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ABSTRACT 

We present a flexible module generator for transistor net lists is presented to be used in a 
top-down VLSI-design environment. The module generator is automatically interfaced with 
a Doorplanner and offers accurate control over aspect ratio and pin positions, while the area 
remains approximately constant. 
The generator is based on a doubly folded transistor matrix. The folding algorithm uses an 
elegant hierarchical divide and conquer technique, to control the aspect ratio while minimis­
ing the area. 
A small library of adaptable transistors is used to lay out the module. This library offers a 
simple but very efficient compaction method. 
Steps to optimise the foldresult are discussed as well as an automatically controlled module 
partitioning to extend the aspect ratio range. 
Compared to other automated layout styles, the presented module generator makes smaller 
modules, that have a great flexibility. The layout of the modules can be customised with 
respect to all major design parameters: function, speed, design rules, aspect ratio and pin 
positions. 
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1. INTRODUCTION 

A complex system usually can be divided in several more or less individual subsystems. The 
subsystems can be conneeled to each other and make up the complete system. Dividing sys­
tems into smaller subsystems is a well known approach in laying out a complex circuit on 
one chip and is known as stepwise refinement [WIRTil]. 
To get good results with stepwise refinement it is important that the smaller subsystems can 
easily match the requirements of a global structure defined on a higher level. In VLSI­
design this approach leads totheuse of aftoorplanner [LAUT79]. 
A Hoorplanner divides the circuit in a number of conneeled layout parts, it assigns positions 
to the layout parts and reserves area for the connecting wires. The Hoorplanner uses a 
mincut-algorithm to divide the system in a set of smaller subsystems called slices and these 
slices in even smaller slices. This top-down approach results in a hierarchical ordering of the 
slices. Each slice consists of one or more smaller slices, called child slices. This division 
continoes until the slices are small enough. At that stage the slices will be called modules, 
functionallayout parts with a flexible shape. 
After all divisions are made, the Hoorplanner uses the shape constraints to select the best 
shape of a module. These shape constraints define the the possible shapes of the slices and 
the corresponding minimal area. The shape constraints of a slice are the sum of all shape 
constraints of the child slices. The stepwise re finement approach is also used in selecting the 
final shapes of all slices and modules. Within the shape of one slice, the best contiguration 
and shape of all child slices are chosen. 

After all these steps, the system will be represented by a set of modules and their intercon­
nections. All modules will have a relative position and the Hoorplan is nearly complete. 
Making a plan for the connecting wires is the final step. The best pin positions are deter­
mined, and from these pin positions the number of wires can be derived. The Hoorplanner 
then makes room forthese wires by creating channels between the modules. This leads to the 
final Hoorplan ofthe circuit 

A module generator then lays out the modules. Of course this module generator has to take 
the desired shape and pin positions in account and try to match these requirements as well as 
possible. On the other hand the Hoorplanner should only ask for shapes and pin positions that 
can be generated by the module generator. The final shape of the module has also to be 
predictable. 
A good module generator gives complete freedom of pin positions and the final area occu­
pied by the module is independent of these pin positions and of the aspect ratio (width I 
height). A wide range of aspect ratio's must also be possible. Finally the generated layout 
must be compact, i.e. the total area must be small. 

One of the current projects at the Design Automation Section of the Eindhoven University of 
Technology is the construction of a silicon compiler based on the stepwise refinement 
approach. Part of this project is the construction of a flexible module generator. 
This report is a master thesis of a graduation project and it reHects the implementation and 
results of such a module generator. The presenled module generator is based on a doubly 
folded transistor matrix. The generated layouts can be customised with respect to all major 
design parameters: function, speed, design rules, aspect ratio and pin positions. 
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A general introduetion to the module generator and the layout problem derived from the 
folding of the transistor matrix are described in chapter 2. Chapter 3 presents the actual 
module generator. In chapter 4 some improvements to the folding result are presented. 
Chapter 5 will discuss a partitioning of the modules to get more ftexibility and chapter 6 will 
show the results from various tests. 
To make a layout a smalllibrary of transistor models is used. This library can be designed by 
using a interactive layout editor. A manual to design these standard models, as well as other 
manuals, is given in the appendices. 

2 



2. THE LA YOUT PROBLEM 

2.1 A module generator 

As stated in chapter 1 a module generator generates compact layouts of a module. The 
description of the module is given in three different files: 

• netlist: The netlist describes the nets that make the connections between the transistors 
and 1/0-pins within the module. All transistors, 1/0-pins and nets have unique names. 

• module-file: For each transistor in the netlist, the module-file describes its parameters, 
like channel length, channel width, channel type (n-channel or p-channel) and optional 
ditfusion implant (enhancement- ordepletion type transistor). 

• interface-file: The interface-file is the interface between the ft oorplanner and the module 
generator. lt specifies the desired aspect ratio (width I height) and desired (relative) pin 
positions. 

From these three inputfiles a transistor matrix is extracted. In the transistor matrix each net 
is represented by a column and each transistor by a row. The coordinates of the connections 
are the same as given in the netlist 
The transistor matrix is represented by an interval-file. The interval-file will be folded in 
two directions and the resulting transistor matrix, the foldresult, will be used to finally gen­
erare the layout of the module. 
Figure 2.1 gives an overview of the steps to be taken. In the next paragraphs these steps will 
be explained. 

2.2 Make intervals 

The netlist 

A netlist of transistors allows total freedom for the design of transistor networks. There are 
no constraints to the number of connections to be made to one signal and the gate, drain and 
souree of a transistor can be connected to any signal. We therefore use a netlist to describe 
the circuit 

The netlist contains all connections to be made. Each line in the netlist describes one connee­
tion between a signal and a transistor. 1t also states to which terminal of the transistor (gate, 
drain or source) the conneetion is made. 

The syntax for alllines of the netlist is: 

<netname> <transistomame> <terminal> 

The netlist of a simple depletion load inverter is given in tigure 2.2. 
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MAKE 
INTERVALS 

MAKE 
LAYOUT 

Figure 2.1. An overview of the steps to generare a layout 

VDD 

net x tor terminal 

YDD Dl sl 
out Dl g 

out out Dl s2 
out E2 sl 
in E2 g 

YSS E2 s2 

Figure 2.2. The netlist for a simple inverter. 

There is no actual difference in the layout between souree and drain, so they are called sl 
and s2. 

The module-file 

The module-file describes the type of transistor and the size of its channel. There are four 
different types: 
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nenh : n-channel enhancement transistor; 
ndep : n-channel depletion transistor; 
penh : p-channel enhancement transistor; 
pdep : p-channel depletion transistor; 

The lines in the module_file have the foliowing syntax: 

<transistomame> <type> <channellength> <channel width> 

The interface-file 

The interface-file describes the aspect ratio and pin positions as desired by the fiomplanner. 
The syntax ofthe interface-file is as follows: 

"module" <module name> 
"shape" <width> <height> 
"pin" <pin name> <coord> <coord> 

"end" 

The first line must always contain the keyword "module", foliowed by the name of the 
module. The second line always starts with "shape" foliowed by the desired width and height 
ofthe module. The file bas to be terminated with the keyword "end" on the last line. 
All other lines start with the keyword "pin" foliowed by the pinname and the interval of 
allowed positions of the pin. Figure 2.3 shows the mapping of the intervals. The coordinates 
are ftoating point numbers, so only a part of a side can be chosen. This offers the possibility 
to define relative pin positions on the same side. 

$NOR TH$ 

3.0 2.5 2.0 

3.0 -+-------.i..'------1- 2.0 

$EAST$ 3.5- r- 1.5 $WEST$ 

4.0 -1------,..------!-1.0 

no 05 tn 
$SOUTH$ 

Figure 2.3. The side numbering of a module. 
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The interval-file 

The netlist can be mapped to a two-dimensional transistor matrix. In this matrix all transis­
tors are mapped to the rows and all nets to the columns. The 1/0-pins connected to the 
north-side ofthe module are allcombinedon one row called '$NORTH$'. The 'south'-1/0-
pins are all combined in the row '$SOUTH$'. The 'west'- and 'east'-1/0-pins are all com­
bined in two columns called '$WEST$' and '$SOUTH$'. These rows and columns are 
always fixed to the four sides of the transistor-matrix. In this matrix all connections can 
easily be represented. 
To demonstrate this mapping we use the simple latch shown in tigure 2.4 

------~-----------------4-----------------4r---------~voo 

k6 

enable 

------~----------~~--------~------~------~~----~vss 

Figure 2.4. A simple latch example. 

After the mapping of all nets to columns and all transistors to rows, the transistor matrix 
mapping of the circuit is given in tigure 2.5. Where 'S' is a sl or s2 contact 'G' is a gate 
contact and 'X' is a combined gate and sl contact. 

To describe the circuit one could use the whole matrix. The matrix however is very sparse 
and therefore it is more useful to describe the circuit only by the connections in the matrix. 
This leads to the interval-file. The interval-file represems the connections in the matrix by 
only specifying the coordinates of the connections. 

The interval-file is also used in the block that makes the layout of the module. At that point 
the parameters of the used transistors are needed, so they are added to the intervals-file. 

The syntax ofthe interval-file is as follows: 

<module name> 
<width> <height> 
<column> <row> <blocknr> <typenr> <chl> <chw> [<name>] 
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Figure 2.5. The transistor matrix of the latch circuit 

The block number is used by the folding to fold partitioned modules (see chapter 5). 

2.3 Folding the transistor matrix 

The transistor matrix can be transformed directly to a layout of the module, however, it 
would give a very inefficient layout withno control over the aspect ratio. 
Using a two-dimensional folding algorithm [TEEF88] some nets are mapped to the same 
column and transistors are mapped to the same row, resulting in a smaller transistor matrix 
and control over the aspect ratio. 

The folding problem can be formally statedas follows: The circuit is specified as a bipartite 
graph B(G,N,E), with the nodes G representing the gates and N representing the nets. The 
edges EcGxN represem the gate/net incidences. The circuit is to be realized on a grid of 
rows and columns. The set of grid points is represented by ZXZ.. The layout of a circuit is 
determined by a gate assignment function cp: G-+Z which assigns gates to columns and a net 
assignment function 'Ijl: N-+Z which assigns nets to rows. Let v(n) denote the set of neighbors 
of n: v(n) ={ge G 1 (g, n)e E}. The span cr of a net ne N is an interval of columns defined as 
cr(n) [min cp(g), max cp(g)]. The spans of gates that are assigned to the samecolumn are not 

gev(n) gev(n) 

allowed to overlap: 
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Since the problem is symmetrie the same goes, for the nets. The objective of the folding 
algorithm is to find the best valid <1> and '11 subject to some co st function, for instanee area. 

