Even when the details of all scatterers are known, computation of
the response using Feynman diagrams requires summation over a number of diagrams
that grows exponentially with the number of scattering events.
Physically copying is difficult for two reasons: (i) The light diffusion obscures the loca-
tions of scatterers. Currently the best physical techniques can probe diffusive materials
up to a depth of ≈ 10 scattering lengths. (ii) Positioning of a large number of scat-
terers is time consuming and requires a production process different from the original
randomized process.
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Silicone PUFs Manufacturing variation (properties of logical gates) between chips is used to
produce unique responses. When these PUFs are probed at frequencies that are out of
specs, a unique, unpredictable response is obtained in the form of delay times.

Acoustical PUFs Acoustical PUFs (APUFs) are a new idea (as far that is known) proposed
in this thesis. An electrical signal (oscillating voltage) is transformed to an identical me-
chanical vibration by a transducer. This vibration propagates as a sound wave through
a solid medium, which contains scatterers (for the material is inhomogeneous). Finally
the wave arrives at another transducer which converts the wave to an electrical signal
again. The signals that result from this scattering are unique for each APUF. The man-
ufacturing variation between small plates of some kind of material (e.g. glass) is used
to create unique systems.

1.2. Challenge-Response Pairs

Given a PUF, challenge and response pairs (CRPs) can be generated. The challenge can be
an input stimulus and the response depends on the transient behavior of the PUF. A number
of different challenges can be used to generate the CRPs. The number of bits that can be
extracted for one challenge is up to

1
2

log2

(
1 +

σ2
inter

σ2
noise

)
(1.2)

(see equation A.24 on page 73) where σinter and σnoise are the standard deviation of inter-
PUF variation and the measurement noise respectively. When one challenge does not provide
a large enough number of identification bits to authenticate a PUF, multiple independent
challenges may be used. So when a system containing a PUF is authenticated, a set of CRPs
is potentially revealed to an adversary. In order to prevent replay attacks the same CRPs
cannot be used again. If the adversary can learn the whole set of CRPs, she can create a
model of a counterfeit PUF. A database of CRPs has to be maintained by the entity that
wishes to authenticate the PUF. The database only needs to store a small (random) subset of
all CRPs possible provided that when the database runs out of CRPs it has to be recharged
again. This can be done by going to the entity that performs the authentication. Of course
the database has to be kept secret so the attacker is unable to predict the challenges. With
controlled PUFs (see section 1.4 on the following page) a lot of these limitations can be
overcome. For example the reuse of a CRP can be considered and storing new CRPs can be
done over an untrusted network.

1.3. Attacks on PUFs

There are several possible attacks on PUFs: duplication, model building using direct measure-
ment, model building using adaptively-chosen challenge generation and violation of controlled
PUF’s control mechanism. In this section these attacks will be discussed shortly.

1.3.1. Duplication

An adversary can attempt to physically create a PUF that has the same characteristics. But
due to statistical variation, unless the PUF is very simple, the adversary will have to create
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a large number of PUFs and precisely characterize each one of them in order to create and
discover a counterfeit.

1.3.2. Exhaustive Model Building

An adversary that has unrestricted access to the PUF can attempt to create a model of the
PUF by measuring the responses to all possible challenges. Note that a brute force attack
tries to break the system by guessing responses (usually on the reader system side).

1.3.3. Adaptive Model Building

The adversary could try to build a model of the PUF by measuring the response of the PUF
to a polynomial number of adaptively chosen challenges. The number of physical parameters
that define a PUF is proportional to the size of the system that defines it. So when an
adversary is able to determine some primitive parameters that are proportional to the size of
the system, she can use them to simulate the system. To determine these primitive parameters,
the adversary could measure a number of CRPs and use them to build a system of equations
that she can try to solve (for an example on silicone PUFs see [17]). For a real PUF these
equations should be impossible to solve with a polynomial amount of resources (by definition
of a PUF). However, there can be physical systems for which most CRPs lead to unsolvable
equations, but a small subset of CRPs do give equations that are able to break the PUF
(hence this is not a real PUF). Consequently such a system is not secure: an attacker can use
the these CRPs to get a solvable system of equations, calculate the primitive parameters, and
clone the PUF by building a simulation model. This is probably the most plausible form of
attack. More research to modelling of piezoelectric transducers and waves in solids should be
done in order to investigate how hard this is.

1.4. Controlled PUFs

Using control as described in [16] it is possible to make a PUF more robust and reliable.
Figure 1.1 shows how a PUF can be controlled to improve it. The control layer can for
example refuse challenges that lead to simple equations. But unfortunately the methods the
adversary can use to get a simple set of equations from chosen CRPs is unknown beforehand.
In addition to attacking a PUF directly an adversary can attempt to violate a controlled PUF’s

Improved PUF

ID
Challenge

Personality PUF ResponseECC

helper data

Random
Hash

Random
Hash

Figure 1.1.: Using control to improve a PUF.

control mechanism. This includes trying to get direct access to the PUF, or trying to violate
the control algorithm. The best way to avoid this kind of attack is for the algorithm to be
embedded within the physical system that defines the PUF. In order to get to the algorithm
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the adversary has to damage the PUF, which renders the attack useless. To prevent the
adversary from performing a chosen challenge attack on the PUF (used in adaptive model
building, see section 1.3.3) a hash function is placed before the PUF. Instead of using PUF
f directly, a new PUF g is now constructed with: g(x) = f(h1(x)), where h1 is the hash
function. This prevents a model-building adversary from selecting challenges that allow him
to extract parameters more easily, since h1(x) cannot be chosen directly. Hence the designer
of the PUF does not have to know what challenges the attacker might try to exploit.

The output of a physical system is likely to produce similar responses when faced with
similar challenges. To de-correlate the final response from the physical measurements a hash
function is placed after the PUF. The hash function’s avalanche effect (see section A.3 on
page 65) ensures that nearby lying physical responses lead to seemingly unrelated final out-
puts. This is expressed as: k(x) = h2(x, f(x)). To set up a system of simple equations, the
attacker now has to invert h2. This makes model-building even harder. Placing a random
function after the PUF makes the system provably resistant to modelling attacks, as long as
enough information is extracted from the physical part before running it through the output
random function.
A PUF with added control is called a controlled PUF or CPUF.

Personality number

Since PUFs are unique they can be tracked. A growing number of people feels uncomfortable
with the idea that they can be tracked directly or indirectly (by a PUF for example). In rela-
tion to PUFs this concern can be eliminated by creating a CPUF with multiple personalities.
This means the owner of the CPUF has some parameter that she can control to show different
‘faces’ of her CPUF to different applications. This is realized by hashing the challenge with
a personality number, and using that hash as the input to the rest of the CPUF. Now the
owner effectively has many different PUFs and hence different third parties that interact with
the CPUF cannot determine if they interacted with the same CPUF.

Error correction

In most cases a response from a PUF is analog. Inevitable this means there will be noise on
the PUF’s output, which causes slight changes in the digitized output of the CPUF. In some
applications it is desirable that the CPUF always has the exact same output for a certain
challenge (for example when using a CPUF response to generate a key). One solution for this
is to equip the PUF with an error correction algorithm. Together with a CRP also some error
correcting code (ECC) is produced. When the PUF is challenged this redundant information
(helperdata) is also provided and it is used to correct the direct response from the physical
system. Of course it is very important that the error correcting code does not give away all
the bits of the response.

Unique identifier

Although a PUF can be manufacturer resistant, it could happen that two PUFs are the same.
That is no problem because finding a pair of PUFs that is identical requires producing and
comparing an unreasonable number of PUFs. To guarantee that two PUFs are different it
is possible to give every CPUF a unique identifier (ID). When two CPUFs now have the
same underlying PUF they are still different for the outside world, since the challenge will
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be merged with the ID before running it through the rest of the system. The unique ID does
not have to be secret. Of course the manufacturer can still find out two PUFs are the same
before setting the ID, but the cost of testing for equality is very costly anyway.

To add more complexity to the adversary’s problem it is possible to use the PUF system
multiple times to produce one response. The response from one round can be feed back into
the system and after a few rounds all the responses could be merged, together with the
challenge, personality, and ID, and passed through the a hash function to produce the global
response.

Combinations of challenges

The PUF inside a CPUF can have much less CRPs then an uncontrolled PUF. This is because
different combinations of the challenges for the PUF can be selected and seen as a new
challenge for the controlled PUF. Suppose a controlled PUF is built with a PUF that has
only 128 different ‘measurement points’ (each point is a CRP of the inner PUF). Then the
CPUF challenge can be built from the 128 points by making N measurements to the inner
PUF. Suppose all these 128 points have a different value. The challenge for the PUF inside the
CPUF would be a random selection of N of these points and N · log 128

log 2 input bits are needed

for the selection (points can be used more than once, selecting one point costs log 128
log 2 ). This

selection is determined by the output of the first hash function. Since all points have a different
value, all selections can be distinguished, which effectively means the CPUF has 128N (!!!)
different CRPs. However, usually the measurement values will only have 2 different values,
reducing the number of different responses to 2N . It should not be possible to determine the
outcome of the first hash function. This can be realized by also using some predefined part of
the PUF as input to the hash function or by feeding back the first result from the PUF (not
shown in the figure).

So for N = 128 the CPUF system can generate 2128 ≈ 1038 different responses from a inner
PUF with only 128 CRPs. This might make clear that a controlled PUF is substantially much
stronger than an uncontrolled PUF. Note that the 128 measurement values of the inner PUF
should be distributed evenly between 0 and 1.

The most important point of control is that with it, a PUF can be used to provide a shared
secret to an application. Note however that the measurement on the PUF now takes place
inside the CPUF self.

1.5. Applications of PUFs

PUFs can be used in a range of security and cryptographic related applications. They can
be used for identification, authentication and key generation. They can be embedded into
objects, such as smartcards, credit cards, the optics of a security camera, etc., preferably in
an inseparable way (meaning the PUF gets damaged when removed). This makes the object
in which a PUF is embedded uniquely identifiable and uncloneable. For some of the above
mentioned applications control has to be added to the PUF (see section 1.4 on page 6).

Authenticated identification
The most obvious application for PUFs is authentication (verified identification, i.e. making
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sure an individual is who she says she is). It could for example be used to securely identify
smartcards (plastic cards with an integrated circuit embedded in it). Each time the smart-
card is presented to the authority the card reader asks the card for a response to a certain
challenge. Each time the smartcard is presented again, different challenges are used in order
to prevent replay attacks.

Proof of execution on a specific processor
With chip authentication it is possible to proof that a specific computation was carried out
on a certain chip. If chips can be authenticated, people that request computation can rely
on the trustworthiness of the chip manufacturer who can substantiate that she produced the
chip, instead of relying on the owner of the chip. Computation could be done on the secure
chip or could be done on a faster system that is monitored by supervisory code on the secure
chip.

Specific processor code
The software industry is always looking for methods that can limit the use of their products.
One could imagine a system where certain code could be adjusted so it runs only on a pro-
cessor with a certain PUF in it. In this way, pirated code would fail to run on the system. A
method could be to encrypt the code using the PUF’s CRPs.

Encryption key
If a bit-string is generated from the responses, this bit-string could be used for encryption
and decryption of sensitive information. Of course this means the generated string must be
the same each time the PUF is used. [15] describes in detail the protocols how to use a CRP
of a controlled PUF to get to a shared secret between two parties.

1.5.1. Example Application: PUFs replace TAN lists

Currently the Dutch Bank ‘Postbank’ uses so-called TAN lists (Transaction Acceptation Num-
ber) to provide extra security measures for internet banking. The current system works as
follows

• Customers apply for an internet banking account and are given an username and pass-
word.

• Additionally the customer:

– is given a TAN list of 100 numbers (on paper), or

– provides her mobile phone number.

• Customers that want to do some internet banking, login on an internet webpage by
providing their username and password.

• When they instruct the Postbank to do a transaction, they are asked to give the TAN
that matches with a certain serial number. TANs are only used once.

• The customer fills in the corresponding TAN from the list, or the TAN is sent by SMS
to the customers mobile phone.
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• If the correct TAN is provided, the transaction will be executed by the Postbank.

The TAN list system can be viewed as a challenge-response system, where the serial number
is the challenge and the provided TAN is the response. The TAN list has to be kept in a safe
place at all times. An attack to the TAN list system can go quite unnoticed. First the attacker
has to obtain the users login name and password (which is said to be not too difficult with the
average household PC, that on average lacks decent security measures). Then the attacker
has to obtain the TAN list. This of course can be done by stealing it, but the user will notice
that and block the internet account. Better is to copy the list. Although more difficult but
much less intrusive is intercepting the SMS message (see section 1.5.2). This system can be
made much safer by using PUFs for the CRPs

• TAN lists can be copied, PUFs cannot.

• TAN list are inconvenient when the numbers need to be longer (more secure). PUFs
don’t care about long numbers.

1.5.2. Example Application: PUFs on SIMs

The master key of a SIM (Subscriber Identity Module) in a mobile phone can be discovered,
which makes SIM cloning possible [12]. Knowledge of the master key is sufficient to make
calls billed to the customer that the SIM belongs to. Although meanwhile the GSM industry
either uses proprietary algorithms or has replaced the standard cryptographic algorithm with
a new one (COMP128v2/3 - which is not public, but ‘available to GSM network operators
and manufacturers of eligible GSM equipment’ [5]), it is not unlikely that this algorithm will
also be broken. One way or the other: the unique key is stored on the smartcard which makes
it vulnerable even when it is protected. In short, the current system works as follows (see
figure 1.2 on the facing page)

• Network challenges the SIM with RAND.

• The SIM computes a 32-bit long response SRES = A3(Ki, RAND) and sends this
to the network (Ki is the master (shared) key of the SIM with the network, A3 is an
authentication algorithm).

• The network checks whether SRES is the same as the value it calculated itself.

A session key Kc is generated from the master key as follows: Kc = A8(Ki, RAND) (A8 is
a key agreement algorithm). This session key is used to initialize a stream cipher A5 (see
section A.1.2 on page 63) and the stream from the stream cipher algorithm is used to protect
further messages. Every time when a session is initiated (voice or GPRS (General Packet
Radio Service)), the same steps are executed, but with a different RAND. Several options
with PUFs are possible to replace this system:

• One specific response of the PUF could replace the master key and the operator should
learn this key from the PUF. Rest of the system stays the same. Attacking the SIM by
opening it will now break the PUF and hence the key. However, when a bad authenti-
cation algorithm is used, the attack described in [12] is still possible. This replacement
does not use the full potential of the PUF which makes (digital) cloning possible. It
only protects against physical SIM probing attacks.
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Figure 1.2.: The GSM protocol.

• Each time authentication is performed a different CRP of the PUF is used. Responses
can be sent in clear since CRPs are used only once. If the CR-space is large enough,
cloning is not possible anymore. When a mobile is authenticated, the network sends the
challenge of the response that should be used as session key. Note that if the mobile
phone supports a weak stream cipher (such as A5/2), the session key can be found [11]
and the attacker is able to listen in on the conversation and see the data sent between
the mobile and the network.

