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ABSTRACT

We present a flexible module generator for transistor net lists is presented to be used in a
top-down VLSI-design environment. The module generator is automatically interfaced with
a floorplanner and offers accurate control over aspect ratio and pin positions, while the area
remains approximately constant.

The generator is based on a doubly folded transistor matrix. The folding algorithm uses an
elegant hierarchical divide and conquer technique, to control the aspect ratio while minimis-
ing the area.

A small library of adaptable transistors is used to lay out the module. This library offers a
simple but very efficient compaction method.

Steps to optimise the foldresult are discussed as well as an automatically controlled module
partitioning to extend the aspect ratio range.

Compared to other automated layout styles, the presented module generator makes smaller
modules, that have a great flexibility. The layout of the modules can be customised with
respect to all major design parameters: function, speed, design rules, aspect ratio and pin
positions.
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1. INTRODUCTION

A complex system usually can be divided in several more or less individual subsystems. The
subsystems can be connected to each other and make up the complete system. Dividing sys-
tems into smaller subsystems is a well known approach in laying out a complex circuit on
one chip and is known as stepwise refinement [WIRT71].

To get good results with stepwise refinement it is important that the smaller subsystems can
easily match the requirements of a global structure defined on a higher level. In VLSI-
design this approach leads to the use of a floorplanner [LAUT79],

A floorplanner divides the circuit in a number of connected layout parts, it assigns positions
to the layout parts and reserves area for the connecting wires. The floorplanner uses a
mincut-algorithm to divide the system in a set of smaller subsystems called slices and these
slices in even smaller slices. This top-down approach results in a hierarchical ordering of the
slices. Each slice consists of one or more smaller slices, called child slices. This division
continues until the slices are small enough. At that stage the slices will be called modules,
functional layout parts with a flexible shape.

After all divisions are made, the floorplanner uses the shape constraints to select the best
shape of a module. These shape constraints define the the possible shapes of the slices and
the corresponding minimal area. The shape constraints of a slice are the sum of all shape
constraints of the child slices. The stepwise refinement approach is also used in selecting the
final shapes of all slices and modules. Within the shape of one slice, the best configuration
and shape of all child slices are chosen.

After all these steps, the system will be represented by a set of modules and their intercon-
nections. All modules will have a relative position and the floorplan is nearly complete.
Making a plan for the connecting wires is the final step. The best pin positions are deter-
mined, and from these pin positions the number of wires can be derived. The floorplanner
then makes room for these wires by creating channels between the modules. This leads to the
final floorplan of the circuit.

A module generator then lays out the modules. Of course this module generator has to take
the desired shape and pin positions in account and try to match these requirements as well as
possible. On the other hand the floorplanner should only ask for shapes and pin positions that
can be generated by the module generator. The final shape of the module has also to be
predictable.

A good module generator gives complete freedom of pin positions and the final area occu-
pied by the module is independent of these pin positions and of the aspect ratio (width /
height). A wide range of aspect ratio’s must also be possible. Finally the generated layout
must be compact, i.¢. the total area must be small.

One of the current projects at the Design Automation Section of the Eindhoven University of
Technology is the construction of a silicon compiler based on the stepwise refinement
approach. Part of this project is the construction of a flexible module generator.

This report is a master thesis of a graduation project and it reflects the implementation and
results of such a module generator. The presented module generator is based on a doubly
folded transistor matrix, The generated layouts can be customised with respect to all major
design parameters: function, speed, design rules, aspect ratio and pin positions.



A general introduction to the module generator and the layout problem derived from the
folding of the transistor matrix are described in chapter 2. Chapter 3 presents the actual
module generator. In chapter 4 some improvements to the folding result are presented.
Chapter 5 will discuss a partitioning of the modules to get more flexibility and chapter 6 will
show the results from various tests.

To make a layout a small library of transistor models is used. This library can be designed by
using a interactive layout editor. A manual to design these standard models, as well as other
manuals, is given in the appendices.



2. THE LAYOUT PROBLEM

2.1 A module generator

As stated in chapter 1 a module generator generates compact layouts of a module. The
description of the module is given in three different files:

o netlist: The netlist describes the nets that make the connections between the transistors
and I/O-pins within the module. All transistors, I/O-pins and nets have unique names.

e module-file: For each transistor in the netlist, the module-file describes its parameters,
like channel length, channel width, channel type (n-channel or p-channel) and optional
diffusion implant (enhancement- or depletion type transistor).

e interface-file: The interface-file is the interface between the floorplanner and the module
generator. It specifies the desired aspect ratio (width / height) and desired (relative) pin
positions.

From these three inputfiles a transistor matrix is extracted. In the transistor matrix each net
is represented by a column and each transistor by a row. The coordinates of the connections
are the same as given in the netlist.

The transistor matrix is represented by an interval-file. The interval-file will be folded in
two directions and the resulting transistor matrix, the foldresult, will be used to finally gen-
erate the layout of the module.

Figure 2.1 gives an overview of the steps to be taken. In the next paragraphs these steps will
be explained.

2.2 Make intervals

The netlist

A netlist of transistors allows total freedom for the design of transistor networks. There are
no constraints to the number of connections to be made to one signal and the gate, drain and
source of a transistor can be connected to any signal. We therefore use a netlist to describe
the circuit.

The netlist contains all connections to be made. Each line in the netlist describes one connec-
tion between a signal and a transistor. It also states to which terminal of the transistor (gate,
drain or source) the connection is made.

The syntax for all lines of the nelist is:
<netname> <transistorname> <terminal>

The netlist of a simple depletion load inverter is given in figure 2.2.
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Figure 2.1. Anoverview of the steps to generate a layout.
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Figure 2.2. The netlist for a simple inverter.

There is no actual difference in the layout between source and drain, so they are called sl
and s2.

The module-file

The module-file describes the type of transistor and the size of its channel. There are four
different types:



nenh : n-channel enhancement transistor;
ndep : n-channel depletion transistor;
penh : p-channel enhancement transistor;
pdep : p-channel depletion transistor;

The lines in the module_file have the following syntax:

<transistorname> <type> <channel length> <channel width>

The interface-file

The interface-file describes the aspect ratio and pin positions as desired by the floorplanner.
The syntax of the interface-file is as follows:

“module” <module name>
“"shape” <width> <height>
"pin" <pin name> <coord> <coord>

"endﬂ

The first line must always contain the keyword "module”, followed by the name of the
module. The second line always starts with "shape” followed by the desired width and height
of the module. The file has to be terminated with the keyword "end" on the last line.

All other lines start with the keyword "pin" followed by the pinname and the interval of
allowed positions of the pin. Figure 2.3 shows the mapping of the intervals. The coordinates
are floating point numbers, so only a part of a side can be chosen. This offers the possibility
to define relative pin positions on the same side.

$NORTHS$
3.0 25 2.0
3.0 | 2.0
$EASTS 3.5+ 1.5 $WESTS$
40 ‘ 1.0
0.0 05 1.0
$SOUTHS

Figure 2.3. The side numbering of a module.



The interval-file

The netlist can be mapped to a two-dimensional transistor matrix. In this matrix all transis-
tors are mapped to the rows and all nets to the columns. The I/O-pins connected to the
north-side of the module are all combined on one row called ’$NORTH$’. The ’south’-1/O-
pins are all combined in the row '$SOUTHS$’. The 'west’- and ’east’-1/O-pins are all com-
bined in two columns called '$WEST$’ and '$SOUTHS$’. These rows and columns are
always fixed to the four sides of the transistor-matrix. In this matrix all connections can
easily be represented.

To demonstrate this mapping we use the simple latch shown in figure 2.4

-oVDD
ﬂDS |—-H[‘D2 D1]H—|
- out o— —oout
L
kS k4
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———{ E10 E9 ’—l——‘ EB E7]
-
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Figure 2.4. A simple latch example.

After the mapping of all nets to columns and all transistors to rows, the transistor matrix
mapping of the circuit is given in figure 2.5. Where 'S’ is a s1 or s2 contact. ‘G’ is a gate
contact and "X’ is a combined gate and s1 contact.

To describe the circuit one could use the whole matrix. The matrix however is very sparse
and therefore it is more useful to describe the circuit only by the connections in the matrix.
This leads to the interval-file. The interval-file represents the connections in the matrix by
only specifying the coordinates of the connections.

The interval-file is also used in the block that makes the layout of the module. At that point
the parameters of the used transistors are needed, so they are added to the intervals-file.

The syntax of the interval-file is as follows:

<module name>
<width> <height>
<column> <row> <blocknr> <typenr> <chl> <chw> [<name>]
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Figure 2.5. The transistor matrix of the latch circuit.

The block number is used by the folding to fold partitioned modules (see chapter 5).

2.3 Folding the transistor matrix

The transistor matrix can be transformed directly to a layout of the module, however, it
would give a very inefficient layout with no control over the aspect ratio.

Using a two-dimensional folding algorithm [TEEF88] some nets are mapped to the same
column and transistors are mapped to the same row, resulting in a smaller transistor matrix
and control over the aspect ratio.

The folding problem can be formally stated as follows: The circuit is specified as a bipartite
graph B(G,N,E), with the nodes G representing the gates and N representing the nets. The
edges EcGxN represent the gate/net incidences. The circuit is to be realized on a grid of
rows and columns. The set of grid points is represented by ZxZ. The layout of a circuit is
determined by a gate assignment function ¢: G—Z which assigns gates to columns and a ner
assignment function y: N—Z which assigns nets to rows. Let v(n) denote the set of neighbors
of n: v(n) ={geG|(g,n)eE}. The span ¢ of a net neN is an interval of columns defined as

o(n =] mi(n)cb(g), ma(x)¢(g)}. The spans of gates that are assigned to the same column are not
gev(n gev{n

allowed to overlap:

Vg.gea [0(9i)=0(g)) => o(gi)no(g;)=2]



Since the problem is symmetric the same goes, for the nets. The objective of the folding
algorithm is to find the best valid ¢ and y subject to some cost function, for instance area.

Using straight orthogonal cutting lines, the matrix is repeatedly divided in gategroups (rows)
and netgroups (columns). After the kth horizontal cut the transistors are partitioned in k+1
gategroups.
k
G= ;G, VGK,G, [GiﬁGJc@]

Similarly the nets are partitioned into I+1 netgroups.
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Figure 2.6. The partiotioning after some cuts.

