
 Eindhoven University of Technology

MASTER

A small digital signal processor for Philips
from specification via IDaSS and VHDL to silicon

Oerlemans, R.V.M.

Award date:
1994

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a2208a81-5e4d-4f61-857b-f9293cc29c8b

Eindhoven University of Technology
Department of Electrical Engineering
Digital Information Systems Group

Master thesis report
September 1993 - March 1994

A small Digital Signal
Processor for PHILIPS

From specification via IDaSS
and VHDL to silicon

By ing. R.V.M. Oerlemans

Supervisor prof. ir. M.P.J. Stevens
Coach dr. ir. A.C. Versehoeren

The department of Electrical Engineering of the Eindhoven University of Technology does not accept any
responsibility regarding the contents of student projects and graduation reports.

MicroDsp Abstract 3

Abstract

The Digital Information Systems group of the Eindhoven U niversity of Technology has
developed an Interactive Design an Simulation System (IDaSS) for Ultra Large Scale
Integration (ULSI) of digital circuits. With this tooi it is possible to design and simulate a
microcontroller on a very high level. Philips wanted to verify the use of IDaSS as a design
tooi. This has been done through designing and simulating the microcontroller MicroDsp with
IDaSS after the functional specification of this chip had been approved. Then an
implementation of the microcontroller in VHDL had to be made. This VHDL implementation
will be used to create the MicroDsp chip layout using a silicon compiler. The size and
performance of this chip give an indication of the benefits and disadvantages of IDaSS as a
design tooi. This report describes the design of the microcontroller MicroDsp. It is a chip with
an 8-bit reduced instruction set microprocessor combined with an arithmetic accelerator unit,
a timer unit, aserial interface and internal program and data memory. It provides a controller
function and includes low-end digital signal processing capability for special applications. The
chip is being developed in cooperation with Philips Semiconductors in Eindhoven. The
Eindhoven University of Technology (TUE) is a partner in the development of this chip.

Philips has made a specification [MDSP93] of the MicroDsp. This specification is used for
the design of the MicroDsp in IDaSS. During the design phase I have made modifications on
the specification, erased errors and added new features. A new specification [MDSP94] was
made that will be used to design the chip.

The MicroDsp microcontroller with the following elements:

• Peripheral Controller Cell (PCC)
• Arithmetic Accelerator Unit (AAU)
• PCC program memory of 4096+64 wordsof 16 bits
• PCC data RAM of 256 bytes
• 16 bit Capture Timer Unit (CTU)
• 10 1/0 ports
• ec bus interface and monitor control unit (IICC)

In this report the design in IDaSS and VHDL of the Capture Timer Unit and the :fC bus
interface and monitor control unit are described.

An ec bus interface and monitor control unit is used to control the MicroDsp with a "host"
computer (PC). Communication is done via a serial two wire link. This means that a monitor
program that is running on the PC can influence the progress of the program running on the
MicroDsp. For example, the monitor program can start and stop the MicroDsp or read IO bus
information or read the contents of a register of the PCC.

A capture-timer unit (CTU) is a combination of a capture unitand a timer unit. A timer unit
is a time-base counter that counts a predefined number of clocks and then gives an interrupt.
A capture unit is an element that can read and store the time in the time-base counter on the
moment that a capture command is given.

All parts of the MicroDsp have been designed in IDaSS by the Eindhoven University of

MicroDsp Abstract 4

Technology. The PCC processor and the program RAM have been made by Simons and
Vostermans, the AAU coprocessor and the data RAM have been created by Verschueren
while the Capture Timer Unit, ec and Control, 10 pons and MicroDsp toplevel have been
build by me.

lt was also the intention to describe all parts of the MicroDsp in VHDL. Therefore Simons
and Vostermans have converted their IDaSS PCC to VHDL. The VHDL AAU bas been made
by Brand from MicroteL The Capture Timer unit and ec and Control unit have been
translated into VHDL by me. A VHDL description of the 10 ports bas not yet been made.
For the program RAM and data RAM simple VHDL modules are used.

Designing with IDaSS bas been done fast compared to the time necessary to develop such a
processor immediately in VHDL or in a lower level description language. With a toollike
IDaSS the efficiency and quality of the definition of new IC's can be improved considerably.
lf IDaSS is going to be used by Philips as a design tool it bas to be accepted by a tool
support group such as for example ED&T. A lot of disadvantages then have to be improved.

5

Table of contents

1 Introduetion . 7

2 IDaSS ... 11

3 MicroDsp . 15
Peripheral Controller Cell (PCC) . 19
Arithmetic Accelerator Unit (AAU) 25
I2C interface and Control (IICC) . 27

Inter-IC (IIC) ... 31
Program memory access ports (MADT) 41
External signal override controls (FCTL) . 46
Program address register (PAD) . 49
IO-bus select address and data capture (IOBUS) 51
Execution start control (XCTL) . 53
System status register (STAT) . 56
Mail port (MAIL) . 58
Program type control (PRGTYPE) . 60
Monitor control (MONCTRL) 61
Stop control (STOPCTRL) . 62

Capture Timer Unit (CTU) . 65
Time-base counter (TIME_BASE_COUNTER) 67
Prescaler (PRESCALER) . 67
Timer-register unit (TIMER_REG) . 73
Dual camparator (COMP) . 77
Time output registers (T) . 78

1/0 ports (LIO) ... 80
Data RAM (DRAM) . 84
Program RAM (PRAM) . 85

4 VHDL ... 87
IICC and CTU ... 91

5 Results . 93

6 Conclusions . 95

Literature . 98

MicroDsp Introduetion 7

1 Introduetion

Philips wants to verify the use of IDaSS as design tooi for their intergrated cirquits. A
microprocessor is one kind of chip that Philips makes. Designing a new type of
microprocessor is sarnething that is only done by few because the world simply doesn't need
many different microprocessors. Most designers try to speed up existing microprocessors.
Only for a special kind of application a new type of microprocessor will have to be designed.

In one of the laboratones of Philips Semiconductors, such a special application is being
developed. It is the cantrolling of a electric motor that is used in video recorders and disk
drives. The cantrolling of the speed of such a motor bas to be very accurate. Therefore a very
fast but small and cheap microprocessor is needed to compute the speed and acceleration of
the motorand to control the current that drives the motor. Very fast butsmalland cheap seem
contradictive, but if the microprocessor only needs to perform a limited set of instructions this
looks possible.

Developing a chip

In this document, you will find a report of the design of a microcontroller called the
MicroDsp. The MicroDsp is a microcontroller with an 8-bit reduced instruction set
microprocessor combined with an arithmetic accelerator unit, a timer unit, a serial interface
and internat program and data memory. It provides a controller function and includes I ow-end
digital signal processing capability for special applications. The chip is being developed in
cooperation with Philips Semiconductors in Eindhoven. This is done at the Product Concept
and Application Labaratory in Eindhoven (PCALE). The laboratory bas several groups such
as a group for telecommunication systems, a television group and an industrial group. The
industrial group bas a subgroup called Motor ControL For this group, J. den Ouden bas made
a functional specification of the MicroDsp.

The Eindhoven University of Technology (TUE) is a partner in the development of this chip.
The Digital Information Systems group bas developed an Interactive Design an Simulation
System (IDaSS) for Ultra Large Scale Integration (ULSI) of digital circuits. The designer of
this tooi IDaSS is Ad Verschueren. With IDaSS it is possible to design and simulate a
microcontroller on a very high level. Philips wants to use IDaSS for the verification of the
functional specification of the MicroDsp. This will be done through simulation of an IDaSS
implementation of the MicroDsp. If the functional specification is approved, an
implementation of the microcontroller in VHDL must be made. This VHDL implementation
can be used to create the MicroDsp chip layout using a silicon compiler. The size and
performance of this chip give an indication of the benefits and disadvantages of IDaSS as a
design tooi.

Project team

At the TUE, the Digital Information Systems group bas formed a MicroDsp project-team
under leadership of professor Stevens. This team exists of Ad Verschueren, Wido Kruijtzer,
Bart Vostermans, Peter Simons and myself.

MicroDsp Introduetion 8

Philips has two divisions working on the MicroDsp: PCALE and MicroTeL At PCALE Jos
den Ouden, Roland Broekman, Ewout Rotte and Edwin Warrens workon the MicroDsp. The
MicroTel team consistsof Ronald Kemp and Hjalmar Brand.

In Tabel I a task overview is given of the people that are involved in the development of the
MicroDsp:

Table I Relation between project items and designers

Item Pers on AV WK BV PS BO JdO RB ER EW RK HB

Toplevel s/i s V

PCC i{v ifv s/h

AAU i s{h V

CTU s/ifv s

12C s{i{v s

110 ports s/i s

Program RAM i i s s

DataRAM i s s

!DaSS Tooi d

!DaSS->VHDL Compiler d

PCC C Compiler d

PCC Assembler d

PCC Simulator d

Applications m

Abbreviations:

AV Ad Verschueren d = design
WK = Wido Kruijtzer h = hand layout
BV = Bart Vostermans = idass
PS = Peter Simons m = motor control
BO = Bob Oerlemans s = specification
JdO = J os den Ouden V = vhdl
RB = Roland Broekman
ER Ewout Rotte
EW = Edwin Warrens
RK = Ronald Kemp
HB = Hjalmar Brand

MicroDsp Introduetion 9

As can be seen in Tabel I, my part of the development of the MicroDsp is the rewriting of
the specification of the MicroDsp toplevel, I2C, CTU, RAMs and IO. Forthermore the IDaSS
design and simulation of these blocks and the VHDL generation of the 12C and CTU blocks.

About this report

The next chapters will explain how the MicroDsp has been developed. In chapter 2 is
explained how IDaSS can be used for the design of a microcontroller. In chapter 3 the
development of the parts of the MicroDsp that have been designed by me will be described
in detail. Other parts of the MicroDsp are described globally. In this chapter the paragraph
numbering refers to the hierarchy of the MicroDsp design. For example, if a schematic is
described at paragraph 3.1, a subschematic will be described at paragraph 3. 1.1, etc. A
paragraph is partitioned in three sections that represent three developing steps: specification,
design and simulation. An example of a paragraph that describes the capture timer unit is:

3.1 Capture Timer Unit (CTU)
CTU specification

3.2

CTU design
3.1.1 Prescaler Unit (PRESCALER)

PRESCALER specification
PRESCALER design

PRESCALER simulation
3.1.2 Timer Register Unit (TIMER_REG)

CTU simulation

Chapter 4 describes the VHDL code generation of the CTU and the 12C units. Finally, the last
chapter will describe the results and give conclusions of my part of the developing of the
MicroDsp.

MicroDsp IDaSS 11

2 IDaSS

The MicroDsp bas been designed in IDaSS. IDaSS is an interactive design and simulation
environment for digital circuits. lt is targeted towards VLSI and ULSI designs of complex
data processing hardware (microprocessors, coprocessors and signalprocessors of all kinds).
It can also be used for simpler designs, as long as the complete design is a synchronous
machine (a single doek souree for all clocked elements in the design). Simulating
asynchronous logic with intemal feedbacks is impossible with IDaSS, because the built-in
simulator is not designed to do so (the results will not mirror actual hardware behaviour).

IDaSS describes a design as a tree-like hierarchy of schematics. The schematics contain
elements like registers, ALU's, memories, state machine controllers and the like, and are
entered graphically. Reetangles (called 'blocks') represent all schematic elements, which are
connected by lines representing the (bidirectional) buses. Small squares at the boundaries of
the reetangles represent the input and (three-state) output ports of the elements, these are
called 'connectors'. The connectors come in several shapes to make a distinction between
input, (disabled) output, bidirectional and control connectors.

A controller can test and control the elements of the schematic it is placed in, and can change
it's state based upon test results. Controllers can be placed in a schematic just like all other
blocks. There operational characteristics are entered in textual form, descrihing a state
machine. The language used can describe microprogrammed controllers (including a
subroutine stack) and Moore state machines. Tests done by the controller can only be based
upon directly clocked elements in the schematic.

Elements in a schematic can also be controlled by adding a 'control connector'. This
connector can be connected to any bus in the system, the value of which will determine the
functions of that block. A textual PLA-like specification 'couples' the values on the bus with
the functions to be executed.

IDaSS is targeted towards ULSI by allowing multiple schematics and controllers to be present
in a single design. This is done by allowing 'lower level' schematics to be placed in a
schematic as a single element, thus forming a hierarchical 'tree' of schematics.

Controllers can test and control blocks placed in schematics at lower levels in the hierarchy.
Controllers can also (to some extent) control other controllers in their own or lower level
schematics. Synchronisation of controllers is simplified by the use of special 'semaphore' bits
in registers and a user-defined set of 'signals' which can be used for system-wide
communication between controllers.

MicroDsp IDaSS 12

IDaSS connector symbols

IDaSS uses different symbols for connectors, as shown in Figure 1:

~i Input I
I Enabled_output 0~

I Disabled_output og

~ Cont:rol_input I
~ Bidi:rectional I

Figure 1 Connectors

Por a continuous output, the symbol for an enabled output is used. Three-state outputs show
their state by toggling between the symbols for enabled and disabled outputs.

IDaSS elements

IDaSS only knows a few basic elements. With these elements a complete schematic can be
build. The elements are:

• Register
• Buffer
• Constant
• Operator
• Memory
• Schematic
• State controller

A register is a block that contains a number of clocked memory elements. The width of the
register determines the number of elements used. An IDaSS register can hold, load, reset, set,
increment or decrement. The register's function is controlled by a state controller or by a
special connector at the register. A buffer is block that has an input, an output and an optional
control connector. This control conneeter determines if the buffers output is equal to the input
(enabled) or if the output is floating (tree-state). A constant is a block which contains a
constant value, but looses that value if a clock tick passes. An operator is a block that may
contain one ore more functions. A function is a relation between an output and one ore more
input connectors of the operator. An operator can be seen as a combinatorial network with
AND's OR's etc. A memory is a block that may contain data. It can be RAM, ROM, FIFO,
LIFO, etc. A schematic is a block that may contain several subblocks. In this way a
hierarchical structure can be brought into the design. A state controller is a special block that
is a combination of a state-register and a combinatorial network which determines the next

MicroDsp IDaSS 13

state. In every state, the controller controls other blocks to execute a function that is specified
in that state. The next state is actually controlled by the contents of the registers in this
schematic or lower level schematics. There are no wires connected on the state controller: test
and control lines are bidden.

IDaSS bosses

Busses are used to conneet blocks. A bus is a line that is connected to one or more connectors
of blocks in the schematic. A bus can be several bits wide. The width of a bus is always the
same as the width of the connectors the bus is connected to.

IDaSS viewers

In order to have a continuous display of a register's contents or bus value, we can place a
'value viewer' on the schematic. A value viewer is a box that is connected to a register or
a bus and displaysits value. A 'function viewer' indicates the function a blockis performing,
for example: the function viewer of a register could indicate 'load' or 'reset'.

IDaSS borders

Every block in an IDaSS schematic has a border. The border is thin if this block is the lowest
level in the schematic. A thick border indicates that the block consists of more elements. This
is a so called lower level schematic. A grey border is used to indicate a state controller.

IDaSS automatic document generation

IDaSS can automatically generate a text containing documentation for almost any block in
the system. It is also possible to generate documentation for the complete set of signals, any
schematic (with all blocks below it in the hierarchy) or the complete system at once. The text
only contains actual design information, no graphical (schematics) or current state
information. Comments appended to the design elements by the designer are included.
Because the documentation system extracts actual information from the design, the comments
need only clarify the intended function of the design elements -what they are used for, not
what they are. The text is in a 'flat' ASCII format, and is intended to be reworked with a
suitable word processor.

IDaSS filing and library management system

All files used to store blocks and/or signals are text files in a flexible and compact format.
They contain not only the design, but also the state of the simulation at the time the file was
created and any documentation attached to the system.

MicroDsp IDaSS design 15

3 MicroDsp

The MicroDsp is a microcontroller with a 8-bit RISC microprocessor named Peripheral
Controller Cell (PCC) combined with an Arithmetic Accelerator Unit (AAU), a Timer Unit
(CTU), an fC serial bus interface and internal program and data RAM. It should provide a
controller function and should include low-end DSP capability for a wide range of
applications. The MicroDsp is intended to be a salution suited to many problems as it should
provide just the amount of performance required using minimum silicon and supply current.
This is, for example, important for portable applications.

A MicroDsp test chip of the Peripheral Controller Cell (PCC) tagether with the Arithmetic
Accelerator Unit (AAU) is to be designed to verify correct implementation of the PCC and
AAU blocks, to develop and debug PCC systems and programs and to set up working
prototypes of applications implemented with the PCC/AAU combination.

Philips employee J. den Ouden has written the specification [MDSP93] of the MicroDsp. The
title of this specification is 'MicroDSP : PCC plus AAU test chip specification 1.1 ', and it
is dated 15 Sept. 1993. This specification is used for the first design of the MicroDsp in
IDaSS. During the design phase, modifications have been made on this specification, errors
have been erased and new features have been added. This is done by me in cooperation with
1. den Ouden. A new specification [MDSP94] was made and it has been used for my final
design of the MicroDsp. This specification has version 1.2 and is dated 18 Jan. 1994.

MicroDsp specification

The MicroDsp is a microcontroller with the following elements:

• Peripheral Controller Cell (PCC)
• Arithmetic Accelerator Unit (AAU)
• PCC program memory of 4096+64 words of 16 bits
• PCC data RAM of 256 bytes
• 16 bit Capture Timer Unit (CTU)
• 10 1/0 ports
• fC bus interface and monitor control hardware (IICC)

In Figure 2 the functional block diagram of the MicroDsp emulatar/test chip is given.