Of course there is a whole lot of other applications where PUFs can be useful, only imagination
limits the possibilities of PUFs. It would be nice to have CPUFs inside mobile devices, so
customers can use their mobile device for all kinds of cryptographic applications. The user
could choose a different personality number for each application, so in fact only has to carry
one CPUF around. This however does demand that every supplier of services used with a
PUF, trust the PUF to be secure.

1.6. Key Generating Schemes

A fundamental property of a lot of cryptographic functions is that they are very sensitive
to small disturbances in their inputs. Input data for these functions should not be noisy,
which means that when measuring a physical system, some additional processing has to be
performed to remove this noise. As already mentioned in section 1.4 on page 6 it is desirable
that the PUF always has the exact same output for a certain challenge when it is used to
generate a key. This sections describes two methods that can be used to get the desired result.
Consider the schematic system in figure 1.3. Two phases are distinguished:

• Enrollment phase. During the enrollment phase properties of the object are measured
(several times to reduce noise) with specialized equipment. From the measurement data
and chosen secret S, helper data is derived. The reference data stored in the database
is obtained by applying a (possibly) one-way function h to S.

• Recognition phase. When an object is used as a PUF later, the user inserts the PUF
and supplies the ID of the PUF to the system. A (noisy) measurement is performed on
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G(M,W) ==?
M h(Smeas)X

h(S)

database: ID, W, h(S)

Noise

h

W

Recognition

EnrollmentG(M,W)
h(S)X hX

W

S

ID

Figure 1.3.: Schematic presentation of PUF system.
X : Physiological properties of object (X the average of several measurements)
M = X + N : (possibly noisy) Measurement
ID : Unique ID that identifies the PUF
S : Chosen secret
G(M,W) : Signal processing function
Smeas : Estimate of the secret S
W : Helper data
Note that all bold printed symbols are vectors of dimension l.

the PUF and the helper data W is communicated to the PUF. The helper data and
measurement data are then processed by signal processing function G to construct a
secret Smeas. Finally, h(Smeas) is computed and compared to the stored data h(S) in
the database.

PUF systems usually work like the system described above. They typically differ in the de-
scription of function G.

1.6.1. Mean Threshold

By taking a number of measurement signals from different objects and taking their mean, a
threshold can be created. This threshold can be used to generate a bit-string with the same
length l as the number of points in the measurement signal. The idea is very simple:

Smeas,i =
{

0 if Mi ≥ Ti

1 if Mi < Ti
(1.3)

with:
i : i-th coordinate of vector, 0 < i ≤ l
Mi : Measurement value
Ti : Non-ID based helper data which is actually a threshold value
Smeas,i : Derived secret value (S ∈ {0, 1}l)

However, the Smeas,i’s that belong to values of Mi that lie very close to the threshold Ti

have a high chance of ‘flipping’ between 0 and 1 with each measurement. To get rid of these
‘unsteady’ bits, a list of bit numbers is generated during enrollment. This list contains the
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bit numbers that flip during the enrollment measurements and hence are unstable. For each
object this list is saved (helper data W).

If the unsteady bit list is determined accurately, this method results in a bit-string that
is steady and hence can be used as an input for cryptographic functions. Practice however
learns that new unsteady bits will appear due to changing environment variables, that did not
change during the enrollment phase. To solve this a Bose Chaudhuri Hocquenghem (BCH)
error correcting code [6, 3] can be used (see figure 1.4) together with a randomly generated
secret to add confusion. BCH coding can encode a message into a (larger) codeword, when

N: code word length; K: message length; T: error−correction capability

   N    K    T    N    K    T    N    K    T

   7    4    1
  15   11    1

   7    2
   5    3

  31   26    1
  21    2
  16    3
  11    5
   6    7

  63   57    1
  51    2
  45    3
  39    4
  36    5
  30    6
  24    7
  18   10
  16   11
  10   13
   7   15

 127  120    1
 113    2
 106    3
  99    4
  92    5
  85    6
  78    7
  71    9
  64   10
  57   11
  50   13
  43   14
  36   15
  29   21
  22   23
  15   27
   8   31

 255  247    1
 239    2
 231    3
 223    4
 215    5
 207    6

 255  199    7
 191    8
 187    9
 179   10
 171   11
 163   12
 155   13
 147   14
 139   15
 131   18
 123   19
 115   21
 107   22
  99   23
  91   25
  87   26
  79   27
  71   29
  63   30
  55   31
  47   42
  45   43
  37   45
  29   47
  21   55
  13   59
   9   63

 511  502    1
 493    2
 484    3
 475    4
 466    5
 457    6
 448    7
 439    8
 430    9
 421   10
 412   11
 403   12
 394   13
 385   14
 376   15
 367   16

 511  358   18
 349   19
 340   20
 331   21
 322   22
 313   23
 304   25
 295   26
 286   27
 277   28
 268   29
 259   30
 250   31
 241   36
 238   37
 229   38
 220   39
 211   41
 202   42
 193   43
 184   45
 175   46
 166   47
 157   51
 148   53
 139   54
 130   55
 121   58
 112   59
 103   61
  94   62
  85   63
  76   85
  67   87
  58   91
  49   93
  40   95
  31  109
  28  111
  19  119
  10  121

Figure 1.4.: Properties BCH error correcting code.

the codeword changes on a small number of random bits, BCH decoding can still extract
the original message. To encode a bit-string of for example 99 bits with an error correcting
capability of 4 bits a codeword of 127 bits is needed. 4 bits in the 127 bits codeword can
change and the 99 bit message can still be extracted. In practice this works as follows

• Secret S is randomly generated and will be used as the shared secret

• S is encoded to a larger codeword using BCH encoding

• During enrollment Wbch is created by XOR-ing X and the codeword, and stored in the
database.

• During key extraction, M is XOR-ed with Wbch. Since M and X should almost be the
same, this leads to the codeword with a small number of bits changed. BCH decoding
can be used to extract the shared secret if the number of bits changed is equal to or
smaller than the error correcting capability.
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A similar method can also be used without adding confusion (the secret S). In that case M is
used in BCH decoding to directly generate a smaller secret. The number of differences present
between all X during enrollment determine how big this secret can be. It is much better to find
all unsteady bits during enrollment since each error correcting bit that is needed takes about
(in this case) 7 bits from the message length. However, to obtain all unreliable bits during
enrollment it should be possible to influence the environment variables (e.g. temperature
should be varied) which might not be possible for all variables.

1.6.2. Quantized Key Extraction

By taking a contracting function it is possible to use all measurement values and not throw
away any ‘unsteady’ points. The idea is that with the enrollment information, helper data
is created that shifts measurement values first to lattice points [19](see figure 1.5). Within a

2nq (2n + 1)q(2n− 1)q

Xi 10

Wi if Si = 0 (neg) Wi if Si = 1 (pos)

lattice points

︷ ︸︸ ︷ ︷ ︸︸ ︷

Figure 1.5.: Quantized key extraction: Xi is first shifted to a lattice point by adding Wi.

range around these lattice points, shifted values quantize to the same key value. Measurement
values are less likely to be near the thresholds (unless the contraction is chosen too small).
Consider the following δ-contracting function:

Wi =
{

(2n− 1
2)q −Xi if Si = 0

(2n + 1
2)q −Xi if Si = 1

n such that− q ≤ Wi < q (1.4)

Smeas,i =
{

0 if (2n− 1)q ≤ Xi + Wi < 2nq
1 if 2nq ≤ Xi + Wi < (2n + 1)q

for any n = . . . ,−1, 0, 1 . . . (1.5)

with:

Wi : Helper data (created during enrollment)
i : i-th dimension of vector
q : Quantization step size
Xi : Measured value
Smeas,i : Derived key value (recognition phase)

By using this contraction function, Xi + Wi is pushed to the nearest lattice point ((2n + 1
2)q

or (2n − 1
2)q). And xi + Wi + δ will be quantized to the same Si for small values of δ. The

contraction range δ equals ±q/2.
If the range of values of Xi’s of different objects σ2

X , is big compared to the noise σ2
n, then

it is beneficial to quantize to more than two values. The number of values that is quantized
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to is called v (2 ≤ v). Equations 1.4 and 1.5 can be generalized to:

Wi =


(vn + aSi)q −Xi if Si = 0

. . . . . .
(vn + aSi)q −Xi if Si = v − 1

n such that− v

2
q ≤ Wi <

v

2
q

(1.6)

aj =
{
− j

2 −
1
2 if j mod 2 = 0

j
2 if j mod 2 = 1

for 0 ≤ j < v

(1.7)

Smeas,i = j if (vn + aj − 1
2)q ≤ Xi + Wi < (vn + aj + 1

2)q for any n = . . . ,−1, 0, 1 . . .
(1.8)

with:

v : Number of different values that is quantized to
aj : Addition to vn depending on the value of j. See table 1.3 for some values of aj for

different j.

j aj j aj

0 -0.5 4 -2.5
1 0.5 5 2.5
2 -1.5 6 -3.5
3 1.5 7 3.5

Table 1.3.: Some values of aj for different j.

The values for aj can be chosen different too. A consequence of the choice for aj as in
equation 1.7, is that the lattice points that are next to each other do not quantize to values
0, 1, . . . , v − 1, 0, but the order of the values that belong to the lattice points is different. See
figure 1.6 for an example with v = 4. The measurement values that are divisible by 4q are
indicated by 4n0q, 4n1q and 4n2q.

lattice points
4n1q4n0q 4n2q

0 12 3 2 03

points in this region are quantized to 0

Figure 1.6.: Order of quantization values. Example for v = 4.

On a computer a different method with the same characteristics can be used, since this
method is easier to compute. The method will be explained with by an example (v = 2).
Consider figure 1.7:
During enrollment the measured value Xi is first quantized to Yi, which means all values
in a range [2nq, (2n + 1)q) get the same integer value (2n). Yi is then converted to a key
value Zi (= Yimod2k). This key value can actually already be used, but in order to create
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more random keys, the secret is chosen and the helper data is adjusted to produce the chosen
secret from this data. Suppose in this example the chosen secret Si = 1, then Zi must be
shifted with d2Si, which depends on the minimum of | d2leftSi | and | d2rightSi | (in this
case d2leftSi is chosen). This can be done for all i:0 < i ≤ l to generate the helper data. But
the helper data should also shift Xi first to a lattice point, so finally the helper data is:

d2Si =
{

d2leftSi if | d2leftSi |≤| d2rightSi |
d2rightSi if | d2leftSi |>| d2rightSi |

(1.9)

Wi = d2lattice + q · d2Si (1.10)

with:

Wi : Derived helper data
d2lattice : Distance from Xi to closest lattice point
q : Quantization step. Can actually be dependent on the measurement value, so q

could be dependent on i as well and be replaced by Qi.
d2Si : Distance to closest Si (mod2k)

This helper date is used produce Smeas,i during authentication and/or key extraction.

︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷
2nq (2n + 1)q (2n + 2)q(2n− 1)q (2n + 3)q

2n 2n + 1 2n + 22n− 12n− 2Yi = floor(Xi/q)
−50−51−52 −49 −48n = −25

Zi = Yimod2k, k = 2 0 01 2 3

Ximodq

−((Zi − Si)mod2k) (Si − Zi)mod2k

2n + 3

−47

d2lattice=1/2q −Ximodq

1

d2rightSi=d2leftSi=

(neg. means shift left)

Xi

Figure 1.7.: Example of quantized key extraction.

Probability of Error

When extracting keys for encryption/decryption it is of course very important that the key
is always the same. Suppose a secret message s = {0, 1} is verified. The probability there is
an error in one dimension equals:

Pe = 2Q

(
q

2σn

)
− 2Q

(
3q

2σn

)
+ 2Q

(
5q

2σn

)
− . . . (1.11)

Q(x) =

∞∫
x

1√
2π

e−t2/2dt (1.12)

with:

Pe : Probability of error in one dimension
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q : Quantization step size
σn : Standard deviation of the noise
Q(x) : Integral over the Gaussian probability density function (unity variance)

When s can consist of a larger range of values v, this changes to:

Pe = 2Q

(
(0v + 1/2)q

σn

)
− 2Q

(
(1v − 1/2)q

σn

)
+ 2Q

(
(1v + 1/2)q

σn

)
− . . . (1.13)

Note that for v = 2 this gives equation 1.11 on the preceding page. The chance for error
becomes higher when v increases. Figure 1.8 shows a plot of both equations.

0 2 4 6 8 10 12
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

q/σ
n

P
e

Figure 1.8.: Error probability per dimension as function of q/σn. solid line: v = 2, dotted:
v = 16.

Leakage of Information

In this section the leakage of information is calculated for the assumption that the input
signal X is normally distributed. The statistical behavior of W is determined by those of X
and S. For convenience ‘a’ is written instead of ‘Ai’ for variables with a subscript i in them.
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For s = 1, x = (2n + 1/2)q − w (eq. 1.4), so:

fW (w|s = 1) =


0 for |w| > q

∞∑
n=−∞

1√
2πσx

e
(− ((2n+1/2)q−w)2

2σ2
x

)
for |w| ≤ q

(1.14)

fW (w|s = 0) =


0 for |w| > q

∞∑
n=−∞

1√
2πσx

e
(− ((2n−1/2)q−w)2

2σ2
x

)
for |w| ≤ q

(1.15)

fW (w) = fW (w|s = 1)P (s = 1) + fW (w|s = 0)P (s = 0) (1.16)

pw0 = P (s = 0|W = w) =
fW (w|s = 0)

fW (w)
P (s = 0) (1.17)

with:

fW (w|s = . . .) : Conditional probability density function (cpdf) of helper data value
fW (w) : Probability density function (pdf)
σx : Standard deviation of inter-PUF variation
pw0 : A posteriori probability (using Bayes rule: P (R = r|e) = P (e|R=r)P (R=r)

P (e)

with P (e) =
∑
r

P (e|R = r) · P (R = r)), pw1 is defined similarly.

