
 Eindhoven University of Technology

MASTER

Design of a RSA crypto-processor using a systolic array

Kuipers, E.A.M.

Award date:
1996

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b82bc14d-3581-42a3-899b-4df6c382d6ea

Technische Universiteit t U_) Eindhoven

Faculty of Electrical Engineering

Section lnformation and Communication Systems

Design of an RSA

crypta-processor

using a systolic array

>

Graduation report

Author

Coach

Supervisor

Date

: E.A.M. Kuipers

: R. Joosten

: Prof. Ir. M.P.J. Stevens

: June 1996

The faculty of Electrical Engineering of Eindhoven Univerisy of Technology does not
accept any responsibility regarding the contents of student projects and graduation reports.

Prof. Ir. M.P .J. Stevens,
vakgroep Infonnatie en Communicatie Systemen,
faculteit Elektrotechniek,
TU Eindhoven.

Betreft: Geheimhouding van afstudeerverslag

Geachte heer Stevens,

19 Juni 1996

Vanwege het feit dat het afstudeerproject betreffende het ontwerp van een RSA cryptie-processor heeft
plaatsgevonden in het bedrijf Pijnenburg Custom chips B.V., wordt verzocht het verslag betreffende
dit afstudeerproject niet openbaar te maken voor het jaar 2001.

Hartelijk dank voor de medewerking.

Met vriendelijke $roet,

Erwin Kuipers

Abstract

This report describes the design of a scalabie RSA device, which is suited for public-key
encryption and decryption according to the Rivest, Shamir and Adieman metbod [Riv77]. This
design has been developed in the context of a graduation assignment at the section Information and
Communication Systems of the faculty Electrical Engineering of the Eindhoven University of
Technology. This assignment is characterized as follows:

Design a parameterizable RSA cryption-processor, which can be optimized on either chip­
size or cryption speed The goal is to achieve maximum jlexibility, which allows the
processor to be used in any environment using an optima/ configuration.

The RSA design is based on a modular multiplication core, which executes the Montgomery
algorithm [Mon85]. This algorithm requires conversions to and from an N-residue domain, but it is
faster than the conventional 'paper & pencil' method and is easier to implement in hardware.

The multiplication core (MMM) is a systolic array, which consists of a number of processing
elements (PE's), which can be varied in number and size. The number and size of the PE's are
parameters which can be used to contigure the RSA design to optimally perfarm in it's environ­
ment.

For this purpose the Montgomery algorithm has been adapted for systolic arrays, which results in a
PE design which is proposed by Iwamura et al. [Iwa94]. In this report the steps are described,
which are required to adapt the Montgomery algorithm to an efticient algorithm suited for systolic
arrays. All conditions, which are required for this algorithm in order to prevent overflow or
underflow are described. Further a schematic of the systolic array is presented, which shows the
data flow in the PE's. Finally a schematic of an RSA processor is presented, which is basedon the
MMM-core.

The MMM-core has been simulated and functionally tested, from which can be concluded that the
adapted Montgomery algorithm is working correctly. The PE's of the MMM-core have been
described in VHDL and compiled to hardware-design. These compilations show, that using
mimimal hardware optimization of the PE's, a (best case) cryption speed of 80 cryptions (1024
bits) per second can be achieved at a clock frequency of 66 MHz using a datapath of about 70
Kgates. When smal! chip size is required, the RSA design can be adapted to perfarm at 27 MHz
using 6 Kgates. Using this contiguration the RSA device can calculate about 5 cryptions of 1024
bits per second.

III

IV

T able of contents

1 Introduetion
1.1 Public-key cryptography . 1
1.2 A scalabie hardware RSA cryption-device . 3

2 RSA exponentiation . 5
2.1 What is RSA? ... 5
2.2 An RSA exponentiation algorithm . 6

3 Modolar Multiplication . 8
3.1 The 'paper & pencil' metbod . 8
3.2 The Montgomery algorithm . 9

3.2.1 Adjustment of the modular multiplication result . 11
3.2.2 The Montgomery multiprecision algorithm . 13
3.2.3 Sealing the Montgomery multiprecision algorithm 14

4 Montgomery in Systolic Arrays . 18
4.1 Reducing the internat bus width . 18
4.2 The Montgomery algorithm adapted for systolic arrays . 23
4.3 The final delta correction . 27
4.4 Summary of the adapted algorithm for systolic arrays . 28

5 Hardware Design of the RSA-device . 30
5.1 Design of a PE . 30
5.2 Design ofthe MMM . 32

5.2.1 Delta-correction . 32
5.2.2 Pipelined multiplication in the MMM . 33
5.2.3 Reducing the number of PE's . 35
5.2.4 Control of the MMM . 37

5.3 Design of the RSA processor . 40

6 Performance of the RSA core . 43
6.1 Number of doek cycles of an MMM . 43
6.2 Performance of PE type 1 . 44
6.3 Performance of PE type 2 . 46
6.4 Optimization of the PE's . 48

6.4.1 Optimization of the mi calculation . 48
6.4.2 Optimization of the adders . 52

V

7 Conclusions and Recommendations . 53

Literature references . 5 5

Appendix A: MMM controller functions . 57

Appendix B: VHDL description of PE type 2 . 59

VI

1 Introduetion

In this chapter public-key crypto-systems are explained, and the encryptionlauthentication methods
are described. Then the need for a flexible RSA cryption-device is explained, from which the
graduation assignment can be characterized. Finally a number of situations are described 1vhich
this device is suitable for.

1.1 Public-key cryptography

Today's communication is largely based on production and transport of digital information. The
largest part of this information consists of private data, which may not be read or changed by
unauthorized persons. This requires the application of safety measures, like isolated communication
channels or data encryption. Because the latter is far more inexpensive, many crypto-systems have
been developed to secure communication channels.

One crypto-system which has been in use for over I 0 years now, is the DES-algorithm. DES is
still commonly used, for it allows data blocks to he encrypted and decrypted fast and easily (over
20 Mbit/s in hardware), and still has withstood cryptanalysis attacks successfully. However, to
decrypt a message, DES requires that both sender and receiver possess the cryption-key, which
must be transferred using a safe communication channel.

The necessity for safe key-transfer can be avoided by using a public-key cryption metbod like RSA
instead. Public-key cryptography, and RSA in particular, has no need for transmitting keys, for it is
based on key-pairs: each sender/receiver has it's own public and private (secret) key. Because of
the use of key-pairs, an identical algorithm can he used for both encryption and decryption. A
message which has been encrypted using the public key, can be decrypted using the private key if
and only if the private and pubtic keys form a key-pair. This can be illustrated using the following
examp1e:
Sender 1 would like to send message M to receiver 2 using public-key cryptography. Sender 1 has
key pair (pi, si), receiver 2 has key pair (p2, s2) for public and secret keys. Using encryption/
decryption function Fke/ data), the data transfer can be illustrated using figure 1.1.

encryption

c

communication
channel

figure 1.1: Encryption/decryption using a public-key crypto-system

decryption

Pijnenburg Custom Chips

Because the cyphertext C has been encrypted using the public key p2, it can only be decrypted
using the secret key s2, which is only known by receiver 2. Therefore, receiver 2 is the only
person who can decrypt cyphertext C to message M.

Public-key cryption implies that, using the cryption function F and the correct keypair, encryption
and decryption should be calculated relatively easy. However, breaking the crypto-system by
finding the inverse function FP2· 1(C) = FP2· 1(FP2(M)) = M (which means uncovering secret key s2)
should require more time than the expiration date of the message (after which encryption is no
Jonger necessary). More about the cryption function Fis explained in chapter 2.

Because of the large digits used by the cryption function F (over 1024 bits), public-key encryption
and decryption take too long for large messages. Therefore this cryption metbod is generally used
in combination with DES: messages are encrypted fast using DES, and are sent to the receiver with
the DES-key, which has been encrypted using a public-key encryption method. This allows the
sender to safely send the DES-key with the DES-encrypted message using the same (unsafe)
communication channel.

Besides encryption and decryption, public-key crypto-systems can also be used for authentication
and verification of the sender's identity. The sender can send his signature by first encrypting a
message using his own private key (authentication). Then the encryption using the receiver's pubtic
key is executed. On the receiver's side, the original message can be retrieved by decryption using
the receiver's own private key, foliowed by verification using the sender's public key. The
transferred message M can only be retrieved correctly if the public key pi matches the secret key
si. Because sender 1 is the only person who could have encrypted M using secret key si, the
identity of the sender of message M has been verified (see figure 1.2).

authentication encryption

communlcatlon
channel

figure 1.2: Authentication/verification using a public-key crypto-system

decryption verificatlon

M

Today's most popular public-key system is RSA, because for many years now it has withstood
numerous attempts to break this system, and it allows authentication and verification easily.

2

1 Introduetion

1.2 A scalabie hardware RSA cryption-device

The last few years the RSA crypto-system has become more popular than ever, strongly encour­
aged by the increasing demand for data security on the Internet. Because of it's considerable
amount of arithmetic operations and it's demand for still larger digits, software RSA cryption has
proven to be too slow for many applications. The increasing demand for high-speed RSA cryption
however requires custom hardware devices, which are suitable for fast arithmetic operations on
digits of width 1024 bits and larger. These high-speed hardware devices are mainly designed to
perform at maximum cryption speed at the cost of a large chip size. Other RSA applications
however impose less severe restrictions on cryption speed; but demand small chip size. The
following two examples illustrate this:

Network server: • Cryption-time less than 10 ms.
• Chip size approximately 200 Kgates.
• Maximum clock frequency.

Chip-card: • Cryption time approximately 0.5 seconds.
• Chip size less than 10 Kgates.
• Clock frequency 5 - 20 MHz.

Because usually DES and RSA are used together, for security reasans it is preferred to place
hardware for both encryption methods, including memory, on one chip, which constrains available
space. Other applications (e.g. cryptography in portable devices) constrain the operating frequency
of the RSA device. These conditions require a flexible hardware design, which provides a trade-off
of chip size against cryption speed. Now the graduation assignment, as described in this report, can
be characterized as follows:

Design a parameterizahle RSA cryption-processor, which can he optimized on either chip­
size or cryption speed. The goal is to achieve maximum flexihility, which allows the
processor to he used in any environment using an optima! configuration.

To achieve flexibility in both time and space, the RSA cryption-device should be designed using a
systolic array, which consists of a number of identical processing elements (PE's). The number and
size of these PE's are parameters which directly relate to the number of clockcycles required for an
RSA-cryption, the maximum clock-frequency, and the chip-size. These parameters can be adjusted
to meet the requirements imposed by the hardware environment.

3

Pijnenburg Custom Chips

The scalabie RSA cryption-device is applicable in the following situations:

• When chip size is constrained: Optimization on cryption time.
In the case of several hardware-devices on one chip (e.g. DES, RSA, memory, control,
security hardware) only limited space is left for the RSA cryption part. Also, the maximum
clock-frequency can be constrained by the processing speed of the environment.
The clock-frequency determines the size of the PE's; the chip space determines the number of
PE's. When both parameters are fixed, the maximum cryption speed for these parameters is
achieved.

• When a reduced cryption speed is sufficient: Optimization on chip size.
In this case a minimum chip size can be obtained by adjusting the parameters (size and
number of PE's) and clock-frequency. Because this application does not require high-speed
RSA cryption, the intemal bus-width can be made significantly smaller than the full cryption­
width (> 1024 bits), which reduces chip size considerably.

• When RSA-cryption is applied using variabie cryption widths.
When using smaller cryption widths, less PE's can be activated, which reduces the number of
clock-cycles, resulting in less cryption time.
Using larger cryption widths (>1024 bits) can easily be achieved by increasing the number of
PE's or connecting multiple RSA cryption-devices in cascade.

To find the optima! RSA cryption-device for any environment, it is desirabie to make use of a
graph which indicates the optimal size and number of PE's, given a specific chip size or cryption
speed, as indicated in figure 1.3.

t

cryption time -

figure 1.3: Trade·off of the optima/ parameters of the RSA cryption-device

This report describes the design of such a flexible RSA cryption-device, using PE's which have
been designed to execute a modular multiplication algorithm in a pipeline structure.

4

2 RSA exponentiation

In this chapter the RSA public-key crypto-system is explained. and how the pubtic and private keys

are used in RSA calculations. An algorithm is presented, which can execute RSA exponentiation

jast, using only modular multiplications.

2.1 What is RSA?

RSA is a public-key crypto-system for both cryption and authentication, introduced in 1977 by
Rivest, Shamir and Adieman [Riv77]. RSA uses public key (N, e) and private key (N, d), where N,

d, e are positive integers, N is odd and d,e<.N. The cryption function Fkey(M) is defined as
tvtey mod N (M<.N), so the data must be 'chopped' into digits smaller than N.