The 8-bit RISC microprocessor called PCC is the centre blockof the MicroDsp. This PCC
has an address bus called ADR and a instruction bus called IR. Via these busses the program
memory is connected to the PCC. This memory provides the PCC instructions needed to run.
Via the !Obus the peripherals Arithmetic Accelerator Unit (AAU), Capture Timer Unit (CTU),
Inter IC bus interface and Control unit (IICC), and internal data memory (DA TARAM) and
9 1/0 ports (LIO) are connected. The input and output pins of the chip are given according
to the specification in the pinning list below:

MicroDsp IDaSS design

CL
PCC ADR AO .. 12

XBUSE
XPRGM
CLKIIC

PHl
PH2 IR ADR

RESET
CLKPCC PRGEXT

STOP STOP IAK IAK
IRQ IRQ IBY IBY
POC POC PUL SE PUL SE

WAITC WA ITC
PCC R13NZ R13NZ

VDD I> AAU RightBank
I> GND Co-Proc DataRam

TC I> OFX 256 x 8

CAPTl, 2.0. VTIME1,2 VTIMOVF .O.RBDIS V V V v4* IO BUSEXT

Figure 2 Functional block diagram of the MicroDsp

MicroDsp test chip pinning:

pin name
4 VDD,GND
1 TC
1 CLKIIC
1 CLKPCC
2 PHl, PH2
1 RESET
1 XPRGM
1 XBUSE
1 POC
1 IRQ/TCil
1 IAK/TCOl
1 IBY
1 SDA
1 SCL
1 STOP
1 WAITC
1 PULSE
1 R13NZ
8 LI00[0 .. 7]
8 LI01[0 .. 7]
8 LI02[0 .. 7]
8 LI03[0 .. 7]
8 LI04 [0 .. 7] IR [0 .. 7]
8 LI05 [0 .. 7] IR[8 .. 15]
8 LI06[0 .. 7] IOI[0 .. 7]
8 LI07[0 .. 7] I00[0 .. 7]
8 LI08[0 .. 7] IOC:

0 SRE
1 SLE
2 RRE
3 RLE
4 WRE
5 WLE
6 LBDIS
7 RBDIS

13 AO .. A12
1 TIMEOVF
2 CAPTl, 2/TCI2
2 TIME1,2/TC02

~
pwr
in
in
in
out
in
in
in
in
in
out
out
in/out
in/out
in
out
out
out
in/out
in/out
in/out
in/out
in/out
in/out
in/out
in/out
in/out
out
out
out
out
out
out
in
in
out
out
in
out

description
Minimum number of power pins
Test chain Control input
I 2C controller clock
PCC/AAU system clock
internal generated PCC system phase clocks
initialize monitor I 2C and control hardware
external program enable
external IO bus enable
PCC Power On Clear
PCC Interrupt Request I Test Chain In
PCC Interrupt Acknowledge I Test Chain Out
PCC Interrupt Busy
I'c data
I 2C clock
PCC STOP control
PCC WAIT Cycle indicator
PCC PULSE enable signal
PCC R13 Not Zero indicator
Left Bank Port 0
Left Bank Port 1
Left Bank Port 2
Left Bank Port 3
Left Bank Port 4 I instructien input
Left Bank Port 5 I instructien input
Left Bank Port 6 I IO data in bus
Left Bank Port 7 I IO data out bus
Left Bank Port 8 I IO bus control
Select Right bank address Enable
Select Left bank address Enable
Read Right bank data Enable
Read Left bank data Enable
Write Right bank data Enable
Write Left bank data Enable
Left Bank Disable for internal IO
Right Bank Disable for internal IO
PCC Address
TIME base counter OVerFlow
Capture inputs, separate test chain inputs
Timer outputs, separate test chain outputs

or:
IOI

IOO

IOC

16

MicroDsp IDaSS design 17

The MicroDsp is provided with Test Chain (TC) inputs and outputs. With this, almost all
internal flip-flops can be tested. The flip-flops are chained, and the contents is serially
transferred to the TCO pins. The MicroDsp bas two Test Chain Inputs (TCII ,2) and two Test
Chain Outputs (TC01,2).

The internal and external IO transfers are done via two IO busses, IOI and IOO. The IOC bus
is used to control the IO transfers. IO bas been partitioned into two banks : Left Bank IO and
Right Bank IO. If an IO device should be accessed, first the IO device should be selected
with SLE or SRE combined with an IO address. Later data can be transferred using RLE,
RRE, WLE or WRE. LBDIS and RBDIS are used to disable the internal IO. In this way
extemal IO can be put on the same address as internal IO devices.

Clock timing for the MicroDsp is specified in the PCC specification [PCC93]. There are two
non-overlapping clocks used: PHl for the input phase and PH2 for the output phase. In the
IDaSS design it was not possible to use seperate input and output phases because IDaSS only
bas one synchronisation point for both transactions.

PHl _____ / \ _____ /
PH2 \ _____ / \ _____ /

Figure 3 Two non-overlapping clocks PHl and PH2

The MicroDsp is provided with two reset pins : RESET and Power On Clear (POC). The
RESET pin is used for the reset of the fC and control part of the MicroDsp. The POC is used
to reset the PCC, AAU and Timerand to Initialize the RAMs and IO.

For the communication with a remote PC, two serlal IO pins are provided: SDA and SCL.
These pins are specified in the fC specification [fC92]. SDA is the I2C serlal data line, SCL
is the ec clock line.

MicroDsp design

Designing the MicroDsp toplevel in IDaSS is done after the design of the elements of the
MicroDsp was completed. Because a lot of connectors and signals were already specified, it
was simple to conneet the blocks. In Figure 4 the IDaSS design of the MicroDsp toplevel is
given. In this figure, you will find the following elements:

• nee
• AAU
•AMUX
•PRAM
• LIO

• PCC
• CTU
•DMUX
•DRAM

MicroDsp IDaSS design 18

The most important intemal signals used to conneet these blocks are:

name bits de scription
• sle 1 select left bank enable
• wie 1 write left bank enable
• rle 1 read left bank enable
• sre 1 select right bank enable
• wre 1 write right bank enable
• rre 1 read right bank enable
• ioo 8 io output bus
• ioi 8 io input bus
• lbdis 1 left bank disable
• rbdis 1 right bank disable
• poe 1 power on clear
• irq 1 interrupt request
•stp 1 stop

There are more signals necessary to conneet all blocks. In the next paragraphs these signals
and blocks will be described in detail.

Figure 4 MicroDsp

MicroDsp IDaSS design 19

3.1 Peripheral Controller Cell (PCC)

The Peripheral Controller Cell (PCC) provides a very fast processor function optirnised for
bit field handling and quick event response. The PCC is based on the 8X305 RISC
architecture, which is a proven concept for fast bit oriented controL Low transistor count
makes a very srnall core design possible. Harvard structure, execution of most instructions in
a single cyde of the two phase non-overlapping doek and keeping program memory, data and
1/0 accesses on-chip, rnean that performance can be very high, rnainly lirnited by program
memory speed. A full costorn design in C200DM technology bas been realised (size : 1.06
rnrn2, worst case performance of 16 MIPS at 5 Volt, full static design, suitable for low
voltage operation). An IDaSS design has to be made to be able to sirnulate the PCC with
peripherals on a high level. A VHDL irnplernentation has to be made to be able to synthesize
the PCC with the use of a silicon compiler.

The basic architecture has been extended with an interrupt facility that has a one doek cyde
interrupt latency and performs sorne context switching. Conditionat jurnp execution is delayed
by one doek wait cyde to allow use of relatively slow program memory. An accessory ROM
generator is also available. PCC assembler and simulator are running on IBM-PC and Apollo.

PCC Features according to the Philips specification:

• Fetch, decode, execute 16 bit instructions in single 2 phase doek cyde
• Bit oriented instruction set (addressable single/multiple bit sub-fields)
• Separate busses for instruction, instruction address and 3-state 10
• Thirteen 8 bit general purpose working registers
• Source/destination architecture
• Single doek latency for interrupt, indoding context switching
• Wait cyde for conditionat jurnps (relaxed program memory spec)
• 8 kword (16 kbyte) program memory space
• Full static CMOS irnplernentation
• Very srnall processor block size
• Very low supply current per MIPS
• Designed for testability (rninirnal)

PCC specification

The PCC is a high speed full static CMOS 8 bit micro-control RISC with a bit-oriented
instruction set. The PCC has a Harvard structure and can fetch, decode and execute a 16 bit
instruction in a single doek cyde (PH1 ,PH2).

Within one instruction cyde the 8 bit data processing path can be prograrnrned to rotate,
rnask, shift and/or rnerge single or multiple bit sub-fields and, in addition, perforrn an ALU
operation; in the sarne instruction an extemal data field can be input, processed and output
to a specified destination. Likewise, single or multiple bit sub-fields can be rnoved frorn a
given souree to a given destination. To surnrnarize : fixed or variabie length data fields can
be fetched, processed, operated on by the ALU and rnoved to a different location, all in a
single two phase doek cyde.

MicroDsp IDaSS design 20

To enable fast response on asynchronous hardware events without loss of performance an
interrupt facility is provided which has a single doek response latency and which includes
a context switch. Program memory receives a 13 bit address to access 16 bit instructions
allowing a program of up to 16 kbyte. Data 1/0 is done via a separate 8 bit bi-directional
three-state bus that multipiexes 1/0 data and addresses under control of 6 1/0 control enables.
The 1/0 bus also can be split in two separate busses, one for input and one for output. ln-line
PULSE instructions and the PULSE output provide an extra facility for fast control of user
hardware without affecting program context.

When calculating a conditional program jurnp address (instructions XEC and NZT) the PCC
inserts a wait cycle so that the program address can always be provided earlyin the memory
access cycle. This allows use of relatively slow program memory. (This mode can be ornitted
for slower clocks).

lnternal data registers

The PCC has 18 internal data registers, nine 8-bit registerscan freely be used and nine others
have (also) a special purpose. All register narnes are pre-deciared assembler variables.

register purpose

ROIROI=AUX irnplicit second argument for ALU operations (ADD, AND, XOR)

Rl..R6

R7=10L

R10=0VF

Rll

R12,R13

R14 .. R16

R17=10R

6 general purpose 8-bit data registers

8-bit register, copies Left Bank 10 address in rnain program context. R7 is
autornatically re-transrnitted on interrupt return.

carry of the last add operation. OVF cannot be destination. OVF uses a
separate flag in interrupt context.

used by the PCC assembler for subroutine return table index

general purpose 8-bit data registers.
XMIT to R12, R13 sends a data byte to the Leftand Right Bank ports, not to
the register. (see XML, XMR instructions)

3 general purpose 8-bit data registers

8-bit register, copies Right Bank 10 select address in rnain program context

AUX has a separate interrupt context register and for both normal and interrupt context there
is a shadow register in the ALU. The shadow register data is used as irnplicit data for ADD,
AND and XOR operations. Both AUX registers and their ALU shadow registers are cleared
at POC. The interrupt context AUX contents, but not its ALU shadow register, can be
rnodified by rnoving data to ROl "MOVE Rn,ROI" (Note that this data only is used in
interrupt context if AUX is specified as souree data).

MicroDsp IDaSS design 21

In main program context R7 and R17 are automatically written if 10 addresses are selected,
in interrupt context a SELect of 10 does not affect R7 or R17. On interrupt return R7 is
automatically re-transmitted to restore the main context Left Bank select address. lf lOR is
changed by the interrupt routine R17 has to be restored using MOVE R17,IOL before
executing interrupt return.

R12 and R13 are used for the XML and XMR special XMIT instructions that sendan 8 bit
data byte to Left and Right bank 10 ports. Internal registers R12 and R13 therefore cannot
be loaded directly using XMIT.

lf R13 contains a non-zero value the R13NZ output goes HIGH. This feature can be used to
speed up andreduce code in "compare-and-set bit" operations with data and 10 flags.

10 data bus

10 bus ports and/or data RAM are connected to the 8 bit 3-state user bus. A RAM block is
commonly addressed via the Right Bank, while single ports reside on the Left Bank. To
enable access of a RAM location or a port it can be selected by sending the port address on
the bus using XMIT, MOVE, etc to IOR=R17 or IOL=R7 or the assembler directive SEL with
an RIO or LIO address. These instructions put the 8 bit address value on the bus and assert
the Right or Left Bank select enable. A RAM block latehes the complete Right Bank select
address, while a port that detects its address sets its select flag. A bank address or port select
flag is valid until a new address is transmitted on the Bank it is assigned to. Port OOOX on
the Left Bank is automatically selected on reset (POC=' 1 ') and on interrupt acknowledge
(lAK=' 1 '), so it can be used for very quick interrupt service and/or as interrupt vector
address.

Reading port data takes place in the PCC input phase (PH1), while address selects and data
(re-)writes are done on the output phase (PH2). When accessing data on the 10 bus, a bit field
can be defined with a lengthof 1 to 8 bits and aLSBit position from 0 to 7. (lf Length plus
LSB position overflows the byte size, the bit field is truncated).

Note that the whole byte of an 10 port is read in the input phase (PH1) and copied, even if
only a part of the port bits is affected by the instruction, so that the modified bit field can be
merged in the PCC and the complete byte can be written back in the output phase (PH2).

Port registers can be simple latehes as the PCC performs the master flip-flop function (on
PH1). Port latehes are written on PH2, soport output latehes can change during PH2.

PCC Instruction set

The PCC is a highly Reduced Instruction Set Controller (RISC) having only 8 basic 16 bit
instructions most of which can be executed with a single clock. Four instructions operate on
data (MOVE, ADD, AND and XOR), two conditional jumps (XEC, NZT) are available for
program control and table handling, one instruction provides data constants (XMIT) and one
makes jumps over the whole address range (JMP).

MicroDsp IDaSS design 22

Data operation instructions

ALU data operation instructions MOVE, ADD, AND and XOR specify souree and
destination, rotation, or bit field position and length. Within one data operation instruction
cycle, the 8 bit data processing path can be programmed to rotate, mask, shift and/or merge
single or multiple bit sub-fields, and perform an ALU operation. AUX is implied argument
for ADD, AND, OR and XOR operations. Iocrement (INC), complement (NOT) and inclusive
or (OR) are single argument instructions : specified data souree (register or 10 bit field) is
also destination. INC, NOT, OR, the four instructions for interrupt control and the PULSE
instruction, all indicated with '+', are modified basic instructions that use OVF (oot writable)
as dummy destination for their code. MOVE Rn,ROI from register Rn other then R7 writes
to the AUX register of the interrupt context, using OVF as destination code.

OMOVE

+ DSI
+ ENI
+ RTI
+RTE

1 ADD

+INC

2AND

+OR

3 XOR

+NOT

Souree to Destination
used for data transport between register(s) and 10 port(s)

clears interrupt enable flag
set interrupt enable flag (cleared at POC, lAK)
return from interrupt
return from interrupt set interrupt enable flag

Souree + AUX --> Destination, update OVF
provides arithmetic.

Source/Destination + 1 --> Source/Destination
increments data without using AUX or OVF

Souree .and. AUX --> Destination

(MOVE R7(0),0VF)
(MOVE R7(l),OVF)
(MOVE R7(2),0VF)
(MOVE R7(2),0VF)

(ADD Rx(R),OVF)
(ADD IOx(L),OVF)

can be used to isolate data bits and evaluate logic functions.
Source/Dest. .or. AUX --> Source/Destination (AND Rx(R),OVF)
inclusive or of S/D with AUX (AND IOx(L),OVF)

Souree .exor. AUX --> Destination
contributes to logic evaluations and arithmetic

Source/Dest. .exor. FF --> Source/Destination
Complements data without using AUX.

(XOR Rx(R),OVF)
(XOR IOx(L),OVF)

Conditional jump instructions XEC and NZT

"Conditional" jump instructions XEC and NZT calculate a jump address on basis of a data
souree field. As souree data access starts at the beginning of the instruction cycle a new
address would be valid much later than for other instructions (sequentia! instructions start
address iocrement in the previous cycle, JMP provides the full new address in the instruction).
To prevent that XEC and NZT instructions reduce maximum operating speed a wait cycle is
inserted, so that new addresses are valid early in a program memory access cycle for all
instructions allowing relatively slow ROMs or long address setup times.

MicroDsp IDaSS design 23

Conditionat jump instructions XEC and NZT calculate new address bits to replace the lower
8 bits if souree is register, or 5 bits if souree is 10, of the program counter. For correct
operation the target address must therefore be in the current 5 or 8 bit page. The PCC
assembler ORG directive supports conditionat page alignment.

4XEC execute in page at (Displacement + SRC)

XEC provides indexed execution (on register or 10 port), it is very powerlul for constant table
access and for indexed jump tables useful for subroutine return, vectored interrupt handling
as well as state machine service. XEC replaces 8 bits or 5 bits in the program counter (before
increment) and executes the instruction at the calculated address. lf this instruction is not an
accepted jump only one instruction is done and the program continues with the instruction
following the XEC. lf the XEC executes a JMP or a NZT (source non zero) the program
continues at the jump address. XEC instructions may execute chained XEC instructions.
lf an instruction executed by a XEC is aborted by an interrupt the XEC itself will also be re­
executed after interrupt return. XEC instructions always insert a wait cycle.

5 NZT jump in page if Souree not zero

Non-Zero-Transfer is used for program flow control and signal polling. lf the souree data is
non-zero the NZT instruction replaces 8 bits (if souree is register) or 5 bits (if souree is 10
bit field) in the program counter after incrementing. lf the NZT souree data is zero the
program counter is simply incremented. NZT instructions always insert a wait cycle.

Load literal instruction XMIT

6XMIT

+XML
+XMR
+ PULSE

Constant --> Destination loads data into specified destination
if register : 8 bit literal, if 10 bit field : 5 bit literal

send 8 bit literal to 10 Left Bank (uses R12 as dummy destination)
send 8 bit literal to 10 Right Bank (uses R13 as dummy destination)
send 8 bit literal to 10 bus, assert PULSE line

U neondition al branch instruction JMP

The unconditional JMP instruction enables jumps over the full address range.

7JMP jump to Address

MicroDsp IDaSS design 24

PCC design

The PCC has been designed in IDaSS by B. Vostermans and P. Simons. They are employees
of the Eindhoven University of Technology. Their design is given in Figure 5.