Figure 1.9 on the facing page plots q · fW (w|s = 0) and q · fW (w|s = 1) as function of w/q
(see appendix B.1 for rewriting). Information leaks whenever fW (w|s = 0) 6= fW (w|s = 1).
One can see from the figure that the higher q/σx, the more information is leaked. From the
figure it might seem that the unconditional probability function fW (w) is constant, but it’s
not. Just as that fW (w|s = 0) + fW (−w|s = 0) = 1 is not true (although for some w it is).
From the formulas 1.14 to 1.17 on the current page the mutual information between w and s
can be derived:

H(S) = −
∑

i

P (s = i) log2 P (s = i)

= −2(0.5 log2 0.5) = 1 (1.18)
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Figure 1.9.: Conditional probability density functions q · fW (w|s = 0) and q · fW (w|s = 1) as
function of w/q. Functions plotted for different values of q/σx.
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I(W ;S) = H(S)−
q∫

−q

H(S|W = w)fW (w)dw (1.19)

= 1 +

q∫
−q

(pw1 log2 pw1 + pw0 log2 pw0) fW (w) dw (1.20)

= 1 +
1
2

q∫
−q

fW (w|s = 0) log2

(
fW (w|s = 0)

fW (w)
· 1
2

)
dw

+
1
2

q∫
−q

fW (w|s = 1) log2

(
fW (w|s = 1)

fW (w)
· 1
2

)
dw (1.21)

= 1 +
1
2

q∫
−q

fW (w|s = 0) log2 fW (w|s = 0) dw

+
1
2

q∫
−q

fW (w|s = 1) log2 fW (w|s = 1) dw

−
q∫

−q

fW (w) log2(2fW (w)) dw (1.22)

=

q∫
−q

fW (w|s = 1) log2 fW (w|s = 1)dw −
q∫

−q

fW (w) log2 fW (w) dw (1.23)

with:

H(S) : Information theoretic entropy of a discrete random variable S [bits]
I(W ;S) : Mutual information between W and S

Figure 1.11 on page 24 shows the mutual information between W and S plotted against σx/q
(see appendix B.2 for rewriting the equation). The lowest line in the figure (v = 2), represents
the value for the mutual information just calculated.
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Leakage of Information for Quantization to Multiple Values

The mutual information between W and S can be generalized when the measurement values
are quantized to v values. The equations then change to:

fW (w|s = j) =


0 for |w| > v

2q
∞∑

n=−∞

1√
2πσx

e
(−

((vn+aj)q−w)2

2σ2
x

)
for |w| ≤ v

2q
(1.24)

fW (w) =
v−1∑
j=0

fW (w|s = j)P (s = j) (1.25)

pwj = P (s = j|W = w) =
fW (w|s = j)

fW (w)
P (s = j) (1.26)

H(S) = −
∑

i

P (s = i) log2 P (s = i)

= −v

(
1
v

log2

1
v

)
= log2 v (1.27)
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I(W ;S) = H(S)−

v
2
q∫

− v
2
q

H(S|W = w)fW (w) dw (1.28)

= H(S) +

v
2
q∫

− v
2
q

v−1∑
j=0

(pwj log2 pwj) fW (w) dw

= H(S) +
1
v

v−1∑
j=0

v
2
q∫

− v
2
q

fW (w|s = j) log2

(
fW (w|s = j)

fW (w)
· 1
v

)
dw

= H(S) +
1
v

v−1∑
j=0

v
2
q∫

− v
2
q

fW (w|s = j) (log2 fW (w|s = j)− log2 v − log2 fW (w)) dw

= H(S) +
1
v

v−1∑
j=0

v
2
q∫

− v
2
q

fW (w|s = j) log2 fW (w|s = j) dw

− 1
v

v−1∑
j=0

v
2
q∫

− v
2
q

fW (w|s = j) log2 v dw − 1
v

v−1∑
j=0

v
2
q∫

− v
2
q

fW (w|s = j) log2 fW (w) dw

= H(S) +

v
2
q∫

− v
2
q

fW (w|s = 1) log2 fW (w|s = 1) dw

− log2 v

v
2
q∫

− v
2
q

v−1∑
j=0

[
1
v
· fW (w|s = j)

]
dw −

v
2
q∫

− v
2
q

v−1∑
j=0

[
1
v
· fW (w|s = j)

]
log2 fW (w) dw

= log2 v +

v
2
q∫

− v
2
q

fW (w|s = 1) log2 fW (w|s = 1) dw

− log2 v

v
2
q∫

− v
2
q

fW (w) dw −

v
2
q∫

− v
2
q

fW (w) log2 fW (w) dw

=

v
2
q∫

− v
2
q

fW (w|s = 1) log2 fW (w|s = 1) dw −

v
2
q∫

− v
2
q

fW (w) log2 fW (w) dw (1.29)

Figure 1.10 plots all q ·fW (w|s = j) for v = 4 and q/σx = 0.5. The figure shows that for v = 4
more information is leaked than for v = 2 (see figure 1.9). This can be seen from the fact that
the cpdf’s differ more in value (and more difference means more leakage). For q/σx = 0.5 the
difference between the maximum and minimum value for v = 2 is practically zero, while for
v = 4 this difference is approximately 0.0072.
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The mutual information for different values of v is plotted against σx/q in figure 1.11. The
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Figure 1.10.: Conditional probability density functions for v = 4 as function of w/q.

figure also shows that for higher values of v, more information is leaked at the same σx/q.
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Figure 1.11.: Mutual information I(W ;S) as function of σ/q for different values of v.
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2. Glass Delay Line as APUF

For the experiments described in this report a glass delay was chosen to perform as an
acoustical physical uncloneable function (APUF). This device was chosen, because it is an
already existing device which converts electrical signals into (ultra)sound, transports the
waves through a medium and converts them back again (which is exactly what an APUF
should do). This section describes glass delay lines in general and how they can be used a
PUF.

2.1. Delay Lines in General

Delay lines are used to delay signals in for example television signals. In ultrasonic DLs the
electrical signal (oscillating voltage) that has to be delayed is transformed to an identical
mechanical vibration (described by the same time-function), which propagates as a wave
through a liquid or solid medium. The name ‘ultrasonic’ is used because the frequencies
involved are well above 20kHz so the mechanical vibrations are in the ultrasonic area. The
propagation speed of the mechanical vibration lies between 1 and 6km/s which is about a
factor 105 smaller than the propagation speed of electrical signals in coaxial cable. After the
oscillation has undergone the desired delay, the vibration is transformed back to an electrical
signal. Solid material (and liquid) DLs have some characteristics concerning wave propagation
and transmission of the energy of the electrical signal to the transducer and back again [13].

To transform the electrical signal to mechanical vibration and vice versa, transducers are
used. Transducers are based on the piezo-electric effect. Characteristics of a DL depend greatly
on the size and orientation of the transducers. Imagine a circular transducer of diameter d
that emits ultrasound of wavelength λ in a boundless medium. If the transducer is a point
source, it emits sound waves spherically and the transducer would receive the fraction of the
energy that is related to the space angle under which the source sees the receiver. If the source
is not a point source it can be shown that the energy is bundled parallel to the axis of the
source until a distance of about d2/2λ. This area is called the Fresnel-zone (near-field). When
a receiving transducer with the same diameter d is placed within this zone, it will practically
receive all energy. For larger distances the energy is distributed according a certain function.

To obtain the wanted delay by a DL, it is not unusual that the path needs to be several
decimeters or meters. It would be impossible to construct a DL with a straight path of this
length, hence the path usually is folded up: the waves are reflected several times on the sides
of the medium before they reach the receiving transducer.

Sometimes the main signal is not only reflected on the sided but also reflected at the
receiving transducer. It then travels back to the input transducer and back to the output
transducer again, generating a ‘third-time-round’ signal.

Figure 2.1 shows some characteristic information about several glass delay lines. One of
these delay lines, the DL701 is used for the experiments.
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Figure 2.1.: Information about glass delay lines [10].
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2.2. The DL701

The DL701 is a delay line made by Philips that used to be used as a delay line in televisions.
In figure 2.1 on the preceding page its main characteristics are listed and figure 2.2 shows an
opened DL701. The signal in the DL701 is folded up in the device to create a longer delay
time with a small device. The working of the device is as follows (see also figure 2.3):

Figure 2.2.: The DL701.

• Electrical waves are sent to the input transducer of the DL701

• transducer converts electrical waves to mechanical waves

• mechanical waves travel through the medium (mainly as shear waves)

• the mechanical waves are reflected several times by the boundaries of the medium

• the mechanical waves are received by the output transducer

• transducer converts the mechanical waves back to electrical waves.

Output

Input

Transducers

Reflection
path
of
wave

Sound wave
converted to
mechanical
wave

Figure 2.3.: Schematic view of the DL701

During the travel of the wave through the medium, the wave gets distorted by inhomogeneities
in the medium (and by the conversion between electrical/mechanical/electrical wave). The
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first goal of our experiments is to determine whether these inhomogeneities are unique enough
to identify different DL701s. All the DL701s are made to be the same, but manufacturing
randomness could be large enough to make this possible. In the end our goal is to investigate
whether acoustical PUFs can be realized. The DL701 will function as a proof of concept.

2.3. Sound Propagation Through Solids

In solids, sound waves can propagate in four principle modes that are based on the way the
particles oscillate. Sound can propagate as longitudinal waves, shear waves, surface waves,
and in thin materials as plate waves. Longitudinal and shear waves are the two modes of
propagation most widely used in ultrasonic testing. The particle movement responsible for
the propagation of longitudinal and shear waves is illustrated in figure 2.4. Some properties of

compression rarefaction

wave
propagation

λ
particle motion

(a) Longitudinal (compressional) wave

wave
propagation

λ

particle motion

(b) Shear (transverse) wave

Figure 2.4.: Types of waves.

waves are wavelength, frequency, and velocity. Their relationship is expressed in the following
equation:

λ =
v

f
(2.1)

v =

√
Cij

ρ
(2.2)

with:

λ : wavelength
v : velocity
f : frequency
ρ : material density
Cij : elastic constant. The subscript ij indicates the directionality of the elastic

constants with respect to the wave type and direction of wave travel, because
in anisotropic materials the elastic constants differ with each direction.

The wavelength of the ultrasound used has significant affect on the probability of detecting a
discontinuity. A rule of thumb in industrial inspections is that discontinuities that are larger
than one-half the size of wavelength can be usually be detected [7]. As frequency increases,
sound tends to scatter from large or course grain structure and from small imperfections
within a material.

Since more things in a material are likely to scatter a portion of the sound energy at higher
frequencies, the penetrating power (or the maximum depth in a material that flaws can be
located) is also reduced. Frequency also has an effect on the shape of the ultrasonic beam.
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If comparing compressional and shear velocities it can be noted that shear velocity is
approximately one half that of compressional. In delay lines almost exclusively shear waves
are used [28]. Examples of velocities in different sorts of glass are shown in table 2.2.

Name Longitudinal
Velocity
[cm/µs]

Shear Velocity
[cm/µs]

Density
[g/cm3]

Acoustic
Impedance
[g/cm2 ·sec]

Glass
Crown
(reg.)

.566 .352 2.60 14.5

Glass
Crown
(heaviest)

.526 .326 N/A N/A

Glass
Quartz

.557 .343 2.60 14.5

Glass
Window

.679 .343 N/A N/A

Glass,
Plate

.571 N/A 2.75 10.7

Glass,
Pyrex

.556 .198 N/A N/A

Table 2.2.: Examples of velocities in materials.

2.4. DL701 as APUF

The DL701 can be probed with one certain frequency and the medium the wave travels
through, changes the wave characteristic. Hopefully each DL701 produces a unique atten-
uation and/or phase change compared to other DL701s, as that would make each of them
uniquely identifiable and more important: the response unpredictable. This uniqueness can
for example be caused by inhomogeneities in the medium (and other variations e.g. in the
transducers). Yet it is very unlikely that probing with one particular frequency will be enough
to identify a large amount of DL701s, since the spread in response values has a limit which is
related to this particular type of delay line. To uniquely identify one DL701 probably more
challenges are needed at different frequencies. A collection of frequencies which can be used
to identify a large amount of DL701s could be used as a challenge when a DL701 needs to
be identified. Note that this challenge consists of multiple ‘mini-challenges’ at one frequency.
Throughout this report the word ‘challenge’ refers to such a collection of mini-challenges and
‘response’ to its corresponding response. How many unique challenges one DL701 contains has
to be investigated. Maybe the whole frequency-range of operation is needed to get a challenge
that is unique enough for identification, it is unknown for now. When the DL701 has a very
large challenge-response space and it is impossible to determine chosen CRPs from a polyno-
mial number of plausible physical measurements, by an attacker who no longer has the device
and that can only use a polynomial amount of resources, then the DL701 can considered to
be an APUF.
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2.5. Number of Possible Structures

When the PUF is probed with (ultra)sound of wavelength λ it follows from the theory of
waves in solids that only details of size 1

2λ can be resolved (see section 2.3). The volume Ad
of the PUF can be divided into elements of volume λ3 (voxels). In case of surface waves only
the area of the PUF is used, which can be divided into elements of area λ2. The following
formulas can be derived [27]

Nvox 3D = Ad/

(
1
2
λ

)3

(2.3)

Nvox 2D = A/

(
1
2
λ

)2

(2.4)

κ = {0, 1}Nvox (2.5)
H(K) = Nvoxh(f) (2.6)
h(f) = −f log f − (1− f) log(1− f), h(f) ∈ [0, 1] (2.7)

with:

Nvox xx : The number of voxels. xx = 3D for longitudinal waves, xx = 2D for surface
waves.

A : Area of the medium.
κ : Bit-string that represents a PUF. It is assumed that the sound waves can only

distinguish whether a voxel contains a scatterer or not. Internal degrees of freedom
within a voxel can not be distinguished. This means a PUF (or equivalently κ)
can be represented as a bit-string of length Nvox.

f : The fraction of the total volume that is filled with scattering material.
h(f) : The binary entropy function of the filling fraction.

The information content of one voxel is at most one bit, which means a PUF is completely
characterized if one knows which voxels contain a scatterer.

Since in delay lines shear waves are used, equation 2.4 can be used to calculate the number
of unique structures that (theoretically) can be made with the DL701. It is not known exactly
what the speed of sound is in this delay line, it is estimated as the path length the sound
travels divided by the specified delay time.

λ =
pathlength

delay · f
(2.8)

Nvox 2D =
A(

1
2

pathlength
delay·f

)2 (2.9)

=
4A(delay)2f2

(pathlength)2

For DL701: A = (24 ∗ 30)− (6 ∗ 6) = 684[mm2], pathlength = 0.165[m], delay = 63.943[µs],
this gives Nvox 2D ≈ 4.109 · 10−10 · f2.
Which gives for several frequencies

30 / 96



Confidential confidential

Frequency [Mhz] Nvox 2D [·103]
2.0 1.6
4.4 8.0
8.2 28

Note that this means that for the DL701 there are about 228·103
possible unique structures

of the material (as seen by the system) if all random structures would appear during the
manufacturing process (which of course is probably not the case) and more important if
the system can distinguish all these structures with only 2 transducers. An attacker could
use these 28 · 103 bits to computationally simulate the output instead of storing all possible
CRPs in advance. The whole system includes the transducers, which may show variations
as well. Compared to the number of possible structures for an Optical PUF the number of
structures is quite small. An optical PUF of 1cm3 probed by light of a wavelength on the
order of 1µm has its structure specified with 10−2/10−6 = 1012 bits [23]. Even when an
attacker knows all these bits she still has to be able to simulate the scattering for the waves.
For light, simulating the scattering from one particle that is several times the wavelength,
presently requires a supercomputer. For sound there are already programs that simulate the
propagation of ultrasonic waves through multilayered structures. The difficulty of doing such
for a delay line has not been investigated during this internship.
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3. System Setup

This section describes the experimental setup that was created to perform measurements on
APUFs. The system is called AKI — APUF Key extraction and Identification system, and
the main (Matlab) program is called AKI as well. Refer to the manual in section C to read
more on the system and how to operate AKI.