Using the keys (N, e) and (N, d), RSA cryption operates as follows:

• Encryption of message M to cyphertext C:
C = Fe(M) = Me mod N

• Decryption of cyphertext C to message M:
M = FiC) = c;J mod N Med mod N

The decryption of C using private key d returns the original message M if e, d and N are defined
according to a set of rules. The modulus N is the product of two large primes, say p and q. Choose
a private key d<N, which is relatively prime to (p-1)(q-1). The pubtic key e is defined as the
multiplicative inverse of d mod (p-1)(q-1), which means, that
ed mod (p-1)(q-1) = 1, so
ed 1 + k·(p-1)(q-l), keN.

According to Euler and Fermat [Niv72], for any integer M relatively prime to N=pq goes:
Mk"(p-J)(q-n = 1 mod pq

Now the decrypted message FiC) can be written as:
FiC) = Med mod N

= M 1+ k·(p-l)(q-IJ mod pq

= Mmodpq · 1 mod pq

= MmodN

= M '\j 05.l<f<N

Which proves that decryption of C (using the private key d) results in the original message M.

5

Pijnenburg Custom Chips

RSA security is based on the assumption that factorization of large digits into prime numbers is
very difficult (see [Pol74], [Dix92]). When the modulus Nis factorized in the two primes p and q,

the private key d can be revealed easily by calculating the multiplicative inverse (mod (p-1)(q-1))
of public key e. If however N is chosen large enough, the factorization problem is too complex to
solve within the expiration time of the encrypted message. Currently an RSA modulus N of 130
decimal digits (432 bits) has been factorized with great effort.
An other way to uncover the private key d is exhaustive search. However, also this technique to
break the RSA-code requires too much calculation effort if N is chosen large enough.
In today's RSA cryptography a modulus of I 024 bits or larger is recommended.

2.2 An RSA exponentiation algorithm

As mentioned before, RSA encryption calculates Me mod N, RSA decryption calculates Cd mod N.
Because both calculations are equivalent (M,C<N and d,e<N), let's focus on the modular
exponentiation C = Me mod N.

Define n=l2logNl, so n is the number of bits of the RSA modulus. Because e<N, this exponent
can be represented using binary digits:

n -l

e = L 2iei = (en-l'''eleo)
ioO

Using this notation, C can be written as:

C = M2" len-1 + ... + 2el + ea mod N

(((l·Me"-1)2 . Me"-z)2 Mei r . Meo mod N

(1)

(2)

So M can be exponentiated using n-1 squarings and n multiplications. However, in many cases the
number of multiplications can be reduced, because if the exponent bit ei is zero, the multiplication
by Me; can be skipped.
The exponentiation algorithm for calculating C according to equation (2) now is as follows:

{input M, e, N}

C :=I
for i= (n-1) downto 0 do
begin

if e;=l then C := C·M mod N

if i>O then C := C · C mod N

end
{output C = Me mod N}

Note that during this algorithm the intermediale result C never exceeds N.

6

2 RSA exponentiation

All most significant zero bits of exponent e, which preeede the most significant '1 '-bit, can be
skipped, because for each of these zero exponent bits the algorithm will square the initial '1'.

Let E be the number of bits required to represent e binary, so E = !2Iog el s n . Now E indicates

the number of mod N-squarings executed by the exponentiation algorithm. Let 11 be the number of

'1 '-bits of exponent e, so 11 s E. Now 11 indicates the number of mod N-multiplications executed by

the algorithm, and €+11 modular multiplications are required to calculate Me mod N.

The upper bound of the required number of modular multiplications thus is 2n, which can be

reduced to 1 V2n using the following exponentiation method, based on [Bri82]:

• if 11 s V2E, e contains at most V2E '1'-bits, so use the algorithm as presented before:
{input M, e, N}

c := 1
for i = (E-l) downto 0 do
begin

if e;= 1 then C := C · M mod N
if i>O then C := C · C mod N

end
{output C = M' mod N}

• if 11 > V2E, e contains less than lhE '0'-bits, so the inverse of e contains at most V2E '1 '-bits.
Now the following algorithm can be applied using the precomputed value M-1 mod N:

{input M, e, N, M- 1 mod N}
e' := 2f- e

C:=M
for i= (E-1) downto 0 do
begin

C := C·C mod N

if e/=1 then C := C · M· 1 mod N

end
{output C = M' mod N}

Both algorithms require at most HlhE s 1 Ym modular multiplications.

Using the presented exponentiation method, RSA exponentiation boils down to repeated calculation

of C A· B mod N, where A, B, C < N (so all can be represented using n bits). Other, more
efficient exponentiation algorithms are presented in [Knu69], [Zha93], [Dim95] and [Kaw93], but
all are based on repeated modular multiplications.

In the next chapters the design of a modular multiplier is described, which is particularly suited for
RSA-exponentiation.

7

3 Modolar Multiplication

This chapter describes how two digits of width n bits can be multiplied modulo N. First a 'paper
& pencil' method is explained, which requires large bit comparisons. Then an alternative algo­
rithm is presented, which has no need for bit comparisons, at the cast of necessary transformations
to and from an N-residue domain. Finally some modifïcations are described which imprave the
performance of this alternative algorithm.

3.1 The 'paper & pencil' metbod

The modular multiplication C = A· B mod N (A,B <.N) can be calculated straightforward by first

multiplying A and B, and then reducing the product by a multiple of N such that the result does

not exceed N. This metbod is known as the 'paper & pencil' metbod and can be applied using the
following algorithm:

C = A-B mod N = A ·B - qN (A,B <.N)

• Multiplication : Calculate A· B
• Trial division : Find q with 0 ~ q <N such that 0 ~ C <N

If n (the width of modulus N in bits) is large, the calculation of the full product A ·B of width 2n
should be avoided. This can be done by splitting both A and q in k digits of width a bits:

k I : l (3)

k-1

A =I: zat a.
I (ak-1 ···al ao)

t~o

(4)
k-1

q I: zat qi (qk-l ... ql%)
joQ

Now C can be calculated by multiplying each digit ai by B, and by immediately reducing the result

modulo N:
k-1

C = L (a;B q N)2al
l I

(5)
i=O

The product a/3 has only width n+a bits instead of 2n, which reduces the multiplier size con­

siderably if k is large.

8

3 Modular Multiplication .IJ
-----------····,1l'"'

This 'paper & pencil' method requires that for each product term a;B a q; is found in order to
reduce it modulo N (trial division). The number of comparisons and subtractions can be reduced by
skipping the modulo reduction (subtraction of q; N) several multiplication steps and subtracting a
larger multiple of N. This method however increases the size of the q-digits, which requires much
additional hardware and a longer critica] path. This issue returns in many hardware designs which
are based on optimized 'paper & pencil' methods, as presented in [Bri82], [Mor90], [Wal93] or
[Iwa93].
In [Mon85] an alternative algorithm is presented, which is based on transformations to and from an
N-residue domain. In [Eld93], optimized 'paper & pencil' methods are compared to this Mont­
gomery algorithm. lt is concluded that the Montgomery algorithm can achieve twice the speed of
the optimized 'paper & pencil' method described in [Bri82], at the cost of two extra registers. The
operation and advantages of the Montgomery algorithm are shown in the next paragraph.

3.2 The Montgomery algorithm

Peter L. Montgomery has developed a methad for calculating C = A· B mod N without the need
for trial division. In [Mon85] he shows that the modulo reduction factor q does not have to be
found using bit comparison, but can be calculated. This requires however conversion of A and B to
an N-residue domain and conversion of the calculation result back to C in the integer domain.
The Montgomery method for modular multiplication can be described as follows:

Let N be a positive odd integer such that 2n·l < N < 2".
Choose an R = 2r, r a positive integer, which satisfies
• R > N (r ~ n)

• gcd(R,N)=l (R is coprime toN, which is satisfied by N being odd).
2 Find in te gers R .J and N' satisfying 0< R .J <N and 0< N'<R,

such that RR -I NN' = 1, so
• RR -J mod N = 1 (R-I is the multiplicative inverse of R modulo N)
• N' = (RR .J - 1) div N

3 Let A, B, C be integers, 0 ::;; A, B, C < N.

4 Let X, Y, T be integers, 0 ::;; X, Y < N and 0 ::;; T < 2N.
5 Let À and 1..1 be integers, 0 ::;; À, 1..1 < N
6 Define function MMM(À,I..l) = Àl..l R-1 mod N.

Using the function MMM(À,I..l) and a precalculated value R,v==R2 mod N, the modular multiplication
C = AB mod N can be calculated as follows:

• Converf the integers A and B to the N-residue domain using MMM(.. ,RN):
X= MMM(A,RN) A·R 2 R-1 mod N =AR mod N
Y = MMM(B,RN) BR 2 -R _, mod N = BR mod N

9

Pijnenburg Custom Chips

• Calntlate in the N-residue domain the modular multiplication MMM(.., ..):

T = MMM(X, Y) = ABR 2 R -J mod N = ABR mod N

• Convert T from the N-residue domain to C in the integer domain using MMM(.., 1):

C = MMM(T,l) = ABRR-' mod N =AB mod N

The N-residue transformations are illustrated in figure 3.1.

MMM(T,1)

MMM(X,Y)

figure 3.1: Montgomery transfonnations to and from the N-residue domain

Montgomery defines the function MMM(X, Y) as:

T = MMM(X,Y) = XY ~ mN = XY-R-1 mod N

The factor m is defined as:

m (X·Y mod R) ·N 1 mod R

XY·N 1 mod R = XY·N 1 + k·R (k E H)

So 0 :Sm< R.

Equation (6) can be proven by simply substituting (7):

T = XY + XY·NN 1
+ k·NR

R

XY(l + NN 1
) + k·NR

R

Using the Montgomery property RK1
- NN' = 1, T can be written as:

T = XY·RR-
1

+ k·NR = XY·R- 1 + k·N = XY·R- 1 mod N
R

10

(6)

(7)

(8)

(9)

3 Modular Multiplication

which proves that T = MMM(X, Y) = XY· R- 1 mod N.

Because X .Y, N and R -J are integers, T can be shown to be an integer by calculating:

mN XYNN 1 + kNR = XY(RR- 1
- 1) + kNR

-XY+(XYR- 1 +kN)R = -XY+l·R
(10)

Since l = (XYR- 1 + kN) E ll, the numerator of T is a multiple of R, which proves that T is an
integer.

3.2.1 Adjustment of the modolar multiplication result

The Montgomery algorithm shows that the product X· Y can be reduced modulo N usmg a
division by R = 2r, with R > N and N is odd (so r ~ n). This integer division is allowed, for the
lower r bits of the product XY are set to zero by adding an m-multiple of N, which does not affect
the final result in the N-residue domain. This concept is illustrated in figure 3.2.

2n 0

n+l--------1-r ~XY ----lD
mN

T
~

n+1

figure 3.2: Principle of the Montgomery algorithm

+

Ho wever, the MMM(X, Y) output can be equal to XY· R"1 mod N + N instead of the desired
XY · R"1 mod N. This can be demonstraled as follows:

Using X, Y < N and m, N < R, an upper bound of T = MMM(X, Y) can be determined using
equation (6) and the conditions imposed at X, Y and m:

T=XY+mN<
R

N·N + RN
<

R
R·N + RN

R
2N (11)

So if the MMM result T equals or exceeds N, T should be adjusted to T - N. After this adjustment
T is an N-residue value smaller than N, so it satisfies the input conditions imposed at he input
multiplicands X and Y. This means that (after this N-adjustment) MMM output values can be used
as input values of a new MMM.

11

Pijnenburg Custom Chips

The necessity for N-adjustment of the Montgomery multiplication result (subtraction of N if

MMM(X, Y) 2 N) can be avoided by choosing R large enough. Because it is desired to use the

MMM-output T (< 2N) directly for input to a new MMM(X,Y), the input conditions for X and Y

should become 0 ~ X, Y < 2N. With R = 2', the new condition for r can be found as follows:

1 2"- 1< N < 2", n 2 1 :::::} N ~ 2"- 1

2 O~X, Y<2N :::::} X, Y ~ 2"+1
- 3

3 R = 2', r=n+d (dEN)

4 m < R = 2"+d <= m ~ 2n+d

Find a minimal d, such that T = MMM(X, Y) < 2N for all X, Y < 2N.