!
::: iJ=I Î 'ii! I l:::3: 1111 ,@1 rt ::: I

-} ~.''ul r.:ocWpocs stop >ak poe poe :1: :i : ' '"1
"

I iak hlt;;fb ~ dal-i]P! • ~~ Ll ~~ c
I poe l puls•~ I - I ~puls"

I irq , flllirqi s~>~b:~ ~::: ! ! ! jt
lRQ_ct"l i~J:I! - '""" i i ~i ~ sre

ienct>"~l!: ~iomctl"l shittlilf-.-ilshitt outlSO

1 ____ ___;;""'.:...;tiat-j- "'-ti """'9"f!lf--~efiffFTJII!RGE OUT _ "'"'"
- po-· out_ctrll!l e--laJollt_ctrT -

fmnew .,pld ,..,.,

to,..cenllaro..c•l it::lriTI-TL.. I d"code_opel"and Pchf!l
1 ~eb 5~~!1~ Ir ioo

REG_FILE

~=~-------~~-p-ait I 1111ai t J
I J

R13nz""r-----jlfl!l...=-Lr.:_:13:..:.:":._"' _j]
sl!'c_oujl."'flll~--,

!mln out.p~?:fn aux_oui ir

I adr ,-

~=!=;;=======:;-I- ~a~~ ..
f~~~~~- i,. I r"oip~,.~~· adr

~~ select opr ~el out
- I

po 101 ~c_ctlf'l Z&lf'o

1

lil. -~ '-ut
po_ctrl~---~a l~eruovt"toad

n"w13"'-i.li'P,."J'c"".,d"~ Ms" ir_class,.f-+-fco - ALU
... Dil Jlll '""liil .. ii specJuncj! 1 f.kpecJunc

new8 t I 1 ..:out

Figure 5 PCC

PCC simulation

The IDaSS PCC has been simulated by B. Vostermans and P. Simons. According to them the
IDaSS implementation is corresponding the specification [PCC93] of the PCC. However, this
has notbeen verified with the special PCCTEST program. The IDaSS PCC (version 2) is used
in the MicroDsp toplevel schematic.

MicroDsp IDaSS design 25

3.2 Arithmetic Accelerator Unit (AAU)

The Arithmetic Accelerator Unit (AAU), a coprocessor for the PCC, is designed to speed up
otherwise tedious byte-wise multiply/divide and shift operations for calculations with signed
or unsigned integers in floating or fixed point data formats.

The AAU features signed (four-quadrant) and un-signed multiplication, division, normalise
and adjust, in short format (both operandi 16 bits) and long format (operandi 16 and 32 bits).
Short integer (16 bit) signed and unsigned multiplication also can be done while accumulating
with previous result(s). In this mode overflow and onderflow are detected and resulting values
are clipped autornatically to their appropriate maximums to prevent control calarnities without
any software overhead. The multiply-accumulate feature is very powerlul for digital signal
processing in control loops. Normalise and shift facilities of the AAU enable to implcment
relative fast floating point calculation routines.

AAU specification

AAU data registers X, Y, Z, CMD and STA are located in PCC 10 OxFO .. OxFF. Starting
access on addresses OxFO or >OxFA provides Burst Mode Access incrementing IQ addresses
automatically at consecutive accesses. The AAU a11ows "chained operations" : intermediale
results of formula evaluation may be left in AAU accumulator registers for re-use in next
operations. Both features increase performance while reducing PCC code required.

Operations basically require one clock for initialise, 16 or 32 AAU clocks for execution and
one to four AAU clocks for finishing. The PCC program may continue with other business
while the AAU is BUSY.

operation
Multiply
Di vide
shift

clocks for word
18
19
n+1,<=17

for long
34
36
n+1,<=33

Together with the PCC the AAU provides a capability to do low end DSP calculations like
about 640.000 digital filter stage calculations (multiply/accumulate/clip) per second (for
C3DM : at 16 MHz doek) .

Features : . multiply 16*16 and 16*32 bits
. divide 16:16 and 32:16 bits (with overflow detection)
. multiply 16*16 accumulate (32 bits) with overflow clipping
. Normalise (16/32 bit) for floating point operations
. Shift left/right (16/32 bits) over 0 .. 15/31 bits
. All operations un-signed and signed, four quadrants
. Results within 19 (short) or 36 (long) PCC clock cycles (worst case)
. Chained operations may be used to reduce data moves
. Burst Mode Access for optimal performance and reduced code
. PCC may proceed during AAU operadon

MicroDsp IDaSS design 26

AAU design

The AAU has been designed in IDaSS by A. Verschueren. This AAU is different from the
handcraft AAU. In the IDaSS design most calculations are computed 2 cycles faster. Another
difference is that the IDaSS AAU has a POC input while in the original design the POC line
has to be connected to the STOP input. Furthermore, the handcraft AAU also provides a
BUSY output while the IDaSS AAU does not have that output. The IDaSS design is given
in Figure 6.

Figure 6 AAU

AAU simulation

The IDaSS AAU has been simulated by A. Verschueren. The first simulation gave an error
for the division -18/3. This gave quotient -5 with remainder -3, witch is of course the same
as quotient -6 with remainder 0, what should have been the answer. This error was a result
of a wrong algorithm that was used for the divide action. This algorithm was also used for
the handcraft AAU that was already implemented. In both designs this error then had to be
erased. According to Verschueren the IDaSS implementation is not exactly corresponding the
specification [AAU93] of the AAU because of differences in timing and pinning. On the other
hand, the functional behaviour is according to the specification. This AAU is used in the
MicroDsp toplevel schematic.

MicroDsp IDaSS design 27

3.3 12C interface and Control (IICC)

The MicroDsp can be controlled by a "host" computer like a Personal Computer (PC) via an
on chip I2C interface (12C = Inter-IC). Communication is done via a serlal two wire link. This
means that a monitor program that is running on the PC can influence the progress of the
program running on the MicroDsp. For example, the monitor program can startand stop the
MicroDsp or read IO bus information or read the contents of a register of the PCC. The I2C
device in the PC is called the master, and the l2C device on the MicroDsp is called the slave.

The MicroDsp has to have the possibility to download PCC instructions into the program
memory. For small PCC monitor programs an additional memory segment is available. Via
I2C control the PC can start and stop PCC program execution and access control and status
ports. In this way the PCC emulator running on the PC can access the PCC. All system
information can be displayed on the screen and all writable ports can be modified from the
keyboard.

Control hardware on the MicroDsp chip is kept to a minimum by locating most of the
"intelligence" in the controlling monitor program of the PC, this in order to reduce design
complexity and design risk while preserving maximum flexibility.

nee specification

For the MicroDsp JZC interface a number of 12C addresses is reserved without looking at
eventual conflicts with existing fC devices. These are used to address MicroDsp control
ports. The following ports are provided:

addr name R/W functional description
10 FCfL R&W External signal override controls
11 PADH R PCC ADR[8 .. 12] state on last instruction
12 PADL R PCC ADR[O .. 7] state on last instruction
13 LBAD R PCC 10 last Left Bank address
14 RBAD R PCC IO last Right Bank address
15 IODT R PCC 10 last 100 data
16 MADH R&W PCC program memory address 5 upper bits
17 MADL R&W PCC program memory address 8 lower bits
18 MDTH R&W PCC program memory data 8 upper bits
19 MDTL R&W PCC program memory data 8 lower bits
lA XCTL R&W MicroDsp start control
lB STAT R MicroDsp status
IC MAIL R&W MicroDsp debug port

MicroDsp IDaSS design 28

The following PCC system data access and control functions must be available from the
hardware for the PC monitoring/debugging program:

data access and control functions
PCC program memory words Read and Write
PCC start, stop, breakpoints and single step
Memory and IO intemal/extemal control
PCC internal registers RO .. R7, OVF, Rll..R17
Last PCC address (interrupt return address)
Last run time Left and Right bank address
Last Left and Right bank data
PCC state and user control lines access
Interrupt context data: AUXI, OVFI access
Interrupt enable flag ENI access
Program data

unit
MADH/L, MDTH/L
FCTL,XCTL
FCTL, XCTL
IODT
PADH/L
LBAD,RBAD
IODT
STAT
FCTL, XCTL, IODT
FCTL, XCTL, IODT
MAIL

A functional block diagram of the nee is given in Figure 7.

SDA SCL

IIC

Vactdress Vctata .o.roo
PCC program memory access

Figure 7 Functional block diagram of nee

nee design

In the IDaSS design of the nee unit, we find the following elements:

• inter IC control unit (nC)
• program memory access unit (MADT)
• force control unit (FCTL)
• address state unit (PAD)
• IO view unit (IOBUS)
• start control unit (XCTL)
• status unit (ST AT)
• mail unit (MAIL)
• program type determination unit (PRGTYPE)
• monitor control unit (MONCTRL)
• stop control unit (STOPCTRL)

The nc unit is the centre of the total nee design. Globally, this blockis a serlal to parallel
converter. It converts the serlal information that is received from a PC hostinto bytes that can
be read by the surrounding blocks such as MADT, FCTL etc. On the other hand if the PC

MicroDsp IDaSS design 29

sdao ~ 1 ri~~;;;;;;;;;;;;;;;;;;;;;;;;~~~~----- pccooai t I
jli>:;:;~~Yse I ~~ ===~

:: !-ilis : ! ! i
MOI'ICTRL p pccib!l I

~onp"':!s~~~~~~~ ~ ~~===::::::

pccadr ïîij--f~ ccadr i><p.,go(i

1

'L'
1 1

1 ::: ~ t-q _.::·;::, I i =

=+--,I~ USX'iby I

l'~cwaitf5!~~l!JI ~I us .. pulse I
ntstï«r---

STOPCTRL r-- -P prad \

[xbuse lli-- ~~~fï5 .,•n 'ji' ~TS

l ==-~ t rn== :;;; .. lli<!qf- n"'""
••••b t rn:H~: ~?.~ .~JI~, s!a ~:o se
lbdis ~iTul.:±~~ 'I !-4 -~ccstpAT -!rt_en

1 1 ~~~-r hdjS ~· Ktt,..J'_W ·:::· trrrr: .;~: l::w ~~~~=
*-T~t:=I=~T-1=-1-1- ;~~~~~ 1-1- El1 " MAIL sre -,-±::::::: ---1- U~rpPgBUS Ie

"---===~ Lt:l:-[:±:1: ~~= 1 ---~ Ie
r- I 1 ~~e dat I ata iool I wle ~~T~W-1=1---pHPccpulse add

1 i ddr 1011

I rle st---si-1-1- ~~~ i
I pccpulse~ ~ i

Figure 8 IICC

lm.. onprg s tall'~><l
r""~ srprg ss t:f 191

n ..
I
I
I

host has to read sornething frorn one of the nee subblocks, these bytes will be coded into
a serial bit strearn, that will be transferred to the PC host. In the list below all signals are
descri bed.

External signals:

name
• sda
• sdao
• scl

• ioi
• ioo
• sle
• wle
• rle
• sre
• lbdis
• rbdis

• rden
• wren
• prad
• rdir
• wrir

• pccwait
• pccadr
• fjlOOO

• stpflg
• stp
• usrstp

• poe
• usrpoc

• irq
• usrirq

bits
-1-

1
1

8
8
1
1
1
1
1
1

1
1
13
16
1

1
13
1

1
1
1

1
1

1
1

description
serial data in
serial data out
serial clock

io input bus
io output bus
select left bank enable
write left bank enable
read left bank enable
select right bank enable
left bank disable
right bank disable

read program ram enable
write program ram enable
program ram address
read instructien bus
write instructien bus

pee wait
pee address bus
force jump to lOOOh

stop flag
stop
user stop

power on clear
user driven poe

interrupt request
user interrupt request

MicroDsp IDaSS design 30

. usrpulse 1 user pulse
• peepulse 1 pee pulse

. usriby 1 user interrupt busy
• peeiby 1 pee interrupt busy

• prgext 1 external program . xprgm 1 user external program . ixbuse 1 external bus enable . xbuse 1 user external bus enable

Internal signals:

. addr 8 internal address bus . en 1 internal enable signal . r w 1 internal read/!write signal . data 8 internal bidireetional data bus

The sda and sdao lines have to be connected toeach other, but because some additionallogic
is necessary to prevent metastability, these signals are separatedinput and output ports. The
metastability circuit will be described in VHDL.

In the next paragraphs all nee elements will be described in detail.

MicroDsp IDaSS design 31

3.3.1 Inter-IC (IIC)

Philips PCALE employee H. Schutte bas developed a simple bidirectional 2-wire bus for
efficient inter-IC controL This bus is called the Inter IC or 12C-bus. An 12C-bus compatible
device incorporates an on-chip interface which allows it to communicate directly with every
other device on the 12C-bus. Some features of the 12C-bus are:

• Two bus lines are required; a serlal data line (SDA) and a serlal doek line (SCL)
• Each device connected to the bus is software addressable by a unique address
• Serial, 8-bit oriented, bidirectional data transferscan be made at up to 100 kbit/s in

the standard mode or up to 400 kbit/s in the fast mode
• On chip filtering rejects spikes on the bus data line to preserve data integrity

The 12C-bus supports any IC fabrication process (NMOS, CMOS, bipolar). Two wires, serial
data (SDA) and serial doek (SCL), carry information between the devices connected to the
bus. Each device is recognised by a unique address and can operate either as transmitter or
receiver, depending on the function of the device.

IIC Data validity

The data on the SDA line must be stabie during the HIGH period of the doek. The HIGH
or LOW state of the data line can only change when the doek signal on the SCL line is
LOW.

IIC ST ART and STOP conditions

Within the procedure of the 12C-bus, unique situations arise which are defined as STARTand
STOP conditions. A HIGH to LOW transition on the SDA line while SCL is HIGH is one
such unique case. This situation indicates a START condition. A LOW to HIGH transition
on the SDA line while SCL is HIGH defines a STOP condition. The bus is considered to be
busy after the START condition. The bus is considered to befree again a eertaio time after
the STOP condition. Detection of START and STOP conditions by devices connected to the
bus is easy if they incorporate the necessary interfacing hardware. However, microcontrollers
with no such interface have to sample the SDA line at least twice per clock period in order
to sense the transition.

IIC Transferring data

Every byte put on the SDA line must be 8-bits long. The number of bytes that can be
transmitted per transfer is unrestricted. Each byte bas to be followed by an acknowledge bit.
Data is transferred with the most significant bit (MSB) first. lf a receiver can't receive
another complete byte of data until it bas performed some other function, for example
servicing an internal interrupt, it can hold the doek line SCL LOW to force the transmitter
into a wait state. Data transfer then continues when the receiver is ready foranother doek line
SCL.

MicroDsp IDaSS design 32

Data transfer with acknowledge is obligatory. The acknowledge related clock pulse is
generated by the master. The transmitter releases the SDA line (HIGH) during the
acknowledge clock pulse. The receiver must pull down the SDA line during the acknowledge
clock pulse so that it remains stabie LOW during the HIGH period of this clock pulse. Set-up
and hold times must also betaken into account. Usually, a receiver which has been addressed
is obliged to generate an acknowledge after each byte has been received. When a slave­
receiver doesn't acknowledge the slave address (for example, it's unable to receive because
it's performing somereai-time function), the data line must be left HIGH by the slave. The
master can then generate a STOP condition to abort the transfer.

If a slave-receiver does acknowledge the slave address but, some time later in the transfer
cannot receive any more data bytes, the master must again abort the transfer. This is indicated
by the slave generating the not acknowledge on the first byte to follow. The slave leaves the
data line HIGH and the master generates a STOP condition.
If a master receiver is involved in a transfer, it must signal the end of data to the slave­
transmitter by not generating an acknowledge on the last byte that was clocked out of the
slave. The slave-transmitter must release the data line to allow the master to generate the
STOP condition.

IIC Formats with 7-bit addresses

Data transfers follow the format shown in Figure 9. After the start condition (S), a slave
address is sent. This address is 7 bits long foliowed by an eighth bit which is a data direction
bit (R/!W) -a 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data
(READ). A data transfer is always terminated by a stop condition (P) generated by the master.
However, if a master still wishes to communicate on the bus, it can generate a repeated
START condition (Sr) and address another slave without first generating a STOP condition.
Various combinations of read/write formats are then possible within such a transfer. Possible
data transfer formats are:

• Master-transmitter transmits to slave-receiver. The transfer direction is not
changed (Figure 10).

• Master reads slave immediately after flrst byte (Figure 11). At the moment of
the first acknowledge, the master-transmitter becomes a master receiver and the
slave-receiver becomes a slave transmitter. This acknowledge is still generated by
the slave. The STOP condition is generated by the master

• Combined format (Figure 12). Duringa change of direction within a transfer, the
START condition and the slave address are both repeated, but with the R/W bit
reversed.

MicroDsp IDaSS design

SDAI ----XI

SCL~ I 1-7 \ I 8\ /9\
s

START ADDRESS RJ ! W ACK
CONDITION

1-7 ï, 18\ 19\

DATA ACK

Figure 9 A complete data transfer

SLAVE ADDRESS

---x-x~ ,-----
1-7 \ I 8\ 19\ I - - - p

DATA ACK STOP
CONDITION

'0' (write) \ __ n bytes + ack __ /

normal from master to slave

bold = from slave to master

A
!A
s
p

acknowledge (SDA LOW)
nat acknowledge (SDA HIGH)
START condition
STOP condition

33

Figure 10 A master-transmitter addresses a slave receiver with a 7 -bit address. The transfer
direction is not changed

s SLAVE ADDRESS R/!W A DATA A I DATA !A I p

'1' (read) _ n bytes + ack_/

Figure 11 A master reads a slave immediately after the first byte

s SLAVE ADDRESS I R/!W I A I DATA I A/!A I
read ar
write

SLAVE ADDRESS

Sr repeated START
condition

Figure 12 Combined format

IIC specification

\n bytes + ack/*

read ar
write

\n bytes + ack/*

direction of transfer
may change at this point

It is advised that the PC to MicroDsp interface is a point to point interface that exists of a
single master located in the PC and a single slave located on the MicroDsp. For a convenient
program trace mode or commands like "step n instructions" 12C data transfers must be done
as quickly as possible, so the 400 kbit/s 12C specificatien is preferred.
The PC fC master issues all ST ART and STOP conditions, generates the I2C doek SCL and

MicroDsp IDaSS design 34

sends fC address bytes including the Read/Write control bit. At the end of byte output the
master can check reception of the acknowledge to ensure that the conneeled MicroDsp slave
is responding. On reading fC datathemaster will also provide an acknowledge according to
the 12C specification. This acknowledge will be ignored by the slave. As most MicroDsp
registers are writable and readable a more extensive 12C interface test can be done at the start
of the PC monitor program.