Using straight orthogonal cutting lines, the matrix is repeatedly divided in gategroups (rows) 
and netgroups (columns). After the kth horizontal cut the transistors are partitioned in k+ 1 
gategroups. 

k 
G=uG· 

i=O' 

Similarly the nets are partitioned into 1+ 1 netgroups. 

r---r---T---~---,----r---r---r---, 
t t I t t I I t 
I l t I I t I l 

: : : : : : : : T6 
I I I t I I I 
I t I 1 l I I 

I I 1 I I I I I I 

~---~---+---~---~----~---~---~---~ I I I I I I I I I 
t i I I I I I I I 
t J I I I I I I I 

: : : : : : : : : T5 
I I I I I l I I 
I I I I I I I I 

T4 
--+-- cun 

T3 
I 

: I I I I I I I 1 12 

~---~---~---~---~----~---~---~---1 
I I t I I 1 t I I 
I I I I I I I I I TI 
I I I I I I t I I 

L---•---~---~----~---~---~---•---~ 

Figure 2.6. The paniotioning after some cuts. 

As the exact assignment has not yet been detennined the span of a gate will be defined as 

a(g) = [ min{i I N;rw(g)<>0}, max{i I Ninv(g)<>0}] 

The maximum number of rows needed fora set of gates is given by 

J.L(Gi) = max #{geG; I jea(g)} 
J 

Notice that this is the exact number of rows if cr---0'. A lower bound for the number of rows is 
detennined by the number of transistors that cross a vertical cutting line: 

o(G;) = max #{ge Gi I jea(g)Aj+1ea(g)} 
J 

Since the tenninals of the transistors are not allowed to overlap there is another lower bound: 

The mean of these upper and lower bounds can be used to estimate the size of the array: 
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However, if the folding reaches the final partitions, this mean of the upper and lower bounds 
is nota good estimation, because the size of a group usually is the same astheupper bound. 
Therefore only the upper bounds have to be used to estimate the size ofthe arrny: 

k I 

(~)l(Gi) · (~)1(Ni)) 
i=O i=O 

These estimations can also be used in estimating the aspect ratio of the matrix. As horizontal 
cuts tend to make the matrix lower and vertical cuts tend to make the matrix narrower, the 
direction of the cutting can be used to control the aspect ratio and make the estimated aspect 
ratio to conven to the desired aspect ratio (if possible). Figure 2.7 shows the result of the 
folding. 

e 
n 
e 
b 

k k 1 
4 5 e 

E9 

E6 

Dl 

E10 

05 
0 I k V 
u 0 6 s n 
t u s 

t 

Figure 2.7. Result of folding the transistor matrix of tigure 2.5. 

This foldresult can be used as a 'floorplan' for the finallayout of the module. All relative 
positions of the transistors, nets and pins are now known. The absolute positions, however, 
are still to be generated. 

2.4 Laying out the folded matrix 

The vertical nets of the foldresult are implemented in metal wires, while the horizontal 
transistors are implemenled in diffusion and polysilicon. The foldresult assumes a fixed grid 
in horizontal and vertical direction. In horizontal direction we can use a fixed grid between 
the vertical wires. In vertical direction we can use a fixed grid if we assume that all transis­
tors have the same size. Figure 2.7 shows that the gate-conneetion may be on the left or 

9 



right of both souree and drain, it may be in between them or it may be on one of them. This 
can only be realised with different transistor models. Figure 2.8 shows the smallest models 
that can be used for three different situations. 

Figure 2.8. Smallest transistor models 

If the length of the transistor channel is larger than the room between drain and souree the 
modelsin tigure 2.8 can not be used and we have to use the models given in tigure 2.9. 

L 
Figure 2.9. Models for long channel transistors 

This shows that the assumption of uniform transistor sizes is not realistic. To use a fixed 
grid in vertical direction we must first find the size of the highest transistor, and then set the 
grid to this size. This way we act as if all transistors have the same height. Of course, this 
will cause a great waste of chip area. A floating grid per row can reduce this waste, but a 
compact layout can only be achieved ifno grid is used at all. 
In the next chapter the compaction of the layout will be discussed. 
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3. COMPACTION OF ADAPTABLE TRANSISTORS 

3.1 Compaction steps 

Using the fixed grid of the foldresult to lay out the module produces a great waste of chip 
area, as can be seen in figure 3.la. 
A better solution could be the use of a floating grid. For every row the highest transistor on 
that row determines the gridsize. Figure 3.lb shows only little improvement by this step. 
Dropping the idea of a grid offers more freedom to place the transistors in a compact 
manner. Figure 3.1 c shows how transistors can be placed if we only use the contour of the 
transistors below as a borderfora transistor on the next row. Some transistors are now mir­
rored in the X-axis to give a better fit Still there is one more step to be made to improve the 
result. lf two diffusion-strips are conneered to the same metal strip, their vias are allowed to 
overlap. The same goes for two poly-strips. A diffusion-metal via however is notallowed to 
overlap with a poly-metal via. Figure 3.1d shows how this may result in a finallayout On 
severallocations two viasof the samekind partly or completely overlap. There's even one 
spot where three vias overlap. 
In this example the height of the module drops from 246 via 210 and 152 to 106, which 
means a final reduction to 43 %. 

So, to get a compact layout of a folded transistor matrix, the module generator must be able 
to keep track of the transistors-contours, determine what transistor model gives the best fit, 
and allow vias of the same kind to overlap, if they are connected to the same me tal strip. 
The next paragraphs will demonstrate how all these objectives have been reached. In fact, 
figure 3.ld is the result of automatically generating the layout ofthe module from its discrib­
tion in the netlist, module-file and interface-file (the 1/0-pins are removed). 

3.2 Surrounding boxes with overlapping vias 

The design rules of a certain technology state the minimal distance between two unrelated 
tracks of poly and/or diffusion. If we assume that each transistor model has a surrounding 
box, that is large enough to prevent violating the design rules we won 't have to worry about 
these design rules any more. This surrounding box is half the size of the largest design rule 
wider than the actual transistor. Surrounding boxes allow us to forget about the actual stroc­
ture of the transistor and leave us with the problem to place them in a compact manner. 
This implementation of the surrounding boxes leads to a layout as shown in figure 3.1 c. No 
overlap of vias of the same kind is possible. To allow vias to overlap they should be Ie ft out 
of the surrounding boxes, but this can also result in an overlap of vias of different types. To 
avoid this we introduce two types of surrounding boxes. One that prevents everything but 
poly-metal vias to overlap and one that prevents everything but diffusion-metal vias to over­
lap. Combining both boxes leaves at the poly-metal via position the possibility to overlap 
with another poly-metal via and on the diffusion-metal via a possible overlap with another 
diffusion-metal via. These surrounding boxes are shown in figure 3.2. The two contours we 
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(a) (b) 

(c) (d) 

Figure 3.1. Layout compaction steps. 

use now allow overlap of the same kind, but prevent each other to overlap. 

3.3 Using a standard library 

Using an interactive layout editor we can construct a library that contains all transistor 
models. This library offers for each model a list of boxes of layout elements, described in the 
layout description language LDM. The surrounding boxes can be simply derived from these 
boxes by iocrementing their size in each direction by half the si ze of the large st design rule. 
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Figure 3.2. Surrounding boxes for diffusion- and poly-ovedap. 

The surrounding boxes are deterrnined separately and placed in a standard library. To distin­
guish between poly-via overlap, diffusion-via overlap and no overlap at all, three different 
'layers' are used called px, dx and xx. 

Figure 3.3 shows the three different boxes fora transistor model. The xx-boxes are generated 
direct from the poly and diffusion strips. This means that they overlap with the px- and dx­
boxes. These overlapping areas are removed from the xx-ooxes. 

rs:::sJ px 

~ dx 

W XX 

Figure 3.3. Three surrounding box layers and their overlap. 

3.4 Stretching transistor models 

To avoid a great number of transistor models in the library, it is possible to stretch the 
models. This way one transistor model can be used to span different numbers of columns. 
Figure 3.4 shows how one model can be used if two stretch points are introduced. One 
stretch point to the right of the leftmost via and one to the left of the rightrnost via. The fold­
result tells to which column a signal of the interval-file is mapped. So combining both 
interval-file and foldresult the actual column-positions for gate, drain and souree can be 
deterrnined. This is done by a program called 'ctm_stretch'. Row by row, startingat the bot­
torn of the module, it places the characteristics of the transistors in a file with extension .tor. 
These characteristics are si-column, s2-column, gate-column, channellength, channelwidth, 
transistor type (enhancement or depletion) and an optional name. Using the M4-
preprocessor, a string substitution leads to the final model with the appropriate stretch. 
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Figure 3.4. Stretching a transistor model. 

Not only stretch can be modi.fied using the M4-preprocessor, also channelwidth and -length 
of the transistor and an optional diffusion implant can be specified. M4 can also be used to 
select a model from the library. It can select on the order of gate, drain and source, and derer­
mine if a transistor is too large to fit between drain and source, so these roodels can 't be 
selected. 

3.5 Selecting and placing a model 

For every transistor in the circuit M4 puts all the possible models in a file with extension 
.c2in. This file is a list of transistors with the following syntax: 

<transistorlist> : := <transistor> <transistorlist> I <transistor> 

<transistor> ::= <instance> <definitionlist> 

<instance> ::= "instance" <int> <int> <int> <int> <int> <int> [<name>] <eol> 
Instanee is the header of a list of definitions. The integers stand for sI­
column, s2-column, gate-column, channellength, channelwidth and type of 
the transistor. 

<definitionlist> ::= <definition> <defintionlist> I <definition> 

<definition> ::= <newdef> <elementlist> 

<newdef> ::= "newdef' <int> 
Newdef is the header of a list of elements, that define one transistor model. 
The integer gives the modelnumber. 

<elementlist> : := <element> <elementlist> I <element> 

<element> ::=<box> I <module-call> I <terminal> 

<box>::= "box" <layer> <int> <int> <int> <int> <eol> 

14 



<module-call> ::="me" <name> <int> <int> <eol> 

<ternlinal> ::="temt" <layer> <int> <int> <int> <int> <name> <eol> 

<int>::= {<digit>}+ 

<name> ::= <letter> {<letter> I <digit>}"' 

<layer> ::=<name> 

Alllines following the newdef-key are the LOM-description of a model until another newdef 
or instance-key is encountered. This way each transistor can have an arbitrary number of 
roodels to choose from. 

All roodels passed on by M4 can be used to construct a valid circuit. By placing the boxes 
one by one, starting at the lowest row, we can easily keep track of the outline of the boxes 
that are already placed. This allows us to select from the possible models the one thats fits 
best. 
To select a model, the extra size that this model will occupy, the increase in maximum 
height or a combination of both can be taken in account Experiments showed the extra 
space times the increase in height to be a good criterion. Extra space here means not only the 
size of the surrounding box, but also the wasted space beneath it after placement. 
Figure 3.5 shows that even a shape belonging to a transistor with larger height can be 
selected because it gives a better fit 

Figure 3.5. Selecting the model that fits best. 