T = XY + mN :s;
R

This can be rewritten as:

(2n + 1 - 3) . (2n + 1 - 3) + 2n + d . (~ - 1)
2n+d

=>

(12)

(13)

This condition is satisfied for all n 2 1 and d 2 2. This means, that if R = 2', r 2 n+2 and X, Y <
2N, the calculated T = MMM(X, Y) < 2N. The MMM-function now can be applied for repeated

modular multiplications (as in exponentiation algorithms) without N-adjustment. However, the final

result C after conversion back to the integer domain using C = MMM(T,1) may nat exceed N. This
modular multiplication requires adjustment only if C = N, for backward conversion of N-residue

values <2N always returns integers ~' which can be shown as follows:

1 2"- 1< N < 2", n 2 1 :::::} N ~ 2"- 1

2 O~T<2N :::::} T ~ 2"+1
- 3

3 R = 2', r=n+d (dEN)

4 m < R = 2"+d :::::} m ~ 2n+d- 1

If C is the integer after conversion of T from the N-residue domain, so C = MMM(T,1), the upper

bound of C can be determined as follows:

c =
T·1 + mN :s;

(2n + 1 -3) ·1 + (2n +d -1) · (2n -1)

R 2n+d

This can be rewritten as:

c :s;

12

(2·2n-3) + 22n+d- 2n+d- 2n + 1
2n+d

(14)

(15)

3 Modular Multiplication

So C<2n for all n2l, implying that C can be at most equal to N after conversion of T back to the

integer domain. Only then C must be set to zero in order to reduce C modulo N.

3.2.2 The Montgomery multiprecision algorithm

Because R = 2r, r 2 n+2, the maximum m < R is represented by at least n+2 bits. To avoid the
calculation of the full-width product XY during a Montgomery modular multiplication (MMM),

both X and m are split into k digits of width a bits, with 0 < a, k ~ n+2, so

k = ln:2l (16)

Now let r = ka, so r is the smallest multiple of a which equals or exceeds n+2, indicating the

number of bits which are used to represent X and m. These values can be written using base 2a as
k-1

X= L 2"i xi = (xk-1 .. . x1xo)

k-1

m = L
i=O

under the condition that xi and mi < 2a.

Using equations (7) and (18), the Montgomery algorithm becomes:
k-1

R·T = L (x1Y + m1N) 2"1

1=0

Division by R = 2ak yields:
k-1

T = L (x I Y + miN) 2-a(k-1)

1=0

Now the partial sum T(i) can be defined using index i = 0, 1, ... , k-1:

T(i) = L (x
1
Y + m

1
N)2-a((i+l)-l)

1=0

so T(k-1) = T = XY K' mod N.
If the last sum term is extracted from the entire sum of equation (21), T(i) can be written as:

i -1

T(i) = L (x1Y + m
1
N)2-a((i+ 1)-l) + (xiY +miN) 2-"

1=0

i -1

2-" L (x
1
Y + m 1N) 2-a(i-1) + (x i Y + miN) 2-"

1=0

(17)

(18)

(19)

(20)

(21)

13

Pijnenburg Custom Chips

So instead of dividing the sum of products xY + mN once by R = 2a\ now during k iteration steps
the partial sum is divided by 2a. This division is only permitted if the division result is an integer,

so if the a least significant bits (LSB's) of the numerator of T(i) are zero. Therefore mi is defined
as:

m, = (T(i-l)+x,Y)N 1 mod2a (22)

The principle of the Montgomery multiprecision case can be illustrated using figure 3.3, which
shows two consecutive iteration steps.

a
~

figure 3.3: The Montgomery multiprecision case

Notice that each interrnediate result T(i) has maximum width n+2 bits, for xiY has width a+n+ 1
bits, and miN has width a+n bits. The final result T(k-1) = MMM(X,Y) however has width n+1
bits, for equation (12) shows that T = MMM(X, Y) < 2N < 2n+i.

3.2.3 Sealing the Montgomery multiprecision algorithm

As just has been shown, an MMM can be calculated using k iteration steps. In each step a digit of
X is multiplied by Y, the result is added with the result of the previous iteration step and the whole
is divided by 2a. This division is only allowed if the numerator of T(i) is a multiple of 2a. Por this
purpose an mi-multiple of N is added to this numerator, which is calculated using equation (22).
However, this mi cannot be calculated until the product xY is available, so the product miN can
only be calculated afterwards.
The calculation of mi can be simplified by shifting each product xiY over a bits to the left, out of
the grey area of figure 3.3. The scaled multiprecision Montgomery algorithm can be determined as

follows:

14

3 Modular Multiplication

If digits xk and m_1 are set to zero, it follows from equation (18) that

X Y 2al
l

k k

= L (2a ·x,Y) za(/-1) + L mHN za(! 1)

hO 1=0

Left and right division by R = zak yields:
k

(23)

T = L (2"' ·x
1
Y + m

1
_

1
N) 2-a(k-l+l) (24)

l-0

Now the partial sum T(i) is redefined using index i 0, 1, ... , k:

T(i) = L (2"'·x
1
Y + mHN)z-a(i-t+l) (25)

1=0

so T(k) = T = XY K 1 mod N.

By separating the last term of the entire sum of equation (Z6), T(i) can be written as:
i -1

T(i) = z-a L (2"' ·x!Y + ml-1N) 2-a((i- 1)-/+l) + (2" ·xiY + mi-IN) 2-a
1=0 (26)

Now the lower a bits of the numerator of T(i) depend only on the lower a bits of T(i-1), which
simplifies the calculation of mi-l :

m;_
1

= T(i-1)-N 1 mod 2a (27)

These results are also presented in [Iwa94] and [Dus90].

The multiprecision Montgomery algorithm scaled over a bits can be illustrated by figure 3.4,
which shows two successive iteration steps.

15

Pijnenburg Custom Chips

figure 3.4: The Montgomery multiprecision case scaled over a bits

Notice that the scaled Montgomery algorithm produces intermediate results T(i) of width n+2+a
bits, for the MSB of the product 2a·xY is located at bit position n+1+2a. Again, by equation (12)
the final result T(k) = T < 2N has maximum width n+ 1 bits.

The Montgomery multiprecision algorithm scaled over a bits can be described as follows:

Montgomery conditions:

1 n ~ 1
2 2"-' < N < 2", Nis odd

3 o:::;x, Y, T<2N

4 1 ::::; a::::; n+2

5 k=l(n+2)/a l
6 r =ka~ n+2
7 R = 2' = 2ka

8 RR-1
- NN' = 1

{input X, Y, N}

T(-1) = 0
m_1 = 0

xk = 0
for i = 0 to k do
begin

T(i) = (T(i-1) + 2a·xY + mi_ 1N) div 2a

mi = T(i) N' mod 2a
end
{output T = T(k) = MMM(X,Y) = XYR-1 mod N}

16

3 Modular Multiplication

Each mi is the product of the lower a bits of the currently calculated T(i) and the lower a bits of

the precalculated constant N'. For example, if a=1, mi is the product of the LSB of T(i) and N'.

Because N' is always odd (see paragraph 6.4.1), it's LSB is always '1', so mi can be retrieved

straight from T(i) without any calculation!

By choosing small values for a, mi is calculated using a simple a x a multiplier, which can start

multiplying while the higher order bits of T(i) are calculated. This parallel arithmetic gives great

benefit over the 'paper & pencil' method, which cannot start the qi-determination until a great
number of bits of the product aiB has been calculated.

17

4 Montgomery in Systolic Arrays

In this chapter is described how the multiprecision Montgomery algorithm can he applied for

systolic arrays. To reduce the internal bus width, the algorithm is adapted, which provides a new
parameter which relates to the PE size. Although this adapted algorithm cannot he realized

directly, after some modifications a flexible design is obtained which is suitable for systolic arrays.

As described in chapter 1, a flexib1e RSA cryption-device can he obtained by hardware design
using a systo1ic array. The array consists of identica1 processing e1ements (PE's), of which the
number and size can be adjusted in order to optimally perfarm in the environment. The multipre­
cision case of Montgomery's algorithm is well suited for hardware design using systolic arrays, for
each iteration step can be calculated by one PE. If each PE processes a digit of X of width a bits,
k+ 1 PE's would be required to execute a modular multiplication, as illustrated in figure 4.1.

r

.... ~

V • •

.figure 4.1: MMM iteration steps in a systolic array

The size of the PE's is defined by a, and the number of PE's can be decreased. lf less than k+ 1
PE's are used, the intermediate result T(i) (i<k) on the output of the last PE must be stored in a
register (width n+2+a bits). The register contents can be loaded in the first PE, which then will
calculate T(i+ 1) using digit xi+J· So if p is the number of PE's (1 ~ p ~ k+ 1), i(k+ 1) I p l MMM­
cycles are required.

4.1 Reducing the internal bus width

Although a provides some flexibility for the size of a PE, still (n+2+a) bits are processed each
iteration step. This width may be too large for applications which require a small intemal bus
width. Therefore it is desired to split T, Y and N into smaller digits of width ~ bits.

18

4 Montgomery in Systolic Arrays

If ~ is constrained to ~ ~ n, integer l can be defined as

z = I ~ l (28)

Now let s = l~, so s is the smallest multiple of ~ which equals or exceeds n. Then n ~ s < n+~ and

N < 2" can be represented binary using l digits of width ~ bits.

If also ~ ~ a+2, both T(i) and Y can be represented binary using l+ 1 digits of ~ bits:
I

T(i) = L t/i) 2fi

y

j=O

I

L Yj 2fi
j=O

1-1

N = L n
1

2f3i
j=O

under the condition that tp), y1 and n1 < 2P.

(29)

The most significant digits t1(i) contain the calculation overflow bits generated during the Mont­
gomery modular multiplication. The digits t1(k) and Yk have at most bit n+ 1 of T(k) and Y placed at
the least significant bit position (only if n=l~), for both T(k) and Y < 2N < 2"+1

•

The contents of the digits of Y, T(i) and N are illustrated in figure 4.2.

0 (1-1){3 1{3 (I +1){3

© © ©
y,

© © ©
tli)

n+1

N © © ©
n,_,

n

5

figure 4.2: Contentsof digits Y, T(i) and N

19

Pijnenburg Custom Chips

The purpose of splitting Y, T(i) and N into digits of ~ bits is to calculate one digit tp) of ~ bits in
each PE. Now also ~ provides a parameter which directly relates to the PE size.

From equations (26) and (29) follows, that

T(i)
I

L tj(i) zPl
j=O

I

I:
j=O

(30)

Notice that the total summations are equal, which does not imply that all individual sum terms are
equal (each t/f) < 2~, while the fraction on the right side of equation (30) is smaller than 2'H~+1).

Todetermine how each tfi) < 2~ can be calculated in one PE, we define:

u I (i) zaT(i)

Write U'(i) redundant using l+ 1 digits of width 2cH~+ 1:
I

U'(i) L u/ (i) zPl
j=O

I

zaT(i) = L (tj(i 1) + zaxiyj + mHnj) zPl
j=Û

The summation term u~(i) is defined by

u/(i) = tj(i-1) zaxiyj mi lnj < 22a>{3+1

Now if u~(i) is split in three parts:

8j(i) u/(i) mod za

this value can be written as:

The use of U'(i) can be illustrated using figure 4.3.

20

(31)

(32)

(33)

(34)

(35)

4 Montgomery in Systolic Arrays

a+P a 0

0

figure 4.3: Calculation of adjacent digits of T(i)

Using equations (30), (32) and (33), T(i) can be written as:
I I

T(i) = L tj(i)2{3j = 2-a L u/ (i)2f3j
j =0 j =0

I

2-,. L (Lf+"'yj(i) + 2"'t/Ci) + oj(i)) 2{3j
j=O

I I

L Y/i)213 U+ 1) + L t/ (i) 2f3j + L 2-"'oj(i) 2f3j
j=O j=O j=O

I+ 1 1-1

j=1 j=O j=-1

I I

L Yj-1(i)2f3j + (yl(i)2f3(/+l)_Y-l(i)) + L t/(i)2f3j +
j=O

I

2{3-a L 8j+1 (i) 2{3j + (8o(i)-81+1(i)2J3(1+ 1
))

j=O

j=O

T(i)

(36)

21

Pijnenburg Custom Chips

Now both y_1(i) and o1+1(i) are 0 by definition, for both values are out of the digit index range i=
0 ... l. Because T(i) = 2-aU'(i) is an integer, U'(i) mod 2a= 0 for all i = 0 ... k, which implies by

equation (34) that o0(i) = 0. Also, y1(i) = 0, for this digit is located at bit position n+~ of T(i) =
2-aU'(i) < 2n+a+2 < 2n+P. So no more than the lower CH2 bits of digit t1(i) are used.

According to equations (34) and (36), T(i) can be written as:
I I

T(i) = L tj(i)213j = L (yj_ 1(i) + (u/(i)div2")mod 213 + 2P-"oj+l(i)) 2f3j (37)
j~O j~O

Now the complete sumterm can be constrained modulo 2P, for all addition overflow bits will ripple

into '(j(i), which is processed in the next digit t1+1(i).