As the exact assignment has not yet been determined the span of a gate will be defined as
6(g) = [ min{i | N;rw{Q)<>@}, max{i | Ninwv(g)<>D} ]
The maximum number of rows needed for a set of gates is given by
wGi) = max #geG; | jeo(9)}
Notice that this is the exact number of rows if 6=6. A lower bound for the number of rows is
determined by the number of transistors that cross a vertical cutting line:

8(Gi) = max #{ge Gi | jeS(g)ar-1€5(9)}

Since the terminals of the transistors are not allowed to overlap there is another lower bound:

YGi) = max #v(mnGj)

The mean of these upper and lower bounds can be used to estimate the size of the array:



I §{G) YG; G K S(N;), YN N;
(Emax(( )Z( )+ ))'(Eomax“ );’( N+ ))

=0

However, if the folding reaches the final partitions, this mean of the upper and lower bounds
is not a good estimation, because the size of a group usually is the same as the upper bound.
Therefore only the upper bounds have to be used to estimate the size of the array:

K |
(ZG) - (Zn(N))
i=0 =0

These estimations can also be used in estimating the aspect ratio of the matrix. As horizontal
cuts tend to make the matrix lower and vertical cuts tend to make the matrix narrower, the
direction of the cutting can be used to control the aspect ratio and make the estimated aspect
ratio to convert to the desired aspect ratio (if possible). Figure 2.7 shows the result of the
folding.

[ =4
O < (»
L~ = N

Figure 2.7. Result of folding the transistor matrix of figure 2.5.

This foldresult can be used as a ’floorplan’ for the final layout of the module. All relative
positions of the transistors, nets and pins are now known. The absolute positions, however,
are still to be generated.

2.4 Laying out the folded matrix

The vertical nets of the foldresult are implemented in metal wires, while the horizontal
transistors are implemented in diffusion and polysilicon. The foldresult assumes a fixed grid
in horizontal and vertical direction. In horizontal direction we can use a fixed grid between
the vertical wires. In vertical direction we can use a fixed grid if we assume that all transis-
tors have the same size. Figure 2.7 shows that the gate-connection may be on the left or



right of both source and drain, it may be in between them or it may be on one of them. This
can only be realised with different transistor models. Figure 2.8 shows the smallest models
that can be used for three different situations.

Lls mal}

NN

-
O

’ 7
7% /
A )

Figure 2.8. Smallest transistor models

If the length of the transistor channel is larger than the room between drain and source the
models in figure 2.8 can not be used and we have to use the models given in figure 2.9.

Figure 2.9. Models for long channel transistors

This shows that the assumption of uniform transistor sizes is not realistic. To use a fixed
grid in vertical direction we must first find the size of the highest transistor, and then set the
grid to this size. This way we act as if all transistors have the same height. Of course, this
will cause a great waste of chip area. A floating grid per row can reduce this waste, but a
compact layout can only be achieved if no grid is used at all.

In the next chapter the compaction of the layout will be discussed.
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3. COMPACTION OF ADAPTABLE TRANSISTORS

3.1 Compaction steps

Using the fixed grid of the foldresult to lay out the module produces a great waste of chip
area, as can be seen in figure 3.1a.

A better solution could be the use of a floating grid. For every row the highest transistor on
that row determines the gridsize. Figure 3.1b shows only little improvement by this step.
Dropping the idea of a grid offers more freedom to place the transistors in a compact
manner. Figure 3.1c shows how transistors can be placed if we only use the contour of the
transistors below as a border for a transistor on the next row. Some transistors are now mir-
rored in the X-axis to give a better fit. Still there is one more step to be made to improve the
result. If two diffusion-strips are connected to the same metal strip, their vias are allowed to
overlap. The same goes for two poly-strips. A diffusion-metal via however is not allowed to
overlap with a poly-metal via. Figure 3.1d shows how this may result in a final layout. On
several locations two vias of the same kind partly or completely overlap. There’s even one
spot where three vias overlap.

In this example the height of the module drops from 246 via 210 and 152 to 106, which
means a final reduction to 43 %.

So, to get a compact layout of a folded transistor matrix, the module generator must be able
to keep track of the transistors-contours, determine what transistor model gives the best fit,
and allow vias of the same kind to overlap, if they are connected to the same metal strip.

The next paragraphs will demonstrate how all these objectives have been reached. In fact,
figure 3.1d is the result of automatically generating the layout of the module from its discrib-
tion in the netlist, module-file and interface-file (the I/O-pins are removed).

3.2 Surrounding boxes with overlapping vias

The design rules of a certain technology state the minimal distance between two unrelated
tracks of poly and/or diffusion. If we assume that each transistor model has a surrounding
box, that is large enough to prevent violating the design rules we won'’t have to worry about
these design rules any more. This surrounding box is half the size of the largest design rule
wider than the actual transistor. Surrounding boxes allow us to forget about the actual struc-
ture of the transistor and leave us with the problem to place them in a compact manner.

This implementation of the surrounding boxes leads to a layout as shown in figure 3.1c. No
overlap of vias of the same kind is possible. To allow vias to overlap they should be left out
of the surrounding boxes, but this can also result in an overlap of vias of different types. To
avoid this we introduce two types of surrounding boxes. One that prevents everything but
poly-metal vias to overlap and one that prevents everything but diffusion-metal vias to over-
lap. Combining both boxes leaves at the poly-metal via position the possibility to overlap
with another poly-metal via and on the diffusion-metal via a possible overlap with another
diffusion-metal via. These surrounding boxes are shown in figure 3.2. The two contours we

11



(a) (b)

Figure 3.1. Layout compaction steps.

use now allow overlap of the same kind, but prevent each other to overlap.

3.3 Using a standard library

Using an interactive layout editor we can construct a library that contains all transistor
models. This library offers for each model a list of boxes of layout elements, described in the
layout description language LDM. The surrounding boxes can be simply derived from these
boxes by incrementing their size in each direction by half the size of the largest design rule.

12
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Figure 3.2. Surrounding boxes for diffusion- and poly-overlap.

The surrounding boxes are determined separately and placed in a standard library. To distin-
guish between poly-via overlap, diffusion-via overlap and no overlap at all, three different
"layers’ are used called px, dx and xx.

Figure 3.3 shows the three different boxes for a transistor model. The xx-boxes are generated
direct from the poly and diffusion strips. This means that they overlap with the px- and dx-
boxes. These overlapping areas are removed from the xx-boxes.

L . 2
/:////// ////X/{/

.

px

dx

XX

ERENNY

overtao

Figure 3.3. Three surrounding box layers and their overlap.

3.4 Stretching transistor models

To avoid a great number of transistor models in the library, it is possible to stretch the
models. This way one transistor model can be used to span different numbers of columns.
Figure 3.4 shows how one model can be used if two stretich points are introduced. One
stretch point to the right of the leftmost via and one to the left of the rightmost via. The fold-
result tells to which column a signal of the interval-file is mapped. So combining both
interval-file and foldresult the actual column-positions for gate, drain and source can be
determined. This is done by a program called 'ctm_stretch’. Row by row, starting at the bot-
tom of the module, it places the characteristics of the transistors in a file with extension .tor.
These characteristics are s1-column, s2-column, gate-column, channellength, channelwidth,
transistor type (enhancement or depletion) and an optional name. Using the M4-
preprocessor, a string substitution leads to the final model with the appropriate stretch.

13



Figure 3.4. Stretching a transistor model.

Not only stretch can be modified using the M4-preprocessor, also channelwidth and -length
of the transistor and an optional diffusion implant can be specified. M4 can also be used to
select a model from the library. It can select on the order of gate, drain and source, and deter-
mine if a transistor is too large to fit between drain and source, so these models can’t be
selected.

3.5 Selecting and placing a model

For every transistor in the circuit M4 puts all the possible models in a file with extension
.c2in. This file is a list of transistors with the following syntax:

<transistorlist> ::= <transistor> <transistorlist> | <transistor>
<transistor> ::= <instance> <definitionlist>

<instance> ::= "instance" <int> <int> <int> <int> <int> <int> [<name>] <eol>
Instance is the header of a list of definitions. The integers stand for sl-
column, s2-column, gate-column, channellength, channelwidth and type of
the transistor.

<definitionlist> ::= <definition> <defintionlist> | <definition>
<definition> ::= <newdef> <elementlist>

<newdef> ::= "newdef™” <int>
Newdef is the header of a list of elements, that define one transistor model.
The integer gives the modelnumber.

<elementlist> ;:= <element> <elementlist> | <element>
<element> ::= <box> | <module-call> | <terminal>

<box> ::= "box" <layer> <int> <int> <int> <int> <eol>

14



<module-call> ::= "mc" <name> <int> <int> <eol>

<terminal> ::= "term" <layer> <int> <int> <int> <int> <name> <eol>
<int> = {<digit>}+

<name> ::= <letter> {<letter> | <digit>}*

<layer> = <name>

All lines following the newdef-key are the LDM-description of a model until another newdef
or instance-key is encountered. This way each transistor can have an arbitrary number of
models to choose from.

All models passed on by M4 can be used to construct a valid circuit. By placing the boxes
one by one, starting at the lowest row, we can easily keep track of the outline of the boxes
that are already placed. This allows us to select from the possible models the one thats fits
best.

To select a model, the extra size that this model will occupy, the increase in maximum
height or a combination of both can be taken in account. Experiments showed the extra
space times the increase in height to be a good criterion. Extra space here means not only the
size of the surrounding box, but also the wasted space beneath it after placement.

Figure 3.5 shows that even a shape belonging to a transistor with larger height can be
selected because it gives a better fit.

Figure 3.5. Selecting the model that fits best.

The vertical positions of all boxes of a model use the same offset. To place a transistor it is
only necessary to compute this offset, called the base.

For both surrounding boxes two separate layers are defined. Both layers are handled in
exactly the same way, so we will not make any distinction between them. To represent each
box two arrays are used. One to represent the top contour of the box and out to represent the
bottom contour. In the following these array will be called top[] and bottom[]. A third array,
size[], represents the top-contour of the total of all placed transistors.