3.1. Setup

Figure 3.1 shows the experimental setup that was built to perform measurements on the
DL701 glass delay line. The system consists of several components which are schematically
shown in figure 3.2. The schematic view shows that the communication between the computer

(a) (b)

Figure 3.1.: The experimental setup. The left figure shows the system as it was used during a
demonstration at Philips, the right as it was used during research. The rectangular
device with the dark display is a network analyzer and the right figure also shows
the reader to insert DL701s (the small iron-colored block in the front).

and network analyzer is done through a GPIB (General Purpose Interface Bus, IEEE 488)
interface. This is a standard interface for communication between instruments from different
sources. Appendix C.1 describes how to install the PCI card. So how is this system used?
Below a rough description of its use to get an idea.

Enrollment Phase (to learn the characteristics of an APUF)
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network analyzer
HP 8753D 30kHz-3GHz HP-GPIB cable

PCI GPIB interface card

IN OUT
1

port1 port2

computer with

APUF reader

screen

1

APUF
(DL701)

50Ω coax cable

Figure 3.2.: Schematic overview of the system.

• Some (random) challenge is produced.

• The PUFs are one by one inserted and challenged several times with the challenge, the
responses are saved.

• From this data, feature values or keys are extracted for each APUF.

Recognition (to identify an APUF)

• An APUF is inserted into the reader.

• The APUF is automatically challenged with a challenge that exists in the database and
the response is recorded.

• The response is compared to the responses in the database. The APUF is identified
as the APUF in the database with the closest (or identical) match. Note that above a
certain threshold the APUF remains unidentified (this to prevent wrong identification
of an APUF that is not in the database yet).

Key Extraction

• An APUF is inserted into the reader.

• The user selects the ID of the APUF from a list and tells the system to challenge it.

• The APUF is challenged and the response is recorded. With some helper data belonging
to the given ID the response is transformed into a key which can for example be used
as an encryption/decryption key.

More information about the specific steps that have to be made for enrollment and how to
operate the system can be found in the AKI manual (see section C).

3.2. Communication

To communicate with the Network Analyzer, AKI calls the executable Measure.exe. Results
from the analyzer are saved in a specified file and read in by AKI. Enroll.exe is used as a
tool for enrollment for auto identification and threshold key extraction. The enrollment for
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quantized key extraction is built into AKI. Both these executables were developed with the
Borland 5.5 Compiler (BCC5.5) and the source code is included with the AKI program.
Measure.exe can take some command line options. These can be shown by entering: ‘Mea-
sure.exe -h’ in a command prompt window. Table 3.1 lists the options.
Usage of the options: Measure <option1> argument1 <option2>... The short option is always
preceded by ‘−’ a long option by ‘−−’.

Option Description
Short Long
0 close take board offline
c calibrate calibration mode
f find find the gpib address of the connected device
h help this list
l load load limits, −l 0 to clear limits
m measure <int> sweep & pass <int> times and get data trace
o output <optional filename> filename to write output data to
p freq <optional filename> freq. list to measure and sweep
s sweep <optional filename> load list to sweep

Table 3.1.: Command line options of Measure.exe.

Both executables are small and should not be difficult to understand if looked at the C-Code
which contains comments. To understand and get an idea of how AKI operates, figures 3.3
and 3.4 show flow diagrams of the three main functionalities of AKI: they show what happens
when the auto identification button, the threshold key extraction button or the quantized key
extraction button is clicked.

For more information about the AKI system and how to operate AKI, please read the manual
in section C.
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Figure 3.3.: Flow diagram of auto identification part of AKI.
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(a) Threshold key ex-
traction.

(b) Quantized key extrac-
tion.

Figure 3.4.: Flow diagram of key extraction.
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4. Experiments and Results

This section describes some results that were obtained with the AKI3 demo system. The demo
system was used during the internal Philips Eureka Fair and during the Philips Corporate
Research Exhibition to show the feasibility of APUFs. This section does not describe how
to operate the system in order to obtain these results, for operation instructions refer to the
manual (section C). The experiments are based on the three modes of operation AKI has

1. Identifying DL701s

2. Key extraction based on threshold

3. Key extraction based on quantization and shifting measurement values

One section is added before these to describe some typical measurements.

4.1. Typical Measurement

So what does a typical measurement of a DL701 look like? Figure 4.1 shows some images
obtained from the network analyzer. The analyzer operates from 30kHz to 3GHz, but the
useful frequency range is from about 2.0MHz to 8.2MHz. Outside these frequencies, a lot of
noise is present in the signal. This can be seen from figure 4.1(d). The experiments will only
be conducted within the 2.0− 8.2MHz frequency range.

4.1.1. Characteristic Frequency Spectrum

By reducing the frequency range that is swept by the analyzer and keeping the number
of measurement points the same, the frequency spectrum is ’zoomed in’. If that is done,
a typical trend of the frequency spectrum can be seen as shown in figure 4.2(a). It looks
like the frequency spectrum from the delay line has a characteristic sinus superimposed on
another signal. The distance between two local maxima in the spectrum is about 8.0±0.3kHz
at 4.4MHz. This characteristic reminds of a ‘third-time-round’ signal (see section 2.1 on
page 25): the main signal is reflected at the output transducer, travels back to the input
transducer and back to the output transducer again. This can be explained with a simple
model as shown in figure 4.2(b)

H =
ejωt + ejω(t+τ)

ejωt
(4.1)

= 1 + ejωτ (4.2)
= (1 + cos ωτ) + j sinωτ (4.3)

|H| =
√

(1 + cos ωτ)2 + sin2 ωτ (4.4)

=
√

2 + 2 cos ωτ (4.5)

with:
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(a) Re. (b) Im.

(c) LogMag. (d) Useful frequency range.

Figure 4.1.: Typical measurement values from the DL701.

(a) Spectrum trend.

τ

(b) Model.

Figure 4.2.: Characteristic frequency spectrum.
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|H| : Transfer function of amplitude
ejωt : The original signal
τ : Delay of the ‘third-time-round’ signal
ω : 2πf (angular speed), with frequency f

This transfer function is the same again after ωτ = 2πfτ = 2π. In this case τ is two times
the delay time specified for the DL701. So f = 1/τ = 1/(2 · (64.943± 0.005))[µs] = 7.8195±
0.0007[kHz]. (64.943[µs] taken from figure 2.1 on page 26). Which is in agreement with the
measured signal and accounts for the characteristic sinus in the frequency spectrum.

4.2. Identification of DL701s

This section investigates whether the DL701s can be uniquely identified. In order to recognize
the APUFs it is first necessary to determine certain characteristic features of each device. This
is done by enrollment measurements, performing Principle Component Analysis (PCA, [9])
on the measurement results and saving the results. After this enrollment, identification can
start. The following equations summarize what is done.

f = (f1, . . . , fc) (4.6)
go = (go1, . . . , goc) (4.7)

Do =
1
c

c∑
i=1

|fi − goi|
σi

(4.8)

with:

f : Feature values that are determined from a measurement. c indicates the number of
features (components) used for identification.

go : Feature values of object o (stored in database). These values were calculated from
enrollment measurements.

Do : Difference measure (distance) between f and go. If the difference is below a certain
(experimentally determined) level, the measured object is identified as object o.

σi : Standard deviation of feature i (stored in database)

Principle Component Analysis

Principal component analysis (PCA) is a mathematical procedure that transforms a num-
ber of (possibly) correlated variables into a (smaller) number of uncorrelated variables called
principal components.

Definition 4 Principle Components - A set of variables that define a projection that en-
capsulates the maximum amount of variation in a data set and is orthogonal (and therefore
uncorrelated) to the previous principle component of the same data set [9].

The first principal component accounts for as much of the variability in the data as pos-
sible, and each succeeding component accounts for as much of the remaining variability as
possible. PCA has two main objectives
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• To reduce and discover the dimensionality of the data set

• To identify new meaningful underlying variables

To explain this, look at the relation between points and their axis. Figure 4.3 shows some
fictitious 2D data. The idea is to turn the axis in such a way, that the points form an ellipsoid
from which the longest and shortest side overlap the new position of the axis. The axis
where the values differ the most is the 1st principle component, the axis with the next most
variability in the values the 2nd and so on (in the case of multi-dimensional data). For this

length arm

length leg

1st principe component

2nd principle
component

Figure 4.3.: PCA.

particular example the length of a leg and arm of a person are probably correlated, since on
average, people with longer legs will also have longer arms. As a matter of fact it might be
found that the first principle component represents the underlying variable ‘length’. From a
math point of view, PCA is performed as follows

xi = (xi1, . . . , xim)T 1 ≤ i ≤ c (4.9)
oj = (x1j , . . . , xcj) 1 ≤ j ≤ m (4.10)
X = (x1, . . . ,xc) (4.11)

= (o1, . . . ,om)T (4.12)

µxi =
1
m

m∑
j=1

xij (4.13)

cij =
1

m− 1
(xi − µxi)

T (xj − µxj ) 1 ≤ i ≤ j ≤ c (4.14)

with:

xi : Vector of several measurements of variable i (column vector)
oj : Vector of measurement values of observation j
X : Matrix with oj ’s as row vectors and xi’s as column vectors
cij : The covariance between the variable components xi and xj , with cii the variance of

component xi. If two components are uncorrelated their covariance is zero. CX is
the covariance matrix of X, which has cij as matrix values. The covariance matrix is
always symmetric

µxi : Mean of xi

. . .T : Transpose of . . .

Now consider the matrix X where each observation vector is a measurement of frequency
points on one delay line. The full possible range of delay lines is called the population, one
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measurement on one delay line is called a sample. From samples o1, . . . ,om the sample mean
and the covariance matrix can be calculated as estimates of the mean and the covariance
matrix. After that an orthogonal basis is calculated for the covariance matrix. For a symmetric
matrix an orthogonal basis can be found by calculating its eigenvalues and eigenvectors. These
can be found by solving

CXei = λiei for i = 1, . . . ,m (4.15)
|CX − λI| = 0 (4.16)

with:

ei : Eigenvectors of CX (column vectors)
λi : Eigenvalues of CX

I : Identity matrix with the same order (size) as CX

| . . . | : The determinant of . . .

The second equation (known as the characteristic equation of CX) finds the solutions to the
first. If the sample vector has c components, CX is of order c and the second equation also
becomes of order c. By ordering the eigenvectors in the order of descending eigenvalues, an
ordered orthogonal basis can be created, with the first eigenvector having the direction of
largest variance of the data. In this way, the directions in which the data set has the most
significant amounts of energy can be found.

Now assume a data set for which the sample mean and covariance matrix have been cal-
culated. Let A be the matrix consisting of eigenvectors of the covariance matrix as the row
vectors. It is possible to transform points from one coordinate system to the other:

f = A(oT − µo) (4.17)
o = A−1f + µo (4.18)

with:

f : Point in the orthogonal coordinate system defined by the eigenvectors. Components
of f can be seen as the coordinates in the orthogonal base and are the feature values
of the DL inserted during measurement of o.

o : Point in original coordinate system
A−1 : Inverse of A. Note that A−1 = AT , because A is an orthogonal matrix.

Data may be represented in terms of only a few eigenvectors of the covariance matrix instead
of using all the basis vectors of the orthogonal basis. This minimizes the mean-square error
between the data and its representation for a given number of eigenvectors.

In order to calculate the feature values of a sample o, helper data A and µo are needed.
These are created from the enrollment measurements (just like g).

4.2.1. Entropy of the Principle Components

Figure 4.4 shows the feature values of some principle components. These were determined by
sweeping 65 DLs over a frequency range of 2.0−8.2MHz and performing PCA on the results.
Each DL was measured ten times and the x-axis shows all subsequent measurements, so the

43 / 96



confidential Confidential

first ten measurements belong to DL00, the next ten to DL01 etc. Note that the set of ten
measurements is divided into a train and test set. The train set is used for the PCA, the test
set to check whether new measurements will be close to the determined feature values. In the
plots, the first seven (blue) points belonging to one object are from the train set, the three
last (red) points are from the test set. Figure 4.4(d) shows a close up of the feature value of
one delay line. From the images it is seen that the feature values for each principle component
differ much more between the objects than the values differ between each measurement of the
same object (due to noise). Further, the absolute feature values decrease for higher principle
components, but the noise also decreases. Principle component 65 does not help any more to
distinguish delay lines, which is in agreement with the PCA method, since only 65 objects were
used. In order to determine how much information is contained in each principle component,
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Figure 4.4.: Feature values of some principle components. Sweep range: 2.0−8.2MHz, number
of points: 1601, objects: 65, measurements per object: 10 (7 train, 3 test).

the entropy (see section A.8.2 on page 72) of each principle component is calculated. The
result is shown in figure 4.5. It can be concluded that the maximum number of feature values
has not been reached yet and the figure predicts it is already possible to distinguish 2428 delay
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lines. In order to determine the maximum total entropy, more delay lines would be needed.
But the limit could be quite high and more delay lines are not available.
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Figure 4.5.: Entropy of the principle components. Sweep range: 2.0 − 8.2MHz, number of
points: 1601, objects: 65, measurements per object: 10 (7 train, 3 test).

Reducing the Frequency Range

By reducing the frequency range and reducing the number of points, less entropy will be
present in the principle components. Beyond that, it has the advantage that the time to make
one measurement (and hence an identification) can be decreased. Figure 4.6 shows the entropy
for measurements with the very small frequency range of about 8 · 8kHz. The entropy indeed
decreases. By increasing/decreasing the number of points the entropy would be expected to
increase/decrease. Table 4.6 shows some results. The table does not show what would be

Number of points Principle components Entropy
Total Average

26 51 187.3 3.5
51 64 185.8 2.9
101 64 188.8 2.9
201 64 179.4 2.8
401 64 166.8 2.6

Table 4.6.: Entropy for different number of points.

expected. The trend is that with larger number of points, the entropy decreases. This can be
explained by the fact that measurements with more points take longer to complete, which
might introduce more noise in the results. Although the entropy of this small frequency range
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Figure 4.6.: Entropy of principle components. Sweep span: 8 · 8kHz, number of points: 101,
objects: 65, measurements per object: 10 (7 train, 3 test).

might seem to be around 160 it is not possible to extrapolate these results to the full frequency
range to obtain the total entropy in a DL701 since components in other frequency parts of
the spectrum might be covariant with the frequency points in this part.