Using the definition of uj(i) in equation (33), T(i) can be written as

I (u/(i) + 2fo (i) + 2"y. (i)l j; tj(i)2f3j = j; 1 1
+

1

2
,. 1 -

1 mod2P ·2f3j

(38)

= i (tj(i-1) + 2"x;Yj + m;_ 1nj + 2f3oj+l(i) + 2"yj_ 1(i))mod2P·2fj

j~O 2"

The fraction represents an integer division (the lower a bits of the actdition of the numerator can
be ignored, for they are processed as oi 1(i) in the previous digit t1_1(i)). If finally the numerator of
the fraction of equation (38) is defined as:

(39)

with i = 0 .. l and i = 0 .. k, the required digits can be calculated as follows:

(40)

I

Because T = T(k) = L t (k) 2fj, and all digits t/k) < 2P, the Montgomery modular multiplication
j~O J

result is obtained by concatenation of all digits t/k), so no post-processing (extra addition) is
required.

The expression of equation (39) can be illustrated using figure 4.4.

22

4 ____ M_o_n_tg_o_m_e_ry_i_n_s_y_s_to_l_ic_A_u_a_y_s ___________________ ''':{J

a+P a 0

+

figure 4.4: Calculation of digit tfi)

In order not to lose any information bits during the division of U(i) by 2a, the lower a bits of the
numerator of t0(i) are set to zero by adding m;_ 1N, which corresponds to adding m;_1 n1 to each digit
tp). Because t0(i-1) is the only value which has effect on these lower a bits, m;_1 is defined as:

mi-l = t0(i-l)·N 1 mod 2a (41)

The expressions (39), (40) and (41) provide an adapted algorithm of the Montgomery method for
modular multiplication. The next step is to imptement it in a systolic array.

4.2 The Montgomery algorithm adapted for systolic arrays

The MMM-result T(k) can be retrieved by concatenation of all digits t0(k) to t1(k). The adapted
algorithm of expression (39) can be implemented in a systolic array by toading x0 to xk in the
consecutive PE's of the array, and in putting the digits of T(-1), Y and N from least to most
significant digit in the first PE serially. Each PE now has a set of registers, in which the input
digits and temporary result are stored and passed on to the next PE. Each doek cycle PE number i
calculates t/ i) using tp-I) from the preceding PE. The systolic array looks like the schematic of
figure 4.5.

y, Y1 Yo

tk1) ... t1(-1) t0 (-1)

0 n,_1 ··· "1 no

figure 4.5: Systolic array which calculates MMM(X, Y) using digits of X, Y, N and T

23

Pijnenburg Custom Chips

The data-flow in the systolic array can be illustrated by taking a 'snapshot' of a number of PE's
for several clock cycles, as in figure 4.6.

CLK#l

CLK #l+1

CLK#l+2

figure 4.6: 'Snapshots' of the systolic array

This figure shows the input and output values of PE nrs. i-2 to i during three clock cycles. So each
horizontal row shows what the three consecutive PE's are calculating simultaneously.
The dotted horizontal lines indicate a clock edge on which the input values of the PE input
registers (placed on the dotted lines) are loaded. The grey marked PE's indicate the datapath of

digit uj+J·

Notice that the sum of the digit index j and the iteration step index i is the same for all output
values u/i) of the PE's in the systolic array at a certain clock cycle. This sum, which is referred to
as time-index, increases by one each next clock cycle. The time-indices of figure 4.6 thus are
respectively i+j-1, i+j and i+j+ 1

By expression (40) u/i) can be written as binary vector (yp):tp):8p)). PE #i calculates in clock

cycles À to (À+2) digits uj_ 1(i), up) and uj+1(i). To calculate up) in clock cycle À+l, PE #i needs
the following input parameters:

24

4 Montgomery in Systolic Arrays

• tp-1)

• mi-J

Can be loaded directly from register #2 (the input register of the current PE)

Can be calculated directly using tp-1) and constant N'

• X;, y1 and n1
• '(j_,(i)

• ~j+l(i)

Can be loaded directly from extemal memory or intemal shift registers

Can be loaded directly from register #1 (the input register of the next PE)

Cannot be loaded from register #5 until clock cycle À+ 3

There seems to be a problem calculating up), for the required 81+1(i) can only be read from register

#5 after two clock cycles. However, this 81+1(i) can be added in PE's which are placed further in
the systolic array (PE numbers i+ 1 ... k).

PE #i cannot read 81+1(i-1) from register #4 until the next clock cycle À+2. However, 81+1(i-2) is
avai1able in the current clock cycle (À+ 1) and can be re ad directly from register #3 (the input
register of the previous PE). So if 81+1(i-2) is used for calculation of up), all input parameters are
available and t/i) can be output by PE #i.

In order to find out which modifications to the Montgomery algorithm have to be made to add
81+1(i-2) instead of 81+1(i), digit t/i) in expression (40) is reduced to tk1). This is done using a
temporary identifier D(i), defined as:

Using this definition and applying integer division, from equation (40) t/i) can be written as:

tj (i) 2-" (tj (i- 1) + D (i)) mod 2f3

2-a (2-a (tj(i-2) + D(i-1)) + D(i)) mod2/3

z-• (z-•' t1(-1) + t, D(l)Z"(H) l rnodZ"

By the Montgomery algorithm, T(-1) is set to zero, which implies that ti-1) = 0 for j = 0 ... l.
Using this property and substituting D(l), we obtain:

ti(i) = z-· (z-·; t, (z·v; + m,_lnj + z"si >I (/) + Z"yj-1 (/)) 2"1 l rnodZ'

= 2-a(i+I) (t (2"xtyj + mt-lnj + 2"yj-1 (l)) 2"1 +
1=0

(42)

(43)

(44)

25

Pijnenburg Custom Chips

The last summation of 8's can be rewritten as:
i+2

L 2f3o1+
1
(l-2) 2a(l- 2) = L 2f3-2at;J+I(l-2) 2a1 + 2ai (2f3-ao1+

1
(i-l) + 2f3o1+

1
(i)) (45)

1=2 1=0

under the condition that both 81+ 1 (-2) and 81+ 1 (-I) are zero.

This 'rescaling' of 8 over two iteration steps results in the following t1(i):

i

t1(i) = (2-a L (2ax1yj + m1_1n1 + 2ay1_1(l) + 2f3-2at;j+l(l-2)) 2a(l-i) +
1=0

Instead of calculating tii), it is possible to calculate in each PE a digit vp) < 2~, defined as:

(46)

v
1
(i) = 2-a L (2ax

1
y1 + m

1
_

1
n
1

+ 2ayj_
1
(l) + 2f3- 2aoj+l(l-2)) 2a(l-i) mod2f3 (47)

1=0

By splitting the expression above in a sum from l = 0 ... i-1 and l = i (as in expression (22)), vii)
can be calculated recursively by:

(48)

In order not to lose any information bits after the integer division by 2a, the lower a bits of the
numerator of vo(i) are set to zero by adding m;_1N, which corresponds to adding m;_1n1 to the
numerator of each digit vp). Analogous to equation (41), m;_1 can be calculated as:

mi-I = v0 (i-l)·N
1 mod 2a (49)

only if the data bits of 2~-2a 81+1(i-2) are located outside the a least significant bits of the numerator
of v0(i), thus if 2~-2a ~ 2a, or ~ ~ 3a. This is a stronger condition than the earlier imposed ~ ~ a+2,
but it is essential for preventing underflow while calculating digits v0(i).

If the numerator wp) of the integer division of (48) is defined as:

(50)

the digits vp), 8p) and yp) can be defined as follows:

26

_4 ___ M_on_t_g_o_m_e_ry_in_sy_s_to_l_ic_A_r,.,_a_y_s ___________________ ,"",IJ

(51)

The expressions (49) to (51) provide a modified Montgomery algorithm which is suitable for
execution in a dedicated systolic array, which we call MMM (Montgomery Modular Multiplier).
However, the final result needs some o-correction, for we wish to calculate t/i) instead of vp).

4.3 The final delta correction

After the digits v/k) have been calculated in the PE's, according to (46) all digits tik) of T(k) =
MMM(X, Y) are calculated as

(52)

In the systolic array this corresponds to adding the o's, which are generated in the last two PE's, to
the actdition result of the last PE. For this purpose two extra (small) PE's are required, which add
these o's at the right place at the proper moment.
As tik) contains only the lower 13 bits of the actdition of (52), the overflow bits should be added to
the next (more significant) digit t,+](k). If this overflow is defined as fl/k), the final o-correction is
executed as shown in figure 4.7.

+

figure 4.7: Final delta-correction

If fl_ 1(k) is set to zero, the calculation of tik) can be rewritten as:

t(k) = (v(k)
J ' J

(53)

27

Pijnenburg Custom Chips

by which the addition overflow is defined as:

(54)

Using equations (53) and (54), the output digits v/k) of the last PE can be corrected by adding the
8-values, generated in the last two PE's. After this correction the desired Montgomery result tp) is
obtained.

4.4 Summary of the adapted algorithm for systolic arrays

We have seen that the multiprecision case of Montgomery's algorithm can be executed by a
systolic array using large PE's. To reduce the PE size, the T, Y and N values have been split in
digits of ~ bits, which results in PE's of size a x ~ bits (indicated as PE(a,~)).
However, digit tii) cannot be calculated directly in a systolic array, for the required 8j+1(i) is not
yet available at the time of calculation. lnstead digit vii) is calculated using 8i+1(i-2), which is
stored in the input register of the previous PE at the time of calculation. This method however
requires two extra (small) PE's, which add the last digits 8j+1(k-1) and 8j+1(k) to vik) in order to
obtain the desired digit ti(k).

Figure 4.6 shows, that the required '(j_ 1(i) which is necessary to calculate vj(i) can be loaded from
the input register of the next PE, and the required 8j+1(i-2) can be loaded from the input register of
the preceding PE. The data flow during the calculation of vj+1(i-l) and v/i) in two consecutive PE's
is shown in figure 4.8.

figure 4.8: Register and PE output digits of two consecutive PE's

The Montgomery algorithm which is suitable for PE's of size a x ~ is as follows :

Montgomery conditions:

28

4 Montgomery in Systolic Arrays

1 n 2 1

2 2"- 1 < N < 2", Nis odd

3 O~X, Y, T<2N

4 1 ~a~ n+2

5 k=l(n+2)/a l
6 r =ka 2 n+2

{input X, Y, N}

m_1 = 0

for i = 0 to k do
begin

y_l(i) = 0
öl+l(i) = 0

for j = 0 to l do
begin

{ initialize input digits of first P E (i=O)}

vk1) = 0

öj+l(-2) = 0

öj+l(-1) = 0

öii) = wp) mod 2a
vii) = (w/i) div 2a) mod 2P
YJ(i) = (wp) div 2a+P) mod 2a+l

end {for j}

mi = v0(i) N' mod 2a
end {for i}

{ execute final delta-correction}

lljk) = 0
for j = 0 to l do
begin

7 R = 2' = 2ka

8 RR-1
- NN' = 1

9 3a ~ ~ ~ n

10 l=ln!~l
11 s = l~ 2 n

t/k) = (v/k) + 2p 2aÖJ+l(k-1) + 2P-aöi+1(k) + 11i-1(k)) mod 2P

11/k) = (vi(k) + 2P-2aÖi+ 1(k-l) + 2P-aöi+l(k) +!lijk)) div 2P

end {for j}

{T = T(k)= })i tfk) ·2f31 = MMM(X,Y) = XYR-1 mod N}

"""l) i. }'''''''

29

5 Hardware Design of the RSA-device

In the previous chapter it has been shown, that the Montgomery algorithm after some transfor­

mations can be executed by a dedicated systolic array (MMM) using a number of identical PE's
which can process a bits of X and f3 bits of Y within one clock cycle. The next step is to create a

hardware design of a PE which executes the adapted Montgomery algorithm. Then an MMM­
design is presented which consists of a cascade of these PE's. Finally an RSA chip design is

proposed, which executes an exponentiation algorithm adapted for the MMM.

5.1 Design of a PE

Before proceeding, the choice of a and ~ is constrained to powers of 2, for this simplifies the
hardware implementation of the integer division and multiplications significantly. Therefore, the
constraint of ~ 2 3a implies that ~ 2 4a when the MMM is implemented in hardware.

To determine the size of the PE register for storage of '(j(i), we need to define an upper bound for
digit w;(i). Because in equation (50) the summation term 2axyj < 22a+P and at least one addition
carry bit is generated, it is stated that this upper bound is 22a+P+'.

Proof:
Assume that wp) < 22a+P+l, then by expression (51) '(j(i) < 2a+l. Then by (50) wp) is bounded by:

To make an upper boundary estimate of the expression between parenthesis, the minimum value
~ = 4a is used:

(the expression between parenthesis equals 1 fora= 1).
So the assumption is true, and '(j(i) can be stored in a register of width a+ 1 bits.

Now expression (54) implies, that w;(i) is a binary vector of öp) (a LSB's), vi(i) (bits a to a+~-1),
and '(j(i) (a+1 MSB's).