The vertical positions of all boxes of a model use the same offset. To place a transistor it is 
only necessary to compute this offset, called the base. 
For both surrounding boxes two separate layers are defined. Both layers are handled in 
exactly the same way, so we will notmake any distinction between them. To represent each 
box two arrays are used. One to represent the top contour of the box and out to represem the 
bottorn contour. In the following these array will be called top[] and bottom[]. A third array, 
size[], represents the top-contour of the total of all placed transistors. 
To compute the base of a transistor we start at the leftof bottom[]. Base will be set to the 
lowest value that doesn 't cause a forbidden overlap. Then we go step by step to the right and 
every time we come across a forbidden overlap, the base will be adjusted to this overlap. 
This way the lowest base that doesn't cause forbidden overlaps is found. 
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While computing the contours the left and light si de of the model are also determined. This 
allows us to calculate the extra area used by the model as follows: 

'right' 

extra area = L base + top[i] - size[i] 
i=1eft' 

This of course for both contour-layers. 
The difference in maximal height is also easy to get, and so the extra size times the increase 
in height is easily computed. This criterion is used to select a model. The model with the 
lowest value is chosen and added to size[]. 
This model is placed in the outputfile with extension .c2out. It gives the definitionnumber, 
si-column, s2-column, gate-column, channellength, channelwidth and the computed base, 
optionally foliowed by a name. This file is used to select with M4 to final layout of the 
module, which is placed in an LOM-file. 
Figure 3.6 gives an overview of the steps that lead to the finallayout 

SELECT 
& 

PLACE 

Figure 3.6. Using a modellibrary to make a layout. 
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3.6 Connecting wires 

The folding maps more signals to one column. To make the connections in the layout this 
causes some problems. First of all, because we don't use a fixed grid, the length ofthe wires 
no longer depends on the number of rows it has to span, but of the positions of the highest 
and lowest conneeled transistors. So only after all conneeled transistors are placed we can 
determine the size and position of a wire. Secondly, vias may only overlap if they are con­
neeled to the same wire. 

The 'ctm-stretch'-program offers a second outputfile with exlension .sign. This file contains 
the actual columns that wires are mapped to, the number of connections to that wire and the 
relative position of the wire in the column. This allows the wires to be placed at the same 
time as the transistors. 
All wires that are mapped to the same column are linked in a list. The relative positions of 
the wires in the same column is used to sort this list from bottorn to top. All linked lists are 
placed in a hashtable for easy access. 

name 
~ 

name 

column column 

position position 

conneet 
___/ 

conneet 

next next ~ 

wire-array 

Figure 3. 7. Datastructure for wires. 

By actdressing the first wire in the linked list this wire can be updated after a transistor is 
connected to it. A wire is updated by setting its bottom-coordinate to the centre of the lowest 
connected via and setting the top-coordinate to the highest conneeled via. After these coordi­
nates have been calculated, the number of connections to the wire is checked. If all connee­
tions to that wire are now made, the final si ze and position of the wire is known, so the box­
description is placed in the .c2out file. (M4 will not find any string substitutions for this 
box-description and transfers the description direct to the LDM-layout-file.) 
All other connections to a wire in the same column can not beloog to this wire anymore, so it 
is removed from the list. The next wire will now become the head of the list 
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4. IMPROVING THE FOLDRESULT 

4.1 Folding-groups 

The folding-program looks at the transistor matrix in a purely symbolic manner. Due to its 
general-purpose character, it does not take in account any technology dependencies. The 
only objective of the folding-algorithm is to compress the size of the transistor matrix by 
reducing the number of columns and rows. If several mappings all lead to the same result 
the folding algorithm just picks one of them. It does not look if the area between drain and 
souree is large enough to fit the transistor. In fact it doesn't even distinguish gate, drain and 
source. It is also incapable of allowing overlap of vias of the same kind. 
The folding-algorithm di vides all columns in groups. The columns in the same group may be 
switched around, without causing any overlapping nets or transistors. To the folding algo­
rithm it makes no difference what the order of the columns within a group is, so the ordering 
of the columns in a group is chosen arbitrary. The only important ordering is the ordering of 
the groups. The same goes for the rows. 
All groups have a unique groupnumber, which gives the ordering of the groups. For net­
groups the groupnumbers increase from left to right, for the gategroups the groupnumbers 
increase from top to bottom. Running the folding-program with the '-g' option, this 
groupnumber is placed after every column and row of the foldresult. This allows us to 
change, within the groups, the order of columns and rows, without really changing anything 
to the foldresult. 

4.2 Re-ordering columns 

In chapter 2 we found that, if the size of a transistor is to large to fit between drain and 
source, a model with a greater height has to be used. These models usually occupy more 
space in the module. 

1 2 3 4 5 1 3 2 4 5 

Figure 4.1. Re-ordering columns to use smaller transitor models. 

To avoid these situations, we change the order of the columns a bit. Figure 4.1a shows a 
contiguration of a transistor with a large channellength. Because s 1 and s2 are to close, the 
transistor can not lie flat between them. lf, ho wever, we change the order of columns 2 and 3, 
there is enough space between sl and s2. This way, the transistor can lie flat, resulting in the 
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situation of tigure 4.1 b. 

Of course we may only swap columns 2 and 3 if they beloog to the same folding group. 
Swapping columns 2 and 3 may, however, also result in obstructing other transistors, that 
originally were flat, to stay flat Therefore, we must consicter all transistors at the same time. 
For each transistor we can find what the minimal distance between drain and souree should 
be. This results in a graph, that states for each column the minimal distance it should have to 
other columns. The nodes represent the columns, and the branches give the desired minimal 
distances. 
The objective of the re-ordering algorithm is to find a mapping that satisfies all desired dis­
tances of the graph. If such ordering of the columns is found, we say the graph is solved. 

Branches between nodes of different groups may be useless, because the minimal distance 
between a column of the first group and a column of the second group is larger than the 
desired distance of the branch. Also, the desired distance of a branch can be to large for any 
of the possible positions of the columns. Both branches can be discarded, the first can never 
be violated, the second will always be violated. 
Still, the resulting graph may not be completely solvable. If the graph can't be solved, we 
want the best possible result. The larger the transistor, the more extra height it will have if it 
can not lie flat. Therefore it is more important that large transistors can lie flat than small 
ones. Also, if between two columns there are several smaller transistors, the extra height 
may be added, to make the branch representing the minimal distance between these columns 
more important. 
After the columns are ordered, the importances of the branches whose minimal distances 
were violated, are added together. The ordering that gives the lowest value is considered to 
be the best ordering of the columns. 

Figure 4.2 shows the graph for the example of the latch in chapter 2. The numbers at the 
nodes are column number, minimal column and maximal column. The numbers at the 
branches represent minimal distance and priority. The redundant branches are dashed. 

4.3 A beuristic for re-ordering the columns 

The minimal distance graph can't be solved in polynomial time. A dynamic programming 
strategy could solve the graph, or at least find the best solution, but if the size of the groups 
becomes to large, the number of possible solutions, that will have to be remembered during 
the computation, grows too large. 
A greedy algorithm can be used to place the columns one by one. Using a branch and bound 
strategy, the greedy algorithm can look a fixed number of placements ahead. In most cases 
this results in a good placement, but it can not guarantee to find the best possible solution. 
This paragraph will discuss this heuristic. 

The folding divides the columns for the latch-example in 4 groups. Group 1 contains 
columns 1, 2 and 3, group 2 only contains column 4, group 3 contains column 5 and group 4 
contains columns 6, 7 and 8. Using the graphof tigure 4.2, the heuristic will be explained, 
with a lookahead of 4 placements. 
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Figure 4.2. Desired distances between the columns. 
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Figure 4.3. Search tree for placement on position 1. 

Starting at position 1 there are three columns that can be placed. Figure 4.3 gives the tree 
that will be checked if the lookahead is 4. In the circle the placed column is written. The 
index to the left of a circle gives the vialation of that particwar placement (summed from the 
top), according to the graphof tigure 4.2. 
The tree shows that all three columns give the same vialation in the following placements. 
The branch and bound criterion now states, that, if in a branch of the tree a vialation is 
encountered that is nosmaller than the best vialation so far, the branch will nat be examined 
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further. The best violation can, of course, only be calculated at the end of a branch. This way 
the dasbed branches will not be examined. Using this strategy, column 1 will be placed on 
position 1. 
Continuing this for the other positions, the final placement will be: 

position 1 2 3 4 5 6 7 8 

column 1 3 2 4 5 6 8 7 

Starting at the left, this strategy tends to push the problems to the right of a group. As long as 
a column can be placed without violating any desired distance, this will be done, leaving all 
columns that may cause a violation to be placed last. 
Just picking the columns to be placed one by one, a column, that has nobranches to others, 
can be placed at a point, where also a column, that has branches cou1d be placed. At that 
point it makes no difference, but in future positions it can cause unnecessary problems. The 
branchless column can be placed on any position, but the one with branches can only be 
placed on some positions. Therefore it is better to place the column, that may give the most 
problems, i.e. has the most branches, as soon as possible. 
Before a placement on a position starts, a priority list of the placement order of the columns 
is determined. This is done by adding the priorities of all branches to one column, that are 
not connected to a placed column. This sum is a good criterion for the problems a column 
can give in future placements. By applying this list, the columns that may give the most 
problems will always be considered first and be placed as soon as possible, while columns 
that never will cause any problems will only be placed if all other columns failed. 
This strategy still causes problems to be pusbed to the right of a group, but now it will try to 
save the easy columns for this part of the group. Less accumulation of problems at the right 
side of a group may occur. 

Using a lookahead of k, the number of steps tobetaken at the first position of a group is: 

n! 
(n-k-1)! 

forselectinga single column at a position, where nis the number of columns in that group. 
Summing this over all positions, we find the order of the algorithm to be 0(nk+2 ) where n is 
the number of columns in the largest group. The lookahead shou1d be large enough to span 
the largest minimal distance between two groups. This can be determined by the largest 
transistors. Normally this lookahead will not be larger than 4, so we used a fixed lookahead 
of 4, resu1ting in an order of O(n6

). Usually groups are small (3 to 10 columns). These small 
groupsizes make the algorithm to run fast, despite its high order. 
However, the speed can be increased. This is done by assuming, that a placement without 
any violation is possible. The branch and bound lookahead originally starts with a very high 
best violation, which ensures the computation of the violation of the first branch. Now we 
start with a best violation of zero. This causes the branch and bound criterion to discard all 
branches that cause a violation, and, if possible, find a violation-free placement. If no 
violation-free placement can be found, the branch and bound set is preformed once again, 
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now with a very high initia! best violation. 
At the start of a new group, it usually is possible to place columns without any violation. 
Here, the placement is almost linear. At the end of the group, violations may have to occur, 
but at that time, the groupsize is very small and the algorithm still works fast. 