Figure 4.7 shows the logarithmic magnitude of the measurement for different settings for the
number of points. At a certain number of points per frequency range, no information is added
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Figure 4.7.: LogMag for different number of points.

anymore by increasing the number of points. From figure 4.7 it can also be concluded that
by measuring around 101 points in a frequency range of 64kHz the transfer function on that
frequency range can be fully recreated. This is important for exhaustive model building. Since
the full frequency range that can be used for challenges is 8.2−2 = 6.2MHz, this means that
by measuring approximately (6.2·106/64·103)·101 = 9.8·106 frequency points, a DL701 can be
fully modeled. Measuring all these points takes only (9.8·106/1601)∗0.8 ≈ 4897 seconds (≈ 82
minutes). This means that if an original DL701 would be used as an APUF it is not protected
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against an exhaustive modeling attack. If the transfer function was more unpredictable per
small frequency step then the number of frequency points to measure and hence this time
would increase. Another option would be to try to use slow materials (materials where the
speed of sound is very low) as APUFs, but it is unlikely this will increase the time enough to
make exhaustive modelling impossible. Although there could be solutions to the exhaustive
modelling problem, it is strongly recommended to use control for a PUF anyway, even if the
original PUF is strong. So the experiments are continued with the idea that control is added
to the PUF.

4.2.2. Demo System DL701 Identification

The AKI system incorporates a part to proof the concept of DL701 identification in real
situations. It does not contain the code for identification enrollment and principle component
extraction so this has to be done separately (see the AKI manual).

Results

This section shows some results obtained with the AKI system. Enrollment settings
Start frequency 2.0MHz
Stop frequency 8.2MHz
Nr. of points 51
Measurements per object 10 (7 train, 3 test)
Enrolled delay lines DL00. . . DL27

Figure 4.8(a) shows an example of a distance graph that is shown on the screen during
auto identification (at room temperature). From the graph it is clear that the distance (see
equation 4.8) between one DL and the others is large enough to uniquely identify the DL701s.
The horizontal line indicates the distance threshold AKI uses to identify DL701s, above the
threshold, the inserted object is not identified. When all graphs are collected by inserting
each object, figure 4.8(b) is obtained, which shows the distances of all the inserted objects.
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Figure 4.8.: Distance between inserted objects and stored data. Enrolled objects in green
(light) unenrolled in blue (dark).
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DLnr Distance DLnr Distance
to itself min. to 6=itself

Day1 Day2 Day1 Day2 Day1 Day2
00 2.5741 1.3131 44.4176 44.4926 28 43.4199 43.5337
01 1.4629 1.9273 42.7267 42.2279 30 45.4680 45.0720
02 2.0289 1.6380 62.1344 62.1916 31 34.1801 34.0626
03 1.8877 2.0270 54.3735 54.7998 32 42.6266 43.1882
04 2.0681 2.4585 50.1089 50.4092 33 44.6083 45.0116
05 2.3374 2.2781 56.2276 56.7956 34 47.7220 46.6326
06 2.4608 2.2522 46.1818 46.1715 35 36.0951 35.5332
07 2.0258 1.6052 57.2867 57.1998 36 29.4698 29.4016
08 2.1408 2.2435 38.1092 38.3317 37 62.0707 62.3022
09 2.4267 1.9974 46.1934 46.2443 38 45.4171 44.6160
10 1.8373 1.7443 48.1156 47.7065 39 56.1793 55.8400
11 2.0785 1.9505 55.6053 55.4697 40 47.1726 46.4019
12 2.0194 1.7850 59.3003 59.8302 41 37.6588 38.1991
13 1.9051 2.0667 53.2844 53.5692 42 38.0638 37.0332
14 1.9483 1.8279 44.3764 45.0497 43 34.6462 34.7929
15 2.1484 2.0244 45.0342 45.4228 44 38.2991 38.0009
16 2.2589 2.1181 53.3652 53.5623 45 47.2764 47.9545
17 1.9146 1.9934 60.8770 61.0289 46 46.4390 46.2168
18 2.4885 2.5502 43.0610 43.1794 47 40.4419 40.1664
19 2.1256 2.2318 46.7574 46.9803 48 42.9670 43.0411
20 2.7512 2.0031 59.2448 58.6942 49 36.3065 35.8798
21 2.6244 2.1906 46.9419 46.6850 50 39.9252 40.3389
22 3.0124 2.4867 57.1993 57.1496 51 36.2962 36.2624
23 2.2272 2.2760 50.1786 50.3960 52 40.3574 40.1183
24 2.0218 1.6973 49.2927 48.8532 53 77.1662 76.5334
25 2.5792 2.3420 51.8319 51.5774 54 56.5335 50.0435
26 2.8773 2.8817 52.7138 52.2094 55 37.0267 56.5106
27 2.0967 1.9365 48.8165 48.9114

Table 4.7.: Distances of inserted objects.

Table 4.7 shows some distances in a table. In the table the difference between one objects
distance to its own data and the minimum distance that is found by comparing it to all other
objects is shown. Note that delay lines 28−57 were not enrolled. If the values are assumed to
be normally distributed, and two pdfs of the enrolled and unenrolled objects are made, figure
4.9 is obtained. It can be calculated that the two pdfs intersect at a distance of 3.82. Below
some values for the False Acceptance Rate (FAR, distance of unenrolled objects ≤ threshold)
and False Rejection Rate (FRR, distance of enrolled objects > threshold) are shown for dif-
ferent thresholds.

Threshold FRR FAR
3.42 1.10 · 10−4 1.68 · 10−5

3.82 (intersection) 6.06 · 10−7 2.00 · 10−5

15 0.00 ∗ 100 (matlab output) 1.52 · 10−3
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Figure 4.9.: Intersection of the pdfs.

The same can be done for other enrollment settings
Start frequency 4.4MHz
Stop frequency 4.432MHz
Nr. of points 51
Measurements per object 10 (7 train, 3 test)
Enrolled delay lines DL00. . . DL27

Threshold FRR FAR
3.91 1.01 · 10−4 2.26 · 10−6

4.54 (intersection) 5.45 · 10−7 4.58 · 10−6

15 0.00 ∗ 100 (matlab output) 2.59 · 10−2

Note that these values are valid if the measurements are done at room temperature (about
20◦C).

Temperature Influences Identification

When DL701s are warmed up, the extracted feature values change, which also changes the
distance measure. Table 4.8 shows an example of the change in the distance by warming a
DL20 between two hands. From the table it is seen that warming increases the distance to
a DL’s own data. This also influences the FAR and FRR if the enrollment data is kept the
same. On a cold day (unfortunately no temperature was recorded) the FRR can get as high as
4.79·10−3 and the FAR 1.77·10−2 if the threshold is set to the pdfs intersection (=12.14). The
influence of heat and other factors (moist etc.) should be further investigated. The change of
feature values may be an obstacle for unique identification, but could also be a possibility to
enlarge the challenge response space if the change in the feature values is unpredictable. It
could be possible to fit a small heating/cooling element (e.g. peltier) inside the DL701 that
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Measurement nr. Distance Distance to others
1 2.6978 59.3679
2 3.7287 56.0419
3 8.2475 49.9556
4 10.9121 52.5353
5 12.1144 51.0998

Table 4.8.: Warming DL20.

sets the temperature for a challenge [1, 8]. If the change in feature values is predictable, then
a temperature sensor could be fitted to obtain the temperature to correct for the change in
feature values.

4.2.3. Conclusion

DL701s can be uniquely identified quite easily when temperature is not varying too much
and AKI is able to show this in practice. If a FRR is allowed of 1 out of 10,000 a FAR of 1
out of 100,000 should be easily possible, especially if temperature control will be used. The
challenge space is not big enough to prevent exhaustive model building, but it is preferred to
add control to a PUF anyway, which can prevent exhaustive model building.

4.3. Threshold Key Generation

This section investigates whether key generation as described in section 1.6.1 on page 12 is
possible for DL701s. Note that in order to truly compare DL701s no confusion or BCH error
correcting code is added. Enrollment settings
Start frequency 2.0MHz
Stop frequency 8.2MHz
Nr. of points 51
Measurements per object 10 (7 train, 3 test)
Key generated for DL00. . . DL54

Figure 4.10 shows the uncorrected keys and the flip rates that are generated by AKI. Flip
rates indicate the number of times a bit changes (flips) during key extraction from enrollment
measurements. Some of the components in some objects are not always converted to the same
key and hence these components are tagged ‘unsteady’ with the help of the flip rates. The
mean number of steady bits lies around 98, minimum 93, maximum 102 (of the 102 bits) for
this example. The Fractional Hamming Distance (FHD) is calculated between all generated
keys. The FHD is the number of components (in this case bits) that differ between two keys
divided by the length of the key (number of components). This can be done on keys where
the unsteady bits are removed and the keys are all made the same length or on keys where

the unsteady bits are set to 1. For 55 objects
(

55
2

)
= 55·54

2 = 1485 FHDs are calculated.

Figure 4.11 shows a normalized histogram of the values obtained when unsteady bits are first
removed. The mean of this distribution is 0.504240, the median 0.505376 and the standard
deviation (σ) 0.121759. If every bit in the key would be independent, it would be expected
this histogram would have a binomial distribution with N = 93 and p = 0.5. Where the
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Figure 4.10.: Uncorrected keys and flip rate.

number of 1’s in each key is taken as the number of successes in 93 draws. If this distribution
is drawn in the same figure, it does not match the experimental data. This could be because
the bits in the key are not all independent. The effective number of independent bits can be
determined by the looking at the experimental data according to [22]. For a binomial distri-
bution f , var(f) = σ2 = N · p(1 − p). Since the FHD is calculated (and not the HD), the
variance of the FHD distribution is σ2 = N · p(1 − p)/N2, which means N = p(1 − p)/σ2.
For p = 0.504240 and σ2 = 0.1217592, Neffective ≈ 17bits. This observed distribution is also
plotted in the same figure and it can be seen that it matches the experimental data. Some
results obtained

Frequency [MHz] Nr. of Unsteady Bits Mean σ Effective
Start Stop Points Removed? in Key FHD Bits

2 8.2 51 No 102 0.503387 0.135958 14
2 8.2 51 Yes 93 0.504240 0.121759 17
2 8.2 1601 No 3202 0.504019 0.137818 13
2 8.2 1601 Yes 3141 0.500517 0.052861 89

It seems strange that if unsteady bits are removed the number of independent bits increases.
This can be explained by the fact that the other bits in keys are shift when bits are removed,
this could introduce more randomness as originally present. Since the information which bits
to remove is public, it does not add more randomness.

To guarantee the keys are distinct AKI adds confusion (as described in 1.6 on page 11).
Adding random confusion makes the keys more different in case they are related, but does
not reduce the FAR when processing takes place outside the PUF.

To correct for small errors in the derived key and to add confusion, AKI uses a small BCH
error correcting code. For keys of 102 bits, the code uses codewords of 127 bits (N) and can
correct 4 bits (T) to extract a message of 99 bits (K). When more errors are present in the
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Figure 4.11.: Experimental and theoretical binomial distribution.

derived key, a code that can correct for more bits has to be used e.g. N = 255,K = 99, T = 23.
This correction however, also increases the FAR when processing takes place outside the PUF,
since keys which differ in 23 bits can now be error corrected to the same keys. Further, the
derived key is 102 bits long and must be XOR-ed with the codeword of 255 bits (by adding
0’s). This leads to more information leakage about the secret contained in the codeword.

4.3.1. Conclusion

The detection of unsteady bits can probably be made much better by defining a small region
around the threshold, based on the standard deviation in each component. Measurement
values within this region are then tagged as unsteady. The effective number of bits with this
method is too small to generate useful keys from DLs. When processing takes place outside
the PUF, adding an error correcting code increases the FAR, because different keys have a
higher chance of resulting in the same secret. Another reason to aim for controlled PUFs
where processing can take place inside the PUF. Nevertheless, adding error correction inside
the PUF, makes opening the PUF and generating a fake measurement signal from the PUF
easier, since more (fake) signals will result in the same secret.

4.4. Quantized Key Generation

This section investigates whether key generation as described in section 1.6.2 on page 14 is
possible for DL701s. In order to aid in choosing the quantization, AKI presents some figures
during quantized key extraction (see the manual in section C). First, the quantization is done
to only two values (v = 2 ≡ {0, 1}). With the following enrollment settings
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Start frequency 2.0MHz
Stop frequency 8.2MHz
Nr. of points 30, randomly chosen from the range
Measurements per object 10 (7 train, 3 test)
Quantization chosen q = factor ∗ σn, where n is the noise in each component

factor = 8
Key generated for DL00. . . DL10

The resulting FHDs are shown in figure 4.12 Compared to the threshold key extraction
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Figure 4.12.: Experimental and theoretical binomial distribution for QKE.

method, the effective number of bits is much higher. Ten keys were extracted, so Neffective

is based on 45 (= 10 ∗ 9/2) comparisons. Note that the histogram should match the calcu-
lated binomial distribution when more keys are derived, but in order to calculate the effective
number of bits 45 samples is enough to roughly estimate σ2 and hence the effective number
of bits. A different data set, with the same size gave Neffective = 45. From figure 4.13 one can
see that the extracted keys look more random than with threshold key extraction. Figure
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Figure 4.13.: Keys generated with quantized key extraction.

4.14 shows the components contain much more entropy than 1 bit and the number of bits can
be enlarged by quantizing to multiple values. AKI quantizes standard to v = 2floor(entropy)

values for each component. More values is useless since the components do not contain more
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Figure 4.14.: Entropy of components.

entropy. An example for the keys generated like that is shown in figure 4.15. From the figure
it is clear that the component values are spread over the range of available values, so the keys
are all very different. When quantizing to multiple values it is not possible to calculate the
effective bits immediately. The FHDs multi valued keys can be determined and are shown in
figure 4.16. The figure also shows the normalized distances. Which are defined as follows

Dcomponent ij k = MIN(v − |keyi k − keyj k|, |keyi k − keyj k|) (4.19)

Dnormalized ij =
1
c

c∑
k=1

(
Dcomponent ij

v/2

)
(4.20)

with:

Dcomponent ij k : Distance between component k of keys i and j
keyi k : Value of component k of key i
v : Number of key values that is quantized to
c : Number of components in a key
Dnormalized ij : Distance measure between key i and j

This means if keys are exactly v/2 apart on each component, the normalized distance would
be the maximum of 1. From the figure 4.16 one can conclude that the keys are indeed clearly
distinguishable when looking at the FHDs.
The number of effective bits can be calculated by first converting the decimal valued compo-
nents to binary values. And use these (longer) bit keys to calculate the number of effective
bits as was done in the previous sections. Figure 4.17 shows the results. This figure shows that
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Figure 4.15.: Keys generated by quantized key extraction to multiple values. The red line
indicates the v chosen for that component. Each marker belongs to the key
values of one delay line as shown in the legend.
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Figure 4.16.: Distances for QKE between keys.
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Figure 4.17.: Experimental and theoretical binomial distribution when decimal key values are
converted to binary values.
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the effective number of bits is 240 (FHD mean: 0.479802, FHD std: 0.032237). This is clearly
a big improvement! Note however that one should take into consideration that by choosing v
higher, more information is leaked from the helper data when helper data is used (see section
1.6.2). Always valid is σx/σn =

√
22H − 1, which means σx =

√
22H − 1 · σn (equation A.24).