Host computer program command sequences start by sending an fC start (S) condition and
a new fC address that points to the MicroDsp port which is the first souree or destination for
JZC data byte. The MicroDsp Control hardware automatically advances to the next I 2C port
addresses. Data transfers can beendedat any time with an JZC stop condition (P) from the
PC master fC driver. While the PCC is running fC control is only practical to read the
MicroDsp status (from STAT port), debug data (from MAIL port) and to control write (to
port FCTL) tostop the PCC. While in stop mode all fC actions described below can be used.
12C sequences as transmitted by the PC controlling program will be described here using the
following conventions, appearance and order:

1. s
2. portname
3. +R or+W
4. (A) or (!A)

for N 5. [data] or [data]
bytes 6. (A) or (!A) or (A) or (!A)

7. p

IIC design

force fC start condition
12C port address (7 bits)
read I write control bit in the address byte
address acknowledge level resp. ACK or NAK
from MicroDsp
data transfer (8 bits) resp. to or from MicroDsp
data acknowledge level resp. ACK or NAK resp. to
or from MicroDsp
force fC stop condition

The IIC unit is the conneetion between the host computer and the MicroDsp. All inside
information that is captured in the nee register units can be transferred to the host computer
via the serial SDA and SCL lines. Therefore the IIC unit has to be able to read and write
these registers. A special internat data bus DATA and address bus ADDR have been made
to perform these transfers. A read/write line R_ W indicates if such a register has to be read
or written. An enable line EN delermines if the busses are valid.

The IIC unit has four registers that indicate the condition of the data transfer. The registers
S and P indicate the STARTand STOP conditions and the registers UP and DN indicate the
state of the SCL line, thus the validity of the SDA data. This information is used by a state­
controller CTRL which controls the serial-parallel converter SP _CONV and the registers
BIT_CNT, ADDRESS, DATA and R_W.

The SDA_DEL and SCL_DEL registers are used to delay the SCL and SDA signal one bit
in order to detect if the SDA and SCL lines change from '1' to '0' or from '0' to '1 '. (In the
final VHDL design 3 or more clocks delay are necessary to avoid metastability but for the
functional simulation this delay is not needed).

MicroDsp

Figure 13 IIC

'SDA_DEL' is a register.

This register is 1 bit wide.
The default function is 'lead'.

IDaSS design

This register is loaded with value 0 following system reset.

The value loaded for the 'reset' oommand is 0.

'SCL_DEL' is a register.

This register is 1 bit wide.
The default function is 'lead'.
This register is loaded with value 0 following system reset.

The value loaded for the 'reset' cernmand is 0.

35

~DA_DELJ
Figure 14
SDA_DEL
register

~CL.J)ELJ

Figure 15
SCL_DEL

The CONDITION_DETECT operator is used to determine the next state of register
the state-controller. Every next state depends on the behaviour of the SDA
and SCL lines. The condition detect operator can detect the specified START and STOP
conditions and the state of the SCL line (HIGH or LOW).

'CONDITION_DETECT' is an operator.

This operator has 1 function.
The default function is 'S_P_det'.

Text for funotion 'S_P_det' of 'CONDITION_DETECT':
----------------------v----------------------
8 := prev sda 1\ prev sol /\ (sda not) /\ sol.
P := (prev sda not) /\ prev scl /\ sda /\ sol.
sclup : (prev scl not) /\ scl.
soldown : prev scl /\ (sol not).
---------------=------A----------------------

Figure 16 CONDITION
DETECT operator

A state controller CTRL is used to control the serlal parallel converter SP _CONV and to
control the registers ADDRESS, DATA and R_ W. In this way serlal bits received at the SDA

MicroDsp IDaSS design 36

input line will be shifted in the DATA and ADDRESS registers. If these registers are valid
and the transfer direction has been set in the R_ W register, the enable signalEN will be made
HIGH.

'CTRL' is a state machine controller.

This state machine controller has 12 states.
No stack is available for 'subroutine' calls.
This controller is enabled following system reset.

This state machine controller has no connectors.

Text for state number 1 (reset state) of 'CTRL':
----------------------v----------------------
idle:

sp conv idle;
[s = 1
I 1 bit ent reset;

address reset;
data reset;
r w reset;
-> receive addr bit

10«1 --
----------------------~----------------------

Text for state number 2 of 'CTRL':
----------------------v----------------------
receive addr bit:

[bit-ent < 7
I 1 [-up = 1

I 1 sp conv addr sp;
address loadi
bit ent inc;
<<

I o « 1
I 0 -> receive direction

----------------=-----A----------------------

Text for state number 3 of 'CTRL':
----------------------v----------------------
receive direction:

up ;;;; 1
1 sp conv set dir;

r w load; -
-> prepare addr ack

0«1 - -
----------------------A----------------------

Text for state number 4 of 'CTRL':
----------------------v----------------------
prepare addr ack:

[dn;;;; 1 -
I 1 sp conv send ack;

sdaor load; -
-> send addr ack

0 << 1
----------------------A----------------------

Text for state number 5 of 'CTRL':
----------------------v----------------------
send addr ack:

[dn = 1
I 1 bit ent reset;

[r w = 1
I 1 sp_conv read_prt_data;

data load;
-> get data bit

0 -> receive data bit 1
I 0 sdaor enable; "keep-sending ack"

<< 1
----------------------A----------------------

Text for state number 6 of 'CTRL':
----------------------v----------------------
get data bit:

[-bit ent < 8
I 1 sp_conv data_ps;

data load;
sdaor load;
sdaor enable;
bit_cnt inc;

[~~:~~::1
Figure 17
CTRL

MicroDsp

-> send data bit
I 0 bit ent-reset;

[address < lBh
I 1 address ine];
->reeeive data aek

IDaSS design

---------------=----=-A----------------------

Text for state number 7 of 'CTRL':
----------------------v----------------------
send data bit:

[dn = T
I 1 sdaor enable;

-> gat data bit
0 sdaor enable; "keep sending aek"

<< l
----------------------A----------------------

Text for state number B of 'CTRL':
----------------------v----------------------
reeeive data aek:

[dn =-1 -
I 1 [sda del = 1 "NACK"

I 1 => wait S P
1 0 sp_eonv-read_prt_data;

data lead;
-> gat data bit]

10«] - -
----------------------A----------------------

Text for state number 9 of 'CTRL':
----------------------v----------------------
wait s P:
[(s-=-1) \/ (p = 1)

I 1 l s = 1
I 1 -> reeeive addr bit
I 0 -> idle]

I 0 « J
----------------------A----------------------

Text for state number 10 of 'CTRL':
----------------------v----------------------
reeeive data bit:

[(s ;; 1) \/ (p = 1)
I 1 [s = 1

I 1 -> reeeive addr bit
I 0 -> idle J - -

I 0 [bit ent < B
I 1 [-up = 1

I 1 sp eonv data sp;
data lead; -
bit_ent ine;
<<

I o « J
I 0 sp_eonv write_prt_data;

data buf enable;
-> prepare data aek JJ

--------------------=-A--=-------------------

Text for state number 11 of 'CTRL':
----------------------v----------------------
prepare data aek:

[dn ;; 1 -
I 1 data buf enable;

sp eonv send aek;
sdaor lead; -
-> send data aek

I 0 data buf enable;
<<]-

______________________ A _____________________ _

Text for state number 12 of 'CTRL':
----------------------v----------------------
send data aek:

[dn = T
I 1 bit ent reset;

data reset;
[address < lBh
I 1 address ine];
-> reeeive data bit

I 0 sdaor enable;
<< l

----------------------A----------------------

End of state deseriptions.

37

MicroDsp IDaSS design 38

The SP _CONV operator is used to shift the information bits received from the SDA line into
the DATA and ADDRESS registers or to shift the information byte in the DATA register out
of this register to drive the SDA line.

'SP_CONV' is an operator.

This operator has 8 functions.
The default function is 'idle'.

Text for function 'addr_sp' of 'SP_CONV':
----------------------v----------------------
new adr := (old adr shl: 1) \/ (sda in width: 7).
en:= 0. - -

----------------------A----------------------
Text for function 'data_ps' of 'SP_CONV':
----------------------v----------------------
sda out:=old data at: 7.
new-data:=(old data shl: 1).
en::;O. -

----------------------A----------------------
Text for function 'data_sp' of 'SP_CONV':
----------------------v----------------------
new data:=(old data shl: 1) \/ (sda in width: 8).
en::;O. - -

----------------------A----------------------
Text for function 'idle' of 'SP CONV':
----------------------v----------------------
en := 0.
----------------------A----------------------
Text for function 'read_prt_data' of 'SP_CONV':
----------------------v----------------------
en:=l.
new data:=prt data.
---=---------=--------A----------------------
Text for function 'send ack' of 'SP CONV': - -----------------------v----------------------
sda out := 0.
en:= 0.
----------------------A----------------------
Text for function 'set dir' of 'SP CONV':
----------------------v----------------------
r w := sda in. "0 indicates a write from the master" en := 0. -

----------------------A----------------------
Text for function 'write_prt_data' of 'SP_CONV':
----------------------v----------------------
en:=l.
----------------------A----------------------
End of function descriptions.

old_ad
new,.ad

Pl"t_aat
new~dat
SP_ ONU
old_dat

Figure 18
SP_CONV

l"_

The BIT_CNT register is used to count the number of bits that are shifted in or out the
DATA or ADDRESS register. This information is used by the state controller.

'BIT_CNT' is a register.

This register is 4 bits wide.
The default function is 'held'.
This register is loaded with value 0 following system reset.

The value loaded for the 'reset' cammand is 0.

IBIT_CNT I
Figure 19
BIT_CNT
register

MicroDsp

'ADDRESS' is a register.

This register is 7 bits wide.
The default function is 'held'.

IDaSS design

This register is loaded with value 0 following system reset.

The value loaded for the 'reset' command is 0.

'DATA' is a register.

This register is 8 bits wide.
The default function is 'hold'.
This register is loaded with value 0 following system reset.

The value loaded for the 'reset' command is 0.

'R_W' is a register.

This register is 1 bit wide.
The default function is 'hold'.
This register is loaded with value 0 following system reset.

The value loaded for the 'reset' command is 0.

IIC simulation

39

~DDRES"
Figure 20
ADDRESS
register

i DATA i
Figure 21
DATA
register

i R_N i
Figure 22
R_W
register

When we are going to simulate the IIC unit
we need input for the SDA and SCL lines.
This has to be a serlal input which means
that every clock pulse the SDA and SCL
lines are sampled. Therefore we conneet to
ROM units to these pins. The ROM units
contain serlal bit information that is read by
the IIC unit.

IIC
rt_en

r-Tr.i'iï..,...'Xi:1~JE;::l~a; a
.__ _ __. :rt_addlf'

Suppose we want to load the FCTL register Figure 23 IIC simulation
with value 01100110b. Then we have to
send a serlal code to the IIC unit that addresses the FCTL register and wrltes the value into
it. This code looks like:

S;FCTL;+W;(A);[data];(A);P

with FCTL = 1 Oh
and [data] = 01100110b

The SCL signal in the ROM is described as 001100110011.. .. So every I2C bit transfer takes
four IIC clock pulses. In this case it will take 75 clock pulses until the data appears on the
data bus and the enable signal becomes valid.

MicroDsp IDaSS design 40

lf we want to read the contents of the STAT register we have to send:

S;STAT;+R;(A);[data];(!A);P

with STAT= lBh

According to the specification we use !A to indicate that this data byte is the last data byte
that has to be transmitted. This also takes 75 clock pulses.

MicroDsp IDaSS design 41

3.3.2 Program memory access ports (MADT)

When the MicroDsp is in operation, a program is running on the PCC. This program is
normally read from the intemal program RAM. At power on, this program RAM is empty and
therefore a program must first be loaded into this RAM before the MicroDsp can be running.
The way to fill the RAM with a program is to download the program code via the ec bus.

The MADT block is the conneetion between the ec unit and the program RAM. This MADT
unit can be used to:

• download PCC programs
• download small PCC monitor routines
• verify program memory operatien

PCC programs will be stored in the lower part of the program RAM, PCC monitor routines
will be stored in the higher part of the same RAM. It is of course also possible to download
test veetors into the RAM to verify the program memory operation. Therefore it has to be
possible to read back the information that was stored in the RAM.

MADT specification

The MADT unit is a combination of four 8-bit register blocks: MADH!MADL,
MDTH/MDTL. While the PCC is stopped (STPFLG HIGH), a target program memory
address can be loaded into MADH/MADL. The program memory data at the location pointed
to by address portsis automatically read immediately after writing MADH and MADL. For
program memory data read the fC must then receive a stop condition (P) andrestart an 12C
read sequence. For writing data into the program memory, the MDTH and MDTL ports are
to be filled via the ec and after MDTL is received data write follows automatically.

MicroDsp IDaSS design 42

MADT design

The MADT unit basic elements are the four registers MADH, MADL, MDTH, MDTL. These
address registers MADH and MADL can load an address received from the I2C unit. The data
registers MDTH and MDTL can load data received from the I2C unit or the program memory.
These operations of these four registers are controlled by the ACTION_SEL operator. This
operator converts the I2C intemal access signals into local register control signals. The
specification of these signals can be found in the IDaSS description of the registers below.
The operator also controls the function of the MD _SPLIT operator. This operator has three
functions that select the data to be stored in the data registers. These will be described in the
SPLIT section. First the description of the ACTION_SEL operator follows.

Figure 24 MADT

'ACTION_SEL' is an operator.

This operator has 1 function.
The default function is 'sel'.

Text for function 'sel' of 'ACTION SEL':
----------------------v----------------------

wr:=en /\ (r w not) /\ stpflg.
-rd:=en /\ r w /\ stpflg.
-rnadh:= 16h ~ addr.

MicroDsp

madl:= 17h addr.
-mdth:= 18h addr.
-mdtl:= 19h addr.
wr madh:= wr /\ madh.
wr-madl:=- /\ -madl.
rd-madh:= /\ -madh.
rd-madl:= /\ -madl.
wr-mdth: /\- mdth) \/ rden.
wr-mdtl:= /\ -mdtl) \/ rden.
rd-mdth:= /\ mdth.
rd-mdtl:= rd /\ -mdtl.

IDaSS design

spiit:=((-wr /\ -mdtl) \/ rden), ((_wr /\ _mdth) \/ rden).
wren:= wr-/\ mdtl.
------=------=--------A----------------------

43

Figure 25
ACTION_SEL

The MD _SPLIT operator actually is a multiplexer that bas 3 operator
functions. The frrst 'md_split' splits a program memory data word

End of function descriptions.

into two bytes that are then loaded into the data registers. The
second and third function are 'data_to_mdth' and 'data_to_mdtl'. These functions route a data
byte received from the fC to the corresponding data register.

'MD_SPLIT' is an operator.

This operator has 3 functions and is controlled by an unnamed control input.
The default function is 'md_split'.

Control specification:
----------------------v----------------------
%00 md split.
%01 data to mdth.
%10 data-to-mdtl.
--------=--=----------A----------------------
Text for function 'data_to_mdth' of 'MD_SPLIT':
----------------------v----------------------
mdth in:=data.
----=-----------------A----------------------
Text for function 'data_to_mdtl' of 'MD_SPLIT':
----------------------v----------------------
mdtl in:=data
----=-----------------A----------------------
Text for function 'md_split' of 'MD_SPLIT':
----------------------v----------------------
mdtl in:=rdir from: 0 to: 7.
mdth-in:=rdir from: 8 to: 15
----=-----------------A----------------------

Figure 26
MD_SPLIT
operator

Here follows the description of one of the four basic registers. These registers all have the
same description.

'MADHREG' is a register.

This register is B bits wide and is controlled by an unnamed control input.
The default function is 'hold'.
This register is loaded with unknown values aftar a system reset.

The value loaded for the 'reset' command is 0.

Control specification:
----------------------v----------------------
%1 load.
----------------------A----------------------

~A DH RE~
Figure 27
MADHREG
register

MicroDsp IDaSS design 44

Buffers are necessary to transport the data frorn the registers to the I2C unit. lf a buffer is
enabled the data can be transferred via the bidirectional DATA bus.

'MADHBUF' is a TS buffer.

This TS buffer is 8 bits wide and is controlled by an unnamed control input.

Control specification:
----------------------v----------------------
%1 enable.
----------------------A----------------------

MADT simulation

~ADHBU~
Figure 28
MADHBUF
buffer

When we sirnulate the MADT unit we have to check wether we can read several words frorn
the program memory and send these via the I2C bus to the host computer and wether we can
receive several words frorn the host and write these into the program memory.

ROM_COUHT

EHJOM

R_I.IJOM

Figure 29 MADT Sirnulation

First we will try to read one byte frorn the program memory. Reading more bytes is just a
repetition of the sarne procedure. Suppose we have just received a request frorn the I2C unit
to read the program memory at address 0123h. Then we have to store the this address into
the MADH and MADL register. This can be done by actdressing the MADH register at
address 16h and writing the high byte of the program memory address (Olh) into it. So the
R_ W signal has to be LOW for writing and the enable signal HIGH. Then we can write the
low byte (23h) at address 17h. This next address location will be autornatically selected by
the I2C unit which has an autornatic address iocrement mode, but for the sirnulation of this
block separately we have to do the iocrementing ourselves. After the low byte has been
written the program memory will be read and the data will be stored into the MDTH and
MDTL registers. We will now read these registers by actdressing MDTH at address 18h
rnaking the R_ W signal HIGH for reading and rnaking the enable signal EN HIGH. Now the
high byte of the data word will appear at the DATA bus. This byte can now be transrnitted
to the host computer via the I2C unit. After this transfer is done the low byte rnay be read
frorn the MDTL register at address 19h. Then this byte can be transrnitted via the ec unit
also.

MicroDsp IDaSS design 45

If we have to write a word into the program memory we have to address the MADH and
MADL registers in the same manner as above. After the low byte bas been written a program
memory read follows automatically and the value will be stored in the MDTH and MDTL
register. However, we do not want to use this data, we want to fill the MDTH and MDTL
registers with the data that we have just received from the fe unit. Therefore we overwrite
the data in MDTH and MDTL registers by addressing the MDTH register first, making the
R_ W signal LOW, putting the high byte of the data word on the DATA bus and making the
enable signal HIGH. Then we do the same for the low byte. After this low bytes has been
stored in the MDTL register a program memory write follows automatically and the data in
MDTH and MDTL is stored in the program memory at the address in MDTH and MDTL.

This completes the simulation of the MADT unit.

Note: Por burst transfers the RAM address is transmitted for every word while this address
only is incremented for every next data word. In this case an fe transfer of one memory
word costs 5 I2e bytes + START and STOP conditions. If an auto-inerement mode was
provided this could save 2 of the 5 bytes because MADH and MADL do not need to be
transmitted for every word but only once at the beginning of the transfer. If MDTH would
be selected automatically after MDTL was accessed this would save another byte of the I2e.
This improvement has not been implemented because they are not in the specification and
thus not required.