To compute the base of a transistor we start at the left of bottom([]. Base will be set to the
lowest value that doesn’t cause a forbidden overlap. Then we go step by step to the right and
every time we come across a forbidden overlap, the base will be adjusted to this overlap.
This way the lowest base that doesn’t cause forbidden overlaps is found. '

15



While computing the contours the left and right side of the model are also determined. This
allows us to calculate the extra area used by the model as follows:

“right

extra area = Y base + topfi] - sizeli]

et
This of course for both contour-layers.
The difference in maximal height is also easy to get, and so the extra size times the increase
in height is easily computed. This criterion is used to select a model. The model with the
lowest value is chosen and added to size{].
This model is placed in the outputfile with extension .c2out. It gives the definitionnumber,
s1-column, s2-column, gate-column, channellength, channelwidth and the computed base,
optionally followed by a name. This file is used to select with M4 to final layout of the
module, which is placed in an LDM-file.
Figure 3.6 gives an overview of the steps that lead to the final layout.

foldresult intervals

DEFINE
STRETCH

)

I

or

1a

.c2in

Ao

SELECT

& library
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Figure 3.6. Using a model library to make a layout.




3.6 Connecting wires

The folding maps more signals to one column. To make the connections in the layout this
causes some problems. First of all, because we don’t use a fixed grid, the length of the wires
no longer depends on the number of rows it has to span, but of the positions of the highest
and lowest connected transistors. So only after all connected transistors are placed we can
determine the size and position of a wire. Secondly, vias may only overlap if they are con-
nected to the same wire.

The ’ctm-stretch’-program offers a second outputfile with extension .sign. This file contains
the actual columns that wires are mapped to, the number of connections to that wire and the
relative position of the wire in the column. This allows the wires to be placed at the same
time as the transistors.

All wires that are mapped to the same column are linked in a list. The relative positions of
the wires in the same column is used to sort this list from bottom to top. All linked lists are
placed in a hashtable for easy access.

- name name
column column
position position
connect connecl

next next

wire-array

Figure 3.7. Datastructure for wires.

By addressing the first wire in the linked list this wire can be updated after a transistor is
connected to it. A wire is updated by setting its bottom-coordinate to the centre of the lowest
connected via and setting the top-coordinate to the highest connected via. After these coordi-
nates have been calculated, the number of connections to the wire is checked. If all connec-
tions to that wire are now made, the final size and position of the wire is known, so the box-
description is placed in the .c2out file. (M4 will not find any string substitutions for this
box-description and transfers the description direct to the LDM-layout-file.)

All other connections to a wire in the same column can not belong to this wire anymore, so it
is removed from the list. The next wire will now become the head of the list.
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4. IMPROVING THE FOLDRESULT

4.1 Folding-groups

The folding-program looks at the transistor matrix in a purely symbolic manner. Due to its
general-purpose character, it does not take in account any technology dependencies. The
only objective of the folding-algorithm is to compress the size of the transistor matrix by
reducing the number of columns and rows. If several mappings all lead to the same result
the folding algorithm just picks one of them. It does not look if the area between drain and
source is large enough to fit the transistor. In fact it doesn’t even distinguish gate, drain and
source. It is also incapable of allowing overlap of vias of the same kind.

The folding-algorithm divides all columns in groups. The columns in the same group may be
switched around, without causing any overlapping nets or transistors. To the folding algo-
rithm it makes no difference what the order of the columns within a group is, so the ordering
of the columns in a group is chosen arbitrary. The only important ordering is the ordering of
the groups. The same goes for the rows.

All groups have a unique groupnumber, which gives the ordering of the groups. For net-
groups the groupnumbers increase from left to right, for the gategroups the groupnumbers
increase from top to bottom. Running the folding-program with the ’-g’ option, this
groupnumber is placed after every column and row of the foldresult. This allows us to
change, within the groups, the order of columns and rows, without really changing anything
to the foldresult.

4.2 Re-ordering columns

In chapter 2 we found that, if the size of a transistor is to large to fit between drain and
source, a model with a greater height has to be used. These models usually occupy more
space in the module.

vy
M////////

Ak =

1 3 2 4 5

Figure 4.1. Re-ordering columns to use smaller transitor models.

To avoid these situations, we change the order of the columns a bit. Figure 4.1a shows a
configuration of a transistor with a large channel length. Because s1 and s2 are to close, the
transistor can not lie flat between them. If, however, we change the order of columns 2 and 3,
there is enough space between sl and s2. This way, the transistor can lie flat, resulting in the
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situation of figure 4.1b.

Of course we may only swap columns 2 and 3 if they belong to the same folding group.
Swapping columns 2 and 3 may, however, also result in obstructing other transistors, that
originally were flat, to stay flat. Therefore, we must consider all transistors at the same time.
For each transistor we can find what the minimal distance between drain and source should
be. This results in a graph, that states for each column the minimal distance it should have to
other columns. The nodes represent the columns, and the branches give the desired minimal
distances.

The objective of the re-ordering algorithm is to find a mapping that satisfies all desired dis-
tances of the graph. If such ordering of the columns is found, we say the graph is solved.

Branches between nodes of different groups may be useless, because the minimal distance
between a column of the first group and a column of the second group is larger than the
desired distance of the branch. Also, the desired distance of a branch can be to large for any
of the possible positions of the columns. Both branches can be discarded, the first can never
be violated, the second will always be violated.

Still, the resulting graph may not be completely solvable. If the graph can’t be solved, we
want the best possible result. The larger the transistor, the more extra height it will have if it
can not lie flat. Therefore it is more important that large transistors can lie flat than small
ones. Also, if between two columns there are several smaller transistors, the extra height
may be added, to make the branch representing the minimal distance between these columns
more important.

After the columns are ordered, the importances of the branches whose minimal distances
were violated, are added together. The ordering that gives the lowest value is considered to
be the best ordering of the columns.

Figure 4.2 shows the graph for the example of the latch in chapter 2. The numbers at the
nodes are column number, minimal column and maximal column. The numbers at the
branches represent minimal distance and priority. The redundant branches are dashed.

4.3 A heuristic for re-ordering the columns

The minimal distance graph can’t be solved in polynomial time. A dynamic programming
strategy could solve the graph, or at least find the best solution, but if the size of the groups
becomes to large, the number of possible solutions, that will have to be remembered during
the computation, grows too large.

A greedy algorithm can be used to place the columns one by one. Using a branch and bound
strategy, the greedy algorithm can look a fixed number of placements ahead. In most cases
this results in a good placement, but it can not guarantee to find the best possible solution.
This paragraph will discuss this heuristic.

The folding divides the columns for the latch-example in 4 groups. Group 1 contains
columns 1, 2 and 3, group 2 only contains column 4, group 3 contains column 5 and group 4
contains columns 6, 7 and 8. Using the graph of figure 4.2, the heuristic will be explained,
with a lookahead of 4 placements.

19



768

Figure 4.2. Desired distances between the columns.
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Figure 4.3. Search tree for placement on position 1.

Starting at position 1 there are three columns that can be placed. Figure 4.3 gives the tree
that will be checked if the lookahead is 4. In the circle the placed column is written. The
index to the left of a circle gives the violation of that particular placement (summed from the
top), according to the graph of figure 4.2

The tree shows that all three columns give the same violation in the following placements.
The branch and bound criterion now states, that, if in a branch of the tree a violation is
encountered that is no smaller than the best viplation so far, the branch will not be examined
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further. The best violation can, of course, only be calculated at the end of a branch. This way
the dashed branches will not be examined. Using this strategy, column 1 will be placed on
position 1.

Continuing this for the other positions, the final placement will be:

position | 1 | 2|3 |4 |5161|7]|38
column | 1 | 3121415168

Starting at the left, this strategy tends to push the problems to the right of a group. As long as
a column can be placed without violating any desired distance, this will be done, leaving all
columns that may cause a violation to be placed last.

Just picking the columns to be placed one by one, a column, that has no branches to others,
can be placed at a point, where also a column, that has branches could be placed. At that
point it makes no difference, but in future positions it can cause unnecessary problems. The
branchless column can be placed on any position, but the one with branches can only be
placed on some positions. Therefore it is better to place the column, that may give the most
problems, i.e. has the most branches, as soon as possible.

Before a placement on a position starts, a priority list of the placement order of the columns
is determined. This is done by adding the priorities of all branches to one column, that are
not connected to a placed column. This sum is a good criterion for the problems a column
can give in future placements. By applying this list, the columns that may give the most
problems will always be considered first and be placed as soon as possible, while columns
that never will cause any problems will only be placed if all other columns failed.

This strategy still causes problems to be pushed to the right of a group, but now it will try to
save the easy columns for this part of the group. Less accumulation of problems at the right
side of a group may occur.

Using a lookahead of k, the number of steps to be taken at the first position of a group is:

n!
(n—k—-1)!

for selecting a single column at a position, where n is the number of columns in that group.
Summing this over all positions, we find the order of the algorithm to be O(n**2) where n is
the number of columns in the largest group. The lookahead should be large enough to span
the largest minimal distance between two groups. This can be determined by the largest
transistors. Normally this lookahead will not be larger than 4, so we used a fixed lookahead
of 4, resulting in an order of O(n®). Usually groups are small (3 to 10 columns). These small
groupsizes make the algorithm to run fast, despite its high order.

However, the speed can be increased. This is done by assuming, that a placement without
any violation is possible. The branch and bound lookahead originally starts with a very high
best violation, which ensures the computation of the violation of the first branch. Now we
start with a best violation of zero. This causes the branch and bound criterion to discard all
branches that cause a violation, and, if possible, find a violation-free placement. If no
violation-free placement can be found, the branch and bound set is preformed once again,
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now with a very high initial best violation.

At the start of a new group, it usually is possible to place columns without any violation.
Here, the placement is almost linear. At the end of the group, violations may have to occur,
but at that time, the groupsize is very small and the algorithm still works fast.

If a situation occurs, where a violation is inevitable, this violation may as well be made as
soon as possible. This prevents accumulation at the end of the group and the high transistors
will not be grouped in the same columns. This can easily be achieved by starting the place-
ment after a violation in the lookahead is found, with this violation as the best violation.

A great number of tests showed that the algorithm runs in only a few seconds for up to 150
columns, with highest groupsize of 15.

4.4 Re-ordering transistors

A second limitation of the folding is the inability to allow overlapping vias. Using a simple
lefi-edge algorithm that allows overlap of vias of the same kind, the result of the folding can
be improved.

Within one row-group, all transistors of that group can be moved to any row in that group,
without causing nets to overlap. By placing all the transistors in a group again, using this
left-edge algorithm, all possible overlaps are taken into account. The left-edge algorithm is
linear and it can easily be proven to give an optimal result.