If a situation occurs, where a violation is inevitable, this violation may as well be made as 
soon as possible. This prevents accumulation at the end of the group and the high transistors 
will not be grouped in the same columns. This can easily be achieved by starting the place­
ment after a violation in the lookahead is found, with this violation as the best violation. 

A great number of tests showed that the algorithm runs in only a few seconds for up to 150 
columns, with highest groupsize of 15. 

4.4 Re-ordering transistors 

A second limitation of the folding is the inability to allow overlapping vias. Using a simple 
left-edge algorithm that allows overlap of viasof the same kind, the result of the folding can 
be improved. 
Within one row-group, all transistors of that group can be moved to any row in that group, 
without causing nets to overlap. B y placing all the transistors in a group again, using this 
left-edge algorithm, all possible overlaps are taken into account. The left-edge algorithm is 
linearand it can easily be proven to give an optima! result. 

Figure 4.4 shows a simple demonstration of the way a row can be won by letting vias over­
lap. In various examples it showed that up to 8 rows were won, using this re-ordering of the 
transistors. 

Figure 4.4. Re-ordering transistors with left-edge allowing vias to overlap. 

Re-ordering the transistors may not be done before the columns are re-ordered. Due to the 
fact that within a netgroup there can be no situation where a transistor 'ends' in the group 
and another transistor 'begins' in that group on the same row, the columns may be switched 
freely within the group, without ever causing any overlap. The left-edge algorithm however 
may result in a situation, which might give overlapping transistors if the columns are 
switched. 
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5. PARTITIONING THE TRANSISTOR MATRIX 

5.1 Heavily conneeled signals 

Power- and ground-signals, as well as clock -signals, can be connected to a great number of 
transistors. These long wires usually prevent the folding to produce a transistor matrix with 
more columns than rows. For instance, if one signal has 40 transistors connected, the 
minimal height of the transistor matrix must at least be 40. In general, the folding will not be 
able to bring it below 50, due to transistors, that cross the signal wire. 
This produces astrong limitation to the range of aspect ratio's that can be reached. In prac­
tice, the aspect ratio hardly ever comes above 1.0 and for large modules it might not even 
reach 0.5. A very important requirement of a good module-generator, however, is a wide 
range of aspect ratio's, that can be very well controlled. Hence, we have to avoid these long 
wires in the module to get higher aspect ratio's. 

One way to achleve this is cutting the wires in two and conneet half of the transistor to one 
wire and half to the other. The transistors can be divided random, but a mincut algorithm 
offers a more elegant way to deal with this problem, as will be seen in the next paragraphs. 

5.2 Cantrolling the aspect ratio 

The mincut algorithm divides all transistors in two groups in such way, that the number of 
wires connecting the two groups is minimal. If we put all transistors of one group to the left 
of the module and the others to the right, we have partitioned the module in two blocks. 
Some signals now are used in both blocks. Because the signals are vertical wires, they have 
to be conneered by horizontal strips. These horizontal strips are the only elements that cross 
the border between the two blocks. 
Now we have two blocks, that each can reach a highest aspect ratio between 0.5 and l.O. The 
combined module can therefore reach an aspect ratio between 1.0 and 2.0. To get even 
higher aspect ratio's we might partition both blocks and get for the total of 4 blocks a maxi­
mal aspect ratio between 2.0 and 4.0. This partitioning of blocks can be continued, but for 
smaller circuits the number of extra elements that are introduced (for each cut wire we intro­
duce a strip and an extra wire) may dominate the number of original elements. This will 
cause an increase of total si ze of the module, which should be avoided. 
Partitioning the module increases the maximal aspect ratio that can be obtained, it also may 
increase the minimal aspect ratio. Both size of the transistor matrix and the desired aspect 
ratio influence the number of partitions that give an optimal result in aspect ratio and 
minimum area of the module. Experiments showed that a good result will be obtained if the 
number of columns after fotding is about 15 for each block. This rule can be applied to 
determine the number of blocks by the desired aspect ratio and the size of the transistor 
matrix. The size of the transistor matrix is the number of columns times the number of rows 
ofthe matrix before folding. 
A great number of tests resulted in the empirica! relation between the size of the matrix and 
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the size of the foldresult to be: 

Also: 

and: 

toldrasult 2 . size0·7s 

toldrasult = width · height 

. width 
aspect rat1o = -h . h e1g t 

gives the width of the foldresult to be: 

width = ...J2 · size0·75 • aspect ratio 

This will result in an optima! number of blocks: 

#blocks = 1~ ...J2 · size0·75 ·aspect ratio 

This number of blocks will be rounded to the nearest power of 2 to determine the actual 
number of blocks. 

Though an extra number of elements and wires are added to the transistor matrix. by the par­
titioning, the result in total area may still be better, because now two separate blocks have to 
be folded at the same time. If a module is partitioned, the size of an individual block is about 
1/4 of the original module. The actdition of a few extra strips and wires makes them only a 
little larger. Using the above relation between size of the foldresult and size of the transistor 
matrix. it is easy to see, that the sum of the individual blocks is smaller than the original 
result. Of course, the connecting strips between the two blocks put some constraints on the 
folding, but in genera!, partitioning the module in a few blocks doesn 't increase the area of 
the foldresult significantly. 
So, depending on the desired aspect ratio and the size of the transistor matrix., we have a 
good criterion to control the aspect ratio and at the same time keep the total area of the 
module constant. Table 5.1 give the results fora test on the module 'five' (177 transistors 
and 95 signals). 

minimal maximal minimal maximal 
blocks ratio ratio area area 

1 0.35 0.55 5500 6345 
2 0.68 0.85 3630 3848 
4 0.75 1.86 3066 4200 
8 1.17 3.50 3255 4002 

TABLE 5.1. Aspect ratio for partitioning module 'five'. 

This module was folded with a1145 I/0-pins intheupper side ofthe module. Aspect ratio's 
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smaller than 0.68 were for that reason not achievable if the module was partitioned. Without 
the partitioning an aspect ratio of 0.35 was reached, but the area of the foldresult was 6345, 
so the smaller aspect ratio was mostly the result of making the module higher, not of making 
it narrower. For this example, the automatic control of the number of blocles gives only an 
unpartitioned module if the desired aspect ratio was 0.2 or smaller. 

5.3 A linear-time henristic for the mincut-algorithm 

The mincut partitioning problem consists of finding a partition of a set of eens into two 
blocles, such that the number of nets which have eens in both blocles is minimal In general. 
this process is subject to a balancing condition. Allowing a certain deviation, this condition 
keeps the sizes of both blocks in balance, preventing all eens to move to one block. 
No polynomial-time algorithm is known to compute the exact and optimal solution to this 
problem. Since networles may be very large, a practical algorithm must employ heuristics. At 
the 19th Design Automation Conference in 1982 Fiduccia and Matteyses presented a linear­
time beuristic [FIDU82]. 

The basic idea of the algorithm is to move one cell at a time from one block to the other and 
compute the number of nets that will be cut after the move. The balancing condition is used 
to determine the block from which a cell has to be selected for a move. A moved een will be 
locked to prevent moving it back. After all cells have been moved, the best partition encoun­
tered during the pass is taken as the new partition. This partilion can usually be optimised by 
a second pass. Alllocked cells are made free again and moving some of them back can give 
a better result Additional passes may be performed until no further improvements are 
obtained (in practice this occurs after just a few passes). 
The best cell to select from a block is the one that gives the most gain by moving it. The 
cellgain can be defined by the decrease in the number of cut nets if it is moved from its 
current block to its complimentary block. This can also be a negative number. 

+2 +1 0 -1 

Figure S.t. Examples of cellgains. 

To select the cen with the best gain from a block, "bucket" sorting is used. This is done 
using an array whose k-th entry contains a linked list of all cells with cellgain k. Direct 
access is achieved by using the maxgain index. 
Using the cellgain also simplifies the work to compute the number of cut netsaftera move, 
by just subtracting the cellgain from the previous number of cut nets. 
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After a een is moved it is taken out of the bucket array and placed in a free-cen-list which 
will be used to fill the buckets again at the start of a new pass. This makes it possible to use 
eens that are always locked,like for instanee l/0-pins, that are on theeast or west side of the 
module. These eens are not allowed to move under any circumstanee. 
If a een is moved, the gains of the cells conneered to the same nets, can change. Therefore 
these eengains will be updated and the eens will be taken from their bucket and plaeed in 
another bucket. To update the eens, only the 'critica!' nets have to be considered. A net is 
said to be critica!, if there exists a een conneered to it, which would change the net's cutstate 
if it is moved. Non-critica! nets can never change the gains of the connected eens and there­
fore need not to be considered. 
Before the move of a een the connected nets have to be checked. If the net has no eens in the 
complimentary block, the gains of all connected free eens in the current block have to be 
incremented, because moving them can notchange the cutstate of the net anymore (figure 
5.2a). If the net has only one een in the complimentary block, the gain of this een has to be 
decremented, because moving this een can no longer change the cutstate of the net (figure 
5.2b). 
After the move all nets connected to the cell have to be checked again. If there are no eells 
left in the current block, the gains of all connected free eells in the complimentary block 
have to be decremented, because they may cause an uncut netto be cut (figure 5.2c). If there 
is just one connected eenleft in the current block, the gain of this een has to be incremented, 
because now a move of this eell can change the cutstate of the net (figure 5.2d). 

-
-

-

-
Figure 5.2. Updating critica! nets. 

··No more than four update operations per net are perfonned during one pass of the algorithm. 
In [FIDU82] this is proven, as wellas the time-linearity ofthe heuristic. 
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5.4 Shorter diffusion wires 

Due to the p-n junction between diffusion and substrate, a diffusion wire has a high capaci­
tance. This capacitance slows down the circuit and is therefor undesired. The value of the 
capacitance is proportional to the size of the diffusion wire, hence, long diffusion wires 
should be avoided. 
Unpartitioned module can have diffusion wires running over the total width of that module. 
The partitioning of the module offers a great opportunity to bound the length of diffusion 
wires, because the only elements allowed to cross the partition-lines are poly strips. An 
up~r limit for the diffusion wire length is also the maximal width of a block. 

So, not only the control over the as~ct ratio benefits from the partioning, the performance of 
the circuit is also improved by it. Two important factors to the decision of partitioning 
modules. 

5.5 Single poly-silicon wires 

A net that is cut by the mincut algorithm may have on one side of the cut just one connected 
cell. Splitting these nets in two and adding a connecting strip only increases the area of the 
transistor matrix. This leads to an unnecessary extra increase in the foldresult, so these cuts 
must be ommitted. 

However, as we have seen inthelast paragraph, the circuit may have a better performance if 
the diffusion wires a kept within the bounds of the partition. Therefore before cutting a net 
we look if the net has only one conneetion on ei ther si de of the cutting line. If so, the net will 
only be cut if this conneetion will not be layed out in poly-silicon. Tests showed that, due to 
this action, the area of the foldresult reduced by 2 %. 