MicroDsp IDaSS design 46

3.3.3 External signal override controls (FCTL)

The PC monitor program can rnanipolate PCC system control lines POC, STOP, IRQ and
XBUSE by overriding the external control inputs via the JZC port FCTL.

FCTL specification

FCTL is an 8 bit read/write JZC port.

bit name
0. POC_FO
1. POC_F1
2. IRQ_FO
3. IRQ_F1
4. STP_FO
5. STP_F1
6. XBUSFO
7. XBUSF1

function
force PCCPOC to '0'
force PCCPOC to '1'
force PCCIRQ to '0'
force PCCIRQ to '1 '
force PCCSTP to '0'
force PCCSTP to '1'
force 10 bus to disable external access
force 10 bus to enable external access

At RESET all bits are cleared so no overriding is done.

The PCC "Power On Clear" can be forced to '0' to override user Power On Clear (USRPOC)
for emulator monitor actions and forced to '1' to perform emulator monitor controlled PCC
system reset. POC requires at least two cycles PCC execution to complete internat clear
actions. PCC Stop (PCCSTP) also must be driven LOW during that time.

PCCPOC := USRPOC * !POC_FO + POC_F1

The PCC Interrupt Request can be forced to '0' or '1' by IRQ_FO and IRQ_FL

PCCIRQ := USRIRQ * !IRQ_FO + IRQ_F1

The PCC Stop signat is the primary control for the monitor for PCC program execution.
Beside STP _FO and STP _F1, PCC program execution control involves another flag: The Stop
flag (STPFLG). While executing internat monitor program (MONPRG) the USRSTP and
internat stop forcing (STP _F1) are deactivated automaticatly and PCC execution control is
done via the internal STPFLG.

PCCSTP := (STP _F1 + USRSTP) * ! (STP _FO + MONPRG) + STPFLG

FCTL design

The FCTL unit exists of the FCTL register REG, a control operator CTRL, a three-state
buffer and a FORCE operator. The first three elements will be found in most of the designs
of the IICC units. The REG register will always be used to store data received from the I2C
unit or to store MicroDsp internal and external status or data. The buffer BUF gives the

MicroDsp IDaSS design 47

possibility to use the internal bidirectional DAT A bus to transport REG data. The control
operator is there to control the function of the register and the buffer. It determines when the
register has to load or hold and when the three-state buffer has to be enabled.

Figure 30 FC1L

'CTRL' is an operator.

This operator has 1 function.
The default function is 'select'.

Text for function 'select' of 'CTRL':
----------------------v----------------------
cr:=(lOh = addr) /\ (r w nat) /\ en.
cb:=(lOh = addr) /\ (r-w) /\ en ______________________ x _____________________ _

In this case the REG register is used to store the force control data. This
register has to be zero after RESET because no forcing is allowed at that
moment.

'REG' is a register.

This register is 8 bits wide and is controlled by an unnamed control input.
The default function is 'hold'.
This register is loaded with value 0 following system reset.

The value loaded for the 'reset' cammand is 0.

Control specification:
----------------------v----------------------
%0 hold.
%1 laad
----------------------A----------------------

Figure 31
CTRL
operator

REG
!ëJ

Figure 32
REG
register

MicroDsp IDaSS design

'BUF' is a TS buffer.

This TS buffer is 8 bits wide and is controlled by an unnamed control input.

Control specification:
----------------------v----------------------
%1 enable
----------------------A----------------------

The FORCE operator is unique for the FCTL unit. It provides the possibility

48

§ BM,F ~
Figure 33
BUF
buffer

to overrule the POC, IRQ, STP and XBUSE external signals. If the contents of the register
REG is zero, no forcing is done.

'FORCE' is an operator.

This operator has 1 function.
The default function is 'force'.

Text for function 'force' of 'FORCE':
----------------------v----------------------
pccpoc:=usrpoc /\ ((in at:O) not) \/ (in at:l).
pccirq:=usrirq /\ ((in at:2) not) \/ (in at:3).
intstp:=usrstp /\ ((in at:4) not) \/ (in at:5).
ixbuse:= xbuse /\ ((in at:6) not) \/ (in at:7).
----------------------A----------------------

FCTL simulation

Figure 34
FORCE
operator

Sirnulating the FCTL unit is sirnple. We address the unit with address lOh and we store a data
byte intheregister REG. Suppose this data byte is AAh witch is 10101010b, then the signals
PCCPOC, PCCIRQ, INTSTP and IXBUSE are all forced to '1 '.

MicroDsp IDaSS design 49

3.3.4 Program address register (PAD)

The nee address ports PADHand PADL hold the last Pee program address accessed while
executing user program. With this Pee address the monitor can restart the user program at
the correct position after a forced Pee stop. The P ADH byte also provides information about
external program memory and external bus use.

PAD specification

lf a user program is running on the Pee, the program address has to be captured. Therefore
the address must be storedon SYSRUN * !STPFLG * USRPRG. The Pee address bus is 13
bits wide. The lower 8 bits of the Pee address are captured in P ADL and the upper 5 bits
are captured in PADH.
The upper 3 bits of the P ADH register which are not used for the address are used to store
other information:

bit name
5. XPRGM
6. XBUSE
7. not used

PAD design

function
pin level of external program memory select
pin level of external Pee data bus enable

The PAD design is globally the same as the FeTL design. The registersPADHand PADL
are used to capture the Pee address. The control operator CTRL controls the function of
these registers (load, holdor enable).

Figure 35 PAD

MicroDsp IDaSS design 50

The SPLIT operator determines when the PCC address must be read and splits this address
into two bytes with the addition of the status signals XPRGM and XBUSE.

'SPLIT' is an operator.

This operator has 1 function.
The default function is 'split'.

Text for function 'split' of 'SPLIT':
----------------------v----------------------
outl:= pa from: 0 to: 7.
outh:= (pa from: 8 to: 12),

(xprgm width: 1),
(xbuse width: 2).

ld:= sysrun /\ (stpflg not) /\ usrprg.
----------------------~----------------------

PAD si mulation

To test the function of the PAD unit we first have to be sure that SYSRUN is HIGH,
STPFLG is LOW and USRPRG is HIGH. Only in this case the program address is loaded
into the P ADH and PADL registers. If now the R_ W signal and the EN signal are made
HIGH and the ADDRESS signal is llh resp. 12h then the high byte resp. low byte appear
on the DAT A bus.

MicroDsp IDaSS design 51

3.3.5 10-bus select address and data capture (IOBUS)

The IOBUS block consists of the blocks LBAD, RBAD and IODT. While the PCC is in
interrupt mode, the Left and Right Bank select addresses are not copied into the PCC intemal
registers R7 and R17. As monitoraccessof 10 pons destructs the run-mode 10-select status
this status is captured in the LBAD and RBAD pons while executing user program. The
IODT read only 12C port is connected to the PCC 100 bus and captures data from this bus.

IOBUS specification

The blocks LBAD and RBAD are used to capture the Left and Right Bank address, if the
PCC is about tostop and the capturing is not done by the PCC registers R7 and R17. The
condition for this situation is SYSRUN * ! STPFLG * USRPRG together with SLE for a
capture in LBAD and RLE fora capture in RBAD. The address kept in LBAD and RBAD
are used by the monitor on a restart of normal PCC program execution for reselecting the 10
port.
The IODT read-only 12C port is connected to the PCC 100 bus and captures data if written
to the Left Bank 10 or if the PCC executes a monitor break PULSE instruction.
To access any data in the PCC system a sequence of PCC instructions is down-loaded into
the monitor segment of the program memory. This monitor routine accesses the required data
and moves it to the Left Bank 10, soit is captured by IODT. This routine is executed with
SYSRUN LOW to enable IODT write and to silence the PCC system WLE.

A 'soft' breakpoint in the PCC program performs a JMP to the monitor program segment.
There a PULSE instruction is executed, setting the STPFLG to suspend PCC operation. With
SYSRUN HIGH the PULSE bus value [0 .. 255] is also written into IODT to indicate which
breakpoint was found. Stopped state can be detected from the 12C status register STAT. Write
100 bus data into IODT on: (PULSE * MONPROG * SYSRUN) + (WLE * !SYSRUN)

IOBUS design

The IOBUS unit contains the LBAD, RBAD and IODT registers. They are controlled by the
CTRL operator in the same way as described by the FCTL unit. The LD operator determines
when the data from the 10 bus has to be captured.

MicroDsp IDaSS design 52

Figure 36 !OBUS

The LD operator bas three outputs. Each output controls the loading of 10 bus data for the
corresponding register.

'LD' is an operator.

This operator has 1 function.
The default function is 'load ctrl'.

Text for function 'load ctrl' of 'LD':
----------------------v----------------------
ldlbad := sle /\ sysrun /\ (stpflg not) /\ usrprg.
ldrbad := sre /\ sysrun /\ (stpflg not) /\ usrprg.
ldiodt := (pulse /\ sysrun /\ monprg) \/ (wle /\ (sysrun not)).
----------------------A----------------------

IOBUS simulation

To simulate the !OBUS unit we only have to check wether we can read the three registers
LBAD, RBAD and IODT and wether these registers capture the data on the 10 bus at the
right moment.

MicroDsp IDaSS design 53

3.3.6 Execution start control (XCTL)

To be able to start and stop the PCC with the PC monitor program, a special register is
provided. The bits in this 8-bit register have a startand stop control function.

XCTL specification

Start of PCC execution is to be done by first loading a small PCC monitor program beginning
at address OxlOOO, then forcing the program instruction multiplexer to OxFOOO (JMP to
address OxlOOO) for one cycle andreleasing the PCC monitor STOP signal. On writing port
XCTL with STARTX HIGH the STPFLG is cleared and with the FJlOOO bit set a forced
jump to OxlOOO instruction (code 'FOOO') is executed. The routine starting at OxlOOO may
contain data moves to access or write PCC system data or only a jump instruction to the
starting point in the user program.

bit name
0. SYSRUN
L SSTFLG
2. XPRGFO
3. XPRGFl
4. STARTX
5. FJlOOO
6. not used
7. not used

function
enable PCC system bus writes and PULSE #n into IODT
execute single step
force to intemal memory program
force to extemal memory program after JMP execution
startup PCC by clearing the STPFLG
forced JMP OxlOOO at startup

PCC signals from the pins, that have been blocked while in monitor mode, are permitted to
the PCC immediately on executing the first JMP instruction JMP=(IR15*IR14*IR13), which
must be to user start location. Signals sampledon PH2 of the JMP will affect PCC operation
in the first cycle of the user program. Switch to extemal memory program must be done at
the same moment to enable instruction access of the first user instruction.

PCC program execution can be suspended by a MicroDsp RESET, by setting the STPFLG
on execution of a PULSE #n instruction while in the monitor program segment, or writing
a forced stop (STP _Fl) which also sets the STPFLG.

The SYSRUN flag controls PCC signals SRE, SLE, WRE, WLE, PULSE and lAK. lf
SYSRUN is LOW all signals are inhibited for the PCC user bus system and only the monitor
ports are written. With SYSRUN LOW port IODT accepts LIO data, while SYSRUN is
HIGH enables writing the data of a PULSE #n instruction into the IODT port. The PCC
IBY level is sampled into a flipflop while SYSRUN is HIGH and this sampled level is output
to user IBY while in monitor mode ADR12 is HIGH.

The SSTFLG allows the PCC to execute only one instruction when in non-monitor mode. For
XEC and NZT instructions this means that the PCC.WAIT signal must be used to allow two­
clock execution. On executing the user program instruction the SSTFLG is cleared, the
STPFLG and the PCC.STOP are set to stop the PCC. Now the monitor program can take

MicroDsp IDaSS design 54

over. User program is executed if extemal memory is accessed (XPRGM HIGH) or if lower
4096 intemal memory is accessed (ADR12 LOW). The STPFLG is set on USRPRG *
SSTFLG * !WAlT.

Programaccesscan be selected to intemal 4160 words SRAM or to extemal memory using
the whole of the PCC program address range of 8192 words. If initially intemal memory is
selected (XPRGM LOW), the monitor program can force to access extemal memory access
by overriding XPRGM with the XCTL startup port XPRGF1 control bit.

RESET initializes the STPFLG=!XPRGM, soa XPRGM ='0' -select intemal program- sets
the STPFLG to block PCC operations, waiting for monitor program controL Connecting
XPRGM to '1' enables extemal program and the PCC starts instantly without intervention of
the monitor. (for proper operation POC timing must be respected).

Switching intemaVextemal is possible with XPRGM='O' by setting the XPRGF1 bit in the
XCTL port. The program intemaVextemal multiplexer control IXPRGM (see figure x.) ORs
the extemal memory controls:

IXPRGM := XPRGM * !XPRGFO + XPRGFI

Memory switching provides the option to partially monitor external memory programs by
stopping PCC execution (STP_F1='1'), selecting memory (XPRGF0='1') and executing the
intemal memory monitor routines.

XBUSE at '1' allows all IO to access an external IQ bus. XBUSE can be overridden by the
FCTL port signals XBUSFO and XBUSFl:

IXBUSE := XBUSE * !XBUSFO + XBUSFl

lf the split data bus and its controls are to be routed to external hardware port LI06 is used
for data to PCC (101), port LI07 for data from PCC (100) and port LI08 for bus control
lines. In case an extemal 10 is addressed the external selected port can indicate this by setting
LBDIS=' 1' for Left Bank Disable, or RBDIS=' 1' for Right Bank Disable, to disable internal
Left or Right Bank access by disabling propagation of chip internal RLE, WLE, RRE and
WRE signals. LBDIS and RB DIS also cause the internal 101 lines to be driven from the port
LI06 pins.

MicroDsp IDaSS design 55

XCTL design

The XCTL design is globally the same as the FCTL design. The register REG is used to store
the XCTL data. The control operator CTRL controls the function of the register (load, hold
or enable).

Figure 37 X CTL

The SPLIT operator splits the data byte of XCTL into single control signals.

'SPLIT' is an operator.

This has 1 function.
The function is 'split'.

Text for function 'split' of 'SPLIT':
----------------------v----------------------
sysrun:=in at:O.
sstflg:=in at:l.
ixprgm /\ ((in at:2) net) \/ (in at:3).
startx:=in :4.
fjlOOO:=in at:S.
----------------------A----------------------

XCTL simulation

We can sirnulare the XCTL unit by addressing the unit with address 19h and writing a data
byte into it. If for example bit 3 of that byte is HIGH then the XPRGM value will be
overruled and IXPRGM will become HIGH.

MicroDsp IDaSS design 56

3.3. 7 S ystem status register (ST AT)

The nee status register STAT enables access of the state of external pins for the monitor.

ST AT specification

The port STAT provides the following signal status:

bit name
0. USRPOe
1. USRIRQ
2. USRSTP
3. PCeiBY
4. PCeSTP
5. LBDIS
6. RBDIS
7. STPFLG

STAT design

function
level of user Power On elear
level of user Interrupt Request
level of user Stop
level of Pee Interrupt Busy
level of PCe Stop
level of internal Left Bank select disable
level of internal Right Bank select disable
level of Stop flag

The ST AT design contains the ST AT register REG, a control operator eTRL and a merge
operator MERGE. The function of the control unit is the same as described at the FeTL unit.

The MERGE operator merges 8 status bits into one status byte.

'MERGE' is an operator.

This operator has 1 function.
The default function is 'merge'.

Text for function 'merge' of 'MERGE':
----------------------v----------------------
out:=stpflg, rbdis, lbdis, pccstp,

pcciby, usrstp, usrirq, usrpoc.
----------------------A----------------------

MicroDsp IDaSS design 57

Figure 38 STAT

ST AT simulation

Simulating the STAT unit is simple. Select the unit at address lBh and make R_W and EN
HIGH. Then the STAT data should appear on the DATA bus.

MicroDsp IDaSS design 58

3.3.8 Mail port (MAIL)

The MAIL port enables signalling of data from the MicroDsp system via LI09 to the monitor
while running a program. The 12C interface may continuously look at this port. The monitor
program on the host computer then has the possibility to display debug information, for
instanee the state of a software state machine.

MAIL specification

The MAIL port is connected to the 100 and 101 bus. lt is possible to receive information
from the PCC but the PCC may also use information stored in the MAIL port by the 12C unit.

MAIL design

Figure 39 MAIL

MicroDsp IDaSS design

'LI09' is an operator.

This operator has 1 function.
The default function is 'Read Write'.

Text for function 'Read Write' of 'LI09':
----------------------v----------------------
"Select LI09 or

Load ioo data into REG or
Load data data into REG or
Ena.ble IOIBUF"

_match:=(ioo=9h).

s r:=(sle /\ (match not)), (sle /_match).
ld:=(wle /\ sel) \/ wr.
rd:=rle /\ sel.
regdat:=(wle /\ sel)

ifO: data
ifl: ioo.

----------------------~----------------------

MAIL simulation

59

For the MAIL sirnulation we do two checks. First we try to write the MAIL register with the
I2C unit and read it via the LI09 port. Then we try to write the MAIL register via the U09
IQ port and to read the contents via the fC.

Writing the MAIL register is done by rnaking actdressing the IICC MAIL unit at address 1 Ch,
putting data on the DATA bus, rnak:ing the R_ W signal LOW and the EN signal HIGH. Now
the data is stored into the MAIL register. We can read it via LI09 by selecting LI09 with the
PCC instruction SLE and putting address 09h at the IOO bus. Then we enable reading with
RLE and the data appears on the IOI bus.

Now we try to write the MAIL register via the LI09 port. We select the port at address 09h
with SLE. Then we write the value on the IOO bus into the MAIL register with WLE. We
can read this register via the I2C port if we address the MAIL port at address 1 Ch, make the
R_W signal HIGH and the enable signal LOW. The data should now appear on the DATA
bus.

This cornpletes the sirnulation of the MAIL port.

MicroDsp IDaSS design 60

3.3.9 Program type control (PRGTYPE)

The PROTYPE operator detennines the type of program execution. We have three types of
program execution:

• user program (USRPRO)
• monitor program (MONPRO)
• external program (PROEXT)

We have user program execution if the PCC address is in the range of OOOOh .. OFFFh.
Monitor program execution is done from lOOOh .. 103Fh. PROEXT is valid if external
program memory is enabled.

'PRGTYPE' is an operator.

This operator has 1 function.
The default function is 'prgtype' .

Text for function 'prgtype' of 'PRGTYPE':
----------------------v----------------------
adr6:=pccadr at:6.