Figure 4.4 shows a simple demonstration of the way a row can be won by letting vias over-
lap. In various examples it showed that up to 8 rows were won, using this re-ordering of the
transistors.

Figure 4.4. Re-ordering transistors with left-edge allowing vias to overlap.

Re-ordering the transistors may not be done before the columns are re-ordered. Due to the
fact that within a netgroup there can be no situation where a transistor “ends’ in the group
and another transistor 'begins’ in that group on the same row, the columns may be switched
freely within the group, without ever causing any overlap. The left-edge algorithm however
may result in a situation, which might give overlapping transistors if the columns are
switched.
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5. PARTITIONING THE TRANSISTOR MATRIX

5.1 Heavily connected signals

Power- and ground-signals, as well as clock-signals, can be connected to a great number of
transistors. These long wires usually prevent the folding to produce a transistor matrix with
more columns than rows. For instance, if one signal has 40 transistors connected, the
minimal height of the transistor matrix must at least be 40. In general, the folding will not be
able to bring it below 50, due to transistors, that cross the signal wire.

This produces a strong limitation to the range of aspect ratio’s that can be reached. In prac-
tice, the aspect ratio hardly ever comes above 1.0 and for large modules it might not even
reach 0.5. A very important requirement of a good module-generator, however, is a wide
range of aspect ratio’s, that can be very well controlled. Hence, we have to avoid these long
wires in the module to get higher aspect ratio’s.

One way to achieve this is cutting the wires in two and connect half of the transistor to one
wire and half to the other. The transistors can be divided random, but a mincut algorithm
offers a more elegant way to deal with this problem, as will be seen in the next paragraphs.

5.2 Controlling the aspect ratio

The mincut algorithm divides all transistors in two groups in such way, that the number of
wires connecting the two groups is minimal. If we put all transistors of one group to the left
of the module and the others to the right, we have partitioned the module in two blocks.
Some signals now are used in both blocks. Because the signals are vertical wires, they have
to be connected by horizontal strips. These horizontal strips are the only elements that cross
the border between the two blocks.

Now we have two blocks, that each can reach a highest aspect ratio between 0.5 and 1.0. The
combined module can therefore reach an aspect ratio between 1.0 and 2.0. To get even
higher aspect ratio’s we might partition both blocks and get for the total of 4 blocks a maxi-
mal aspect ratio between 2.0 and 4.0. This partitioning of blocks can be continued, but for
smaller circuits the number of extra elements that are introduced (for each cut wire we intro-
duce a strip and an extra wire) may dominate the number of original elements. This will
cause an increase of total size of the module, which should be avoided.

Partitioning the module increases the maximal aspect ratio that can be obtained, it also may
increase the minimal aspect ratio. Both size of the transistor matrix and the desired aspect
ratio influence the number of partitions that give an optimal result in aspect ratio and
minimum area of the module. Experiments showed that a good result will be obtained if the
number of columns after folding is about 15 for each block. This rule can be applied to
determine the number of blocks by the desired aspect ratio and the size of the transistor
matrix. The size of the transistor matrix is the number of columns times the number of rows
of the matrix before folding. ,

A great number of tests resulted in the empirical relation between the size of the matrix and
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the size of the foldresult to be:

Also
foldresult = width - height
and:
. width
aspect ratio = height

gives the width of the foldresult to be:

width =2 - size®7® - aspect ratio

This will result in an optimal number of blocks:

#blocks = —%s—\f 2. size®™ . aspect ratio

This number of blocks will be rounded to the nearest power of 2 to determine the actual
number of blocks.

Though an extra number of elements and wires are added to the transistor matrix by the par-
titioning, the result in total area may still be better, because now two separate blocks have to
be folded at the same time. If a module is partitioned, the size of an individual block is about
1/4 of the original module. The addition of a few extra strips and wires makes them only a
little larger. Using the above relation between size of the foldresult and size of the transistor
matrix it is easy to see, that the sum of the individual blocks is smaller than the original
result. Of course, the connecting strips between the two blocks put some constraints on the
folding, but in general, partitioning the module in a few blocks doesn’t increase the area of
the foldresult significantly.

So, depending on the desired aspect ratio and the size of the transistor matrix, we have a
good criterion to control the aspect ratio and at the same time keep the total area of the
module constant. Table 5.1 give the results for a test on the module 'five’ (177 transistors
and 95 signals).

minimal maximal minimal maximal
blocks ratio ratio area area
1 0.35 0.55 5500 6345
2 0.68 0.85 3630 3848
4 0.75 1.86 3066 4200
8 1.17 3.50 3255 4002

TABLE 5.1. Aspect ratio for partitioning module *five’.

This module was folded with all 45 I/O-pins in the upper side of the module. Aspect ratio’s
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smaller than 0.68 were for that reason not achievable if the module was partitioned. Without
the partitioning an aspect ratio of 0.35 was reached, but the area of the foldresult was 6345,
so the smaller aspect ratio was mostly the result of making the module higher, not of making
it narrower. For this example, the automatic control of the number of blocks gives only an
unpartitioned module if the desired aspect ratio was 0.2 or smaller.

5.3 A linear-time heuristic for the mincut-algorithm

The mincut partitioning problem consists of finding a partition of a set of cells into two
blocks, such that the number of nets which have cells in both blocks is minimal. In general,
this process is subject to a balancing condition. Allowing a certain deviation, this condition
keeps the sizes of both blocks in balance, preventing all cells to move to one block.

No polynomial-time algorithm is known to compute the exact and optimal solution to this
problem. Since networks may be very large, a practical algorithm must employ heuristics. At
the 19th Design Automation Conference in 1982 Fiduccia and Matteyses presented a linear-
time heuristic [FIDU82).

The basic idea of the algorithm is to move one cell at a time from one block to the other and
compute the number of nets that will be cut after the move. The balancing condition is used
to determine the block from which a cell has to be selected for a move. A moved cell will be
locked to prevent moving it back. After all cells have been moved, the best partition encoun-
tered during the pass is taken as the new partition. This partition can usually be optimised by
a second pass. All locked cells are made free again and moving some of them back can give
a better result. Additional passes may be performed until no further improvements are
obtained (in practice this occurs after just a few passes).

The best cell to select from a block is the one that gives the most gain by moving it. The
cellgain can be defined by the decrease in the number of cut nets if it is moved from its
current block to its complimentary block. This can also be a negative number.

+2 +1 0 -1

| | ] ]

Figure 5.1. Examples of cellgains.

To select the cell with the best gain from a block, "bucket” sorting is used. This is done
using an array whose k-th entry contains a linked list of all cells with cellgain k. Direct
access is achieved by using the maxgain index.

Using the celigain also simplifies the work to compute the number of cut nets after a move,
by just subtracting the cellgain from the previous number of cut nets. :
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After a cell is moved it is taken out of the bucket array and placed in a free-cell-list which
will be used to fill the buckets again at the start of a new pass. This makes it possible to use
cells that are always locked, like for instance I/O-pins, that are on the east or west side of the
module. These cells are not allowed to move under any circumstance.

If a cell is moved, the gains of the cells connected to the same nets, can change. Therefore
these cellgains will be updated and the cells will be taken from their bucket and placed in
another bucket. To update the cells, only the ’critical’ nets have to be considered. A net is
said to be critical, if there exists a cell connected to it, which would change the net’s cutstate
if it is moved. Non-critical nets can never change the gains of the connected cells and there-
fore need not to be considered.

Before the move of a cell the connected nets have to be checked. If the net has no cells in the
complimentary block, the gains of all connected free cells in the current block have to be
incremented, because moving them can not change the cutstate of the net anymore (figure
5.2a). If the net has only one cell in the complimentary block, the gain of this cell has to be
decremented, because moving this cell can no longer change the cutstate of the net (figure
5.2b).

After the move all nets connected to the cell have to be checked again. If there are no cells
left in the current block, the gains of all connected free cells in the complimentary block
have to be decremented, because they may cause an uncut net to be cut (figure 5.2¢). If there
is just one connected cell left in the current block, the gain of this cell has to be incremented,
because now a move of this cell can change the cutstate of the net (figure 5.2d).
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Figure §.2. Updating critical nets.
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No more than four update operations per net are performed during one pass of the algorithm.
In [FIDUS2] this is proven, as well as the time-linearity of the heuristic.
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5.4 Shorter diffusion wires

Due to the p-n junction between diffusion and substrate, a diffusion wire has a high capaci-
tance. This capacitance slows down the circuit and is therefor undesired. The value of the
capacitance is proportional to the size of the diffusion wire, hence, long diffusion wires
should be avoided.

Unpartitioned module can have diffusion wires running over the total width of that module.
The partitioning of the module offers a great opportunity to bound the length of diffusion
wires, because the only elements allowed to cross the partition-lines are poly strips. An
upper limit for the diffusion wire length is also the maximal width of a block.

So, not only the control over the aspect ratio benefits from the partioning, the performance of
the circuit is also improved by it. Two important factors to the decision of partitioning
modules.

5.5 Single poly-silicon wires

A net that is cut by the mincut algorithm may have on one side of the cut just one connected
cell. Splitting these nets in two and adding a connecting strip only increases the area of the
transistor matrix. This leads to an unnecessary extra increase in the foldresult, so these cuts
must be ommitted.

However, as we have seen in the last paragraph, the circuit may have a better performance if
the diffusion wires a kept within the bounds of the partition. Therefore before cutting a net
we look if the net has only one connection on either side of the cutting line. If so, the net will
only be cut if this connection will not be layed out in poly-silicon. Tests showed that, due to
this action, the area of the foldresult reduced by 2 %.

5.6 Folding partitioned modules

The folding uses a mincut algorithm that applies a different heuristic [TEEF88]. Without
further action, this may result in a different partitioning. The strips may not be the only ele-
ments that cross the partition-line and some strips won’t cross it at all. Experiments showed
that this gives poor results, because the wrong signals were cut and others that should be cut
were uncut. The folding didn’t treat the partitioned module as two (or more) connected
blocks, but as one undivided module. The partitioning usually resulted in a better control
over the aspect ratio, but in most cases it also gave a larger foldresult, due to the extra wires
and strips.