5.6 Folding partitioned modules 

The folding uses a mincut algorithm that applies a different beuristic [TEEF88]. Without 
further action, this may result in a different partitioning. The strips may not be the only ele­
ments that cross the partition-line and somestrips won't cross it at all. Experiments showed 
that this gives poor results, because the wrong signals were cut and others that should be cut 
were uncut. The folding didn't treat the partitioned module as two (or more) connected 
blocks, but as one undivided module. The partitioning usually resulted in a better control 
over the aspect ratio, but in most cases it also gave a larger foldresult, due to the extra wires 
and strips. 

To force the folding to use the same partition, we added the '-b' option to the folding. With 
this option, the folding reads the blocknumber of an element from the interval-file. Before 
the folding uses its own mincut-algorithm, it first partitions the module in the previously 
defined blocks. 
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This partitioning is done step by step, each time taking the largest block that can be parti­
tioned. After each step the aspect ratio of the module is calculated. As soon as this aspect 
ratio rises above the desired aspect ratio, the partitioning is stopped and the actual folding is 
started. This approach to control the aspect ratio is similar to the one used in the folding, 
where a partitioning of the netgroups tends to decrease the height of the module and a parti­
tioning of the gategroups (cells) tends to decrease the width of the module. 
Partitioning the module in all blocks might result in an aspect ratio that is too high and can 't 
be reduced sufficiently by the partioning of the gategroups. Moreover, too many partitions in 
one direction may obstruct any partition in the other direction. 

After the folding can 't find a better result by partitioning groups, a second stage of the fold­
ing starts. In this stage two adjacent groups are merged and the folding tries to find a better 
partitioning for them. This is done for all pairs of adjacent groups. 
This optimisation step may result in saving a few columns or rows. However, it also destroys 
the original partitioning of the module. This means, that the poly strips are no longer the 
only elements that cross the partition-lines, but ditfusion wires may also cross these lines. In 
fact, this usually occurs several times, resulting in much langer diffusion wires. 

A solution to this problem is toskip in the second stage only those netgroup pairs, that have 
nets that belang to a different block in the original partition. This avoids skipping the second 
stage completely and still keeps the upper bound for the diffusion wires. 

5.7 Partitioning power and ground 

The global router, that connects all modules of the fiomplan to one circuit, demands the 
power and ground wires to run through the module, i.e. the wire has on both sides an 1/0-pin. 
It also connects all 1/0-pins in the same channel, and uses only metal-wires, because of the 
relative high currents. 
In the module it is also best not to make connections between two power or two ground 
wires in poly. Therefor, if we cut a power or ground wire, the two parts are not connected by 
a poly-strip, but they get two 1/0-pins each. These 1/0-pins will only have a metal-terminal, 
while all other 1/0-pins can only be connected via a poly terminal. 

5.8 Second metallayer 

The partitioning of the module offers an excellent possibility to use a second metallayer. All 
connecting strips can use this second metal layer. It has no design rules to any other layer 
and can be layed on top of all other layers. This offers a much more compact layout of the 
module. 
The only restrietion to the second metallayer is that it can only be connected to the first 
metallayer and this conneetion may not be on top of a poly-metal or diffusion-metal via. 
Hence, only the vias between first and second metallayers are 'visible' to the rest of the lay­

out 
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To implcment the second metal layer, a third contour type has to be used to separate the 
strips in this layer. It also requires a different approach to the overlapping of the vias. The 
vias may overlap anything but the contour ofthe new type and the poly-metal and ditfusion­
metal vias. To achleve this, the metal-meta12 vias may not be placed on a position where 
only the px-layer or only the dx-layer is used. 
A more difficult situation occurs at placing a transistor after a strip in second metal is placed. 
Now both px- and dx-contours have to be adjusted at the same time to be able to let the 
metal-meta12 via to overlap anything but an other via. 

Due to the fact that the second metallayer may overlap all other layers, the aspect ratio will 
be hard to con trol. It depends on the number of strips used and on the positions of the vias 
how much space can be saved. The folding however can not take the overlapping into 
account and uses for each strip the same space as fora transistor. 
The second metal layer strips usually are grouped at the partition-line between two blocks. 
This implies a number of rows can be save at these positions. However, at the left or right 
side of the module there will hardly ever be any strips, so no rows can be saved there. This 
will cause the module to remain high at the edges and drop lower in the centre. This can not 
be avoided by the folding or adjusted after the folding. 
The strips can not be left out of the folding and after the folding be introduced again, 
because this may lead to two wires that have to be connected by a strip that have no common 
vertical position and therefore can't be connected by a horizontal strip. 

A solution to this problem has not been found yet and the second metal layer has not yet 
been i.mplemented. 
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6. EXPERIMENT AL RESUL TS 

6.1 Foldresult to layout 

The main goal of the project was to transfonn the foldresult into a layout of the module. This 
transfonnation must be linear with respect to aspect ratio and chip area. 
A great number of tests showed that the linearity was independent of the aspect ratio, area or 
number of partitioning blocks. The results are presented in table 6.1: 

foldresult layout factor 
module si ze area ratio area ratio area ratio 

hell84 192 108 0.75 49920 0.49 462 0.65 
data 414 187 0.65 87936 0.42 470 0.65 
adc 1170 351 0.48 159600 0.33 454 0.69 
mp5 1536 378 1.17 176328 0.78 466 0.67 
logic 1632 495 2.20 229320 1.51 463 0.69 
four 3952 990 1.10 500388 0.69 505 0.63 
cnt4.4 12936 1736 1.81 700398 1.43 403 0.79 
loc 12056 2236 0.83 967680 0.61 432 0.73 
five.2 20223 3850 0.79 1801704 0.54 467 0.68 
five.4 25875 3066 1.74 1506816 1.14 491 0.66 

T ABLE 6.1. Area and aspect ratio of foldresult and layout 

Table 6.1 shows an almast constant factor of bath aspect ratio (mean factor is 0.68) and area 
(mean factor is 461). The size of the transistors is of some importance to the area and aspect 
ratio of the layout. If a lot of transistors have a large channel-length, they probably can 't all 
lie flat, so the height of the module will increase. Wide transistors may also increase the 
height of the module, because they will need a model that has a greater height. Module 
'four' has only long or wide transistors, soit can't be compactedas much as other modules. 
Module 'cnt4.4' has no long or wide transistors at all, so the compaction is much better, 
resulting in a lower area factor and a lower ratio factor. 

This result makes it possible to predict the area and aspect ratio ofthe layout as: 

area = 450 · foldresult 

aspect ratio = 0.7 · de si red ratio 

if we assume, that the desired aspect ratio can be reached by the folding. 
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6.2 Re-ordering columns and rows 

The deviations in table 6.1 can also be explained by the fact that the tests were run with the 
re-ordering of columns and rows. In some examples more rows were saved than in others, so 
the height of the layout was a little harder to predict Skipping the re-orde ring of the modules 
might give a better control over the aspect ratio as will be demonstrared in table 6.2, but it 
also results in larger modules. 

factor factor 
des i red without re-ordering with re-ordering rows 
ratio area ratio area ratio saved 

0.25 390 0.80 348 0.90 5 
0.33 359 0.86 324 0.97 8 
0.50 409 0.76 393 0.82 1 
0.67 408 0.78 393 0.81 2 
1.00 422 0.75 387 0.82 0 
2.00 389 0.82 394 0.81 1 

T ABLE 6.2. The effect of re-ordering columns and rows for module cnt4. 

6.3 Controlling the aspect ratio 

The tinal shape of the module highly depends on the results of the folding. Both aspect ratio 
and area are a linear function of the results of the folding. Therefore it is important to have a 
good control over the folding. In chapter 5 we found that a good control over the aspect ratio 
can only be obtained by partitioning the module. Table 6.3 shows the results of folding the 
module 'tive' unpartitioned and partitioned in respectively 2, 4, 8 and automatic number of 
blocks. Module 'tive' has 45 1/0-pins, which we re all placed on the upper si de of the 
module. For this reason, modules narrower than 45 columns could not be formed. Small 
aspect ratio's were only reached by making the module higher, causing a great increase in 
area. Table 6.3 clearly shows, that the control over the aspect ratio of an unpartitioned 
module can be very poor. Even partitioning in two blocks gives little control over the aspect 
ratio. 
The automatic control of the number of partitioning blocks gives a good control over the 
aspect ratio in a wide range, where the area of the module remains approximately constant, 
as demonstrated in tigure 6.1 and 6.2. 

Figure 6.2 gives the obtained area as function of the desired aspect ratio. A more interesting 
picture is the obtained area as function of the obtained aspect ratio. This is given in tigure 
6.3. lf we forget the large deformation due to the very low desired aspect ratio, tigure 6.3 
shows, that the area of the foldresult remains more or less constant within the aspectratio 
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desired 1 block 2 blocks 4 blocks 8 blocks automatic 
ratio area ratio area ratio area ratio area ratio area ratio 

0.2 5684 0.42 - - - - - - 5684 0.42 
0.3 5684 0.42 3848 0.70 - - - - 3848 0.70 
0.4 6345 0.35 3848 0.70 5720 0.47 - - 3848 0.70 
0.5 5865 0.44 3848 0.70 - - 7375 0.47 3848 0.70 
0.7 5500 0.55 3795 0.80 4200 0.75 - - 3795 0.80 
1.0 5564 0.49 3819 0.85 4012 0.87 4002 1.19 4012 0.87 
1.5 5564 0.49 3630 0.83 3102 1.40 3450 1.63 3102 1.40 
2.0 5564 0.49 3630 0.83 3066 1.74 3680 1.74 3066 1.74 
3.0 - - 3630 0.83 3276 1.86 3255 2.66 3255 2.66 
4.0 - - - - 3150 1.79 3584 3.50 3584 3.50 
5.0 - - - - - - 3432 3.15 3432 3.15 

TABLE 6.3. Controlling the aspect ratio for various partitions of module five. 

obtained 
folding 

ratio 

5 

2 

1 

0.5 

. 
0.2 

0.2 

. 
.. 

0.5 1 
desired ratio 

2 

Figure 6.1. Obtained ratio versus desired ratio. 

5 

range from 0. 7 to 3.50. This constant area is also found in the actuallayouts of the module 
within the aspect ratio range from 0.55. to 2.66 as shown in tigure 6.4. 

Figure 6.5 shows three layouts forthe circuit 'five' at different aspect ratio's. 