The probability of error in one bit is dependent on q
σn

= factor·σn
σn

= factor (see figure 1.8). Be-
cause the error probability should not be too high (≤ 10−4), ‘factor’ is chosen 8. Information

leakage is dependent on σx
q =

√
22H−1·σn

factor·σn
= 1/8 ·

√
22H − 1 (see figure 1.11). σx/q is calculated

for several values of H

H σx/q H σx/q

1 0.22 4 2.00
2 0.48 5 4.00
3 0.99 6 8.00

Most of the components have an entropy of ≥ 4, so σx/q ≥ 2. In the ‘information leakage
figure’, v can be chosen, depending on the amount of leakage allowed. For v ≤ 4 information
leakage stays below 10−4 per component. If the components are converted to binary values
and the effective number of bits is calculated for this setting, Neffective = 132 bits is obtained.
This cannot be true, since the bit keys are only 120 bits long after conversion (2 bits needed
per component). Probably too little keys were extracted to make a very accurate estimation
of variance of the FHD distribution (which is used to calculate Neffective).

4.4.1. Conclusion

Quantized key extraction seems the most effective and reliable method to extract keys from
DL701s. There still needs to be implemented a efficient way to correct for errors in the keys.
This could for example be done by converting the decimal key values to bits and using an error
correction code on them, but there is probably better error correction method for multiple
valued data (e.g. Reed-Solomon codes processes symbols in 2m instead of 2). Further, more
keys should be extracted to verify the results in the last section and make a more accurate
estimation of Neffective.

4.5. PUF on chip Experiment

As described in section 1.4, controlled PUFs are very interesting to build. In order to in-
vestigate whether it is possible to make an APUF on chip, measurements on an DL701 were
done before and after it was covered with epoxy material. Chips normally are poured in epoxy
material in the final creation process. If an APUF would be made on chip, it could be possible
that the epoxy cover could damp out all the measurement energy, so the output signal (re-
sponse) could become unmeasurable. The experiment indeed confirmed this: no signal could
be measured anymore with the epoxy material poured in. Other methods and other materials
as APUF could make a CPUF possible, but this has to be investigated.
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5. Conclusion

DL701s can be uniquely identified quite easily when temperature is not varying too much and
AKI is able to show this in practice. If a FRR is allowed of 1 in 10,000 a FAR of 1 in 100,000
should be easily possible, especially if temperature control will be used. The challenge space
is not big enough to prevent exhaustive model building, but it is preferred to add control to
a PUF anyway, which can prevent exhaustive model building.

The effective number of bits generated by using threshold key extraction to extract keys
from delay lines, is too small to generate useful keys from DLs.
However, quantized key extraction used to extract keys from DL701s clearly shows Acoustical
PUFs are feasible. From 30 measurement points (60 components) it is possible to generate a
key of about 120 bits (Note: these experiments should be repeated for more extracted keys,
to make a more accurate estimation). When the key that is directly generated by the PUF
is immediately used as a key (so no confusion is added) then this number of bits is probably
even higher (in the order of 240 bits).

Since exhaustive modeling is very likely, best thing is to go for controlled PUFs. Controlled
PUFs have many advantages over normal PUFs.
So, APUFs look promising, but there is still a lot of matters to investigate. These matters
are discussed below.

5.1. Future work

• As stated in section 1.2 on page 5 more research to modelling of piezoelectric transducers
and waves in solids should be done in order to investigate how hard adaptive model
building is.

• Can they be simulated easily? What is the physics behind APUFs and is it possible to
create a model that can predict their responses?

• How uncloneable are APUFs specifically? Can APUFs be created which are even more
difficult to clone?

• Save the difference between succeeding mini-responses as response to a challenge. In
AKI3 the actual values are saved and a reference challenge is always used to account
for shifts of the values during time. Since only the mean of the real and the mean of the
imaginary part is used for shifting, probably the differences don’t change. Saving the
differences could have the following advantage:

– reference challenge may not be necessary any more. Note that one should distin-
guish between the real part of the response and the imaginary part: don’t save the
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difference between the two neighboring points that each lie in the different parts
(in the middle of the response).

– one could use the reference challenge for auto identification: the PUF is inserted
and the system recognizes which PUF it is. The reference response is used to search
the database for the response

• Investigate change of feature values (for identification) in relation to temperature. Is
the change predictable?

Some future work that could be done on AKI (APUF Key extraction & Identification):

• Expand AKI (APUF Key extraction & Identification) to:

– show encryption/decryption of files

– support multiple challenge/response pairs per APUF

• Rewrite AKI to clean up the code.

• Find more information about the work of Otto Muskens. During the finishing of this
Report the following information was found in an old Cursor (see [21], note this is in
Dutch)

These very short pulses could perhaps be used as a new type of challenge to create
PUFs. More on his research can be found on http://www.phys.uu.nl/∼muskens/
SolitonProject.php.
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[27] B. Škorić, Pim Tuyls, Sjoerd Stallinga, Ton Akkermans, and Wil Ophey. Optical PUFs.
Technical report, Philips Research Laboratories, October 2003. Unpublished.

[28] A. L. Zijlstra and C. M. van der Burgt. Isopaustic Glasses for Ultrasonic Delay Lines in
Colour Television Receivers and in Digital Applications. Ultrasonics, January 1967.

62 / 96

http://www.faqs.org/rfcs/rfc1750.html
http://www.tue.nl/cursor/bastiaan/jaargang46/cursor26/achtergrond/k_o.html
http://www.tue.nl/cursor/bastiaan/jaargang46/cursor26/achtergrond/k_o.html
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf


confidential

A. Cryptography

In order to compare the characteristics of Physical Uncloneable Functions (PUFs) with clas-
sical cryptographic systems some general cryptographic terms are explained in this chapter.
The last section will discuss the entropy a measured value contains. This is related to cryp-
tography when for example measurement values are converted to an encryption key.

A.1. Symmetric Encryption Algorithms

A.1.1. One-time pad

A one-time pad (Vernam cipher) uses a string of bits that is completely random (generated
from a true random source) to encrypt plaintext. Encryption is done by combining the one-
time pad with the plaintext (usually done with the bitwise XOR). Since the entire keystream
is random, an attacker with infinite computational resources can never know the plaintext if
she only sees the ciphertext because all plaintexts will have equal probability.

A.1.2. Stream/Block Ciphers

Since one-time pads are often not really practical, stream ciphers were developed. The differ-
ence with the one time pad is that their output is deterministic and depends on an internal
state. While stream ciphers are unable to provide the same theoretical security of the one-time
pad, they are at least practical. Stream ciphers generate keystreams and encryption is done
by combining the keystream with the plaintext (bitwise XOR). There are two types of stream
ciphers:

• Synchronous - the generation of the keystream is independent of the plaintext and
ciphertext.

• Self-synchronizing - the keystream is dependent on a fixed number of bits from the
ciphertext and/or plaintext.

Stream ciphers work on the plaintext one single bit (or byte) at a time. Ciphers that work
on the plaintext in groups of bits of a fixed length (block), are called block ciphers. Block
ciphers used in a certain mode can be transformed into a stream cipher and hence any block
cipher can be used as a stream cipher, but dedicated designs are usually faster (and more
secure). By construction, the sequence generated by stream- and block ciphers will eventually
repeat itself. This is another important difference with the one time pad, which does not have
a period of repetition.

A.2. Perfect Secrecy

A cipher is perfect if for every cryptogram yN and plaintext xN (where N is the length of the
plaintext) the a posteriori probability (the probability of occurrence, for the given information

63 / 96



confidential Confidential

and observations) of both is equal. Then a cryptanalyst does not receive any information
about the plaintext. This condition implies that the plaintext and the cryptogram have to be
statistically independent. To determine the ‘uncertainty’ over the set of plaintexts XN , the
entropy is used. Entropy is the measure of the disorder or randomness of a system. Figure A.1
summarizes some entropy relations. Statistical independence (perfect secrecy) can be written
as

H(XN |Y N ) = H(XN )

with:

H(A|B) : Entropy of A given B
H(A,B|C) : Entropy of A and B, given C
N : Length of the plaintext
X : Set of plaintexts
Y : Set of ciphertexts

Figure A.1.: Some entropy relations, I(X;Y ) : Mutual information between X and Y.

Since Y N can be calculated from Z (the set of keys) and XN and likewise XN can be calculated
from Z and Y N it is known that

H(Y N |XN , Z) = 0 (A.1)
H(XN |Y N , Z) = 0 (A.2)

Given the entropies above the following can be derived

H(XN , Z|Y N ) = H(XN |Y N ) + H(Z|XN , Y N )
≥ H(XN |Y N ) (A.3)

H(XN , Z|Y N ) = H(Z|Y N ) + H(XN |Y N , Z)
= {use eq. A.2}

H(Z|Y N )
≤ H(Z) (A.4)

from eq. A.3 and A.4 ⇒ H(XN |Y N ) ≤ H(Z)

Thus for a system with perfect secrecy we conclude

H(XN ) = H(XN |Y N )
≤ H(Z) (A.5)
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So for perfect secrecy the key uncertainty H(Z) must be at least as large as the message
uncertainty H(XN ). For the entropy of the key and the plaintext the following applies (see
also equation A.12 on page 72 with pi substituted)

H(Z) ≤ K log2 |Z| (A.6)
with equality only if the key selection is completely random.

(pi =
1

|Z|K
)

H(XN ) ≤ N log2 |X | (A.7)

(pi =
1

|X |N
)

(A.8)

with:

K : Length of the key
N : Length of the plaintext
|Z| : Key alphabet size
|X | : Plaintext alphabet size

Now if |X | = |Z|, as in the one-time pad and the plaintext is completely random then K ≥ N .
So the key has to be as least as large as the plaintext, cf. the one-time pad (see section A.1.1
on page 63).

A.3. Hash and one-way functions

In this section hash functions and one-way functions are described. They are fundamental
primitives in cryptography [24, 20]. One primitive is the one-way function

Definition 5 A one way function h is a computationally efficient function with the fol-
lowing property:

• Given x it is easy to compute h(x), but given h(x) it is unfeasible to compute x.

There is no proof that real one-way functions exist, but many functions look one-way: there
is no known way to reverse them. One-way functions are no good for encrypting messages: it
would be impossible to decrypt them again.
Trapdoor one-way functions (or keyed hash functions) are special one-way functions. They
work the same except if one knows some secret information y, then with h(x) and y it is easy
to compute x.
A one-way hash function is also called: compression function, contracting function, mes-
sage digest (MD), fingerprint, cryptographic checksum, message integrity check (MIC) or
manipulation detection code (MDC). One way hash functions are often used in cryptography.

Definition 6 A one-way hash function is a computationally efficient function, mapping
binary strings of arbitrary length (pre-images) to binary strings of some fixed length (hash-
values). With the following property:
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• Given x it is easy to compute h(x), but given h(x) it is unfeasible to compute x.

A good one-way hash function is collision free and shows the avalanche effect : it is hard to
generate pre-images with the same hash value and if a single bit changes in the pre-image,
on average half of the bits in the hash-value change. The point is to produce a value that
can be used to verify whether another message is likely to be the same as the message that
produced the value. Note that hash functions can never realize 100% collision resistance
because it permits a larger input bit length than the output bit length. For this reason, the
hash function is considered to have collision resistance if no collision is detected within a
realistic computational complexity. Table A.3 shows characteristics of some hash functions
[18].

Algorithm RIPEMD-160 SHA-1 SHA-256 SHA-384 SHA-512

Permitted length of
input message [bits]

< 264 < 264 < 264 < 2128 < 2128

Output hash length
[bits]

160 160 256 384 512

Block length for each
basic process unit [bits]

512 512 512 1,024 1,024

Word length for each
basic operation
processing [bits]

32 32 32 64 64

The number of
processing steps

160 80 64 80 80

Table A.3.: Characteristics of some hash functions.

‘Birthday attacks’ are often used to find collisions of hash functions. For a function with a
random input that returns one of k equally-likely values, one can repeatedly evaluate the
function for different inputs. The same output is expected after about 1.2 ·

√
k evaluations

[2]. It gets its name from the surprising result that the probability that two or more people
in a group of 23 (k = 365) share the same birthday, is greater than 1/2.

Message authentication codes (MACs) or data authentication codes (DACs), are one-
way hash functions that also use a secret key as input for the function. Only someone that
knows the key can verify the hash-value.

A.4. Asymmetric Encryption

While one-way functions are not useful for encryption, trapdoor one-way functions are. Asym-
metric encryption is based on trapdoor one-way functions (see section A.3 on the preceding
page) and is often called public-key cryptography. Encryption is the easy direction and done
by using a public key. Decryption is the reverse and should not be possible without the secret
(or often called private) key.

Public-key crypto systems are vulnerable to chosen plaintext attacks. An attacker can en-
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crypt all n possible plaintexts (if this set is small) and compare it with the ciphertext. The
attacker is not able to get the secret key this way, but is able to determine the plaintext. Sym-
metric crypto systems are not vulnerable to this attack because an attacker cannot perform
trial encryptions with an unknown key.

A.5. Digital Signatures

Digital signatures are used to bind an identity to a piece of (digital) information. Signing is
the transformation of a message and some secret only known to the identity, into a tag: the
signature. Signing can be done in several ways:

• By use of symmetric crypto systems and an arbitrator. The arbitrator has to be trusted
by the communicating parties.

• Using digital signature trees, which contain an infinite number of one-time signatures.

• Using public-key cryptography to sign the document.

• Using Public-key cryptography and one-way hash functions to sign the one-way hash of
the document. In practice public-key algorithms are too expensive (time, memory) to
sign long documents. Hence signature protocols are often based on signing the one-way
hash of a document. The use of one-way hash functions also makes it more easy to
create multiple signatures on one document.

Digital signatures often include time stamps to prevent reuse of the signed document (like dig-
ital checks). However, the owner of the signature can always sign a document and afterwards
deny the signing by claiming that her key was compromised. This is called repudiation and
also the reason why there is much discussion about private keys in tamper-resistant modules.
These should make sure the owner cannot get to the key and abuse it, for example by ‘loosing’
it accidently.

A.6. Identification of Users

Identification of a user is usually based on a shared secret or a biometric of the user.

• Based on user’s memory.

– Password

– One-time password

– Challenge response method based on user’s memory

• Based on user’s belongings.

– Magnetic cards

– Smart Cards

– Documents

– Mobile phones

– PDAs (Personal Digital Assistants)
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To prevent forgery, tamper-resistant modules should be used that are clone-resistant.

• Based on user’s biometrics

– Fingerprints

– Retinal prints

– Iris prints

– Voice prints

– Facial profiles

– Handwriting

The biometrics do not impose a severe burden on the users’ memory or belongings, but
usually contains private information.

A.7. (Pseudo) Random Number Generators

Random number generators can generally be classified into two categories

Random number generators RNGs: non-deterministic random number generators. RNGs
generate random numbers from a certain physical quantity (noise from an electrical
circuit, Geiger counter clicks or quantum effect of a semiconductor). The RNG output
can be used as a random number or as an input to a PRNG.