To force the folding to use the same partition, we added the *-b’ option to the folding. With
this option, the folding reads the blocknumber of an element from the interval-file. Before
the folding uses its own mincut-algorithm, it first partitions the module in the previously
defined blocks. '
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This partitioning is done step by step, each time taking the largest block that can be parti-
tioned. After each step the aspect ratio of the module is calculated. As soon as this aspect
ratio rises above the desired aspect ratio, the partitioning is stopped and the actual folding is
started. This approach to control the aspect ratio is similar to the one used in the folding,
where a partitioning of the netgroups tends to decrease the height of the module and a parti-
tioning of the gategroups (cells) tends to decrease the width of the module.

Partitioning the module in all blocks might result in an aspect ratio that is too high and can’t
be reduced sufficiently by the partioning of the gategroups. Moreover, too many partitions in
one direction may obstruct any partition in the other direction.

After the folding can’t find a better result by partitioning groups, a second stage of the fold-
ing starts. In this stage two adjacent groups are merged and the folding tries to find a better
partitioning for them. This is done for all pairs of adjacent groups.

This optimisation step may result in saving a few columns or rows. However, it also destroys
the original partitioning of the module. This means, that the poly strips are no longer the
only elements that cross the partition-lines, but diffusion wires may also cross these lines. In
fact, this usually occurs several times, resulting in much longer diffusion wires.

A solution to this problem is to skip in the second stage only those netgroup pairs, that have
nets that belong to a different block in the original partition. This avoids skipping the second
stage completely and still keeps the upper bound for the diffusion wires.

5.7 Partitioning power and ground

The global router, that connects all modules of the floorplan to one circuit, demands the
power and ground wires to run through the module, i.e. the wire has on both sides an I/O-pin.
It also connects all I/O-pins in the same channel, and uses only metal-wires, because of the
relative high currents.

In the module it is also best not to make connections between two power or two ground
wires in poly. Therefor, if we cut a power or ground wire, the two parts are not connected by
a poly-strip, but they get two I/O-pins each. These I/O-pins will only have a metal-terminal,
while all other I/O-pins can only be connected via a poly terminal.

5.8 Second metal layer

The partitioning of the module offers an excellent possibility to use a second metal layer. All
connecting strips can use this second metal layer. It has no design rules to any other layer
and can be layed on top of all other layers. This offers a much more compact layout of the
module.

The only restriction to the second metal layer is that it can only be connected to the first
metal layer and this connection may not be on top of a poly-metal or diffusion-metal via.
Hence, only the vias between first and second metal layers are ’visible’ to the rest of the lay-
out. '
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To implement the second metal layer, a third contour type has to be used to separate the
strips in this layer. It also requires a different approach to the overlapping of the vias. The
vias may overlap anything but the contour of the new type and the poly-metal and diffusion-
metal vias. To achieve this, the metal-metal2 vias may not be placed on a position where
only the px-layer or only the dx-layer is used.

A more difficult situation occurs at placing a transistor after a strip in second metal is placed.
Now both px- and dx-contours have to be adjusted at the same time to be able to let the
metal-metal2 via to overlap anything but an other via.

Due to the fact that the second metal layer may overlap all other layers, the aspect ratio will
be hard to control. It depends on the number of strips used and on the positions of the vias
how much space can be saved. The folding however can not take the overlapping into
account and uses for each strip the same space as for a transistor.

The second metal layer strips usually are grouped at the partition-line between two blocks.
This implies a number of rows can be save at these positions. However, at the left or right
side of the module there will hardly ever be any strips, s0 no rows can be saved there. This
will cause the module to remain high at the edges and drop lower in the centre. This can not
be avoided by the folding or adjusted after the folding.

The strips can not be left out of the folding and afier the folding be introduced again,
because this may lead to two wires that have to be connected by a strip that have no common
vertical position and therefore can’t be connected by a horizontal strip.

A solution to this problem has not been found yet and the second metal layer has not yet
been implemented.
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6. EXPERIMENTAL RESULTS

6.1 Foldresult to layout

The main goal of the project was to transform the foldresult into a layout of the module. This
transformation must be linear with respect to aspect ratio and chip area.

A great number of tests showed that the linearity was independent of the aspect ratio, area or
number of partitioning blocks. The results are presented in table 6.1;

Soldresult layout factor
module size area  ratio area ratio | area ratio
heli84 192 108 075 49920 049 | 462 065
data 414 187 0.65 87936 042 | 470 0.65
adc 1170 351 0.48 159600 033 | 454  0.69
mpS 1536 378 117 176328 0.78 | 466  0.67
logic 1632 495  2.20 229320 151 463  0.69
four 3952 990 1.10 500388 0.69 | 505 0.63
cntd.4 12936 | 1736 1.81 700398 143 | 403 0.79
loc 12056 | 2236 0.83 967680 0.61 432 073
five.2 20223 | 3850 0.79 | 1801704 054 | 467  0.68
fived 25875 | 3066 1.74 | 1506816 1.14 | 491 0.66

TABLE 6.1. Area and aspect ratio of foldresult and layout.

Table 6.1 shows an almost constant factor of both aspect ratio (mean factor is 0.68) and area
(mean factor is 461). The size of the transistors is of some importance to the area and aspect
ratio of the layout. If a lot of transistors have a large channel-length, they probably can’t all
lie flat, so the height of the module will increase. Wide transistors may also increase the
height of the module, because they will need a model that has a greater height. Module
*four’ has only long or wide transistors, so it can’t be compacted as much as other modules.
Module ’cnt4.4’ has no long or wide transistors at all, so the compaction is much better,
resulting in a lower area factor and a lower ratio factor.

This result makes it possible to predict the area and aspect ratio of the layout as:
area = 450 - foldresult
aspect ratio = 0.7 - desired ratio

if we assume, that the desired aspect ratio can be reached by the folding.
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6.2 Re-ordering columns and rows

The deviations in table 6.1 can also be explained by the fact that the tests were run with the
re-ordering of columns and rows. In some examples more rows were saved than in others, so
the height of the layout was a little harder to predict. Skipping the re-ordering of the modules
might give a better control over the aspect ratio as will be demonstrated in table 6.2, but it
also results in larger modules.

Jactor factor

desired without re-ordering with re-ordering rows
ratio area ratio area ratio saved
0.25 390 0.80 348 0.90 S
0.33 359 0.86 324 0.97 8
0.50 409 0.76 393 0.82 1
0.67 408 0.78 393 0.81 2
1.00 422 0.75 387 0.82 0
2.00 389 0.82 394 0.81 1

TABLE 6.2. The effect of re-ordering columns and rows for module cnt4.

6.3 Controlling the aspect ratio

The final shape of the module highly depends on the results of the folding. Both aspect ratio
and area are a linear function of the results of the folding. Therefore it is important to have a
good control over the folding. In chapter S we found that a good control over the aspect ratio
can only be obtained by partitioning the module. Table 6.3 shows the results of folding the
module ’five’ unpartitioned and partitioned in respectively 2, 4, 8 and automatic number of
blocks. Module ’five’ has 45 I/O-pins, which were all placed on the upper side of the
module. For this reason, modules narrower than 45 columns could not be formed. Small
aspect ratio’s were only reached by making the module higher, causing a great increase in
area. Table 6.3 clearly shows, that the control over the aspect ratio of an unpartitioned
module can be very poor. Even partitioning in two blocks gives little control over the aspect
ratio.

The automatic control of the number of partitioning blocks gives a good control over the
aspect ratio in a wide range, where the area of the module remains approximately constant,
as demonstrated in figure 6.1 and 6.2.

Figure 6.2 gives the obtained area as function of the desired aspect ratio. A more interesting
picture is the obtained area as function of the obtained aspect ratio. This is given in figure
6.3. If we forget the large deformation due to the very low desired aspect ratio, figure 6.3
shows, that the area of the foldresult remains more or less constant within the aspect ratio
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desired 1 block 2 blocks 4 blocks 8 blocks automatic

ratio area ratio | area ratio | area ratio | area ratio | area  ratio
0.2 5684 042 - - - - - - 5684 0.42
0.3 5684 042 | 3848 0.70 - - - - 3848 0.70
0.4 6345 035 | 3848 070 | 5720 047 - - 3848 0.70
0.5 5865 0.44 | 3848 0.70 - - 7375 047 | 3848 0.70

0.7 5500 055 | 3795 0.80 | 4200 0.75 - - 3795 080
1.0 5564 049 | 3819 0.85 | 4012 0.87 | 4002 1.19 | 4012 0.87
1.5 5564 049 | 3630 0.83 | 3102 140 | 3450 1.63 | 3102 140
2.0 5564 049 | 3630 0.83 | 3066 174 | 3680 1.74 | 3066 1.74

3.0 - - 3630 083 | 3276 1.86 | 3255 2.66 | 3255 2.66
4.0 - - - - 3150 1.79 | 3584 350 | 3584 3.50
5.0 - - - - - - 3432 3.15 | 3432 3.15

TABLE 6.3. Controlling the aspect ratio for various partitions of module five.

obtained
folding 14
ratio -
0.5

0.2 4

desired ratio
Figure 6.1. Obtained ratio versus desired ratio.
range from 0.7 to 3.50. This constant area is also found in the actual layouts of the module

within the aspect ratio range from 0.55. t0 2.66 as shown in figure 6.4.

Figure 6.5 shows three layouts for the circuit 'five” at different aspect ratio’s.

6.4 Comparison of layout methods

To compare this layout style with other automatic layout styles, a number of experiments
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Figure 6.2. Obtained folding area versus desired aspect ratio.
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Figure 6.3. Obtained folding area versus obtained folding ratio.

were done. All systems designed for the same nMOS process, with the same design rules.
We compared the results with a conventional gate matrix generator [LIES87] and a standard
cell place and route system [THEER8S]. Table 6.4 shows the results of these methods. This
table shows, that the two-dimensional folded transistor matrix reduced the area of the gate
matrix layout 10 42%-73% and the standard cell to 37%-66%. A manual designed layout for
the module cnt4 has an area of 0.183. This is only 3.11 times smaller than the doubly folded
transistor matrix layout.
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module | nrof | 2dim gate | standard
xtors | folding | matrix cell
hell84 12 0.043 0.072 -
data 24 0.088 0.166 -
adc 42 0.175 0.411 0472
mpS5 46 0.176 0436 0.465
four 68 0.38 052 0.58
cnt4 96 0.57 1.35 -
loc 130 097 - 213
five 177 1.33 2.99 229
six 332 3.85 - 6.99

6.5 Computation time

TABLE 6.4. Comparing the ctm-layout with gate matrix and standard cell.