6.4 Comparison of layout methods 

To compare this layout style with other automatic Iayout styles, a number of experiments 
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Figure 6.2. Obtained folding area versus desired aspect ratio. 
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Figure 6.3. Obtained folding area versus obtained folding ratio. 

were done. All systems designed for the same nMOS process, with the same design rules. 
We compared the results with a conventional gate matrix generator [LIES87] and a standard 
een place and route system [THEE85]. Table 6.4 shows the results of these methods. This 
table shows, that the two-dimensional folded transistor matrix reduced the area of the gate 
matrix layout to 42%-73% and the standard cell to 37%-66%. A manual designed layout for 
the module cnt4 has an area of O.I83. This is only 3.1I times smaller than the doubly folded 
transistor matrix layout. 
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Figure 6.4. Obtained layout area versus obtained layout ratio. 

Figure 6.5. Tirree different aspect ratio's for the module five. 
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module nroj 2dim gate standard 
xtors jolding matrix cell 

hell84 12 0.043 0.072 -
data 24 0.088 0.166 -
a de 42 0.175 0.411 0.472 
mp5 46 0.176 0.436 0.465 

four 68 0.38 0.52 0.58 
cnt4 96 0.57 1.35 -
loc 130 0.97 - 2.13 
five 177 1.33 2.99 2.29 
si x 332 3.85 - 6.99 

T ABLE 6.4. Comparing the ctm-1ayout with gate matrix and standard cell. 

6.5 Computation time 

Another important aspect to automatic module generation is the time consumption of the 
algorithms. In table 6.5 the computation time is given. The six steps to generate a module are 
given separate as well as the total of all six steps. M4 (1) is the step to get the surrounding­
box models from the library, where M4 (2) is the step to get the final models from the 
library. 

module ctm ivs jolding ctm stretch M4 (1) ctm_place M4 (2) total 

hell84 0.3 6.8 0.8 19.1 59.5 3.8 90.3 
data 0.6 25.4 1.1 32.3 101 4.9 165 
adc 1.7 68.5 1.8 64.7 226 7.0 370 
mp5 1.7 124 2.0 71.4 260 7.4 466 
four 2.6 418 2.6 95.0 371 9.6 898 
cnt4 4.8 1110 4.1 158 588 13.6 1870 
loc 6.4 2720 4.7 200 792 16.5 3740 
five 11.2 4910 6.6 305 1270 22.3 6530 
si x 31.8 39800 12.2 537 2150 39.1 42600 

TABLE 6.5. Computation time in seconds for various examples. 

Table 6.5 clearly shows, that ctm_place takes the most time for small modules, while the 
total time for large modules mostly depends on the folding. The other steps can usually be 
neglected. 
The table also shows the linearity of the ctm_place algorithm. The placement takes between 
4.21 seconds (for 'data') and 7.18 seconds (for 'five') per transistor. The larger modules are 
split in more blocks, so the number of layout-elements is larger than just the number of 
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transistors. The folding algorithm shows a third-order relation between time and number of 
transistors (time = 0.0012. #xtors3 ). 

The re-ordering of columns is part of the ctm_stretch program. The table clearly shows, that 
this re-ordering of columns runs very fast. This is probably due to the small folding-groups. 

Of course these results are not absolute. The program was run on a HP9000 in a multi­
tasking environment. The table only demonstrates the relation between time consumption 
and the number of transistors. The table also demonstrates the relation between the time con­
sumption of the different steps. 
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7. CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The doubly folded transistor matrix module generator offers great design ftexibility. The 
module can be customised with respect to function, speed, design rules, aspect ratio and pin 
positions. Both aspect ratio and pin positions can be accurately controlled, while the area 
remains more or less constant. A wide range of aspect ratio's could only be obtained if the 
module was partitioned in blocks. An automatic control over the number of partitions proved 
to be very effective if both desired aspect ratio and size of the transistor matrix were taken 
into account. 

Compared to conventional methods of automatic module generation, the presented generator 
gives a drastic impravement in area usage. The folding offers a uniform distribution of 
transistors and wires over the complete rectangle, leaving no empty spaces or corners. This 
keeps the enclosing rectangle small. Because of the library of adaptable transistor models an 
efficient compaction is obtained, in spite of the greedy approach. 

The module generator is automatically interfaced with a ftoorplanner. The module generator 
adapts the module from a global Hoorplan and uses an elegant hierarchical divide and con­
quer algorithm to refine the two dimensional folding. Finally the transistor layouts are 
adapted to the wire plan designed by the folding. 

7.2 Recommendations 

For larger modules the time consumption ofthe module generator increases drastically. This 
is mainly due to the third order 'lin' algorithm used in the folding. A quadratic 'fast' algo­
rithm is also supplied by the folding program, but the results of the 'lin' algorithm are up to 
a factor two better. An algorithm that can get the same results as the 'lin' algorithm, but is 
also quadratic is highly desired. At the moment steps are taken to combine the linear mincut 
algorithm as described in chapter 5 with the 'fast' algorithm. Experiments so far showed a 
quadratic computation time, with results better than 'fast' but not as good as 'lin'. 

The ctm_place program uses arrays to represent the contours of the transistor models. For 
transistors that span a great number of columns, this means that a great number of positions 
have to be updated intheselect and place functions. The use of a special database structure, 
that only contains the points were the contour steps up or down, can speed up the program. 

The contour-array can not distinguish vias connected to wires on different columns. For this 
reason, we use vias that are centered on the wires and make sure the distance between the 
wires is large enough to satisfy the design rules. In our case, the size of a via is 12 Jlm and 
the minimal distance is 6 Jlm, which demands a pitch of 18 Jlm. Because the wiresize is 6 
Jlm, uncentred vias can offer a pitch of only 16 Jlm. This results in a 20 % reduction of the 
width of the module. The database for the contours should be able to make the distinction 
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between the vias. 

The M4·preprocessor adapts transistor models from the library, using string substitutions. 
This is not a very efficient procedure as can be seen in table 6.5. A more dedicated program 
probably can speed up this step drastically. 

The design of the model library is only partly supported by a tool. The models can be 
designed using an interactive layout editor and be transfonned to the library syntax automat· 
ically. However, this transfonnation program does notcheck for errors. The selection cri­
terion, used by M4 to get a model from the library have to be generaled manually. Both 
design steps can cause errors in the library. It is up to the designer to verify the correctness 
of the models in the library and selection criterions. A more sophisticated tooi could check 
the models for errors and automatically generate the selection criterion. 
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APPENDICES 

In the appendices are given: 

• ctm_ivs global data structure 

• ctm_stretch global data structure 

• ctm_place global data structure 

• ctm_ivs manual 

• ctm_stretch manual 

• ctm_place manual 

• ctm_mklib manual 

40 
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database structure of the program ctm _ivs. 



PINS (describe 1/0-pins.) 

name : name of the 1/0-pin 
si de : si de of the 1/0-pin 

MODULES (describe the transistor parameters) 

name : name of the transistor 
type : transistor type 
chw : width of transistor channel 
chl : length of transistor channel 
conneet : number of connections made to the transistor, to check the input file (not imple­
mented yet) 

CELLS (describe the transistor position and terminals) 

name : name of the transistor 
module : pointer to the definition of transistor parameters 
sl : index of 'net'-array forsi-net 
s2 : index of 'net' -array for s2-net 
gate : index of 'net' -array for gate-net 
pinname : name for 1/0-pin 
blk : global block after partitioning 
l_blk : local block during partitioning 
free : free to move or locked during partitioning 
gain: cellgain if cellis moved during partitioning 
bucket : pointer to item in bucket 

CELLGAINS (item of doubly linked list of cells with the same cellgain) 

previous : pointer to previous item in linked list 
cell : index of 'cell '-array 
next : pointer to next item in linked list 

NETS (describe net) 

name : name of the net 
cutstate : state of net after partitioning (cut I uncut) 
distr : distri bution of locked and free cells connected to the net over both blocks during par­
titioning 
clist : pointer to a linked list of cells connected to the net 

CLISTS (item of a linked list of cells connected to the same net) 

cell: index of 'cell'-array 
next : pointer to the next item in the linked list 



ctm _stretch global data structure 
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global data structure ofthe program ctm_stretch. 



IN STANCES (describe parameters and JX)Sition of a een) 

sI : index to 'columns' -array for sI-column 
s2: index to 'columns'-array for s2-column 
gate: index to 'columns'-array for gate-column 
row : final row JX)Sition after re-ordering 
chw : width of the transistor channel 
chl : length of the transistor channel 
group : folding group number 
name : name of the een 
next : JX)inter to the next item of the linked list of eens on the same row 

NETS (describe the JX)Sition and connections to a net) 

row : relative y-coordinate of the net 
conneet : number of connected cells 
column : column of thc net after re-ordering 
group : folding group number 

LEFTEDGES (describe eens during left-edge re-ordering of eens) 

left : column of leftmost via 
type : type of leftrnost via 
group : folding group number 
inst : pointer to een description 
next : JX)inter to the next item in the linked list of eells 

DISTANCES (describe desired distanees during re-ordering of columns) 

thiscol : JX)Sition of this column 
othercol : position of other column 
distance : desired distanee between thiscol and othercol 
priority : distanee priority 
colgroup : folding group number of thiscol 
nextcol : '(X) inter to the next item in the linked list 



ctm _place global data structure 
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INSTFORMS (describe fonn of instanee to be placed) 

sl : column of sl 
s2 : column of s2 
gate : column of gate 
typenr : instanee type number 
chw : transistor channel width 
chl : transistor channellength 
name : name of the instanee 
next : pointer to the next instanee structure (not used yet) 
defs : pointer to anitem in the linked list of model definitions 

DEFSTR (item oflinked list of model definitions forthe same instance) 

nr : number of the definition 
next : pointer to the next item in the linked list of model definitions 
box : pointer to an item in the linked list of boxes that make up a model definition 

BOXS (item oflinked list of boxes that make up a model definition) 

xl : left coordinate of the box 
xr: right coordinate ofthe box 
yb : bottorn coordinate of the box 
yt : top coordinate of the box 
layer: layer ofthe box (xx, px or dx) 
next : pointer to the next item in the linked list of boxes 

SI G N ALS (i tem of linked list of signals on the same column) 

net: nemame 
row: relative y-coordinate ofthe net on the column 
conneet : the number of connections that still have to be made to the net 
yb : the y-coordinate of the center of the lowest connected via to the net 
yt : the y-coordinate of the center of the hlghest connected via to the net 
next : pointer to the next item in the linked list of signals on the same column 
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NAME 
cun_ivs - make transistor matrix intervals for fotding 

SYNOPSIS 
cun_ivs [-bJ <interface-file> <module-file> <netlist> <interval-file> 

DESCRIPTION 
A circuit can bedescribed in a combination of three files, the interface-file, the module-file and the netlist 
The netlist describes the conneetions between the modules used in the circuit The module-file describes 
the used transistors and the interface-file describes the 1/0-pins, their positions and the shape of the layout. 
This description is transfonned by cun_ivs to a transistor matrix, where each net is represented by a 
column and each transistor represented by a row. The conneetions between the transistors and nets are 
represented by the interval-file. 