Pseudo random number generators PRNGs: deterministic random number generators.
PRNGs are a mechanism for generating random numbers on a computer. A PRNG
generates multiple ‘pseudo-random numbers’ for one or more inputs usually using a
RNG output as a seed. It is called pseudo random, because truly random numbers can-
not be generated from a completely non-random thing like a computer. Typically the
same sequence of pseudo random numbers is generated when starting from the same
seed. A PRNG has a secret state S and upon request it generates outputs that are
indistinguishable from random numbers to someone that does not know S. Hence it
looks very similar to a stream cipher (see section A.1.2 on page 63). However a PRNG
must be able to change its state by processing input values that may be unpredictable
to an attacker.

A ‘random value’ is a sample of a random variable which has a uniform distribution over
the entire set of n-bit vectors, for some n. Actually a PRNG is the heart of a cryptographic
system. Often not much attention is payed to PRNGs, but they are the basis of a lot of
cryptographic systems. Random numbers are in session keys, nonces, initialization vectors,
public-key generation, and many other places. If the random numbers are insecure, then the
entire application is insecure. Algorithms and protocols that use bad random numbers cannot
cover the fact they use them. As an example: in 1995, Berkeley students broke the security of
Netscape Navigator by analyzing the PRNG. In theory, true random numbers only come from
truly random sources: atmospheric noise, radioactive decay, political press announcements. If
a computer generates the number, another computer can reproduce the process. A sequence
generator is pseudo random if (1) it looks random, (2) it is unpredictable and (3) it cannot
be reliably reproduced. (1) means that it passes all statistical tests of randomness that can
be found.
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For a sequence to be cryptographically secure pseudo random (CSPR) it must not only
comply to the statistical randomness, but it must also be unpredictable. This means that
given the complete algorithm or hardware generating the sequence and all previous bits in
the stream it must be computationally unfeasible to predict what the next bit will be. The
seed to set the initial state of the generator is often called the key and without it CSPR
sequences should not be compressible.

A sequence generator is real random if it cannot be reliably reproduced. Meaning if the
sequence generator is run twice with the exact same input (as far as humanly possible), still
two completely unrelated random sequences are generated.

Only the output of a sequence generator that complies to all three properties mentioned is
good enough for one-time pad- or key generation and all other applications that need a truly
random sequence generator.

A.7.1. Attacks on PRNGs

Attacks on PRNGs can make a careful selection of algorithms and protocols for crypto systems
irrelevant. So the PRNG is a single point of failure for many crypto systems. There are different
types of attack

• Direct Cryptanalytic Attack: PRNG output and random output can be distin-
guished. This attack can be mounted to most PRNGs.

• Input Based Attack: the attacker is able to use control or knowledge of the PRNG
inputs to distinguish between PRNG output and random output.

• State Compromise Extension Attacks: recovering unknown PRNG output (or dis-
tinguish from random output) from an internal state S that was once compromised.
This unknown output can be output from before or after S was compromised. One can
discriminate:

– Backtracking Attack: use S to learn previous PRNG outputs.

– Permanent Compromise Attack: all future and past S values are vulnerable
to attack.

– Iterative Guessing Attack: by S at time t the attacker can learn S at t + δ by
guessing the inputs collected during this span of time.

– Meet-in-the-Middle Attack: combination of iterating guessing and backtrack-
ing. From S at times t and t + 2δ, S at time t + δ can be recovered.

There are also examples where PRNGs are used incorrectly. For example, if it is known
that a cryptographic system uses 128 bit keys, but these keys are derived from a known fixed
PRNG that has an 8 bit seed. Then an attacker only needs to search 28 = 256 keys (using
every possible seed used for the PRNG). And not the 2128 possible keys according to the
system.

A.7.2. Skew Correction

Sometimes the chance of producing a 1 and the chance of producing a 0 in a random number
generator (rather: random bit generator) is not the same. This means the distribution of 0’s
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and 1’s is not uniform and hence the produced sequence cannot be stated to be random. This
non-uniform distribution is called skew. Fortunately there are skew correction algorithms that
can convert the sequence into one with (almost) uniform distribution.

De-Skew by Transition Mapping

This skew correction algorithm is based on the transitions in the original sequence. Bits are
read two at a time, and if there is a transition between values (01 or 10) one of them (e.g the
first) is passed on as random. If there is no transition (00 or 11), the bits are discarded and the
next two are read. This simple algorithm is called the Von Neumann strategy. It completely
eliminates any bias towards 0 or 1 in the samples. This can be seen as follows: assume the
probability of a 1 is P (1) = p = 1

2 + e and the probability of a 0 is P (0) = q = 1
2 − e where e

is the eccentricity of the source. Table A.4 shows the probability of each pair. The drawback

pair probability
00 (1

2 − e)2 = 1
4 − e + e2

01 (1
2 − e) · (1

2 + e) = 1
4 − e2

10 (1
2 + e) · (1

2 − e) = 1
4 − e2

11 (1
2 + e)2 = 1

4 + e + e2

Table A.4.: Von Neuman strategy probabilities

of this algorithm is that it takes an indeterminate number of input bits. The probability of a
pair being discarded is: P (00) + P (11) = 1

2 + 2e2. So to produce X output bits it is expected
to need X/(1

4 − e2) input bits. Which means 75% of the input stream is lost, when the bit
stream is already unbiased.

De-Skew by Stream Parity

Of course the transition mapping can be extended to a parity mapping of N input bits to
one bit. This mapping will not be a perfect uniform distribution, but can come as close as
desired (at the cost of number of the bits that need to be sampled to generate a de-skewed
sequence length). The probability that the parity will be 1 or 0 is the sum of all the possible
odd or even terms with length N (where odd means an odd number of 1’s). All these terms
together are the binomial expansion of (p + q)N . Where the terms can be split up in

Terms1 =
1
2
(
(p + q)N + (p− q)N

)
=

1
2
(
1 + (2e)N

)
(A.9)

Terms2 =
1
2
(
(p + q)N − (p− q)N

)
=

1
2
(
1− (2e)N

)
(A.10)

with:

Terms1 : Sum of all terms with an even number of 1’s when N is even and an odd number
of 1’s when N is odd.
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Terms2 : Sum of all terms with an odd number of 1’s when N is even and an even number
of 1’s when N is odd.

p : = 1
2 + e, probability of a 1.

q : = 1
2 − e, probability of a 0.

e : Eccentricity of the source
N : Number of input bits

If probabilities are wanted that are within d of 1
2 in the output, this leads to:

1
2
(1 + (2e)N ) =

1
2

+ d

N >
log(2d)
log(2e)

(A.11)

Table A.6 shows as example the number of input bits needed to de-skew a stream (skewness
indicated by the probability of a 1) to a d value of 0.001.

P(1) e N

0.5 0.00 1
0.7 0.20 7
0.9 0.40 28
0.99 0.49 308

Table A.6.: Example: input bits needed to de-skew stream

De-Skew by Compression

If a stream is reversibly compressed, the Shannon information equation states that this is
only possible if the probabilities of the shorter sequences of the compressed sequence, are
more uniformly distributed than the probabilities of the original. So the shorter sequences are
de-skewed. However, there seems to be a subtle introduction of patterns in the output with
many compression algorithms [14].

De-Skew by FFT

As seen in table A.6, data that is highly biased can still contain useful amounts of randomness.
By using the discrete Fourier Transform the randomness can be extracted, by discarding
strong correlations. If enough data is processed and the correlations decline, the spectral lines
will approach statistical independence. From this normally distributed data can be produced.

A.8. Entropy

This section explains more about the amount of randomness a variable or measurement value
contains. Equation A.12 on the next page was already used in section A.2 to calculate the
entropy of a key and a plaintext.
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A.8.1. Bits of Information

Section A.7.2 discussed the de-skewing of sequences generated from non-uniform distributions,
but did not say anything about how much information a sequence possesses. The amount of
information present in a message depends on the number of values possible and the probability
of each value. A message can for example be a secret key. Shannon [25] derived that the entropy
of a message is

H =
n∑

i=1

(−pi log2(pi)) (A.12)

with:

H : Bits of information present in a message
n : Number of possible values
pi : Probability of the value numbered i (pi ≤ 1)

On average an attacker would have to use half of the values to guess the message. So h bits of
information, would mean 2n−1 tries. But this is only valid if all values have equal probability
(uniform distribution). If their probability is unequal then on average fewer guesses satisfy,
because the attacker will search through the more probable values first.

A.8.2. Entropy of a measurement value

When measured variables are converted to keys that are used in cryptography, it is important
to know how much information a measurement value contains. Shannon’s Noisy Channel
Coding Theorem [4, 25] states how much information is in a measurement value. The theorem
is shortly discussed here. Consider a discrete-time Gaussian channel

yi = xi + ni (A.13)

with:

yi : Output
xi : Information bearing variable
ni : Gaussian random variable (noise) with variance σ2

n

The input xi’s are constrained to have power:

1
N

N∑
i=1

(x2
i ) ≤ p (A.14)

with:

p : Power of the signal, equals: σ2
s (the variance of the signal)

N : Block size

Consider an output block of size N (N uses of a single channel, note that characters in boldface
are vectors):

y = x + n (A.15)
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For large N , by the Law of Large Numbers,

1
N

N∑
i=1

(n2
i ) =

1
N

N∑
i=1

|yi − xi|2 ≤ σ2
n (A.16)

1
N
|y− x|2 ≤ σ2

n (A.17)

|y− x| =
√

Nσ2
n (A.18)

This indicates that for large N , y will -with a high probability- be located in an N -dimensional
sphere of radius

√
Nσ2

n centered about x. Since xi’s are power constrained and ni’s and xi’s
are independent:

1
N

N∑
i=1

y2
i ≤ p + σ2

n (A.19)

|y| ≤
√

N(σ2
n + p) (A.20)

Which means y is in a sphere of radius
√

N(σ2
n + p) centered around the origin. So how many

x’s can be transmitted to have non-overlapping y spheres in the output domain? The question
is how many spheres of radius

√
Nσ2

n fit in a sphere of radius
√

N(σ2
n + p):

Vy

Vy|x
=

4
N π(ry)N

4
N π(ry|x)N

(A.21)

=

(√
N(σ2

n + p)
)N

(√
Nσ2

n

)N
(A.22)

=
(

1 +
p

σ2
n

)N
2

(A.23)

with:

Vy : Volume of all probable y
Vy|x : Volume of y given x

The bits of information that can be sent across this channel in one use is (N = 1):

log2

(
1 +

p

σ2
n

) 1
2

=
1
2

log2

(
1 +

p

σ2
n

)
(A.24)

This formula can be used to calculate the number of bits a measurement value carries about
a certain object.
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B. Plotting Functions

Some functions in the report need re-writing in order to plot them. This section shows this
rewriting as well as some proofs.

B.1. Plotting q · fW (w|s = j)

To plot q · fW (w|s = j) against w/q for different values of q/σx, q · fW (w|s = j) has to be
rewritten. This section shows how to rewrite it for |w| ≤ q.

q · fW (w|s = j) = q ·
∞∑

n=−∞

1√
2πσx

e
(−

((vn+aj)q−w)2

2σ2
x

)

=
∞∑

n=−∞

q√
2πσx

e
(−

q2((vn+aj)−w/q)2

2σ2
x

)
(B.1)

The result can easily be plotted. Note that v is the number of values that is quantized to and
aj is defined as in equation 1.7 on page 15.

B.2. Plotting I(W ; S)

To plot I(W ;S) against σx/q, equation 1.23 on page 20 has to be rewritten. This section
shows how to rewrite it. The original equation:

I(W ;S) =
q∫

−q

fW (w|s = 1) log2 fW (w|s = 1) dw −
q∫

−q

fW (w) log2 fW (w) dw

First the left part of the minus sign is rewritten:
ps: [. . .] indicates that the dots are the same, as the part in the formula that is contained
between [ ] (other type of brackets are used in the same way). For example [A+(B ·C)]+[. . .] =
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[A + (B · C)] + [A + (B · C)].

q∫
−q

fW (w|s = 1) log2 fW (w|s = 1) dw

=

q∫
−q

[ ∞∑
n=−∞

1√
2πσx

e
(− ((2n+1/2)q−w)2

2σ2
x

)

]
log2 [. . .] dw

= {z = w/q, dz = dw/q, dw = q dz(w = q ⇒ z = 1, w = −q ⇒ z = −1)}
1∫

−1

[ ∞∑
n=−∞

1√
2πσx

e
(− ((2n+1/2)−z)2

2(σx/q)2
)

]
log2 [. . .] q dz

= {bring q to the front, the term under the log is multiplied by q/q}

=

1∫
−1

[ ∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n+1/2)−z)2

2(σx/q)2
)

]
log2

1
q

[. . .] dz

=

1∫
−1

[. . .] (log2 [. . .]− log2 q) dz

=

1∫
−1

[. . .] log2 [. . .]− [. . .] log2 q dz

=

1∫
−1

[ ∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n+1/2)−z)2

2(σx/q)2
)

]
log2 [. . .] dz − log2 q

1∫
−1

[. . .] dz (B.2)
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The first term, left of the minus sign can be plotted, the right however still contains a q in it.
Next, the right part is rewritten:

q∫
−q

fW (w) log2 fW (w) dw

= {fW (w) = fW (w|s = 0)P (s = 0) + fW (w|s = 1)P (s = 1), z = w/q}
1∫

−1

[
1
2

∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n−1/2)−z)2

2(σx/q)2
)
+

1
2

∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n+1/2)−z)2

2(σx/q)2
)

]
log2

(
1
q

[. . .]
)

dz

=

1∫
−1

[. . .] · (log2 [. . .]− log2 q) dz

=

1∫
−1

[. . .] log2 [. . .] dz

− log2 q

1
2

1∫
−1

∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n−1/2)−z)2

2(σx/q)2
)

dz +
1
2

1∫
−1

∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n+1/2)−z)2

2(σx/q)2
)

dz


= {see proof of equation B.5}
1∫

−1

[. . .] log2 [. . .] dz − log2 q

1∫
−1

∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n+1/2)−z)2

2(σx/q)2
)

dz (B.3)

The first term, left of the minus sign can be plotted. The second term, right of the minus
sign is the same as the right term from equation B.2. Since the total equation is B.2-B.3 the
following result is obtained:

1∫
−1

[ ∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n+1/2)−z)2

2(σx/q)2
)

]
log2 [. . .] dz

−
1∫

−1

{
1
2

∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n−1/2)−z)2

2(σx/q)2
)
+ [. . .]

}
log2 {. . .} dz (B.4)

This result can be plotted against σx/q (see the plot in figure 1.11 on page 24 ).