-adr7:=pccadr at:7.
-adrB:=pccadr at:8.
-adr9:=pccadr at:9.
-adrlO:=pccadr at:lO.
-adrll:=pccadr at:ll.
=adr12:=pccadr at:12.

_adr6_11:=(_adrll \/ _adrlO \/ _adr9 \/ _adrB \/ _adr7 \/ _adr6).

prgext:=ixprgm \/ (adr12 /\ (adr6 11 not)).
usrprg:=(ixprgm not) /\ (adr12 not).
monprg:=(ixprgm not) /\ adr12 /\ (adr6 11 not).
----------------------A-=----------=----=----

PRCTVPE

Monpr
rgext usrpr

Figure 40
PROTYPE operator

MicroDsp IDaSS design 61

3.3.10 Monitor control (MONCTRL)

The PCC IBY level is sampledintoa flipflop while SYSRUN is HIGH and this sampled level
is output to user IBY while in monitor mode ADR12 is HIGH.

MONCTRL design

USK'PUlse usKOpulse

Figure 41 MONCTRL

The PULSE signal is used for stopping the PCC program execution by setting the STPFLG
on execution of a PULSE #n instruction while in the monitor program segment. This
PCCPULSE signal may not be passed to the user. Therefore operator PULSE only enables
the PCCPULSE signal while not in monitor program mode.

This operator has 1 function.
The default function is 'pulsectrl'.

Text for function 'pulsectrl' of 'PULSECTRL':
----------------------v----------------------
usrpulse:=pccpulse /\ (monprg net).
----------------------A----------------------

MicroDsp IDaSS design 62

3.3.11 Stop control (STOPCTRL)

The STOPCTRL unit controls the STPFLG. There are several conditions necessary for the
STPFLG to be set.

STOPCTRL specification

RESET initializes STPFLG = !XPRGM, soa XPRGM = '0' -select intemal program- sets
the STPFLG to block PCC operations, waiting for monitor program controL In normal
operation the stpflag is set on

USRPRG * SSTFLG * !WAlT

and is cleared when STARTX is HIGH.

STOPCTRL design

Figure 42 STOPCTRL

STP__FLG

• ta~tx

s~p~!J

MicroDsp

'STP_FLG' is an operator.

This operator has 1 function.
The default function is 'stop'.

Text for function 'stop' of 'STP_FLG':

IDaSS design

----------------------v----------------------
stpctrl:=startx, (usrprg /\ sstflg /\ (pccwait not)).
----------------------A----------------------

The OUTCTRL operator is there to make the STPFLG output valid
immediately after the conditions change.

'OUTCTRL' is an operator.

This operator has 1 function.
The default function is 'outctrl'.

Text for function 'outctrl' of 'OUTCTRL':
----------------------v----------------------
stpflg:=(stpreg /\ ((stpctrl at:l) not)) \/

((stpctrl at:O) /\ ((stpctrl at:l) not)).
----------------------A----------------------

'STPREG' is a register.

STP_FLG
• ta~>tx

63

Figure 43 STP _FLG
operator

Figure 44
OUTCTRL
operator

This register is 1 bit wide and is controlled by an unnamed control input.
The default function is 'hold'.

§sTPREG ~
This register is loaded with value 0 following system reset. Figure 45

STPREG
register

The value loaded for the 'reset' cernmand is 0.

Control specification:
----------------------v----------------------
%01 setto:l.
%lx reset.
----------------------A----------------------

The PCCSTP signal is only HIGH if the STPFLG is HIGH or if the intemal stop signal
INTSTP is HIGH while not in monitor mode.

'PCC_STP' is an operator.

PCC_STP
peest This operator has 1 function.

The default function is 'pcc_stp'.

Text for function 'pcc_stp' of 'PCC_STP':
----------------------v----------------------
pccstp:=(intstp /\ (monprg not)) \/ stpflg.
----------------------A---------------------- Figure 46 PCC_STP operator

MicroDsp IDaSS design 64

nee simulation

The nee unit bas been simulated by checking the specifications for the several units
separately. These simulations are described in the corresponding sections. For this simulation
the environment as in Figure 47 bas been used.

s:rstp
s:ri:rq

L------J~======~~~=-~t~~~c

Figure 47 nee simulation

p:rgM

cld:r
at a
n
_".

IICC f"j199
plf'geKt

MicroDsp IDaSS design 65

3.4 Capture Timer Unit (CTU)

A timer unit is a time-base counter that is counting up to a predefined value, and then gives
an interrupt. A capture unit is a register that can read the time in the time-base counter on the
moment that a capture command is given. A capture-timer unit (CTU) is a combination of
a capture unit and a timer unit.

The capture timer unit will be used for several applications. Actions in a "real time system"
in general are triggered by events, signals from the controlled system. For instanee to control
a "brushless motor" these trigger events are the detected zero voltage crossings of the motor
coils. From the time difference (=difference in capture time) between zero crossings the motor
speed is calculated and from previous speed calculations, the acceleration. V alues of wanted
speed, actual speed and acceleration are used to determine the required start time delay for
powering up the next coil driver.
In the PCC program this means that after a capture interrupt a delay time for the next coil
start is to be calculated and this delay value is added, by the PCC, to the captured time value
to be re-written into the capture timer. At the timer interrupt the PCC then can write a start
command to the coil driver.

CTU Speciflcation

The timer section runs on the PCC system doek. A prescaler brings the input frequency down
to obtain the required time resolution of a time-base counter. Two 16-bit timer registers are
used to capture the time in the time-base counter or toprogram a value into it on which the
timer has to react if the timer-base counter equals this value.

The timer registers are located on the Left Bank of the MicroDsp memory environment:

LIO address
OxOA
OxOB
OxOC
OxOD
OxOE

name
CPTM1H
CPTM1L
CPTM2H
CPTM2L
PRES CL

description
Capture Timer 1 High byte
Capture Timer 1 Low byte
Capture Timer 2 High byte
Capture Timer 2 Low byte
Prescaler

MicroDsp IDaSS design

TIMOVF
divider +5 bit 16 bit Time Base

selector Pre-scaler
: 2**M : N

V

CAPT2

CAPTl ~ V
======~II====================~=I=========~L-==JJ Internal IOO bus

Internal IOI bus

Figure 48 Functional block diagram of the CTU

CTU design

66

As can be seen in the functional blockin Figure 48, the CTU contains the following elements:

• Prescaler
• Time-base counter
• 2 Timer-capture units
• 2 Comparators
• 2 TIME registers

These elements can also be found in the IDaSS design of the CTU. Furthermore, the block
DIS is added to disable CTU access in case the Left Bank is disabled. In the schematic in
Figure 49 the IDaSS design of the CTU is given.

Figure 49 CTU

The DISblockis an operator with RLE, WLE and LBDIS as input. The outputs IRLE and
IWLE are the CTU intemal RLE and WLE lines. This means that they are ZERO if LBDIS

MicroDsp IDaSS design 67

is HIGH and that they are RLE and WLE if LBDIS is LOW.

The prescaler has an output CTRL, that controls the time-base counter operation. The time­
base counter output TBC is connected to the camparator COMP. This TBC value is
continuously compared with the output values TIME of the timer-register blocks. lf a match
occurs, the corresponding registerT will be set and the CTU TIME output will become active.
lf a time-base counter value has to be captured the time will be read via the TBC input of one
of the timer-register blocks and the value can be read via the 101 bus.

3.4.1 Time-base counter (TIME_ BASE_ COUNTER)

The time-base counter is the centre of the CTU design. It is a 16-bit register that normally
increments when the prescaler gives a pulse to it. The rest of the time the time-base counter
has to hold the register value. The time-base counter must have the possibility to reset in case
of special conditions like power on clear (POC) and prescaler programming. So the time-base
counter should have 3 modes: hold, inc, reset. The counter is reset on toading the prescaler
and provides its inverted MSB as output TIMOVF to enable time-base extension.
Below, the IDaSS description of the time-base counter register is given:

'TIME_BASE_COUNTER' is a register.

This register is 16 bits wide and is controlled by an unnamed control
input.
The default function is 'hold'.
This register is loaded with unknown values aftera system reset.

The value loaded for the 'reset' command is 0.

Control specification:
----------------------v----------------------
%01 inc.
%1x reset.
----------------------A----------------------

3.4.2 Prescaler (PRESCALER)

I
TIME_BASE_COUNTER

SJ

Figure 50 Time-base
counter

The prescaler will be designed as a subblock that controts the time-base counter. It has to give
a pulse to the time-base counter if the prescaler has counted a programmed number of clocks.
The prescaler must have the possibility to be programmed via the 100-bus. The programmed
value also has to be read via the 101-bus. Therefore the controllines SLE, RLE and WLE
have to be connected to this subblock. At power on clear (POC) the prescaler is initialized
in a hold state. It will start giving pulses to the time-base counter after the prescaler has been
programmed with a valid value.

PRESCALER specification

The 3+5 bit (value=M+N) programmabie prescaler can be written from the PCC 100 bus.
The first prescaler section includes a 7 bit binary counter out of which a signa! is selected
under control of the upper 3 bit value M, so that every 2M a clock enable is given to the
second prescaler section. This second prescaler section is a programmabie 5-bit divide by N
counter. The total prescaler division therefore will be : divide by 2M * N. Loading the
prescaler with a new value resets the time-base counter.

MicroDsp IDaSS design 68

PRESCALER design

The pre_scaler is a subblock of the cru design. It contains the following elements.

• SELECT operator
• PS_SEL register
• IO_CTRL operator
• RUNCTRL operator
• RUN register
• PRESCL register
• PCCTRL operator
• P _COUNT register
• LCCTRL operator
• L_COUNT register
• TBCCTRL operator
• BUFPSC buffer

The schematic of the prescaler design is given in Figure 51.

Figure 51 Pre-scaler

The SELECT operator is used to set the PS_SEL register if the prescaler is selected through
a PCC SLE instruction with the address of the prescaler. The IO_CTRL operator delermines
if a read of the pre-scale value or a write of a new pre-scale value has to be performed. The
PRESCL register holds this pre-scale value. A RUNCTRL operator and a RUN register are

MicroDsp IDaSS design 69

used to detennine if the prescaler is giving pulses to the time-base counter or not.

As specified, the prescaler is divided in two parts. The first prescaler section includes a 7 bit
binary counter P _ COUNT out of which a signa! is selected under control of the upper 3 bit
value M, so that every 2M a doek enable is given to the second prescaler section. This second
prescaler sectionis a programmabie 5-bit divide by N counter L_COUNT. The first section
is controlled by the PCCTRL operator and the second section is controlled by the LCTRL
operator. The total prescaler division therefore will be : divide by 2M * N. In case the value
N is set to zero the 5 bit prescaler divides by 32. The output of the prescaler to the time-base
counter is controlled by the TBCCTRL operator.

A SELECT operator is used to detennine if the prescaler block has been selected for reading
or writing. If an SLE action with the right address has been performed, the PS_SEL register
will be set. The PS_SEL register indicates the selection of the prescaler. If the PS_SEL
register is HIGH, then all RLE and WLE actions will influence the running of the prescaler.

'PRE_SCALER\SELECT' is an operator.

This operator has 1 function.
The default function is 'select'.

Text for function 'select' of 'PRE_SCALER\SELECT':
----------------------v----------------------
_prescladr:=OEh. "Pre-scaler address"
c:=((npoc not) \1 (npoc /\ sle /\ (ioo N= _prescladr))), (npoc /\ sle /\
(ioo=_prescladr)).

Figure 52
SELECT
operator ----------------------A----------------------

'PRE_SCALER\PS_SEL' is a register.

This register is 1 bit wide and is controlled by an unnamed control input.
The default function is 'hold'.

~S_SE~
This register is loaded with unknown values aftera system reset.

The value loaded for the 'reset' command is 0.

Control specification:
----------------------v----------------------
%01 setto: 1.
%lx reset.
----------------------A----------------------

Figure 53PS_
SEL
register

The IO_CTRL operator is used to provide internal READ and WRITE signals. These signals
are active if the prescaler is in the selected state. In the PRESCL register, the value of the
prescaler is kept. This value can be read via the lOl bus via a BUFPSC buffer.

'PRE_SCALER\lO_CTRL' is an operator.

This operator has 1 function.
The default function is 'reg_ctrl'.

Text for function 'reg_ctrl' of 'PRE_SCALER\lO_CTRL':
----------------------v----------------------
write (npoc /\ wle /\ ps sel) .
read: (npoc /\ rle /\ ps-sel).
----------------------A--=-------------------

• Ie
• Ie

IO_CTRL
• S:_$el
• poe

Figure 54
IO_CTRL
operator

MicroDsp IDaSS design

'PRE_SCALER\PRESCL' is a register.

This register is 8 bits wide and is controlled by an unnamed control input.
The default function is 'hold'.
This register is loaded with unknown values aftera system reset.

The value loaded for the 'reset' cernmand is 0.

Control specification:
----------------------v----------------------
%1 load.
----------------------A----------------------
'PRE_SCALER\BUFPSC' is a TS buffer.

This TS buffer is 8 bits wide and is controlled by an unnamed control input.

Control specification:
----------------------v----------------------
%1 enable.
----------------------A----------------------
The default state is disabled.

The CTU can be in two states: running or stopped. In the case that the timer

70

6PRESCLj
Figure 55
PRES CL
register

~BUFPSC,

Figure 56
BUFPSC
buffer

is running, the prescaler gives pulses to the time-base counter. This is only done after the
prescaler has been programmed with a eertaio value. Programming always requires a write
to the PRESCL register. Then the timer is in the running state and this is indicated with a
HIGH value in the RUN register. If the prescaler receives a POC, then the timer will be
stopped. In this case the RUN register will contain a LOW value. The RUNCTRL operator
is there to control the RUN register. In IDaSS this looks like:

'PRE_SCALER\RUNCTRL' is an operator.

This operator has 1 function.
The default function is 'runctrl'.

Text for function 'runctrl' of 'PRE_SCALER\RUNCTRL':
----------------------v----------------------
run:=(npoc not),write.
----------------------A----------------------

'PRE_SCALER\RUN' is a register.

This register is 1 bit wide and is controlled by an unnamed control input.
The default function is 'hold'.
This register is loaded with unknown values aftera system reset.

The value loaded for the 'reset' cernmand is 0.

Control specification:
----------------------v----------------------
%01 set to: l.
%lx reset.
----------------------A----------------------

:run

Figure 57
RUNCTRL
operator

Figure 58
RUN
register

The prescaler has been divided into two sections: a power counting partand a linear counting
part. The power counter is the P _COUNT register and the linear counter is the L_COUNT
register. The L_ COUNT register decrements by default. If this register reaches the zero value,
the P _COUNT register is decremented by one. Next, the L_COUNT register is reloaded, and
starts decrementing again. If both registers become zero, a pulse is given to the time-base
counter. The linear counter will be described later, the power counter next.

MicroDsp IDaSS design 71

The PCCTRL operator is used to set the P _COUNT registertoa predefined value. This value
is 2M, where M are the upper three bits of the pre-scale value in the PRESCL register. As
soon as the power value has been set into the P _COUNT register this register will decrement
once and then the PCCTRL operator will wait on the linear counter to expire. lf this has
happened the P _COUNT register will decrement once again. This continues until the
P _COUNT register becomes zero. Then, the P _COUNT register will be loaded again and a
pulse for iocrementing is send to the time-base counter.

'PRE_SCALER\PCCTRL' is an operator.

This operator has 1 function.
The default function is 'pcctrl'.

Text for function 'pcctrl' of 'PRE_SCALER\PCCTRL':
----------------------v----------------------
pcset:=write

ifO: ((1 width: 7) shl: (prescl from:S to:7))
ifl: ((1 width: 7) shl:(ioo from:S to:7)).

ldpc:=npoc
ifO: npoc,npoc
ifl: (running

ifO: write, write
ifl: (lzero \/ write), ((pzero /\ lzero) \/ write)).

----------------------A----------------------
'PRE_SCALER\P_COUNT' is a register.

Figure 59
PCCTRL
operator

This register is 7 bits wide and is controlled by an unnamed control input.
The default function is 'hold'.

~-COUN~
Figure 60
P_COUNT
register

This register is loaded with unknown values after a system reset.

The value loaded for the 'reset' oommand is 0.

Control specification:
----------------------v----------------------
%01 loaddec.
%10 dec.
%11 loaddec.
----------------------A----------------------

The L_COUNT register is the linear counting section of the prescaler. This register
continuously counts down from N to zero. N is a value that is formed of the lower 5 bits of
the pre-scale value in the PRESCL register. lf zero is reached, N is reprogrammed into the
counting register by the LCCTRL operator.

'PRE_SCALER\LCCTRL' is an operator.

This operator has 1 function.
The default function is 'lcctrl'.

Text for function 'lcctrl' of 'PRE_SCALER\LCCTRL':
----------------------v----------------------
lcset:=write

ifO: (prescl from:O to:4)
ifl: (ioo from:O to:4).

ldlc:=npoc
ifO: npoc
ifl: (running

ifO: write
ifl: (lzero \/ write)).

pzero:=p count=O.
--------=-------------A----------------------

ldlc
LCCTRL

• rescl lzero •
• rite pzero
• unning

Figure 61
LCCTRL
operator

MicroDsp IDaSS design 72

'PRE_SCALER\L_COUNT' is a register.

This register is 5 bits wide and is controlled by an unnamed control input.
The default function is 'decrement'.

~-COUN'P1
Figure 62L_C
OUNT
register

The value loaded for the 'reset' cornrnand is 0.
Control specification:
----------------------v----------------------
%1 loaddec.
----------------------A----------------------

The TBCCTRL operator controls the output pulses of the prescaler. Only in
case that both counters P _COUNT and L_COUNT have reached zero and the prescaler is in
running state, a pulse for iocrementing is given to the time-base counter.

'PRE_SCALER\TBCCTRL' is an operator.

The default function is 'tbcctrl'.
Text for function 'tbcctrl' of 'PRE_SCALER\TBCCTRL':
----------------------v----------------------
match:=(l count=O).

Tzero:= match.
tbc:=npoc

ifO: npoc, npoc
ifl: (running

ifO: write,running
ifl: write, (match /\ pzero)) .