OPTIONS 
-b The transistor matrix is partitioned in a number of blocks. The number of blocks depends on the 

size of the transistor matrix and the desired aspect ratio. The partitioning is prefonned by a mincut 
algorithm which minimises the number of nets that are used in two blocks. These nets will be split 
in two nets, conneeted by a strip. This option allows the fotding algorithm to have more control 
over the aspect ratio, so chances of reaching the desired aspect ratio increase. 

INTERFACES 
The program uses three input-files and one output-file 

netlist 
A netlist of transistors allows total freedom for the design of transistor networks. There are no constraints 
to the number of conneetions to be made to one signal and the gate, drain and souree of a transistor can be 
conneeted to any signa!. The netlist contains all connections to be made. Each line in the netlist describes 
one conneetion between a signal and a transistor. It also states to which tenninal of the transistor (gate, 
drain or source) the conneetion is made. The syntax for alllines of the netlist is: <netname> <transistor­
name> <tenninal> 

module-file 
The module-file describes the type of transistor and the size of its channel. The module_file has the follow­
ing syntax: <transistomame> <type> <channellength> <channel width> 

Interface-file 
The interface-file describes the aspect ratio and pin positions as desired by the floorplanner. 
The syntax of the interface-file is as follows: "module" <module name> 
"shape" <width> <height> 
"pin" <pin name> <coord> <coord> 

"end" 
The fust line must always contain the keyword "module", foliowed by the name of the module. The seeond 
line always starts with "shape" foliowed by the desired width and height of the module. The file bas to be 
tenninated with the keyword "end" on the last line. 
All other Iines start with the keyword "pin" foliowed by the pinname and the interval of allowed positions 
of the pin. Figure 2.3 shows the mapping of the intervals. The coordinates are floating point numbers, so 
only a part of a side can be chosen. This offers the possibility to define relative pin positions on the same 
si de. 
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interval-file 
The netlist can be mapped to a two-dimensional transistor matrix. In this matrix all transistors are mapped 
to the rows and all nets to the columns. The 1/0-pins conneeled to the north-side of the module are all 
combined on one row called '$NOR1H$'. The 'south'-I/0-pins are all combined in the row called 
'$WEST$' and '$SOUTH$'. These rows and columns are always fixed to the four sides of the transistor­
matrix. In this matrix all connections can easily be represented. 
To describe the circuit one could use the whole matrix. The matrix is however very sparse and therefore it 
is more useful to describe the circuit only by the connections in the matrix. This leads to the interval-file. 
The interval-file represents the connections in the matrix by only specifying the coordinates of the connec­
tions. The syntax of the interval-file is as follows: <module name> 
<width> <height> 
<column> <row> <blocknr> <module typenr> <channellength> <channel width> [<pin name>] 

CONTRIBUTED BY 
Jos Brouwers 

STATUS 
In development 

SEE ALSO 
folding 
ctm_stretch 
ctm_place 
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NAME 
ctm_stretch - define stretch for transistor roodels used in compact transistor matrix module generator 

SYNOPSIS 
ctm_stretch [-r] <interval-file> <foldresult> <transistor-file> <signal-file> 

DESCRIPTION 
The interval-file and the foldresult are combined to get the doubly folded transistor matrix. This results in 
the relative positions of the transistors and the signal-wires. The columns to which the transistors are con­
neeled define the stretch of the roodels that can be used. This will be written to the transistor-file. The rela­
tive positions of the signals as wellas the number of connections to the signals are written to the signal-file. 

OPTIONS 
-r The columns of the transistor matrix are re-ordered to allow transistors to lie flat as much as possi­

ble. This usually results in a compacter layout Also the transistors are re-ordered in the rows, 
allowing vias of the same kind to overlap. This can usually save some rows of the transistor 
matrix, resulting also in a compacter layout. 

INTERFACES 
The program uses two input-files and two output-files 

interval-file 
see ctm_ivs. 

foldresult 
The folding-program generates a foldresult with the following syntax: <module name> 
<width> <height> 
<vert-int> <x-coordinate> [<groupnumber>l 

<blank line> 
<hor-int> <y-coordinate> [<groupnumber>] 
•.. If the -r option is used, the groupnumber must be specified (by running the folcling with the -g option). 

transistor-file 
The transistor-file defines the stretch and terminal-positions of all used transistors. Also the channel length 
and -width are specified. The syntax of one line is: "TOR(" <sl> "," <s2> ","<gate>"," <chl> "," <chw> 
''." <type> "," <name> ")" No distinction is made between drain and source. They can be connected to 
column <sl> or column <s2>, where <sl> <= <s2>. The gate-conneetion is made at column <gate>. The 
channellength and -width are specified by <chl> and <chw>. <type> gives the typenomber of the transis­
tor. U the transistor is not named, """ will be substituted for <name>. 

signai-file 
The signai-file states the relative position of a signal-wire and the number of connections made to it. The 
syntax is: <signal> <column> <y-coordinate> <connect> <signa!> is the original column of the signa! in 
the interval-file, <column> is the column the signal has been mapped to (after fotding and re-ordering). 
The <y-coordinate> is a relative coordinate, only to be used together with other signals on the same 
column. <connect> gives the number of connections made to the signal. 
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CONTRIBUTED BY 
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STATUS 
In development 

SEE ALSO 
ctm_ivs 
folding 
ctm_place 
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NAME 
ctm_place - select and place transistors and wires used in compact transistor matrix module generator. 

SYNOPSIS 
ctm_place <definitions-file> <signal_file> <placement-file> 

DESCRIPTION 

For each transistor, the definition-file gives a list of definition for the roodels that can be used. The model 
that fits best will be selected and placed in the placement-file. The selecting criterion is the extra area multi­
plied by the increase in height of the module. The length and positions of the signal-wires are calculated by 
the positions of the transistors connected to it and they are placed in the placement-file as wen. 

INTERFACES 
The program uses two input-files and one output-file. 

definltions-file 
This file is a list of transistors with the following syntax: 

<transistorlist> ::= <transistor><transistorlist> I <transistor> 

<transistor>::= <instance><definitionlist> 

<instance> ::= "instance" <int><int><int><int><int><int>[ <name> ]<eol> 
Instanee is the header of a list of definitions. The integers stand for sl-column, s2-column, gate­
column, channellength, channelwidth and type of the transistor. 

<definitionlist> ::= <definition><definitionlist> I <definition> 

<definition> ::= <newdef><elemenûist> 

<newdef> ::= "newdef' <int> 
Newdef is the hcader of a list of elements, that define one transistor model. The integer gives the 
modelnumber. 

<elementlist> ::= <element><elementlist> I <element> 

<element> ::= <box> I <module-call> I <terminal> 

<box>::= "box" <layer><int><int><int><int><eol> 

<module-call> ::= "me" <narne><int><int><eol> 

<terminal>::= "term" <layer><int><int><int><int><name><eol> 

<int> ::= (<di git>}+ 

<name> ::= <letter> {<letter> 1 <digit>} • 

<layer> ::= <name> 
All lines following the newdef-key are the LOM-description of a model until another newdef or 
instance-key is encountered. This way each transistor can have an arbitrary number of roodels to 
choose from. 

signai-file 
see ctm_stretch 

placement-file 
This file is a list of transistor- and wire definitions with the following syntax: 
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<definition> ::=<transistor def> I <wire def> 

<transistordef> ::= "INST(" <int>"," <int>"," <int>"," <int>"," <int>"," <int>"," [<name>]")" 
The integers stand for s1-column, s2-column, gate-column, channellength, channelwidth and type 
of the transistor, name gives the - optional- transistorname. 

<wire def> ::= "box nm" <int> <int> <int> <int> 
The integers give the coordinates of the left bottorn and right top corners of the box. 

<int>::= {<digit>}+ 

<name> ::= <letter> {<letter> I <digit>} * 

The 1/0-pins on the south-side must have typenurnher 9003 (for poly-terminals) or 10003 (for metal­
terminals). The 1/0-pins on the north-side must have typenurnher 9004 (for poly-terminals) of 10004 (for 
metal-terminals ). 

CO!Ioo'TRIBUTED BY 
Jos Brouwers 

STATUS 
In development 

SEE ALSO 
ctm_ivs 
ctm_stretch 
fotding 
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NAME 
ctm_mklib- ctm_mklib makes a library for the ctm-program from an ldm-description of the models. 

SYNOPSIS 
ctm_mklib <ldm-file> <lib-file> [<tech-file>] 

DESCRIPTION 

The last module intheldm-file will be transformed toa model in the lib-file. Also the module is mirrored 
in the X-axis, in the Y-axis and both to give three models more in the lib-file. These models are placed in 
'lib-file' .n I to 'lib-file' .n4. Automatically the surrounding box es of all models are also computed and 
placed in 'lib-file' .x I to 'lib-file' .x4. 
The program will ask the name and corresponding number for the module. The narnes will be converted to 
'name', 'name'_x, 'name'_y and 'name'_x_y while the number will be incremented by respectively 0, I, 2 
and3. 
The tech-file can be used to set the technology-dependent design rules. 

INTERFACES 
ldm-file 
The input is a standard ldm-file (for syntax see ldm) from a layout made with the layout editor 'euler'. To 
design a good model for ctm_mklib, some important rules must be satisfied: 

lib-files 

The transistor may not be constructed by simply overlapping diffusion by poly, but a compound­
model must be used. These compound-models may not be rotated or mirrored (if needed, a special 
compound bas to be constructed). 

If, due to a larger channel, the transistor-compound beoomes higher, only the layout-elements that 
lie above the centre of the transistor-compound will be shifted accordingly. 

The channel of the transistor can only grow in the upward or right direction, the model must allow 
this growth. 

The library is constructed around the positions of the vias. These vias must be layed apart at least 
three columns. The left and right sides of the layout-elements will be computed from the position 
of the nearest via. They will have a fixed offset to the position of that via. Usually three columns 
between the vias gives enough distance to assure the selection of the proper via. If in doubt, the 
distance may be enlarged, this does notaffect the actual shape or stretch-points of the model. 

While constructing a module no rotating or mirroring of any layout-element, or the whole module 
are allowed. 

All wires must be drawnat the predefined pitch (see tech-file). 