Another important aspect to automatic module generation is the time consumption of the
algorithms. In table 6.5 the computation time is given. The six steps to generate a module are
given separate as well as the total of all six steps. M4 (1) is the step to get the surrounding-
box models from the library, where M4 (2) is the step to get the final models from the

library.
module | ctm_ivs  folding  ctm _stretch M4 (1) ctm_place M4 (2) total
hell84 03 6.8 0.8 19.1 59.5 3.8 90.3
data 0.6 254 1.1 32.3 101 4.9 165
adc 1.7 68.5 1.8 64.7 226 7.0 370
mp5 1.7 124 20 71.4 260 74 466
four 2.6 418 2.6 95.0 371 9.6 898
cnt4 4.8 1110 4.1 158 588 13.6 1870
loc 6.4 2720 4.7 200 792 16.5 3740
five 11.2 4910 6.6 305 1270 22.3 6530
six 31.8 39800 12.2 537 2150 39.1 42600

TABLE 6.5. Computation time in seconds for various examples.

Table 6.5 clearly shows, that ctm_place takes the most time for small modules, while the
total time for large modules mostly depends on the folding. The other steps can usually be

neglected.

The table also shows the linearity of the ctm_place algorithm. The placement takes between
4.21 seconds (for "data’) and 7.18 seconds (for 'five’) per transistor. The larger modules are
split in more blocks, so the number of layout-elements is larger than just the number of
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transistors. The folding algorithm shows a third-order relation between time and number of
transistors ( time = 0.0012 - #xtors® ).

The re-ordering of columns is part of the ctm_stretch program. The table clearly shows, that
this re-ordering of columns runs very fast. This is probably due to the small folding-groups.

Of course these results are not absolute. The program was run on a HP9000 in a multi-
tasking environment. The table only demonstrates the relation between time consumption
and the number of transistors. The table also demonstrates the relation between the time con-
sumption of the different steps.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The doubly folded transistor matrix module generator offers great design flexibility. The
module can be customised with respect to function, speed, design rules, aspect ratio and pin
positions. Both aspect ratio and pin positions can be accurately controlled, while the area
remains more or less constant. A wide range of aspect ratio’s could only be obtained if the
module was partitioned in blocks. An automatic control over the number of partitions proved
to be very effective if both desired aspect ratio and size of the transistor matrix were taken
into account.

Compared to conventional methods of automatic module generation, the presented generator
gives a drastic improvement in area usage. The folding offers a uniform distribution of
transistors and wires over the complete rectangle, leaving no empty spaces or comers. This
keeps the enclosing rectangle small. Because of the library of adaptable transistor models an
efficient compaction is obtained, in spite of the greedy approach.

The module generator is automatically interfaced with a floorplanner. The module generator
adapts the module from a global floorplan and uses an elegant hierarchical divide and con-
quer algorithm to refine the two dimensional folding. Finally the transistor layouts are
adapted to the wire plan designed by the folding.

7.2 Recommendations

For larger modules the time consumption of the module generator increases drastically. This
is mainly due to the third order ’lin’ algorithm used in the folding. A quadratic ’fast’ algo-
rithm is also supplied by the folding program, but the results of the ’lin’ algorithm are up to
a factor two better. An algorithm that can get the same results as the ’lin’ algorithm, but is
also quadratic is highly desired. At the moment steps are taken to combine the linear mincut
algorithm as described in chapter 5 with the ’fast’ algorithm. Experiments so far showed a
quadratic computation time, with results better than *fast’ but not as good as ’lin’.

The ctm_place program uses arrays to represent the contours of the transistor models. For
transistors that span a great number of columns, this means that a great number of positions
have to be updated in the select and place functions. The use of a special database structure,
that only contains the points were the contour steps up or down, can speed up the program.

The contour-array can not distinguish vias connected to wires on different columns. For this
reason, we use vias that are centered on the wires and make sure the distance between the
wires is large enough to satisfy the design rules. In our case, the size of a via is 12 um and
the minimal distance is 6 pm, which demands a pitch of 18 um. Because the wiresize is 6
um, uncentred vias can offer a pitch of only 16 pm. This results in a 20 % reduction of the
width of the module. The database for the contours should be able to make the distinction
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between the vias.

The M4-preprocessor adapts transistor models from the library, using string substitutions.
This is not a very efficient procedure as can be seen in table 6.5. A more dedicated program
probably can speed up this step drastically.

The design of the model library is only partly supported by a tool. The models can be
designed using an interactive layout editor and be transformed to the library syntax automat-
ically. However, this transformation program does not check for errors. The selection cri-
terion, used by M4 to get a model from the library have to be generated manually. Both
design steps can cause errors in the library. It is up to the designer to verify the correctness
of the models in the library and selection criterions. A more sophisticated tool could check
the models for errors and automatically generate the selection criterion.
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APPENDICES

In the appendices are given:
s ctm_ivs global data structure
» ctm_stretch global data structure
o ctm_place global data structure
e ctm_ivs manual
o ctm_stretch manual
» ctm_place manual

s ctim_mklib manual
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ctm_ivs global data structure

pinarray

e
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net

pins moduies
name name
side type
chw
chi
connect
modulearray
cells
name
module
51 (
52 cellgains
gate previous
pinname celt
bik next
i—bik
free
gain bucket
bucket,
nets
name
cutstate
distr clists clists
clist cell _f cell
next next T

database structure of the program ctm_ivs.

celigains

previous

cell

next




PINS (describe 1/O-pins.)

name : name of the I/O-pin
side : side of the I/O-pin

MODULES (describe the transistor parameters)

name : name of the transistor
type : transistor type

chw : width of transistor channel
chl : length of transistor channel

connect : number of connections made to the transistor, to check the input file (not imple-

mented yet)

CELLS (describe the transistor position and terminals)

name : name of the transistor

module : pointer to the definition of transistor parameters
sl : index of ’'net’-array for s1-net

s2 : index of ’net’-array for s2-net

gate : index of ’'net’-array for gate-net

pinname : name for I/O-pin

blk : global block after partitioning

1_blk : local block during partitioning

free : free to move or locked during partitioning
gain : cellgain if cell is moved during partitioning
bucket : pointer to item in bucket

CELLGAINS (item of doubly linked list of cells with the same cellgain)

previous : pointer to previous item in linked list
cell : index of ’cell’-array
next : pointer to next item in linked list

NETS (describe net)

name : name of the net
cutstate : state of net after partitioning (cut / uncut)

distr : distribution of locked and free cells connected to the net over both blocks during par-

titioning
clist : pointer to a linked list of cells connected to the net

CLISTS (item of a linked list of cells connected to the same net)

cell : index of 'cell’-array
next : pointer to the next item in the linked list



ctm_stretch global data structure

instances

rows /
sortedrows

= sl

52

gate

row

type

chw

¢chl

group

name

next

leftedges

instances

sl

52

gate

row

type

chw

chl

group

name

next

leftedges

rowsleft

dscol

left left
type type
group group
inst inst el
next next -
distances distances
thiscol thiscol
nextcol nextcol
distance distance
priority priority
colgroup colgroup
nextcol nextcol [

nets

row

connect

column

columns

global data structure of the program ctm_stretch.
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INSTANCES (describe parameters and position of a cell)

sl : index to ’columns’-array for s1-column

s2 : index to 'columns’-array for s2-column

gate : index to 'columns’-array for gate-column

row : final row position after re-ordering

chw : width of the transistor channel

chl : length of the transistor channel

group : folding group number

name : name of the cell

next : pointer to the next item of the linked list of cells on the same row

NETS (describe the position and connections to a net)

row : relative y-coordinate of the net
connect : number of connected cells
column : column of the net after re-ordering
group : folding group number

LEFTEDGES (describe cells during left-edge re-ordering of cells)

left : column of leftmost via

type : type of leftmost via

group : folding group number

inst : pointer to cell description

next : pointer to the next item in the linked list of cells

DISTANCES (describe desired distances during re-ordering of columns)

thiscol : position of this column

othercol : position of other column

distance : desired distance between thiscol and othercol
priority : distance priority

colgroup : folding group number of thiscol

nextcol : pointer to the next item in the linked list



ctm_place global data structure
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global data structure of the program ctm_place.
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INSTFORMS (describe form of instance to be placed)

s1: column of sl

s2: column of s2

gate ; column of gate

typenr : instance type number

chw : transistor channel width

chl : transistor channel length

name : name of the instance

next : pointer to the next instance structure (not used yet)
defs : pointer to an item in the linked list of model definitions

DEFSTR (item of linked list of model definitions for the same instance)

nr : number of the definition
next : pointer to the next item in the linked list of model definitions
box : pointer to an item in the linked list of boxes that make up a model definition

BOXS (item of linked list of boxes that make up a model definition)

xl : left coordinate of the box

xr : right coordinate of the box

yb : bottom coordinate of the box

yt: top coordinate of the box

layer : layer of the box (xx, px or dx)

next : pointer to the next item in the linked list of boxes

SIGNALS (item of linked list of signals on the same column)

net: nemame

row : relative y-coordinate of the net on the column

connect : the number of connections that still have to be made to the net

yb : the y-coordinate of the center of the lowest connected via to the net

yt : the y-coordinate of the center of the highest connected via to the net

next : pointer to the next item in the linked list of signals on the same column
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NAME

ctm_ivs — make transistor matrix intervals for folding

SYNOPSIS

ctm_ivs [-b] <interface-file> <module-file> <netlist> <interval-file>

DESCRIPTION

A circuit can be described in a combination of three files, the interface-file, the module-file and the netlist.
The netlist describes the connections between the modules used in the circuit. The module-file describes
the used transistors and the interface-file describes the 1/O-pins, their positions and the shape of the layout.
This description is transformed by ctm_ivs to a transistor matrix, where each net is represented by a
column and each transistor represented by a row. The connections between the transistors and nets are
represented by the interval-file,

OPTIONS

-b The transistor matrix is partitioned in a number of blocks. The number of blocks depends on the
size of the transistor matrix and the desired aspect ratio. The partitioning is preformed by a mincut
algorithm which minimises the number of nets that are used in two blocks. These neis will be split
in two nets, connected by a strip. This option allows the folding algorithm to have more contro!
over the asgpect ratio, so chances of reaching the desired aspect ratio increase.