--------------=-------A----------------------

PRESCALER simulation

Simulating the prescaler requires the use of
five registers for input: POC, 100, SLE,
RLE and WLE. The outputs are checked by
looking at the viewers on the 101 bus and
the CTRL output. The CTRL output MSB
stands for resetting the time-base counter,
the LSB for incrementing. Power On Clear
operation is checked by setting the POC

•l_count lzell:'o
• poe

TBCCTRL
• unning tbc
• ll:'i te
• zell:'o

Figure 63
TBCCTRL
operator

register to 1 and setting the SLE, RLE and Figure 64 Pre-scaler in POC state
WLE registers to 0 while the 100 bus
caiTies an unknown value (UNK). This results in the situation that the 101 bus is Three-State
(TS) and the CTRL output is zero. Giving doek ticks does notchange the output because
POC stays active. Now we deactivate POC by setting the POC register to 0. Next we select
the prescaler by setting 100 to OEh and SLE to 1. After a doek tick the prescaler is selected.
We now write a value 1 into the prescaler by setting SLE to 0, setting WLE to 1 and setting
100 to 1. This results in a CTRL output 11b, which means that the time-base counter is reset
aftera doek tick and that the time-base counter has to increment. We make the WLE register
0 again. We see 01b at the CTRL output which means that the time-base counter still has to
iocrement After a doek tick the CTRL output again gives 01b. This is correct because a
value of 1 in the prescaler means that the PCC doek is divided by 1, which is the same as
giving a iocrement pulse every doek. We now program a value 010 00001b into the prescaler.
This means that every 22*1=4 doek pulses an iocrement pulse has to be given. This
simulation is correct. We can now try to read the contents of the prescaler by making RLE
1. This gives 010 00001b at the 101 bus. The last check is giving a POC. Now the CTRL
output stays OOb (also when POC is 0 again) which means that the time-base counter will not
be reset and will not be incremented until a new value has been programmed into the
prescaler.

MicroDsp IDaSS design 73

3.4.3 Timer-register unit (TIMER_ REG)

In the CTU design, two timer-register units are necessary to capture the time of the time-base
counter if the CAPT input rises or to give a time output if the time-base value equals the
value of the timer-capture unit.

TIMER_ REG specitication

The timer registers to PCC 10 bus interface is cyclic: after access of the HIGH byte the LOW
byte is addressed; after access of the LOW byte the HIGH byte is addressed again, etc. While
the LOW byte is selected the TIME pulses are frozen until LOW byte write is done to avoid
unwanted TIME (interrupt) pulses. Timer interrupt logic has to be build with external
hardware.

TIMER_ REG design

The timer-register units TIMER_REG_l and TIMER_REG_2 are subblocks of the CTU
schematic. They are connected to the 100 and 101 bus, to provide the possibility to program
and read the timer_register unit. Therefore also the lines SLE, RLE and WLE are connected
to this block. At power on clear (POC) the timer-register unit has to be initialized, therefore
a POC input is provided. The timer-register unit must also indicate when the TIME register
has to be reset. In the figure below the timer register unit is shown.

Figure 65 Timer-register unit

MicroDsp IDaSS design 74

In the figure can be seen that the timer-register unit contains several elements. These are:

• SELECT operator
• 2 CPTM_SEL registers
• IO_CTRL operator
• 2 CPTM registers
• 2 BUFT buffers
• MERGE operator
• EDGE operator

The select operator is used to determine if a timer-register unit is addressed. If one of the
timer-register units is selected through a SLE with the address of the timer-register unit, then
the CPTMH_SEL or CPTML_SEL register will be set. The CPTMH_SEL is set if the HIGH
byte of the capture-timer register is accessed, CPTML_SEL is set if the corresponding LOW
byte is accessed.

'TIMER_REG_l\SELECT' is an operator.

This operator has 1 function.
The default function is 'select'.

Text for function 'select' of 'TIMER_REG_l\SELECT':
----------------------v----------------------

cptmhadr:=OAh. "Timer register 1 High byte"
-cptmladr:=OBh. "Timer-register 1 Low byte"
ch:=(poc \1 (sle /\ (ioo N= cptmhadr)) \/ wrh \1 rdh), (((poe not) /\ sle /\
(ioo= cptmhadr)) \/ wrl \/ rdl).
cl:=(poc \1 (sle /\ (ioo N= cptmladr)) \/ wrl \1 rdl), (((poe not) /\ sle /\
(ioo= cptmladr)) \/ wrh \/ rdh).
-~---=-------------~--A----------------------

'TIMER_REG_l\CPTMH_SEL' is a register.

This register is 1 bit wide and is controlled by an unnamed control input.
The default function is 'hold' .
This register is loaded with unknown values after a system reset.

The value loaded for the 'reset' cammand is 0.

Control specification:
----------------------v----------------------
%01 setto: 1.
%lx reset.
----------------------A----------------------

Figure 66
Select
operator

Figure 67
Select register

The centre of the timer-register unit is a 16 bit capture-timer register CPTM. Reading and
writing is done byte-wise so the 16-bit capture-timer register is partitioned into two 8-bit
registers CPTMH and CPTML. These registers are controlled by the IO_CTRL operator. If
the capture-timer registers are read, the IOI-bus buffers BUFTH and BUFTL are enabled. If
the capture-timer registers are written, we have two possibilities. Either the registers are filled
with new data from the IOO bus (a timer action) or the registers are filled with the actual
time of the time-base counter (a capture action). In the first case writing is done byte after
byte, in the second case the two bytes are written simultaneously. The IO_CTRL operatoralso
has an RT output which indicates that the time TIME output registers of the CTU should be
reset if the LOW byte of the capture-timer register has been written.

MicroDsp

'TIMER_REG_l\IO_CTRL' is an operator.

This operator has 1 function.
The default function is 'io ctrl'.

Text for function 'io ctrl' of
'TIMER_REG_l\IO_CTRL7 :

IDaSS design

----------------------v----------------------
npoc:=poc not.

75

wrh:= npoc /\ ((wle /\ cptmh sel)
wrl:=-npoc /\ ((wle /\ cptml-sel)
rdh:=-npoc /\ rle /\ cptmh sel.
rdl:=-npoc /\ rle /\ cptml=sel.

\1 capt) .
\1 capt) . Figure 68 IO_CTRL operator

dth:=capt
ifO: ioo
ifl: (tbc from: 8 to: 15).

dtl:=capt
ifO: ioo
ifl: (tbc from: 0 to: 7).

rt:=(cptml sel /\ wle), (cptml sel /\ (wle not)).
----------=-----------~------=---------------

'TIMER_REG_l\CPTMH' is a register.

This register is 8 bits wide and is controlled by an unnamed control input.
The default function is 'hold'.
This register is loaded with unknown values after a system reset.

The value loaded for the 'reset' cernmand is 0.

Control specification:
----------------------v----------------------
%1 load.
----------------------A----------------------

'TIMER_REG_l\BUFTH' is a TS buffer.

This TS buffer is 8 bits wide and is controlled by an unnamed control input.

Control specification:
----------------------v----------------------
%1 enable.
----------------------A----------------------

The default state is disabled.

CcPTMH,
Figure 69
Capture-timer
register

=BUFTH,
Figure 70
IOI Buffer

The MERGE operator is a simple block that concatenates the two 8-bit inputs so that a 16-bit
output is formed.

'TIMER_REG_l\MERGE' is an operator.

This operator has 1 function.
The default function is 'merge'.

Text for function 'merge' of 'TIMER_REG_l\MERGE':
----------------------v----------------------
cptm:=cptmh,cptml.
----------------------A----------------------

The EDGE operator is a block that detects the up-going edge of the CAPT
input. This is done by comparing the actual CAPT value with the previous
CAPT value.

'TIMER REG 1\EDGE' is an operator.
This operator has 1 function.
The default function is 'edge'.

Text for function 'edge' of 'TIMER_REG_l\EDGE':
----------------------v----------------------
e:=capt /\ (captd not).
----------------------A----------------------

cpt

MER GE
• ptMh
• ptMI

Figure 71
M e r g e
operator

Figure 72
EDGE
operator

MicroDsp IDaSS design

TIMER REG simulation

When we simulate the timer-register unit we
use the environment given in the figure. The
timer-register unit has 7 inputs. The POC,
IOO, SLE, RLE and WLE input do not need
any explanation, the TBC input caiTies the
time-base counter time and the CAPT input
is used by the user to give a capture pulse.

We start with the POC state, that is POC is
HIGH and SLE, RLE and WLE are LOW.
Now the IOI bus driver of the timer register Figure 73 Timer-register unit in POC state
unit is in tree-state, and the TIME output

76

and RT output are unknown. After one doek tick the RT output becomes OOb. This is part
of initializing the timer-register unit. Now we can make POC LOW.

Suppose we want to capture the time of the time-base counter. For simulating this we put a
random value in the TBC register for example 1234h and we make the CAPT register HIGH.
After a doek tick the timer-register unit has copied the value 1234h into it's register. The
value occurs at the TIME output of the timer-register unit. We now make the CAPT register
LOW again. lf we want to read this value with the PCC we have to select the HIGH byte of
the timer register unit, in this case at address OxOA. We do this by filling the IOO bus register
with OxOA and making SLE HIGH. After one doek tick this register is selected. Now we
make SLE LOW again and RLE HIGH. Aftera doek tick a value 12h appears at the IOI bus.
This is the HIGH byte of the captured value in the timer-register unit. After another doek tick
the LOW byte will appear on the IOI bus. We now make RLE LOW again and the IOI bus
becomes tree-state. The RT output has become Olb, but this result is not used.

lf we want to program a value into the timer-register unit, we first have to select the unit if
this was not done before. Therefore we make SLE HIGH and we put OAh on the IOO bus.
Aftera doek tick, the unit is selected. We make SLE LOW again. Now we can write a value
via the IOO bus into the unit. We load a value in the IOO register, for example 43h and we
make WLE HIGH. After a doek tick, this value is programmed into the HIGH byte of the
timer-register unit. The R T output becomes lOb, which means that the TIME registers of the
CTU have tobereset after writing of the LOW byte. We now load the IOO register with 21h
which means that aftera doek tick (with WLE still HIGH) the value 21h is prograrnrned into
the LOW byte of the timer-register unit. The value 4321h appears on the TIME output of the
timer-register unit. The RT output becomes OOh.

This completes the simulation of the timer-register unit. A simulation of the complete CTU
can be found in the paragraph CTU simulation.

MicroDsp IDaSS design 77

3.4.4 Dual comparator (COMP)

A dual comparator COMP is necessary to compare the time-base-counter value TBC with the
TIME values of the timer-register units. lf they match, the control output C sets the time
registerT. The reset-timer inputs RT are used to reset the time registers. The input T is used
to look at the T registers output. The comparator provides also an OVF output which indicates
the overflow of the time-base counter. OVF is the inverted 15th output-bit of the time-base
counter. This block also has a POC input to initialize the T registers with a HIGH value at
power up.

'COMP' is an operator.

This operator has 1 funetion.
The default funetion is 'eompare'.

Text for funetion 'eompare' of 'COMP':
----------------------v----------------------
el:=poe

ifO: (tl
ifO: tl, ((tbe=timel) /\ ((rtl at:O) net))
ifl: (rtl at:l), (tl net))

ifl: (poe net) , poe.
e2:=poe

ifO: (t2
ifO: t2, ((tbe=time2) /\ ((rt2 at:O) net))
ifl: (rt2 at:l), (t2 net))

ifl: (poe net) ,poe.
ovf:=(tbe at:lS) net.
----------------------A----------------------

Figure 74
Dual
comparator

MicroDsp IDaSS design 78

3.4.5 Time output registers (T)

The TIME output of the CTU is made HIGH if the comparator finds a match of the time-base
counter value and the timer-capture register. The TIME output has to stay HIGH until a timer­
capture LOW-byte write is done. So the TIME output has to be held HIGHfora period. This
can be done with a register; the TIME registerT. TIME1,2 signals are set high on POC and
on TIME1,2==TimeBaseCounter. TIME outputs go low on a write into the lower timer byte
starting the time delay. Thus to schedule a rising edge on TIME1,2 a certain time interval dT
after a capture this time interval dT is to be added to the CAPTl ,2 value and restored in the
Capture{fimer register.

TIME1,2 XXXX \. _____ /
RLE & TIME1,2~--~--/ \~~--------~=---~~~----~--

POC A Lower byte write ATIME==TimeBaseCounter

Figure 75 CTU output timing

'Tl' is a register.

This register is 1 bit wide and is controlled by an unnamed control input.
The default function is 'held'.
This register is loaded with unknown values after a system reset.

The value loaded for the 'reset' cernmand is 0.

This register has the following connectors:

Control connector without a name:
Has a width of 2 bits and is connected to bus 'cl'.

Control specification:
----------------------v----------------------
%01 setto: 1.
%1x reset.
----------------------A----------------------
Continuous output connector without a name:
Has a width of 1 bit and is connected to bus 'timel'.

Figure 76
Time register

MicroDsp IDaSS design

CTU simulation

To simulate the Capture Timer Unit we
have to verify the functions, the CTU
should have according to the specification.

These are:

• programming internal registers
• reading internal registers
• waiting for TIME output
• capturing the time

Figure 77 CTU in POC state

79

We start in the POC state. After two clock ticks the CTU is initialized. Now POC can be
deactivated. We start programming the prescaler withOOI 00001b which is a value of 2*1==2.
Then we program timer-register 1 with lOh and timer-register 2 with 20h. The TIME outputs
are now LOW. After a total of 1 Oh *2==20h clock ticks the TIME 1 output will rise and after
40h clock ticks the TIME2 output will rise. We now program the prescaler with value 010
00001b which is 22*1==4*1==4. It will now take 4 PCC clock ticks to make the time-base
counter increment. We also program timer-register 2 with value 4 which means that the
TIME2 output will go LOW and afteratotal of 4*4==16 ticks will rise again. Now we make
the CAPTl input HIGH and the time-base counter time is captured in timer register 1. A final
check is reading the contents of all the registers of the CTU. The prescal er should still be
04h, and both timer-registers should be 0004h. All tests have been done this way, and all
results are satisfying.

MicroDsp IDaSS design 80

3.5 1/0 ports (LIO)

The MicroDsp has ten 10 ports that are located on the Left Bank of the MicroDsp memory
map. All the 10 ports are quasi bi-directional. Used as output this type of port has an active
low drive and a resistive (passive) pull up at high state, which is assisted with an active pull
up on transition to high only during a short period (time t.b.s.). When used as an input pin
a resistive high level output drive is to be programmed, that can be pulled low by external
hardware. At power up all ports are initialised to '1' to allow input mode in order to avoid
possible signal direction conflicts. Also if ports programmed to be PCC input using XBUSE
and/or XPRGM these flags are forced to select input mode.

LIO specification

If the internat PCC split data bus and its controts are to be routed to external hardware the
internat 10 bus control IXBUSE must be made '1 '. The FC1L monitor force controls can
override the external signal XBUSE. lf the internat 10 bus is routed to the pins port LI06 is
used for data to PCC (101), port LI07 for data from PCC (100) and port LI08 for control
lines. lf external hardware selected an existing Left Bank address access will be disabled. This
is done by disabling propagation of chip internat RLE and WLE signals.

LIOO (address = OxOO) is a Left Bank input/output port. On POC and on lAK this port is
automatically selected, therefore in general this port should be used to read the, optionally
coded, interrupt lines.

LIOl, LI02 and LI03 (addresses = OxOl, Ox02 & Ox03) are general purpose Left Bank
input/output ports.

LI04 and LI05 (addresses = Ox04 & Ox05) are general purpose Left Bank input/output ports,
which are changed to program instruction inputs if XPRGM is at HIGH state.

LI06 (address = Ox06) is a general purpose Left Bank input/output port or if XBUSE is at
HIGH it is PCC 10 bus input (IOI).

LI07 (address = Ox07) is a general purpose Left Bank input/output port or if XBUSE is at
HIGH it is PCC 10 bus output (IOO).

LI08 (address = Ox08) is a general purpose Left Bank input/output portorif IXBUSE is at
HIGH it carries PCC IO bus controls:
MSB=7=SRE, 6=SLE, 5=RRE, 4=RLE, 3=WRE, 2=WLE, l=LBDIS, LSB=O=RBDIS

LI09 (address = Ox09) MAIL is a IICC debug mailbox port to the controlling monitor. This
port allows monitoring data via the PC simulator/emulator "mailed" by the user program
without interrupting program execution.

MicroDsp IDaSS design 81

LIO design

In IDaSS it was not possible to design quasi-bidirectional ports because a resistive pull up can
not be implemented. Therefore the inputs and outputs are separate in the IDaSS design. LIO
has been divided into three parts.

Figure 78 LIO

LI00_3 is a block that only has general 10 ports. A port is selected with SLE and can be read
with RLE and written with WLE. The IRDMUX operator is a multiplexer for the 101 bus
signals iO until i3. LBA captures the contents of the 100 bus at the moment the SLE signal
is active and thus keeps the LIO address. The IRDMUX operator uses this address for the
multiplex operation on the LIO inputs and the CONTROL operator uses it for the selection
of an output register in case of a write.

MicroDsp IDaSS design 82

1--=====----=====....jEJ
~--------------------~

Figure 79 LI00_3

LI04_5 is almost the same as LI00_3 with the exception of the EXIR output. This output
always carries the i4 and iS and is used as external instruction bus if this mode is selected by
the PRGEXT signal in the instruction multiplexer DMUX.

Figure 80 LI04_5

MicroDsp IDaSS design 83

LI06_8 also is a general 10 port but in this case with the exception that if IXBUSE is active,
LI06 is used for 101, LI07 for 100 and LI08 for the 10 control signals SLE, RLE, WLE,
SRE, RRE and WRE. LI08 also provides the signals LBDIS and RBDIS.

Figure 81 LI06_8

MicroDsp IDaSS design 84

3.6 Data RAM (DRAM)

DRAM speciflcation

The MicroDsp test chip provides a data RAM of 256 bytes on the Right Bank of the intemal
10 bus (101, 100, SRE, RRE, WRE). This RAM includes a RAM address register that keeps
the selected address on the Right Bank. This register includes an autornatic incrernent on
access mode that is controlled frorn the PCC by RB address selection : select RB OXFE =
"ON"; POC or select RB OXFF = "OFF". While in auto-inerement mode the RAM may only
either read or write, so never read-rnodify-write.
lf external hardware selected (BUSEXT = '1 ', see 9 .4.1 0) an existing Right Bank address and
indicates this by pulling RBDIS HIGH then internal Right Bank access will be disabled. This
is done by disabling propagation of chip intemal RRE and WRE signals.