The prove that:

1
2

1∫
−1

∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n−1/2)−z)2

2(σx/q)2
)

dz =
1
2

1∫
−1

∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n+1/2)−z)2

2(σx/q)2
)

dz (B.5)
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1
2

1∫
−1

∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n−1/2)−z)2

2(σx/q)2
)

dz

= {m = −n}

1
2

1∫
−1

−∞∑
m=∞

1√
2π(σx/q)

e
(− ((−2m−1/2)−z)2

2(σx/q)2
)

dz

=
{
((−2m− 1/2)− z)2 = (−(2m + 1/2)− z)2 = ((2m + 1/2) + z)2

}
1
2

1∫
−1

∞∑
m=−∞

1√
2π(σx/q)

e
(− ((2m+1/2)+z)2

2(σx/q)2
)

dz

= {y = −z, dz = − dy}

− 1
2

−1∫
1

∞∑
m=−∞

1√
2π(σx/q)

e
(− ((2m+1/2)−y)2

2(σx/q)2
)

dy

=
1
2

1∫
−1

∞∑
m=−∞

1√
2π(σx/q)

e
(− ((2m+1/2)−y)2

2(σx/q)2
)

dy

= {z = y, n = m}

1
2

1∫
−1

∞∑
n=−∞

1√
2π(σx/q)

e
(− ((2n+1/2)−y)2

2(σx/q)2
)

dz (B.6)

78 / 96



confidential

C. AKI Manual

This manual describes step by step how to operate AKI (v3). AKI stands for APUF Key
extraction and Identification system. Basically AKI has three modes of operation

1. Identifying DL701s

2. Key extraction based on threshold

3. Key extraction based on quantization and shifting measurement values

The three main sections each describe one mode of operation and two sections are added to
describe how to install and start the system.

General note: there are some tools included with AKI that were used during development
of the system. Some of these tools might contain hard coded directories and will hence not
function on a different system than the original. However, they are still included since they
might be handy for future development and can be easily adjusted.

C.1. PCI-GPIB Card Installation

This section shortly describes how to install the PCI-GPIB interface card. This card is used
for communication between a computer and a GPIB compatible device - such as the Hewlett
Packard 8753D Network Analyzer. Software version used during the experiments: NI-488.2
For Windows v2.1.

• Insert NATIONAL INSTRUMENTS NI-488.2 FOR WINDOWS CD. It automatically
starts OR start it by clicking Start — Run — type: “E:\AutoRun.exe”, where E
should be your CD-Drive letter.

• Choose “Getting Started Documentation”.

• Choose “Getting started Cards”. Follow the directions in this document. During
installation follow these hints

– Custom — Next

– When asked which card, choose PCI-GPIB card (driver will be added).

– Click Shutdown & Finish (computer will shutdown).

– Insert GPIB card in free PCI slot. (Connect cables as well).

– Start computer again

– Two windows will appear “Found new hardware” & “NI-488.2 Getting Started
Wizard”. First continue with the “Found new hardware” window

∗ Make sure the NI-488.2 CD is still inserted. Click Next — Next
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– Then continue with the “NI-488.2 Getting Started Wizard” window

∗ Click Verify your hardware and software installation
∗ If everything went OK: “The NI-488.2 Troubleshooting Wizard successfully

completed” — Click OK
∗ Click Exit
∗ Click Communicate with your instrument — Next
∗ Follow the directions. Note that you cannot right-click the GPIB Interface

Number as stated. Instead, Click Scan For Instruments, in the upper tool-
bar.

∗ Two instruments will be detected when communicating with the Hewlett
Packard 8753D Network Analyzer: Instrument0 (Primary Address 16), In-
strument1 (Primary Address 17). Instrument1 is the display in the network
analyzer and does not respond to *IDN? commands.

∗ Response of Instrument1 to *IDN?: HEWLETT PACKARD,8753D,0,5.24

• The PCI-GPIB card is now installed.

C.2. Starting the System

C.2.1. Starting the Network Analyzer

Before the analyzer can be used correctly with AKI or enrollment tools, some settings have
to be changed. It is possible to store the settings in the analyzer for easy recalling. Make sure
to check the following important settings

Setting Comment
Measuring mode Should always be S21. This means the transfer function of channel 1

(output) to channel 2 (input) is measured (usually selecting channel
2 also selects this measuring mode)

Start Start frequency of sweep
Stop Stop frequency of sweep
Sweep Type Menu Should be ‘linear frequency’
Sweep Time Should always be the same as during enrollment

Especially check these settings when the Quantized Key Extraction mode has been used,
since that mode of operation changes settings automatically. In future, automatic changes
to correct settings could be implemented for the other modes of operation as well. For more
information how to operate the analyzer, please consult its manual.

C.2.2. Preparing the Analyzer

When the network analyzer (NA) is switched on it always goes into a default state with error
correction turned off. The response to the GPIB ’OUTPCAL’ command returns the default
error correction (calibration) coefficients (in this particular system: −7.509766000000000E −
01, 0.077820000000000E−01). These values are only changed when a calibration is performed.
Since the the actual values are unimportant for the test system that is built (only the variation
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of the values), calibrations do not have to be performed. When in future such systems would
be used to read out APUFs, these systems of course would all need to be calibrated to give
the same response.

C.2.3. Sweep Time

The NA can determine the sweep time automatically. Table C.2 shows some settings. Because
sometimes the auto sweep time does not result in a good signal, the sweep time has to be
set manually. The longer the sweep time, the better the signal throughput gets. One very
strange setting is the one from line 2 in the table; the NA sometimes chooses different sweep
times! . The manual column indicates recommended times to set. Above the maximum in

Frequency range [MHz] Number of points Time [ms]
auto manual

2-8.2 1601 800 800
2-8.2 51 12.5/25 800
4.7-5.2 1601 800 800-1600
4.7-5.2 101 50 50-1600
4.7-5.2 51 25 25-1600

Table C.2.: Measurement times.

this column, barely differences can be seen in the output.

Number of Points

This setting determines how many points in the frequency range the NA measures and has
possible values: 3, 11, 26, 51, 101, 201, 401, 801 or 1601. Note that the output of the NA
consists of a complex number (to indicate the amplitude and phase change). This means
by measuring for example 51 points, actually 102 components are obtained that contain
information about the object.

Frequency Range

The frequency points to measure can be set to be from a range or from a list of segments
that is entered in the NA. The segment list is handy when several not evenly distributed
frequency points need to be measured. Instead of measuring each frequency point separately
the list can be entered as segments consisting of only one point. Note that the list can contain
a maximum of 30 segments.

C.2.4. Plotting and Conversion of the Network Analyzer Values

The network analyzer outputs the voltages measured [V] (a real and an imaginary part). The
analyzer is able to show these values in different ways. In order to show the values the same
way on a computer a conversion has to be made. In order to plot the data, the x-axis can be
constructed with the Matlab command: fstart : fstop−fstart

Nr.Points : fstop
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Setting Name Matlab conversion Mathematical

‘LOG MAG’ db( data ) 10 · log

(�√
Re(data)2+Im(data)2

�2

R

)
where R = 1

Table C.3.: Conversion

C.2.5. Starting AKI

AKI runs under Matlab version

Older versions might work as well, but it is known that AKI does not run under Matlab
Version 6.1.0.450 (R12.1).

• Find the DefaultDir.txt file in the AKI program dir and open it in a text editor

• Check the paths listed in it are correct and existing, an example file DefaultDirs-
Format.txt is included in case the file got corrupted. The first entry on a row is the
description of the information in that row, the second entry is the value

• Start Matlab

• Change the path in the current directory field to the path where AKI is located

• Type aki3 in the Matlab command window

• AKI is started and loads some images from a database. The main screen is displayed
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After starting the analyzer and AKI (or the other way around) the system is ready for
operation.

C.3. Auto Identification

Auto identification mode of operation identifies DL701s automatically as they are inserted into
the reader. The display will show a default screen which informs the user to insert an object
and when an object is inserted the display will show information about the identification.
When objects are removed, the display will return to the default screen again.

C.3.1. Enrollment for Auto Identification

Enrollment for auto identification is not implemented yet from within AKI. Enrollment is
done with a separate set of tools. To perform an enrollment do the following

• Enter the preferred measurement settings on the analyzer

• Start ..\C\Enroll\Enroll.exe in a dos window

• Enter the wanted settings when asked by the program

• Insert the objects as indicated on the screen. Each measurement will be saved automat-
ically in ..\C\Enroll\Measurements

• Start ..\Tools\createArrayf from Matlab to combine all the individual measurements
into one big measurement file

• Start ..\Tools\preparePCAData and select the measurement file to calculate the
feature values based on principle component analysis

• The data needed for auto identification has now been created

Some other tools that can be used to display information
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Filename Goal
readfile Reads the measurement data from one individual measurement file.

The measurement can then for example easily be plotted as it would
be shown on the network analyzer display

plotCoeffs Plots the principle components coefficients
showEntropy Show the entropy in the feature value components
showComponents Show the principle components (that are the new basis)
showEntropyMeas Show the entropy in the measurement values

C.3.2. Auto Identification

• Click AutoID from the menu bar

and select Load Feature DB

• Select the file that contains the measurements

• If the files loaded correctly, an information message is displayed

Click OK. This message which contains information about the loaded variables can
always be shown by selecting AutoID | Info about Feature DB

• To start the auto identification click the Start AutoID button in the main screen

84 / 96



Confidential confidential

• The system is now ready to identify DL701s. Insert objects into the reader to auto
identify them. Objects not in the enrollment database will be recognized as unidentified.
Below the screen when an object is identified

• To stop auto identification, click the Stop AutoID button in the main screen

• To fully stop this mode of operation, an object (enrolled or not) must be inserted into the
reader (because Matlab makes use of an external program to perform the measurements
and this program does not return control to Matlab before it has performed a valid
measurement)

Note: NEVER leave an object sitting in the reader. After some time the program will crash
because of a timer problem.
To save the distances measured between the measured data and the database data, click
AutoID and then Save Min.Distance Array and/or Save Min2Rest Array. Note that
for one measurement these distances are also shown in the main screen in the upper graph.

C.4. Threshold Key Extraction

The threshold key extraction mode of operation extracts keys from DL701s based on the
entered ID by the user. The display will show a default screen which informs the user to
insert an object. When the key has been extracted the display will show information about
the extracted key.

C.4.1. Enrollment

Enrollment for threshold key extraction is not implemented yet from within AKI. Enrollment
is done with a separate set of tools. To perform an enrollment do the following

• Follow the steps in section C.3.1 until (and including) the ..\Tools\createArrayf step
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• Start prepareData to create test and train sets from the measurements

• Start generateThresholdAndKeysDB to create the threshold information and other
helper data

• The data necessary for threshold key extraction has now been created

Some other tools that can be used to display information

Filename Goal
bitstringFromData Visualize binary keys and calculate the effective number of bits

in the keys by calculating the fractional Hamming distance
FHDcalc and PlotFHD Can be used for the same as above. First the keys should be

loaded, then use FHD = FHDcalc(keys) to calculate the frac-
tional Hamming distances and PlotFHD(FHD) to plot them

C.4.2. Key Extraction

• Click Threshold Key Extraction Loads from the menu bar

and select All of the below

• Select the file that contains the measurements

• If the files loaded correctly, an information message is displayed

Click OK. This message which contains information about the loaded variables can
always be shown by selecting Threshold Key Extraction Loads | Info which are
loaded

• The system is now ready to extract keys from DL701s.
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• To extract a key from an inserted object, fill in the I have inserted object nr. field and
click the Threshold Key Extraction button in the main screen. When key extraction
has been preformed the following screen is shown when a correct key is extracted

When an incorrect key is extracted

C.5. Quantized Key Extraction

The analyzer is controlled by AKI in this mode of operation. The only setting that should be
the same as during enrollment is Sweep Time. The rest is set automatically by AKI.
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C.5.1. Enrollment

• Click Quantized KE Tools from the menu bar

and select Generate Reference Challenge

• Enter the frequency range for which the reference challenge should be created

Click OK

• The reference challenge can be saved

• Click Quantized KE Tools | Generate Challenge

• Enter the frequency range from which the random challenge should be created

Click OK

• The challenge can be saved

• Click Quantized KE Tools | Enroll PUFs

• Enter the details how to perform the enrollment
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Click OK

• The system now starts the enroll procedure. Insert the PUFs as indicated on the screen

The measurements are automatically saved one by one after each measurement.

• Click Quantized KE Tools | Combine Enroll Data

• Enter the details which measurements to combine

Click OK

• The measurement files are combined into one file. Combined reference data and com-
bined measurement data are saved
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• Click Quantized KE Tools | Create Test/Train Sets

• Select the text file that contains all the responses of the objects to the challenge

• Enter the details which measurements to include in the test train sets.

Click OK

• Click Quantized KE Tools | Quantized Key Extraction

• Select the train/test set to enroll

• The secret keys are generated and saved immediately
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• The quantization factor needs to be chosen. In the Matlab command line the choice can
be entered

• AKI shows the results after generating the helper data and using it on the measurement
data (see figure C.1 on the next page and C.2 on page 93). The Matlab command line
also provides information about the FAR and FRR for the chosen q

A factor of 8 was chosen during the experiments

• Enter 0 at the Matlab command line when the results are satisfactory and the quanti-
zation is as wanted

• The quantization is saved
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Figure C.1.: Helper figures to determine q (here q = 3).
Left Upper: Quantization vs measurement spread (blue points should fall within
the red lines)
Middle Upper: Keys generated directly from the measurements without adding
confusion
Right Upper: Keys with added confusion
Left Lower: Difference between the keys in the database and generated keys
Middle Lower: Difference when keys are generated from a measurement signal
that is zero (to check helper data only can be used to generate the right keys)
Right Lower: An intruder key is chosen and used to generate keys with all helper
data of others and the result is compared with the key belonging to the helper
data (to check FAR)
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Figure C.2.: Helper figures to determine q (here q = 8).
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• The unconfused helper data is saved

• The helper data is saved

All data necessary for Quantized Key Extraction has now been generated and saved.
Some other tools that can be used to display information

Filename Goal
Plot DecUnconfusedKeys.m Visualize multi valued keys
PlotFHDnonBitKey Plot the fractional Hamming distance between non binary

keys
unconfusedKeys2Bin Can be used to convert the multi valued keys to binary keys,

after this the tools from threshold key extraction can be used
to to calculate the effective number of bits
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C.5.2. Key Extraction

• Click Quantized Key Extraction Loads from the menu bar

and select All of the below

• Select the file that contains the measurements

• If the files loaded correctly, an information message is displayed Click OK. This message
which contains information about the loaded variables can always be shown by selecting
Quantized Key Extraction Loads | Info which are loaded

• The system is now ready to extract keys from DL701s.

• To extract a key from an inserted object, fill in the I have inserted object nr. field and
click the Quantized Key Extraction button in the main screen. When key extraction
has been preformed the following screen is shown when a correct key is extracted

When an incorrect key is extracted
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Although this manual is absolutely not complete, hopefully it has helped in explaining how
to use AKI. Many of the mentioned tools and AKI itself contain much comment in the code
which will help even more in understanding AKI. For any further questions or information
about the AKI system, please email to:

vrij@gmx.net
Serge Vrijaldenhoven

last page of manual
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