INTERFACES

The program uses three input-files and one output-file

petlist

A netlist of transistors allows total freedom for the design of transistor networks. There are no constraints
to the number of connections to be made to one signal and the gate, drain and source of a transistor can be
connected to any signal. The netlist contains all connections to be made. Each line in the netlist describes
one connection between a signal and a transistor. It also states to which terminal of the transistor {(gate,
drain or source) the connection is made. The syntax for all lines of the netlist is: <netname> <transistor-
name> <terminal>

module-file
The module-file describes the type of transistor and the size of its channel. The module_file has the follow-
ing syntax; <transistorname> <type> <channel length> <channel width>

interface-file

The interface-file describes the aspect ratio and pin positions as desired by the floorplanner.
The syntax of the interface-file is as follows: "module” «module name>

"shape” <width> <height>

"pin" <pin name> <coord> <coord>

"end”

The first line must always contain the keyword "module”, followed by the name of the module. The second
line always starts with "shape” followed by the desired width and height of the module. The file has to be
terminated with the keyword "end” on the last line.

All other lines start with the keyword "pin" followed by the pinname and the interval of allowed positions
of the pin. Figure 2.3 shows the mapping of the intervals. The coordinates are floating point numbers, so
only a part of a side can be chosen. This offers the possibility to define relative pin positions on the same
side.
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interval-file

The netlist can be mapped to a two-dimensional transistor matrix. In this matrix all transistors are mapped
o the rows and all nets to the columns. The I/O-pins connected to the north-side of the module are all
combined on one row called "$NORTHS’. The ’'south’-l/O-pins are all combined in the row called
*SWESTS’ and "$SOUTHS’. These rows and columns are always fixed 1o the four sides of the transistor-
matrix. In this matrix all connections can easily be represented.

To describe the circuit one could use the whole matrix, The matrix is however very sparse and therefore it
is more useful to describe the circuit only by the connections in the matrix. This leads to the interval-file.
The interval-file represents the connections in the matrix by only specifying the coordinates of the connec-
tions. The syntax of the interval-file is as follows: <module name>

<width> <height>

<column> <row> <blocknr> <module typenr> <channel length> <channel width> [<pin name>]

CONTRIBUTED BY
Jos Brouwers

STATUS
In development

SEE ALSO
folding
ctn_stretch
ctm_place
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NAME

ctm_stretch — define streich for transistor models used in compact transistor matrix module generator

SYNOPSIS

ctm_stretch [-r] <interval-file> <foldresult> <transistor-file> <signal-file>

DESCRIPTION

The interval-file and the foldresult are combined to get the doubly folded transistor matrix. This results in
the relative positions of the transistors and the signal-wires. The columns to which the transistors are con-
nected define the stretch of the models that can be used. This will be written to the transistor-file. The rela-
tive positions of the signals as well as the number of connections to the signals are written to the signal-file.

OPTIONS

-r The columns of the transistor matrix are re-ordered to allow transistors to lie flat as much as possi-
ble. This usually results in a compacter layout. Also the transistors are re-ordered in the rows,
allowing vias of the same kind to overlap. This can usually save some rows of the transistor
matrix, resulting also in a compacter layout.

INTERFACES

The program uses two input-files and two output-files

interval-file
see clm_ivs.

foldresult

The folding-program generates a foldresult with the following syntax: <module name>
<width> <height>

<vert-int> <x-coordinate> [<groupnumber>]

<blank line>
<hor-int> <y-coordinate> {<groupnumber>]
... If the -r option is used, the groupnumber must be specified (by running the folding with the -g option).

transistor-file

The transistor-file defines the stretch and terminal-positions of all used transistors. Also the channel length
and -width are specified. The syntax of one line is: "TOR(" <sI> "," <§2> "," <gate> ",” <chl> "," <chw>
" <type> "," <name> “)" No distinction is made between drain and source. They can be connected to
column <s1> or column «s2>, where <s1> <= <s2>, The gate-connection is made at column <gate>, The
channel length and -width are specified by <chl> and <chw>. <type> gives the typenumber of the transis-
tor. If the transistor is not named, "™ will be substituted for <name>.

signal-file

The signal-file states the relative position of a signal-wire and the number of connections made to it. The
syntax is: <signal> <column> <y-coordinate> <connect> <signal> is the original column of the signal in
the interval-file, <column> is the column the signal has been mapped to (after folding and re-ordering).
The <y-coordinate> is a relative coordinate, only to be used together with other signals on the same
column, <connect> gives the number of connections made to the signal.
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CONTRIBUTED BY
Jos Brouwers

STATUS
In development

SEE ALSO
ctm_ivs
folding
ctm_place
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NAME
ctm_place — select and place transistors and wires used in compact transistor matrix module generator.

SYNOPSIS
ctm_place <definitions-file> <signal _file> <placement-file>

DESCRIPTION
For each transistor, the definition-file gives a list of definition for the models that can be used. The model
that fits best will be selected and placed in the placement-file. The selecting criterion is the extra area multi-
plied by the increase in height of the module. The length and positions of the signal-wires are calculated by
the positions of the transistors connected to it and they are placed in the placement-file as well.

INTERFACES
The program uses two input-files and one output-file.

definitions-file
This file is a list of transistors with the following syntax:

<transistorlist> ::= <transistor><transistorlist> | <transistor>
<transistor> ::= <instance><definitionlist>

<instance> = "Instance” <int><int><int><int><int><int>{<name>]<eol>
Instance is the header of a list of definitions. The integers stand for sl-column, s2-column, gate-
column, channellength, channelwidth and type of the transistor.

<definitionlist> ;1= <definition><definitionlist> | <definition>
<definition> ::= <newdef><elementlist>

<newdef> ;1= "newdef” <int>
Newdef is the header of a list of elements, that define one transistor model. The integer gives the
modelnumber.

<elementlist> = <element><elementlist> | <element>
<element> ;1= <box> | <module-call> | <terminal>

<box> 1= "box" <layer><int><int><int><int><eol>
<module-call> ::= "mc" <name><int><int><eol>

<terminal> ;== "term" <layer><int><int><int><int><name><eol>
<int> ;= {<digit>}+

<name> = <letter> {<letter> | <digit>}*

<layer> 1= <name>
All lines following the newdef-key are the LDM-description of a mode! until another newdef or
instance-key is encountered. This way each transistor can have an arbitrary number of models to
choose from.

signal-file
see ctm_stretch

placement-file
This file is a list of transistor- and wire definitions with the following syntax:

7th Edition 1
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BUGS

<definition> ::= <transistor def> | <wire def>

<trangistor def> ;= "INST(" <int> "," <int>"," <int> "," <int> "," <int> "," <int> "," {<name>] )"
The integers stand for s1-column, s2-column, gate-column, channellength, channelwidth and type
of the transistor, name gives the - optional - transistorname.

<wire def> ;= "box nm" <int> <int> <int> <int>
The integers give the coordinates of the left bottom and right top comers of the box,

<int> = {<digit}+
<name> 3= <letter> {<letter> | <digit>}*

The 1/O-pins on the south-side must have typenumber 9003 (for poly-terminals) or 10003 (for metal-
terminals). The [/O-pins on the north-side must have typenumber 9004 (for poly-terminals) of 10004 (for
metal-terminals).

CONTRIBUTED BY

STATUS

Jos Brouwers

In development

SEE ALSO

ctm_ivs
ctm_stretch
folding
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NAME
ctm_mklib — ctm_mklib makes a library for the ctm-program from an ldm-description of the models.

SYNOPSIS
ctm_mklib <ldm-file> <lib-file> [<tech-file>]

DESCRIPTION
The last module in the ldm-file will be transformed to a model in the lib-file. Also the module is mirrored
in the X-axis, in the Y-axis and both to give three models more in the lib-file. These models are placed in
"lib-file’.n1 to ’lib-file’.n4. Automatically the surrounding boxes of all models are also computed and
placed in ’lib-file’ .x1 to ’lib-file’.x4.
The program will ask the name and corresponding number for the module. The names will be converted to
‘name’, name’_x, ‘name’_y and *name’_x_y while the number will be incremented by respectively 0, 1, 2
and 3.
The tech-file can be used to set the technology-dependent design rules.

INTERFACES
ldm-file
The input is a standard ldm-file (for syntax see ldm) from a layout made with the layout editor "euler’. To
design a good model for ctm_mklib, some important rules must be satisfied:

- The transistor may not be constructed by simply overlapping diffusion by poly, but a compound-
model must be used. These compound-models may not be rotated or mirrored (if needed, a special
compound has to be constructed).

- If, due to a larger channel, the transistor-compound becomes higher, only the layout-elements that
lie above the centre of the transistor-compound will be shifted accordingly.

- The channel of the transistor can only grow in the upward or right direction, the model must allow
this growth.

- The library is constructed around the positions of the vias, These vias must be layed apart at least
three columns. The left and right sides of the layout-elements will be computed from the position
of the nearest via. They will have a fixed offset to the position of that via. Usually three columns
between the vias gives enough distance to assure the selection of the proper via. If in doubt, the
distance may be enlarged, this does not affect the actual shape or stretch-points of the model.

- While constructing a module no rotating or mirroring of any layout-element, or the whole module
are allowed.