Next to these values an m; must be calculated, which will be used in the next PE. Equation (49)
shows, that m; can be calculated according to:

(55)

30

5 Hardware design of the RSA device

This means, that a PE on1y needs to calcu1ate a new m; if it is calcu1ating the first digit w0(i) using

X; , v0(i-1), y0 and n0, so when the PE is starting a new modu1ar multip1ication.

Additionally, because m; has width a bits, on1y the lower a bits of v J i) and constant N' are

required for the m; calcu1ation. The fact that carries propagate away from this m; makes this

Montgomery a1gorithm superior to the paper & penci1 method.

For the calcu1ation of wii) digits yJ and nJ are required, which are 1oaded from the previous PE and

passed on to the next PE each doek cycle. Digit x; is 1oaded in PE #i (together with m;_1) each time

a new modu1ar multip1ication is started, and remains there unti1 all digits Yp n1 and vp-1) have

been 1oaded and processed in this PE (unti1 w1(i) has been calcu1ated and a new modu1ar multi­
p1ication can be started).

Furthermore it has been shown that the required oJ+1(i-2) can be 1oaded from the input register of

the preceding PE, and YJ.1(i) can be 1oaded from the input register of the next PE.

Using this description, the PE's of the MMM can be outlined as in figure 5.1.

PE#i

ój+l(i-2) -+----..

6j+1(i-1)

vi+ 1 (i-1)

a

X a

N' mod 2a

a

figure 5.1: Outfine of the PE's of the MMM

-t---- Ó;(i-1)

6j-1(i)

V;_1(i)

The 5-input adder, which is the core of the PE, adds the input va1ues according to equation (50),

which by expression (51) resu1ts in the desired ûii), vi(i) and YJ(i).

The schematic shows that X; , m;_ 1 and '(j/i) are 1oca1 va1ues which be1ong to PE #i. All other
va1ues are passed on to the next PE.

31

Pijnenburg Custom Chips

5.2 Design of the MMM

As has been shown in the previous chapter, the MMM is a dedicated systolic array, consisting of a
number of identical PE's which each execute part of an adapted version of the Montgomery
algorithm. Because most exponentiation algorithms are based on repeated modular multiplications,
the MMM provides a powerful core for a scalabie RSA device. However, the MMM is not entirely
compatible with RSA exponentiation because of two reasons:

• Two conversions to the N-residue domain and one conversion back to the integer-domaio are
required at the start and ending of an exponentiation, for all modular multiplications are
executed in the N-residue domain.

• N-residue values have width n+ 1 bits, while RSA values all have width n bits.

The required conversions have little impact on the exponentiation performance, for exponentiation
needs at most l,5n modular multiplications (see paragraph 2.2). Because RSA security is based on
a large value of n (1024 bits), the conversions take about 0.2% of the whole exponentiation time.
However, these conversions still need precalculation of the constant R2 mod N.

The second drawback can be minimized by feeding back bit n+ 1 of the MMM-result intemally, so
only digits t0(i) to t1_1(i) (containing n databits) will be stored in memory for storage of intermediale
results. Equation (15) shows that the fin al conversion back to the integer domain red u ces the n+ 1
bit N-residue value to an n-bit integer value. In this way the user does not have to concern about
the Montgomery algorithm, except for providing the constant R2 mod N.

5.2.1 Delta-correction

Figure 4.8 shows how the PE's of the MMM are mutually connected. This PE interconnection can
also be used for the final 8-adjustment, which adds the 8-digits generated in the last two PE's of

the MMM to digit v/i) (equation (52)). lf this actdition is split into:

t/k) ((vj(k) + 2f3- 2"8j+l(k-1)) mod 2J3 + 213 -"8j+l(k)) mod213

(v/k+l) + 213 -"8j+ 1(k)) modF

v/k+2) mod2f3

(56)

digits v/k+2) and v1+1(k+l) can be calculated by two extra (smaller) PE's in cascade, placed behind
the last PE of the MMM. This principle is shown in the schematic of figure 5.2.

32

5 Hardware design of the RSA device

PE#k

figure 5.2: 8-correction using two smal! dedicated PE's

Using these two dedicated PE's for Ö-correction at the end of the last PE, digits v/k+2) are
calculated (j = 0 ... /) which by (56) are equal to the Montgomery output digits t/k).

5.2.2 Pipelined multiplication in the MMM

If a PE has processed all l+ 1 digits of one modular multiplication, it is ready and can start a new
calculation by loading the first digit v'0(i) of the next modular multiplication. This pipelining can
be illustrated by figure 5.3, which shows the transition of two consecutive multiplications.
In this figure the grey PE's are calculating digits of the first modular multiplication, the white PE's
are calculating the next multiplication. If all digits y1 , n1 and vk 1) (j = 0 ... /) have been loaded in
a PE of the MMM, this PE is ready and can start loading the first digits of the next modular
multiplication.

clock l

clock 1+1

clock 1+2

Y'o

v'0(i-3)

n' 0

Y'1B Y'o
v' 1 (i-3) i-2 v' 0(i-2)

n'1 n'o

X;.1

Y1
v1{i-1)

figure 5.3: Data flow of two consecutive modular multiplications in the MMM

33

Pijnenburg Custom Chips

Two consecutive multiplications in the MMM do not mutually interfere:

• In figure 5.3, in clock cycle À+2 PE #i calculates the last digit v1(i) of the first multiplication,

and should add Ö1+1(i-2), which is zero by definition (there are only l digits of öp)). However,

instead Ö'
0
(i-2) which has been calculated in PE #i-2 in clock cycle À+ 1 (and loaded in PE #i-1

in doek cycle À+2) is added! This is allowed, for all Ö0(i) digits which are calculated starting a

new modular multiplication are zero. The proof for this is as follows:

By equations (51) and (50) and ~ ~ 4a the following applies:

80 (i) = wj(i) mod 2a =

= (v0 (i-1) + 2axiy
0

+ mi_
1
n

0
+ 2ay_ 1(i) + 2f3- 2a8

1
(i-2)) mod 2a (57)

Equation (49) shows that:

mi_
1
n0 = v0 (i-1)·N 1n

0
mod 2a (58)

Using this equation and that N'n0 mod 2a = -1 (see paragraph 6.4.1), Ö0(i) can be written as:

8
0
(i) = (v0 (i-1) + (v0 (i-1)N 1n0) mod 2a) mod 2a = 0 (59)

which shows that all digits Ö0(i) are zero and will not interfere with the calculation of the last

digit of the preceding modular multiplication.

• The PE which calculates the last digit of the preceding multiplication, stores the overflow bits

in the y-register (a+1 bits). The next clock cycle, when this PEstarts to calculate the first digit

of the next modular multiplication, the contents of this y-register will be added. Therefore digit

Yli) must be zero (for all i = 0 ... k) in order not to interfere with the next multiplication.

34

This can be shown using equation (50):

(60)

Because digits y0 ••• y1_1 contain at least n bits of Y (l = ln!~l), digit y1 can contain at most bit

n+ 1, which implies that 2axy1 < 22a. Now wtCi) can be bounded by:

wl(i) < 2/3 + 22a + 22a+l < 2/3+1 (61)

By expression (51), y1(i) = w1(i) div 2~+a = 0 for all i = 0 ... k, which proves that the y-register

only contains zeroes when the PE starts a new modular multiplication.

5 Hardware design of the RSA device

So because both Ö0(i) and y1(i) are zero for each i, two multiplications in the MMM can be
executed after each other without interference. However, each PE which starts a new modular

multiplication must be initialized by loading the new X; and m;. 1 digits and resetting the y-register
(contents are undefined aftera chip reset, and must be set to zero).

5.2.3 Reducing the number of PE's

For purpose of scalability it is desired to change the number of PE's to optimally fit the environ­
ment in which the RSA device is used. We have seen before:

• k = l(n+2)/a l : There are k+ 1 digits of X to be loaded in the MMM, so k+ 1 PE's are used
during one modular multiplication.

• l = I n/~l : Th ere are l+ 1 digits of Y, T and N to be loaded in the MMM, so each PE must
process l+ 1 digits during one modular multiplication.

Because ~ ~ 4a, k > l. This means, that there are more PE's to be used (X-digits to be loaded) than
Y, N and T digits to be 1oaded by each PE.
Choosing p = k+ 1 provides just enough PE's to load all X-digits, but because l+ 1 (the number of
digits running through the MMM) is smaller than k+ 1, there are p - (/+ 1) PE's not active. These
non-active PE's cannot already start a new multiplication, for this requires the output digits of the
current multiplication.

In order to keep all PE's of the MMM active all the time, at most l+ 1 PE's should be used and the
intermedia te results are fed back into the first PE intemally. In this case data would run through
the same PE multiple times (MMM cycles) during one modular multiplication, each time
processing a new digit of X. Because the MMM must be able to contain all intermediate results (all
v;(i)'s), a FIFO buffer of depth (1+1) - p is required (1+1 digits, of which p are stored in the PE
registers). This would yield an MMM which looks like figure 5.4.

T

figure 5.4: MMM configuration with intenwl feedback

35

Pijnenburg Custom Chips

The first MMM cycle digits x 0 ... xp-I are loaded in the PE's. The first PE in the MMM is ready for
a new MMM cycle if it has calculated the last digit vz(O). At that time the next digit xP can be
loaded to calculate vo<p), which starts the second MMM cycle. One modular multiplication requires
i(k+ 1)/p l MMM cycles. As we have seen before, in two successive PE's the first digit of a new
MMM cycle does not affect the calculation of the last digit of the preceding MMM cycle.
All digits vj(p-1) which leave the last PE of the MMM while the first PE is not ready yet (p < l+ 1)
are stored in the FIFO buffer until the second MMM cycle can start. Because PE #i needs both
8j+1(i-2) and 8j+1(i-l) and the intermediale result vii) from the preceding PE, all must be stored in
the FIFO. This FIFO therefore will have (l+l)- p levels of width ~+2a bits.

When the last MMM cycle (in which v/k) is calculated) has been completed, after 8-correction the
final digits tik) with j = 0 ... l-1 are written to extemal memory and input to the MMM for the
next modular multiplication. Digit tz(k), which contains at most bit n+ 1 of T (if n is a multiple of
~' see figure 4.2) can be stored intemally and fed back to one of the MMM inputs (multiply) or
both inputs (squaring) for the next modular multiplication of the exponentiation algorithm. In this
way in the extemal memory at most s = l~ bits (s is the smallest multiple of ~ larger than n, s <
n+~) have to be stored, and the user will not be confronted with extra memory space for starage of
the overflow digit tz(k) of the Montgomery algorithm.
A new modular multiplication can start as soon as the first PE of the MMM has calculated it's last
di git in the last MMM cycle, so when the FIFO is empty.

Because the number of PE's p can be chosen arbitrarily, it is possible that the final vik) digits are
calculated by a PE in the middle of the MMM. All next PE's must then be set in a 'bypass mode',
which forces them to pass on the input result to the output without any modification.
However, the 8-correction needs not only vik), but also the digits 8ik-1) and 8;(k), which must
also be passed on by the 'bypass' PE's. Because each 8;(i-2) is input to the next PE directly (not
loaded in an input register), PE's in bypass mode need to store this 8 digit in an extra register of
width a bits. Also, multiplexers are required in each PE to select the input digits or calculated
digits for output.

There is however a way to ensure that v/k) will always be calculated by the last PE of the MMM.
In that case vik) and matching ö's are directly input in the 8-correction logic, and no bypass mode
is required. In equation (16) we have chosen k, the number of X-digits, such that r = ka is the

smallest multiple of a larger than n+2. If k+ 1 is chosen to be a multiple of p, v;(k) will always be
calculated by the last PE. Although this can increase the number of X-digits considerably, no extra
extemal memory is required, because all extra X-digits are zero and can be generated in the MMM.
Using k+ 1 digits with k+ 1 is a multiple of p, all PE's which originally were in the bypass mode are
now calculating an iteration step of the Montgomery algorithm with a zero on the xi-input.
Therefore the multiplication time will not change using this method. Notice that choosing k+ 1 as a
multiple of p, R = 2' = 2ka will become larger, which can lengthen the calculation of R2 mod N.

36

5 Hardware design of the RSA device

5.2.4 Control of the MMM

Because data flow in the MMM is constant, the MMM control has little complexity. It mainly

consists of comparison logic and two index counters i and j, which address digits of X; respectively

y1 and ni (stored outside the MMM in extemal memory), and xk and Yk (generated intemally).

Therefore, index counter i counts upwards from 0 to k and j counts upwards from 0 to l.

If index counter j = 0, PE #0 loads digits y0 , n0 and v0 , so PE #0 must be initialized (reset y­
register, load X; and m;_1 registers) . The next clock cycle j = 1 and PE #1 needs initialization. For

this purpose all PE's have an address decoder, which farces a PE to be initialized when it is

addressed by index counter j. If however j ~ p, a non-existing PE is addressed so no X; digit can be

loaded. In that case the i counter must hold it's current value until PE #0 is addressed again (new

MMM cycle).

lf j = l, an input multiplexer must select the internally stared overflow digit tlk) of the previous

multiplication (there is no digit y1 stored outside the MMM) and place it on the y-input of the first

PE, tagether with digit v1 (internal overflow digit) and n1 , which is zero. The next clock cycle the j
register can be reset to zero, which starts a new MMM cycle processing the next series of X-digits.