There are two types of lib-files, the nlib-files and the xlib-files. The M4-preprocessor is able to convert 
these files to definition-files (see ctm_place) respectively ldm-files (see ldm). The syntax for the xlib-files 
is: 

<xmodel> : := <xhead> { <xdef>} • <xtail> 

<xhead> ::= "define(" <name>"," <eol> "'" <eol> "newdef' <number> <eol> 

<xdef> ::= <xbox> I <xcompound> 

<xtail> ::= "')" 

<xboX> ::="box" <xlayer> <xcoord> <ycoord> <xcoord> <ycoord> <eol> 

<xcompound> ::="me" <name> <xcoord> <ycoord> <eol> 
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<Xlayer> ::= "px" I "dx" I "xx" 

<Xcoord> ::= "eval(" <int>"+" <via>"+" <int> I { ["-"] "$4" I "$5" } ")" 

<ycoord> ::= :eval(" <int> "+$6+" <int> I { ["-"] "$4" I "$5" } ")" 

The syntax for the nlib is: 

<nmodel> ::= <nhead> { <ndef>} • <ntail> 

<nhead> ::= "define(INST"<number> "," <eol> '"" <eol> 

<ndef> ::= <nbox> <ncompound> 

<nbox> ::="box" <nlayer> <xcoord> <ycoord> <xcoord> <ycoord> <eol> 

<ncompound> ::="me" <name> <xcoord> <ycoord> <eol> 

<nlayer> ::= "nm" I "np" I "nd" I "ni" I "nb" I "nx" I "na" 

<xcoord> ::= "eval(" <int>"+" <via>"+" <int> I { ["-"] "$4" I "$5" } ")" 

<ycoord> ::= :eval(" <int> "+$6+" <int> I { ["-"] "$4" I "$5" } ")" 

tech-file 
The tech-file can be used to set the technology parameters. 7 keywords are recognised: "pitch" <int> : 
pitch of the wires (default 18). "wiresize" <int> : width of a wire (default 6). "viasize" <int> : width and 
height of the vias (default 12). "overlap" <int> : extra poly-diffusion overlap to assure a good transistor 
(default 4). "safety" <int> : minimal surrounding box, half the size of largest design rule (default 3). 
"pmvia" <name> : name of the poly-metal via, used in the layout (default pm004004). "dmvia" <name> : 
name of the diffusion-metal via, used in the layout (default dm004004). If a keyword is not found in the 
tech-file, the default-value will be used. If no tech-file is specified, all default-values will be used. 

The program is developed to construct a library to the ctm-module generator. The nlib- and xlib-files can 
be joined and appended to standard library-files. These standard library-files must contain a definition of 
all used transistor-compounds and vias. These definitions can not be generated automatically, so they must 
be made by hand. The syntax of a definition is: 

<definition> ::= <header> { <box>• I <copy>} <tail> 

<header> ::= "define("<name> "," <eol> "'" <eol> 

<box> : := "box" <layer> <xcoord> <xcoord> <ycoord> <ycoord> <eol> 

<copy> ::= <name>"($1,$2,$3,$4)" 
name is the name of the compound to be copied. 

<xcoord> ::= "eval($1" [{"+"I"-" "$3" I "$4"}] "+"I"-" <int>")" 

<ycoord> ::= "eval($2" [{"+"I"-" "$3" I "$4"}] "+"I"-" <int>")" 
The definitions of strips and I/0-pins must also be made by hand in the same way. The library 
should be used in combination with a selection-file. This file must be written conform the m4-
syntax. Depending on the ordering of gate, drain and source, and on the size of the channel, the 
m4-preprocessor can with this file make a selection between all moelels in the library. To extract 
the surrounding boxes from the library, M4 is used twice. First it is run on the concatenation of 
pitch-file, select-file and .tor-file. The pitch-file only contains one line, stating the wire-pitch. The 
syntaxis: 

"define(P," <pitch> ")" 
This first step selects the models and stretch. In the second step, M4 is run on the concatenation of 
pitch-file, x-library and the output of the first step. To extract the finallayout from the library, M4 
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is run on the concatenation of pitch-file, n-library and .c2out-file. To run the program, a shell­
script called 'mklib' is provided. A menu can be used toselect steps to be taken. It also provides 
the automatic updating of the library-files and ctm_mklib can be run in background for a sequence 
of compounds. Running in background needs a special file, called 'tech' .add. The syntax of this 
file is: 

{<name> <eol> <number> <eol>} • 
The models are added to the library, not substituted, so name and number may nothave been used 
before. 

The program can only be used for transistor definitions with one or two diffusion contacts and zero or one 
poly contact The one diffusion and zero poly contact combination can 't be used either. 

CONTRIBUTED BY 
Jos Brouwers 

STATUS 
In development 

SEE ALSO 
!dm 
m4 
euler 
ctm_stretch 
ctm_place 
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NAME 
ctm_mklib- ctm_mklib makes a library for the ctm-program from an ldm-description of the models. 

SYNOPSIS 
ctm_mklib <ldm-file> <lib-file> [<tech-file> 1 

DESCRIPTION 
The last module in the ldm-file will be transformed to a model in the lib-file. Also the module is mirrored 
in the X-axis, in the Y-axis and both to give three models more in the lib-file. These models are placed in 
'lib-file' .nl to 'lib-file'.n4. Automatically the surrounding boxes of all models are also computed and 
placed in 'lib-file' .xl to 'lib-file' .x4. 
The program will ask the name and corresponding number for the module. The narnes will be converted to 
'name', 'name'_x, 'name'_y and 'name'_x_y while the number will be incremented by respectively 0, 1, 2 
and3. 
The tech-file can be used to set the technology-dependent design rules. 

INTERFACES 
ldm-file 
The input is a standard ldm-file (for syntax see ldm) from a layout made with the layout editor 'euler'. To 
design a good model for ctm_mklib, some important rules must be satisfied: 

Db-files 

The transistor may not be constructed by simply overlapping diffusion by poly, but a compound­
model must be used. These compound-models may not be rotated or mirrored (if needed, a special 
compound has to be constructed). 

If, due to a larger channel, the transistor-compound beoomes higher, only the layout-elements that 
lie above the centre of the transistor-compound will be shifted accordingly. 

The channel of the transistor can only grow in the upward or right direction, the model must allow 
this growth. 

The library is constructed around the positions of the vias. These vias must be layed apart at least 
three columns. The left and right sides of the layout-elements will be computed from the position 
of the nearest via. They will have a fixed offset to the position of that via. Usually three columns 
between the vias gives enough distance to assure the selection of the proper via. If in doubt, the 
distance may be enlarged, this does not affect the actual shape or stretch-points of the model. 

While constructing a module no rotating or mirroring of any layout-element, or the whole module 
are allowed. 

All wires must be drawnat the predefined pitch (see tech-file). 

There are two types of lib-files, the nlib-files and the xlib-files. The M4-preprocessor is able to convert 
these files to definition-files (see ctm_place) respectively ldm-files (see ldm). The syntax for the xlib-files 
is: 

<xmodel> ::= <xhead> { <xdef>} • <xtail> 

<xhead> ::= "define(" <name>"," <eol> ""' <eol> "newdef' <number> <eol> 

<xdef> ::= <xbox> I <xcompound> 

<xtail> ::= '")" 

<xbox> ::="box" <xlayer> <xcoord> <ycoord> <xcoord> <ycoord> <eol> 

<xcompound> ::= "me" <name> <xcoord> <ycoord> <eol> 
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<xlayer> ::= "px" l"dx" I "xx" 

<xcoord> ::= "eval(" <int>"+" <via>"+" <int> I { ["-"] "$4" I "$5"} ")" 

<ycoord> ::= :eval(" <int> "+$6+" <int> I { ["-"] "$4" I "$5" } ")" 

The syntax for the nlib is: 

<nmodel> ::= <nhead> { <ndef>} • <ntail> 

<nhead> ::= "define(INST"<number> "," <eol> '"" <eol> 

<ndef> ::= <nbox> <ncompound> 

<nboX> ::="box" <nlayer> <xcoord> <ycoord> <xcoord> <ycoord> <eol> 

<ncompound> ::="me" <name> <xcoord> <ycoord> <eol> 

<nlayer> ::= "nm"l "np" I "nd" I "ni" I "nb" I "nx" I "na" 

<xcoord> ::= "eval{" <int>"+" <via>"+" <int> I { ["-"] "$4" I "$5" } ")" 

<ycoord> ::= :eval(" <int> "+$6+" <int> I { ["-"] "$4" I "$5" } ")" 

tecb-file 

The tech-file can be used to set the technology parameters. 7 keywords are recognised: 

"pitch" <int> :pitch of the wires (default 18). 

"wiresize" <int> : width of a wire {default 6). 

"viasize" <int> : width and height of the vias {default 12). 

"overlap" <int>: extra poly-diffusion overlap to assure a 
good transistor {default 4). 

"safety" <int> : minimal surrounding box, half the size of 
largest design rule (default 3). 

"pmvia" <name> :name of the poly-metal via, used in the layout {default pm004004). 

"dm via" <name> : name of the diffusion-metal via, used in the layout (default dm004004). 

lf a keyword is not found in the tech-file, Üle default-value will be used. If no tech-file is specified, all 
default-values will be used. 

The program is developed to construct a library to the ctm-module generator. The nlib- and xlib-files can 
be joined and appended to standard library-files. These standard library-files must contain a definition of 
all used transistor-compounds and vias. These definitions can not be generaled automatically, so they must 
be made by hand. The syntax of a definition is: 

<definition> ::= <header> {<boX>* I <copy>) <tail> 

<header> ::= "define("<name> "," <eol> '"" <eol> 

<box>::= ''box" <layer> <xcoord> <xcoord> <ycoord> <ycoord> <eol> 

<copy> ::= <name>"($1,$2,$3,$4)" 
name is me name of me compound to be copied. 

<xcoord> ::= "eval($1" [{"+"I"-" "$3" I "$4")] "+"I"-" <int>")" 

<ycoord> ::= "eval($2" [{"+" 1"-" "$3" I "$4")] "+" 1"-" <int>")" 
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The definitions of strips and 1/0-pins must also be made by hand in the same way. 
The library should be used in combination with a selection-file. This file must be written conform the m4-
syntax. Depending on the ordering of gate, drain and source, and on the size of the channel, the m4-
preprocessor can with this file make a selection between all moelels in the library. 
To extract the surrounding box es from the library, M4 is used twice. First it is run on the concatenation of 
pitch-file, select-file and .tor-file. The pitch-file only contains one line, stating the wire-pitch. The syntax 
is: 

"define(P," <pitch>")" 

This first step selects the moelels and stretch. In the second step, M4 is run on the concatenation of pitch­
file, x-library and the output of the first step. 
To extract the final layout from the library, M4 is run on the concatenation of pitch-file, n-library and 
.c2out-file. 
To run the program, a shell-script called 'mklib' is provided. A menu can be used to select steps to be 
taken. It also provides the automatic updating of the library-files and ctm._mklib can be run in background 
fora sequence of compounds. Running in background needs a special file, called 'tech' .add. The syntax of 
this file is: 

(<name> <eol> <number> <eol>} * 

The mode Is are added to the library, not substituted, so name and number may nothave been used before. 

The program can only be used for transistor definitions with one or two diffusion contacts and zero or one 
poly contact The one diffusion and zero poly contact combination can't be used either. 

COJ\'TRIBUTED BY 
Jos Brouwers 

STATUS 
In development 

SEE ALSO 
)dm 

m4 
euler 
ctm_stretch 
ctm_place 
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