- All wires must be drawn at the predefined pitch (see tech-file).

lib-files

There are two types of lib-files, the nlib-files and the xlib-files. The M4-preprocessor is able to convert
these files to definition-files (see ctm_place) respectively 1dm-files (see 1dm). The syntax for the xlib-files
is:

<xmodel> ::= <xhead> {<xdef>}* <xtail>

<xhead> ::= "define(" <name> "," <eol> "*" <eol> "newdef” <number> <eol>
<xdef> ::= <xbox> | <xcompound>

<xtail> ;1= "")"

<xbox> ::= "box" <xlayer> <xcoord> <ycoord> <xcoord> <ycoord> <eol>

<xcompound> ::= "mc" <name> <xcoord> <ycoord> <eol>
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<xlayer> ::="px" | "dx" | "xx"
<XCOOI'd> ::= neval(n <il‘lt> "+n <Via> n+|| <il‘lt> I { [ll_"] n$4n l |l$5" ] ")n
<yCOOI'd> s :Cval(" <lnl> "+$6"'" <int>| { [n_n] n$4n ‘"$5n } ")"

The syntax for the nlib is:
<nmodel> ::= <nhead> {<ndef>}* <ntail>
<nhead> ::= "define(INST"<number> "," <eol> "*" <eol>
<ndef> ::= <nbox> <ncompound>
<nbox> ::= "box" <nlayer> <xcoord> <ycoord> <xcoord> <ycoord> <eol>
<ncompound> ::= "mc"” <name> <xcoord> <ycoord> <eol>
<nlayer> ::="nm" | "np" | "nd" | "ni" | "nb" | "nx" | "na"
<xcoord> ::= "eval(" <int> "+" <via> "+" <int> | { ["-"] "$4" 1 "$5" } ")"
<ycoord> ::= :eval(” <int> "+$6+" <int> | { ["-"] "$4" 1"$5" } )"

tech-file

The tech-file can be used to set the technology parameters. 7 keywords are recognised: "pitch" <int> :
pitch of the wires (default 18). "wiresize" <int> : width of a wire (default 6). "viasize" <int> : width and
height of the vias (default 12). "overlap" <int> : extra poly-diffusion overlap to assure a good transistor
(default 4). "safety” <int> : minimal surrounding box, half the size of largest design rule (default 3).
"pmvia" <name> : name of the poly—metal via, used in the layout (default pm004004). "dmvia" <name> :
name of the diffusion—metal via, used in the layout (default dm004004). If a keyword is not found in the
tech-file, the default-value will be used. If no tech-file is specified, all default-values will be used.

USAGE
The program is developed to construct a library to the ctm-module generator. The nlib- and xlib-files can
be joined and appended to standard library-files. These standard library-files must contain a definition of
all used transistor-compounds and vias. These definitions can not be generated automatically, so they must
be made by hand. The syntax of a definition is:

<definition> ::= <header> {<box>* | <copy>} <tail>

nen

<header> ::= "define("<name> "," <eol> "*" <eol>

<box> ::= "box" <layer> <xcoord> <xcoord> <ycoord> <ycoord> <eol>

<copy> ::= <name>"($1,$2,$3,$4)"
name is the name of the compound to be copied.

<xcoord> ::= "eval($1" [{"+"1"-" "$3" 1 "$4"}] "+" | "-" <int> ")"

<ycoord> ::= "eval($2" [{"+" 1 "-" "$3" 1 "$4"}] "+" | "-" <int> ")"
The definitions of strips and I/O-pins must also be made by hand in the same way. The library
should be used in combination with a selection-file. This file must be written conform the m4-
syntax. Depending on the ordering of gate, drain and source, and on the size of the channel, the
m4-preprocessor can with this file make a selection between all models in the library. To extract
the surrounding boxes from the library, M4 is used twice. First it is run on the concatenation of
pitch-file, select-file and .tor-file. The pitch-file only contains one line, stating the wire-pitch. The
syntax is:

"define(P," <pitch> ")"
This first step selects the models and stretch. In the second step, M4 is run on the concatenation of
pitch-file, x-library and the output of the first step. To extract the final layout from the library, M4
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is run on the concatenation of pitch-file, n-library and .c2out-file. To run the program, a shell-
script called 'mklib’ is provided. A menu can be used to select steps to be taken. It also provides
the automatic updating of the library-files and ctm_mklib can be run in background for a sequence
of compounds. Running in background needs a special file, called tech’.add. The syntax of this
file is:
{<name> <eol> <number> <eol>}*

The models are added to the library, not substituted, so name and number may not have been used
before.

BUGS
The program can only be used for transistor definitions with one or two diffusion contacts and zero or one
poly contact. The one diffusion and zero poly contact combination can’t be used either.

CONTRIBUTED BY
Jos Brouwers

STATUS
In development

SEE ALSO
Idm
m4
euler
ctm_stretch
ctm_place
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NAME

ctm_mklib — ctm_mklib makes a library for the ctm-program from an ldm-description of the models.

SYNOPSIS

ctm_mklib <ldm-file> <lib-file> {<tech-file>]

DESCRIPTION

The last module in the l1dm-file will be transformed to a model in the lib-file. Also the module is mirrored
in the X-axis, in the Y-axis and both to give three models more in the lib-file. These models are placed in
"lib-file’.nl 1w ’lib-file’.nd. Automatically the surrounding boxes of all models are also computed and
placed in ’lib-file’ x1 to 'lib-file’.x4.

The program will ask the name and corresponding number for the module. The names will be converted to
‘name’, ‘name’_x, 'name’_y and ‘name’_x_y while the number will be incremented by respectively 0, 1, 2
and 3.

The tech-file can be used to set the technology-dependent design rules.

INTERFACES

ldm-file
The input is a standard Idm-file (for syntax see 1dm) from a layout made with the layout editor *euler’. To
design a good model for ctm_mklib, some important rules must be satisfied:

- The transistor may not be constructed by simply overlapping diffusion by poly, but a compound-
model must be used. These compound-models may not be rotated or mirrored (if needed, a special
compound has to be constructed).

- If, due 10 a larger channel, the transistor-compound becomes higher, only the layout-elements that
lie above the centre of the transistor-compound will be shifted accordingly.

- The channel of the transistor can only grow in the upward or right direction, the model must allow
this growth.

- The library is constructed around the positions of the vias. These vias must be layed apart at least
three columns. The left and right sides of the layout-elements will be computed from the position
of the nearest via. They will have a fixed offset to the position of that via. Usually three columns
between the vias gives enough distance to assure the selection of the proper via. If in doubt, the
distance may be enlarged, this does not affect the actual shape or stretch-points of the model.

- While constructing a module no rotating or mirroring of any layout-element, or the whole module
are allowed.

- All wires must be drawn at the predefined pitch (see tech-file).

lib-files

There are two types of lib-files, the nlib-files and the xlib-files. The M4-preprocessor is able to convert
these files to definition-files (sce cim_place) respectively ldm-files (see Idm). The syntax for the xlib-files
is:

<xmodel> ::= <xhead> {<xdef>}* <xtail>

<xhead> ::= "define(" <name> "," <eol> "*" <eol> "newdef” <number> <eol>
<xdef> = <xbox> | <xcompound>

<xtail> n="")"

<xbox> ::= "box" <xlayer> <xcoord> <ycoord> <xcoord> <ycoord> <eol>

<xcompound> = "mc” <name> <xcoord> <ycoord> <eol>
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USAGE

<xlayer> ;= "px" | "dx" | "xx"
<xcoord> ::= "eval(" (il’ﬁ_) "+" <via> "+H <int>l { [ﬁ‘il] l|$4|f l 7|$5vl } ")"
<ycoord> = :eval(" <int> "+86+" <int> | { ["-"] "$4" 1"85" } )"

The syntax for the nlib is:
<nmodel> ::= <nhead> {<ndef>}* <ntail>
<nhead> ::= "define(INST"<number> "," <eol> "*" <eol>
<ndef> ::= <nbox> <ncompound>
<nbox> ::= "box" <nlayer> <xcoord> <ycoord> <xcoord> <ycoord> <eol>
<ncompound> 2= "mc” <name> <xcoord> <ycoord> <eol>
<nlayer> ::="nm" | "pp" ! "nd" | "ni" | "nb" | "nx" | "na"
<xcoord> = "eval(" <int> "+" <via> "+" <int> | { ["-"] "$4" [ "$5" } )"
<ycoord> ::= leval(" <int> "+$6+" <int> | { [*-"] "$4" 1"$5" } )"

tech-file
The tech-file can be used to set the technology parameters. 7 keywords are recognised:

"pitch" <int> : pitch of the wires (default 18).
"wiresize” <int> : width of a wire (default 6).
"viasize" <int> : width and height of the vias (default 12).

"overlap” <int> : extra poly-diffusion overlap to assure a
good transistor (default 4).

"safety” <int> : minimal surrounding box, half the size of
largest design rule (default 3),

“pmvia” <name> : name of the poly-metal via, used in the layout {default pm004004).

CTM_MKLIB ()

"dmvia" <name> : name of the diffusion—metal via, used in the layout (default dm004004).

If a keyword is not found in the tech-file, the default-value will be used. If no tech-file is specified, all

default-values will be used.

The program is developed to construct a library to the ctm-module generator. The nlib- and xlib-files can
be joined and appended to standard library-files. These standard library-files must contain a definition of
all used transistor-compounds and vias. These definitions can not be generated automatically, so they must

be made by hand. The syntax of a definition is:
<definition> ::= <header> {<box>* | <copy>] <tail>

e

<header> ::= "define("<name> "," <eol> "*" <eol>
<box> ::= "box” <layer> <xcoord> <xcoord> <ycoord> <ycoord> <eol>

<copy> .= <name>"($1,$2,$3,%4}"
name is the name of the compound to be copied.

<X000rd> s neval(sln [{n+n I w_n n$3n l r:$4"]] n+u ]"_n <iﬁ[> ")n
(yCOOI'd> o neval(szn [{n+n | n_n n$3" ' n$4n)] |v+n ] n_w <int> u)u
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BUGS

The definitions of strips and 1/0-pins must also be made by hand in the same way.

The Library should be used in combination with a selection-file. This file must be written conform the m4-
syntax. Depending on the ordering of gate, drain and source, and on the size of the channel, the m4-
preprocessor can with this file make a selection between all models in the library.

To extract the surrounding boxes from the library, M4 is used twice. First it is run on the concatenation of
pitch-file, select-file and .tor-file. The pitch-file only contains one line, stating the wire-pitch. The syntax
is:

"define(P," <pitch> ")"

This first step selects the models and stretch. In the second step, M4 is run on the concatenation of pitch-
file, x-library and the output of the first step.

To extract the final layout from the library, M4 is run on the concatenation of pitch-file, n-library and
<2out-file.

To run the program, a shell-script called "mklib’ is provided. A menu can be used to select steps o be
taken. It also provides the automatic updating of the library-files and ctm _mklib can be run in background
for a sequence of compounds. Running in background needs a special file, called "tech’.add. The syntax of
this file is:

{<name> <eol> <number> <eol>}*

The models are added to the library, not substituted, so name and number may not have been used before.

The program can only be used for transistor definitions with one or two diffusion contacts and zero or one
poly contact. The one diffusion and zero poly contact combination can’t be used either.

CONTRIBUTED BY

STATUS

Jos Brouwers

In development

SEE ALSO

Idm

m4

euler
ctm_stretch
ctm_place
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