If i = k, the zero-digit xk is loaded in the last PE of the MMM (if k+ 1 is a multiple of p). Also this

digit must be selected by a multiplexer, for it is not stared in the external memory.

Because it is desired to store only l digits of with ~ in the ex te mal memory, all overflow bits
caused by the Montgomery algorithm should be processed in the MMM internally.

The processing of overflow digit t1(k) on the X-data input depends on the values r = ka, s = l~, the

cryption width n and the size of a. There are two situations which should be treated seperately:

• n = l~: This implies that bit n+ 1 of T(k) is located at the LSB of overflow digit tlk), as

indicated in figure 5.5.

T(k)

(1-1)/3

X (a=1)

ka

n

X (a>2)

1/3 ka

figure 5.5: Location of bit n+ 1 in overflow di git t1 if n = l/3

37

Pijnenburg Custom Chips

If N-residue value T(k) is loaded in the MMM on the X-data input while n = l~, there are two
situations that can occur:

• a = 1: Digits x 0 .. xk_3 are loaded from the extemal memory (which stores l digits of width

~). Three digits xk_2 ••• xk must be concatenated intemally, of which digit xk_2 must
contain bit n+ 1 (stored in the LSB of the intemal overflow register), and xk-l and xk

must be zero.

• a 2 2: Digits x 0 .. xk_2 are loaded from the extemal memory. Two digits xk-l and xk must be
concatenated intemally. The LSB of digit xk-l must contain bit n+ 1 (stored in the
LSB of the intemal overflow register), and xk must be zero.

• n < l~: This implies that bit n+1 of T(k) is stared in the extemal memory, and overflow digit
t/k) is always zero, as indicated in figure 5.6.

38

n

T(k)

(1-1 >P

X (a=1)

ka

X (a>2)

lfJ ka

figure 5.6: Location of bit n+l if n < 1{3

Also in this case two situations can be distinguished:

• ka> !{3: Digits x 0 .. xk_2 are loaded from the extemal memory. Two digits xk-l and xk

must be concatenated intemally. The LSB of digit xk-l (which represents bit n+2

of X) is always zero, so the LSB of tz(k) (which is always zero if n < l~) can be
placed here.

• ka::; !{3: Digits x 0 •. xk-l are loaded from the extemal memory (containing all n+2 bits of
X). One digit xk is concatenated intemally. The LSB of digit xk is always zero,
so the LSB of t/k) (which is always zero if n < l~) can be placed here.

5 Hardware design of the RSA device

In all cases zero-digit xk must be generated intemally. In some cases extra X-digits xk 2 or xk~I must
be concatenated intemally, for then these cannot be stored in the extern al memory.

All cases however show that the LSB of the (intemally stored) overflow digit tlk) can be placed at
the LSB of the first intemally generated X-digit digit which is concatenated to the last X-digit

loaded extemally: It is of no concern whether this LSB is really bit n+ 1 of the Montgomery result.

To make a selection between extemal stored digits and intemal digits, two input multiplexers Xmux

and Ymux are placed in the MMM. Xmux adds digits xk-2 , xk-I and/or xk , possibly added with bit

n+1 if n = lf3. Ymux concatenates digits y1 and n1 (which is zero) to Yz~J and n1_1 • Digit y1 contains
the overflow digit t/k) of the previous modular multiplication, which is fed back intemally. Ymux

also generates zero-digits to fill all PE's if there are more PE's than digits of Y and N.

Because the initial digits vk 1), Öi+I(-2) and Öi+I (-1) are zero, the FIFO must provide zero-digits to
be loaded in the first PE only during the first MMM-cycle. The next MMM cycle the digits stored
in the FIFO are loaded in the first PE.

Using the four described situations, the MMM control functions can be described as listed in
appendix A. This control description of the MMM provides a simple control structure, which is
primarily based on comparison of counters and constants.

Notice that if l+ 1 < p, the MMM is not completely filled and the }-counter will not address all
PE's. Therefore the number of digits is extended to p using overflow digit y1 = tlk) and zero digits

y1+1 to Yp-I and n 1 to np-I· . The }-counter will not be resetted until j = p-1, so if all PE's have been
addressed and have loaded a digit of X.

39

Pijnenburg Custom Chips

5.3 Design of the RSA processor

Using the MMM core which has been described in the previous paragraph, an RSA-exponentiation
can be executed using repeated modular multiplications according to the Montgomery algorithm.
For this purpose the multiplicands must be converted to the N-residue domain, and the final result
should be converted back to the integer domain. Now the exponentiation algorithm becomes:

{input M, e, N, n, RN = R2 mod N}

C' := MMM(l, RN) = R mod N
M' := MMM(M, RN)

for i = (n-1) downto 0 do
begin

if e;= 1 then C := MMM(C', M')

if i>O then C := MMM(C', C')
end

C := MMM(C', 1)
if C = N then C = 0

{output C = M' mod N}

Also this a1gorithm may skip all succeeding most significant 101 bits, for then only the initia! C' =
R mod N is squared, which does not change this initia! value:

MMM(RmodN,RmodN) = (R 2modN)R-1modN = R modN (62)

This algorithm needs storage of M, N, e, C and RN = R2 mod N. Using the MMM as multiplication
core, the RSA device can be modelled as in figure 5.7.

In this figure the exponent e is loaded bit by bit in the chip control block, which executes the
exponentiation algorithm as described above. The constant R2 mod N must be provided by the user
and will be stored in the RN momory until a new modulus N is required. Using this constant, the
originally loaded message M is converted to the N-residue domain, and the result M' is written
back in the M-memory. The C memory is used for storage of intermediate exponentiation results.
The initia! C = 11 I, which is used by the exponentiation algorithm, can be generated internally in
the MMM, so this '1 I does not have to be written in the C memory by the user. The intemal
generation of this I 1' can also be used for transformation of the final C' value back to the integer

domain.

40

DATABUS
CS R W RDY

MUL
START READY

FIFO

Pijnenburg Custom Chips

The multiplexer in front of the MMM selects if a multiplication MMM(C', M') or a squanng
MMM(C', C') is to be executed by the MMM. The input multiplexers inside the MMM select
when extemal digits are loaded or when intemal digits are generated.

The digits of width ~ bits, stared in the M and C memories, are converted to digits of a bits using
the input multiplexer inside the MMM.

For security reasans it is essential that the intemal bus, which has width ~ bits, is seperated from
the extemal databus, for no (intermediate) results or memory contents may be read during
exponentiation.

42

6 Performance of the RSA core

6.1 Number of doek cycles of an MMM

We have seen that each PE of the MMM processes l+ 1 digits, and that k+ 1 PE's are used for one
modular multiplication. The number of clock cycles of a Montgomery modular multiplication can
be determined using :

• One MMM cycle takes (l+ 1) clock cycles (or p clock cycles if p > l+ 1)

• It takes i(k+ 1)lp l MMM cycles to calculate a modular multiplication

This means, that the first PE of the MMM is available after (l+ 1) · i(k+ 1)/p l clock cycles. It
takes another (p-1) + 2 clock cycles before the last di git tlk) leaves the MMM, but due to
pipelining (starting the next modular multiplication in the first PE's while the last PE's are
calculating the preceding multiplication), these extra clock cycles will only be evident after the last
multiplication of the exponentiation has been calculated.

It has been shown in paragraph 2.2, that at most 1.5n modular multiplications are required for an
exponentiation. Because RSA uses large values of n, the three MMM's required for conversions are
ignored. Now the number of clock cycles Gn can be defined as:

G n = 1.5 n · (l + 1) ·I k ;
1 l + (p + 1)

= L5n · (r ; 1 + 1) . r r ~ 1 +

1
1 + (p + 1)

(63)

For reasans of simplicity this is approximated by

G n (a,~) = 1.5 n · (n ; ~) · (n : a) · ~ (64)

So an MMM containing PE's of size a x ~ requires approximately Gn(a,~) clock cycles to execute
an RSA exponentiation of width n bits. If the maximum clock frequency of such a PE is defined

by f(a,~), The number of n-bits RSA cryptions per second can be defined as:

a~ f(a,~) p
(65)

1.5 n (n +a) (n + ~)

If p is equal to the numer of gates of the MMM divided by the number of gates of a PE(a,~), we

can define the performance index Pi(a,~) as:

43

Pijnenburg Custom Chips

Pi (a ,{3) af3f(a,f3) . 10-6

#gates (PE (a ,{3))
(66)

This performance index can be interpreted as the maximum speed of a PE per unit of area.

Now the number of RSA cryptions per second equals:

E (a,f3) = Pi(a,f3) . #gates(MMM) . 106
n 1.5n(n+a) (n+{3)

(67)

under the condition that p = { #gates(MMM) I #gates(PE((a,~)) } s l+l (more than l+l PE's will
not imprave the performance of the MMM). Using the performance index Pi(a,~), the performance
of PE's of different sizes can be compared.

6.2 Performance of PE type 1

Using the PE schematic of figure 5.1, the datapath from the PE input registers to the PE output can
be modelled as in figure 6.1. This PE, which bas not been optimized invalving hardware, is called
PE type 1.

LJ-- xi ---,.

1----Y;----'
BJ---- Yi-1

lill- c5j+1

I- V;(i-11------1~

R -m
~i-1

figure 6.1: Schematic of the datapath in PE type 1

N' 0

This figure shows that the critica! path contains at least an a x ~ multiplier and two adders.
Because m; is calculated using the lower a bits of vp) and the last adder bas width a+~ (~ ~ 4a),
it is likely that m; is calculated befare the carry of the last adder has rippled to the MSB of '(j(i).

The 81+ii-2) digit is directly loaded from the input register of the preceding PE. Digit '(j(i) is fed

44

6 Performance of the RSA core

back to the y input-register. The addition of 2P-2aoj+i(i-2) and 2a'(jji) is only required if ~=4a, for

then the MSB of y will overlap the LSB of the o-digit. Then a ripple-carry adder of width a bits is
required. If ~ > 4a there is no overlap and o and y can be treated as one digit.

This PE has been described in VHDL and compiled to a hardware design for several values of a
and ~- The PE has been compiled using the ES2 0.5!llibrary, using standard components.
No use has been made of scanpath registers, because for security reasons the contents of intemal
registers may not be read during or after a calculation. An other possibility to test the MMM core
is to execute a number of exponentiations. Statistica! analysis must indicate the fault coverage of
this testing method.

The compiler results are shown in table 6.1. Of each PE(a,~) is indicated the number of gates, the
maximum clock frequeny, and the performance index Pi(a,~). If the working frequency of a PE is

halved, also Pi(a,~) will be reduced by a factor 2.

Table 6.1: Pelformanee indices of PE type 1

~
'

4 8 16 32

1 225 292 858 1556
83 MHz 58 MHz 57 MHz 42 MHz

1.48 1.60 1.06 0.86

2 601 1053 2128
a 61 MHz 39 MHz 23 MHz

1.62 1.19 0.69

4 1858 3895
32 MHz 24 MHz

1.10 0.79

8 5632
20 MHz

0.91

This table shows that an MMM using PE(2,8) or PE(l,8) can achieve the largest number of
cryptions per second. For example, 1024 bits RSA cryption requires:

• PE(2,8): p = 128, #gates(MMM) = 77 Kgates. 0 1024(2,8) = 76 cryptions/second.
• PE(l ,8): p = 128, #gates(MMM) = 37 Kgates. 0 1024(1,8) = 37 cryptions/second.
• PE(8,32):p= 1, #gates(MMM) = 5632 Kgates (without FIFO). 0 1024(8,32) = 3.4 cryptions/second

Notice that these figures are best-case indications, which do not take into account wire load or
extra output buffers, which most likely are required when connecting many devices in cascade.

45

Pijnenburg Custom Chips

6.3 Performance of PE type 2

Because PE type 1 has a multiplier and two cascaded adders in the critica} path, PE performance
stays low due to the large carry-ripples. The carry ripple in the last two adder stages can be
eliminated by replacing them by a three-input carry-save adder. A carry save adder consists of a
number of full adders, of which the carry-input is used as data-input, and the carry-output is part
of the addition result, which is represented redundantly using sa (XOR result) and SA (carry out).
Because also the generated carries must be stored, this notation requires double register space.

The result can be converted back to an integer using a ripple-carry adder which calculates sa +
2SA. In figure 6.2 a carry-save adder is shown.

s;

a,

s~
0 s,

b, c,

figure 6.2: Schematic of a carry-save adder

A great advantage is that this adder does not have a carry ripple. Instead, all generated carries are
stared with the addition result, by which the carry propagation can be postponed.