DRAM design

The data RAM has been designed by A. Verschueren. He partitioned the RAM into two
halves: BUSSIMUO and BUSSIMUl. This is done to provide burst access for reading and
writing and to provide access direction switching in one cycle. Burst access requires the auto­
inerement mode to be on.

Figure 82 DRAM

DRAM simulation

The DRAM has been sirnulated by A. Verschueren. According to him, his irnplernentation is
corresponding the specification [MDSP93].

MicroDsp IDaSS design 85

3.7 Program RAM (PRAM)

PRAM specification

For Pee user program an internal static RAM of 4128 worcts by 16 bits is available. On
board program memory avoids chip-to-ehip communication, so that the system can run on
maximum speed. Use of static RAM eliminates refresh cycle interrupt and hardware. Size of
the RAM of 4160 worcts by 16 bits will not increase the chip size as minimum silicon size
is probably determined by number of pins. Note that the top 64 worcts are reserved for use
by the nee monitor Pee routines.

If extended program memory size in number of worcts or in number of bits are required, the
Pee assembler supports up to 8192 worcts by 32 bits : 16 bit Pee instruction code and up
to 16 bit extension, additional memory is to be connected externally to the Pee address bits.
Extended memory content management is not supported by the MicroDsp test chip and
requires additional user hardware. If external program memory is enabled (PRGEXT at
HIGH) the full Pee address range of instructions are entered via the pins of ports I04 and
I05 and the nee cannot control the Pee. In this mode the chip runs in autonomous
operation and starts up at address OxOOOO after POC.

With PRGEXT at LOW internally 4160 * 16 bit on board Pee program memory RAM
(generated by ADMe, Natlab) is available. User program can be loaded into Pee program
memory space OxOOOO .. OxOFFF. For monitor actions 64 memory locations are available on
OxlOOO .. Ox103F. If the Pee accesses external program memory at an address exceeding
Ox103F always external memory will be assumed, independent from the XPRGM input level
and external instruction input is done via input IO ports LI04 and LI05.

PRAM design

In IDaSS a RAM can contain only 2048 words. Therefore the IDaSS design of the PRAM
is not exactly according to the simulation. But for simulation purposes 2048 worcts are
sufficient. The RAM has an read address input RA and a read data output RD. If RD always
gives the data at address RA. This data is delayed one doek in the DBUF register and output
on the INIR output. This register is in fact the instruction register of the Pee. For data
uploading via the nee the RDIR output is used. For data downtoading address WRAD and
data WRIR are used on the moment WREN enables writing in the RAM.

MicroDsp IDaSS design 86

Figure 83 PROGRAM

The program RAM is accessed via two multiplexers: the data bus multiplexer (DMUX) and
the address bus multiplexer (AMUX). The schematics of these multiplexers are given in the
next figures.

ini:r

dat

exi:r • xdata

MUX3

fj1999 • j1999

Figure 85 AMUX
p:rgext • :rgext

Figure 84 DMUX

PRAM simulation

The PRAM has been simulated briefly because it is only used for IDaSS simulation purposes.
It is possible to read instructions for the PCC. Also the downloading and uploading facility
has been tested.

MicroDsp VHDL design 87

4VHDL

The VHSIC Hardware Description Language (VHDL) is a hardware description language
developed, startingin 1981, by the Very High Speed Integrated Circuits (VHSIC) Program
Office of the Department of Defense for use as a standard language in the microelectronics
community. This language represents a new step in the evolution of language support for
hardware design. The recognized need for rnanaging the complexity of information needed
for digital design bas driven the development of VHDL.

VHDL is a comprehensive language that allows a user to deal with design complexity.
Design, and the data representing a design, are complex by the very nature of a modem
digital system constructed from VLSI chips. VHDL is the first language to allow one to
capture all the nuances of that complexity, and to effectively manage the data and the design
process. A major power of VHDL is that it is a standard. Thus, industry can more easily
communieare designs among participants in a design process. This ability to communicate
designs is equally important in the research field, since, with VHDL, collaboration between
researchers at various institutions becomes easier. The scope of VHDL covers the de scription
of architectural description to gate level description. The language is hierarchical and mixed­
level simulation is supported. The concepts embodied in the timing model for the language
mirror real hardware -- the VHDL models of designs behave like real hardware. Because
VHDL is an IEEE standard, the language will have a significant effect on life-cycle support
of product described in VHDL. At high levels of abstraction, the language makes an good
specification medium for future designs to be created in new technologies or with alternative
architectures. At lower levels of abstraction, the language serves well as a specification of
what is to be fabricated.

IDaSS to VHDL

The MicroDsp has been designed in IDaSS. Philips wants the IDaSS design to be translated
into VHDL. VHDL is at this moment the language that Philips uses to describe hardware. The
IDaSS design bas been simulated with the built-in IDaSS simulator. lf the translation into
VHDL is done right, VHDL code simulation should give the same results. After simulation
of the VHDL design is approved, a silicon compiler can generate a chip layout of the
MicroDsp.

IDaSS to VHDL converter

At the Eindhoven University of Technology an IDaSS to VHDL converter is being developed.
This conversion tool is created by W. Kruijtzer of the Digital Information Systems group. It
was the intention to use the converter for the translation of the MicroDsp IDaSS description,
but the tool was not ready at the moment that it was needed. At that time it only created
VHDL files that described the structure of the design. However, it bas been possible to use
this preliminary version of the converter. The VHDL code that was not yet generated by the
converter was the behavioural part of the design. This part of the code had to be entered by
myself.

MicroDsp VHDL design 88

VHDL simulator Leapfrog

After the VHDL code has been entered, the design has to be simulated. Philips uses the
Cadence tool Leapfrog to do this. With Leapfrog it is possible to debug the VHDL code. Also
timing figures can be produced.

General VHDL elements compared with IDaSS elements

lf a VHDL frame is created only the behaviour of the elements has to be entered. The VHDL
language is of course different from the IDaSS descriptions but there are a lot of similarities.
Next we can see some examples of IDaSS descriptions and VHDL descriptions of an eight
bit register, address decoding, an operator and a three-state buffer.

register 8 bit continuous output

IDaSS:

'PRE_SCALER\PRESCL' is a register.

This register is 8 bits wide and is controlled by an unnamed control input.
The default function is 'held'.
This register is loaded with unknown values aftera system reset.

The value loaded for the 'reset' cernmand is 0.

Control specification:
----------------------v----------------------
%1 lead.
----------------------A----------------------

VHDL:

ARCHITECTURE behaviour OF PRE SCALER PRESCL IS

SIGNAL memory : std_ulogic_vector(7 downto 0) := "00000000";

BEGIN
controli : PROCESS(x c, x i, elk)
BEGIN - -

IF (clk'event AND clk='l') THEN
CASE x c is

WHEN '1' =>memory<= x i;
WHEN OTHERS => memory <= memory;

END CASE;
END IF;

END PROCESS controli;

x_o <= memory;

END behaviour;

MicroDsp VHDL design

address decoding

IDaSS:

'CTRL' is an operator.

This operator has 1 function.
The default function is 'select'.

Text for function 'select' of 'CTRL':
----------------------v----------------------
cr:=(lOh = addr) /\ (r w nat) /\ en.
cb:=(lOh = addr) /\ (r-w) /\ en
----------------------A----------------------

VHDL:

ARCHITECTURE behaviour OF FCTL CTRL IS

BEGIN
address lOh = 0010000b

er <= (NOT addr(O) AND
NOT addr(l) AND
NOT addr(2) AND
NOT addr(3) AND

addr(4) AND
NOT addr(S) AND
NOT addr(6)

) AND (NOT r w) AND en;
eb<= (NOT addr(O)-AND

NOT addr(l) AND
NOT addr(2) AND
NOT addr(3) AND

addr(4) AND
NOT addr(S) AND
NOT addr(6)

) AND r w AND en;
END behaviour;

operator

IDaSS:

'PRE_SCALER\PCCTRL' is an operator.

This operator has 1 function.
The default function is 'pcctrl'.

Text for function 'pcctrl' of 'PRE_SCALER\PCCTRL':
----------------------v----------------------
pcset:=write

ifO: ((1 width: 7) shl: (prescl from:S to:7))
ifl: ((1 width: 7) shl: (ioo from:S to:7)).

ldpc:=npoc
ifO: npoc,npoc
ifl: (running
ifO: write, write
ifl: (lzero \/ write), ((pzero /\ lzero) \/ write)).

----------------------A----------------------

89

MicroDsp VHDL design

VHDL:

ARCHITECTURE behaviour OF PRE SCALER PCCTRL IS - -

BEGIN
controle PROCESS (npoc, write, lzero, prescl,

ioo, running, pzero)

VARIABLE m std_ulogic_vector(2 DOWNTO 0);

BEGIN
IF write , 0' THEN

m(2) ·= pres cl (7);
m(l) := pres cl (6);
m(O) := pres cl (5);

ELSE
m(2) := ioo (7);
m(l) := ioo (6);
m(O) := ioo (5);

END IF;
CASE m IS

WHEN "000" => pc set
WHEN "001" => pc set
WHEN "010" => pc set
WHEN "011" => pc set
WHEN "100" => pc set
WHEN "101" => pc set
WHEN "110" => pc set
WHEN OT HERS => pc set

END CASE;
IF npoc = '0' THEN

ldpc <= "00";

<=
<=
<=
<=
<=
<=
<=
<=

ELSIF running= '0' THEN
ldpc <= (write & write);

ELSE

"0000001";
"0000010";
"0000100";
"0001000";
"0010000";
"0100000";
"1000000";
"0000000";

ldpc <= ((lzero OR write) & ((pzero AND lzero) OR write));
END IF;

END PROCESS;
END behaviour;

IDaSS:

'PRE_SCALER\BUFPSC' is a TS buffer.

This TS buffer is 8 bits wide and is controlled by an unnamed control input.

Control specification:
----------------------v----------------------
%1 enable.
----------------------A----------------------
The default state is disabled.

VHDL:

ARCHITECTURE behaviour OF PRE SCALER BUFPSC IS - -

BEGIN
controle : PROCESS (x_c, x_i)
BEGIN

IF x c='l' THEN
x o <= x_i;

ELSE
x o <= "ZZZZZZZZ";

END IF;
END PROCESS controle;

END behaviour;

90

MicroDsp VHDL design 91

4.1 nee and eTU

The nee unitand the CTU unit have been converted to VHDL. This has been done with the
use of the converter that at this moment is in development at the Eindhoven University of
Technology. The behaviour descriptions are entered by hand. Before I could do that I had to
leam the language VHDL and to master the simulator Leapfrog. This took me less than two
weeks. The hand conversion of the CTU and nee unit needed also two weeksin total. The
simulation of the VHDL code has been brief but because the functionality of the code is the
same as the IDaSS descriptions this is enough. Furthermore, the VHDL of the nee is at this
moment being expanded with a RESET signal and with two the phase doek signals PH1 and
PH2 by E. Rotte. He will test the nee and eTU in combination with the rest of the
MicroDsp.

Figure 86 gives an example of a timing diagram generated by Leapfrog. In this case it is a
logical timing diagram of the nee subblocks FCTL and ST AT. The FeTL block can override
the signals USRPOe, USRSTOP, USRIRQ and XBUSE. The STAT block gives status
information of the MicroDsp. Below the test stimuli for this simulation are given. In the
diagram can be seen that the STAT block at address 1Bh is read and that value 40h appears
at the data bus. This means that RBDIS is detected HIGH and that can be verified with the
RBDIS signal itself. After 500ns the FeTL unit at address lOh is loaded with value AAh
which means that the signals POe, STOP, IRQ, and IXBUSE are to be forced to '1 '.In the
diagram this can be verified by checking these signals.

VHDL stimuli

-- LOAD STAT REGISTER

addr <= "0011011";
r w <= '1';
eïï <= '1';
wait for 100 ns;
en <= '0';
wait for 200 ns;

-- WRITE FCTL REGISTER

addr <= "0010000";
data <= "10101010";
r w <= '0';
en<= '1' i
wait for 100 ns;
en<= '0';

MicroDsp VHDL design 92

9oseline

:Uicc::Cik. 01

:L!icc:Rbdis 01

:L!icc:Addr o 1a

:Uicc:Coto OM

:L!icc:R_W oa

:Llicc:(f"' oa

:Llicc:Usrpoc oa

:Llicc:Poc 01

:Llicc:Usrirq oa

:Liicc:Jrq 01

:Liicc:Usrstp oa

:Llice:Stp 01

:i_licc:Xbuse oa

:l_licc:lxbuse 01

:L!icc:Usrprg 01

Time in ps

Cursor = 801i11000

Figure 86 VHDL simulation of FCfL and ST AT units

MicroDsp Results 93

5 Results

The IDaSS evaluation project has had several results.

Specification of the MicroDsp

A new specification [MDSP94] of the MicroDsp has been made. This was done during the
implementation of the MicroDsp in IDaSS. Most changes concern the 12C and Control unit
and the Capture Timer unit. These changes are caused by the fact that the specification was
never tested on the required functionality. Therefore a lot of changes had to be made to
achieve the requested performance.

IDaSS design of the MicroDsp

All parts of the MicroDsp have been designed in IDaSS by the Eindhoven University of
Technology. The PCC processor and the program RAM have been made by Simons and
Vostermans, the AAU coprocessor and the data RAM have been created by Verschueren
while the Capture Timer Unit, 12C and Control, 10 ports and MicroDsp toplevel have been
built by me.

VHDL generation of parts of the MicroDsp

It was the intention to describe all parts of the MicroDsp in VHDL. Therefore Simons and
Vostermans have converted their IDaSS PCC into VHDL. The VHDL AAU has been made
by Brand from MicroteL The Capture Timer unit and 12C and Control unit have been
translated into VHDL by me. A VHDL description of the 10 ports has not yet been made.
For the program RAM and data RAM simple VHDL modules are used.

Documentation

The IDaSS design of the MicroDsp is described in this report. It might be useful for
everybody who has have to work on the design of the MicroDsp to read chapter 3 of this
report. In this chapter the design of the ec and Control unit and the Capture Timer Unit is
described in detail.

MicroDsp Conclusions 95

6 Conclusions

IDaSS has been used to make a new specification of the MicroDsp and to simulate an
implementation of the chip. The processor (PCC) has been designed by Simons and
Vostermans from the TUE, the coprocessor (AAU) has been made by Verschueren of the
TUE while the 12C and Control and the Capture Timer Unit were created by me.

The IDaSS implementation of the 12C and Control and the Capture Timer Unit required many
corrections and additions on the MicroDsp specification. Furthermore some errors were found
in the silicon versions of the AA U and PCC.

With a tooi like IDaSS the efficiency and quality of the definition of new IC's can be
improved considerably.

IDaSS advantages

• short learning period compared to VHDL
• very interactive, fast feedback on implementation ideas
• runs on a PC
• fast design input
• suitable for block definition and a frrst specification check
• suitable for "forma!" specification by customers
• fast testing of architecture variants possible (pipelining, parallelism, ...)

IDaSS disadvantages

• no link yet to Philips Semiconductor tools (IDaSS to VHDL conversion is in
development at TUE)

• flexibility and efficiency of implementation is dependent on the IDaSS library
which has a limited set of elements compared to VHDL

• only suitable for single clock domain systems
• no asynchronous simulation yet
• no timing check yet (like back-annotation)
• no use of existing back end library blocks (bottum up design)
• does not run on apollo-unix and HP-UX systems (planned)
• packet not very "industrialized" (platforms, hooks, graphic quality, ...)

MicroDsp Conclusions 96

• no support by "professional" team (for solving application specific problems)
• no abstract data types (data name in stead of signal levels)
• no batch execution yet (re-run of simulation with log-file)
• no similar test-beneb yet that can be used for IDaSS and VHDL

If IDaSS is going to be used by Philips as a design tooi it has to be accepted by a tooi
support group such as for example ED&T. A lot of the above mentioned disadvantages then
have to be removed.

MicroDsp

In any case it is a fact that IDaSS has been used to design the MicroDsp. All units of the
MicroDsp have been designed with this tooi. This has been done fast compared to the time
necessary to develop such a processor in VHDL or in a lower level description language. For
example the time needed to design the PCC in IDaSS was two weeks for two man. The
design of the fC and Control unit and Capture Timer Unit including the rewriting of the
specification and learning IDaSS has taken eight weeks for me.

After the IDaSS design was completed, VHDL has been generated for the PCC, AAU, nee
and cru. These last two blocks are generated with the use of a VHDL-frame generatorand
will not only be used for simulation purposes but also for the actual design of the chip. The
use of the frame generator speeded up the generation of the VHDL code very much. The time
that I needed necessary to generate the rest of the VHDL (behavioural code) of the nee and
CTU was less than two weeks. Considering the fact that I had to learn the VHDL language
before I could start generating the code, this is rather fast.

The design of the nee and cru resulted in the following number of flip-flops per block.

IICC:
nc
MADT
FCTL
PAD
IOBUS
XCTL
STAT
MAIL
MONCTRL
STPCTRL

Total:

Flip-flops

26 + state controller
34
8
8

24
8
8
9
1
1

127 + state controller

MicroDsp Conclusions 97

CTU:
Time-base counter 16
Prescaler 23
Timerreg 1 19
Timerreg 2 19

Total: 77

Finally I conclude that IDaSS has been very useful developing designs that were not fully
specified in a short period of time. These designs can be very fast converted to VHDL with
the use of the VHDL converter. This VHDL will probably be synthesizable with the use of
a silicon compiler like Synergy.

98

Literature

[MDSP93]

[MDSP94]

[PCC93]

[AAU93]

[IDaSS]

[VHDL]

J.A.A. den Ouden, MicroDSP : PCC plus AAU test chip specification 1.1,
Philips Semiconductors, 15 Sept. 1993

J.A.A. den Ouden, MicroDSP : PCC plus AAU test chip specification 1.2,
Philips Semiconductors, 18 Jan. 1994

J.A.A. den Ouden, Peripheral Controller Cell specification,
Philips Semiconductors, 8 Apr. 1993

J.A.A. den Ouden, Arithmetic Accelerator Unit specification (4.1),
Philips Semiconductors, 12 Nov. 1993

H. Schutte, The 12C-bus and how to use it (including specification),
Philips Semiconductors, Jan. 1992

A.C. Verschueren, IDaSS for ULSI, V0.08d,
Eindhoven University of Technology, 20 July 1990

R. Lipsett e.a., VHDL: Hardware description and design
Kluwer Academie Publishers, 1993