If the last two adder stages of PE type 1 are replaced by a carry-save adder, Ö;(i), v;(i), and '{j(i) are
represented redundantly. Because the extra carry bit generated in the most significant full-adder
stage is stared in the MSB of '{jA(i), both '{jA(i) and '{j0 (i) have width a bits. So extra register space
of total length 2a+~ bits is required. Also, the addition of 2~-2aÖ;+/(i-2) and 2ayj/(i) will no
langer be required if ~ = 4a, for no overlap will occur. The same goes for Ö0 and ~.

The m; calculation needs the integer representation of the lower a bits of v0(i). Therefore, these
must be converted using a ripple-carry addition of (w/(i) mod 22a) and (2-wt(i) mod 22a), which
has width 2a bits.

The conversion of the complete result back to integers is executed at the beginning of the next PE,
where the carry can ripple during the multiplications X;Yj and m;_1n;- PE type 2 is shown in figure
6.3.

46

6 Performance of the RSA core

D-- X;--,.

[}-yj __ ./.
D- Yi~1
D- ój~1

D- v~(i-1)---1~

D- Yi~1

Q- v1' (i-1)----1~

G- m;-1,-------...

+
EB
1\

I I

!
I

I I

.Yl-
L___ ,------1

N' 0

jigure 6.3: Schematic of the datapath in PE type 2

ó~(i)

~(i)

y~(i)

eS;(i)

/\.

vi(1)

~(i)

Also this PE has been described in VHDL and compiled to hardware using the ES2 0.5p, library

and standard components without scanpath registers. The compiler results are shown in table 6.2.

Table 6.2: Performance indices of PE type 2

{3

4 8 16 32

I 210 387 1030 2140
88 MHz 68 MHz 76 MHz 60 MHz

1.68 1.41 1.18 0.90

2 531 1120 2821
a 66 MHz 42 MHz 57 MHz

1.99 1.20 1.29

4 2102 4442

45 MHz 39 MHz

1.37 1.12

8 5952

27 MHz

1.17

47

Pijnenburg Custom Chips

This table shows that an MMM using PE(2,8) or PE(l ,8) can achieve the largest number of

cryptionsper second. For example, 1024 bits RSA cryption requires:

• PE(2,8): p = 128, #gates(MMM) = 68 Kgates. G 1024(2,8) = 83 cryptions/second.

• PE(8,32): p = 1, #gates(MMM) = 6 Kgates (without FIFO). G102l8,32) = 4.1 cryptions/second

Again, these are best-case estimates of the overall-performance of the MMM.

6.4 Optimization of the PE 's

There are some more possibilities for optimizing the hardware design of the PE, which in general

all apply to reduction of the adder depth and carry propagation, or easier calculation of m;.

6.4.1 Optimization of the m; calculation

Equation (49) shows, that m; can be calculated by:

mi = v0 (i) ·N 1 moel 2"' (68)

For this purpose the calculation of N' is required, which is defined by the Montgomery algorithm:

RR-1 -NN 1 = 1 (69)

Because only the lower a bits of N' are required, only the lower a bits if this comparison are used:

(RR -l - NN 1) mod 2"' = (RR -l mod 2"' - NN 1 mod 2"') moel 2"' = 1 (70)

Because R = 2', r ~ n + 2 > a, RR1 mod 2a is zero.

Further, because {3 ~ 4a, N mod 2a = n0 mod 2a. Now equation (70) becomes:

-n0N 1 mod 2"' = 1

If the negative product is written in two's complement notation, this becomes:

(1 + n 0N 1
) mod 2"' = 1 mod 2"'

Which implies:

n 0N
1 moel 2"' = 0 = n 0N 1 = (11 ... 11)"'

So each bit of the product nrJV' must yield a binary '1 '.

If both product terms are represented binary as:

na mod 2a = (na·l na-2 ... no)2
N ' d 2a - (' ' ') mo - n a·l n a·2 ... n 0 2

48

(71)

(72)

(73)

6 Performance of the RSA core

The product nrJI' mod 2a. , a :::; 4 can be calculated using a 'paper & pencil' method:

nJ n2 ni na

n'J n'2 n'I n'o

x

n'onJ n'on2 n'onl n'ono

n'In2 n'Ini n'1n0
n'2ni n'2no

n'3n0
+

1 1

Taking the carry bits into account, which are generated during the actdition and should be added to
the next bit, each product bit can be determined seperately:

~ n'0 = 1 (Nis odd)

So using the Montgomery condition RK 1
- NN' = 1 the lower 4 bits of N' can be derived directly

from the lower di git of N. It is not recommended to do this for large a (a ~ 8), for at each new bit
more carry bis are generated which would increment the logic depth to determine the lower a bits
of N' considerably.

So using:
n'0 = 1

n'I = n I

n'2 = n 2

up to a = 4 the Montgomery constant N' mod 2a. does not have to be calculated extemally, for a
PE can do this using the first input digit of N.

49

Pijnenburg Custom Chips

Now m; can be calculated by equation (68) using the product of the a lower bits of N' and V
0
(i). If

v 0 (i) and m; are written using binary digits as:

the lower four bits of the product result m; can be determined seperately again using the 'paper &
pencil' method:

v3 Vz Vl Vo

n'J n'z n'J n'o

x

n'ovJ n'ov2 n'0v1 n'ovo

n'Jv2 n'JvJ n'1v0

n'2vJ n'2vo

n'Jvo

+

mJ m2 mi mo = m; mod 24

Adding the generated carry bits of an actdition to the actdition of the next bit of m; mod 2a, the
lower four bits of m; are defined by:

mo = n'ovo = Vo

mi = n'0v1 EB n'1v0 = VI EB n J Vo

m2 = n'ov2 EB n'JvJ EB n'2vo EB (VI 1\ nl Vo)

= Vz EB n I VI EB n 2 Vo EB (Vl 1\ nl Vo)

mJ = n'ov3 EB n'Jv2 EB n'2vJ EB n'Jvo EB cm2

-
= v3 EB n J v2 EB n 2 VI EB (nl EB n 2 EB n 3)v0 EB cm2

If the following definitions are made:

a v2

b = n I V1

c = n 2 Vo

d = VI 1\ n J Vo

50

6 Performance of the RSA core

carry bit cm2 can be determined by:

Cm2 = (a 1\ b) V (a 1\ C) V (a 1\ d) V (b /\C) V (b 1\ d) V (c 1\ d)

= a/\(bEBd) v C/\(aEBb) v d/\(bEBc)

Using these definitions of the lower four bits of m; , a PE can calculate m; using only the lower a
bits of digits v0(i) and n0 without the use of a multiplier of size a x a and without the need for

precalculation of N' mod 2a.

51

Pijnenburg Custom Chips

6.4.2 Optimization of the adders

By replacing the last two 2-input adder stages by one three-input carry-save adder, PE type 2 has a
better performance index than PE type 1. This optimization step can be applied once more by
adding the second adder stage of figure 6.3 to the carry-save adder, which results in a 4-input
delayed-carry adder. This adder, of which is a larger version has been used in the BriekeU design
[Bri82], has a logic depth of four full adders.

Because hardware compilations show that PE's perform best using a = 2, further optimization of

PE's are focussed on PE's with a = 2. Now the multiplications can be replaced by addions (xi,oYj +
2xuy) and (mi·Uflj + 2mi un). In this way the eight PE input digits (Ö and y are considered to be
one adder input digit) can be added using two more of these 4-input delayed-carry adders. PE type
3 will then look like figure 6.4.

1---- xi,oYi --1~

1-- 2xi,1yi--.-t

1- v~(i-1)----i.-t

IM- Y 1~1
lill- ój:,

1---- mi-1.oni

1-- 2m;.,,,n;

EB
(\

figure 6.4: Schematic of PE type 3 using delayed-carry adders

I

I

I

I I

N'

<ll

öj(i)

~(i)

y~(i)

ö~(i)
À •

vi(1)

y~(i)

0

This type of PE shows a logic depth of eight full adders and little logic for the calculation of mi.

Although this type of PE has not been compiled to hardware design yet, it is estimated that this
type of PE can run at a clock frequency of over 90 MHz.

52

7 Conclusions and Recommendations

In this report the design of an RSA crypta-processor has been presented, using an MMM-core

consisting of PE's. The desing is flexible by choice of parameters a and ~' which have effect on

the size and maximum clock frequency of a PE, and by choice of the number of PE's p, which has

effect on the size of the MMM-core. All parameters directly relate to the number of clock cycles

which is required for one exponentiation.

The RSA processor is based on a common exponentiation algorithm, which makes use of at most

1.5n repeated modular multiplications based on the Montgomery algorithm. The MMM-core, which

executes an adapted version of this algorithm (suited for systolic arrays) has been simulated and

funtionally tested. The simulations show that the adapted algorithm is working correctly.

The performance of the RSA processor has been estimated by hardware compilations of PE's using

several values of a and ~· These compilations show, that an MMM of 128 PE's (each PE of size

a = 2, ~ = 8) can calculate about 83 (1 024 bits) cryptions/second at a clock frequency of 66 MHz.
The size of the MMM-core in that case is approximately 68 Kgates (best-case estimation).

Low-speed RSA cryption can be executed using an MMM consisting of 1 PE of 6 Kgates (a = 8,

~ = 32), which can reach 4.1 (1 024 bits) cryptions/second at a clock frequency of 27 MHz.

However, this MMM requires a FIFO buffer of 32 levels of width 48 bits.

The RSA cryption device is also flexible regarding cryption width: A smaller cryption width

results in less X and Y-digits, which reduces cryption time. The upper bound of the cryption width
is only determined by the size of the on-chip memory.

Using a double cryption width will decrease the cryption time only by a factor 8. Because of the
regular structure of the MMM, multiple MMM-cores can be connected in cascade, decreasing the

number of clock cycles required for an exponentiation.

The performance of the presented RSA design can be improved by:

• Optimization of the PE's

• Using dedicated delayed-carry adders (as in PE type 3), high-speed PE's can be designed.

• Designing a PE using customized hardware can decrease the size of the MMM-core

considerably. Because all PE's are identical, customization only has to be executed for a

single PE.

53

Pijnenburg Custom Chips

• Optimization of the exponentiation algorithm

Literature provides several improved exponentiation algorithms based on repeated modular
multiplications. The impravement generally applies to reduing the number of multiplications
required for an exponentiation. lf these improved algorithms can be adjusted such that the
MMM-core can execute these multiplications, exponentiation is speeded up.

It can be concluded, that a flexible RSA device has been developed which can operate in both a
high-speed and a low-area environment, using different parameters.

54

Literature references

[Bri82]

[Dim95]

[Dix92]

[Dus90]

[Eld93]

[Iwa93]

[Iwa94]

Brickell, E.F.

A Fast Modular multilplication algorithm with application to two key cryptography
Crypto '82, p. 51-60

Albuquerque, New Mexico

Dimitrov, V. and T. Cooklev

Two algorithms for modular exponentiation using nonstandard arithmetics
Journal: IEICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences
Vol: E78-A Iss:l p.82-87

Jan. 1995, Country of publication: Japan

Dixon, B. and A.K. Lenstra

Massively parallel elliptic curve factoring
EUROCRYPT '92 EXTENDED ABSTRACTS, pp. 169-179

Dusse, S.R. and H.S.Kaliski

A cryptographic library for Motorota DSP56000
Advances in cryptology, Eurocrypt '90, p.230-244,

Springer-Verlag (1990)].

Eldridge, S.E. and C.D. Walter
Hardware lmplementation of Montgomery's Modular Multiplication Algorithm
IEEE Transactions on Computers, Vol. 42, No. 6, June 1993 p. 693-699]

lwamura, K. , T. Matsumoto and H. Imai

A Parallel Processing M ethod for Imptementing the RSA Cryptosystem
Electronics and Communications in Japan,

Part 3, Vol. 76, No 5, May 1993 p. 14-27

lwamura, K. , T. Matsumoto and H. Imai

Montgomery modular-multiplication method and systolic arrays suitable for modular
exponentiation
Electronics and Communications in Japan, Part 3, Vol. 77, 1994, No. 3, p. 40-50.

Translated from: Denshi Joho Gakkai Ronbunshi *Japan).

Vol. 76-A (1993), No. 8, p. 1214-1223

55

[Kaw93]

[Knu69]

[Mor90]

[Niv72]

[Pol74]

[Wal93]

[Zha93]

56

Kawamura, S. and A. Shimbo

Fast sever-aided secret computation protoeals for modular exponentiation
Joumal: IEEE Joumal on Selected Areas in Communications

Vol: 11 Iss: 5 p.778- 784

June 1993, USA

Knuth, Donald E.
Seminumerical algorithms
Volume 2 of The Art of Computer Programming.
Addison Wesley. Reading, Massachusetts, 1969. (RSA paper)

Morita, H.
A Fast Modular-Multiplication Algorithm Based on a Higher Radix
Advances in cryptology, Crypto '89, p. 387-399
Springer-verlag 1990

Niven, I. and H. S. Zuckerman.
An Introduetion to the Theory of Numbers
John Wiley & Sons, New York 1972

Pollard, J.M.

Theorems on Jactorization and primality testing
Proc. Camb. Phil. Soc. (1974), pp 521-528

Walter, C.D.
Systolic Modular Multiplication
IEEE Transactions on Computers
Vol. 42, 1Ss:3, p. 376-378, March 1993, USA

Zhang, C.N.
An improved binary algorithm for RSA
J oumal: Computers & Mathernaties with Applications
Vol: 25 Issue: 6 p. 15-24
March 1993 Country of publication: UK

Appendix A: MMM controller functions

DESCRIPION OF MMM THE CONTROLLER FUNCTIONS

Register j INC (load next Y and N-digits the next clock cycle)

if j ~ p then
Register i

el se

Register i

if j = MAX(/+1, p) then
Register j

if (j < l) then
Ymux

el se
if (j = l) then
begin

end

Ymux

Ymux

else U> /}
begin

end

Ymux

Ymux

if n = l~ then
begin

if a= 1 then
if i ~ k-2 then
begin

el se

end

Xmux

Xmux

Xmux

HOLD

INC

RESET

YJ = tlk)
n = 0 .I

xi = 0
LSB(xk-2) = LSB(tlk))

(stop loading X-digits if no PE addressed)

(reset j if all digits y1 are loaded (/+ 1 ~ p))

(or all PE's are addressed (/+ 1 < p))

(load Y-digits from extemal memory)

(feed back intemally stored overflow digit)
(by adding an extra digit after y1_1)

(more PE's than Y-digits: add zero-digits)
(to fill all PE's of the MMM)

(concatenate three digits xk_2 to xk)

(feed back LSB of intemal overflow digit)

(load X-digits from extemal memory)

57

else {a 2: 2}

end

if i 2: k-1 then

begin

el se

end

Xmux

Xmux

Xmux

xi = 0
LSB(xk-1) = LSB(tz(k))

else {n < l~}

end

if ka > l~ then
if i 2: k-1 then

Xmux

el se
Xmux

end

else {ka ~ l~}
if i= k then

Xmux

el se
Xmux

end
end

xi = 0

xi = 0

if (i = k) and (FIFO = empty) then
begin

Register i RESET
Register j RESET

end

58

(concatenate intemal digits xk-J and xk)

(feed back LSB of intemal overflow digit)

(load X-digits from extemal memory)

(concatenate intemal digits xk-l and xk)

(load X-digits from extemal memory)

(concatenate xk intemally)

(load X-digits from extemal memory)

(MMM is ready for a new multiplication)

Appendix B: VHDL description of PE type 2

**

Company Pijnenburg Custom Chips b.v.

Project Pxxx

Designer E.Kuipers

Hierarchy -/p900/synopsys/rtl

File PE4.VHD

Creation 01/04/96

Description: PE type 2

Changes

**
library IEEE ;

USE IEEE.std_logic_1164.all;
USE IEEE.std_logic_arith.all;

PACKAGE MMM_GLOBAL IS
CONSTANT A

CONSTANT B

END MMM_GLOBAL;

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_misc.ALL;

integer .- 4;

integer .- 32;

USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

LIBRARY MMM_RTL;
USE MMM_RTL.MMM_GLOBAL.ALL;

entity PEl is
PORT (CLK In std_logic;

InitPE In std_logic;

X i In std_logic_vector
ffil In std_logic_vector
Yi In std_logic_vector
Ni In std_logic_vector

(A-1 downto 0) ;
(A-1 downto 0);
(B-1 downto 0);
(B-1 downto 0) ;

59

Ti - and In std_logic_vector (B-1 downto 0) i

dl i and In std_logic_vector (A-l downto 0) i

d2i and In std_logic_vector (A-l downto 0) i

gi_ and In std_logic_vector (A-l downto 0) i

Ti - xor In std_logic_vector (B-1 downto 0) i

dl i - xor In std_logic_vector (A-l downto 0) i

d2i - xor In std_logic_vector (A-l downto 0) i

gi_xor In std_logic_vector (A-l downto 0) i

mo Out std_logic_vector (A-l downto 0) i

Yo Out std_logic_vector (B-1 downto 0) i

No Out std_logic_vector (B-1 downto 0) i

T _o_ and Out std_logic_vector (B-1 downto 0) i

dlo and Out std_logic_vector (A-l downto 0) i

d2o and Out std_logic_vector (A-l downto 0) i
go_ and Out std_logic_vector (A-l downto 0) i

T _o_ xor Out std_logic_vector (B-1 downto 0) i

dlo - xor Out std_logic_vector (A-l downto 0) i

d2o - xor Out std_logic_vector (A-l downto 0) i
go_ xor Out std_logic_vector (A-l downto 0)

) i

end PEl;

architecture BEHAVlORAL of PEl is

SIGNAL x std_logic_vector (A-1 downto 0) i

SIGNAL m std_logic_vector (A-l downto 0) i

SIGNAL y std_logic_vector (B-1 downto 0) i

SIGNAL N std_logic_vector (B-1 downto 0) i

SIGNAL T - and std_logic_vector (B-1 downto 0) i

SIGNAL dl - and std_logic_vector (A-l downto 0) i

SIGNAL d2 and std_logic_vector (A-l downto 0) i

SIGNAL g_ and std_logic_vector (A-l downto 0) i

SIGNAL T_xor std_logic_vector (B-1 downto 0) i

SIGNAL dl - xor std_logic_vector (A-l downto 0) i

SIGNAL d2 - xor std_logic_vector (A-l downto 0) i

SIGNAL g_xor std_logic_vector (A-l downto 0) i

SIGNAL pl std_logic_vector (B+A-1 downto 0) i

SIGNAL p2 std_logic_vector (B+A-1 downto 0) i

SIGNAL sl - and std_logic_vector (B-2*A-l downto 0) i

SIGNAL sl - xor std_logic_vector (B-2*A-l downto 0) i

SIGNAL s2 - and std_logic_vector (B downto 0) i

SIGNAL s2 - xor std_logic_vector (B downto 0) i

SIGNAL s3 std_logic_vector (B+2 downto 0) i

SIGNAL s4 - and std_logic_vector (B+2*A-l downto 0) i

SIGNAL s4 - xor std_logic_vector (B+2*A-l downto 0) i

SIGNAL NO std_logic_vector (A-1 downto 0) i

SIGNAL ZERO ES std_logic_vector (B-1 downto 0) i

SIGNAL s8 std_logic_vector (A-1 downto 0) i

60

begin

registers: PROCESS(CLK)
BEGIN

IF (CLK 1 event) AND (CLK = 1 1 1
) THEN

load always Y, N, T, dl and
y <= Yi;
N <= Ni;
T - and <= Ti _and;
dl - and <= dl i _and;
T - xor <= Ti _xor;
dl - xor <= dl i _xor;

IF (InitPE = 1 1 1
) THEN

d2 on each clock

reset register g, load Xi and ml
x
m
g_ and
g_ xor

ELSE
hold

x
m
g_ and
g_ xor

END IF;
END IF;

<= Xi;
<= mi;
<= (OTHERS
<= (OTHERS

registers
<= X· ,
<= m· ,
<= g_and;
<= g_xor;

END PROCESS registers;

=> I 0 I) i

=> I 0 I) i

x, m, g

PE_input: PROCESS(d2i_and, d2i_xor)
BEGIN

d2 - and <= d2i _and;
d2 - xor <= d2i _xor;
ZERO ES <= (OTHERS

END PROCESS PE _input;

mull: PROCESS(m,N)
BEGIN

=>

-- m width > 1 bit
pl <= m * N;

END PROCESS mull;

mul2: PROCESS(X,Y)
BEGIN

-- X width > 1 bit
p2 <= X * Y;

END PROCESS mul2;

I 0 I) i

61

62

PEaddl_and: PROCESS(d2_and, g_and, ZEROES)
BEGIN

-- b >= 4a, d2_and and g_and don 1 t overlap: construct sl
as 1 digit of width B-2A, using B-4A zeroes

sl_and <= d2_and & ZEROES(B-(4*A)-l downto 0) & g_and;
END PROCESS PEaddl_and;

PEaddl_xor: PROCESS(d2_xor, g_xor, ZEROES)
BEGIN

-- b >= 4a, d2_xor and g_xor don 1 t overlap: construct sl
as 1 digit of width B-2A, using B-4A zeroes

sl_xor <= d2_xor & ZEROES(B-(4*A)-l downto 0) & g_xor;
END PROCESS PEaddl_xor;

PEadd2_and: PROCESS(sl_and,T_and,ZEROES)
-- ripple-carry adder for redundant carry-bits of T,
VARIABLE Tl,

BEGIN
Tl
T2
SUM
s2_and

END PROCESS

T2,
SUM: std_logic_vector(B-A downto 0);

.- ZEROES(A downto

.-
1 0 1 & T_and(B-1

.- Tl + T2;
<= SUM & T_and(A-1
PEadd2_and;

0) & sl_and;
downto A);

downto 0);

PEadd2_xor: PROCESS(sl_xor,T_xor,ZEROES)
-- ripple-carry adder for redundant sum-bits of T, width: l+B-A
VARIABLE Tl,

T2,
SUM: std_logic_vector(B-A downto 0);

BEGIN
Tl . - ZEROES(A downto 0) & sl _xor;
T2 . - I 0 I & T_xor(B-1 downto A);
SUM . - Tl + T2;
s2 - xor <= SUM & T_xor(A-1 downto 0) ;

END PROCESS PEadd2 _xor;

PEadd3: PROCESS(s2_and, s2_xor, ZEROES)
-- ripple-carry adder which converts the redundant sum T+g+d to

normal representation
VARIABLE Tl,

T2,
SUM: std_logic_vector(B+l downto 0);

BEGIN
Tl
T2
SUM

.- "00" & s2_xor(B downto 1);

.- '0' & s2_and;

.- Tl + T2;
s3 <= SUM & s2_xor(O);

END PROCESS PEadd3;

PEadd4: PROCESS(s3, pl, p2, ZEROES)
-- redundant adder width: B+2A (=number of XOR-ANDOR pairs)
VARIABLE Tl,

T2,
T3 : std_logic_vector(B+(2*A)-l downto 0);

BEGIN
A >= 2 I I

Tl
T2
T3

.- ZEROES((2*A)-3 downto 0) & s3(B+l downto 0);

.- ZEROES(A-1 downto 0) & pl;

.- p2 & ZEROES(A-1 downto 0);

FOR I in (B+(2*A)-l) downto 0
LOOP

<= Tl(I) XOR T2(I) XOR T3(I); s4_xor(I)
s4_and(I) <= (Tl(I) AND T2(I)) OR (Tl(I) AND T3(I)) OR

(T2(I) AND T3(I));
END LOOP;

END PROCESS PEadd4;

PE_output: PROCESS(dli_xor, dli_and, s4_and, s4_xor, Y, N)
BEGIN

d2o - xor <= dl i _xor;
d2o - and <= dl i _and;
dlo - xor <= s4_xor (A-1 downto 0) ;

dlo and <= s4 _and(A-1 downto 0) ;

T _o_ xor <= s4 _xor(B+A-1 downto A);
T _o_ and <= s4_and(B+A-l downto A);
go_xor <= s4 _xor(B+(2*A)-l downto B+A);
go_ and <= s4_and(B+(2*A)-l downto B+A);

output input register values
Yo <= Y;

No <= N;
END PROCESS PE_output;

63

sel_m: PROCESS(dl_and, dl_xor, s4_and, s4_xor, InitPE)
VARIABLE sS, s6, s7 : std_logic_vector((2*A)-1 downto 0);
BEGIN

sS .-
s6 . -
s7 .-

s4_xor(2*A-1 downto 0); T_o_xor,dl_xor
s4_and(2*A-1 downto 0); T_o_and,dl_and
sS+ (s6(2*A-2 downto 0) & 1 0 1

);

define tri-state port (A>l)
IF (InitPE = 1 1 1

) THEN

ELSE
s8 <= s7((2*A)-1 downto A);

FOR I in (A-1) downto 0
LOOP

s8 (I) <= I z I;
END LOOP;

END IF;
END PROCESS sel_m;

calc_m: PROCESS(s8, NO)
VARIABLE p3 : std_logic_vector((2*A)-1 downto 0);
BEGIN

p3 .- NO * s8;
mo <= p3(A-1 downto 0);

END PROCESS calc_m;

end BEHAVIORAL;

configuration CFG_PEl_BEHAVIORAL of PEl is
for BEHAVlORAL
end for;

end CFG_PEl_BEHAVIORAL;

64

